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Abstract

INTRODUCTION: We sought to harmonize genotype data from the predementia

AMYPAD (Amyloid Imaging to Prevent Alzheimer’s Disease) Consortium, compute
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AMYPADConsortium data used in the

preparation of this article were obtained from

the Prognostic and Natural History Study

(PNHS), provided by the Amyloid Imaging to

Prevent Alzheimer’s Disease Consortium

(AMYPAD). As such, investigators within the

AMYPADPNHS and AMYPADConsortium

contributed to the design and implementation

of AMYPAD and/or provided data but did not

participate in the analysis or writing of this

report. A complete list of AMYPAD

investigators can be found at

https://doi.org/10.5281/zenodo.7962737
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polygenic risk scores (PRS), and determine their association with global amyloid

deposition.

METHODS: Genetic data from five AMYPAD parent cohorts were harmonized, and

PRS were computed for Alzheimer’s disease (AD) susceptibility, cerebrospinal fluid

(CSF) amyloid beta (Aβ)42, and CSF phosphorylated tau181. Cross-sectional amy-

loid (Centiloid [CL]) burden was available for all participants, and regression models

determined if PRSwere associated with CL burden.

RESULTS: After harmonization, data for 867 participants showed that high CL bur-

den was most strongly predicted by CSF Aβ42 PRS compared to traditional AD

susceptibility PRS.

DISCUSSION: This work emphasizes the importance of data harmonization and pool-

ing of cohorts for large-powered studies. Findings suggest a genetic predisposition to

amyloid pathology thatmay predispose individuals early in theADcontinuum. This val-

idates the potential use of PRS in clinical (trial) settings as a non-invasive tool to assess

AD risk.

KEYWORDS

Alzheimer’s disease, amyloid, Amyloid Imaging to Prevent Alzheimer’s Disease, genotype data
harmonization, polygenic risk scores, predementia

Highlights

∙ Wedevelopeda robustharmonizationpipeline formulti-cohort genotypearraydata.

∙ Cerebrospinal fluid amyloid beta (Aβ)-specific polygenic risk scores (PRS) more

strongly predicted global Aβ positron emission tomography burden than other PRS.

∙ Results suggest a strong genetic predisposition to early Aβ pathology.
∙ This work highlights the need for robust data harmonization and data pooling.

∙ This work also validates the potential use of PRS as a non-invasive tool to assess

Alzheimer’s disease risk.

1 BACKGROUND

Sporadic Alzheimer’s disease (AD) is a complex heterogeneous disease

influenced by both genetic and environmental risk factors, which con-

tribute to its clinical manifestations.1 Despite substantial advances in

identifying modifiable risk factors, the biological heterogeneity driv-

ing the disease remains partially unexplored. Unravelling the genetics

of AD offers opportunities to enhance the precision of clinical trial

methodologies and results, and advance personalized medicine initia-

tives. An enhanced understanding of the genetic landscape, partic-

ularly across the AD continuum (from preclinical to clinical stages)

and of its dynamic endophenotypes (such as amyloid and tau accumu-

lation) in the earliest disease stage will provide further information

regarding the pathophysiological mechanisms occurring in AD. In turn,

this may allow for the generation of genetic profiles that can identify

individuals in the early preclinical phase. Moreover, it can allow for

delineating susceptible subpopulations of individuals or AD subtypes,

thereby enriching our understanding of AD heterogeneity, and deter-

mining individuals suitable for prevention trials as part of a stratified

recruitment process.

In this context, it is of utmost importance to have endeavors to

enable large-powered studies to be performed. This in turn will likely

facilitate the detection of additional AD risk variants or loci, and those

with low minor allele frequency (MAF) or low effect size. Multi-center

collaborative studies provide an opportunity for pooling data and

generating large datasets. However, genetic data sources are hetero-

geneous, and harmonization processesmust be implemented to enable

data utility, especially when sharing large-scale data with the broader

scientific community. TheAmyloid Imaging to Prevent Alzheimer’s Dis-

ease (AMYPAD) Prognostic and Natural History Study (PNHS) is a

notable example of such an initiative.2–4 This pan-European collabora-

tion comprises 10 parent cohorts, in which all individuals were older

than 50 years without a dementia diagnosis at inclusion. Furthermore,

the studywas designed to acquire amyloid positron emission tomogra-

phy (PET) and magnetic resonance imaging (MRI) scans of individuals

captured over all stages of the AD risk spectrum (negative, gray zone,

https://doi.org/10.5281/zenodo.7962737
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and positive AD biomarker profiles). Thus, this cohort represents a

large, deeply phenotyped, heterogeneous population that iswell suited

to study the early genetic determinants of AD, with higher statistical

power than other available smaller studies of similar populations.

The aim of this study was 2-fold. First, we present a detailed

methodology for the harmonization and genetic characterization of

diverse AMYPAD PNHS parent cohorts to establish a large cohort of

individuals with genetic, demographic, and imaging data. After this, as

an application for the harmonized dataset, we computed polygenic risk

scores (PRSs) using summary statistics from the Kunkle et al.5 case–

control genome-wide association study (GWAS), and the Jansen et al.6

cerebrospinal fluid (CSF) amyloid beta 42 (Aβ42) and CSF phosphory-

lated tau 181 (p-tau181) GWAS6 to assess the association of PRS and

amyloid PET burden along the AD risk continuum.

