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Empowering Explainable Artificial Intelligence
Through Case-Based Reasoning: A Comprehensive
Exploration

Preeja Pradeep

Abstract—Artificial intelligence (AI) advancements have sig-
nificantly broadened its application across various sectors, si-
multaneously elevating concerns regarding the transparency
and understandability of Al-driven decisions. Addressing these
concerns, this paper embarks on an exploratory journey into
Case-Based Reasoning (CBR) and Explainable Artificial Intel-
ligence (XAI), critically examining their convergence and the
potential this synergy holds for demystifying the decision-making
processes of Al systems. We employ the concept of Explainable
CBR (XCBR) system that leverages CBR to acquire case-based
explanations or generate explanations using CBR methodologies
to enhance Al decision explainability. Though the literature has
few surveys on XCBR, recognizing its potential necessitates a
detailed exploration of the principles for developing effective
XCBR systems. We present a cycle-aligned perspective that ex-
amines how explainability functions can be embedded throughout
the classical CBR phases: Retrieve, Reuse, Revise, and Retain.
Drawing from a comprehensive literature review, we propose a
set of six functional goals that reflect key explainability needs.
These goals are mapped to six thematic categories, forming the
basis of a structured XCBR taxonomy. The discussion extends to
the broader challenges and prospects facing the CBR-XAI arena,
setting the stage for future research directions. This paper offers
design guidance and conceptual grounding for future XCBR
research and system development.

Index Terms—Case-Based Reasoning, Explainable Artificial
Intelligence, Human-understandable Explanations, Trustworthy
Al, XCBR

I. INTRODUCTION

N the current era of Artificial Intelligence (Al) across vari-

ous sectors, the pursuit of transparency and interpretability
in Al systems has become crucial. Advances in Al, including
deep learning and neural networks, have led to significant
achievements in healthcare, finance, and autonomous driv-
ing. However, the inherent complexity of these models often
renders them as ‘black boxes,” [[I] making it challenging to
understand their decision-making. This lack of transparency
raises biases, ethical integrity, accountability, and fairness [/1]].
For example, in the justice system, Al assesses recidivism
risk scores without clarity on influencing factors. This opacity
can result in unfair sentencing, where decisions are based on

Preeja Pradeep is with Insight Centre for Data Analytics, School of
Computer Science and IT, University College Cork, Cork, Ireland. E-mail:
ppradeep@ucc.ie

Marta Caro-Martinez is with Facultad de Informatica, Universidad Com-
plutense de Madrid, Spain. E-mail: martcaro@ucm.es

Anjana Wijekoon is with the Dept of Computer Science, University College
London, United Kingdom. E-mail: a.wijekoon@ucl.ac.uk

Manuscript received March, 2024; revised .

" Corresponding author: Marta Caro-Martinez.

, Marta Caro-Martinez

, Anjana Wijekoon

potentially biased algorithmic outputs rather than the cases’
merits. For users to trust and adopt AI recommendations,
they need to understand how decisions are made, enhancing
their confidence in the system’s capabilities. For instance,
doctors might be reluctant to follow an AI’s cancer treat-
ment recommendation without understanding the underlying
rationale. Identifying whether adverse Al decisions are due to
system flaws, data bias, or other causes is crucial for legal
and ethical accountability. Researchers and practitioners focus
on enhancing Al systems’ interpretability and transparency to
combat these issues.

One such approach is the integration of Explainable Arti-
ficial Intelligence (XAI) and Case-Based Reasoning (CBR).
CBR [2]] is an intuitive problem-solving paradigm grounded
in the cognitive process of reusing past experiences to address
new situations through a four-phase cycle: Retrieve, Reuse,
Revise, and Retain. New problems are solved by retrieving
previously encountered cases similar to the current problem,
reusing and adapting their solutions, and then retaining the new
experience for future use. CBR, with its analogical reasoning
and use of explicit knowledge, offers a naturally interpretable
structure that aligns closely with human decision-making
processes. However, limited generalization and the need for
careful case base maintenance [3|] often hinder its utility. In
contrast, XAl [4] aims to achieve Al systems transparency
using various methods and design principles to provide deci-
sion rationales. It provides insights into Al decision-making
by promoting responsible Al use; however, it sometimes
suffers from oversimplified or misleading explanations that
lack personalization. We provide a concise introduction to
the principles and historical development of CBR and XAI
in Section This paper focuses on Explainable Case-Based
Reasoning (XCBR), which synthesizes the strengths of both
CBR and XAI. XCBR systems deliver transparent, example-
driven explanations grounded in historical data while support-
ing user-specific insights, adaptability, and continuous learn-
ing. XCBR mitigates the limitations of both parent paradigms
by combining structured reasoning with explanation clarity,
ultimately strengthening user trust and system utility across
domains.

Our objective is to examine XCBR from a cycle-aligned per-
spective, highlighting how existing explanatory mechanisms
achieve XAI goals such as transparency, interpretability, and
user trust across the CBR cycle. This work aims to clarify
how explainability manifests within each CBR phase and
provides structured insights for designing, evaluating, and
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applying XCBR systems in high-stakes domains. An “XCBR
system” leverages the inherent interpretability of CBR while
embedding explicit explanation mechanisms throughout the
reasoning process. It facilitates explainability through garner-
ing case-based explanations [5] or generating explanations
following CBR techniques [6]]. That means an XCBR system
may produce CBR-based explanations by presenting similar
past cases to justify its decisions or generate CBR-driven
explanations, where the underlying reasoning process is struc-
tured and communicated using CBR techniques. While CBR is
often considered inherently interpretable due to its reliance on
prior cases, XCBR systems go further by explicitly designing
to generate and communicate rationale as part of the reasoning
process or as an additional explanatory layer. The goal is
not merely to retrieve a solution but to justify its selection
and explain how it was derived. XCBR utilizes past cases
to produce concrete, example-based explanations, similar to
how human experts justify their decisions. We will discuss
the introduction of XCBR, its taxonomy, and the synergy in
more detail in Section [Vl

XCBR can be applied in high-stakes domains where trans-
parency, trust, and adaptability are critical. In healthcare, it
can support clinicians by retrieving relevant patient cases,
explaining treatment rationale, and adapting solutions based on
new symptoms or test results. In financial services, it aids fraud
detection by comparing transactions with historical patterns
and justifying risk scores. Educational tools can use XCBR
to recommend personalized learning paths by referencing
prior learner profiles and explaining content selection. XCBR
systems are also valuable for credit scoring, fraud detection,
and risk assessment in banking by adapting decisions from
similar past cases. These explanations align with regulatory
standards through transparent, example-driven justifications
that build user trust.

We reviewed the literature and found a few surveys on CBR
for XAl as summarized in Table [l While prior surveys have
explored elements of XCBR, our work provides a focused
and structured analysis that is unique in several ways. For
example, Schoenborn et al. [7]] provide a valuable taxonomy
of XCBR systems; however, they emphasize classification and
do not organize their insights around the complete CBR cycle
or pose critical research questions guiding future work. Gates
and Leake [8] address explanation evaluation dimensions but
do not offer a comprehensive taxonomy. Weber et al. [9]
examine XAI in knowledge-based systems without centering
on CBR-specific mechanisms. Keane et al. [5] explore CBR
as a white-box ‘twin’ to neural networks, but their focus
remains on ANN-CBR pairings. In contrast, our work uniquely
surveys XCBR from the vantage point of the CBR cycle
itself (retrieve, reuse, revise, and retain) and examines how
each phase inherently contributes to explainability. Rather than
treating XCBR as a modular extension or post-hoc add-on,
we emphasize the intrinsic explanatory power embedded in
each phase of the CBR pipeline. Our survey addresses pivotal
questions and explores the nuanced interplay between CBR
and XAlI, serving as a foundational guide for researchers in
developing XCBR systems. Therefore, our work’s novelty is
elucidating the key processes when using CBR to generate

either CBR-based or CBR-driven explanations. We will furnish
the specifics of our research method and questions in Section

m

The main contributions of this work are summarized as
follows.

+ Cycle-aligned functional perspective on explainability:
We propose a cycle-aligned perspective that highlights
how each phase of the CBR cycle: retrieve, reuse, revise,
and retain, contributes uniquely to explainability. We
identify functional goals from XAI literature through a
prospective and integrative analysis that supports these
goals within XCBR systems. They are: enhance explain-
ability & semantic interpretation, generate intuitive &
relatable explanations, ensure the continual relevance &
accuracy of explanations, ensure optimal performance &
relevance, refine explanations & improve system perfor-
mance, and evaluate the performance and explainability.

« Conceptual foundation for XCBR: We define XCBR as
the integration of CBR’s inherently interpretable reason-
ing with the goals of XAI, highlighting the distinction
between CBR-based and CBR-driven explanations. We
introduce an XCBR taxonomy that structures the space
of explanatory goals and methods, providing a foundation
for systematically analyzing and designing explainability
within case-based systems.

« Aligning explainability goals with thematic categories:
We analyze and organize relevant CBR and XAI meth-
ods under each functional goal, offering a practical
mapping that highlights how these techniques can be
used to support the development of explainable capa-
bilities in future XCBR systems. Thematic categories
cover aspects such as case representation, semantic in-
terpretation, experience-based reasoning, similarity-based
retrieval, adaptation, case base maintenance, and user
interaction, which serve as a foundation for guiding the
design and evaluation of future XCBR systems.

o Illustrative use case: To ground the discussion and
demonstrate the practical relevance of XCBR, we adopt
an Adverse Drug Reaction (ADR) prediction use case.
ADRs are unintended, harmful reactions resulting from
the administration of medications in patients receiving
polypharmacy, i.e., multiple concurrent medications. Pre-
dicting ADR risk is challenging due to complex drug-drug
interactions, patient variability, and incomplete clinical
knowledge. In this use case, explainability is essential to
support clinicians, regulatory authorities, and patients in
evaluating model recommendations, highlighting a high-
risk decision context.

o Summary of challenges and future prospects: We
emphasize the challenges in current research and suggest
several encouraging avenues for future investigation.

