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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• We present KAN_PCC algorithm – 
variant of KAN.

• KAN appears to be insensitive to inject
ing prior data information for energy 
systems modelling.

• KAN appears to model considered 
energy-systems better than MLP.

• KAN based feature importance analysis 
and multi-objective optimisation of 
thermal power system are performed.
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A B S T R A C T

Considering the improved interpretable performance of Kolmogorov–Arnold Networks (KAN) algorithm 
compared to multi-layer perceptron (MLP) algorithm, a fundamental research question arises on how modifying 
the loss function of KAN affects its modelling performance for energy systems, particularly industrial-scale 
thermal power plants. In this regard, first, we modify the loss function of both KAN and MLP algorithms and 
embed Pearson Correlation Coefficient (PCC). Second, the algorithmic configurations built on PCC, i.e., KAN_PCC 
and MLP_PCC as well as original architecture of KAN and MLP are deployed for modelling and optimisation 
analyses for two case studies of energy systems: (i) energy efficiency cooling and energy efficiency heating of 
buildings, and (ii) power generation operation of 660 MW capacity thermal power plant. The analysis reveals 
superior modelling performance of KAN and KAN_PCC algorithms than those of MLP and MLP_PCC for the two 
case studies. KAN models are embedded in the optimisation framework of nonlinear programming and feasible 
optimal solutions are estimated, maximising thermal efficiency up to 42.17 ± 0.88 % and minimising turbine 
heat rate to 7487 ± 129 kJ/kWh corresponding to power generation of 500 ± 14 MW for the thermal power 
plant. It is anticipated that the scientific, research and industrial community may benefit from the fundamental 
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insights presented in this paper for the ML algorithm selection and carrying out model-based optimisation 
analysis for the performance enhancement of energy systems.

Introduction

With the recent advancement in the information communication 
technology, internet of things and sensor technology, a large volume of 
data is generated across the application domains, i.e., banking [1], 
finance [2], industrial complexes [3,4] and social media applications 
[5]. The data captures the temporal-spatial dynamics bringing new in
sights and action plans to enhance the operation excellence and boosting 
efficiency for the considered application [6–9]. The ever-increasing 
computational power, hardware sophistication, increased literacy on 
the use of the data and efficient data-driven modelling algorithms, we 
see exponential used cases of data-driven studies promising the perfor
mance enhancement and improved understanding on how to carry out 
design, operation and control of considered application, say energy 
systems [10–16]. The increased penetration of data-driven analysis 
pipelines across the application domains, we are living in the fourth 
learning paradigm commonly referred as “data-driven sciences” where 
data informs the user for decision making as opposed to the computa
tional sciences and theoretical sciences where rigorous physical laws are 
in play to explain the phenomenon [17].

The historic success of data-driven sciences is founded on the multi- 
layer feed forward perceptron based artificial neural networks which are 
universal function approximator and are supported by universal func
tion approximation theorem [18,19]. Multi-layer perceptron (MLP) re
quires reasonable memory and compute to approximate an ill-defined 
function [20,21]. While, MLP models are efficient in constructing the 
functional mapping and digging the nonlinearity in the 
hyper-dimensional problem space, MLP suffers from inherent problems 
including sticking into the local minima, overfitting the data and 
black-box nature for interpretability of model-based predictions [22]. 
The black-box nature of MLP initially was ignored on the face of 
excellent modelling performance of the algorithm. However, with the 
increased stress on model’s transparency [23] and tracing the causal 
mechanism for the predictive tasks [24,25], intercepting the interpret
ability of MLP is a hot research question in the scientific community.

Inspired by the gap that bars the adoption of MLP for applications 
where model transparency and interpretation is important, recently 
Kolmogorov–Arnold Networks (KAN) algorithm is presented [26]. KAN 
is founded on the Kolmogorov–Arnold theorem that states that any 
multi-variate function can be approximated by sum of single-variable 
functions [27,28]. The theorem seems promising to interpret the 
nonlinear function spaces of neural networks since multivariate function 
space can be broken down into simple building blocks and provides 

improves interpretability [29]. KAN provides similar or better modelling 
accuracy and higher interpretability performance than those of MLP as 
described in original paper [26]. However, mixed results are reported in 
literature comparing the modelling performance of KAN and MLP for a 
range of real-life applications including computer vision [30], natural 
language processing [30], solving differential equations and operator 
networks [31], time-series forecasting [32], computational fluid dy
namics [33] and wind power prediction [34].

KAN has been initially applied on problems having fewer input di
mensions and the simulated datasets. However, it remains an open 
research gap as well as a promising research question to investigate how 
KAN’s modelling performance is comparable with those of MLP on the 
energy systems problems having reasonably high input dimensions and 
with noisy data that is a general case for the sensor based data collection 
[35]. Moreover, embedding the data information in the loss function of 
KAN, as carried out in [17], can be investigated to evaluate how data 
information embedding through statistical metrics affects the modelling 
performance of KAN since it is found useful to improve the modelling 
performance of neural network. While KAN has been utilised for various 
modelling tasks, optimisation analysis incorporating KAN model into 
nonlinear programming framework is not reported so far for thermal 
power systems. This study, for the first time, explores the effectiveness of 
KAN based optimisation analysis for operation optimisation of the 
industrial-scale thermal power system under three power generation 
scenarios which research and industrial community may benefit from to 
synergize the efforts for performance enhancement of energy systems to 
achieve net-zero goal.