2 METHODS

2.1 Study sample

The AMYPADPNHS (EUClinical Trials Register AMYPAD-02 EudraCT

Number 2018-002277-22) is a pan-European multicenter study pop-

ulation of non-demented (Clinical Dementia Rating [CDR] ≤ 0.5) older

adults≥50years old at inclusion. For full recruitment and studydetails,

see Lopes Alves et al.2 and Bader et al.3 Briefly, participants were

recruited from 10 parent cohorts across seven countries with similar

characteristics. These parent cohorts include: (1) the European Pre-

vention of Alzheimer’s Disease Longitudinal Cohort Study (EPAD LCS),

(2) the twins subset of the European Medical Information Framework

for Alzheimer’s Disease 60++ (EMIF-AD 60++), (3) EMIF-AD 90+,
(4) the Alzheimer’s and Families study (ALFA+, Spain), (5) the Fun-

dació ACE Healthy Brain Initiative (FACEHBI, Spain), (6) the Flemish

Prevent AD Cohort KU Leuven (F-PACK, Belgium), (7) the Université

Catholique de Louvain (UCL-2010-412 cohort, Belgium), (8) theMicro-

biota cohort (Switzerland), (9) the AMYPAD Diagnostic Patient Man-

agement Study (DPMS, VUmc only, Netherlands), and (10) the DZNE-

Longitudinal Cognitive Impairment and Dementia Study (DELCODE,

Germany).

As part of recruitment into the AMYPAD PNHS, participants

received a static or dual-window amyloid PET scan of either

[18F]Flutemetamol or [18F]Florbetaben, as well as a structural

MRI scan. Because participants were recruited from existing parent

cohorts, data collection and availability were comparable across

parent cohorts, which mainly included historical PET and MRI scans,

neuropsychological assessment, and fluid biomarkers. Furthermore,

genotyping data were also available for a subset of parent cohorts,

forming the subgroup of individuals for the present study: EPAD LCS,

ALFA, EMIF-AD 60++, F-PACK, and FACEHBI. Note that genetic

data from all participants within EPAD LCS, ALFA, and F-PACK were

harmonized prior to subsetting based on AMYPAD participation

and amyloid PET scan availability. ALFA participants included in

the final AMYPAD PNHS subset were part of the ALFA+ subset of

ALFA.

RESEARCH INCONTEXT

1. Systematic review: Few studies describe harmonization

of multi-cohort genotype array data for Alzheimer’s dis-

ease (AD) to assess polygenicity. Although many poly-

genic risk score (PRS) studies exist in the context of

AD, few explore PRS beyond those computed using AD

susceptibility genome-wide association study data, par-

ticularly in large predementia cohorts.

2. Interpretation: We present a robust pipeline to harmo-

nize genotype array data from the predementia Amyloid

Imaging to Prevent Alzheimer’s Disease (AMYPAD) Con-

sortium that can be applied to othermulti-cohort studies.

Global amyloid beta (Aβ) positron emission tomogra-

phy burden was significantly associated with computed

cerebrospinal fluid Aβ-specific PRS, suggesting a strong

genetic predisposition to early Aβ pathology, validating

the potential use of PRS in clinical (trial) settings as a

primary non-invasive tool to assess AD risk.

3. Future directions: Expanding AMYPAD with other

cohorts to further increase power will be essential to

discover underlying disease mechanisms, as well as

investigating PRS associations with longitudinal Aβ
trajectories and other risk factors, eventually leading to

advancements in precisionmedicine.

2.2 Neuroimaging data acquisition and
harmonization

For each participant, an amyloid PET scan was acquired using either

[18F]Flutemetamol or [18F]Florbetaben (90 minutes post-injection),

and a T1-weighted MRI. A PET harmonization protocol was applied

to allow for the comparability of derived PET metrics.7 PET images

were processed using IXICO’s in-house fully automatedMR-basedPET

pipeline to produce Centiloids (CL) in the Global Alzheimer’s Asso-

ciation Interactive Network (GAAIN, http://www.gaain.org/centiloid-

project) cortical region of interest using the whole cerebellum as the

reference region.8

Since individuals in the AMYPAD PNHS were scanned for amyloid

PET at inclusion, individuals were stratified by low amyloid burden

(CL < 10), gray zone amyloid burden (10 < CL < 30), and high amyloid

burden (CL> 30).9

2.3 DNA extraction and genotyping

Whole-blood samples were collected for DNA at each parent cohort

site, per local procedures, and DNA was extracted according to stan-

dard protocols. For details on procedures from each parent cohort,

see de Rojas et al.,10 Vilor-Tejedor et al.,11 Adamczuk et al.,12,13 Bos

http://www.gaain.org/centiloid-project
http://www.gaain.org/centiloid-project
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et al.,14 andAccess | EPAD.15 Genome-wide genotypingwasperformed

on all extractedDNA for each cohort or batch separately. For ALFA this

was done in four batches using the Illumina Infinium Neuro Consor-

tium (Neurochip) Array version 1.0 (batch 1 and batch 2) and version

1.2 (batch 3 and batch 4, Illumina Inc.).11 EPAD LCS, F-PACK (batch 1

and batch 2), and EMIF-AD 60++ were genotyped using the Illumina

InfiniumGlobal ScreeningArraywith SharedCustomContent (Illumina

Inc.).16 ForFACEHBI, genotypingwasperformedusing theAxiom815K

Spanish biobank array (Thermo Fisher).8 Genotype calling for ALFA,

EPAD LCS, F-PACK, and EMIF-AD 60++ was performed on the raw

intensity data with the Illumina GenomeStudio 2.0 software11,16 and

using the Affymetrix power tool 1.15.0 for FACEHBI.10

2.4 Genetic data quality control

Quality control (QC) was performed independently on each cohort

or batch, unless otherwise specified, using PLINK (version 1.9,

www.cog-genomics.org/link/1.9).17 The following steps were under-

taken to ensure the accuracy and reliability of genetic data.

First, duplicate single nucleotide polymorphisms (SNPs) were

removed based on a chromosome:basepair identifier, followed by the

removal of indels, monomorphic, and mitochondrial variants. Next,

MAF were calculated based on extracting overlapping SNPs from the

European Phase 3 of the 1000 Genomes Project (1000G, N = 503).18

A/T and G/C variants with a high MAF (≥ 0.45) were removed, and

those below this threshold were flipped to correct for potential strand

misalignments. Then, bcftools was used to remove any ambiguous

SNPs, and flip and swap alleles to align data to the positive strand of

the reference human genome assembly GRCh37/hg19.19 After these

steps for F-PACK, both batches were merged, given the small number

of participants in batch 2.

