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A B S T R A C T

The sustainable supply of metals, especially precious metals, is critical for the manufacturing of the electronic 
chips used in the printed circuit boards of mobile phones. At the same time, the large volume of waste printed 
circuit boards (WPCBs) of mobile phones is a serious environmental issue that requires developing sustainable 
processes for the recovery of metals and to handle the waste in a resourceful manner. To address the two 
challenges of sustainable material supplies for chip manufacturing and waste management of WPCBs of mobile 
phones, we present a machine learning (ML) powered process optimization framework for the sustainable re
covery of Cu, Ag and Au from the WPCBs. The process employs NH4Cl and low-temperature roasting for the 
recovery of metals for designed experimental conditions. The input-output data obtained from the experiments is 
deployed to make approximations of the metal recovery profiles for Cu, Ag and Au by Gaussian Process (GP) 
models. The GP models trained for the three metals are embedded in the objective function of an optimisation 
problem for determining the optimised experimental conditions that maximise the recovery of the metals from 
the WPCBs. The verification of optimized experimental conditions, obtained after solving the optimization 
problem, in made in the lab that confirms 99 %, 90 % and 80 % respectively recovery of Cu, Ag and Au from the 
WPCBs. This demonstrates the effectiveness of the developed ML powered analysis workflow that improves the 
material utilisation efficiency and supports sustainable AI by considering material requirements for chip 
manufacturing and waste management.

1. Introduction

The rapid pace of technological advancement has significantly 
accelerated the obsolescence of electrical and electronic devices, leading 
to an unprecedented surge in electronic waste (e-waste) generation 
(Naik and Eswari, 2022). The recent wave of AI that is founded on 
electronic chips to process the data and train the large language models 
can produce huge volumes of electronic waste that requires global 
attention to ensure the material supplies for chip manufacturing and 
eco-friendly waste management to support sustainable AI (Lannelongue, 
2024; Wang et al., 2024). The improper disposal of e-waste through 
landfilling and open burning has dire consequences for the environment, 
human health, and wildlife (Kiddee et al., 2014). Considering the 

importance of environmental protection, resource conservation, and 
material reuse, the eco-friendly recovery of metals from e-waste is 
crucial (Stein, 2024).

At present, hydrometallurgy and pyrometallurgy techniques are the 
most widely used methods for recycling e-waste (Ashiq et al., 2019; 
Wang et al., 2017). Hydrometallurgical methods, involving a two-step 
leaching process with mineral acids and solvents, are effective for 
metal extraction but generate significant toxic effluents requiring costly 
neutralization, posing environmental concerns (Chauhan et al., 2018). 
Pyrometallurgical processes, widely adopted for their straightforward 
mechanisms, operate at high temperatures (>1000 ◦C) and may emit 
hazardous gases due to halogenated compounds in e-waste, leading to 
high energy consumption and potential environmental hazards (Khaliq 
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et al., 2014; Xiao et al., 2021; Zhang and Xu, 2016). Both methods 
necessitate improvements to reduce operating temperatures, toxic ef
fluents, and hazardous emissions to ensure sustainable e-waste 
recycling.

In our efforts to find a more sustainable alternative, ammonium 
chloride roasting has emerged as an advantageous, non-toxic, and non- 
corrosive chlorinating agent (Xiao et al., 2021). Upon decomposition 
above 200 ◦C, it produces ammonia and hydrochloric acid. The highly 
reactive hydrochloric acid reacts with metals to form metal chloride 
salts, which are highly soluble in suitable solvents, facilitating efficient 
metal extraction. In comparison to traditional processes, 
low-temperature ammonium chloride roasting offers several benefits: it 
is less corrosive, uses less energy, is easier to operate, and is environ
mentally friendly. Furthermore, the waste gases produced, such as NH₃, 
can be recycled to generate NH4Cl, significantly reducing the cost of 
recovery operations. The ammonium chloride roasting process has 
proven effective in recovering rare earth metals from FeNdB magnets 
and metals such as Ni, Cu, and Co from various sources (Xiao et al., 
2021). In our previous studies, we successfully applied the ammonium 
chloride roasting method to recover critical metals from waste printed 
circuit boards (WPCBs) (Panda et al., 2020; Panda et al., 2021). This 
approach ensures efficient metal recovery while minimizing environ
mental impact, making it a popular choice for sustainable metal 
extraction.