The outline of this article is as follows. Section [[I| provides
a concise overview of the research methodology employed in
the study, including the resources used and the thought process
behind the research development, and ultimately presents the
research questions along with the functional explainability
goals. Section [[II| discusses the evolutionary trajectory of CBR
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TABLE I
COMPARISON OF OUR XCBR SURVEY WITH EXISTING SURVEYS
Reference |Focus Description CBR  Cycle | XAI Coverage | XCBR Taxon-
Coverage omy
Keane et al. | ANN-CBR Introduce the concept of utilizing CBR as a white-box “twin” for black-box Al systems, including | Partial ~(focus | Surface-level |X
15] Twin Systems |ANN. This twinning approach is a crucial strategy for improving the interpretability of AI models |on ANN) (via twin
within the XAI framework. systems)
Weber et al. | XAIL in | Knowledge-based XAI integrates domain knowledge with AI to improve explanations for AI|No (non-CBR |Moderate X
[9] Knowledge- | decisions, aligning with CBR principles through supervised data classification. This approach uses Al | specific) (XAlI-focused)
based Systems |inputs and outputs as case problems and derives explanation categories as case solutions from domain
expertise. Addressing the challenge of accurate classification, it incorporates domain-informed
features to refine the selection of explanation categories, thus bridging the data gap between Al
operations and human-centric explanations.
Schoenborn | General Highlight the need for explanations in decision-making and present XCBR methods as a solution. | Limited Minimal v (not cycle-
et al. [7] XCBR Here, XCBR refers to CBR systems that are specifically designed to provide explanations for their based)
Concepts outputs. This is distinct from case-based explanations, which utilize CBR as a methodology to
elucidate the workings of other systems. It provides a taxonomy of XCBR approaches, making it a
valuable resource for XAI and CBR researchers interested in generating and utilizing explanations.
Gates and | CBR Explana- | Address the need for more assessment in understanding and advancing the explanations of CBR | Yes Mentioned X
Leake [8] |tion Evaluation | methods for explaining intelligent systems. It proposes strategies for evaluating CBR explanations, | (evaluation in  evaluation
surveys XCBR systems, and offers a set of dimensions to categorize the explanation components of | only) context
CBR systems. It also suggests future research directions and community initiatives to enhance the
evaluation and understanding of XCBR systems.
Our survey |In-depth Present a cycle-aligned perspective on XCBR that maps explanatory mechanisms to each phase of | Full (Retrieve | In-depth (XAI |/ (cycle-
XCBR across | the CBR cycle (Retrieve, Reuse, Revise, Retain), thereby clarifying how XCBR systems function, | — Retain) goals,  types, | aligned)
CBR Cycle why they support explainability, and what design principles and evaluation strategies are essential evaluation,
for building trustworthy, interpretable Al solutions across high-stakes domains. stakeholders)

and XAIL Afterward, Section [IV] presents the cycle-aligned
perspective on explainability, conceptual foundation of XCBR,
and explores how CBR’s inherent principles synergize with
XAI goals to enhance Al explainability. Section [V]presents the
challenges and prospects in the XCBR arena. Finally, closing
remarks are presented in Section

II. RESEARCH METHOD

We undertook a systematic literature review to elucidate
CBR’s contribution to XAI, aiming to answer six pivotal
research questions to pinpoint CBR’s specific role within
XAIL PRISMA-style flow diagram in figure [I] illustrates the
methodology for selecting studies in the review. A total of
300 records were initially retrieved from leading academic
databases, including Scopus, Google Scholar, IEEE Xplore,
ACM Digital Library, and Springer. After removing duplicates
and screening titles and abstracts, 250 records remained. Of
these, 90 were excluded based on criteria such as lack of peer
review, irrelevance to explanation or CBR, or duplication. We
assessed 160 full-text articles for eligibility, with 59 excluded
due to lack of relevance to XCBR. A final set of 101 articles
was selected for in-depth analysis. A noteworthy portion of rel-
evant XCBR research has been showcased at the International
Conference on Case-Based Reasoning (ICCBR), including
workshops focusing on XCBR. Our systematic review aimed
to chart the development trajectory of CBR and XAI, explore
their interplay, and highlight the principal challenges and
progress made in the field.

To investigate how explainability can be systematically
supported in XCBR, we adopt a functional, goal-driven ap-
proach that organizes key needs for explainability into six core
dimensions. They are as follows:

« Semantic interpretation [9], [[10]]: the ability to generate
context-aware, conceptually meaningful explanations that
align with the user’s understanding.

o Intuitive & relatable explanations [11]: the use of relat-
able, example-based, analogical, or contrastive reasoning
that supports user comprehension.

o Continual relevance & accuracy [[12]: the capacity for
explanations to evolve and remain aligned with changing
inputs, knowledge, or user contexts.

o Performance and relevancy [13]]: the assurance that ex-
planations remain high-quality, accurate, and appropriate
to the task or decision context.

« Explanation refinement [[13[], [14]]: support for interactive
or iterative improvement of explanations, informed by
user input or feedback.

« Resource efficiency [|12]: the ability to scale explanation
mechanisms while managing computational or storage
costs effectively.

o Evaluation quality [14], [15]: the use of rigorous and
multidimensional strategies to assess both the usefulness
and trustworthiness of explanations.

Therefore, the six functional goals are: enhance explainabil-
ity & semantic interpretation, generate intuitive & relatable
explanations, ensure the continual relevance & accuracy of
explanations, ensure optimal performance & relevance, refine
explanations & improve system performance, and evaluate the
performance and explainability. These goals were identified
through an inductive synthesis of foundational and contem-
porary work on XAl, interpretability, human-centered design,
and system performance. Rather than assuming a fixed set
of techniques, we frame our research questions around these
goals to guide a structured analysis of relevant methods across
the literature. This approach allows us to map candidate
techniques to each goal, ensuring conceptual clarity and
methodological consistency across the cycle-aligned structure
of XCBR, which will be presented in Section [[V-A] The
primary aim of this paper is to provide solutions to the
following three main research questions (RQs), which have
been formulated based on the literature. Figure [2] illustrates
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Identification: Records retrieved from Scopus, Google Scholar, IEEE Xplore, ACM Digital Library, Springer (n = 300)

Screening: After removing duplicates and screening titles/abstracts (n = 250)

Excluded (n = 90): Not peer-
reviewed — Not focused on CBR
or explanation — Duplicate studies

Excluded (n = 59): No
relevance to XCBR— No
explanation methods discussed

Eligibility: Full-text articles assessed for fit (n = 160)

Included: Final studies reviewed in-depth (n = 101)

Fig. 1. Flow diagram for literature selection.

RQ1: Historical progression of CBR and XAI
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XAI Goals
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I

Techniques

RQ2.1:
Enhance explainability
& semantic interpretation

RQ2.4:
Ensure optimal
performance & relevancy

RQ2.2:
Generate intuitive

RQ2.3:
Ensure continual relevance
& relatable explanations & accuracy of explanations

RQ2.5:
Refine explanations &
improve system performance

RQ3: Challenges, Opportunities, and Future Directions in XCBR

Fig. 2. Mapping of research questions across historical, functional, and future dimensions in XCBR.

Evaluate performance

RQ2.6:

& explainability

the mapping of these questions (RQ1-RQ3) across historical,
functional, and future dimensions in XCBR.

« RQI1. What is the historical progression of CBR and XAI
as distinct fields?
The motivation is to understand how foundational ideas
in both CBR and XAI originated and evolved, providing
context to current practices and methodologies, which
will be explained in Section

« RQ2. How do CBR’s inherent principles synergize with
XATI’s goals to enhance Al explainability, and what key
features or functionalities are critical in this integration of
strengthening explainability across varied user expertise?
This investigation examines how CBR’s inherent prin-
ciples align with XAI goals to enhance explainability
and identifies critical features and functionalities across
the Retrieve, Reuse, Revise, and Retain phases. This
supports clear, relevant, and user-adaptable explanations
with varying levels of expertise, which will be discussed
in Section In particular, we are interested in reviewing
the following.

— RQ2.1. How can XCBR systems enhance explain-
ability and semantic interpretation?

— RQ2.2. What techniques can be used to generate in-
tuitive and relatable explanations in XCBR systems?

— RQ2.3. What are the effective strategies for adap-

tation and learning in XCBR systems to ensure the
continual relevance and accuracy of explanations?

— RQ2.4. How can efficient case storage and man-
agement support optimal performance and long-term
relevance in XCBR systems?

— RQ2.5. What techniques can incorporate user in-
teraction and feedback to refine explanations and
improve system performance in XCBR systems?

— RQ2.6: What strategies and metrics can be used
to evaluate the performance and explainability of
XCBR systems?

« RQ3. What are the current challenges facing the CBR-
XAI arena, and what potential research avenues can
address these to drive future advancements?

This identifies the prevailing challenges within the CBR-
XAI domain and explores potential research directions
that could address these challenges, fostering advance-
ments in the field, which will be explored in Section

III. HISTORICAL PROGRESSION OF CBR AND XAI

In this section, we address the RQ1 in Section [[I} by pro-
viding the evolutionary trajectory of CBR and XAI domains.
CBR and XAI have rich histories and evolved, responding
to technological advancements and shifting needs in Al. This
section seeks to understand how each field has evolved from its
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CBR Case Representation

CBR Cycle

CBR Knowledge Container

Case Structure:
Problem | Solution | Outcome

Properties:
e Domain-Specific Nuances
e Granularity of Representation

Vocabulary Knowledge

Retrieved Case

e Handling Complex Data Types
e Dynamic Features

e Structural Consistency

e Semantic Meaning

e Case Obsolescence

o Scalability

Retain

Verified Case

Previous
Cases

v
Similarity Knowledge
Adaptation Knowledge
Case Base Knowledge

Solved Case

Fig. 3. Core concepts of CBR including representation, reasoning cycle, and knowledge containers.

inception to its current state, including its foundational theories
and technological advancements.

A. Progression and Core Concepts of CBR

In the 1980s and 1990s, CBR emerged as a notable Al
methodology, emphasizing problem-solving by reusing past
cases or instances [16]]. Its evolution from a cognitive model
to a robust Al methodology underscores its adaptability and
enduring significance. CBR continues to adapt and incorporate
technological innovations, expanding its application across
diverse fields. This section delves into the core components
of CBR, demonstrating how it utilizes historical experiences
to address new problems. We focus on three key areas (as
illustrated in Fig. 3)): the advancements in case representation
within CBR systems, the analysis of the CBR cycle, and the
evolution of knowledge containers.