Motivated by the fundamental as well as potential application- 
oriented challenges and opportunities that KAN offers, this research 
paper compares the modelling performance of KAN and MLP for energy 
systems applications taken from literature and industry. We incorporate 
Pearson correlation coefficient (PCC), with the rationale to infuse data 
information in the loss function of KAN and MLP for parameter update, 
and have labelled the modified algorithms as KAN_PCC and MLP_PCC 
which is amongst the fundamental novel aspects of this research. Then, 
we systematically compare the modelling performance of KAN, MLP, 
KAN_PCC and MLP_PCC for two case studies of energy systems: (i) en
ergy efficiency cooling (ENC) and energy efficiency heating (ENH) of 
buildings [36], and (ii) performance enhancement of 660 MW capacity 
coal power plant. A well-trained model is deployed for SHAP based 
feature importance analysis [37]. Moreover, model-based optimisation 
analysis is also be carried out to optimize the performance parameters 
(power, turbine heat rate and thermal efficiency) of the power plant 
under different power generation modes of the power plant as framed in 

Nomenclature

CFR Coal Flow Rate (t/h)
COBYLA Constrained Optimization By Linear Approximations
CV Condenser Vacuum (kPa)
ENC Energy Efficiency Cooling
ENH Energy Efficiency Heating
FWT Feed Water Temperature ( ◦C)
KAN Kolmogorov-Arnold Networks
KAN_PCC Kolmogorov-Arnold Networks with Pearson Correlation 

Coefficient
MAE Mean Absolute Error
ML Machine Learning

MLP Multi-Layer Perceptron
MLP_PCC Multi-Layer Perceptron with Pearson Correlation 

Coefficient
MSF Main Steam Flow rate(t/h)
MSP Main Steam Pressure (MPa)
MST Main Steam Temperature ( ◦C)
MW Mega Watts
PCC Pearson Correlation Coefficient
R² coefficient of determination
RHT ReHeat steam Temperature ( ◦C)
RMSE Root Mean Squared Error
SHAP SHapley Additive exPlanations
TAFR Total Air Flow Rate (t/h)
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[38,39]. This research investigates the comparison of KAN and MLP as 
well as KAN_PCC and MLP_PCC for optimisation of coal power plant’s 
operation for the first time as per the best knowledge of authors. The 
modelling comparison of the two algorithms provide fundamental in
sights about the suitability of these algorithms for the analysis of energy 
systems that may guide the practitioners and researchers to well design 
the ML based methodologies for the analysis of energy system.

This research paper is structured as follows: First we describe the 
algorithmic working of KAN and MLP that also includes the details of 
different hyperparameters associated with each algorithm. Next, we 
modify the loss function of both KAN and MLP with PCC term that 
contributes towards parameters update of the two algorithms. The 
modified version of KAN and MLP is labelled as KAN_PCC and MLP_PCC. 
The systematic comparison of KAN, KAN_PCC, MLP and MLP_PCC is 
made for modelling the output variables of the two case studies of en
ergy systems. Later, a well-predictive algorithm is coupled with SHAP 
technique to establish the feature importance towards the performance 
parameters of thermal power plants. Lastly, KAN is integrated into 
optimisation framework to estimate the optimal operating conditions for 
power generation operation of thermal power plant. The analysis carried 
out in this paper is implemented in Python using different packages 
suitable for the tasks.

Method

Kolmogorov-Arnold network

The Kolmogorov-Arnold representation theorem states that multi
variate functions can be decomposed into a sum of univariate functions. 
Specifically, for a smooth function f : [0, 1]n → R, it can be represented 
as: 

f(x) = f(x1, …. xn) =
∑n+1

q=1
Φq

(
∑n

p=1
Φq,p

(
xp
)
)

(1) 

where 
(

ϕq,p : [0,1]→R
)

and 
(
Φq : R→R

)
. This representation implies 

that the only true multivariate function is addition, as every other 
function can be expressed using univariate functions combined through 
summation. A KAN layer with (nin)-dimensional inputs and 
(nout)-dimensional outputs can be characterized as a matrix of 1D 
functions: 
[
Φ=ϕq,p, p= 1,2,…, nin, q=1,2,…, nout

]
(2) 

where the functions 
(

ϕq,p

)
contain trainable parameters. In the context 

of the Kolmogorov-Arnold theorem, the inner functions establish a KAN 
layer with (nin = n) and (nout = 2n + 1), while the outer functions create 
a KAN layer with (nin = 2n+1) and (nout = 1). A Kolmogorov-Arnold 
Network (KAN) explicitly parameterizes the representation, where 
each 1D function is represented as a B-spline curve with learnable co
efficients. The architecture of a KAN can be denoted by an integer array: 
[
n0, n1,…, nq

]
,

where (ni) represents the number of nodes in the (i)-th layer. The KAN 
output, given an input vector (x0 ∈ Rn0 ), is defined as: 

KAN(x) =
(
Φq− 1∘Φq− 2∘…∘Φ1∘Φ0

)
x (3) 

Here, x represent the set of input variables with N observations. KAN 
consists of multiple computational layers, where each layer comprises a 
matrix of trainable univariate functions 

(
ϕq,p
)
. The primary computation 

in the KAN is expressed in Eq. (1), where (pk) denotes the summation for 
the (k)-th layer, (nin) is the number of input dimensions, and (nout) is the 
number of output dimensions. This summation is then transformed using 
an activation function (fk) to yield the layer output(yk). The model-based 
response (Z) corresponding to the input condition (X) is computed as 

Z = Φq
(
Φq− 1

(
…
(
Φ1
(
y0
))

…
))

X (4) 

where (q) denotes the total number of layers. The forward pass processes 
the information through these layers, while during training, the error 
between Z and the true response (D) is backpropagated to update the 
KAN parameters, enhancing the model’s performance. More details 
about the working of KAN can be found in [26].

