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Sympatric speciation is considered rare, but oceanic Howea palms, crater lake cichlids,
and parasitic indigobirds provide compelling evidence that it occurs. Still, the frequency
of sympatric speciation and its relationship to morphological divergence in plants remains
poorly understood, especially in plants. Here, we analyze the geographic distributions,
traits, and divergence times of palm and conifer sister species (740 species from 108
genera) to determine the dominant geographic mode and role of morphological diver-
gence in plant speciation. We show that allopatric speciation is dominant, and while
frequent sympatric speciation cannot be discounted, the most likely scenario is that zero
(conifers) or 10% (palms) of speciation events occur in sympatry. Our models show that
the incidence of sympatry among sister pairs rises rapidly within the first million years
after speciation and then declines, suggesting that species failing to attain sympatry early
tend to remain allopatric. Finally, we find no evidence for morphological divergence in
allopatric or sympatric palms. Our findings question the link between speciation and
morphological divergence and suggest that while plants and animals share similar modes
of speciation, plants exhibit a complex spatiotemporal dynamic, challenging the typical
vertebrate pattern of steadily increasing sympatry.
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Speciation is often assumed to involve geographical isolation and trait divergence
between sister species. The first assumption has been better studied in animals than
plants and the consensus is that geographical isolation is the main speciation mode in
vertebrates (1). By contrast, the few available studies on plants hint toward a shared
role of speciation with geographical isolation (hereafter allopatric) and speciation with-
out geographical isolation (sympatric) (2-11). Sympatric speciation in plants can arise
through ecological divergence (3, 4) or through nonecological mechanisms such as
hybridization and polyploidy (2, 5-7). Regarding morphological divergence, a recent
study revealed that most allopatric sister species of birds, mammals, and amphibians
have evolved toward similar rather than divergent forms (12). Similar studies combining
the geographical and morphological context of divergent species are rare in plants and
usually limited to single genera.

Here, we address two key questions relevant to the speciation process: first, whether
species originate solely through geographical isolation, and second, whether speciation
involves morphological divergence. Concerning the first question, we find that young
sister pairs in both conifers and palms show substantial range overlap, which slightly
declines with age (Fig. 1 A and B). A similar pattern occurs in Calochortus (Liliaceae) (7)
and in species from 12 families in the California Floristic Province (8). These patterns
are, however, difficult to interpret without explicitly modeling the speciation process and
subsequent geographic range dynamics. To address this, we use a biogeographic model
that infers speciation modes while accounting for postspeciation transitions between
allopatry and sympatry and their variation over time (87 Appendix). We find that allopatric
speciation is likely the dominant mode in both conifers and palms, accounting for 100%
of events in conifers (Fig. 1C) and 90% in palms (Fig. 1D). Broad confidence intervals,
however, prevent ruling out higher sympatric speciation rates—of up to 30% in conifers
and 50% in palms.

Odur analyses also reveal a rise and subsequent decline in the incidence of sympatry
with sister species age (Fig. 1 £ and F). This pattern is best explained by a model where
the rate of transition to sympatry slows down with time since divergence. This suggests
that sister pairs initially separated by relatively permeable geographic barriers attain sym-
patry rapidly following speciation (i.e., within ~1 Ma). In contrast, those divided by
impassable barriers such as seaways or deep valleys remain indefinitely allopatric. Such
complex spatiotemporal dynamics differs from the monotonic trend toward greater sym-
patry seen in vertebrates.
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Fig. 1. The likelihood and temporal dynamics of sympatric speciation in palms and conifers. (A and B) Weak negative relationships between percentage of
current range overlap and time since divergence (million years ago, Ma) for conifer (A) and palm sister pairs (B). (C and D) Likelihood of a biogeographic model
assuming varying degrees of sympatric speciation (0 to 100%, in 10% intervals) for conifers (C) and palms (D) under a relaxed (10% of the smaller range overlap,
in green) or conservative (90%, in purple) definition of sympatry. Higher values (to the Right) indicate more likely models. Filled points do not differ significantly
from the best model. Red dashed line indicates 1.92 log-likelihood units from the best model. (£ and F) Best-fitting model predicted proportions of sister pairs
in sympatry over time (log-scale) under the 10% (green) and 90% (purple) overlap thresholds for conifers (£) and palms (F). Bubbles represent observed data.

Bubble size is proportional to the number of species pairs in each time bin.