1) Case Representation: In CBR, knowledge is encapsu-
lated in cases comprising a problem description, the solu-
tion applied, and the solution’s outcome [2]. The problem
description details the context, while the solution addresses
the problem. These cases represent real-world scenarios and
solutions, stored in a case base that can vary in format,
including databases, text files, or XML files [17]]. Addressing
the complexity of design cases necessitates enhancing cases
with generalized design knowledge and formalizing typically
informal knowledge [[18]]. Case representation involves the
structuring and storage of cases. Various formalisms for case
representation include feature vector, structured, and textual
formats [17], [19]. In feature-vector representation, cases are
defined by attribute-value pairs, allowing for straightforward
comparisons but needing more domain knowledge and se-
mantic depth. Meanwhile, structured representations manage
cases in a frame-based structure or relational representations
by considering cases as clusters of related objects similar
to episodic memory. Textual case representation uses text to
describe cases and supports problem-solving by comparing
textual descriptions of past cases. There exist different methods
for case representation, including ontologies [20]], [21[], XML
for marking up cases [22f], and knowledge graphs [[18|] that
offer a range of approaches to structuring and managing cases
in CBR systems.

2) Four-Phase CBR Cycle: The CBR cycle is a constantly
evolving process enriched with every new problem and solu-
tion, which relies on historical data and previous experiences
to facilitate iterative and hands-on problem solving. It is a

practical and intuitive approach that finds widespread appli-
cation in various domains, including medical diagnosis, legal
reasoning, and customer support [23]]. The CBR cycle typically
consists of four main phases as follows [16], [24].

« Retrieval. The CBR system calculates similarity scores
between a new and unseen instance and all stored cases
in the case base. The system uses predefined similarity
metrics to compare features, attributes, or domain-specific
criteria. The system then retrieves the most similar past
cases based on these similarity scores. These cases have
historically dealt with problems most akin to the new
instance, so they serve as the primary candidates for
explanations. For instance, a CBR system for medical
diagnosis retrieves cases of patients with similar medical
histories and symptoms. Ensuring quick retrieval is vital
to defining the problem accurately and applying a relevant
similarity metric to discover the most pertinent past cases.

« Reuse or Adaptation. The CBR system might adapt
the solution from the past case to better align with the
current scenario, where the retrieved case is not a perfect
match to the new problem. CBR reuses the solutions
or parts of the solutions from similar cases to solve
the new problem after retrieving the relevant cases. This
outcome is based on past experiences and is adapted to
meet current needs by providing a clear explanation. For
instance, a successful treatment plan from the past can
be modified for a new patient by considering their unique
characteristics and any updates in medical practice.

« Revision. The CBR system evaluates the outcome after
solving the new problem. If necessary, the system revises
the case by refining the proposed solution from the
reuse phase. The CBR system’s performance and efficacy
improve through this continuous learning process over
time. For example, it keeps track of the patient’s reaction
to the customised treatment plan and makes necessary
adjustments.

« Retain. This involves updating the case base. At this
point, the system stores the new case that was just solved,
including the problem description, the adapted solution,
and any additional information that might be useful for
future problem-solving. For instance, documenting the
new patient case, including the adapted treatment and
outcomes, can assist with future medical diagnoses.

3) CBR Knowledge Containers: Implementing specific
functions aimed at uniformly describing problems, ensuring
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equitable comparisons, and facilitating adaptation for gen-
erating feasible solutions is crucial at various stages of a
CBR system. These functions are encapsulated as ‘knowl-
edge containers’ [25[, which model the knowledge within
a CBR system. A CBR system can be conceptualized by
interacting with four primary knowledge containers: vocabu-
lary knowledge, similarity knowledge, adaptation knowledge,
and case base knowledge [25]-[27]. Vocabulary knowledge
encompasses the terminologies and descriptions used for cases,
whereas Similarity knowledge involves the criteria for assess-
ing case similarities. Adaptation knowledge is used during
the CBR cycle’s revision phase and focuses on adjusting
solutions from the most similar past cases to fit new problems.
Meanwhile, case base knowledge highlights the case base’s
scope and identifies areas for expansion to enhance future case
acquisition by reflecting the problems in the stored cases.

It is uncommon for all knowledge containers to be fully
developed due to the costs and complexities involved. Typ-
ically, some containers are less developed while others are
more advanced, maintaining the system’s overall performance.
Distinct algorithms usually drive each container’s functional-
ity; for example, the similarity container might use semantic
knowledge from an ontology in a textual CBR system, while
the vocabulary container relies on complex text features [27]].

B. Evolution and Key Fundamentals of XAl

Early AI systems were inherently interpretable due to
handcrafted rules for decision-making on raw data. The rise
of black-box models, on the other hand, made the need for
explainability much greater, which led to the growth of the
XAI field. Recent research has delved into XAI’s various
facets, including ‘what, ‘why, ‘what for, and ‘how’ [12],
[23], [28]. Understanding the target audience, the reasons
behind needing an explanation, and the context in which
it is provided are all necessary for effective explainability.
Considering these factors, explanations can be crafted more
meaningfully and user-centric, presented at the right time, and
in the most suitable format.

We need to clarify the term “explainability” as the literature
[23]], [28]] often uses related terms, including “interpretability,”
“transparency,” “‘comprehensibility,” and “understandability.’
Although these terms share a similar meaning, their undertones
differ slightly. Explainability refers to making Al system
operations understandable to users by providing interpretable
explanations that bridge system decisions with user compre-
hension, such as creditworthiness reports explaining loan ap-
provals based on transparent rules. Interpretability emphasizes
how a system conveys its actions even to non-experts, for
instance, Al dietary recommendations clarifying suggestions
based on health data. Transparency highlights a model’s inher-
ent self-explanation ability without extra tools, as seen in real
estate price predictions where valuation logic is evident. Com-
prehensibility presents model knowledge in human-like rea-
soning formats, exemplified by medical diagnosis explanations
following familiar rule-based logic. Understandability centers
on enabling users to grasp AI’s purpose and conclusions
without requiring deep technical knowledge, such as Al-driven

financial planning that adapts advice to individual goals while
remaining accessible. Generating explanations can demand
substantial resources and may not always be necessary, though
it becomes critical in safety-sensitive contexts where errors
could lead to severe consequences. In the following sections,
we will examine the role of explainability in Al, determine
who needs explanations, discuss the goals of XAI pertinent
to its target audience, and discuss the diverse methods, levels,
and strategies for crafting explanations in XAI systems. Our
discussion also aims to showcase the efforts within the field
to render Al decisions comprehensible and responsible.

1) Why XAI?: Explainability in Al serves multiple roles
based on specific requirements [28], going beyond just im-
proving predictive performance. For instance, explainability
helps evaluate loan applications in banking and finance and
sheds light on the factors affecting the AI model’s decisions.
Explainability reveals the factors influencing the model’s deci-
sion, enabling analysts to confirm its legality and fairness and
make necessary adjustments. This aspect is vital for adhering
to legal standards, such as the European Union’s General
Data Protection Regulation (GDPR)’s ‘right to explanation’
[29]. Explainability helps clinicians justify their treatment
recommendations to patients, bolstering trust by facilitating
informed healthcare decisions. It also improves the learning
and knowledge discovery of Al models. This enables the com-
parison of Al-derived strategies with established knowledge
for educational and scientific advancements. Explainability in
Al models helps the pharmaceutical industry find new drug
candidates by clarifying how the Al predicts therapeutic effects
or drug interactions.

XAl is critical in fostering trust, accountability, and adher-
ence to regulatory standards in Al systems. It enhances trust
by making decision-making transparent and vital in healthcare,
finance, legal sectors, and autonomous systems. Making a
system’s decision-making process more transparent increases
user confidence, promotes adoption, and reduces skepticism
about AI. Although some studies emphasize the importance
of explainability in fostering trust, it is essential to recognize
that trust is not the sole aim of explainable models; various
goals can coexist [[23[]. XAI also underpins accountability [30],
allowing users to evaluate an Al system’s fairness, biases,
and ethical considerations. It aids stakeholders in ensuring
Al systems meet legal, ethical, and regulatory standards by
shedding light on the decision-making criteria and identifying
and correcting biases or discriminatory practices. Additionally,
XA is essential for complying with regulations such as the
GDPR, which emphasizes the need for individuals to under-
stand the logic, importance, and repercussions of automated
decisions affecting them [4]. XAI enables organizations to
offer clear explanations and rationales for Al-based decisions,
helping them comply with regulatory demands, sustain public
trust, and prevent legal issues.

2) Target Audience/Stakeholders in XAI: XAl is an Al
field that can be applied in any domain and have to satisfy
their users in those domains. These stakeholders represent a
broad spectrum of expertise, including data scientists, domain
experts, regulators, end-users, developers, and more, each
contributing unique perspectives and requirements to the XAI
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field [30]. Understanding the motivations and needs of these
critical groups is crucial for crafting effective XAl solutions
that meet ethical, legal, and domain-specific standards. Al
Experts (Data Scientists and Machine Learning (ML) Prac-
titioners, Al System Developers) drive Al model development
by understanding complex behaviors, identifying improvement
areas, and refining models, with goals of gaining insights,
ensuring fairness, and resolving prediction issues using XAI
tools. Domain Experts ensures reliable advice and regulatory
compliance, healthcare, finance, and engineering experts align
Al models with industry standards and ethics. Regulators
and Legal Authorities monitor Al implementations to comply
with legal and ethical guidelines, using XAI to evaluate
system transparency, fairness, and adherence to regulations
such as GDPR and HIPAA. End-Users or Consumers demands
transparent Al explanations to make well-informed decisions.
Finally, Ethics Committees and Review Boards evaluate Al
applications for ethical integrity, protocol compliance, and
patient safety to ensure decisions prioritize well-being.

3) XAI Goals and Stakeholder Relevance: The pursuit of
explainability in Al is not just a technical challenge but a
multifaceted endeavor to address the specific needs of various
stakeholders. XAI aims to provide transparency and under-
standability to Al systems by fostering trust and facilitating
responsible usage. Research shows that the main goals of XAl
[21], [23]] are attuned to the informational needs of distinct
stakeholders. From now on, we will use the term ‘stakeholders’
to broadly encompass all parties involved in system design,
development, oversight, and usage.

1) Informativeness. Provides detailed insights into the
model’s functioning to support informed decision-
making across all stakeholder groups. For example, an
Al predicting diabetes risk explains the impact of blood
glucose levels, facilitating targeted health interventions.

