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Abstract—In this paper, we investigate an intelligent reflecting
surface (IRS)-assisted non-line-of-sight (NLOS) wireless sensing
system, where an IRS aids an access point (AP) in estimating the
parameters of a target in its NLOS region. The AP transmits
signals and detects the target based on echoes propagating
through the AP-IRS-target-IRS-AP channel. A key challenge in
IRS-assisted NLOS sensing is the inherent scaling ambiguity,
which arises when the degrees of freedom (DoFs) provided by
the AP-IRS channel are insufficient to uniquely estimate both
the complex path gain and angular parameters of the target. To
address this issue, we introduce a two-stage sensing scheme that
leverages the diversity of the IRS illumination pattern. Within
this framework, we derive a compact Cramér-Rao Bound (CRB)
expression for direction-of-arrival (DOA) estimation, enabling
the decoupled optimization of the AP’s transmit beamformer
and IRS phase shifts via CRB minimization. Specifically, the
optimal beamformer is obtained in a closed form, while the
IRS reflective coefficients are optimized using a majorization-
minimization (MM)-based algorithm. Simulation results demon-
strate the superiority of the proposed method, achieving lower
CRB and MSE compared to benchmark schemes, particularly
in challenging scenarios where the AP-IRS channel DoFs are
insufficient to resolve the scaling ambiguity.

Index terms— Intelligent reflecting surface (IRS), NLOS
wireless sensing, Cramér-Rao Bound (CRB), transmit beam-
former design, IRS reflective coefficients optimization.

I. INTRODUCTION

A. Background

The integration of wireless sensing into communication
networks has become a defining trend in beyond fifth-
generation (B5G) and sixth-generation (6G) systems, en-
abling applications such as autonomous navigation, smart
cities, and industrial automation [1]–[4]. Conventional sensing
techniques, including radar-based detection, received signal
strength (RSS)-based localization, and time-of-arrival (TOA)
estimation, typically rely on the presence of line-of-sight
(LOS) propagation between the radar/access point (AP) and
the target. However, in practical environments, such as dense
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urban areas, indoor settings, and military scenarios, LOS paths
are often obstructed, leading to severe degradation in sensing
and localization accuracy.

To overcome this limitation, intelligent reflecting surface
(IRS) technology has emerged as a cost-effective and energy-
efficient solution for enhancing wireless sensing, communi-
cations, and localization [5]–[10]. An IRS consists of a lin-
ear/planar array of passive reflective elements that dynamically
adjust phase shifts to reconfigure the wireless environment,
enabling signal redirection and virtual LOS link creation
without the need for additional active APs. By leveraging
IRS, non-line-of-sight (NLOS) targets can be detected through
controlled reflections along the AP-IRS-target-IRS-AP propa-
gation path. However, severe signal attenuation over multi-hop
reflections remains a key challenge, necessitating intelligent
IRS phase shift optimization to maximize reflected signal
strength and enhance sensing performance [11]–[27].

B. Related Work

There have been extensive works investigating IRS-assisted
wireless sensing system, encompassing IRS-aided radar for
target detection and parameter estimation [11]–[23], and IRS-
assisted integrated sensing and communication (ISAC) sys-
tems [24]–[27].

For IRS-aided target detection in NLOS system, the study
in [11] formulated an IRS-aided multi-input multi-output
(MIMO) radar detection problem. In this framework, the IRS
is positioned near the radar transmitter or receiver to enhance
the illumination or observation of potential targets. An IRS-
assisted radar system for target surveillance in a cluttered
environment was investigated in [12]. In this work, the active
beamformer at the radar transmitter and the passive phase-
shift matrices at the IRSs were jointly optimized to maximize
the minimum target illumination power across multiple target
locations. The moving target detection problem in a multi-IRS-
aided orthogonal frequency division multiplexing (OFDM)
radar system was addressed in [13], where a bi-quadratic
program was derived to jointly design the OFDM signal and
IRS phase shifts for optimizing target detection performance.

In addition to target detection, the problem of parameter
estimation in IRS-aided systems has also been extensively
investigated. In [14], a generalized likelihood ratio test (GLRT)
based detector and a repetitive IRS phase profile were devel-
oped for an IRS-aided monostatic sensing system, with the
2D unitary ESPRIT method employed to efficiently retrieve
target parameters. In [15], an IRS-self-sensing architecture
is proposed, in which the IRS controller transmits probing
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Fig. 1: Illustration of the considered IRS-assisted NLOS
sensing system.

signals, and dedicated sensors at the IRS perform location
and angle estimation based on echo signals received via the
BS-IRS-target-IRS sensor link and the BS-target-IRS sensor
link. The problem of NLOS sensing, encompassing both
target detection and parameter estimation, was investigated
in [16], [17]. The work in [16] focused on an IRS-enabled
pulse-Doppler radar system, deriving the minimum variance
for the best linear unbiased estimator (BLUE) of the target
backscattering coefficient and optimizing IRS phase shifts
to minimize the mean squared error of the estimated target
parameters. Meanwhile, [17] proposed a hierarchical three-
dimensional (3D) IRS beam training approach, where an initial
coarse target detection and direction estimation phase was
followed by fine-grained sensing, refining the estimates of
target ranges and velocities by steering IRS beams toward
detected targets. Furthermore, [18] examined a backward IRS-
aided MIMO radar system and proposed a reduced-dimension
multiple signal classification (MUSIC) estimator for joint
direction-of-departure (DOD) and direction of arrival (DOA)
estimation. However, this study assumed a fixed IRS phase-
shift profile with binary phase shifts (0 and π). In [19], the
authors proposed a two-stage sensing scheme for IRS-aided
NLOS system, where the received OFDM signals in the two
stages were represented as two third-order tensors, enabling
a tensor decomposition-based approach for estimating DOAs,
time delays, and Doppler shifts of targets.

Beyond algorithmic approaches, NLOS parameter estima-
tion has also been studied from a theoretical perspective by
analyzing the Cramér-Rao Bound (CRB) performance, leading
to IRS coefficient design via CRB optimization. Specifically,
[20] investigated DOA estimation in an IRS-enabled NLOS
sensing system, where transmit and reflective beamforming
were jointly optimized to minimize the CRB for target pa-
rameter estimation, demonstrating enhanced sensing accuracy
for both point and extended target models. Extending this
methodology, the authors in [21] investigated a multi-IRS-
assisted MIMO radar system, while [22] considered a semi-
passive IRS-enabled sensing setup, both further demonstrat-
ing the effectiveness of CRB-based optimization in complex
NLOS environments.

Despite these advancements, most existing IRS-assisted
sensing studies have not explicitly addressed the inherent

scaling ambiguity issue. As pointed out in [20] and further
emphasized in [23], when the rank of the AP-IRS channel
matrix is one, at least two degrees-of-freedom (DoFs) are
required to simultaneously identify both the complex path
gain and the angular parameter of the target, otherwise a
scaling ambiguity arises. To mitigate this issue, [19] proposed
a two-stage sensing scheme, leveraging the diversity of the
IRS illumination pattern across the two stages. However, the
subarray partition-based IRS phase shift design introduced
in [19] is an empirical approach that leads to noticeable
performance degradation.

Motivated by these limitations, this paper investigates an
IRS-assisted sensing system, where the AP transmits sensing
signals and estimates the target parameters based on echo
signals propagating through the AP-IRS-target-IRS-AP chan-
nel. To address the scaling ambiguity inherent in IRS-assisted
sensing, we adopt the two-stage sensing scheme originally
proposed in [19]. Note the work [19] is only concerned
about developing an estimation algorithm for IRS-assisted
NLOS sensing problems. The joint optimization of the AP’s
transmit beamformer and IRS phase shifts was not studied
in [19]. Unlike [19] which primarily addresses algorithm
development, this paper focuses on optimizing the transmit
beamformer as well as the IRS’s reflection coefficients to
maximize the sensing performance. Our work introduces a new
CRB minimization approach for IRS phase shift optimization
within the two-stage scheme. This represents a significant
advancement beyond the empirical IRS design methods used
in [19]. Specifically, we derive a succinct CRB expression
for DOA estimation, which enables the decomposition of the
joint optimization problem into two sub-problems: transmit
beamformer design and IRS phase shift optimization. Based
on this formulation, we minimize the CRB for parameter
estimation by jointly optimizing the AP transmit beamformer
and IRS reflective coefficients, thereby enhancing sensing
accuracy and robustness.

The remainder of this paper is organized as follows. Section
II introduces the system model as well as the two-stage
scheme based signal model. Section III formulates a succinct
expression for the estimation CRB. Section IV minimizes the
CRB for estimating DOA by jointly optimizing the transmit
beamforming at the AP and the reflective coefficients at the
IRS. Section V introduces a practical maximum likelihood
estimation (MLE) method to estimate the target’s DOA.
Simulation results are presented in Section VI, followed by
concluding remarks in Section VII.

Notations: In this paper, scalars, column vectors, matrices
and tensors are denoted by italic, lowercase boldface, upper-
case boldface and calligraphic boldface letters, respectively.
[a]i, [A]i,l, denote the ith element of a and the (i, l)th element
of A, respectively. rank(A) and tr(A) denote the rank of
A and the trace of A, respectively. The operator diag(a)
denotes a diagonal matrix whose main diagonal elements are
the elements of the vector a. Conversely, diag(A) extracts the
main diagonal elements of A and forms a column vector a.
IM denotes the identity matrix of size M . The symbols (·)∗,
(·)T , (·)H , (·)−1, denote the conjugate, transpose, conjugate
transpose, and inverse, respectively. ∥ · ∥2 and ∥ · ∥F denote
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the 2-norm and Frobenius norm, respectively. j denotes the
imaginary unit. ℜ{·} and ℑ{·} denote the real and imaginary
parts of a complex number, respectively.