Machine learning (ML) has demonstrated exceptional capabilities in 
processing and analyzing complex processes, making it an invaluable 
tool for developing predictive models (Chakraborty et al., 2021; Gos
wami et al., 2024; Haq et al., 2023; Mann et al., 2024, 2023). Recently, 
ML has gained traction in environmental science and engineering, 
particularly in predicting metal recovery from solid waste. The selection 
of appropriate ML algorithms significantly impacts the prediction ac
curacy of these models, thereby influencing the analysis of interaction 
mechanisms among various factors. Deware et al. employed a 
machine-learning framework to design a recovery process for e-waste 
sources, optimizing copper recovery by acid leaching from PCBs 
(Daware et al., 2022). The framework predicted operating ranges for 
parameters, and achieved reduced cost of operation. Priyadarshini et al. 
compared five machine learning models for maximum metal recovery of 
zinc and manganese from spent batteries, finding that the XGBoost 
regression model was the most efficient, followed by gradient boosting 
regression, random forest regression, AdaBoost regression, and linear 
regression (Priyadarshini et al., 2022). The analysis emphasized the 
importance of hyperparameter tuning and highlighted the stability of 
these models in predicting metal recovery efficiency. Niu et al. used 
machine learning to optimize metal leaching from spent lithium-ion 
batteries (LIBs), achieving high predictive accuracy with the XGBoost 
algorithm and developing a user-friendly GUI for researchers (Niu et al., 
2023). Mokarian et al. used machine learning tools to significantly 
reduce experimental costs, labor, and environmental risks, paving the 
way for efficient and sustainable recycling technologies (Mokarian et al., 
2022). This study utilized Random Forest Regression (RFR) among 40 
regression-based algorithms to predict bioleaching recovery rates using 
nine input variables. Ashraf et al. maximized Cu and Ni recovery from 
WPCB of mobile phones using an ANN model integrated with a robust 
NLP optimization framework, achieving 100 % Cu and 90 % Ni recovery 
(W.M. Ashraf et al., 2024).

The literature review highlights the significance of ML based 
modelling algorithms to predict the metal recovery profiles from the 
electronic waste. A lot of lab-based studies have been reported for the 
extraction of metals including Cu, Ni, and Zn from the WPCBs. However, 
a limited attention is paid for the eco-friendly process development to 
recover precious metals including Ag and Au from the WPCBs. The 
precious metals in the electronic chips accelerate the data processing 
and boost the chip performance to ensure the desirable functionality of 
the electronic devices including mobile phones. Another promising 
research gap identified in the literature is to integrate the ML model, 

trained on initial set of experiments, with optimisation framework to 
estimate the new optimised experimental conditions for the maximum 
recovery of precious metals from the WPCBs. The optimisation led 
experimental workflow can reduce the hit-and-trial approach based 
experimental campaigns and provides a systematic approach to estimate 
optimised experimental conditions for the metal recovery from the 
WPCBs.

In this paper, we provide an ML based process optimisation workflow 
to maximise the recovery of Cu, Ag and Au from the WPCBs of mobile 
phones. An eco-friendly low-temperature roasting process is developed 
for the recovery of metals from the WPCBs. The process input variables 
include roasting time (h), roasting temperature (◦C), NH₄Cl dose (g/g) 
and leaching solvent (M), and a wide operating range of the process 
variables is established to design the experiments. The recovery of Cu, 
Ag and Au corresponding to the experimental conditions is recorded for 
all designed experiments. The compiled input-output dataset of the 
metal recovery is deployed to train gaussain process (GP) models to 
predict the percentage recovery of Cu, Ag and Au from the WPCBs. 
Shapley Additive exPlanations (SHAP) are made for the trained GP 
models to investigate the significance of process input variables on the 
metal recovery.

An optimisation problem is formulated that attempts to maximise 
recovery of Cu, Ag and Au from the WPCBs subjected to the operating 
bounds on the process input variables and embedding the trained ML 
models in the optimisation environment (Gueddar and Dua, 2012,
2011). The optimisation problem is solved by genetic algorithm solver 
and optimised experimental conditions are obtained which are verified 
in the lab. A good agreement is observed between the estimated per
centage recovery of three metals with the experimental percentage re
covery made from the WPCBs. This paper provides an ML powered 
analysis workflow to maximise the metal recovery including precious 
metals from the WPCBs in an environmental-friendly approach. The 
recovery of precious metals from the WPCBs improves the material 
utilisation efficiency, reduces the strain on the natural resources for their 
demand for chip manufacturing and its utilisation on printed circuit 
boards. The ML powered and eco-friendly recovery of metals also sup
port the sustainable AI development by metal circular economy and 
handling the electronic waste in a resourceful manner.

2. Materials and methods

2.1. Experimentation, data collection and importance of data- 
visualization

In this study, a machine learning (ML) approach is employed to 
optimise the experimental conditions for maximum recovery of Cu, Ag 
and Au from the WPCBs of mobile phones using low-temperature 
roasting process. The experimental setup that generated this data is 
detailed here. The roasting experiments are conducted using a batch 
quartz reactor with an air flow rate of 100 mL/min to assess the corro
sive effects of HCl formed during roasting. For each experiment, 10 g of 
WPCBs sample is thoroughly mixed with a measured amount of NH4Cl 
and placed in the reactor. The process input variables such as roasting 
temperature (200–300 ◦C), roasting time (1–3.5 h), and NH4Cl dosage 
(1–3 g/g) are varied in a wide operating range to find the optimal pro
cess conditions for the maximum recovery of metals. After chlorination, 
samples are cooled to room temperature and HCl is used to dissolve the 
metal chlorides, with concentrations ranging from 0 to 3 M for 
maximum efficiency. The unreacted HCl and NH3 from the chamber are 
scrubbed with water, and ammonium chloride obtained through evap
oration can be reintroduced into the roasting process. This creates a 
closed-loop system that reduces processing costs. By utilizing low 
roasting temperatures, this method not only conserves energy but also 
mitigates the challenges of metal recovery encountered in pyrometal
lurgical processes. Metal concentration of samples is calculated using a 
microwave plasma atomic emission spectrometer (MPAES, Agilent 
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4210). Solid samples are digested in a microwave digester (Anton Parr, 
Multiwave Go) using aqua regia before analysis.