The algorithm of KAN is embedded with a large number of hyper
parameters to tune the predictive performance. The hyperparameters of 
KAN include the grid size, which is selected from a quantized uniform 
distribution ranging [1,15], defining the resolution of the grid used in 
the model. The spline order is drawn from a quantized uniform distri
bution between [1,10], specifying the degree of the spline used for 
interpolation. The scale of noise is sampled from a log-uniform distri
bution within the range 

[
10− 5, 10− 1], controlling the magnitude of 

noise added to the model. The scale base is also drawn from a 
log-uniform distribution ranging 

[
10− 5, 101], determining the base 

scaling factor for model inputs. The scale of the spline is sampled from a 
log-uniform distribution in the range 

[
10− 5, 101], influencing the 

scaling of the spline used in the model. The learning rate is sampled from 
a log-uniform distribution in the range 

[
10− 5, 10− 1], controlling the step 

size at each iteration during the optimization process. The L1 regulari
zation term (λ1) is drawn from a log-uniform distribution spanning 
[
10− 7, 10− 1], adding a penalty to the loss function based on the absolute 

values of the coefficients to promote sparsity. The weight decay term 
(λ2) is also sampled from a log-uniform distribution within the range 
[
10− 7, 10− 1] contributing towards the parameters update. The param

eter grid epsilon is sampled from a log-uniform distribution within the 
range 

[
10− 7, 10− 1], determining the threshold for grid refinement 

during optimization. The number of neurons in the hidden layer is 
selected from a quantized uniform distribution with values ranging be
tween 8 and 20 in steps of 2, defining the architecture complexity of the 
KAN. Finally, the activation scale, which adjusts the scaling of the 
activation functions to control the intensity of non-linear trans
formations in the model, is sampled from a uniform distribution ranging 
[1,10]. The hyperparameters are tuned with HypertOpt package in Py
thon which incorporates Tree-structured Parzen Estimator for sequential 
model based optimisation of hyperparameters [40]. Moreover, Hyper
Opt can handle asynchronous distribution space for optimisation of 
hyperparameters [41].

Multi-layer perceptron

A feed forward multi-layer perceptron model is inspired from the 
working of neurocomputations, taking place in the human brain. The 
algorithm propagates the input data into the computing layer where it is 
transformed and transmitted to the output layer for further processing 
until a response is generated. Mathematically, the working of MLP is 
represented as: 

p1 =
∑

W1 ⊙ XT + b1 (5) 

y1 = f1(p1) (6) 

here, X is the set of input variables having N observations; W1 is the 
weight connections from the input to hidden layer of MLP and b1 is bias 
introduced on the nodes of hidden layer of MLP. A summation is 
computed (p1) on each hidden layer neuron of MLP using data pro
cessing (

∑
W1 ⊙ XT + b1) and is transformed by activation function f1. 

Activation function transforms p1 into nonlinear function space and 
computes a signal strength of y1 that is further processed at the output 
layer of MLP using Eqs. (7) and (8), and finally a model-based response 
(Z) is simulated corresponding to input conditions of X 
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p2 =
∑

W2 ⊙ y1 + b2 (7) 

Z = f2(p2) (8) 

here, W2 is the weight connection values from hidden to output layer of 
MLP; b2 is the bias embedded at the output layer neuron and f2 is the 
activation function that further processes p2. The information processing 
from Eqs. (5) to (8) represents the feed forward information pass for 
simulating Z. In the back propagation, the error is computed between 
the D and Z and is propagated backwards to update the MLP parameters 
(Θ) to achieve good modelling performance. Reader may find more 
details about the working of MLP in [42].

The hyperparameters of the MLP are also tuned by HyperOpt pack
age, and include the learning rate, which is sampled from a log-uniform 
distribution within the range [10− 5, 10− 1], and the L1 regularization 
term (λ1) and weight decay term (λ2), both drawn from log-uniform 
distributions spanning [10− 7, 10− 1]. The number of neurons in the 
hidden layer is selected from a quantized uniform distribution with 
values ranging between 8 and 20 in steps of 2. The activation scale, 
which adjusts the scaling of the activation functions to control the non- 
linear intensity, is sampled from a uniform distribution ranging in the 
range [1,10].

Loss function

The loss function (L ) computes the error between D and Z and is 
customized to construct the variants of KAN and MLP for this research. 
Traditionally, L is defined on mean square error term and L1 regulari
zation that we have also implemented for parameters update of KAN and 
MLP. However, L is also customized with Pearson correlation coeffi
cient (PCC, r) that is deployed for training of KAN_PCC and MLP_PCC 
and is given as: 

L =

∑
(D − Z)2

N
+ λ1Θ + ρ

∑m
i=1
(
rXi |D − rXi |Z

)2

N
(9) 

here, Θ is the model parameters that are minimized for feature selection 
of ML models. The PCC is introduced as to minimize the mean square 
deviation between rXi |D and rXi |Z and contributes towards the parameters 
update of KAN and MLP. It is important to mention here the rationale of 
brining PCC into L is that PCC computes the linear association between 
the two pair of variables; this is the information that is available from 
the data exploratory analysis and depicts the characteristics of the sys
tem as depicted through the statistical term. Thus, similar to Physics 
Informed Neural Network, where physical model is also introduced in 
the L to update the model parameters [43], data metrics computed on 
the quality data represents the data-driven insights available that are 
embedded in the algorithm design for the parameters tuning. Thus, it is 
anticipated that data metrics including PCC may infuse interpretability 
in the typical black box models including MLP and this approach has 
shown positive outcome in the interpretation analysis as reported in 
[17].

The customized L is embedded in KAN_PCC and MLP_PCC archi
tecture. The penalty factor (ρ) for the PCC loss term, used in L , is 
sampled from a log-uniform distribution in the range 

[
10− 7, 101], 

adjusting the impact of the penalty term in the PCC loss function for 
KAN_PCC and MLP_PCC models. The model parameters are tuned by 
Adaptive Moment Estimation (ADAM) solver. The solver leverages the 
characteristics of RMSprop and stochastic gradient descent for the error 
convergence, computationally efficient, has little memory requirement 
and invariant to diagonal rescaling of gradients [44].

Model evaluation

The models are evaluated on three statistical features, relevant to the 
regression problems, namely coefficient of determination (R2), root- 

mean-squared-error (RMSE) and mean absolute error (MAE). The 
mathematical expressions of R2 and RMSE are given as follows: 

R2 = 1 −

∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 (10) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(ŷi − yi)

2

√
√
√
√ (11) 

MAE =

∑N
i=1|(ŷi − yi)|

N
(12) 

here, yi and ŷi are the true and model-predicted values; yi is the mean of 
yi; i = 1,2,3,…, N equal to number of observations. R2 measures the 
proportion of variance in yi captured by ŷi; thus, model-based well- 
predicted values have high value of R2 reaching to 1. Whereas, a poor- 
predictive model depicts lower R2 value reaching to zero. On the other 
hand, RMSE and MAE measure the mean error in the model predicted 
responses; higher RMSE and MAE are the indicator of low-predictive 
accuracy of the trained model; thus, the errors are expected to be as 
low as possible to ensure good fit on data.