II. PROBLEM FORMULATION

A. System Model

We consider an IRS-assisted wireless sensing system as
shown in Fig.1, which is employed to locate a target in the
NLOS area of the access point (AP). Suppose both the AP
and the IRS are equipped with a uniform linear array (ULA),
with M antennas at the AP and N elements at the IRS. The
AP transmits a sensing signal and then perceives the target
based on the echo signal propagating through the AP-IRS-
target-IRS-AP channel.

Define G ∈ CN×M as the channel matrix from the AP
to the IRS. Since the positions of the AP and the IRS are
predetermined, we assume that the AP perfectly knows the
channel matrix G of the AP-IRS link. Each element on the
IRS can combine the incident signal and then re-scatter the
combined signal with a certain phase shift. Define ψn ∈ [0, 2π]
as the phase shift associated with the nth passive element of
the IRS. Also, the associated reflection matrix at IRS can be
expressed as

Φ = diag(ejψ1 , · · · , ejψN ). (1)

Define θ as a target’s direction-of-arrival (DOA) with respect
to the IRS. The associated steering vector at the IRS can be
written as

a(θ) = [1 ej2π
dsin(θ)

λ · · · ej2π
(N−1)dsin(θ)

λ ]T , (2)

where d denotes the spacing between any two adjacent reflec-
tion elements, and λ is the wavelength of the carrier signal.
For the target, the cascaded IRS-target-IRS channel can be
written as

H = αa(θ)aT (θ), (3)

where α ∈ C is used to characterize the effective path gain,
which indicates the round-trip path loss as well as the radar
cross section (RCS) coefficient of the target.

B. Signal Model

Let s(t) and w ∈ CM denote the transmitted signal at
time instant t and the beamforming vector, respectively. Then
the transmitted signal is expressed as x(t) = ws(t), where
|s(t)|2 = 1. Also, a transmit power constraint is placed on
the beamforming vector w, i.e. ∥w∥22 ≤ PT , PT is the
transmit power. In a coherent processing interval (CPI), the
AP transmits radio signals and then receives the echo from
the potential target via the AP-IRS-target-IRS-AP link. The
received echo signal at the AP at time t can be expressed as

y(t) = GTΦTHΦGws(t) + n(t), (4)

where n(t) denotes the additive noise. Note when the AP-IRS
channel is rank-one or approximately rank-one, there exists an
inherent scaling ambiguity for estimating the DOA from the
received signals [20]. Specifically, when rank(G) = 1, the
channel matrix can be expressed as G = σpqH , where σ is a

scaling factor, and p ∈ CN , q ∈ CM are the channel response
vectors. Consequently, the received echo signal in (4) at the
AP can be further written as

y(t) = ασ2q∗ pTΦTa(θ)aT (θ)Φp︸ ︷︷ ︸
β(θ)

qHws(t)︸ ︷︷ ︸
x̃(t)

+n(t), (5)

where β(θ) = pTΦTa(θ)aT (θ)Φp is the only term related
to θ. Notice that α and β(θ) are coupled in (5). Owing to the
coupling, the parameter θ in (5) can not be uniquely identified.
This will also be interpreted from the CRB perspective later.

To avoid the inherent scaling ambiguity in the IRS-assisted
NLOS sensing system, we employ the two-stage sensing
scheme which was first proposed in [19]. Accordingly, let
Φi ∈ CN×N denotes the individual IRS phase-shift matrix
in stage i ∈ {1, 2}. Then, the received signal at stage i is
given by

yi(t) = G
TΦi

THΦiGws(t) + ni(t)

= αGTΦi
Ta(θ)aT (θ)ΦiGws(t) + ni(t)

= αbi(θ)b
T
i (θ)ws(t) + ni(t), (6)

where bi(θ) ≜ GTΦi
Ta(θ) ∈ CM denotes the effective

steering vector, and ni(t) ∈ CM ∼ CN (0, σ2
i IM ) denotes

the additive noise, where σ2
i is the noise power for stage

i. The two-stage sensing scheme utilizes the corresponding
observations to estimate the DOA parameter. As discussed in
[19], this scheme relies on the diversity of the IRS illumination
patterns across the two stages, requiring that the IRS beams
in both stages simultaneously illuminate the target while
maintaining sufficient pattern diversity. However, quantifying
and optimizing the illumination diversity between the two
stages is highly challenging, making the derivation of optimal
IRS phase matrices a nontrivial task. To address this challenge,
this paper proposes a CRB-based analytical framework, which
provides a systematic and efficient approach to optimize the
IRS phase matrices for the two-stage sensing scheme, ensuring
robust parameter estimation performance.

III. CRB ANALYSIS

In this section, we analyze the estimation performance. We
derive a succinct expression for the estimation CRB, which
decouples the transmit beamformer and the IRS reflective
coefficients.

Consider the CRB for estimating the DOA θ from the two-
stage observations over the radar dwell time, e.g., {yi(t)},
i ∈ {1, 2} and t = 1, 2 · · · , T . Then, we stack the received
signals as

Y i = αbi(θ)b
T
i (θ)X̃ +N i, (7)

where Y i = [yi(1) · · · yi(T )] ∈ CM×T ,
X̃ ≜ [ws(1) · · · ws(T )] ∈ CM×T , and
N i ≜ [ni(1) · · · ni(T )] ∈ CM×T , respectively. To
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further understand the two-stage sensing scheme, we define
Y ≜ [Y 1 Y 2] ∈ CM×2T , and we have

Y = α[b1(θ)b
T
1 (θ)X̃ b2(θ)b

T
2 (θ)X̃]

= α[b1(θ) b2(θ)]

[
bT1 (θ)

bT2 (θ)

][
X̃

X̃

]
+N

= αB(θ)CT (θ)X +N

= αQ(θ)X +N , (8)

where B(θ) ≜ [b1(θ) b2(θ)] ∈ CM×2, C(θ) ≜
blkdiag(b1(θ), b2(θ)) ∈ C2M×2, Q(θ) ≜ B(θ)CT (θ) ∈
CM×2M , X ≜ blkdiag(X̃, X̃) ∈ C2M×2T , and N ≜
[N1 N2] ∈ CM×2T .

Let ζ ≜ [θ αT ]T ∈ R3 denotes the vector of unknown pa-
rameters to be estimated, where θ represents the target’s DOA
with respect to the IRS, and α = [ℜ{α},ℑ{α}]T represents
the complex-valued effective path gain. For notational brevity,
in the following discussion, we denote Q(θ), B(θ), C(θ),
a(θ) as Q, B, C and a, respectively. By vectorizing (8), we
have

ỹ = vec(Y ) = z + n, (9)

where z = αvec(QX) and n = vec(N) ∼
CN (0, σ2

NI2MT ). Let J ∈ R3×3 denote the FIM for esti-
mating ζ. Based on [20], the FIM J can be partitioned as

J =

[
Jθθ Jθα
JTθα Jαα

]
, (10)

where

Jθθ =
2T |α|2

σ2
N

tr(Q́RxQ́
H
), (11)

Jθα =
2T

σ2
N

ℜ{α∗tr(QRxQ́
H
)[1, j]}, (12)

Jαα =
2T

σ2
N

tr(QRxQ
H)I2, (13)

where Rx = 1
TXX

H ∈ C2M×2M and Q́ denotes the partial
derivation of Q w.r.t. θ.

The CRB for estimating the DOA θ corresponds to the
first diagonal element of the inverse Fisher Information Matrix
(FIM), i.e.,

CRB(θ) = [J−1]1,1 = [Jθθ − JθαJ−1
ααJ

T
θα]

−1. (14)

Based on equations (10)-(14), we have the following lemma.

Lemma 1. The CRB for DOA θ estimation can be expressed
as

CRB(θ) =
σ2
N

2T |α|2
(
tr(Q́RxQ́

H
)− |tr(QRxQ́

H
)|2

tr(QRxQH)

) . (15)

Note that this CRB expression is general and applies to any
channel matrix of the AP-IRS link. To gain deeper insight into
this expression and to facilitate the design of IRS reflective
beamforming for the two-stage sensing scheme under the
rank-one condition for the AP-IRS channel matrix, we now
reformulate CRB(θ) in (15) in terms of the IRS reflective

coefficients. Specifically, If the AP-IRS channel is rank-one,
it can be expressed as G = σpqH , where p ∈ CN and
q ∈ CM are the channel response vectors. Define D ≜
diag(0, 1 · · · , N − 1) ∈ CN×N , A ≜ diag(a(θ)) ∈ CN×N

and ψi ≜ diag(Φi) ∈ CN , i ∈ {1, 2}. Accordingly we have
the following lemma.

Lemma 2. If the AP-IRS channel is rank-one, then the CRB
for DOA θ estimation is given by (16), shown at the top of
next page, where µi ≜ ψHi Fψi, µ̄i ≜ ψHi DFDψi and µ̃i ≜
ψHi DFψi, i ∈ {1, 2}, with F ≜ AHp∗pTA.