The one-factor-at-a-time scheme is applied to investigate the signif
icance of the process input variables on the metal recovery from the 
WPCBs. A total of 19 experiments designed on the different operating 
levels of the process input variables are carried out and the percentage 
recovery of Cu, Ag and Au is recorded. The collected dataset provides the 
metal recovery profiles built on the operating levels of the process input 
variables and also captures the relationships built between the process 
input and output variables.

Data visualisation is crucial in ML-based studies as it provides a clear 
and intuitive understanding of the data collected from experiments 
(Tariq et al., 2022). Visualising data allows researchers to explore the 
distribution densities across variable operating ranges, which is essen
tial for gaining insights into how variables interact and influence out
comes. Techniques such as histograms, violin plots, partial dependent 
plots, and box plots are commonly employed in the ML community to 
visualise dataset characteristics effectively (W.M. Ashraf et al., 2024). 
For instance, box plots not only offer a visual summary of statistical 
information like median, quartiles, and outliers but also facilitate the 
identification of data anomalies (Ashraf and Dua, 2023). In the context 
of research on metal recovery datasets, using box plots ensures that the 
data distribution associated with variables is presented conveniently, 
flexibly, and clearly, aiding in comprehensive analysis and interpreta
tion of experimental results.

At one side, data visualisation provides crucial insights into the 
operating behaviour of the system under consideration. On the other 
side, it is equally important to investigate the strength of the relation
ships or dependencies among the variables. In the literature, statistical 
metrics such as the Spearman and Pearson correlation coefficients are 
commonly used to quantify monotonic or linear relationships between 
variables, respectively. The Pearson correlation coefficient (PCC) is 
particularly valuable because it measures the linear relationship be
tween pairs of variables, offering a precise and quantifiable method to 
understand their interactions (Ishfaq et al., 2023). The PCC not only 
indicates the strength of the relationship but also reveals whether the 
variables are associated by direct or inverse relationship. Mathemati
cally, the PCC between two variables x and y is given by: 

Rxy =

∑N
i=1(xi − xi)(yi − yi)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(xi − xi)
2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(yi − yi)
2

√ (1) 

Here, Rxy denotes the PCC, ranging from − 1 to +1, signifying a 
strong inverse and direct relationship between the variables, respec
tively. A value of Rxy = 0 indicates no linear association, although their 
main-effect profiles might be nonlinear, confirming the independent 
nature of the variables. The utilisation of PCC for understanding the 
variables dependencies is crucial because it provides an quantifiable 
measure of linear dependence, which is a key aspect in many scientific 
and engineering applications. Visualising these relationships using heat 
map, which maps the computed PCC values between pairs of variables, 
offers an intuitive and comprehensive way to identify patterns and 
strengths of relationships. This visual approach is essential for uncov
ering the patterns and strengths underlying data structures, guiding 
feature selection, and informing subsequent analytical or modelling ef
forts in ML-based studies.

The data visualization offers the ML practitioner to understand the 
data-specific strengths, information and distribution. In real-life engi
neering systems and lab-based test benches, the operating ranges of the 
process related variables are significantly different. The ML models 
construct the functional map between the input-output variables that 
are strengthened by the dataset associated with the variables to predict 
the state of the output variable. The very different operating range and 
variable associated value can dominate the marginally small value of the 
variables – the small-value based variable can be a significant variable 
affecting the performance of the system. Thus, it becomes important to 

scale the operating ranges of the variables on the same range to avoid 
the variable bias and imperfect functional mapping. Among various data 
scaling techniques, data normalization method maps the operating 
values on the same scale for all the variables. The mathematical 
expression on scaling the operating value on [a, b] scale is given as: 

X∗
i =

(Xi − Xmin) × (b − a)
Xmax − Xmin

+ a (2) 

here, X∗
i is the scale-transformed observations for Xi. We have scaled the 

data on [− 1, 1] in this research.

2.2. Machine learning model development and evaluation metrics

The Gaussian Process (GP) model is one of the powerful algorithms of 
ML (Rasmussen, 2003) for modelling the lab-based experimental data, 
particularly due to the non-parametric nature and capacity of the al
gorithm to handle uncertainty effectively. One of the key strengths of GP 
models is their flexibility in capturing complex, non-linear relationships 
without requiring a predefined functional form (Bradford et al., 2021). 
This adaptability is crucial when dealing with experimental data where 
underlying processes may be intricate and not well understood. GP 
models are built on the assumption that function to be learnt from the 
dataset is drawn from the Gaussian process that allows to compute the 
well-defined uncertainty around the model-based predictions (Bradford 
et al., 2018). Furthermore, the GP’s ability to incorporate prior knowl
edge through the choice of kernel functions allows for fine-tuning of the 
model to reflect specific domain insights, enhancing the predictive 
performance (Williams and Rasmussen, 1995). In the context of metal 
recovery from the WPCBs, GP models can robustly interpolate the data 
and optimise experimental conditions to maximise the metal recovery. 
The use of non-parametric GP models thus ensures a comprehensive, 
data-driven approach to understanding and optimising complex systems 
providing the competitive edge over the parametric models which are 
prone to overfitting and may lead to the inaccurate model-based 
analyses.