Inductive Conformal Prediction (ICP) technique is applied to 
compute the prediction intervals on the test dataset. The ICP provides 
validated prediction intervals and effectively quantifies the uncertainty 
bounded with the trained ML model, providing a competitive edge over 
other uncertainty quantification techniques including Bayesian and 
ensemble methods [45]. Following the training of the ML models, ICP 
method is utilised to construct the prediction intervals on 95 % confi
dence level by ICP technique for uncertainty estimation on the 
point-prediction made by the ML model. The reader may consult with 
for understating the working of ICP technique [46].

SHAP based feature importance analysis

SHAP (SHapley Additive exPlanations) is a versatile and robust 
technique to investigate the interpretation performance of the ML 
models. SHAP is model-agnostic technique based on game theory [47], 
where SHAP values are calculated by creating instances that simulate 
the impact of input variables on the target variable. Many techniques for 
feature importance analysis exist such Monte Carlo method [48], 
one-factor-at-a-time analysis [49], and the partial derivative method 
[50]. Among the mentioned techniques, SHAP investigates the inter
pretation performance from the dimension of efficiency, symmetry, 
dummy, and additivity [51]. SHAP technique offers two important 
features, local accuracy and consistency. Moreover, SHAP provides in
sights into model sensitivity to changes in input variables, at a local level 
(specific data points) and a global level (the entire dataset) determining 
the importance and ranking of input variables. Feature importance 
analysis is important in the ML based analysis framework since ML 
models are treated as black-box functions requiring the need to interpret 
the model prediction based on significant features [52]. Furthermore, 
KAN model will be also integrated in the SHAP framework to establish 
the feature importance for the input variables of the case studies.

Formulating optimisation problem and estimating solution uncertainty

The nonlinear variables interactions and nonlinear function profiles 
of the performance variables for energy systems like thermal efficiency 
and turbine heat rate direct to apply nonlinear programming technique 
to formulate the optimisation problem [53]. Nonlinear programming 
framework can effectively estimate the solution for the nonlinear 
objective or nonlinear constraints introduced in the optimisation prob
lem. A general mathematical framework for multi-objective optimisa
tion problem is given as: 
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Multi − objective function :min
x

f(x) = (f1(x) + f2(x) + … + fc(x))
Subjectto :

h(x) = 0
x = x1, x2,…, xm
x ϵ X ⊆ Rn

xL ≤ x ≤ xU

(13) 

here, f1(x) + f2(x) + … + fc(x) is c number of objective functions incor
porated to define the multi-objective function f(x). + sign means that 
the objective function is to be minimized while function to be maxi
mized is written with negative sign in f(x). h(x) is the linear constraint 
representing ML models which are MLP and KAN in this research. x is 
the set of m input variables the ML models are trained on. Moreover, x is 
continuous and real in nature and is bounded on lower (xL) and upper 
limit (xL) that serves as design space for solution estimation. More de
tails about nonlinear programming technique can be found in [54].

We have utilized COBYLA solver for estimating the local optimal 
solution for f(x) [55]. Considering the local solutions obtained from the 
solver, we have tried multiple initial guesses within the design space of x 
to estimate feasible solution (x∗) for f(x) and have estimated the pre
diction intervals with inductive conformal prediction technique [56].

The uncertainty in x∗ is quantified through Monte Carlo simulations. 
The solution space is perturbed through uniformly distributed noise 
generated on one percent value of the input variables (δk, k = 1,2,3,…,

H). The simulated experiments, constructed on x∗ and noise observa
tions, are simulated by the trained ML models, and the variance in the 
estimated solution (V(x∗)) is computed to account for the robustness of 
the solution on the face of random variation in the input variables. The 
mathematical expressions computing V(x∗) in the solution are given as: 

V(x∗) =
‖ F(x∗) − f(x∗)‖

‖ f(x∗)‖
(14) 

where, 

F(x∗) =

∑H
k=1f(x∗ + δk)

H
(15) 

The mean response (F(x∗)) of the function space is computed through 
Monte Carlo experiments (x∗ + δk) that contributes to calculate variance 
in the vicinity of local function profile, measured against the perturbed 
inputs. The constructed Monte Carlo experiments propagate the uncer
tainty in the input variables to the predicted responses from the ML 
model-based function. Lower is the value of variance against the per
turbed inputs, the estimated solution is robust to the face of uncertain 
inputs.

Results & discussion

Case-1: modelling energy efficiency cooling and energy efficiency heating 
of buildings

The dataset for energy efficiency cooling (ENC) and energy efficiency 
heating (ENH) is compiled for the energy efficiency performance of the 
buildings. The dataset contains eight building performance related fea
tures namely orientation, roof area, wall area, surface area, glazing area 
distribution, relative compactness, glazing area and overall hight. The 
dataset has compiled 768 observations corresponding to the input var
iables considering the geometrical features of the buildings. 80 % of the 
data is partitioned for the training of the model while remaining 20 % is 
utilized to test the modelling performance of the models to predict ENC 
and ENH.