Next, we performed standard QC as detailed in Luckett et al.20

and Marees et al.21 These steps included removing SNPs and individ-

uals with a low call rate (≤ 0.98); removing mismatched sex samples

(genetically determined sex from the X chromosome versus reported

demographic sex: individuals a priori determined as females F statis-

tic< 0.2, and individuals a priori determined as males F statistic> 0.8);

removing SNPs with lowMAF (≤ 0.01); removing SNPs deviating from

Hardy–Weinberg equilibrium (P < 1 × 10−6); removing individuals

with an outlying heterozygosity rate (± 5 standard deviations); and

checking for related or duplicated samples using identity by descent

(PI-HAT > 0.2 indicating at least second-degree relatives). All related

individuals were retained, but duplicate samples were removed (PI-

HAT close to 1). Last, we performed a principal component analysis

after merging with the Phase 3 1000G to detect any ethnic outliers

(1000GN= 2504).18

2.5 Genetic data imputation, harmonization, and
integration

Following the above-mentioned QC procedures, each parent cohort

or batch underwent pre-imputation QC, during which variant call

format (VCF) files were generated for each individual chromosome.

Each cohort or batch was imputed independently using the TOPMed

Imputation Server (https://imputation.biodatacatalyst.nhlbi.nih.gov),

TOPMed r3 panel (all populations), and Eagle phasing (version 2.4).22

After imputation, data were first filtered with imputation information

score > 0.7 and MAF ≥ 0.01. Next, SNP and sample missingness were

assessed (≤ 0.98), Hardy–Weinberg equilibrium (P < 1 × 10−6) was

applied, and any duplicate SNPswere removed.

Batches and cohorts were integrated to generate a single harmo-

nized dataset. Before merging, datasets first had mono- and multi-

allelic alleles removed if PLINK flagged these as present. For each pair

of datasets to be merged, a random sample of overlapping SNPs was

checked to ensure that the locations matched. All overlapping SNPs

were subsequently extracted from each dataset, and the merge-mode

2 command in PLINK was used to merge the datasets. This command

was chosen such that genotype calls in dataset 2 were included if they

were missing in dataset 1 for a given individual. For ALFA, batch 1 was

mergedwith batch 2, thenwith batch 3, and finallywith batch 4. Parent

cohorts were merged with this ALFA dataset, including a new parent

cohort each time: F-PACK, FACEHBI, EPAD LCS, and EMIF-AD 60++.
Post-merging, ambiguous SNPswere removed, and identity by descent

was checked to note related samples (PI-HAT > 0.2) and to remove

duplicates (PI-HAT close to 1). To note, after merging with EPAD LCS,

if there was a duplicate sample with an EPAD LCS ID and another

parent cohort ID, the EPAD LCS sample was removed, as each parent

cohort provided data to the AMYPAD PNHS under the original parent

cohort ID and not the EPADLCS ID. Finally, the EMIF-AD60++ partici-

pants were integratedwith themerged dataset, and all twin pairs were

retained for further steps. Once all datasets had been integrated, the

standard QC steps were performed for a final check of outlying het-

erozygosity (± 5 standard deviations), SNP and individual missingness

(≤ 0.98), and MAF ≤ 0.01 prior to performing a principal component

analysis to generate genetic principal components.

2.6 PRS calculations

PRS were computed using PRSice-223 using summary statistics from

the Kunkle et al.5 case–control GWAS, and the Jansen et al. CSF

Aβ42 and CSF p-tau181 GWAS.6 Before calculating PRS using the

Jansen et al. summary statistics, the AMYPAD PNHS dataset genome

build was lifted from GRCh37 to GRCh38 to match that of the

summary statistics using the LiftOver tool (https://genome.ucsc.edu/

cgi-bin/hgLiftOver). The European individuals from 1000G minus

the Fins (N = 404) were used as an external reference panel for

clumping (clumping window = 250 kilobases, r2 = 0.1). We com-

puted genome-wide PRS with (PRSamyloid, PRStau, and PRSKunkle) and

without (PRSamyloid-noAPOE, PRStau-noAPOE, and PRSKunkle-noAPOE) the

apolipoprotein E (APOE) region (19:44.4-45.5Mb), for each set of sum-

mary statistics at three thresholds for SNP inclusion (pT): 5 × 10−8,

1 × 10−5, and 0.1. For each score, the following approach was used:

PRSj = (∑iSjiGji)/Mj (where j is each PRS, i is the individual, S is the

effect size for the reference allele, G is the number of reference

alleles observed, and Mj is the number of SNPs included). All PRS

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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were adjusted for the first five genetic principal components and then

standardized against 1000Gminus the Fins.

Note that a lower PRSamyloid value denotes a higher genetic pre-

disposition, as this refers to genetically predicted lower levels of CSF

Aβ42.

2.7 Statistical analysis

Statistical analyses were performed in R version 4.4.0 (2024-04-24;

The R Foundation for Statistical Computing; https://cran.r-project.

org/). Shapiro–Wilk tests were used to determine data normality,

and Bonferroni correction was applied with α* < 0.05 considered

significant.

Prior to analysis, related individuals were removed, so the dataset

did not contain pairs of individualswith aPI-HAT>0.2. Cohort descrip-

tives were then assessed between low, gray zone, and high amyloid

burden groups using Kruskal–Wallis and post hoc Dunn tests for con-

tinuous data, and χ2 and pairwise proportion tests for categorical

data.

PRS distributions were visually assessed by constructing density

plots, and the SNP set size per PRS using a bar chart with a log scale

to allow for the visualisation of all scores on a single axis. The vari-

ability of each PRSwas assessed by calculating the interquartile range.

Last, a correlation matrix was constructed, and Spearman correlations

between each pair of PRSwere performed.