Consider a set of input data points x1, x2, x3,…, xn where each xi ∈

Rd represents a D-dimensional vector. Corresponding to these inputs, we 
have output values y1, y2, y3,…, yn where each yi ∈ Rd is a scalar. In GP 
regression, we model the relationship between inputs and outputs using 
a Gaussian process characterized by a mean function μ and a covariance 
function κ. The function f that relates the inputs to the outputs is 
assumed to be drawn from this Gaussian process. At a set of test points 
x∗, the distribution of f is given by: 

f(x∗) ∼ N (μ(x∗), κ(x∗, x∗)) (2a) 

The mean function and covariance function are typically defined 
using kernel functions. For example, the commonly used squared 
exponential kernel is defined as: 

κ
(
xi, xj

)
= exp

(

−
1
2
‖xi − xj‖

2
)

(3) 

Given a set of training data (x,y), the GP regression model employs 
Bayesian inference to determine the distribution of the function f . This 
process involves computing the posterior distribution of f given the data, 
which is expressed as: 

p(f |x, y) =
p(y|x, f) p(f)

p(y|x)
(4) 

where p(y|x,f) is the likelihood function, representing the probability of 
observing the data given the function f , p(f) is the prior distribution of f , 
and p(y|x) is the marginal likelihood of the data.

Once the posterior distribution of f has been learned, the model can 
make predictions at new test points x∗ by computing the posterior pre
dictive distribution, defined as: 
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p(f ∗|x∗, y, x) =
∫

p(f∗|x∗, f) p(f |y, x)df (5) 

This distribution provides a measure of the uncertainty of the pre
diction, which is beneficial for tasks such as active learning and 
uncertainty-aware decision making. GP regression is particularly effec
tive for small data sets and provides predictions with uncertainty 
quantification (Deringer et al., 2021). The kernel hyperparameters are 
optimized during the fitting process by maximizing the log-marginal 
likelihood using an optimiser (Damianou and Lawrence). This max
imisation problem is non-convex, leading to multiple local optima, so 
the optimiser is typically restarted multiple times. The initial iteration 
begins with the specified initial hyperparameters, while subsequent it
erations use randomly selected hyperparameters within the allowed 
range.

We have incorporated two statistical terms namely coefficient of 
determination (R2) and root-mean-squared-error (RMSE) to evaluate the 
predictive performance of the GP regression model trained for the metal 
recovery from the WPCBs (Shboul et al., 2024; Ashraf and Dua, 2024). 
The mathematical expressions of R2 and RMSE are given as follows: 

R2 = 1 −

∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 (6) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(ŷi − yi)

2

√
√
√
√ (7) 

here, yi and ŷi are the actual and model-based responses respectively 
while yi is the mean of yi for observations i = 1,2,3,…, N. R2 computes 
the accuracy measure that varies from zero to one. On the other hand, 
RMSE is the mean error associated with the model-based prediction. A 
low-RMSE indicates a good function fitting on the data for the model- 
based predictive tasks and thus, should be minimised for the selection 
of model.

2.3. Feature importance analysis

Feature importance analysis is an important aspect of interpreting 
and understanding machine learning models, especially in applications 
where decisions have significant impact for the real-life applications like 
metal recovery from the WPCBs (Wu et al., 2023). It helps identify which 
input feature(s) influence the model’s predictions the most, providing 
insights into the underlying data patterns and the model’s 
decision-making process (Daware et al., 2022). Additionally, feature 
importance can help in diagnosing model biases and ensuring that the 
model does not rely on spurious correlations or irrelevant features.

SHAP (SHapley Additive exPlanations) is recurringly used in litera
ture for feature importance analysis due to its strong theoretical foun
dation and practical benefits (Feng et al., 2021). Derived from 
cooperative game theory, SHAP values attribute the contribution of each 
feature to a prediction by considering all possible combinations of fea
tures, ensuring a fair distribution of importance (Marcílio and Eler). This 
results in a consistent and intuitive explanation of feature impacts (Meng 
et al., 2020). SHAP values are also model-agnostic, making them 
applicable across different types of models like GP regression (Chau 
et al., 2024). Furthermore, SHAP provides local interpretability by 
explaining individual predictions, and global interpretability by sum
marizing feature importance across the entire dataset. This dual capa
bility enhances both the depth and breadth of model interpretability, 
making SHAP a robust and versatile tool for understanding and 
explaining the pattern of metal recovery from the WPCBs.

2.4. Maximising Cu, Ag and Au recovery from the WPCB by genetic 
algorithm

The metal recovery from the WPCBs of mobile phones is a complex 
process that is influenced by the operating levels of the process input 
variables. The sensitivity of the process to the process input conditions 
requires to formulate an optimisation problem that can provide opti
mised experimental conditions for the maximum recovery of metals 
from the WPCBs of mobile phones. Genetic algorithm (GA) for the 