Proof. See Appendix A.

In the CRB expression (16), note that the terms

(µ1µ̄1 + µ2µ̄2)−
|µ1µ̃1 + µ2µ̃2|2

|µ1|2 + |µ2|2
, (17)

and |qHw|2 are respectively related to the IRS reflective coef-
ficients and transmit beamformer. This compact formulation is
useful for the joint design of the transmit beamformer and IRS
reflective beamforming through CRB minimization. Further-
more, the following proposition underscores the importance of
using different IRS phase-shift matrices across the two sensing
stages.

Proposition 1. If the AP-IRS channel is rank-one (i.e.,
rank(G) = 1) and the IRS phase shift matrices are identical
across both stages (i.e., Φ1 = Φ2), then the FIM J becomes
singular, leading to an unbounded CRB, i.e., CRB(θ) = ∞.
Otherwise, J is invertible, ensuring a bounded CRB(θ).

Proof. Recall that rank(G) = 1, the channel can be written
as G = σpqH . From equations (74)–(76), the determinant of
the FIM J can be expressed as (18) shown at the top of the
next page. If Φ1 = Φ2, then we have µ1 = µ2 and µ̃1 = µ̃2.
Consequently, the term |µ̃1µ

∗
2 − µ̃2µ

∗
1|2 in (18) becomes zero,

implying that det(J) = 0. Hence, the FIM is singular and the
CRB becomes unbounded.

Remark 1. This result shows that when the channel is rank-
one, it is necessary to employ different IRS phase-shift con-
figurations across the two sensing stages to ensure a bounded
CRB. This insight is critical for the practical design of IRS
reflective coefficients.

IV. CRB MINIMIZATION VIA JOINT TRANSMIT
BEAMFORMING AND IRS OPTIMIZATION

In this section, we formulate and solve the joint transmit
beamforming and IRS optimization problem in order to min-
imize the estimation CRB.

For a target with DOA θ, the CRB minimization problem
is formulated as

(P1) : min
w,ψ1,ψ2

CRB(θ)

s.t. ∥w∥22 ≤ PT , (19a)
|[ψi]n| = 1, ∀i ∈ {1, 2}, ∀n ∈ {1, · · · , N}.

(19b)

Note that in the CRB expression (16), there is no coupling
between the IRS phase shifts and the transmit beamformer.
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CRB(θ) =
σ2
N

8Tσ4|α|2π2 cos2(θ)
(
µ1µ̄1 + µ2µ̄2 − |µ1µ̃1+µ2µ̃2|2

|µ1|2+|µ2|2
)
|qHw|2

(16)

det(J) =
8T 3|α|2

σ6
N

(
tr(QRxQ

H)tr(Q́RxQ́
H
)− |tr(QRxQ́

H
)|2

)
=
32σ8π2 cos2(θ)T 3|α|2

σ6
N

(
(µ1µ̄1 + µ2µ̄2)(|µ1|2 + |µ2|2)− |µ1µ̃1 + µ2µ̃2|2

)
|qHw|4

=
32σ8π2 cos2(θ)T 3|α|2

σ6
N

(
|µ̃1µ

∗
2|2 + |µ̃2µ

∗
1|2 − 2ℜ{µ1µ̃1µ̃

∗
2µ

∗
2}
)
|qHw|4

=
32σ8π2 cos2(θ)T 3|α|2

σ6
N

(|µ̃1µ
∗
2 − µ̃2µ

∗
1|2)|qHw|4 (18)

This decoupling allows for the independent optimization of
these two factors. Specifically, the objective function in (19)
can be decomposed into two distinct components: one that
depends solely on the IRS reflective coefficients and another
that depends exclusively on the transmit beamformer. Conse-
quently, the original optimization problem can be decoupled
into two sub-problems, i.e., transmit beamformer optimization
and IRS reflective coefficients optimization. In the following,
we provide detailed formulations and solution approaches for
these two sub-problems.

A. Transmit Beamforming: An Optimal Closed Form Design

First, we optimize the transmit beamformer w in problem
(P1) while keeping the reflective coefficients reflective coef-
ficients ψ1 and ψ2 fixed. Given the CRB expression in (16),

the optimization problem (P1) can then be recast as

(P2) : max
w

|qHw|2

s.t. ∥w∥22 ≤ PT . (20)

Hence, the CRB-minimization-based transmit beamformer op-
timization problem simplifies to maximizing the radiation
power in the direction of the IRS. Following a similar for-
mulation as in [28], we demonstrate that problem (20) admits
a closed-form optimal solution, i.e.,

w =
√
PTq. (21)

B. IRS Reflective Coefficients Optimization

Next, for a given transmit beamformer w, we optimize the
reflective beamformers ψ1 and ψ2 in problem (P1). In the
CRB expression (16), only µi, µ̄i and µ̃i are dependent on the
IRS coefficients, where i ∈ {1, 2}. To facilitate the derivation,
we focus on the terms associated with the IRS. Under this

setting, the reflective beamformer optimization problem can
be formulated as

(P3) : max
ψ1,ψ2

µ1µ̄1 + µ2µ̄2 −
|µ1µ̃1 + µ2µ̃2|2

|µ1|2 + |µ2|2

s.t. µi = ψ
H
i Fψi, (22a)

µ̄i = ψ
H
i DFDψi, (22b)

µ̃i = ψ
H
i DFψi, (22c)

|[ψi]n| = 1, ∀i ∈ {1, 2}, ∀n ∈ {1, · · · , N}.
(22d)

Substituting (22a), (22b), and (22c) into the objective function
of (22), the problem (P3) can be rewritten as

(P3.1) : max
ψ1,ψ2

f(ψ1,ψ2)

s.t. (22d), (23)

where f(ψ1,ψ2) is calculated as

f(ψ1,ψ2)

=ψH1 Fψ1ψ
H
1 DFDψ1 +ψ

H
2 Fψ2ψ

H
2 DFDψ2

− |ψH1 Fψ1ψ
H
1 DFψ1 +ψ

H
2 Fψ2ψ

H
2 DFψ2|2

|ψH1 Fψ1|2 + |ψH2 Fψ2|2
. (24)

However, the problem (P3.1) is non-convex due to the non-
concavity of the objective function with respect to the IRS
phase shifts, and the unit-modulus constraint. To address this
challenge, we first handle the unit-modulus constraint and then
employ the majorization-minimization (MM) method to solve
the resulting non-convex optimization problem.

Define V i = ψiψ
H
i ∈ CN×N with V i ⪰ 0 and

rank(V i) = 1. Based on (22d), [V i]n,n = 1, ∀n ∈
{1, 2, · · · , N}. We have µi = ψHi Fψi = tr(FV i), µ̄i =
ψHi DFDψi = tr(DFDV i) and µ̃i = ψHi DFψi =
tr(DFV i), i ∈ {1, 2}. Therefore, by introducing V i and
relaxing the rank-one constraint, the optimization problem
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(P3.1) can be equivalently reformulated as follows:

(P4) :

min
V 1,V 2

f(V 1,V 2)

s.t. [V i]n,n = 1, ∀n ∈ {1, 2, · · · , N}, i ∈ {1, 2}, (25a)
V i ⪰ 0, (25b)

where f(V 1,V 2) can be expressed as

f(V 1,V 2)

=− (tr(FV 1)tr(DFDV 1) + tr(FV 2)tr(DFDV 2))

+
|tr(FV 1)tr(DFV 1) + tr(FV 2)tr(DFV 2)|2

tr2(FV 1) + tr2(FV 2)
. (26)

Note that in (25), all constraints are convex, however, the
objective function f(V 1,V 2) is non-concave, rendering prob-
lem (P4) non-convex. To address this issue, we employ a
MM framework, which is implemented iteratively to solve this
problem. To this end, we first introduce the following theorem.

Theorem 1. Let f(x) be a continuously differentiable function
with its domain defined as domf . Suppose its gradient ∇f(x)
is Lipschitz continuous with constant L > 0, i.e.,

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2, (27)

for all x,y ∈ domf . If domf is convex, then for all x,y ∈
domf , we have

f(y) ≤ f(x) +∇f(x)T (y − x) + L

2
∥y − x∥22. (28)

Let fub denote the right-hand side of the inequality, i.e.,

fub(x,y) ≜ f(x) +∇f(x)T (y − x) + L

2
∥y − x∥22. (29)

Then fub(x,y) serves as a quadratic upper bound for f(y).

Proof. See Appendix B.

Following the Theorem 1, we have the following proposi-
tion.

Proposition 2. For the function f(V 1,V 2) in (26), ∀V i ∈
domV , i ∈ {1, 2}. For all V 1,(t),V 2,(t) ∈ domV , we have

f(V 1,V 2) ≤ fub(V 1,(t),V 2,(t),V 1,V 2), (30)

and

fub(V 1,(t),V 2,(t),V 1,V 2) = f(V 1,(t),V 2,(t))

+ tr
(
∇f(V 1,(t),V 2,(t))

TR
)
+
L

2
∥R∥2F , (31)

where L is Lipschitz constant, ∇f(V 1,(t),V 2,(t)) denotes the
gradient of f(V 1,V 2) at the point (V 1,(t),V 2,(t)), and

R =

[
V 1 − V 1,(t)

V 2 − V 2,(t)

]
∈ C2N×N . (32)

The detailed derivations of the gradient of f(V 1,V 2) are
provided in Appendix C.