The hyperparameters are tuned on the wide operating ranges, 
considering different distribution profile suitable for parametric varia
tion for efficient parameter estimation for KAN, MLP, KAN_PCC and 
MLP_PCC. Log (RMSE) is computed on the test dataset against each 

combinatorial values of hyperparameters and the resulting error profile 
is presented on Fig. 1 for ENC. Contour plots are constructed on hidden 
layer neurons against spline order, grid size and learning rate depicting 
log(RMSE) error profile for KAN_PCC as shown on Fig. 1(a). Multiple 
dips and numerous local minima in the error profile of KAN_PCC is 
observed, depicting the significance of the hyperparameters towards the 
curve-fitting across the data. The error profile of KAN_PCC appears to be 
sensitive to combinatorial values of hyperparameter, while non-convex 
and highly nonlinear function space is observable for KAN_PCC model. 
The constructed contour plots confirm the high sensitivity of spline 
order, grid size and learning rate towards the test error. Similar is the 
case for error distribution against the parametric ranges of KAN based 
hyperparameters as shown in Fig. 1(b), signifying the sensitivity of the 
algorithm in locating the error minimum in the deep error valley char
acterised by numerous error minima. Hidden layer neurons and learning 
rate turn out to be significant hyperparameters for MLP_PCC and MLP 
respectively as shown in Fig. 1(c-d). Hidden layer neurons introduce the 
complexity to approximate the function on data-centric learning while 
learning rate adjusts the step size to reach the error minimum during the 
learning phase of the model. The hyperparameter values of KAN_PCC, 
KAN, MLP_PCC and MLP are selected corresponding to the lowest RMSE 
computed on the test dataset, and are embedded in the model’s archi
tecture. The models are trained on the optimal values of hyper
parameters to update the model-based parameters by optimizer to 
finally develop a well-predictive model approximating the underlying 
function in the dataset.

Fig. 1(e) shows the error convergence against the iterative training of 
the models computed on the training and testing dataset. The log 
(RMSE) error is reduced nearly smoothly on training and testing dataset 
for KAN_PCC as shown on Fig. 1(e)(i) where training error continues to 
improve while testing error is improved marginally over the iterative 
training. This shows that sufficient iteration budget has been allocated 
for training the KAN_PCC algorithm and bias-variance trade-off is also 
reasonably small, displaying good training characteristics of the model. 
The loss function-based error is gradually reduced on training and 
testing dataset for MLP_PCC, KAN and MLP and nearly stabilized on 
training and testing dataset as shown on Fig. 1(e)(ii-iv), respectively. 
The gradual reduction in loss function error shows the error convergence 
direction, the algorithms are following during the model training phase. 
The error convergence for MLP_PCC has fluctuating trend during the 
model training phase. However, overall reduction in error is observed 
during the iterative training of the model. KAN model also depicts the 
sharp peaks in the error profile, observed for training and testing data
sets, which is explained by the ineffective parametric update deterio
rating the model performance. It is also important to note here that 
testing error is gradually and marginally improved over training epi
sodes and the error divergence is not observed, meaning the risk of 
overfitting is relatively small in the trained models. Similarly, the 
hyperparameters are also tuned for training the models for ENH. The 
contour plots against the hyperparameters of the models and the error 
convergence during the model training for ENH are shown in Fig. A1 in 
supplementary file.

The well-trained models corresponding to optimal values of hyper
parameters and rigorous training during the model development phase 
are retained for ENC and ENH. The parity plots mapping the true and 
model predicted values of ENC and ENH are shown on Fig. 2. The 
modelling performance is computed on the training and testing datasets, 
and the distribution profiles of the datasets are also shown along the 
edges. Referring to ENC on Fig. 2(a), KAN_PCC model demonstrates the 
same R2 values, i.e., 0.99 on training and testing datasets. KAN_PCC is 
found to have RMSE and MAE errors of 0.18 % and 0.14 % respectively 
on training while 0.52 % and 0.39 %, respectively on testing datasets 
respectively. Whereas, KAN has RMSE_train and MAE_train errors of 
0.19 % and 0.15 %, respectively. Moreover, KAN-based RMSE_test =
0.42 % and MAE_test = 0.31 % are lower than those of KAN_PCC on test 
dataset for ENC. The comparative modelling performance of MLP_PCC 
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and MLP reveals that the two models have same R2 value of 0.97 both on 
training and testing datasets. MLP_PCC has RMSE_train = 1.42 % and 
MAE_train = 0.96 % which are lower than those of MLP (RMSE_train =
1.50 %, MAE_train = 1.00 %). While, RMSE and MAE computed on test 
dataset for MLP_PCC, i.e., 1.56 % and 1.04 % are slightly better than 
those of MLP to predict ENC.

Similar observations are noted for comparing the modelling perfor
mance of KAN and KAN_PCC for ENH as shown on Fig. 2(b) where KAN 
seems to outperform KAN_PCC, both on training and testing datasets. 
Whereas, MLP_PCC and MLP has same performance metrics on the 
training and testing datasets to predict ENH. The modelling comparison 
of KAN with respect to incorporation of PCC in the loss function reveals 
that PCC seems not to improve the modelling performance of KAN for 
ENC and ENH models. This behaviour of KAN algorithm can be 
explained by the nature of model architecture to depict interpretability 
in the responses. However, the PCC information seems to provide mar
ginal improvement in the modelling performance for ENC and ENH as 
demonstrated in the performance metrics.

Case-2: modelling and optimisation of performance parameters of thermal 
power plant

i- Modelling Power, Turbine Heat Rate and Thermal Efficiency 
of thermal power plant by KAN_PCC, KAN, MLP_PCC and MLP

The comparison of KAN and MLP with and without the incorporation 
of PCC is made for industrial application on the power generation 
operation of a 660 MW capacity thermal power plant. The case study is 
chosen to investigate the comparative performance analysis for the real- 
data of the industrial systems and the suitability of the algorithms for the 
modelling tasks.

Three plant-level performance parameters including Power, thermal 
efficiency and turbine heat rate are modelled on the input variables by 

KAN and MLP. The dataset is taken from [10] that has 1278 observations 
associated with the input-output variables. The input variables include 
coal flow rate (CFR – t/h) and total air flow rate (TAFR – t/h), main 
steam pressure (MSP – MPa), main steam temperature (MST – ◦C), main 
steam flow rate (MSF – t/h), feed water temperature at the boiler’s inlet 
(FWT – ◦C), reheat steam temperature (RHT – ◦C) and condenser vac
uum (CV – kPa). The hyperparameters are tuned on the design space and 
parametric distribution, and are evaluated on the testing dataset (0.2 
split ratio of 1278 observations).