Fig. 1. ML powered workflow developed to maximise Cu, Ag and Au recovery from the WPCB. The experiments are designed and carried out to collect the data on 
the metal recovery against the process input conditions. The collected dataset is visualised to understand the characteristics of the metal recovery process followed by 
the development of GP based models for Cu, Ag and Au on the experimental data. The feature importance analysis is caried out by the SHAP and the trained GP 
models are integrated in the multi-objective function to determine the optimised process conditions for the maximum metal recovery from the WPCB by GA. The 
solution determined by the GA is verified in the lab, promoting the effectiveness of the workflow for the higher metal recovery rate and circular economy.
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maximum recovery of Cu, Ag and Au from the WPCBs is an efficient 
approach to tackling nonlinear, and multi-dimensional maximisation 
problem (Mirjalili and Mirjalili, 2019). The inherent advantage of GA 
lies in its capacity to handle non-linear, multi-modal objective functions 
effectively (Sivanandam et al., 2008). In the context of metal recovery 
from the WPCB, this capability is particularly valuable, as it allows the 
GA to explore the intricate and often non-linear relationships between 
various input variables of the system (Whitley, 1994). The iterative 
process of selection, crossover, and mutation in GA enables the algo
rithm to progressively refine solutions, thereby avoiding local optima 
and converging towards the global maximum metal recovery from the 
WPCB (Dehghanian and Mansour, 2009).

A multi-objective function integrating the GP regression-based 
models of Cu, Ag and Au is formulated and is solved by GA to deter
mine the optimised operating conditions for the maximum recovery of 
metals from the WPCBs. The confirmatory experiments are conducted in 
the lab on the estimated optimised conditions of the process input var
iables and the percentage recovery of metals from the WPCBs is recor
ded. A good agreement between the estimated and experimental 
recovery of metals from the WPCBs demonstrates the effectiveness of the 
developed ML based workflow. The graphical representation of the ML 
based workflow developed in this research is depicted on Fig. 1.

3. Results and discussions

3.1. Understanding Cu, Ag and Au recovery pattern from the WPCB

Ammonium chloride (NH₄Cl) offers a highly effective method for 
recovering critical metals from electronic waste. Unlike traditional wet 
chlorinating agents, ammonium chloride is less corrosive and easier to 

handle, making it safer for operational use (Lorenz and Bertau, 2019). 
When subjected to high temperatures, NH₄Cl decomposes into ammonia 
and hydrochloric acid gas. These gases effectively react with metals to 
form metal chlorides, which can be extracted using a suitable solvent. 
This method boasts several benefits, including high metal recovery rates, 
low energy consumption, and minimal toxic and corrosive effluent 
generation. Its application in recovering metals from e-waste is partic
ularly promising due to its efficiency and simplicity.

Selecting the optimal process variables for the roasting process re
quires careful consideration about the operating bounds of roasting 
temperature, roasting time, and ammonium chloride dosage. The 
decomposition of NH₄Cl begins around 200 ◦C, but a sharp decrease in 
its weight is observed near 300 ◦C, indicating vigorous decomposition 
and maximum efficiency in converting metals to their chlorides (Panda 
et al., 2020). Here, all the process input variable ranges derived from 
Panda et al. are provided and discussed in (Panda et al., 2023). There
fore, maintaining the roasting temperature within the range of 200–300 
◦C is crucial for metal recovery. The importance of roasting time in 
NH₄Cl roasting process cannot be overstated. The duration of roasting 
significantly influences the efficiency of metal recovery. A 
well-optimised roasting time ensures that NH₄Cl has adequate oppor
tunity to decompose into ammonia and hydrochloric acid gas, which are 
crucial for the conversion of metals into metal chlorides. Insufficient 
roasting time may result in incomplete decomposition of NH₄Cl and 
inadequate formation of metal chlorides, leading to lower metal recov
ery rates. Typically, a roasting duration of 1 to 3.5 h is found to be 
effective, allowing for thorough decomposition and maximum recovery 
of metals. The dosage of NH₄Cl plays a pivotal role in the roasting pro
cess for metal recovery. It directly influences the availability of reactive 
hydrochloric acid (HCl) which is critical for converting metals into their 

Fig. 2. Visualising the data-distribution associated with the process input conditions and metal recovery from the WPCB. (a) Box plots present impact of process 
input conditions on percentage recovery of Cu, Ag and Au, (b) the function space built for Cu, Ag and Au recovery from the WPCB, and (c) variable inter-dependence 
analysis by the PCC based heat map plotted for the process conditions and metal recovery from the WPCB.
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chlorides. The impact of NH4Cl dosage on metal extraction is examined 
by adjusting the NH4Cl dose from 1 to 3 g/g of WPCB. HCl acts as a 
leaching agent, facilitating the dissolution of metal chlorides formed 
during roasting. The effectiveness of this extraction process is highly 
dependent on the molar concentration of HCl. Using HCl ensures high 
recovery rates, minimises metal loss due to hydration and precipitation, 
and offers a more efficient alternative to water leaching. Properly 
managing HCl concentration is essential to maximise metal recovery and 
ensure the success of the metal extraction process post-roasting. HCl is 
utilised within a concentration range of 1 to 3 M to investigate the 
efficient recovery of metals and determine the optimal concentration.

Fig. 2(a) illustrates the variations in process input conditions 
designed to investigate their impact on the metal recovery rate from 
WPCBs. It is observed that metal recovery is significantly influenced by 
process input variables such as roasting time (h), NH4Cl dose (g/g), HCl 
concentration (M), and roasting temperature (◦C). It appears that vari
ation in roasting temperature causes fluctuation in the metal recovery 
profiles and also drives higher metal recovery in comparison to other 
process input variables. To further explore the intricate and nonlinear 
characteristics associated with the metal recovery process, a function 
profile made for percentage recovery of Cu, Ag, and Au is constructed 
and shown on Fig. 2(b). The metal recovery profile exhibits nonlinear 
characteristics as evidenced by the non-convex nature of the function. 
Numerous local minima are observable in the function profile for Cu, Ag, 
and Au recovery, indicating that the metal recovery process is inherently 
complex. This nonlinearity poses a significant challenge for optimisation 
solvers tasked with identifying the optimal process conditions to maxi
mise the metal recovery rate.