Proof. See Appendix D.

Next, building on Proposition 2, we obtain a quadratic upper
bound for the objective function in (25). Specifically, given
the solutions of the t-th inner iteration, V 1,(t) and V 2,(t), we
construct a more tractable surrogate function that approximates
the objective function f(V 1,V 2), i.e.,

f(V 1,V 2) ≤ fub(V 1,(t),V 2,(t),V 1,V 2). (33)

Notice that in the expression of the upper bound function
(31), f(V 1,(t),V 2,(t)) is independent of (V 1,V 2), making it
a constant term. The term tr

(
∇f(V 1,(t),V 2,(t))

TR
)

is linear
in (V 1,V 2) and, therefore, convex with respect to (V 1,V 2).
Furthermore, the Frobenius norm term

L

2
∥R∥2F =

L

2
tr(RHR) (34)

is also convex with respect to (V 1,V 2) for L > 0. Con-
sequently, the upper bound function fub(V 1,t,V 2,t,V 1,V 2)
is convex. By replacing the objective function in (25) with
fub(V 1,t,V 2,t,V 1,V 2), problem (25) can be approximated
in the t-th inner iteration as the following convex form:

(P4.t) :

min
V 1,V 2

fub(V 1,(t),V 2,(t),V 1,V 2)

s.t. [V i]n,n = 1, ∀n ∈ {1, 2, · · · , N}, i ∈ {1, 2}, (35a)
V i ⪰ 0, (35b)

which can be optimally solved using convex solvers such
as CVX. Let V̂

(t)

1 and V̂
(t)

2 denote the optimal solutions
of problem (P4.t), which are then updated to be the local
points V 1,(t+1) and V 2,(t+1) for the next inner iteration.
Since fub(V 1,(t),V 2,(t),V 1,V 2) serves an upper bound of
f(V 1,V 2), the inner iteration ensures that the objective value
of problem (P4) will not increase i.e.,

f(V 1,(t+1),V 2,(t+1)) ≤ f(V 1,(t),V 2,(t)). (36)

Therefore, the convergence of MM algorithm for solving
problem (P4) is ensured, and a suboptimal solution of problem
(P4) is obtained. Let V ⋆

1 and V ⋆
2 denote the solutions to

problem (P4) obtained via MM, where rank(V ⋆
i ) > 1 may

hold in general. Finally, based on V ⋆
1 and V ⋆

2, we construct
approximate rank-one solutions for V 1 and V 2 for problem
(P3) or (P4).

To recover ψi from V ⋆
i , a direct approach is to solve the

following problem, i.e.,

ψ⋆i = argmin
ψi

∥V ⋆
i −ψiψ

H
i ∥2F

s.t. (22d). (37)

A feasible solution to this problem can be obtained via eigen-
value decomposition (EVD). Specifically, if we decompose V ⋆

i

as V ⋆
i =

∑N
p=1 λi,pvi,pv

H
i,p, where λi,1 ≥ λi,2 ≥ · · · ≥ λi,N

are the eigenvalues and vi,p are the corresponding eigenvec-
tors, a feasible solution after projection onto the constraint set
of ψi is given by

ψ⋆i = ṽi,1, (38)

where ṽi ∈ CN is defined such that its nth element satisfies
[ṽi]n ≜ [vi,1]n

|[vi,1]n| , i ∈ {1, 2}.
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An alternative method to construct rank-one solutions is
Gaussian randomization. In this approach, we independently
generate random realizations νi ∼ CN (0,V ⋆

i ), and construct
a set of candidate feasible solutions as

ψi = ejarg(νi). (39)

Then, the objective value of (P4) is approximated as the
minimum one attained by the best ψi, leading to suboptimal
solutions ψ⋆i , i ∈ {1, 2}.

C. Computational Complexity Analysis

We analyze the computational complexity of the proposed
CRB minimization-based method. Our proposed algorithm
involves interatively solving the convex problem (P4.t). Since
(P4.t) does not yield an analytical solution, the interior point
method can be employed. The computational complexity of
the interior point method at each iteration is in the order of

O(d3 +m2d+md2), (40)

where d denotes the number of variables and m denotes the
number of linear constraints. For our proposed method, there
are N(N +1) variables, and 2N linear constraints. Therefore,
the computational complexity in each iteration is

O
(
(N(N + 1))3 + (2N)2 ·N(N + 1)

+2N · (N(N + 1))2
)
= O(N6). (41)

Let ϵ denote the iteration accuracy. Thus, the overall compu-
tational complexity of solving (P4.t) is given by

O
(
I

(
(N6) · log2(

1

ϵ
)

))
, (42)

where I denotes the number of iterations required for conver-
gence.

D. Discussions: Illumination Diversity and Scaling Law

1) IRS Illumination diversity: Note that the proposed
method primarily leverages the diversity of IRS illumination
patterns across the two sensing stages. To characterize this
IRS-induced diversity, we revisit equation (24), which is
inversely proportional to the CRB for DOA estimation. Let
us define P = diag(p) ∈ CN×N , so that F = PHa∗aTP .
Then, we have

ψH1 Fψ1 =ψH1 P
Ha∗aTPψ1

=|aTPψ1|2, (43a)

ψH1 DFψ1 =ψH1 DP
Ha∗aTPψ1

=aTPψ1ψ
H
1 DP

Ha∗, (43b)

ψH1 DFDψ1 =ψH1 DP
Ha∗aTPDψ1

=|aTPDψ1|2, (43c)

Substituting (43) into (24), we obtain (44) shown at the top
of the next page.

Specifically, the denominator of (44) satisfies

|aTPψ1|2

|aTPψ2|2
+

|aTPψ2|2

|aTPψ1|2
≥ 2, (45)

with the equality holds only if |aTPψ1|2 = |aTPψ2|2.
We thus can define the numerator of (44) as a metric for
quantifying IRS illumination diversity between the two stages:

ηψ = |aTPψ1a
TPDψ2 − aTPψ2a

TPDψ1|2. (46)

Clearly, a larger value of ηψ implies a greater difference in
IRS phase configurations between the two stages, leading to
improved parameter identifiability and thus a lower CRB.

2) Scaling Law of CRB: According to proposition 1,
the inequality (45) becomes an equality when aTPψ1 =
(aTPψ2)

∗. Define ui = aTPψi, vi = a
TPDψi, when the

equality holds, we have u∗1 = u2, and we can re-express (44)
as

(44) =
|u1v∗1 − (u1v

∗
1)

∗|2

2
=2|ℑ{u1v∗1}|2 ≤ 2|u1v∗1 |2 = 2|u1|2|v1|2. (47)

Maximizing |ui|, we align the IRS phase shifts such that ψi =
e−jarg(a(θ)+p). Thus, the maximum value is

max{|ui|} =aTPψi = N. (48)

For vi, noting that D is a real diagonal matrix, we obtain

max{|vi|} =aTPDψi =

N∑
n=1

(n− 1) =
N(N − 1)

2
. (49)

Substituting these bounds into (47), we get

(44) ≤ N4(N − 1)2

2
∝ N6. (50)

Therefore, the CRB decreases as

CRB ∝ 1

N6
. (51)

On the other hand, the number of antennas M related term
in (16) can be expressed as

|qHw|2 ≤ PT |qHq|2 = PTM
2. (52)

Thus, the CRB scales as

CRB ∝ 1

M2
. (53)

The CRB analysis reveals that the number of IRS reflecting
elements, N , has a significantly greater impact on estimation
accuracy than the number of antennas, M . Specifically, the
CRB scales as N−6 and M−2, indicating that increasing N
yields a much stronger improvement in estimation perfor-
mance. This is because the IRS not only enhances signal
reflection and spatial resolution, but also participates in the
entire sensing process more extensively than the radar antenna
array. In particular, the IRS is involved in four stages: re-
ceiving the signal from the radar transmitter, transmitting the
beamformed signal toward the target, receiving the echo from
the target, and transmitting the target echo back to the radar
receiver. In contrast, the radar antenna array is involved in only
two stages, transmission and reception. As a result, the IRS
effectively contributes an array gain in both transmitting and
receiving at multiple points in the propagation path, further
amplifying its impact on the overall sensing performance.
Therefore, optimizing N is more effective for reducing the
CRB in IRS-assisted NLOS sensing systems.
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(24) =|aTPψ1|2 · |aTPDψ1|2 + |aTPψ2|2 · |aTPDψ2|2

−
∣∣|aTPψ1|2 · aTPψ1ψ

H
1 DP

Ha∗ + |aTPψ2|2 · aTPψ2ψ
H
2 DP

Ha∗
∣∣2

|aTPψ1|4 + |aTPψ2|4

=
|aTPψ1|6 · |aTPDψ1|2 + |aTPψ1|2 · |aTPψ2|4 · |aTPDψ1|2

|aTPψ1|4 + |aTPψ2|4

+
|aTPψ2|6 · |aTPDψ2|2 + |aTPψ2|2 · |aTPψ1|4 · |aTPDψ2|2

|aTPψ1|4 + |aTPψ2|4

− |aTPψ1|6 · |aTPDψ2|2 + |aTPψ2|6 · |aTPDψ1|2

|aTPψ1|4 + |aTPψ2|4

− 2 · |aTPψ1|2 · |aTPψ2|2 · ℜ{aTPψ1(a
TPψ2)

∗(aTPDψ1)
∗(aTPψ2)}

|aTPψ1|4 + |aTPψ2|4

=

(
|aTPψ1|2|aTPDψ2|2 + |aTPψ2|2|aTPDψ1|2 − 2ℜ{aTPψ1(a

TPψ2)
∗(aTPDψ1)

∗(aTPψ2)}
)

|aTPψ1|2
|aTPψ2|2

+ |aTPψ2|2
|aTPψ1|2

=
|aTPψ1a

TPDψ2 − aTPψ2a
TPDψ1|2

|aTPψ1|2
|aTPψ2|2

+ |aTPψ2|2
|aTPψ1|2

(44)

V. THE MAXIMUM LIKELIHOOD ESTIMATION

In this section, we derive the maximum likelihood estima-
tion (MLE) method to estimate the target’s direction of arrival
(DOA) θ, we are interested in the mean squared error (MSE)
performance of the MLE.