Fig. 3 depicts the hyperparameters tuning and error convergence 
profiles during the training of ML models for Power. Referring to Fig. 3
(a), numerous local valleys are observed on the error space constructed 
on the hyperparameters including hidden layer neurons with spline 
order and grid size for KAN_PCC for Power. This shows the highly 
parametric sensitivity of the KAN_PCC in minimizing the error. Lower 
parametric values of learning rate seem favourable for KAN_PCC that 
tends to minimize the error. Similar behaviour of error space is observed 
for learning rate for MLP_PCC model where learning rate up to 0.01 
seems to impact significantly to error computed during combinatorial 
values of the hyperparameters, as shown in Fig. 3(b). We notice similar 
impact of the hyperparameters on the error space constructed for KAN 
and MLP, as observed for KAN_PCC and MLP_PCC, and have presented 
the influence of the hyperparameters on the two models on Fig. 3(c,d), 
respectively. The optimal values of the hyperparameters are selected on 
the lowest test RMSE computed during the hyperparameters tuning, and 
are embedded for the training of KAN_PCC, MLP_PCC, KAN and MLP 
models.

The loss function-based error convergence profile on the training and 
testing datasets for the ML models is depicted on Fig. 3(e). Smooth error 
convergence trend is observed during the iterative training of KAN_PCC, 
MLP_PCC, and KAN as represented on Fig. 3(i-iii), respectively indi
cating the sequential improvement in the learning process on the 
parametric updates. The error computed on loss function is decreasing 

Fig. 1. Training the KAN and MLP models with and without PCC in the loss function for ENC. (a) Mapping the loss function error (log (RMSE) against the 
hyperparameter for (a) KAN_PCC, (b) MLP_PCC, (c) KAN and (d) MLP. (e) The error convergence profiles on training and testing dataset are shown for (i) KAN_PCC, 
(ii) MLP_PCC, (iii) KAN and (iv) MLP, respectively.
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Fig. 2. Modelling performance of the KAN_PCC, KAN, MLP_PCC and MLP models on the training and testing datasets for (a) ENC and (b) ENH, respectively. The true 
and model-based data distribution profiles are also shown along the edges of the figures.
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for MLP over the training iterations; however, error spikes and fluctu
ations are also observed near the completion of iteration budget for the 
MLP model training as shown on Fig. 3(e)(iv). This shows the unstable 
learning process for MLP near the utilization of the iterative budget and 
ineffective update in the model-based parameters that adversely impact 
the performance measuring metrics. The hyperparameters are also 
comprehensively explored and rigorously tuned for the training of ML 
models for turbine heat rate and thermal efficiency taken from the 
power plant’s operation. The plots for hyperparameters tuning and error 
convergence for turbine heat rate and thermal efficiency are depicted on 
Figs. A2 and A3, respectively in the supplementary file.

Fig. 4 compares the modelling performance of ML models on the 
training and testing datasets for the three performance parameters of the 
thermal power plant. The distribution profiles for true and model- 
predicted responses are also plotted along the edges of the figures to 
compare the distribution similarity for the datasets. Referring to Fig. 4
(a), R2 of 0.99 is computed for training and testing datasets for KAN_PCC 
and KAN models for Power. KAN based RMSE and MAE on training 
dataset is 2.05 MW and 1.40 MW which are lower than those of 
KAN_PCC (RMSE_train =2.19 MW, MAE_train = 1.49 MW). However, 
KAN_PCC appears to have marginally improved predictive performance 
on test dataset with RMSE_test and MAE_test of 1.94 MW and 1.44 MW 
respectively which are lower than those of KAN (RMSE_test = 1.96 MW 
and MAE_test = 1.39 MW). Whereas, nearly similar performance metrics 
are computed to predict Power on testing dataset for MLP_PCC and MLP 
with R2 of 0.99 and RMSE_test = 2.25 MW and MAE_test = 1.66 MW. 
Comparing the predictive performance of KAN and KAN_PCC with MLP 
and MLP_PCC, KAN_PCC appears to provide superior modelling perfor
mance to predict power with lower RMSE and MAE on test dataset than 
those of MLP.

The predictive performance of KAN, MLP and the proposed KAN_PCC 
and MLP_PCC models for turbine heat rate is presented on Fig. 4(b). 
KAN_PCC seems to have marginally improved predictive performance 

on training dataset (R2 = 0.87, RMSE = 62 kJ/kWh, MAE = 45 kJ/kWh) 
than KAN (R2 = 0.86, RMSE = 65 kJ/kWh, MAE = 47 kJ/kWh). How
ever, the two models demonstrate nearly the same predictive perfor
mance on the test dataset (R2 = 0.86, RMSE = 60 kJ/kWh, MAE = 46 kJ/ 
kWh). Whereas, MLP_PCC and MLP have almost the same performance 
metrics computed on training (R2 = 0.83, RMSE = 71 kJ/kWh, MAE =
52 kJ/kWh) and testing datasets (R2 = 0.86, RMSE = 61 kJ/kWh, MAE 
= 48 kJ/kWh) to predict turbine heat rate. The performance comparison 
of KAN_PCC, KAN, MLP_PCC and MLP reveals that KAN_PCC has rela
tively improved modelling performance to predict turbine heat rate. 
Similar performance behaviour of KAN and MLP is observed to predict 
thermal efficiency where KAN performance on test dataset (R2 = 0.91, 
RMSE = 0.29 %, MAE = 0.21 %) is comparatively better than those of 
MLP (R2 = 0.87, RMSE = 0.36 %, MAE = 0.27 %). Overall, KAN seems to 
provide improved modelling performance to predict Power, turbine heat 
rate and thermal efficiency than MLP and the models are deployed for 
subsequent analysis as presented in the following. 

ii- Uncertainty Quantification for ML model based point- 
predictions

Following the training of ML models and their evaluation on per
formance measuring metrics, the ICP technique is applied to construct 
the prediction intervals around the model-based point predictions. The 
prediction intervals estimate the range of variation in the model-based 
point prediction, quantifying the uncertainty for the predictive tasks. 
The prediction intervals are drawn around the true test observations to 
validate their data-coverage accuracy when ML model simulates the 
unseen input conditions.