As an application for the computed PRS, we assessed their asso-

ciation with global amyloid burden. First, PRS distributions were

evaluated across three distinct amyloid burden groups—low, gray zone,

and high—using Kruskal–Wallis tests to identify overall differences,

where post hoc pairwise comparisons were conducted using Dunn

tests to assess specific group differences. The analyses across amyloid

burden groups were further refined by stratifying participants based

on their APOE ε4 status (carriers vs. non-carriers). Statistical signifi-

cance and the robustness of these findings were assessed using 1000

bootstrap replications to estimate confidence intervals, ensuring the

stability of our results across multiple samples.

Next, we performed a series of linear regressions to assess the

association between each PRS and global amyloid burden (CL as a

continuous variable), adjusting for chronological age, sex, and years

of education. For the primary models, PRS was the main predictor. To

explore the influence of APOE ε4 status, we introduced it as an addi-

tional covariate for PRSnoAPOE.We further assessed interaction effects

between PRSnoAPOE and APOE ε4 status to determine whether genetic

impacts on amyloid burden varied by APOE ε4 status. Linear regression
results are reported by means of standardized betas (βstandardized), the
Bonferroni-corrected P values, and the model-adjusted R2. To deter-

mine the influence of sample size, the primary models were performed

for each AMYPAD PNHS parent cohort individually, as well as for the

harmonized AMYPADPNHS cohort.

Finally, PRS were split into low-, medium-, and high-risk tertiles, and

the global amyloid burden (CL as a continuous variable) was assessed

between these groupsusingKruskal–Wallis tests to identify overall dif-

F IGURE 1 Principal component analysis plot including parent
cohorts and European individuals minus the Fins from 1000G. Each
cohort is represented by a different color with 1000G in gray. For
visualization purposes, the AMYPADPNHS data were projected onto
the principal component analysis space from the 1000G dataset after
post-imputationQCwas performed prior to the calculation of PRS.
1000G, 1000Genomes Project; ALFA+, Alzheimer’s and Families
study; AMYPAD, Amyloid Imaging to Prevent Alzheimer’s Disease
consortium; EMIF-AD 60++, EuropeanMedical Information
Framework for Alzheimer’s Disease 60++; EPAD LCS, European
Prevention of Alzheimer’s Disease Longitudinal Cohort Study;
FACEHBI, Fundació ACEHealthy Brain Initiative; FPACK, Flemish
Prevent ADCohort KU Leuven; PNHS, Prognostic andNatural History
Study; PRS, polygenic risk score; QC, quality control.

ferences and post hoc pairwise comparisons usingDunn tests to assess

specific group differences. Then, logistic regression was applied using

the PRS risk groups to predict high amyloid (CL > 30) with three con-

trasts of interest: high risk versus lowrisk; high risk versusmediumrisk;

medium risk versus low risk. Results are reported by means of odds

ratios (ORs) and the Bonferroni-corrected P values.

3 RESULTS

3.1 Genetic data harmonization and integration

After genotyping, there were ≥ 486,137 SNPs present in each cohort

or batch, with a total of 5511 participants. After the data prepara-

tionQC steps, there were≥ 395,932 SNPs remaining for standardQC,

with all individuals retained at this stage. Following standardQC, there

were≥ 266,323 SNPs remaining, with an overall loss of 420 individuals

due to: high individual-level SNPmissingnessN= 311, sex discrepancy

N = 36, heterozygosity N = 41, duplicate samples N = 1, and ethnic

outliers N = 31. See Figure 1 for a principal component analysis plot

with the integrated datasets and European individuals from 1000G

(minus the Fins) for illustrative purposes, and Figure S1 in support-

ing information for individual principal component analyses performed

with each cohort or batch with all ethnicities from 1000G. After the

pre-imputationQC, therewere 5088 participants and≥ 262,018 SNPs

available for imputation. After filtering the imputed data, there were

≥ 7,792,995 SNPs available for cohort integration. For more details on

https://cran.r-project.org/
https://cran.r-project.org/
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the number of SNPs present in each cohort for each of the steps, see

Table S1 in supporting information.

Before integrating all parent cohorts, ALFA batches were first

merged to generate a single ALFA cohort, resulting in a dataset of

7,232,606 SNPs and 2513 individuals. The ALFA dataset was merged

with F-PACK (6,652,627 variants and 2646 individuals), FACEHBI

(6,584,287 variants and 2856 individuals), EPAD LCS (6,575,222 vari-

ants and 4492 participants), and EMIF-AD 60++, resulting in a final

dataset totalling 6,383,175 variants and 4690 participants. Of these

individuals, 957 had an amyloid PET scan as part of the AMYPAD

PNHS. Of those individuals from ALFA, only those from the ALFA+
subset were included here. Last, for pairs of individuals that had a

PI-HAT > 0.2 from these 957, one individual was removed to ensure

no related samples were present, resulting in a final dataset of 867

individuals for further analyses.

3.2 Participant demographics

Participants were predominantly cognitively unimpaired (CDR = 0,

85.1%), had a low amyloid PET burden (CL < 10, 60%), and 42.4% car-

ried at least one APOE ε4 allele. Forty-five percent of individuals were

scanned with [18F]Florbetaben and 55% with [18F]Flutemetamol.

Compared to gray zone or low amyloid burden groups, individuals

with high amyloid burden were significantly older (P = 6.7 × 10−11,

P = 1.2 × 10−20, respectively), had significantly higher global CDR

scores (P = 1.1 × 10−6, P = 2.4 × 10−11, respectively), and had signif-

icantly lower Mini-Mental State Examination scores (P = 5.6 × 10−6,

P = 6.3 × 10−4, respectively). There were significantly fewer APOE ε4
carriers in the low amyloid burden group (32.8%) compared to the gray

zone (48.1%) and high (66.7%) amyloid burden groups (P = 2.5 × 10−4

and P = 3.8 × 10−14, respectively), and significantly more APOE ε4
carriers in the high amyloid burden group compared to the gray

zone group (P = 7.2 × 10−4). More individuals were scanned with

[18F]Flutemetamol in each of the groups, which was significantly

higher in the gray zone (69.3%) compared to low (50.6%) amyloid bur-

den individuals (P = 1.4 × 10−5), and in high (50.6%) compared to

gray zone individuals (P = 0.005). For cohort characteristics on the full

AMYPAD PNHS cohort see Bader et al.3 and see Table 1 for cohort

characteristics on the subset used in the present study.