Based on (9), the vectorized received signal at the AP can
be rewritten as

ỹ = αvec(QX) + n

= αq̃(θ) + n, (54)

where q̃(θ) = vec(QX). The Likelihood fucntion of ỹ given
ζ is

fỹ(ỹ; ζ) =
1

(πσ2
N )MT

exp

(
− 1

σ2
N

∥ỹ − αq̃(θ)∥22
)
. (55)

In this case, maximizing fỹ(ỹ; ζ) is equivalent to minimizing
∥ỹ − αq̃(θ)∥22. Therefore, the MLE of θ and α is given by

(θMLE, αMLE) = argmin
θ,α

∥ỹ − αq̃(θ)∥22. (56)

Consequently, under any given θ, the MLE of α is attained as

αMLE = (q̃H(θ)q̃(θ))−1q̃H(θ)ỹ. (57)

Bringing (57) to (56), we have

∥ỹ − αq̃(θ)∥22

= ∥ỹ∥22 −
|q̃H(θ)ỹ|2

∥q̃(θ)∥22

= ∥ỹ∥22 −
|vec(QX)Hvec(Y )|2

vec(QX)Hvec(QX)

= ∥ỹ∥22 −
|Y HQX|2

tr((QX)HQX)

= ∥ỹ∥22 −
|CTXY HB|2

T tr(QRxQ
H)

(a)
= ∥ỹ∥22 −

|bT1 X̃Y
H
1 b1 + bT2 X̃Y

H
2 b2|2

T (bT1Rx̃b
∗
1∥b1∥22 + b

T
2Rx̃b

∗
2∥b2∥22)

, (58)

q

AP

IRS

Target

Obstacle

x

y

O

f

j

Fig. 2: Simulation setup (top view).

where (a) comes from that Q = BCT =
blkdiag(b1b

T
1 , b2b

T
2 ), X = blkdiag(X̃, X̃), Y = [Y 1 Y 2]

and QRxQ
H = blkdiag(bT1RX̃b

∗
1b
H
1 b1, b

T
2RX̃b

∗
2b
H
2 b2).

Accordingly, the MLE of θ can be obtained by maximizing
the second part in (58), i.e.,

θMLE = argmax
θ

|bT1 X̃Y
H
1 b1 + bT2 X̃Y

H
2 b2|2

T (bT1Rx̃b
∗
1∥b1∥22 + b

T
2Rx̃b

∗
2∥b2∥22)

, (59)

which can be easily solved via a one-dimensional search.

VI. SIMULATION RESULTS

This section presents numerical results to assess the per-
formance of the proposed IRS beamforming and transmit
beamformer design based on CRB minimization. We consider
a two-dimensional scenario, as depicted in Fig.2. The AP
and IRS are positioned at coordinates pAP = [0, 0]Tm and
pIRS = [4, 4]Tm, respectively. In the simulations, the spacing
d between adjacent antenna elements is set to half the signal
wavelength. The AP-IRS channel is modeled using a geomet-
ric channel model, assuming only a LOS path, expressed as:

G = ϱaIRS(ϕ)a
H
AP(φ), (60)
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Fig. 3: Convergence behavior of the optimization problem,
where SNR = 0dB, M = N = 8.

where ϱ denotes the path loss between the AP and the
IRS, and ϕ and φ denote the angle of arrival (AOA) and
angle of departure (AOD), respectively. The path loss ϱ
follows a distance-dependent model, CN (0, 10−0.1κ), where
κ = a + 10b log10(D) + ξ. Here, ξ ∼ N (0, σ2

ξ ), and D is
the distance between the AP and the IRS. The parameters a,
b, and σξ are set to a = 68, b = 2, and σξ = 5.8 dB, as
recommended in [29], [30]. In the experiments, we consider
one static target located within the angular range of [30◦, 40◦]
relative to the IRS, with its position at pt = [9, 0.5]Tm. The
direct link between the AP and the target is obstructed by
obstacles, necessitating target detection via the IRS-assisted
reflected path. For simplicity, the radar cross-section (RCS) of
the target is set to 1 [20]. Then, the parameter α only accounts
for the round-trip path loss of AP-IRS link, which is generated
in a similar way as ϱ in (60).

Unless otherwise stated, the numbers of the AP’s antennas
and IRS’s elements, as well as the transmit power, are set to
M = 8, N = 8, and PT = 30dBm, respectively. The received
signal-to-noise ratio (SNR) is defined as

SNR ≜ ∥Y −N∥2F
∥N∥2F

, (61)

where Y and N indicate the received signal and the additive
noise in (8), respectively. All results are averaged over 103

Monte Carlo runs.

A. Performance Evaluation of the Proposed Method

The convergence behavior of the proposed method for
solving problem (P4) is evaluated under the condition of
SNR = 0dB, and M = N = 8. It is observed that the
proposed alternating optimization-based algorithm converges
within approximately 25 iterations, demonstrating its effec-
tiveness and computational efficiency.

To examine the performance of our proposed method, we
also employ the MLE method to estimate the target’s DOA θ,

-15 -10 -5 0 5 10 15 20

SNR (dB)

10-7
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100

M
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CRB GOPT-IT
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MLE GOPT
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-0.4 -0.2 0 0.2 0.4

1.5

2

2.5
10-5

Fig. 4: MSEs and CRBs versus SNR.

and accordingly evaluate the MSE as the performance metric,
which is define as

MSE = E(∥θ − θ̂∥22), (62)

where θ̂ denotes an estimate of the parameter θ. For our
proposed CRB minimization method, the CRB result calcu-
lated directly using the optimal value of the convex relaxation
(P4) is labeled as “OPT CRB”. The CRB and MSE results
attained by rank-one solutions approximated by EVD and
Gaussian randomization are respectively labeled as “EOPT”
and “GOPT”. To illustrate the performance superiority of the
proposed joint transmit beamforming and IRS optimization
method, we also consider the following benchmark schemes.

1) Random Phase Shifts with Optimal Transmit Beamform-
ing (labeled as “Random”): We consider the random IRS
phase shifts, where the IRS phase shifts in both stages are
independently drawn from a uniform distribution over [0, 2π].
Meanwhile, the transmit beamformer is optimized according
to (20).

2) Subarray Partition based Phase Shifts Design with Op-
timal Transmit Beamforming (labeled as “Subarray”): This
scheme was introduced in [19]. The entire IRS array is
partitioned into multiple subarrays, each configured to generate
a directional beam toward a specific direction. In following
experiments, the IRS is divided into two subarrays, with beam
directions set to {34◦, 39◦} in phase 1 and {38◦, 32◦} in phase
2. This configuration enables the IRS to generate directional
beams for effective illumination of the potential target area
while ensuring diverse illumination patterns across the two
stages.

3) GOPT-based Phase Shifts with Isotropic Transmission
(labeled as “GOPT-IT”): The IRS phase shifts are optmized
to minimize CRB(θ) in (22) by solving problem (P3), where
the Gaussian randomization method is employed to derive
rank-one solutions. The AP utilizes isotropic transmission
by employing a stochastic transmit beamformer, which is
configured as w ∼ CN (0, PT

M IM ), ensuring uniform power
allocation across all antennas.
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Fig. 5: CRBs versus the number of AP’s antennas.

The CRB and MSE performance of the proposed method,
along with other benchmark schemes, are illustrated in Fig.4 as
a function of SNR. As shown in the figure, the CRB decreases
monotonically and approximately linearly with increasing
SNR. The proposed method (OPT) achieves the lowest CRB
among all benchmark schemes. The feasible solutions obtained
via eigenvalue decomposition and Gaussian randomization,
denoted as EOPT and GOPT, respectively, closely approach
the optimal CRB. However, the EOPT exhibits a slight per-
formance degradation compared to GOPT. Notably, the MSE
of GOPT remains close to its corresponding CRB even in
relatively low SNR regimes, e.g. SNR = 0dB, demonstrating
the effectiveness of the proposed method. Moreover, due to
the stochastic nature of the IRS phase shifts in the Random
benchmark scheme, and the isotropic transmit beamformer
in the GOPT-IT benchmark scheme, both schemes exhibit
performance degradation compared to the proposed method.

Interestingly, in very low SNR regimes, such as SNR =
−10dB, the Subarray-based method achieves a lower MSE
compared to the proposed scheme. This behavior can be
attributed to two key factors. First, in such scenarios, the
optimized CRB (CRB GOPT) cannot be achieved using max-
imum likelihood estimation (MLE), as the performance of
MLE is highly sensitive to the power of the echo signals.
Second, the Subarray-based IRS phase shift design generates
a coarser beam pattern directed toward the potential angular
range, which enhances robustness to noise. This results in
a higher effective SNR, thereby improving its MLE perfor-
mance. These findings align with the results reported in [20],
where the SNR maximization scheme demonstrated superior
MSE performance compared to the CRB optimization scheme
under low transmit power conditions.