2) Transferability. ML models must adapt across diverse
scenarios while acknowledging limitations. Explainabil-
ity aids stakeholders, namely domain experts and data
scientists, in applying insights across different domains.
For instance, a company uses a recommendation model
for cultural and geographical variations in a new market.

3) Accessibility. Simplifies complex algorithms for non-
experts, enhancing user-friendliness. Key stakeholders,
mainly end-users or consumers, benefit directly, as seen
in healthcare applications where doctors receive un-
derstandable Al diagnoses to foster trust and improve
patient care.

4) Fairness. Identifying biases in data ensures stakehold-
ers, such as regulators, legal authorities, and end-users
or consumers, get equitable outcomes by allowing cor-
rections. XAl reveals biases in Al recruitment systems,
namely age or gender disparities, enabling organizations
to correct unfair practices for a more equitable hiring
process.

5) Confidence. Confidence in Al is critical for reliability
and entails robustness and stability. Explainable models
offer confidence levels vital for stakeholders, including
developers, end-users, and regulators. For example, an
Al in autonomous vehicles that provides a confidence
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score for its decisions, namely braking, enhances trans-
parency and safety.

6) Usability. Engages stakeholders through feedback and
customization, improving trust and interaction. An in-
vestment platform, for example, uses Al to tailor advice
based on user-defined risk preferences and investment
goals.

7) Causality. Identifying potential causal relationships dif-
ferentiates correlation from causation, validating Al out-
comes for stakeholders, including domain experts and
regulatory authorities. An autonomous vehicle company
may link rapid acceleration to higher accident rates
through controlled experiments, thereby enhancing ve-
hicle safety.

C. Type, Scope, and Techniques for Explanation

Classifications of XAI techniques focus on their explanation
mechanisms, types, and scopes, aiming to clarify Al decision-
making for various data types [12f, [31]]. To ensure Al de-
cisions are understandable, it is crucial to tailor explanations
to the data type — tabular, image, or text [31]. Tabular data
is structured and can be used to generate logical explanations
that are easy for stakeholders to understand. We can apply
decision trees to tabular data to create rule-based explanations
that are transparent and straightforward. For image data, ex-
planations often come in visualizations highlighting an image’s
most influential areas in the model’s decision-making process,
allowing stakeholders to understand why a model made a
particular classification or recognition decision. In the case
of text data, explanations can be provided by identifying and
presenting the key phrases or words that influenced the model’s
predictions.

The literature identifies nine types of explanations: case-
based, contrastive, counterfactual, trace-based, feature impor-
tance, anchor, saliency map, factual, and semi-factual, each
suited for different Al scenarios. Case-based explanation [5|
uses historical solutions to solve current problems, similar
to how a doctor might recommend treatments based on past
successes with similar symptoms. Another type is contrastive
explanation [32], which highlights the differences leading to
a specific outcome, as seen in a loan approval system that
contrasts credit histories to explain different decisions. Coun-
terfactual explanation (32|, [33]] explores alternate scenarios
by altering inputs, such as a traffic navigation app suggesting
an earlier departure to avoid traffic. Another method, trace-
based explanation [34], documents the sequence of steps the
system takes to reach a conclusion, such as a diagnostic Al
explaining the tests conducted for a diagnosis.

Feature importance [35]] explains model decisions by quan-
tifying the contribution of each input feature to the output,
aiding stakeholders in understanding influential variables. For
example, a credit scoring model shows that income contributes
40% to approval, while debt ratio contributes 25%. Anchors
[36] are if-then rule-based explanations that identify crucial
feature conditions supporting a prediction. For instance, an
email classifier explains that if the email sender is unknown
and the subject contains ‘Congratulations,” the message will
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be classified as spam. Saliency maps [37|] indicate which parts
of input data (often image pixels) influence the output, such
as highlighting areas of a lung scan that affect a pneumonia
diagnosis. Factual explanation [38|] clarify why a specific
prediction was made by offering supporting evidence, such
as an approved loan due to the applicant’s income and credit
score meeting standards. Finally, semi-factuals [39|] explain
what would have happened if specific inputs had been slightly
different but still resulted in the same decision. For example,
the applicant’s outstanding credit history would have allowed
the loan to be approved even if their income had been
somewhat lower.

We categorize explainability techniques into portability and
concurrentness based on the iSee framework [20]. Portability
describes how dependent an explanation technique is on the
underlying model architecture, distinguishing between model-
specific or model-agnostic. Model-agnostic method explains
black-box models by approximating behavior from inputs
and outputs (e.g., SHapley Additive exPlanations (SHAP),
Local Interpretable Model-Agnostic Explanations (LIME).
Meanwhile, Model-specific focuses on details of a particular
model (e.g., Deep Learning Important FeaTures (DeepLift),
or Integrated Gradients). Another approach is the influence
function [40], [41]], which estimates the effect of removing
or upweighting a single training instance on the prediction
for a given test instance. Influence functions, a concept from
statistics, have been adapted for use in XAl to analyze the im-
pact of individual training examples on model predictions [40],
[41]. They estimate how the model’s output for a specific test
instance would change if a training instance were unweighted
or removed. Although this method does not provide the same
type of explanation as CBR, which returns the most similar
past cases to the current one, the two approaches complement
each other. Both focus on linking a prediction to specific
examples and thus could be used complementary to generate
more enriched and multi-faceted explanations [40], [41].

Another dimension is concurrentness, which describes when
explanations are produced relative to model training, catego-
rized into ante-hoc or post-hoc techniques. Ante-hoc meth-
ods integrate explainability directly into the model during
its construction, producing inherently interpretable models.
In contrast, post-hoc techniques generate explanations after
training the model, often applied externally to black-box
models. Model-agnostic explainers operate independently of
model architecture and are usually post-hoc, while model-
specific explainers are tailored for specific model types (e.g.,
CNNs). When model-specific explainers use internal model
information, they are ante-hoc; otherwise, they are post-hoc.
Ante-hoc approaches can sometimes be model-agnostic, par-
ticularly in interpretable models like rule lists. Overall, model-
agnostic and model-specific refer to the explainer’s depen-
dence on the model, while ante-hoc and post-hoc indicate
when explanations are integrated.

Post-hoc explainability techniques elucidate non-intuitive
models via a range of methods, including textual and visual
explanations, as well as explanations by feature relevance,
example, and simplification, each addressing different facets
of explainability, making complex Al transparent [23|]. Text

explanations demystify model processes with understandable
language, while visual explanations use graphics to simplify
and clarify model behavior. Local explanations dissect deci-
sions into smaller parts for detailed understanding, whereas
Feature relevance clarifies how specific data aspects influence
outcomes. Meanwhile, explanations-by-examples uses data in-
stances to show decision impact akin to human learning. Ad-
ditionally, explanations-by-simplification improves stakeholder
comprehension of AI mechanisms by producing a simpler
model replicating the original’s key features. Distinguish-
ing between an explanation’s format and type is essential.
Reasoning-based forms, namely contrastive, counterfactual,
and trace-based explanations, should be grouped alongside
some explanation types, such as feature relevance, example-
based, and simplification-based explanations. These represent
different underlying mechanisms or strategies for explanation.
However, visual and textual explanations refer to the pre-
sentation format of these underlying explanation types and
should be discussed separately regarding the user interface and
communication.

Explanation scope defines the extent of interpretation: it can
be global, covering the entire model, or local, focusing on the
rationale behind specific predictions [30]], [31]]. Local explana-
tions aim to clarify the reasoning behind a single prediction,
whereas global explanations provide insight into the model’s
overall behavior. Notably, local explanations are not always
post-hoc. For instance, SHAP is a post-hoc explainer that can
be used to generate both local and global explanations, based
on its application.

In the XALI literature, various inherently explainable models
have been developed to ensure interpretability by design.
These include linear models, generalized additive models,
decision trees, rule-based systems, scorecards, and neural addi-
tive models [23]. Each model type carries specific assumptions
and explanation capabilities. Numerous libraries for explana-
tion methods are also available, such as IBM Research’s Al
Explainability 360 [42]], and Facebook’s Captum [43]]. The
iSee: Intelligent Sharing of Explanation Experience platfor
also includes an Explanation Library, which amalgamates over
70 explainers from assorted XAI libraries, accessible via its
GitHub repositoryﬂ It includes unique explainers developed
by the iSee team, such as DiSCERN [44]], and PertCF [45]].

IV. CBR AND XAI SYNERGY: TOWARD XCBR

In this section, we tackle RQ2 in Section [[I] by examining
the synergy between CBR and XAI principles to enhance
explainability. It explores how CBR’s approach of using past
cases to solve new problems complements XAI’s goals for
transparency, examines the impact of combining CBR with
XAI to create more understandable Al systems, and identifies
essential features enabling their integration. As Section [[II-B
suggests, tailoring explanations to varied stakeholder needs
and contexts is crucial yet challenging. A unified platform
could simplify this by enabling the reuse of optimal explana-
tion strategies across different scenarios.

Uhttps://iseedxai.com/
Zhttps://github.com/isee4xai/iSeeExplainerLibrary
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Fig. 4. Conceptual integration of CBR and XAI into XCBR.

A. Cycle-Aligned Perspective on XCBR

Although CBR contributes interpretability to Al systems
by design and has been applied across several explanation
types, these applications are often informal, fragmented, or
manually driven. XCBR is a systematic, user-centered frame-
work that formalizes and extends the explanatory potential
of CBR within the broader XAI landscape. Figure [] shows
how XCBR arises from the intersection of CBR and XAI.
The strengths of CBR and XAI are combined in XCBR
to provide user-centered explanations based on real-world
examples. We structure XCBR according to the CBR cycle
and tailor it to the stakeholder’s mental model, where each
phase contributes distinct explanatory opportunities, such as
retrieval rationales, reuse justifications, revision insights, and
retention summaries. XCBR unites the interpretability and
analogy-driven decision-making of CBR with the transparency,
accountability, and human-centered goals of XAI. The result is
an Al paradigm that solves problems by referencing past cases
and explains its reasoning in an understandable, relevant, and
actionable way. Effective XCBR systems design requires more
than leveraging analogy; it also needs careful consideration
of the explanatory requirements and design at each stage
of the reasoning process. While CBR and XAI each offer
inherent forms of interpretability, XCBR formalizes the design
of systems that reason from cases and explain that reasoning
in a transparent, stakeholder-centered manner. In this section,
we will discuss the functional components and taxonomy of
XCBR along with an illustrative use case.