We hypothesize that the higher incidence of sympatric speciation
in palms may be due to the greater permeability of geographical bar-
riers in the lowlands, where they mostly diversified. While Amazonian
rivers are geographic barriers for birds (13) and primates (14),
population-level analyses of the shrub Amphirrhox longifolia
(Violaceae) in the Rio Branco (9) and the trees Caryocar villosum and
C. microcarpum (Caryocaraceae) in the Rio Negro (10) show that
most rivers are largely permeable to plants. The mechanisms of sym-
patric speciation in palms might also differ from those in Calochortus
(6, 7) and other plants (2, 8) in which polyploidy is frequent. The
influence of polyploidy in our studied groups is small because changes
in chromosome number are rare—occurring in 4 of 330 palms (15)
and in 14 of 512 conifer species (16). Instead, sympatric speciation
in palms may be due to drivers like assortative mating, ecological
divergence associated with pleiotropic effects, or to nonecological
drivers like genetic drift, founder effects, or bottlenecks.

We now turn to the second question of whether speciation nec-
essarily involves morphological divergence. Recent genomic, eco-
logical, and experimental research has confirmed that Howea palms
diverged in sympatry (3, 4). In Howea, trait differences are a strong
example of divergent evolution. But how common is this in plants?
To answer this, we modeled trait divergence over time as in Anderson
etal’s study (12) using morphological traits for 84 pairs of palm
species with zero and complete range overlap. We find no evidence
for a divergence model for species with zero or complete overlap
(Fig. 2). Instead, our results demonstrate that sister palm species
have repeatedly evolved toward similar forms. Sister species might
converge onto similar solutions when exposed to comparable
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conditions. The cryptic radiation of Andean Geonoma palms (11)
exemplifies such morphological convergence in genetically inde-
pendent groups. Thus, as in vertebrates (12), morphological con-
vergence seems to be common also among palm sister species.

In conclusion, our results indicate that allopatric speciation is
the predominant mode of speciation in palms and conifers. Yet,
sympatric speciation in palms—and possibly in other plant groups
with similar diversification strategies—is not confined to excep-
tional cases. Speciation in palms with or without geographical
isolation does not seem to be the result of a morphologically diver-
gent process, but rather, of a process leading to convergent mor-
phologies. Future research is needed to determine whether
morphological convergence represents parallel ecological evolution
(17) or to determine to what degree palm sister pairs differ in yet
unmeasured traits, like phenology or habitat preferences (8).
Furthermore, ecological divergence in sympatric pairs may be
uneven across the range of species and only detectable at the local
scales where populations of both species co-occur. Finally, to con-
firm cases of sympatric speciation, further studies would need to
investigate the degree of reproductive isolation and the probability
of an allopatric phase during speciation (18).

Materials and Methods

Biogeographic Models. We estimated the relative frequency of sympatric vs.
allopatric speciation by fitting a nonhomogeneous Markov model to sister species
data. Species pairs originate in allopatry or sympatry and may transition between
states. Using sister pair ages (Ma) and current range overlap, we estimated via
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Fig. 2. Speciation frequently leads to similar morphologies. lllustrations represent morphological measurements: 1) stem length, 2) stem diameter, 3) leaf
length, 4) number of leaves, 5) fruit width, and 6) fruit length. The panel “Traits” shows the combination of measurements included in the principal component
analyses (PCA) to provide a score for each sister species and trait. A “trait-set” is a set of differences in the PCA scores for a given trait for all the sister pairs
having information on that trait. Bar-plots indicate the estimated proportion of sister pairs in a trait-set whose divergence conforms to an evolutionary model

of divergent optima (DO) or toward the same optimum as the sister species (SO).

maximum likelihood: y = allopatric speciation frequency, o = transition rate to
sympatry, and e = transition rate to allopatry. Range overlap was treated as binary,
using both relaxed (=10%) and conservative (=90%) sympatry thresholds. Only
sister pairs with support =0.5 were included. Initial data exploration revealed a
rise and fall in the incidence of sympatry with sister age, so we used a piece-wise
model allowing o to vary before and after an estimated breakpoint (0, 1, or 2 Ma).
For each, we performed a profile-likelihood search across y values from 0% to
100% allopatry in 10% intervals.

Trait Evolution Models. We analyzed four groups of traits that include meas-
urements of the stem, leaves, and fruits. In these models, the response variable
is the absolute difference in a continuous trait between sisters, i.e., the change
in the statistical distribution of the difference over time. The resulting distribu-
tions were then fit to models whose shapes are expected to differ depending
on whether lineages generally evolved through a combination of the following
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models: a) toward the same optimum as the sister species (SO), b) toward a
different or divergent optimum (DO), or ¢) under unconstrained random walk-
like processes (RW) (SI Appendix).

Data, Materials, and Software Availability. All data and scripts have been
deposited on Zenodo (19). Extended methods and references to previously pub-
lished data used in this study are available in the S/ Appendix.
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