Additionally, In this simulation, the computed diversity
metrics ηψ defined in (46) for the schemes “ GOPT”, “EOPT”,
“Subarray”, and “Random” are 4.7, 4.5, 0.28, and 0.26,
respectively. These results further validate the effectiveness of
the proposed method in enhancing IRS illumination diversity
and improving estimation performance.

Next, we evaluate the CRB performance as a function of
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Fig. 6: CRBs versus the numbers of IRS’s elements.

the number of AP antennas, as illustrated in Fig.5. In this
experiment, the number of IRS reflecting elements is fixed
at N = 8, and the SNR is set to 0dB. As anticipated,
the CRB improves monotonically with an increasing number
of antennas M . The proposed CRB minimization scheme
achieves the best CRB performance across different choices
of M . Specifically, the Gaussian randomization-based solution
(GOPT) closely approaches the optimal CRB (OPT), while
the eigenvalue decomposition-based solution (EOPT) exhibits
a slight performance degradation.

In Fig.6, we present the CRB performance of the proposed
method as a function of the number of IRS reflecting elements.
In this experiment, the number of AP antennas is fixed at M =
8, and the SNR is set to 0dB. As expected, the CRB perfor-
mance improves as the number of IRS elements N increases.
The CRB achieved by both the Gaussian randomization-based
solution (GOPT) and the EVD-based solution (EOPT) closely
approaches that of the optimal solution (OPT).

It is also observed that the performance curve of GOPT-
IT exhibits a constant offset relative to that of GOPT. This
phenomenon can be attributed to the structure of the CRB
expression in (16), where the IRS coefficients and the trans-
mit beamformer contribute independently to the CRB. Since
GOPT-IT employs the same IRS design as GOPT, the perfor-
mance gap between their respective CRB values is primarily
governed by the term |qHw|2.

B. Performance Comparison versus Different Levels of Rician
Fading

Furthermore, to gain deeper insight, we evaluate the perfor-
mance of the proposed method with respect to the rank of the
AP-IRS channel matrix G. To this end, the AP-IRS channel
is modeled as Rician fading, expressed as:

G =

√
γ

1 + γ
GLOS +

√
1

1 + γ
GNLOS, (63)

where γ is the Rician factor (in dB), and GLOS and GNLOS

denote the LOS and NLOS components, respectively. A typical
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Fig. 7: MSEs and CRBs versus SNR under different levels of
Rician fading, where rank(G) = 2.

value of the Rician factor millimeter-wave (mmWave) band is
13dB [31]–[33], indicating that G is approximately a rank-
one matrix. In our experiments, we assume one LOS path
and one NLOS path between the AP and the IRS, leading to
rank(G) = 2. To comprehensively examine the performance
of the proposed method under diverse channel conditions, we
also consider cases where the Rician factor is set to 0 dB and
5 dB. It is noteworthy that we directly apply our proposed
method to the case where rank(G) = 2, even though it is
originally derived for a rank-one AP-IRS channel. Specifically,
for a rank-R AP-IRS channel matrix G, we decompose it
as G =

∑R
i=1 σiuiv

H
i , where σ1 ≥ σ2 ≥ · · · ≥ σR are

the singular values, and ui, vi are the corresponding singular
vectors. To ensure compatibility with our method, we construct
a rank-one approximation G̃ = σ1u1v

H
1 , under which the

proposed approach can be directly applied.
Fig.7 presents the MSE and CRB results of the estimated

DOA parameter as a function of SNR for different Rician
factors. As observed, the MLE curves under various Rician
factors closely achieve their respective CRBs in high SNR
regime. Notably, the MLE performance for γ = 13dB closely
matches that of the case where rank(G) = 1, i.e., γ = ∞,
which is expected since the channel is dominated by the LOS
component. Additionally, Fig.7 shows that both the CRB and
the corresponding MLE performance improve as the Rician
factor decreases. This result can be explained as follows.
As the Rician factor decreases, the NLOS component of
the channel matrix becomes stronger, providing additional
diversity and making the parameters more distinguishable.
This result demonstrates that the proposed method is not
limited to rank-one channel matrices but is also effective in
scenarios where the AP-IRS channel has a higher rank.

C. Imperfect AP-IRS Channel Condition

To comprehensively evaluate the performance of the pro-
posed method, we consider the scenario where only imperfect
knowledge of the AP-IRS channel G is available. Specifically,
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Fig. 8: MSEs and CRBs versus SNR under different levels of
levels of channel uncertainty.

we adopt the statistical CSI error model [34], [35] to charac-
terize the channel inaccuracies:

G = Ĝ+∆G, (64)

where Ĝ represents the estimated AP-IRS channel, and ∆G
denotes the channel estimation error. The entries of ∆G follow
a circularly symmetric complex Gaussian (CSCG) distribution,
expressed as:

vec(∆G) ∼ CN (0,Σg), Σg ⪰ 0. (65)

Here, Σg = ε2gIMN ∈ CMN×MN is the covariance matrix
of the estimation error. In our experiments, the variance of
vec(∆G) is defined as ε2g = δ2g∥vec(Ĝ)∥22, where δg ∈ [0, 1)
quantifies the level of CSI uncertainty [34]. The CRB and MSE
performance of the proposed method (GOPT) versus SNR
under varying levels of channel uncertainty are illustrated in
Fig.8. It is observed that the proposed method demonstrates ro-
bust performance even under imperfect CSI conditions for the
AP-IRS channel. Specifically, at high SNR regimes, the MSE
performance improves as the channel uncertainty decreases.
Conversely, in low SNR regimes, higher channel uncertainty
leads to better MSE performance. This intriguing phenomenon
can be explained as follows. As channel uncertainty increases,
the AP-IRS channel shifts from a rank-one matrix to a non-
rank-one matrix. In such cases, the NLOS components of the
channel matrix G introduce additional diversity, enhancing
the ability to distinguish parameters. This diversity improves
robustness to noise, resulting in better MSE performance.

D. Performance Evaluation with Discrete Phase Shifts

To further bridge the gap between ideal and practical imple-
mentations, we have also considered projecting the optimized
continuous-phase solution onto discrete phase sets. Specifi-
cally, the set of discrete values of the phase shift coefficients
is defined as

ψi,n ∈ F ≜
{
0,

2π

2b
, · · · , 2π(2

b − 1)

2b

}
, (66)
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Fig. 9: MSEs and CRBs versus SNR.

where b denotes the resolution of the phase shifter. To meet
the finite resolution constraint imposed on the phase shifters,
a simple yet effective solution is to let each phase shift, ψi,n,
take on a discrete value that is closest to its optimal (or near-
optimal) value ψ⋆i,n, i.e.,

ψ∗
i,n = arg min

ψ∈F
|ψ − ψ⋆i,n|, (67)

where ψ⋆i,n denotes the nth element of ψ⋆i . Fig.9 depicts the
MSE and CRB results of our proposed solutions with both
continuous-valued and discrete-valued IRS phase shifts. We
see that 2-bit resolution can achieve a CRB that is close to that
achieved with an infinite precision. Moreover, it is noteworthy
that the MLE performence with discrete IRS phase shifts even
surpasses that of the continuous solution in the low SNR
regime. This is because discrete phase shifts yield broader
beam patterns and suppress overfitting to noise, improving
robustness at low SNR.

VII. CONCLUSION

This paper proposed an IRS-assisted NLOS wireless sensing
system, where an IRS was employed to help an AP estimate
parameters of a target in its NLOS region. To address the
inherent scaling ambiguity in IRS-assisted sensing, a two-stage
sensing scheme was introduced, and a succinct CRB expres-
sion for DOA estimation was derived, which decoupled the
optimization of the transmit beamformer and IRS phase shifts.
Leveraging this formulation, the optimal beamformer was
obtained in closed form, while a majorization-minimization
(MM)-based algorithm was employed to optimize the IRS
reflective coefficients. Simulation results demonstrated that
the proposed method achieved the lowest CRB and MSE
among benchmark schemes, particularly in challenging sce-
narios where the degrees-of-freedom provided by the AP-IRS
channel were insufficient to resolve the scaling ambiguity.

Several interesting issues remain open and merit further
investigation. In multi-target scenarios, if the targets are well
separated in both the angular and range domains, the surveil-
lance area can be divided into resolution cells defined by

distinct angle and range values. The proposed method can
then be applied sequentially to each cell. However, when
multiple targets are located within the same resolution cell,
meaning they have similar directions and ranges, they be-
come indistinguishable and are effectively treated as a single
composite target. This limitation is inherent to conventional
phased-array systems that employ directional beamforming
with a single waveform. To address the challenge of closely
spaced targets, one potential solution is to employ MIMO
radar architectures that transmit orthogonal waveforms. This
approach enables joint parameter estimation without relying
on narrow beams. However, it typically comes at the cost
of reduced beamforming gain, which is especially important
in millimeter-wave systems. A detailed comparison between
phased-array and MIMO radar architectures is beyond the
scope of this work but represents a promising direction for
future research.