3.3 Use of harmonized genetic data: PRS and
their characteristics

Figure 2 displays the distribution plots for PRS at the genome-wide sig-

nificance threshold for SNP inclusion (P value threshold, pT=5×10−8).

These plots illustrate that the PRS distributions across individual par-

ent cohorts are largely overlapping and generally follow a normal

distribution.

The number of SNPs included in each PRS across the SNP inclusion

thresholds is shown in Figure 3. In general, PRSKunkle has the largest

SNP set sizes at each pT, except at 0.1, where PRSamyloid has the largest

SNP set size (N = 53,050), followed by PRStau (N = 52,739). Excluding

the APOE region from the PRS results in a reduction in the number of

SNPs, ranging from 93.75% (PRSamyloid and PRSamyloid-noAPOE) to 0.1%

(PRStau and PRStau-noAPOE).

In Figure 4, the highest variability was observed for

PRSamyloid-noAPOE and PRSamyloid at pT = 5 × 10−8 (interquartile

range [IQR] = 1.83 and 1.68, respectively), whereas the lowest vari-

ability was for PRSKunkle-noAPOE and PRSKunkle at pT = 0.1 (IQR = 1.05

and 1.05, respectively). Figure 4 shows that individuals carrying more

APOE ε4 alleles exhibit a higher genetic predisposition, indicated by

lower scores for PRSamyloid, and higher scores for PRStau and PRSKunkle.

Despite differences in PRS set sizes and score variability, the strongest

significant negative correlations were identified between PRSamyloid

and PRSKunkle at pT = 5 × 10−8 (ρ = −0.84) and between PRSamyloid

at pT = 1 × 10−5 and PRSKunkle at pT = 5 × 10−8 (ρ = −0.83). The
strongest positive correlations were observed between PRSamyloid

and PRSamyloid-noAPOE at pT = 0.1 (ρ = 0.99), and between PRSKunkle at

pT=5×10−8 and PRSKunkle at pT=1×10−5 (ρ=0.97). All correlations

are illustrated in Figure 5 and detailed in Table S2 in supporting

information.

3.4 Application of PRS: associations with a global
amyloid burden phenotype

All PRS, including the APOE region, were significantly different

between low, gray zone, and high amyloid burden groups (P < 0.04,

Figure S2 in supporting information).When excluding theAPOE region,

only PRStau-noAPOE at pT = 0.1 and PRSKunkle-noAPOE at pT = 5 × 10−8

(P = 0.02 and 2.2 × 10−3, respectively) were significantly different

between amyloid burden groups (Figure S3 in supporting information).

When further stratifying for APOE ε4 carriership (carrier vs. non-

carrier), similar differences were observed for PRS, including the APOE

region, where APOE ε4 carriers presented with higher genetic pre-

disposition for amyloid burden than non-carriers, that is, APOE ε4
carriers had higher scores for PRStau and PRSKunkle, and lower scores

for PRSamyloid (Figure S4 in supporting information). However, fewer

significant comparisons were observed between APOE ε4 and amy-

loid burden groups with the more flexible SNP inclusion threshold of

pT= 0.1.

In contrast, significance was only observed for PRSamyloid-noAPOE at

pT=1×10−5 (P=0.02) betweenAPOE ε4non-carriers in the gray zone
group and APOE ε4 non-carriers in the high amyloid burden group, and

for PRSKunkle-noAPOE at pT= 5 × 10−8 (P= 0.03) between APOE ε4 non-
carriers in the gray zone amyloid burden group and APOE ε4 carriers in
the high amyloid burden group (Figure S5 in supporting information).

For the primary regression models, all PRS, including the

APOE region, were significantly associated with amyloid bur-

den (P < 1 × 10−3, Figure 6) except PRSKunkle at pT = 0.1, with

the most significant predictor being PRSamyloid at pT = 5 × 10−8

(βstandardized = −0.29, P = 7.2 × 10−18, adjusted R2 = 0.16).

PRSamyloid-noAPOE (βstandardized = 0.10, P= 0.03, adjusted R2 = 0.08) and

PRStau-noAPOE (βstandardized =0.12,P=6.0×10−3, adjustedR2 =0.09) at
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TABLE 1 Cohort demographics stratified by amyloid PET status.

Low

(CL< 12)

(N= 516)

Gray-zone

(10<CL< 30)

(N= 189)

High

(CL> 30)

(N= 162)

Overall

(N= 867) Statistics

Sex (female,N, %) 319 (61.8%) 105 (55.6%) 89 (54.9%) 513 (59.2%) χ2 = 3.7,

P= 0.2

Age (years, median, range) 64 (49-89) 66 (50-93) 72 (54-88) 66 (49-93) χ2 = 88.2,

P= 7.2×10−20

APOE ε4 carriers (N, %) 169 (32.8%) 91 (48.1%) 108 (66.7%) 368 (42.4%) χ2 = 61.3,

P= 5.0×10−14

Years of education (years, median, range) 15 (5-28) 15 (6-32) 15 (6-25) 15 (5-32) χ2 = 1.2,

P= 0.6

Global CDR 0 (N, %) 460 (89.1%) 167 (88.4%) 111 (68.5%) 738 (85.1%) χ2 = 46.0,

P= 1.0×10−10

MMSE

(median, range)

29 (24-30) 30 (20-30) 29 (16-30) 29 (16-30) χ2 = 21.8,

P= 1.8×10−5

PET tracer [18F]Flutemetamol (N, %) 261 (50.6%) 131 (69.3%) 88 (54.3%) 480 (55.4%) χ2 = 19.7,