1) Functional Components of XCBR: XCBR system en-
hances transparency, stakeholder trust, and decision account-
ability by incorporating explicit explanation mechanisms into
each phase of the CBR cycle (retrieval, reuse, revision, and
retention). XCBR highlights the relevance of features and
justifies the similarity measures used to select past cases
during case retrieval. The system explains how the retrieved
solution is modified to fit the new problem context in the
reuse/adaptation phase. Furthermore, the revision step traces
any corrections made to the adapted solution, offering justifi-

[F‘ i 'l‘ype} [F‘ ion G i } [F‘ Modality} { Integration }

|

{CBR-ha»ed} {CBR-driven} { Static } {Imeracxive} {Tcxlua]} { Visual } {Pure CBR} {Twin CBR} {Hybrid CBR}

Fig. 5. Taxonomy of XCBR by organizing explainability approaches for
CBR into four major categories: Explanation Type, Explanation Generation,
Explanation Modality, and Integration.

cations for adjustments based on domain feedback. Finally, in
the retention phase, XCBR systems provide reasons for storing
the new case guided by novelty, utility, or diversity criteria.
2) Taxonomy of XCBR: We present a taxonomy that classi-
fies systems along four key dimensions, as shown in Figure 5]
to better understand the diversity of approaches within XCBR.
While the taxonomy presented by Schoenborn et al. [[7]] offers
a foundational structure to classify contributions in XCBR, it
remains broad and centered around conceptual categories. In
contrast, our taxonomy is grounded in the functional design of
XCBR systems, emphasizing how explanations are generated,
presented, and integrated within the CBR cycle. This approach
allows for a thorough understanding of how XCBR systems
reason, explain, communicate, and interact with other Al
frameworks. Researchers and developers can better assess suit-
ability for specific applications, identify gaps, and design more
effective explainable reasoning frameworks by categorizing
systems along these four dimensions. Moreover, the proposed
taxonomy reflects emerging trends in XAl and stakeholder-
centered explanation, offering a practical framework for sys-
tem development, evaluation, and cross-domain comparison.
The use of XCBR spans multiple domains, such as healthcare
(e.g., diagnostic support), legal reasoning (e.g., precedent anal-
ysis), recommender systems (e.g., personalized suggestions),
finance (e.g., risk assessment), and education (e.g., adaptive
tutoring), each influencing the type of explanation required.

« Explanation Type: XCBR systems typically offer two
main categories of explanations: CBR-based and CBR-
driven, as stated in Section |l CBR-based explanations
justify decisions by directly referencing similar past cases
from the case base. Drawing analogies with familiar
or previously successful situations helps stakeholders
understand decisions. These explanations include narra-
tive comparisons, side-by-side visualizations, or anno-
tated case matchings. CBR-driven explanations, on the
other hand, go beyond mere retrieval by using CBR
techniques to shape or construct the explanation itself
actively. These systems utilize analogical reasoning, case
adaptation traces, or structured argumentation models
to generate coherent, context-sensitive justifications that
reflect expert reasoning. iSee platform is a CBR-driven
XAI recommender focused on improving Al system ex-
plainability through advanced abstraction in explanations
[6]. Through an Explanation Experiences Editor (iSeeE3),
Al designers can capture and disseminate complex expla-
nation experiences among peers with similar needs.

« Explanation Generation: The way the explanations are
generated, whether static or dynamic, is a crucial aspect of
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the XCBR taxonomy. Static explanations are pre-defined
during system design or case base construction. These
explanations do not adapt to stakeholder queries or con-
text; they are typically associated with specific cases or
solutions. These explanations do not adapt to stakeholder
queries or context; they are usually related to particular
cases or solutions. Although practical and straightforward
to implement, they frequently lack personalization and
might not meet the stakeholder’s urgent informational
needs. Interactive explanations are generated at runtime
in response to stakeholder queries, contextual variables,
or the system’s confidence in its solution. These explana-
tions can include additional reasoning traces, emphasize
feature importance, or adjust content based on stakeholder
interactions. Even though they might require additional
computational resources, interactive explanations tend to
be more flexible, interactive, and cognitively aligned with
stakeholder expectations. Relatively little research has
been done on interactive XCBR systems. In contrast,
most current literature on XCBR concentrates on static
explanations, in which arguments and examples are given
without being adjusted for the stakeholder’s input or
context. stakeholder interaction in interactive XCBR gen-
erates and refines explanations by incorporating real-time
feedback, preferences, or clarification requests.
Explanation Modality: XCBR systems differ signifi-
cantly in how explanations are presented to stakeholders.
The modality of explanation affects interpretability, cog-
nitive load, and stakeholder engagement. Modality can be
customized according to stakeholder preferences, domain
complexity, and the purpose of the explanation, whether
it is to justify a decision, support learning, or facilitate
trust in the system’s recommendations. The explanation
modalities in XCBR are:

— Textual explanations are the most common modality,
often delivered as natural language justifications,
rule-based statements, annotated case narratives, or
even as tables. They are effective in healthcare
and legal reasoning domains, where domain-specific
language is critical. In XCBR, the textual modality
presents information about previous cases in natural
language as explanation cases. The goal is to offer
the stakeholder a better understanding of the knowl-
edge provided within the explanation cases.

— Visual explanations use graphical representations to
convey reasoning, such as similarity maps, adapta-
tion graphs, feature heatmaps, plots, trees, annotated
images, or side-by-side comparisons. Visual modal-
ity is beneficial in image-based systems or when
summarizing complex case relationships. In XCBR,
including visual elements is essential for improving
the comprehension of the provided explanation cases,
particularly when the AI model utilizes images as
part of its data.

« Integration with XAI Techniques: Modern XCBR sys-

tems vary in how much they integrate with broader
XAI frameworks. We classify them as pure, twin, and
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hybrid systems. Pure XCBR systems refer to CBR-based
systems that generate explanations alongside predictions
in an ante-hoc manner. In these systems, predictions
are produced using CBR methods, and explanations are
derived through the exact CBR mechanisms, typically by
retrieving and adapting relevant past cases to justify the
current decision. Twin XCBR systems generate explana-
tions using CBR mechanisms such as similarity metrics,
retrieval justifications, and adaptation traces. They usually
do not use external explainability tools but rely on rule-
based or symbolic representations. The key distinction
from pure XCBR systems is that, in twin XCBR, the
predictions being explained are produced by a separate
Al model, often a neural network. The CBR component
functions solely as an explanation module, interpreting
and explaining the behavior of the underlying model.
“Twin-ing,” a black-box AI with a CBR twin proposed
by Keane and Smyth [5]], creates an interpretable proxy
using CBR retrieval to explain decisions with similar past
examples. Hybrid XCBR systems employ model-agnostic
XAI methods to improve their reasoning or explanations,
such as LIME, SHAP, Anchors, or Counterfactuals. These
integrations provide additional transparency, primarily
when the CBR system interacts with black-box models
(e.g., neural networks) by facilitating multi-perspective
explanations, such as combining similarity reasoning with
feature attribution. For instance, Tofighi et al. [46] com-
bined CBR with MLP classifiers and employed SHAP-
based feature attributions to explain lung cancer diagnosis
decisions. The level of integration affects the system’s
interpretability, complexity, and explainability across use
cases. Our ‘integration’ dimension focuses on how CBR
systems interface with external, model-agnostic XAl tech-
niques. While substantial work is on pure XCBR and
twin XCBR systems, research on hybrid XCBR remains
relatively limited. These approaches are vital as they
offer the potential to combine predictive strength with
diverse explanatory strategies. In user-facing applications,
different stakeholders might need various perspectives or
levels of detail in the explanations provided. To meet
the varied interpretability needs of real-world decision-
making contexts, hybrid XCBR research must be ex-
panded.

3) ADR Prediction Use case: We present the ADR predic-
tion use case discussed in Section [[| to illustrate the functional
components of XCBR. Accurate ADR risk prediction models
are required for enhancing patient safety, optimizing treat-
ments, and minimizing preventable medical complications. For
clinicians to understand the reasoning behind predictions, such
as risk factors or drug combinations, explainability is essential.
Transparent explanations build trust, ensure regulatory com-
pliance, and promote ethical accountability, making this area
ideal for evaluating explainability and CBR methods.

To illustrate the taxonomy, we consider a clinical decision
support system developed for the ADR prediction use case.
The system provides CBR-based explanations by retrieving
similar past ADR cases based on drug combinations and
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lab values. CBR-driven explanations show how the retrieved
recommendations are adapted to patient-specific contexts such
as impaired renal function or age. The system dynamically
generates real-time explanations with justifications tailored to
the clinical scenario and stakeholder role (e.g., physician or
pharmacist). It offers textual summaries of clinical reasoning
(e.g., “ADR risk increased due to interaction between drug
X and elevated creatinine”), visual timelines of drug admin-
istration with flagged interactions, and interactive tools for
exploring medication changes. Finally, it demonstrates hybrid
integration with XAI techniques, e.g., SHAP, to identify which
features most influenced the prediction, thereby reinforcing
transparency and stakeholder trust. In model-agnostic setups,
SHAP can explain any black-box model by approximating
feature attributions. In addition, we can use influence functions
to identify which specific training cases have most significantly
shaped the model’s prediction, providing a causally grounded,
data-centric explanation that complements the similarity-based
reasoning of CBR. This enables stakeholders to understand the
features that contributed to the prediction and the past cases in
the dataset that were most responsible for forming the decision
boundary relevant to the current case.