APPENDIX A
PROOF OF LEMMA2

Proof. Note that

B = GTA[ψ1 ψ2], (68)

C =

[
GTA

GTA

][
ψ1

ψ2

]
, (69)

Q = GTA[ψ1 ψ2]

[
ψT1

ψT2

][
ATG

ATG

]
. (70)

Accordingly, the partial derivatives of B and C with respect
to θ are given by

B́ = jπ cos(θ)GTAD[ψ1 ψ2], (71)

Ć = jπ cos(θ)

[
GTAD

GTAD

][
ψ1

ψ2

]
, (72)

where D = diag(0, 1 · · · , N −1). From the relationship Q =
BCT , the derivative of Q with respect to θ is given by

Q́ =B́CT +BĆ
T

=jπ cos(θ)GTA

(
D[ψ1 ψ2]

[
ψT1

ψT2

]
+ [ψ1 ψ2]

[
ψT1D

T

ψT2D
T

])[
ATG

ATG

]
.

(73)

Recall that when rank(G) = 1, we have G = σpqH .
Define F ≜ AHp∗pTA ∈ CN×N , µi ≜ ψHi Fψi ∈ R,
µ̄i ≜ ψHi DFDψi ∈ R, and µ̃i ≜ ψHi DFψi ∈ C. We
have

tr(QRxQ
H) =σ4(|µ1|2 + |µ2|2)|qHw|2, (74)

tr(QRxQ́
H
) =2σ4π cos(θ)(µ1µ̃1 + µ2µ̃2)|qHw|2, (75)

tr(Q́RxQ́
H
) =4σ4π2 cos2(θ)(µ1µ̄1 + µ2µ̄2)|qHw|2. (76)

Substituting (74)–(76) into (15), the CRB(θ) can be expressed
as in (16).
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APPENDIX B
PROOF OF THEOREM 1

Proof. Suppose f(x) is a continuously differentiable function
with a convex domain, denoted as domf . Assume its gradient
∇f(x) is Lipschitz continuous with constant L > 0, i.e.,

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2, (77)

for all x,y ∈ domf . By the generalized Cauchy-Schwarz
inequality, we have

(∇f(x)−∇f(y))T (x− y) ≤ L∥x− y∥22. (78)

Since the domain of f is convex, for any x,y ∈ domf and
defining

r(t) = f(x+ t(y − x)), t ∈ [0, 1], (79)

we have r(t) ∈ domf . According to (78), we have

r′(t)− r′(0) =

(∇f(x+ t(y − x))−∇f(x))T (y − x) ≤ tL∥y − x∥22.
(80)

Intergrating from t = 0 to t = 1 gives

f(y) = r(1) =r(0) +

∫ 1

0

r′(t) dt

≤r(0) +
∫ 1

0

r′(0) + tL∥y − x∥22 dt

=r(0) + r′(0) +
L

2
∥y − x∥22

=f(x) +∇f(x)T (y − x) + L

2
∥y − x∥22 (81)

Let fub(x,y) denote the expression in the fourth line, i.e.,

fub(x,y) ≜ f(x) +∇f(x)T (y − x) + L

2
∥y − x∥22. (82)

Then, fub(x,y) serves as a quadratic upper bound for f(y).

APPENDIX C
DERIVATIONS OF THE GRADIENT OF f(V 1,V 2)

To facilitate the calculation of the gradient of f(V 1,V 2),
we reformulate f(V 1,V 2) by decomposing it into the follow-
ing two components:

f(V 1,V 2) = g(V 1,V 2) + h(V 1,V 2), (83)

where

g(V 1,V 2)

≜− (tr(FV 1)tr(DFDV 1) + tr(FV 2)tr(DFDV 2)),
(84)

h(V 1,V 2)

≜ |tr(FV 1)tr(DFV 1) + tr(FV 2)tr(DFV 2)|2

tr2(FV 1) + tr2(FV 2)
. (85)

The gradient of f(V 1,V 2) can be calculated as

∇f(V 1,V 2) =

[
∂f(V 1,V 2)

V 1
∂f(V 1,V 2)

V 2

]
, (86)

where

∂f(V 1,V 2)

∂V 1
=
∂g(V 1,V 2)

∂V 1
+
∂h(V 1,V 2)

∂V 1
, (87)

∂f(V 1,V 2)

∂V 2
=
∂g(V 1,V 2)

∂V 2
+
∂h(V 1,V 2)

∂V 2
. (88)

Define F̄ ≜DFD ∈ CN×N , we have

∂g(V 1,V 2)

∂V 1
= −F T tr(F̄ V 1)− F̄

T
tr(FV 1). (89)

Define the numerator term of h(V 1,V 2) as

Numh(V 1,V 2)

≜|tr(FV 1)tr(DFV 1) + tr(FV 2)tr(DFV 2)|2

=NhN
∗
h , (90)

where Nh = tr(FV 1)tr(DFV 1)+tr(FV 2)tr(DFV 2) ∈ C
and N∗

h = tr(FV 1)tr(FDV 1) + tr(FV 2)tr(FDV 2) ∈ C.
Additionally, define the denominator term of h(V 1,V 2) as

Denh(V 1,V 2) ≜ tr2(FV 1) + tr2(FV 2) ∈ R. (91)

Then, the function h(V 1,V 2) in (85) can be expressed as

h(V 1,V 2) =
Numh(V 1,V 2)

Denh(V 1,V 2)
. (92)

Consequently, the partial derivative of h(V 1,V 2) with respect
to V 1 is given by

∂h(V 1,V 2)

∂V 1
=

∇V 1
Numh ·Denh −Numh · ∇V 1

Denh

Den2h
,

(93)

where the term ∇V 1Numh can be computed as follows

∇V 1
Numh = ∇V 1

Nh ·N∗
h +∇V 1

N∗
h ·Nh, (94)

whose detials are omitted here for brevity, and

∇V 1
Denh = 2tr(FV 1)F

T . (95)

Using the result in (93), we can similarly derive the partial
derivative of f(V 1,V 2) with respect to V 2, i.e., ∂f(V 1,V 2)

∂V 2
.

APPENDIX D
PROOF OF PROPOSITION 2

Proof. Note that in (25), the domain of V i, i ∈ {1, 2},
denoted as domV , is clearly convex. Based on Theorem 1,
it suffices to demonstrate that the gradient of f(V 1,V 2) is
Lipschitz continuous. Specifically, we need to prove that for
all V 1,V 2 ∈ domV , there exists a constant L > 0 such that
the following inequality holds:

∥∇f(V 1,V 2)−∇f(W 1,W 2)∥F
≤ L∥(V 1,V 2)− (W 1,W 2)∥F , (96)

where W 1 and W 2 are the counterparts of V 1 and V 2,
respectively. Note V 1 and V 2 are symmetric in f(V 1,V 2),
so it suffices to prove that ∂f(V 1,V 2)

V 1
is Lipschitz continuous.

Let ∇V 1
h(V 1,V 2) denote ∂h(V 1,V 2)

∂V 1
and ∇V 1

g(V 1,V 2)

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2025.3609719

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University College London. Downloaded on October 01,2025 at 16:44:21 UTC from IEEE Xplore.  Restrictions apply. 



14

∥∇V 1h(V 1,V 2)−∇W 1h(W 1,W 2)∥F
=
∥∥∥ (∇V 1

Nh·N∗
h+∇V 1

N∗
h ·N)Dh−|Nh|2·∇V 1

Dh

D2
h

− (∇W1
Mh·M∗

h+∇W1
M∗

h ·M)Eh−|Mh|2·∇W1
Eh

E2
h

∥∥∥
F

=
∥∥∥DhN

∗
h(∇V 1

Nh−∇W1
Mh)+DhNh(∇V 1

N∗
h−∇W1

M∗
h)

D2
h

+
DhN

∗
h∇W1

Mh+DhNh∇W1
M∗

h

D2
h

− (∇W1
Mh·M∗

h+∇W1
M∗

h ·M)Eh

E2
h

+
|Mh|2·∇W1

Eh

E2
h

− |Nh|2·∇V 1
Dh

D2
h

∥∥∥
F

≤
∥∥∥DhN

∗
h(∇V 1

Nh−∇W1
Mh)+DhNh(∇V 1

N∗
h−∇W1

M∗
h)

D2
h

∥∥∥
F︸ ︷︷ ︸

(The first part.)≜ℏ1

+
∥∥∥DhN

∗
h∇W1

Mh+DhNh∇W1
M∗

h

D2
h

− (∇W1
Mh·M∗

h+∇W1
M∗

h ·M)Eh

E2
h

∥∥∥
F︸ ︷︷ ︸

(The second part.)≜ℏ2

+
∥∥∥ |Mh|2·∇W1

Eh

E2
h

− |Nh|2·∇V 1
Dh

D2
h

∥∥∥
F︸ ︷︷ ︸

(The third part.)≜ℏ3

(98)

denote ∂g(V 1,V 2)
∂V 1

. The gradient difference of the linear part
in (87) can be calculated as

∥∇V 1
g(V 1,V 2)−∇W 1

g(W 1,W 2)∥F
=∥ − (F T tr(F̄ V 1) + F̄

T
tr(FV 1))

+ (F T tr(F̄W 1) + F̄
T
tr(FW 1))∥F

=∥F̄ T tr(FW 1)− F̄
T
tr(FV 1)