Fairly tight prediction intervals are constructed on true-test obser
vations for power (MW), as shown on Fig. 5(a), indicating the good 
modelling accuracy of the trained KAN model. The prediction intervals 
computed for turbine heat rate (kJ/kWh) and thermal efficiency (%), as 

Fig. 3. Training the KAN and MLP models with and without PCC in the loss function for Power. (a) Mapping the loss function error (log (RMSE) against the 
hyperparameter for (a) KAN_PCC, (b) MLP_PCC, (c) KAN and (d) MLP. (e) The error convergence profiles on training and testing dataset are shown for (i) KAN_PCC, 
(ii) MLP_PCC, (iii) KAN and (iv) MLP, respectively.
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Fig. 4. Modelling the performance parameters of thermal power plant by KAN and MLP. The predictive performance is measured on training and testing dataset for 
KAN_PCC, KAN, MLP_PCC and MLP for (a) Power (MW), (b) Turbine heat rate (kJ/kWh) and (c) Thermal efficiency (%).
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shown on Fig. 5(b) and Fig. 5(c), respectively, appear to be slightly wide; 
yet effective uncertainty quantification is pivotal for informed decision- 
making when confronted with uncertain input conditions and capacity 
of the ML algorithms for modelling complex function spaces of the real- 
life applications. 

iii- Feature Importance Analysis

KAN fits the splines of different order across the data to approximate 
the function and it becomes imperative to investigate the feature 
importance analysis, impacting the predictions made by KAN. SHAP is 
used for feature importance analysis for the trained KAN models as it 
provides good estimate of the order of features, meaning interpretability 
performance for the regression-based ML models. The percentage 
contribution of features impacting power, turbine heat rate and thermal 
efficiency is mentioned in Fig. 6(a-c). FWT, MSFR and MSP are found to 
be first three significant features for predicting power having percentage 
contribution of 43.41 %, 28.78 % and 9.19 %, respectively. The three 
features, i.e., FWT, MSFR and MSP are also observed to be the same 
three significant features for turbine heat rate and thermal efficiency 
having percentage contribution of 37.71 %, 16.15 %, 14.49 % and 40.52 
%, 33.24 %, 12.56 %, respectively.

FWT is measured at the entrance of boiler and is maintained on heat 
exchange, by steam extractions from steam turbine systems, with the 
feed water passed through the feed water regenerative system. The fuel 
consumption or energy spent in the boiler is conditioned on the ther
modynamic state or conditions of FWT and the variation in FWT may 
result in disturbance in the boiler operation through abrupt change in 

the fuel injection by the installed control system and heat exchange in 
the heating surfaces including water walls, superheater, reheater, 
economizer etc. is affected for the steam generation. The significance of 
FWT during the plant operation is also identified by KAN based feature 
importance analysis that aligns with the domain-knowledge of the 
plant’s operation. The state of power generation is effectively controlled 
by the steam conditions at the entrance of steam turbine systems which 
are measured in MSFR and MSP. MSFR is the amount of steam injected 
in the steam turbine system while the work potential of the steam is 
effectively adjusted with MSP in the boiler. The two thermodynamic 
parameters are synchronized with the ramp-up and ramp-down opera
tion in the plant’s operating environment and have significant impact to 
control turbine heat rate and thermal efficiency during the plant 
operation. 

iv- KAN based Optimisation Analysis of Thermal Power Plant

The KAN models are trained with good modelling accuracy for the 
function approximation and to predict power, turbine heat rate and 
thermal efficiency of thermal power plant. The function profile of 
thermal efficiency and turbine heat rate is continuous, nonlinear and 
non-convex, so nonlinear programming technique is suitable for 
formulating the multi-objective optimisation problem. The multi- 
objective optimisation problem is defined to maximize thermal effi
ciency and minimize turbine heat rate corresponding to three power 
generation scenarios. The three power generation scenarios are 
considered corresponding to power interval of 350 MW – 360 MW (case- 
1), 490 MW – 500 MW (case-2) and 650 MW – 660 MW (case-3). KAN 

Fig. 5. Prediction interval estimation by inductive conformal prediction technique for (a) Power (MW), (b) Turbine Heat Rate (kJ/kWh), and (c) Thermal Effi
ciency (%).

Fig. 6. KAN driven feature importance analysis for (a) Power, (b) Turbine heat rate and (c) Thermal efficiency. FWT, MSFR and MSP are the first three significant 
variables impacting the predictions made by KAN models for three performance parameters.
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models are introduced as equality constraints and are also embedded in 
the multi-objective function. The bounds are provided on the search 
space of input variables corresponding to the three states of power 
generation operation of thermal power plant. COBYLA solver is utilized 
for solution estimation corresponding to the different initial guesses. A 
large number of initial guesses are tried to determine feasible solution 
for the performance parameters. Moreover, solver-driven uncertainty 
and uncertainty in the determined solutions are also investigated.

Fig. 7 displays the iterative progress of the solver to estimate the 
optimal solution for the multi-objective optimisation problem. The three 
cases of power generation are introduced as constraint in the optimi
sation problem for the optimal solution estimation to optimise the per
formance of the power plant. Fig. 7(a) shows the improvement in the 
objective function during the iterative improvement in the solution 
estimation for the optimisation problem corresponding to different 
initial guesses. A common feature among the profiles of objective 
function is the abrupt variation in the values of the objective function 
and later, the trend is gradually smoothened and eventually nearly 
flattened during the allowed budget of iterations for solution estimation. 
This shows that step-size taken by the solver update the initial guess that 
improves the objective significantly and later, gradual improvement in 
the objective function is made corresponding to the update in the esti
mated solution. The objective function profiles against the iterations 
reveal that solver has explored the design space of the input variables for 
the solution estimation with sufficient iterations budget and is 
converged to local solution corresponding to different initial guesses. 
Moreover, feasible solutions are obtained corresponding to initial 
guesses, indicating the sufficient improvement in the objective function 
for the solution estimation of multi-objective function corresponding to 
three cases of power generation.