B. Aligning Explainability Goals with Thematic Categories

We define a set of research questions aligned with key
functional goals for explainability in XCBR to guide our
analysis. As discussed in Section [[I} the six functional goals
identified are to enhance explainability & semantic inter-
pretation, generate intuitive & relatable explanations, ensure
the continual relevance & accuracy of explanations, ensure
optimal performance & relevance, refine explanations & im-
prove system performance, and evaluate the performance and
explainability. Each question targets a specific explanatory
objective and supports identifying relevant techniques from
CBR and XAI literature. Figure [f] illustrates a CBR cycle-
aligned hierarchy of XCBR developed through a comprehen-
sive literature synthesis. This hierarchy is organized around
the four canonical CBR phases, each annotated with core
functionalities supporting explainability. In our previous paper
[47], we discussed essential CBR principles and their rele-
vance to XAl The literature provides empirical and theoretical
justification for including each functionality mentioned in
Figure [6] El-Sappagh & Elmogy [17] underscore the value
of structured case representation, which supports traceable
decision-making by enabling explicit mappings between past
instances and present outputs. Bergmann, Pews, & Wilke [48]]
argue for the importance of domain knowledge integration,
which enriches the semantic grounding of explanations to offer
deeper, context-aware insights. Canas, Leake, & Maguitman
[49] state that experience-based reasoning fosters intuitive
understanding by drawing from analogous cases. Similarly, De
Mantaras et al. [24]] emphasize similarity-based retrieval as a
foundation for objective, transparent case selection. To refine
retrieved solutions and supporting system learning, Wilke &
Bergmann [26] emphasize Adaptation and learning, which
is central to the reuse phase.Case base maintenance (CBM)
discussed by Chebel-Morello, Haouchine, and Zerhouni [3]]

ensures that explanations evolve by removing obsolete cases
and integrating new and validated experiences. Over time,
this will reinforce trust and accuracy. Finally, Sokol & Flach
[50] highlight CBR’s interactive and iterative nature, where
stakeholder dialogue enables clarification, validation, and per-
sonalization of explanations.

Furthermore, the hierarchical structure was informed by
considering how different XCBR systems embed explainabil-
ity in the reasoning cycle and translating these findings into
critical research questions revealed in this study. One cross-
cutting factor, Strategies & Metrics, address top-down issues
involving multiple phases. These dimensions encompass con-
tinuous learning, stakeholder-centered evaluation, and system
efficiency. This framework offers a methodical and compre-
hensive viewpoint because the taxonomy is rooted in the CBR
cycle. It guides the design, analysis, and implementation of
transparent, adaptive, and stakeholder-aligned XCBR systems.

Our literature review identifies key categories vital for CBR
and XAI synergy, which address RQ2.1 to RQ2.6 in Section
In subsequent sections, we discuss how these elements
enhance XAI systems’ transparency, understandability, and
interpretability. In each section, we will also discuss the
ADR prediction use case to provide more insight on how to
incorporate the concepts.

1) RQ2.1. Enhancing Explainability and Semantic Interpre-
tation through Case Structuring and Domain Knowledge:
In this section, we examinee techniques from the CBR lit-
erature focused on enhancing case representation with do-
main knowledge to improve semantic transparency, stake-
holder understanding, and contextual relevance. Ontologies
and domain knowledge enrich case representation, enhance
semantic retrieval, and guide explanation generation in XCBR
systems. CBR enhances XAI by providing relatable examples,
making Al decisions tangible and understandable through
real-world instances. This approach contrasts with abstract,
technical explanations and grounding decision-making in sim-
ilar past cases. The effectiveness of CBR hinges on precise
case representation, as discussed in Section within
the system’s knowledge base, which is crucial for matching
new problems with accurate solutions. A clear, comprehensive
case representation is essential for offering understandable
explanations to stakeholders in an XCBR system [51].

Gaining a deep insight into case representation in XCBR is
crucial, which can be accomplished by examining the func-
tions, challenges, and considerations highlighted in Section
Incorporating domain knowledge [9]] refines expla-
nations, making Al decisions more transparent and relevant,
especially in critical sectors such as finance and healthcare.
This method utilizes expert insights and particular data, en-
hancing trust and supporting better decision-making. Domain-
specific explanations help stakeholders understand the ratio-
nale behind AI recommendations, while post-hoc verification
ensures their scientific validity, fostering collaboration and
improving real-world outcomes. Granularity in representation
is vital for providing clear, tailored explanations in XCBR
systems, meeting the varied needs of stakeholders from ex-
perts to laypersons. This approach enhances stakeholder trust,
improves understandability, and facilitates decision-making.
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Moreover, addressing the complexities of big data [52], XCBR
systems must adeptly handle various data types, ensuring
process transparency and comprehensible data representation
for stakeholders. Precise feature extraction and adaptable rep-
resentation methods are crucial for maintaining transparency
and enhancing system trust and efficiency. The structural con-
sistency and semantic depth in case representation play vital
roles in XCBR systems. They ensure the system’s usability
and comprehensibility, facilitating stakeholder engagement by
providing context-rich, meaningful explanations that align with
stakeholder needs and preferences, thus bolstering trust and
decision-making in XAl applications.

We will investigate how ontology enhances CBR systems,
improving case indexing, retrieval, representation, and more
[17]. By representing case bases as ontologies, it eases knowl-
edge acquisition and case discovery. As frameworks detailing
domain knowledge, ontologies define concepts and relation-
ships [53] vital for Al ensuring cases are well-described
and domain-specific [54]. This clarity and semantic richness
allow for precise case comparisons using semantic similarity
metrics [[55]]. Machine-readable ontologies support the creation
of diverse, user-specific explanations [56]], as demonstrated by
several studies. Tiddi et al. [57] devised an Ontology Design
Pattern (ODP) tailored for explanation representation, illustrat-
ing its capability to encapsulate explanatory concepts across
diverse disciplines. A formalized domain-specific model, Food
Explanation Ontology (FEO) [58] integrates concepts from
the explanation domain to formulate answers to stakeholder
inquiries regarding food suggestions offered by Al systems,
such as personalized knowledge base question-answering plat-
forms. Another proposal [21]] designed a conceptual model and
an ontology, ExRecOnto, to integrate explanations into rec-
ommender systems, focusing on stakeholder-centric, practical
explanations.

iSeeOnto [20], created within the iSee framework, identified
crucial concepts for describing explanation experiences in a
CBR-driven XAI. iSeeOnto case description consists of at-
tributes such as Al Task, Al Method, Dataset Type, Portability,
Scope, Target, Presentation, Concurrentness, Intent, Technical
Facilities, Al Knowledge, Domain Knowledge, and User Ques-

tions [|6]]. More details of iSeeOnto can be found hereEl Chari
et al. [56] created an explanation ontology to model essen-
tial elements for crafting user-focused explanations, covering
various explanatory questions ‘How, Why, Why-not, What-if,
and How-to.” Domain-specific knowledge from multiple fields
has been applied to enhance black-box model explainabil-
ity without compromising performance [10]. Integrating this
knowledge with ontological structures into XCBR enhances
solution clarity and accuracy, advancing explainability and
stakeholder trust. This improves explanations by highlight-
ing data relationships, understanding complex structures, and
enhancing explanation quality, as demonstrated by Doctor
XAI [59] and its application in decision trees [60]. It also
improves interoperability in case base descriptions, promoting
universal understanding and facilitating collaboration across
CBR approaches.

For instance, in ADR prediction, each case can be formally
represented using ontology-driven descriptors such as those
defined in the literature. For example, the Al task (mentioned
above in iSeeOnto) is framed as a binary classification of ADR
risk using a ConvNet architecture trained on structured Elec-
tronic Health Records (EHR) data. Domain knowledge may
include pharmacological interaction rules or dosage adjust-
ment guidelines (e.g., “Avoid non-steroidal anti-inflammatory
drugs, NSAIDs, in patients with impaired renal function”).
These rules are not part of the learned model but are encoded
as external domain knowledge used to generate adaptation
explanations. This knowledge is used to adapt solutions and
to explain adaptations: “The system reduced the dosage of
drug X because of the patient’s GFR level, following guideline
G5.” Explanations are presented through SHAP-based visual
overlays and textual summaries designed for diverse end-
users, including clinicians, pharmacists, and regulatory man-
agers. The system enables efficient case discovery, semantic
retrieval, and tailored explanation delivery across roles using
a structured ontology-based case description by capturing
dimensions, such as stakeholder, presentation format, intent,
and technical components.

2) RQ2.2. Generate Intuitive and Relatable Explanations
via Experience-based Reasoning & Similarity-based Retrieval:

3https://w3id.org/iSeeOnto/explanationexperience
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Literature reveals CBR methods have been applied across var-
ious explanation types, including feature attribution, counter-
factuals, and example-based explanations, showcasing CBR’s
versatility in creating understandable Al explanations [5], [[16].
This section examines how techniques such as similarity-based
retrieval [61] and experience-based reasoning [62] provide
insightful explanations. Traditional CBR systems handle re-
trieval, matching, and adaptation in separate, sequential steps.
Integrating these steps, especially retrieval and adaptability,
can improve CBR system performance [63[]. Gates et al.’s
study [51]] on case-based explanations impacts stakeholder per-
ceptions, emphasizing solution accuracy and problem-solution
similarity. Similarity-based retrieval utilizes a similarity metric
to identify cases that mirror the current problem, facilitating
the discovery of viable solutions. The CBR case-based ap-
proach is inherently interpretable, contrasting with complex
ML techniques, and supports XAl by providing understand-
able explanations through experience-based reasoning [49].
Experience-based reasoning leverages knowledge from previ-
ous cases to address new challenges, drawing on insights from
past experiences for informed decision-making. Combining
these approaches enhances system explainability, allowing it
to communicate the rationale behind solution choices and
their applicability to new problems. This approach bolsters
transparency and trust by showing stakeholders how decisions
align with past similar cases.

Effective retrieval in XCBR systems depends on accurately
determining case similarity, offering example-based expla-
nations, also called instance-based explanations or factual
explanations, based on previous instances solved by the Al
model [[11]]. Such instance-based explanations are intuitive,
matching stakeholders’ mental models and learning from past
experiences, making CBR one of the most effective strategies
in XAI [11]. This process is essential for developing the
case base and its adaptation during reuse, which will be
discussed in Section Lamy et al. [64] introduced
an explainable CBR system featuring a visual interface for
breast cancer management that integrates quantitative and
qualitative insights. This system merges automatic algorithmic
processes with visual explanations, allowing stakeholders to
visually classify queries by showing similarities with past
cases. It utilizes Multidimensional Scaling for quantitative
analysis and rainbow boxes for qualitative insights, offering
accuracy comparable to k-Nearest Neighbors (k-NN) [65]
with better explainability. Adaptation-guided retrieval (AGR)
[63]] streamlines case similarity assessment, minimizing the
need for complex adaptation efforts. The retrieval phase often
employs the MAC/FAC approach [66], a two-step process of
filtering and assessing similarity. Initially, relevant cases are
filtered from the case base based on the query’s problem
description. This filtering is direct, focusing on identifying
necessary features. The subsequent similarity step, crucial
for retrieval, compares the query with filtered cases to find
similarities. While CBR supports transparency in prediction
understanding, the clarity of feature contributions to case
ranking might be lacking [67]. Identifying similarity metrics
that clarify stakeholder ranking beyond optimizing solution
fit is essential. CBR’s potential for enhancing understanding

through visual case comparisons has also been demonstrated
in the literature [61]].