+ F T tr(F̄W 1)− F T tr(F̄ V 1)∥F
≤∥F̄ T tr(F (V 1 −W 1))∥F + ∥F T tr(F̄ (V 1 −W 1))∥F
≤2∥F̄ T ∥F · ∥F T ∥F · ∥V 1 −W 1)∥F
≜Lg∥V 1 −W 1)∥F , (97)

where F̄ ≜ DFD and Lg ≜ 2∥F̄ T ∥F · ∥F T ∥F . Clearly,
the linear part of ∂f(V 1,V 2)

V 1
is Lipschitz continuous. Next,

we consider the fraction part in (87). For brevity, we define
Dh ≜ Denh(V 1,V 2), Eh ≜ Denh(W 1,W 2) and MhM

∗
h ≜

Numh(W 1,W 2). The gradient difference of the fractional
part in (87) can then be computed as shown in (98) at the top
of this page. The first term in (98) is analyzed in (99), i.e.,

ℏ1 =
∥∥∥DhN

∗
h(∇V 1

Nh−∇W1
Mh)+DhNh(∇V 1

N∗
h−∇W1

M∗
h)

D2
h

∥∥∥
F

≤
∥∥∥N∗

h(∇V 1
Nh−∇W1

Mh)

Dh

∥∥∥
F
+
∥∥∥Nh(∇V 1

N∗
h−∇W1

M∗
h)

Dh

∥∥∥
F

= |Nh|
Dh

·
(
∥F T tr(DF (V 1 −W 1))

+ (DF )T tr(F (V 1 −W 1))∥F
+ ∥F T tr(FD(V 1 −W 1))

+ (FD)T tr(F (V 1 −W 1))∥F
)

≤ 4 |Nh|
Dh

· ∥F ∥F · ∥FD∥F · ∥V 1 −W 1∥F
≤ Lh,1∥V 1 −W 1∥F . (99)

Note that in (99), |Nh| has a positive upper bound, i.e., 0 <
|Nh| ≤ εN , and Dh ∈ R has a positive lower bound, i.e.,
Dh ≥ εD > 0. Consequently, in (99) we can choose Lh,1 =
4 εNεD ∥F ∥F ·∥FD∥F so that the first term ℏ1 in (98) is bounded.

Next, we analyze the second term ℏ2 in (98). Note that

∥Nh −Mh∥F = ∥N∗
h −M∗

h∥F
= ∥tr(FV 1)tr(FDV 1) + tr(FV 2)tr(FDV 2)

− tr(FW 1)tr(FDW 1) + tr(FW 2)tr(FDW 2)∥F
= ∥tr(FDV 1)(tr(FV 1)− tr(FW 1))

+ tr(FW 1)(tr(FDV 1)− tr(FDW 1))

+ tr(FDV 2)(tr(FV 2)− tr(FW 2))

+ tr(FW 2)(tr(FDV 2)− tr(FDW 2))∥F
≤ |tr(FDV 1)| · ∥F ∥F · ∥V 1 −W 1∥F
+ |tr(FW 1)| · ∥FD∥F · ∥V 1 −W 1∥F
+ |tr(FDV 2)| · ∥F ∥F · ∥V 2 −W 2∥F
+ |tr(FW 2)| · ∥FD∥F · ∥V 2 −W 2∥F , (100)

and

∥Dh − Eh∥F
=∥tr2(FV 1) + tr2(FV 2)− tr2(FW 1) + tr2(FW 2)∥F
=∥(tr(FV 1) + tr(FW 1)) · (tr(FV 1)− tr(FW 1))

+ (tr(FV 2) + tr(FW 2)) · (tr(FV 2)− tr(FW 2))∥F
≤|tr(FV 1) + tr(FW 1)| · ∥F ∥F · ∥V 1 −W 1∥F

+ |tr(FV 2) + tr(FW 2)| · ∥F ∥F · ∥V 2 −W 2∥F . (101)

Then, we can express the second term ℏ2 as shown in (102)
at the top of the next page. Note that ∥∇W 1Mh∥F =
∥F T tr(DFW 1) + (DF )T tr(FW 1)∥F has a positive upper
bound, which enables us to determine Lh,2 in (102). Con-
sequently, we can conclude that second term ℏ2 in (98) is
bounded.

The third term, ℏ3, in (98) is given by (103), as shown
at the top of the next page. Similarly, since ∥∇W 1Eh∥F =
∥2tr(FV 1)F

T ∥F has a positive upper bound, the constant
Lh,3 in (103) can also be determined. This ensures that the
third term ℏ3 in (98) is bounded.

Based on (99)–(103), we can conclude that the fraction part
in (87) is Lipschitz continuous,i.e.,

∥∇V 1
h(V 1,V 2)−∇W 1

h(W 1,W 2)∥F
≤ (Lh,1 + Lh,2 + Lh,3)∥(V 1,V 2)− (W 1,W 2)∥F . (104)
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ℏ2 =
∥∥∥DhN

∗
h∇W1

Mh+DhNh∇W1
M∗

h

D2
h

− (∇W1
Mh·M∗

h+∇W1
M∗

h ·M)Eh

E2
h

∥∥∥
F

≤
∥∥∥ (N∗

h−M
∗
h)∇W1

Mh

Dh
+

M∗
h∇W1

Mh

Dh
− M∗

h∇W1
Mh

Eh

∥∥∥
F
+
∥∥∥ (Nh−Mh)∇W1

M∗
h

Dh
+

Mh∇W1
M∗

h

Dh
− Mh∇W1

M∗
h

Eh

∥∥∥
F

≤
∥∥∥∇W1

Mh

Dh

∥∥∥
F
· ∥N∗

h −M∗
h∥F +

∥∥∥M∗
h∇W1

Mh

DhEh

∥∥∥
F
· ∥Dh − Eh∥F

+
∥∥∥∇W1

M∗
h

Dh

∥∥∥
F
· ∥Nh −Mh∥F +

∥∥∥Mh∇W1
M∗

h

DhEh

∥∥∥
F
· ∥Dh − Eh∥F

=2
∥∥∥∇W1

Mh

Dh

∥∥∥
F
· ∥N∗

h −M∗
h∥F + 2

∥∥∥M∗
h∇W1

Mh

DhEh

∥∥∥
F
· ∥Dh − Eh∥F

≤2
∥∥∥∇W1

Mh

Dh

∥∥∥
F
(|tr(FDV 1)| · ∥F ∥F + |tr(FW 1)| · ∥FD∥F ) · ∥V 1 −W 1∥F

+ 2
∥∥∥M∗

h∇W1
Mh

DhEh

∥∥∥
F
· |tr(FV 1) + tr(FW 1)| · ∥F ∥F · ∥V 1 −W 1∥F

+ 2
∥∥∥∇W1

Mh

Dh

∥∥∥
F
· (|tr(FDV 2)| · ∥F ∥F + |tr(FW 2)| · ∥FD∥F ) · ∥V 2 −W 2∥F

+ 2
∥∥∥M∗

h∇W1
Mh

DhEh

∥∥∥
F
· |tr(FV 2) + tr(FW 2)| · ∥F ∥F · ∥V 2 −W 2∥F

≤Lh,2∥(V 1,V 2)− (W 1,W 2)∥F (102)

ℏ3 =
∥∥∥ |Mh|2·∇W1

Eh

E2
h

− |Nh|2·∇V 1
Dh

D2
h

∥∥∥
F

=
∥∥∥
F

|Nh|2·∇V 1
Dh−|Nh|2·∇W1

Eh

D2
h

+
|Nh|2·∇W1

Eh

D2
h

− |Mh|2·∇W1
Eh

E2
h

∥∥∥
F

≤
∥∥∥ |Nh|2

D2
h

∥∥∥
F
· ∥∇V 1Dh −∇W 1Eh∥F +

∥∥∥∇W1
Eh

D2
h

∥∥∥
F
· ∥|Nh|2 − |Mh|2∥F +

∥∥∥ |Mh|2∇W1
Eh

D2
hE

2
h

∥∥∥
F
· ∥E2

h −D2
h∥F

=
∥∥∥ |Nh|2

D2
h

∥∥∥
F
· 2∥tr(FV 1)F

T − tr(FW 1)F
T ∥F +

∥∥∥∇W1
Eh

D2
h

∥∥∥
F
· ∥ℜ((Nh −Mh)(Nh +Mh)

∗)∥F

+
∥∥∥ |Mh|2∇W1

Eh

D2
hE

2
h

∥∥∥
F
· ∥(Dh − Eh)(Dh + Eh)∥F

≤2
∥∥∥ |Nh|2
D2
h

∥∥∥
F
· ∥F ∥2F · ∥V 1 −W 1∥F

+
∥∥∥∇W1

Eh

D2
h

∥∥∥
F
· |Nh +Mh| · ∥Nh −Mh∥F +

∥∥∥ |Mh|2∇W1
Eh

D2
hE

2
h

∥∥∥
F
· |Dh + Eh| · ∥Dh − Eh∥F

≤Lh,3∥(V 1,V 2)− (W 1,W 2)∥F (103)

Based on (97) and (104), we can conclude that

∥∇V 1
h(V 1,V 2)−∇W 1

h(W 1,W 2)∥F
≤ L1∥(V 1,V 2)− (W 1,W 2)∥F . (105)

where L1 can be chosen as L1 = Lg + Lh,1 + Lh,2 + Lh,3.
Hence, ∂f(V 1,V 2)

V 1
is Lipschitz continuous.
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