Pearson correlation coefficient (PCC) values is computed between 
pairs of variables and shown as heat map on Fig. 2(c) that presents the 
information about the variable dependencies associated with the metal 
recovery from WPCBs. Notably, the PCC values between pairs of process 
input variables are around zero that confirms that the process input 
variables are not linearly dependent on each other and are independent 
in their effects on metal recovery from WPCBs. However, the recovery of 
Cu, Ag, and Au shows high correlation (PCC > 0.78), suggesting that 
these metals can be extracted under similar process conditions. This high 

correlation underscores the fact that the dataset contains sufficient in
formation to determine process conditions that can simultaneously 
maximise the recovery of multiple metals from WPCBs.

The comprehensive data visualisation associated with the metal re
covery process calls for applying the machine learning based algorithms 
to accurately capture the complex, nonlinear relationships for Cu, Ag 
and Au recovery from the WPCB. Consequently, the data-visualisation 
supports the use of sophisticated optimisation techniques such as ge
netic algorithm, which can effectively estimate an effective solution for 
maximum recovery of metals from the WPCBs.

3.2. Gaussian process regression models for Cu, Ag and Au recovery from 
the WPCB

A well-trained GP regression model requires the efficient parameters 
estimation associated with the algorithm. Covariance and the mean 
function process the data during the GP regression model training and 
can be defined by the user or identified by the hyperparameters tuning 
(Liu et al., 2020). The acquisition function samples the space for the 
function evaluation and exploration, and is integrated with the optimi
zation solver to estimate the best parameter-settings for the training of 
the GP regression model. To further generalise the training of the GP 
regression model, we have embedded the five-fold cross validation 
technique during the hyperparameters tuning carried out by Bayesian 
optimization and the mean values of the performance metrics are 
computed. Constant mean function and squared exponential as covari
ance function are found to be best hyperparameters for the GP regression 
models for the training of Cu, Ag and Au models.

Fig. 3(a-c) depicts the modelling performance of the GP regression- 
based models trained for Cu, Ag and Au recovery from the WPCBs 
respectively. The true and model-based predictions are mapped for the 
three metals recovered from the WPCBs. The GP regression model 
trained for Cu recovery exhibits excellent modelling performance on the 
test dataset with R2 value of 0.98 and RMSE of 0.23 %. The predictive 
accuracy on the test dataset for Ag and Au recovery is computed to be 
around 80 %, and the RMSE are also comparable, i.e., 0.25 % and 0.24 % 
respectively. Overall, the performance metrics computed for the 

Fig. 3. The modelling performance of the GP Regression model to predict the train and test dataset for (a) Cu, (b) Ag, and (c) Au recovery from the WPCB. The KDE 
on the parity plots is also plotted to visualise the distribution and agreement between the true and model-predicted responses.
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predictive proficiency evaluation of the trained GP regression-based 
models for Cu, Ag and Au demonstrate good mapping constructed 
within the models for the process conditions and metal recovery from 
the WPCB.

Furthermore, the parity plots presenting the visualisation of distri
bution and agreement between the true and model-based predictions 
along with kernel density estimate (KDE) are also plotted. The kernel 
density exhibits the likelihood of observing the value of variable, while 
the area under the KDE curve integrates to unity. The dotted line (y = x) 
represents the perfect match between the true and predicted responses. 
The model-based prediction for Cu recovery is well aligned with dotted 
line and KDE curves are compact confirming the excellent predictive 
capacity and lower uncertainty for the point-predictions from the 
trained model. The relatively large spread-out of the KDE curves, 
compared with those of Cu, attempts to explain the likelihood of 
observing the model-based predictions for Ag and Au recovery as they 
are constructed based on the predictive performance of the trained 
models. However, a good degree of agreement between the true and 
model-based predictions for Ag and Au is apparent along with the 
identification of the KDE density associated with the model-based 
predictions.

3.3. Feature importance analysis for the metal recovery process

The ML models are trained to learn the relationships between the 
input-output variables and the models’ learning is based on the dataset 
collected for each variable. Once the ML models have been trained and 
the acceptable degree of accuracy of the models has been ensured, it 
becomes imperative to investigate the feature importance, impacting the 
point-predictions of the output variables from the ML models. In this 
regard, SHAP is an excellent technique that constructs the different 
possible combinations of the input variables corresponding to the 
observed observations and the constructed experiments are simulated 
form the ML models to establish the significance order of the input 
variables.

Fig. 4 presents the percentage significance of process input condi
tions on Cu, Ag and Au recovery from the WPCBs of mobile phones. 
Roasting temperature is turned out to be the most significant process 
input variables, contributing 48 %, 30 % and 29 % respectively for the 
predictions made by trained GP models for Cu, Ag and Au recovery from 
the WPCBs. Whereas, roasting time is the second significant variable for 
the metals recovery from the WPCBs.