To investigate the impact of uncertain input conditions on the esti
mated solutions, 10000 uniformly distributed noise observations are 
generated for constructing Monte Carlo simulations and the variance in 
the estimated solutions is computed by Eqs. (14), (15). Fig. 7(b) 

confirms the bound applied on Power corresponding to three cases of 
power generation, i.e., [350, 360] for case 1, [490 MW, 500 MW] for 
case 2, and [650MW, 660 MW] for case 3, respectively. The estimated 
solution for the optimisation problem guarantees to have found feasible 
solution within the power generation interval of three cases. The vari
ation in turbine heat rate and thermal efficiency is noted to be significant 
in the beginning during the estimation of optimal solution correspond
ing to the initial guesses and the improvement in the solution is 
smoothened gradually for the two performance parameters. This is 
attributed to the working mechanism of the solver to estimate the 
feasible solution on the face of the constraints incorporated in the 
optimisation problem. Monte Carlo simulation based variance computed 
for power is 0.001, 0.007 and 0.002 corresponding to estimated solution 
of 360 ± 11 MW, 496 ± 14 MW and 657 ± 15 MW, respectively. 
Referring to Fig. 7(c), the optimal value estimated for turbine heat rate is 
7976 ± 122 kJ/kWh, 7487 ± 129 kJ/kWh and 7641 ± 118 kJ/kWh 
with the solver-driven variance of ± 8.74, ± 0.00031 and ± 0.0056, and 
Monte Carlo simulation based variance of 0.001, 0.003 and 0.002, 
respectively on the converged solutions corresponding to three cases, 
respectively. The optimal value of thermal efficiency is found to be 
38.78 % with asymmetric confidence interval of [34.9, 39.3], 42.17 ±
1.06 % and 41.81 ± 0.88 % for solver-based variance of ± 0.063, ±
0.0000023 and ± 0.074 and Monte Carlo experiments driven variance 
of 0.021, 0.001 and 0.002, respectively on solution convergence for 
three modes of power generation from the power plant as depicted on 
Fig. 7(d).

The surface plot is constructed against three performance parame
ters, i.e., power, turbine heat rate and thermal efficiency, as presented 
on Fig. 7(e), which confirms the nonconvex function space for the multi- 
objective optimisation problem and the estimated feasible solutions 
corresponding to the three cases are mapped. We have demonstrated the 
effective integration of KAN model into the nonlinear programming 
framework for multi-objective optimisation of thermal power plant’s 
operation under different power generation scenarios. It is anticipated 

Fig. 7. KAN based multi-objective optimisation problem solved under three cases of power generation. (a) The progress of solver to estimate the solution in the 
iteration budget is depicted. The iterative solution convergence corresponding to initial guesses for (b) Power, (c) turbine heat rate, and (d) thermal efficiency is 
represented. (e) The optimal solutions are mapped on the surface plot corresponding to three cases of power generation.
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that KAN based data analytics can increase the performance enhance
ment of energy systems including thermal power systems that increases 
the energy efficiency of power generation operation of thermal power 
plant. This research demonstrates the potential of KAN model for 
operation excellence of industrial-scale thermal power plant that en
hances the operation quality of the power system which may signifi
cantly reduce the emissions discharge through optimal fuel consumption 
to support industrial decarbonisation of power sector.

Conclusions

KAN algorithm offers improved interpretability performance than 
traditional MLP algorithm in low-dimensional and simulated data- 
driven studies. However, the systematic comparison of KAN with MLP 
for energy systems modelling and optimisation, particularly for 
industrial-scale power system may provide the insights about the suit
ability of the KAN and the proposed variants, as proposed in this paper, 
for the modelling tasks. In this paper, the algorithmic configuration of 
KAN and MLP are modified to embed with PCC correlation coefficient. 
The PCC based information quantification and embedding into the loss 
function tunes the parameters of KAN_PCC and MLP_PCC. The key 
conclusions of this research paper are as follows: 

• KAN and MLP as well as KAN_PCC and MLP_PCC are applied on the 
two case studies of energy systems namely energy efficiency cooling 
(ENC) and energy efficiency heating (ENH) as well as performance 
parameters of 660 MW thermal power plants, i.e., power, turbine 
heat rate and thermal efficiency.

• KAN_PCC does not marginally improve the modelling performance 
on the test dataset for ENC, ENH, and power, turbine heat rate and 
thermal efficiency of thermal power plant. Although, KAN seems to 
provide nearly the same or slightly improved performance, in com
parison with KAN_PCC, on the test datasets for the performance 
parameters of the two case studies. However, incorporating PCC in 
the architecture of MLP seems to have positive impact on the 
modelling performance of the algorithm for the considered case 
studies.

• The order of feature importance for the plant operation of thermal 
power plant integrating KAN or KAN_PCC with the SHAP based 
analysis framework is established. FWT, TAFR and MSP are found to 
be the most significant variables for KAN based predictions for 
power, turbine heat rate and thermal efficiency.

• KAN or KAN_PCC based models for power plant’s performance pa
rameters are incorporated in the optimisation framework of 
nonlinear programming technique for multi-objective optimisation 
of thermal power plant. The feasible optimal solutions are obtained, 
estimating maximum thermal efficiency of 42.17 ± 0.88 % and 
minimum turbine heat rate of 7487 ± 129 kJ/kWh corresponding to 
500 ± 14 MW generation capacity of power plant.

This research papers highlights the impact of integrating the prior 
data information on the modelling performance of KAN and MLP for 
energy systems. The interpretable feature of KAN and its successful 
integration into the SHAP and nonlinear programming framework may 
accelerate the adoption of the KAN model for system analysis and 
optimisation of energy systems to support net-zero goal.

Future work

The future work may systematically compare the compute efficiency 
and improvement in the modelling performance through KAN and MLP 
that may provide fundamental insights about the feasibility of the two 
algorithms for their potential applications for the analysis of energy 
networks and energy systems. Integrating the KAN architecture within 
the existing optimisation framework can be a technical challenge 
considering the nature of optimisation solvers and their compliance for 

the local or global optimisation of the system.
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