P= 5.2×10−5

Cohort (N, %)

ALFA+ 113 (21.9%) 46 (24.3%) 18 (11.1%) 177 (20.4%) –

F-PACK 34 (6.6%) 7 (3.7%) 4 (2.5%) 45 (5.2%) –

FACEHBI 147 (28.5%) 20 (10.6%) 23 (14.2%) 190 (21.9%) –

EPAD LCS 178 (34.5%) 81 (42.9%) 102 (63%) 361 (41.6%) –

EMIF-AD (60++) 44 (8.5%) 35 (18.5%) 15 (9.3%) 94 (10.8%) –

Abbreviations: ALFA+, Alzheimer’s and Families study; APOE, apolipoprotein E; CDR, Clinical Dementia Rating; CL, Centiloid; EMIF-AD 60++, European
Medical Information Framework for Alzheimer’s Disease 60++; EPAD LCS, European Prevention of Alzheimer’s Disease Longitudinal Cohort Study; FACE-

HBI, Fundació ACEHealthy Brain Initiative; F-PACK, Flemish Prevent ADCohort KU Leuven;MMSE,Mini-Mental State Examination; PET, positron emission

tomography.

pT = 0.1 were also significantly associated with global amyloid burden

(Table S3 in supporting information). Note that when relaxing the

threshold for SNP inclusion, the variance explained decreased for all

PRS, including the APOE region, but increased for all PRSnoAPOE except

for PRSKunkle-noAPOE (Figures S6 and S7 in supporting information).

Furthermore, most significance was lost when analyzing these rela-

tionships in the individual parent cohorts that comprise the AMYPAD

PNHS (Figure 6).

When APOE ε4 status was included as a covariate in the models for

PRSnoAPOE, significance remained only for PRStau-noAPOE at pT = 0.1

(βstandardized = 0.11, P= 6.5 × 10−3, adjusted R2 = 0.17, Figure S8, Table

S4 in supporting information).

When APOE ε4 status was included as an interaction term with

PRSnoAPOE, PRS remained a significant predictor for global amyloid

burden only for PRStau-noAPOE at pT = 0.1 (βstandardized = 0.16, P = 0.02,

adjusted R2 = 0.17, Figure S9, Table S5 in supporting information). The

interaction term was not a significant predictor for any of the models

(Figure S10, Table S6 in supporting information).

3.5 Application of PRS: PRS risk stratification in a
clinical context

Amyloid burdenwas significantly different between low-,medium-, and

high-risk PRS tertiles for all PRS, including the APOE region (P < 0.01),

except for PRSKunkle at pT= 0.1 (Figure S11 in supporting information).

Amyloid burdenwas not significantly different between risk tertiles for

PRSnoAPOE, except for PRSamyloid at pT = 5 × 10−8 (P = 7.6 × 10−5,

Figure S12 in supporting information). For those significant associa-

tions observed, individuals in the high PRS risk group had significantly

higher amyloid burden compared to the medium PRS risk and low PRS

risk groups.

When global amyloid burden was dichotomized into low and high

(CL > 30) burden, eight models were significant for the comparison

between high versus low PRS risk, two models for the comparison

between high versus medium PRS risk, and three for medium ver-

sus low PRS risk (Figure 7, Table S7 in supporting information). The

highest ORs for having high amyloid burden were observed for high

versus low PRS risk for PRSamyloid at pT = 1 × 10−5 (OR = 6.2 [3.8–

10.5], P = 3.5 × 10−11) and pT = 5 × 10−8 (OR = 5.9 [3.6–10.0],

P= 1.0 × 10−10).

4 DISCUSSION

We harmonized genotype data from diverse arrays across multiple

deeply phenotyped cohorts within the pan-European AMYPAD PNHS

consortium spanning the AD risk continuum, resulting in a unified

multimodal dataset suitable for large-scale analyses. Using this har-

monized dataset, we computed several PRS and demonstrated their
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F IGURE 2 Representative PRS distributions for each AMYPADPNHS Parent Cohort. All distributions show PRS at the genome-wide
significance threshold for SNP inclusion (pT= 5 × 10−8). The top row shows PRS including the APOE region for (A) PRSamyloid, (B) PRStau, and (C)
PRSKunkle. The bottom row shows PRS excluding the APOE region for (D) PRSamyloid-noAPOE, (E) PRStau-noAPOE, and (F) PRSKunkle-noAPOE. Note that a
lower PRSamyloid(noAPOE) is indicative of higher genetic predisposition to lower levels of CSF Aβ42. Aβ, amyloid beta; ALFA+, Alzheimer’s and
Families study; AMYPAD, Amyloid Imaging to Prevent Alzheimer’s Disease consortium; APOE, apolipoprotein E; CSF, cerebrospinal fluid; EMIF-AD
60++, EuropeanMedical Information Framework for Alzheimer’s Disease 60++; EPAD LCS, European Prevention of Alzheimer’s Disease
Longitudinal Cohort Study; FACEHBI, Fundació ACEHealthy Brain Initiative; FPACK, Flemish Prevent ADCohort KU Leuven; PNHS, Prognostic
and Natural History Study; PRS, polygenic risk score; p-tau, phosphorylated tau; SNP, single nucleotide polymorphism.

association with global amyloid PET burden. Overall, PRS computed

using CSF Aβ42 GWAS summary statistics at pT = 5 × 10−8 and

pT = 1 × 10−5 showed the strongest associations with global amyloid

burden.

Access to large datasets with multiple data modalities available is

key to understanding AD and its biological underpinnings. This is not

a new phenomenon, given initiatives such as the Alzheimer’s Disease

Sequencing Project Phenotype Harmonization Consortium (ADSP-

PHC). Although such large-scale initiatives aim to harmonize imaging

and genetic data from thousands of individuals across the disease con-

tinuum, our study complements these efforts by focusing on a deeply

phenotyped, prospectively recruited European cohort in the earliest

disease stages. The AMYPAD PNHS is uniquely characterized by har-

monized amyloid PET acquisition and centralized image processing,

coupled with closely aligned biomarker and genetic data, making this

a strong dataset for carrying out the present and future genetic asso-

ciation analyses. To investigate early pathological amyloid burden at

the genomic level, harmonization efforts were required for integrating

the heterogeneous genotype array data from multiple parent cohorts.