Selecting an appropriate similarity metric is pivotal, as it
significantly impacts solutions’ effectiveness and adaptabil-
ity in subsequent applications. Therefore, accurately evaluat-
ing case similarity is indispensable for generating example-
based explanations and implementing CBR in XAI contexts.
Cunningham [19] classifies similarity metrics in CBR into
four categories: direct similarity mechanisms, transformation-
based measures, information-theoretic measures, and machine
learning-based metrics. Direct similarity mechanisms utilize
feature vectors to represent cases in the case base, using
k-NN, and including metrics such as Overlap, Euclidean,
or Manhattan distances. The calculations in this group are
straightforward, and stakeholders can view the similarity value
or reasoning process, such as in a visualization mode. In
transformation-based measures, similarity is considered as a
transformation effort, and these measures gauge the effort
required to transform one case into another. This effort is
quantified as the similarity value between the two cases, and
examples include Edit distances, Tree Edit Distance (TED),
Levenshtein distance, or Affine Edit Distance (AED) to find
the best solutions for stakeholders. Meanwhile, information-
theoretic measures operate using the raw case representation,
removing the need to create the feature vector representa-
tion. For example, information-based similarity metrics for
biological sequences can reveal the differences between cases
based on their raw data, directly comparing the sequence
properties, such as the length of the sequence or the num-
ber of distinct elements that the sequences contain. Finally,
machine learning-based metrics employ ML techniques, such
as random forests or cluster kernels, to describe the cases.
For example, we can identify the underlying properties of the
instances in our dataset by applying clustering. As instances
within the same cluster tend to share similar characteristics,
while those in different clusters exhibit distinct ones. This
insight enables meaningful comparisons between groups. An
explanation method is needed to interpret and validate the ML
model’s behavior based on these metrics.

Similarity metrics are differentiated by their reliance on
knowledge or features to compute the similarity between cases,
falling into three categories: local, global, or quasi-local [68].
Local metrics assess similarity based on a single attribute,
marking cases as similar if they share a specific property value.
Global metrics, in contrast, evaluate all available properties
and data, offering a comprehensive approach that can iden-
tify more precisely similar cases. Finally, quasi-local metrics
utilize a selected property subset, considering similar cases if
they match these chosen attributes. Local metrics may need
more comprehensiveness while offering simplicity and trans-
parency by focusing on a singular property. Global metrics,
though more accurate due to their all-encompassing analysis,
sacrifice transparency as they incorporate multiple properties,
increasing complexity. Furthermore, similarity metrics can
incorporate structural or semantic knowledge [69]. Structural
knowledge represents solutions using structures such as graphs
or trees [18|], while semantic knowledge uses concepts and
properties defined in domain-specific ontologies [54]]. Com-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3609825

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. , NO. , MARCH 2024 14

bining these allows leveraging both properties for enhanced
similarity assessment, as demonstrated in [6], as part of the
iSee platform, where solutions are represented by Behaviour
Trees (BTs) and explained through ontology. The cloud-based
CBR system, CloodCBR [70]], evaluates the similarity between
the context descriptions of the query case and those in the case
base. It employs similarity metrics, including Wu & Palmer,
Query Intersection, and Exact Match to align specific attributes
or properties of a case within their iSee ontology.

In our XCBR-based ADR prediction use case, similarity
retrieval is central in generating intuitive, example-based ex-
planations. For instance, using a direct similarity metric, such
as Euclidean distance, the system may retrieve a case involving
a patient with comparable lab values and medications, justi-
fying the prediction with: “This patient closely resembles a
previous case with similar kidney function and drug exposure,
where an ADR occurred.” These similarity metrics also differ
in their reliance on knowledge scope. A local metric might
compare only renal function and medication data, offering
tightly focused and interpretable results. A global metric would
compute similarity across the full clinical profile, incorporating
demographics, comorbidities, and lab values. A quasi-local
metric, by contrast, selects a context-sensitive subset—such as
SHAP-identified features or user-specified attributes—to tailor
similarity and explanations dynamically: “Similarity computed
using the most influential clinical features—polypharmacy,
GFR, and drug Y interaction—based on stakeholder intent
and model attribution.” Together, these similarity approaches
allow XCBR systems to generate intuitive, context-aware
explanations grounded in past clinical experience and adapted
to the reasoning needs of diverse stakeholders.

3) RQ2.3. Ensure Continual Relevance and Accuracy of
Explanations through Adaptation and Learning: We will
investigate the adaptation and learning features, examining
how the system refines and applies insights from prior cases
during the CBR reuse phase in an XCBR system. By adopting
leading practices from CBR and XAI, we aim to improve
case adaptation and reuse, thereby clarifying Al decision-
making and ensuring the accuracy of solutions. Once the best
case is selected during the retrieval phase, it may need to be
modified to fit the new context. Minor tweaks may suffice
for diagnostic cases, but more intricate situations, such as
bespoke design challenges, demand substantial alterations for
successful implementation. Considering a case base cannot
encompass every possible design variation, it is vital to adapt
cases to meet new demands. Transformational and generative
adaptation techniques are recognized for effectiveness in this
adaptation process.

Transformational adaptation [26] entails significant struc-
tural changes to a solution, modifying its fundamental com-
position. It involves transforming a solution from a previ-
ously retrieved case to fit a new problem until it achieves
a ‘consistent’ or ‘adequate’ structure [71]]. This adaptation
can be detailed further, with compositional adaptation [26]]
representing a technique where components from various case
solutions are adjusted and combined into a unified solution.
Substitutional and structural adaptations are two different
methods based on the degree of modification to the solution.

Substitutional adaptation [26] is suited for simple problem-
solving, requiring only minor changes when the retrieved
case closely matches the new problem. It involves tweaking
specific solution parameters or attributes without changing the
core structure. Attributes from the original case are mostly
kept, with adjustments made to improve the solution based on
the new problem’s attributes compared to those of a similar,
previously solved case. Structural adaptation [26], [63]], on the
other hand, significantly alters a solution’s components, such
as adding or removing features, to tackle new issues beyond
the scope of existing cases.

Generative adaptation or constructive adaptation [26], [63]]
is a complex adaptation form that reevaluates the reasoning
process for a new problem. Unlike simple adjustments, it
entails thoroughly reassessing the new context and creating
new solution components rather than altering existing ones.
Constructive adaptation [71]], a type of generative reuse, con-
structs solutions for new problems by leveraging similar case
solutions or parts thereof, employing a search-based approach
for configuration tasks.

Adaptation is crucial during the revision phase of the
CBR cycle, especially when feedback on a recommended
solution indicates the need to modify a proposed solution. This
phase focuses on evaluating and implementing the solution
generated during the reuse phase against the stakeholder’s
query, examining its fit and effectiveness while considering
external system knowledge. Adjustments are made to ensure
the solution meets the query’s requirements. Once an optimal
solution is identified, it is vital to archive this case in the case
base for future use, thereby continuously enriching the case
base with new insights and enhancing the system’s problem-
solving efficiency [72].

Adaptation techniques range from simple transformations to
complex generative constructions. In the context of ADR pre-
diction, these methods allow the system to adjust dosage, sub-
stitute medications, combine treatment strategies, or construct
entirely new recommendations. Such strategies are particularly
valuable during the revision phase, where stakeholder feedback
(will discuss later) necessitate modifying the initial solution.
For instance, adaptation ensures that retrieved solutions are
tailored to the current patient’s context. If a retrieved case
suggests a standard drug dosage, transformational adaptation
may reduce the dose based on the patient’s renal function. The
system explains: “Dosage adjusted by 50% due to impaired
kidney function, following renal dosing guidelines.” In cases
requiring a novel response, generative adaptation may syn-
thesize an alternative, e.g., replacing a contraindicated drug
due to a known allergy—with the explanation: “Alternative
selected from the same drug class due to allergy risk.” Once
revised and validated, the adapted case and its explanation are
retained in the case base. This enables continual learning and
improving the system’s ability to generate relevant, patient-
specific explanations in the future.

4) RQ2.4. Ensure Optimal Performance and Relevancy via
Case Base Maintenance: This section discusses the signifi-
cance of CBM during the CBR retain phase. CBM [3] is piv-
otal in ensuring the effectiveness and reliability of explanations
provided by the XCBR system, focusing on updating the case
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base to reflect current knowledge and trends for accurate and
understandable explanations. Maintenance involves removing
obsolete or redundant cases, consolidating cases to improve
reasoning, and correcting inconsistencies [3]. For example,
consolidating multiple cases of mild drug-induced rashes into
a generalized dermatologic ADR case. Lupin et al. [73]
describe strategies for optimizing the case base’s structure or
pruning it to maintain efficiency with fewer cases, potentially
enhancing retrieval speed [74]. Research in the ML and CBR
communities has demonstrated that decreasing the case base
size effectively reduces retrieval times [75]. Various CBM
algorithms have been developed, including the k-NN classifier
for identifying and removing redundant or noisy cases [3]], and
instance reduction algorithms that cluster or evaluate instances
for deletion [76]. Evaluating the updated case base’s effec-
tiveness involves traditional ML techniques, namely Hold-Out
and Cross-Validation [73]], comparing performance metrics
against the original to ensure the CBR systems maintained
or improved accuracy, sensitivity, and specificity.

The accuracy of explanations crucially depends on the
quality of cases stored. High-quality cases ensure the system
provides reliable solutions and trustworthy explanations. Di-
versity in the case base enhances the system’s ability to tackle
various problems, offering varied explanations. For example,
retaining rare ADR examples, such as pediatric reactions to
off-label drug use. However, evolving data or Al models can
make case representations outdated, risking inaccurate expla-
nations. Updating or removing such cases ensures relevance
and protects stakeholders from misinformation [77]. Mini-
mizing redundancy in the case base optimizes retrieval [78],
avoiding repetitive or conflicting explanations. For instance,
removing duplicate cases of elderly patients on the same drug
combination with identical lab results. Moreover, the structure
of the case base significantly impacts explainability, where a
well-organized case base enhances the clarity of the problem-
solving process and the derivation of solutions.