The proposed method works on roasting WPCB at 260 ◦C for 2.5 h 
using NH4Cl dose of 2 g/g, followed by leaching with a 2 M HCl solution. 
The combination of optimal temperature, time, and NH4Cl dosage, along 
with the precise HCl concentration, ensures high metal recovery rates, 
highlighting the effectiveness of this approach in metal extraction from 
electronic waste. When WPCB are roasted with NH4Cl dose of 2 g/g at 

260 ◦C, NH4Cl decomposes into NH3 (g) and HCl (g). The decomposition 
reaction is as follows: 

NH4Cl(s) = HCl(g) + NH3(g) (8) 

Roasting temperature plays a crucial role in the kinetics of NH4Cl 
roasting because it directly influences the rate of the chemical reactions 
involved. According to the Arrhenius equation, the rate of a chemical 
reaction increases exponentially with temperature. This means that even 
a small increase in temperature can significantly speed up the roasting 
process, leading to quicker and more efficient decomposition of NH4Cl. 
Proper control of temperature ensures efficient and cost-effective 
roasting, making it a critical factor in the process. The sublimation of 
NH₄Cl occurs at 338 ◦C. During equilibrium, its decomposition is influ
enced by the partial pressures of HCl and NH₃. As the partial pressure in 
the reaction chamber never reaches zero, the decomposition of NH₄Cl 
begins at temperatures significantly below 338 ◦C (Lorenz and Bertau, 
2019). Panda et al. studied the decomposition of NH₄Cl using TGA 
(Thermogravimetric Analysis) to gain insight into the roasting temper
ature range and its behaviour (R. Panda et al., 2021). The temperature 
range of 200–310 ◦C shows a sharp decrease in the weight of NH₄Cl 
powder, with a DTA (Differential Thermal Analysis) minima around 300 
◦C. The NH₄Cl sample starts to decompose around 200 ◦C, and as the 
temperature increases, the NH₄Cl powder decomposes vigorously. The 
HCl gas reacts with metals present in the T-PCBs to form metal chlorides, 
which are typically more soluble in water. The general reaction for metal 
chlorination can be represented as: 

M(s) + xHCl(g) +
x
4
O2(g) = MClx(s) +

x
2
H2O(g) (9) 

At the optimal roasting temperature of 260 ◦C and the NH4Cl dose of 
2 g/g, the decomposition of NH4Cl produces sufficient HCl gas to react 
with the metals in the WPCB, forming metal chlorides such as CuCl2, 
AgCl, and AuCl. These metal chlorides are crucial intermediates because 
they are more soluble in acidic solutions, facilitating easier extraction. 
Using 2 M HCl for the leaching step ensures maximum recovery of Cu, 
Ag, and Au by efficiently dissolving the metal chlorides formed during 
roasting.

3.4. Maximising the metal recovery from the WPCB

During experimentation for metal recovery from WPCB, recovery 
rates reached up to 98 % for Cu, 88 % for Ag, and 77 % for Au which 
were achieved corresponding different operating levels of the process 
input variables. It highlights the sensitivity of the reaction kinetics to the 
operating levels of the process input variables. However, maintaining 
the same process conditions that maximises the metal recovery offers 
significant advantages, such as reduced disruptions and lower need of 
process adjustment for metal recovery operation, improved equipment 

Fig. 4. SHAP based feature importance analysis for the recovery of Cu, Ag and Au from the WPCB. Roasting temperature appears to be relatively more important 
feature impacting the metal recovery from the WPCB.
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integrity and safety as well as smooth production scheduling. Moreover, 
smooth operation of the metal recovery process can decrease equipment 
wear and maintenance costs, further enhancing operation excellence 
and good manufacturing practices for the metal recovery from the 
WPCBs.

The task of finding common optimal process conditions for the re
covery of Cu, Ag, and Au is challenging. GA can effectively address this 
challenge and may estimate optimised operating conditions, maximising 
the simultaneous recovery rates of all three metals. This approach not 
only ensures high recovery rates but also supports sustainable and 
economically viable metal recovery practices. The objective function for 
the maximisation problem considering the maximum recovery of Cu, Ag 
and Au from the WPCB is formulated as: 

max
x

: fCu(x) + fAg(x) + fAu(x)

subject to: 

h(x) = 0 

xL < x < xU 

here, h(x) is the equality constraint, representing the GP based process 
models for the metal recovery from the WPCB. While, xL and xU repre
sent the lower and upper bounds on the process input variables (x). 
Considering the bounds on the input variables, the objective function is 
formulated to integrate the GP based process models for Cu (fCu(x)), Ag 
(fAg(x)) and Au (fAu(x)) that the solver tends to maximise such that 
optimised process conditions for the maximum metal recovery can be 
estimated. GA is a global optimisation solver that works well with the 
experimental datasets to find the global maximum of the objective 
function and thus, is used in this study. The optimisation analysis carried 
out in MATLAB 2021 version b.