Our pipeline produced a harmonized genetic dataset, from data col-

lected using different methodologies, suitable for investigating such

genetic–endophenotype associations. First, principal component anal-

ysis confirmed that, despite the diverse origins of the data, individuals

within theAMYPADPNHShave a genetic profile similar to the broader

European population. Second, the PRS derived from this harmonized

dataset are largely overlapping, critical for the validity of cross-cohort

genetic analyses and supporting the generalizability ofAMYPADPNHS

findings. Last, we standardized the AMYPAD PNHS PRS against those

from the European 1000G Project individuals. This approach removes

intra-cohort standardization bias and provides a consistent frame-

work for standardization,which is an important consideration for study

replicability.

The association between PRSs and AD susceptibility has been well

documented over the last decade, for example,24–29 where studies

use AD susceptibility GWAS summary statistics to generate their

scores. Similarly, studies that investigate the association of PRS with

amyloid burden also use AD susceptibility GWAS summary statistics,

which often capture a low variance explained despite the PRS being
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F IGURE 3 PRS SNP set size. A log scale is used on the y axis to enable all set sizes to be visualized given the wide range. The table on the right
shows the actual SNP set size for each PRS. APOE, apolipoprotein E; CSF, cerebrospinal fluid; PRS, polygenic risk score; SNP, single nucleotide
polymorphism.

F IGURE 4 PRS distributions across phenotypes and P value thresholds. Each row represents PRS computed using a different set of summary
statistics at the three thresholds for SNP inclusion. Scores with andwithout the APOE region are shown. Data points are colored based on the
number of APOE ε4 alleles a participant carries, where darker colors represent the presence of more risk alleles. Note that a lower
PRSamyloid(noAPOE) is indicative of higher genetic predisposition to lower levels of CSF Aβ42. Aβ, amyloid beta; APOE, apolipoprotein E; CSF,
cerebrospinal fluid; PRS, polygenic risk score; SNP, single nucleotide polymorphism.
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F IGURE 5 Correlationmatrix illustrating the correlation coefficient for each pair of PRS. The color of the circles is based on the size of the
correlation coefficient, and the size of the circles on the P value significance. Non-significant correlations are shown as blank circles. Note that a
lower PRSamyloid(noAPOE) is indicative of higher genetic predisposition to lower levels of CSF Aβ42. Aβ, amyloid beta; CSF, cerebrospinal fluid; PRS,
polygenic risk score.

a significant predictor of amyloid deposition.20,30–33 We have shown

the strength of combining data from individual cohorts in finding asso-

ciations between PRS and amyloid burden in the predementia phase

of AD, using both AD susceptibility and CSF Aβ42 GWAS summary

statistics. Indeed, the majority of the significant associations between

PRS and amyloid burden emerged when analyzing the entire AMYPAD

PNHS cohort as opposed to the individual parent cohorts, providing

new insights into which PRS and corresponding summary statistics

better predict amyloid burden.

The number of SNPs included in the PRS increased as the

SNP inclusion threshold became more flexible. The overall smaller

PRS set sizes for PRSamyloid(noAPOE) and PRStau(noAPOE) compared to

PRSKunkle(noAPOE) may reflect differences in genetic architecture or

heritability of CSF Aβ42 and CSF p-tau181 compared to AD diagno-

sis. However, it may also be due to the smaller sample sizes of the

GWAS used to generate the summary statistics for CSF Aβ42 and CSF

p-tau181 (N = 80746) versus the Kunkle GWAS (N = 21,9825). Larger

sample sizes in future GWAS may enable the discovery of additional

risk or protective variants currently undetected due to limited statisti-

cal power. Furthermore, the summary statistics from theKunkleGWAS

were derived from a traditional case–control design rather than for a

specific outcome, such as levels of CSF Aβ42 or CSF p-tau181. Con-

sequently, the levels of CSF AD biomarkers are likely influenced by

specific biological processes involving a limited number of contributing

SNPs, resulting in PRSswith smaller set sizes. These differences arising

fromusingdistinct summary statistics andPRS set sizemayalso explain

the PRS variability observed in Figure 4. Nonetheless, the high correla-

tions observed between different builds of PRS, for example, PRSKunkle

andPRSamyloid at pT=5×10−8 (ρ=−0.84), suggest that thePRSmaybe

constructed using overlapping loci. Indeed, the two genome-wide sig-

nificant loci for CSF Aβ42 (Jansen) were also genome-wide significant

for AD susceptibility (Kunkle).

Most PRS that included the APOE region were significantly asso-

ciated with amyloid burden, with higher scores observed in APOE ε4
carriers, highlighting the well-established relationship between APOE

ε4 and amyloid deposition in AD. However, PRSamyloid-noAPOE and

PRStau-noAPOE at pT = 0.1 were also significantly associated, provid-

ing evidence for non–APOE ε4 pathways or genetic variants that likely

contribute to this pathological process during the earliest stages of

the disease continuum. Further support for this was provided by the

regression results when APOE ε4 status was included as a covariate;

significance persisted for PRStau-noAPOE at pT = 0.1. Notably, this PRS

remained a significant predictor in the models that included an inter-

action term for PRSnoAPOE x APOE ε4 status, indicating that the PRS

independently contributes to amyloid burden. Our findings are con-

sistent with previous studies, reaffirming the strong effect of APOE ε4
and the more modest aggregate contributions of other variants. How-

ever, we add value by validating these associations in a harmonized
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F IGURE 6 Association between PRS and global amyloid burden. The forest plots illustrate the standardized betas and confidence intervals
from the primary linear regressionmodels, with corresponding Bonferroni-corrected P values. Each panel is an individual parent cohort, with the
bottom right panel being the harmonized AMYPADPNHS cohort. *= P< 0.05; **= P< 0.005; ***= P< 0.001. Note that a lower PRSamyloid(noAPOE)

is indicative of higher genetic predisposition to lower levels of CSF Aβ42. Aβ, amyloid beta; ALFA+, Alzheimer’s and Families study; AMYPAD,
Amyloid Imaging to Prevent Alzheimer’s Disease consortium; CSF, cerebrospinal fluid; EMIF-AD 60++, EuropeanMedical Information Framework
for Alzheimer’s Disease 60++; EPAD LCS, European Prevention of Alzheimer’s Disease Longitudinal Cohort Study; FACEHBI, Fundació ACE
Healthy Brain Initiative; FPACK, Flemish Prevent ADCohort KU Leuven; PNHS, Prognostic andNatural History Study; PRS, polygenic risk score.

and independent imaging cohort with robust preclinical phenotyping.

In contrast to larger efforts, the AMYPAD PNHS provides a dis-

tinct setting for early-stage analysis, offering harmonized imaging and

biomarker data that enable future modelling of brain amyloid burden

in combination with other features (e.g., MRI, cognition, and further

genetic analyses). This is particularly relevant given the more modest

sample size, as the deeply phenotyped AMYPAD PNHS cohort allows

for detailed subgroup analysis, longitudinal follow-up, and multimodal

integration. Importantly, by focusing on cross-cohort harmonization

andearly amyloidPETburden, our studybridges a gapbetweengenetic

risk prediction and early AD pathology—an area that is not always the

central aim of larger GWAS-based PRS analyses.

For PRS including the APOE region, the variance explained was

higher than that observed in themodels with PRSnoAPOE. However, the

variance explained decreased when relaxing the SNP inclusion thresh-

old to 0.1 for all PRS including the APOE region, to similar values as

observed for PRSnoAPOE. This highlights that less relevant SNPs are

included as the threshold for SNP inclusion is relaxed for PRSAPOE,

suggesting that amyloid burden is better predicted by a smaller set

of high-confidence SNPs that includes the APOE region. Nonetheless,
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F IGURE 7 Effect of high, medium, and low PRS risk on high amyloid burden. The forest plot illustrates the odds ratios and confidence intervals
from the logistic regressionmodels, with corresponding Bonferroni-corrected P values. The dashed line at OR= 1 indicates no effect. High amyloid
burdenwas defined as CL> 30. *= P< 0.05; **= P< 0.005; ***= P< 0.001. CL, Centiloid; CSF, cerebrospinal fluid; OR, odds ratio; PRS, polygenic
risk score; ptau, phosphorylated tau.

non–APOE ε4 influences should be further explored, given the results

observed with PRStau-noAPOE as discussed above.

Among the PRS analyzed, PRSamyloid showed the highest ORs, espe-

cially for high versus low and medium versus low PRS risk groups, and

the strongest associations with brain amyloid burden. This suggests

that PRS derived from CSF Aβ42 GWAS summary statistics contain

more relevant genetic variants contributing to amyloid deposition in

the early stages of AD compared to those from a traditional case–

control design. This validates the use of computing PRS using summary

statistics beyond those of an AD case–control design when evaluating

the association of PRSwith amyloid burden. Furthermore, this comple-

ments published literature in which PRS are computed using different

summary statistics25,34 or methods, for example, pathway-specific

scores,35–38 providing further information regarding the genetic archi-

tecture of AD and its pathological processes. This highlights the

potential for targeted genetic profiling to identify at-risk individuals,

which is especially relevant given the ongoing clinical trials and reg-

ulatory approvals of amyloid-lowering therapies.37,38 The individuals

most likely to benefit from these treatments are those predisposed to

amyloid deposition or accumulation who are still in the earliest dis-

ease stages, prior to significant cognitive impairment. A targeted PRS

capable of identifying such individuals presents as an ideal tool for use

in a first-stage hierarchical approach, complementing established par-

ticipant selection tools. Furthermore, the substantial overlap of PRS

across cohorts and their significant predictive value for global amy-

loid PET burden highlight their comparability across a pan-European

population, validating the potential use of these scores in clinical set-

tings. PRS could serve as a primary non-invasive tool to assess AD risk

and inform treatment strategies without the immediate use of PET or

CSF acquisition, as is currently performed in the initial stages of clinical

evaluation.

We selected established GWAS summary statistics of AD sus-

ceptibility and CSF biomarkers for PRS computation, reflecting their

common use in (preclinical) AD research and aligning with the primary

focus of the AMYPAD PNHS on amyloid PET burden. However, future

analyses could benefit from incorporating amyloid PET–specificGWAS

summary statistics such as those from Ali et al.39 This could refine

the trait specificity of PRS estimates and enhance the interpretation

of genetic influences on PET-derived amyloid burden. Nonetheless,

our aim was to develop and demonstrate a reproducible genetic

harmonization and PRS pipeline within this imaging-centric, preclini-

cal cohort. However, looking ahead, incorporating summary statistics

basedonotherAD-relevant endophenotypes, suchashippocampal vol-

ume or vascular pathology, may help strengthen the consistency and

interpretability of findings. Although our study focused on European-

ancestry data, we also recognize the importance of incorporating

more diverse summary statistics—such as those from the recent multi-

ethnicGWASof amyloid imaging39—to assess PRS performance across

populations. This is a key area for future work aimed at improving

generalizability and enhancing predictive power.

In conclusion, we successfully harmonized pan-European geno-

type array data for a predementia AD population, enabling the

identification of specific associations between derived PRS and corti-

cal amyloid PET burden. This work highlights the importance of robust
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data harmonization procedures and pooling of cohort data in facili-

tating large-powered studies and ensuring their accessibility to the

broader research community, and validates the potential use of PRS in

clinical or clinical trial settings as a primary non-invasive tool to assess

AD risk.
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