Fig. 5 depicts the variance around the maximum recovery of Cu, Ag 
and Au for the candidate solutions estimated after solving the max
imisation problem by GA. The variance around the solution is the 
measure of the variability of the metal recovery; therefore, the optimal 
solution is selected having the least variance observed for Cu, Ag and Au 
recovery from the WPCB. The metal recovery function space is built on 
the normalised values of the three metals recovered from the WPCB. The 
maximum recovery of the three metals from the WPCB is mapped on the 
maximum metal recovery function space by the star. It is important to 
note that variation in Cu and Ag is reasonably small as estimated on the 

candidate solutions. However, Au presents a significant potential to be 
recovered beyond its recovery rate as observed in the dataset since the 
normalized value for the maximum metal recovery is >1 and is 
approaching to 1.249. However, the maximum Au recovery has the 
normalised recovery rate value of 1.242 corresponding to the least 
variance observed for the three metals recovery rates.

The GA led maximum recovery of metals from WPCBs estimates that 
roasting time should be maintained for 2.92 h corresponding to NH4Cl 
dose of 2.34 g/g, HCl concentration of 2.50 M and roasting temperature 
of 278 ◦C to extract Cu, Ag and Au to the maximum recovery of 99.9, 
99.7 % and 83.7 % respectively. The metal recovery is estimated to be 
2.0 %, 13.3 % and 8.6 % higher for Cu, Ag and Au compared to the metal 
recovery rate observed during the experimentation. The optimisation 
analysis presents the potential to extract higher metal recovery rate 
without controlling the process beyond its operating bounds as well as 
the same process conditions for the operation of the process equipment.

3.5. Experimental verification of maximum Cu, Ag and Au recovery from 
the WPCB

The analysis presented in the previous sections is based on data 
collected from experiments focused on the recovery of Cu, Ag, and Au 
from WPCB. Data-driven process models were developed to leverage the 
computational capabilities of ML models, which approximate the pat
terns of metal recovery rates and are deployed to estimate optimised 
conditions for maximising metal recovery from WPCB. The data-driven 
approach minimises experimental costs and resource utilisation 
compared to traditional trial-and-error methods for process optimisation 
in the lab.

Model-based estimates of metal recovery rates must be validated 
experimentally to ensure the accuracy of the model-based optimisation 
analysis. Significant deviations between model predictions and experi
mental results highlight gaps in the model’s understanding of the sys
tem, necessitating adaptive learning based on experimental conditions 
and observed metal recovery rates. Therefore, adaptive ML approach 
should be implemented to minimise discrepancies between model pre
dictions and experimental observations. Additionally, adaptive learning 
enables sequential model-based optimisation, and determine process 
conditions based on the response surface of metal recovery profiles.

The estimated optimised operating levels of the process input vari
ables are maintained in the lab to investigate the percentage recovery of 
Cu, Ag and Au from the WPCBs of mobile phones. Similar 

Fig. 5. Estimating the optimised process conditions for maximum Cu, Ag and Au recovery from the WPCB. Genetic algorithm solver is used for solving the max
imisation problem and the optimal solution for the metal recovery is selected having the least variance observed out of the candidate solutions.

W.M. Ashraf et al.                                                                                                                                                                                                                              Computers and Chemical Engineering 201 (2025) 109237 

8 



experimentation protocols are observed during the verification of ML 
based estimated solution as maintained during the initial experimenta
tion stage for collecting the dataset. The experimental recovery of three 
metals is measured and compared with the ML based optimisation 
analysis as shown in Fig. 6. Cu, Ag and Au are recovered up to 99 %, 90 
% and 80 % on the optimised operating conditions while the estimated 
maximum recovery of the three metals have been up to 99.9, 99.7 % and 
83.7 % respectively. The mean absolute percentage error is computed to 
be 0.95 %, 9.7 % and 4.4 % respectively corresponding to the estimated 
maximum recovery of Cu, Ag and Au. However, the ML based workflow 
has increased the percentage recovery of Cu, Ag and Au by 1 %, 2.3 % 
and 3.9 % respectively corresponding to the initial metal recovery rates 
obtained in the dataset that is deployed to train the GP models. Higher 
metal recovery rates through ML led optimisation analysis highlights the 
advantage of the developed workflow to boost the metal recovery rates 
on the same process conditions, underscoring the capability of ML and 
optimisation tools for carrying out complex process optimisation tasks 
effectively.

4. Conclusion

The electronic waste of mobile phones is an environmental burden 
and pollution. Huge volume of electronic waste of mobile phone is 
anticipated that requires sustainable solutions to ensure the material 
supplies and effective waste management for sustainable AI and envi
ronmental protection. To address the issue of material supplies for chip 
manufacturing and waste management of waste printed circuit boards 
(WPCBs) of mobile phones, an eco-friendly low-temperature roasting 
process is developed to recover Cu, Ag and Au from WPCBs of mobile 
phones. Gaussian Process (GP) models are trained on the experimental 
data to approximate the metal recovery behaviour from the WPCBs. 
SHAP analysis reveals that roasting temperature (◦C) is the most sig
nificant input feature that impacts the recovery of Cu, Ag and Au from 
the WPCBs. An optimisation problem is formulated and solved by ge
netic algorithm to estimate the optimised experimental conditions for 
maximising the recovery of Cu, Ag and Au from the WPCBs. The ex
periments are conducted in the lab and 99 %, 90 % and 80 % recovery of 
Cu, Ag and Au is achieved from the WPCBs. The ML led workflow can 
estimate the optimised experimental conditions to optimise the process 
for the recovery of metals from the WPCBs that enhances the material 
utilisation efficiency and improves the waste management of WPCBs to 
support sustainable AI development.
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