5) RQ2.5. Refine Explanations & Improve System Per-
formance through Iterative & Interactive Process: Despite
the growing availability of XAI techniques and open-source
libraries, significant work remains to advance personalization
and usability in XAI and XCBR. Many current XAI meth-
ods are post-hoc and model-agnostic, meaning they can be
applied across different AI models but often lack stakeholder-
specific adaptation. As a result, they may produce techni-
cally accurate explanations but not intuitive or meaningful
for non-expert stakeholders. This limitation also extends to
XCBR. While case-based explanations are inherently more
interpretable, grounded in examples from past experience,
they are frequently presented as generic instances rather than
tailored explanations. In many cases, they do not highlight
which retrieved cases are most relevant or understandable for
a specific stakeholder, nor do they adapt the explanation format
or content based on stakeholder expertise, intent, or context.

Building on the need for greater personalization and us-
ability in XCBR systems, exploring techniques that support
stakeholder interaction and feedback becomes essential. In-
teraction 1is critical in refining explanations—aligning them
more closely with the stakeholder’s mental model and enabling

the system to learn from stakeholder preferences, correc-
tions, and contextual cues. Incorporating stakeholder feedback
allows XCBR systems to go beyond static, example-based
explanations and evolve into interactive, adaptive systems
that continuously improve their relevance and interpretability.
This section reviews methods that facilitate this bidirectional
exchange.

Robust stakeholder interaction, feedback mechanisms, and
iterative learning are crucial for maintaining a stakeholder-
centric approach and fostering continual improvement in
XCBR systems [50]], [79]. Enabling stakeholders to shape
and tailor explanations enhances the transparency of a pre-
dictive system, making it more relevant and engaging to the
explainee or recipient by aligning the explanation’s detail and
complexity with their preferences. Hence, personalization can
be understood as the adaptation of an explanation or the
explanatory process to address the unique queries of individual
stakeholders [50]. For instance, a clinician may receive an
alert indicating that a patient is at high risk for an adverse
drug reaction. While a generic system might state: “Risk
flagged due to polypharmacy and impaired renal function,” a
personalized and interactive system would allow the clinician
to ask, “How could this risk have been reduced?” System
could generate a counterfactual explanation in response, such
as “If the patient were not concurrently prescribed drug X,
the predicted ADR risk would fall below the threshold.” This
clarifies the rationale behind the alert and supports clinical
decision-making by suggesting modifiable factors that could
change the outcome.

Developing user-friendly and intuitive interfaces and align-
ing with stakeholders’ perspectives is crucial to enhancing
system interaction. These interfaces need to evolve based
on stakeholder behavior and feedback, aiming for a more
intuitive and stakeholder-centered design. Incorporating simple
feedback mechanisms, such as ratings, comments, or inter-
active dialogues, facilitates open communication, allowing
stakeholders to share their views and suggestions quickly.
Matrix factorization-based collaborative filtering, for instance,
utilizes user ratings to find similarities among stakeholders or
items, creating personalized recommendations [80]. Despite
its effectiveness, matrix factorization is often seen as a black
box. Addressing this, a post-hoc, model-agnostic explana-
tion system for matrix factorization recommendations [81]]
is introduced, employing CBR and Formal Concept Analysis
(FCA). This system creates a case base of items linked to
recommended items by analyzing stakeholder interactions,
identifying explanatory items through cosine similarity, and
using FCA to identify key feature groupings.

The posed questions mold causal explanations in conver-
sations and follow specific dialogue principles [82]. A causal
conversation model posits that adequate explanations must be
accurate and directly address the core of the ‘why’ ques-
tion. This relevance principle links various attribution models
through common counterfactual reasoning tailored to different
causal questions. For instance, a clinician inquires, “Why is
this patient flagged as high risk?” The system could respond
with a structured explanation: “The high ADR risk is due to
the concurrent use of drug X and reduced renal function.”
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An explanatory agent within the XCBR system could then
elaborate using multiple forms of communication presenting
a textual summary, highlighting the key contributing features
in a visual plot, and offering an interactive comparison with
similar past cases. This illustrates how an explanatory agent
could function by answering questions and using multiple
communication forms, including text and visuals, to clarify its
decision-making process [13]]. In human-Al interactions [83]],
dialogue-like explanations with visual enhancements are most
impactful. This method improves Al transparency, making it
more adaptable and understandable to the stakeholder, and
allows for a deeper exploration of fairness and accountability
[13]. Tt also promotes bilateral communication, letting stake-
holders contribute their insights to refine the AI's logic.

Surveys and feedback forms are crucial for collecting
stakeholder feedback on system operations, explanations,
and decision-making. Smith et al. [79] found that provid-
ing explanations without feedback opportunities, especially
with lower-quality models, frustrates stakeholders. Conversely,
high-quality models require detailed feedback with explana-
tions. Streamlining the feedback process boosts stakeholder
engagement and values their input. A graph-based approach
[84] leverages link prediction to tailor explanations based
on stakeholder activity, enhancing personalization. Feedback-
driven updates to the case base are critical, with stakeholder
feedback guiding case revisions. Positive feedback confirms
case effectiveness, while negative feedback highlights revision
needs. Nick et al. [85] proposed an experience feedback
loop for CBM driven by stakeholder feedback, addressing
case acquisition and maintenance challenges. Liao et al. [|86]]
introduced a Question-Driven Design Process focused on user
questions to select and evaluate XAl techniques, enhancing
the stakeholder experience. Adapting XAI algorithms based
on feedback improves system reasoning and decision-making
[87]. An iterative case refinement process involving case
description and solution adjustments based on stakeholder
input fills identified gaps. Sosa et al. [88]] developed IREX for
Iterative Refinement and EXplanation of classification models,
allowing domain experts to refine models for tabular data
through iterative expert feedback and explanation techniques,
optimizing model performance. Adapting similarity metrics
based on stakeholder feedback can increase case retrieval
relevance [89]. If stakeholders prefer specific case types,
adjusting the weights of those features can enhance retrieval
accuracy.

Implementing a ‘human-in-the-loop’ strategy [4] achieves
equilibrium between the capabilities of Al and human super-
vision, enabling stakeholders to identify and report biases and
impacts. Encouraging stakeholder contributions can diversify
the case base with various real-world examples. The system
should promptly respond to feedback for improved interaction
and stakeholder experience.

6) RQ2.6. Evaluate Performance and Explainability
through Strategies & Metrics: This section focuses on the
evaluation metrics for XCBR. Performance measurement aims
to evaluate how well the human-machine system performs the
tasks it was created to handle. Hoffman et al. [14] suggest
that providing stakeholders with satisfactory explanations

should enhance the overall effectiveness of the stakeholder
and the AI system. Additionally, evaluating an XAI
system’s effectiveness is intertwined with the stakeholder’s
performance and that of the human-machine system. Research
on AI/ML model explainability diverges into two main paths:
model complexity and human-centric evaluations [15].
Model complexity evaluations associate interpretability with
simplicity, using criteria such as model size and rule count
[90], with studies, including scalable Bayesian Rule Lists
focusing on achieving a balance between interpretability,
accuracy, and efficiency [90]. Recent efforts aim to quantify
model complexity through model-agnostic metrics, observing
how feature interactions affect explainability, such as in
ALE Plots [91]]. Meanwhile, human-centric studies evaluate
explainability through formats, such as decision tables and
trees, exploring their effects on interpretation and trust [92],
and investigate the influence of transparency and feature
quantity on stakeholder trust and prediction accuracy [93]].
Evaluations of XAI systems incorporate stakeholder feedback
and quantitative analyses to gauge their impact [94].

Online and offline evaluations are two primary methods to
assess the effectiveness and quality of explanations in XCBR
systems. Online evaluations involve direct stakeholder interac-
tion for system assessment, which is crucial for understanding
stakeholder experience, satisfaction, and the practical value of
explanations. Tools for online evaluation often include surveys
and questionnaires utilizing formats, including Likert scales,
open-ended questions, or targeted inquiries about explanation
clarity, relevance, and utility [81[]. Researchers also use met-
rics, namely Net Promoter Scores [95] or user satisfaction
indices, to measure general acceptance and perceived expla-
nation quality. Comparing stakeholder perceptions before and
after interacting with the system highlights the explanations’
concrete effects.

Offline evaluation in XCBR systems leverages pre-defined
metrics to measure explanation quality objectively without
relying on stakeholder feedback. This approach offers struc-
tured, repeatable assessments and ensures unbiased evaluation.
Fidelity assessments [96] gauge the accuracy of explanations
in mirroring the model’s internal workings, aiming for a
precise match between the model’s actions and the explana-
tions provided. Consistency checks ensure that similar cases
yield similar explanations, indicating the process’s reliability.
Coverage and diversity metrics [97] evaluate the system’s
capacity to explain various cases and the range of explanations
generated, highlighting the system’s comprehensive explana-
tory capability and flexibility. Correlation assessments examine
how closely explanations align with the system’s reasoning,
typically validated by comparing outcomes to known correct
responses or expert evaluations. Quantitative measures such
as precision, recall, and Fl-score are employed to quantita-
tively validate explanation quality, offering a clear metric for
assessing the effectiveness of explanations in XCBR systems.
Recent studies introduce offline metrics for analyzing various
attributes of explanations, including dissimilarity, sparsity,
instability, or runtime in counterfactual explanations [45].
This shift underscores the ongoing need to develop evaluation
metrics for XAl and highlights the current focus within the
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XCBR domain.

V. CHALLENGES, OPPORTUNITIES, AND FUTURE
DIRECTIONS IN XCBR

This section tackles RQ3, outlined in Section @ focusing
on advancing Al to better meet human needs through inter-
pretability, fairness, and accountability. Integrating CBR and
XAI can improve transparency in decision-support systems;
however, various challenges still hinder XCBR’s effectiveness.
A major challenge is the complexity of case retrieval, which
requires domain-specific similarity metrics responsive to the
data’s quality, dimensionality, and completeness. For example,
high-dimensional clinical datasets face challenges related to
missing features and diverse information sources, which affect
retrieval effectiveness. Another major challenge arises from the
object-oriented nature of CBR explanations [2]. Unlike many
standard Al systems, XCBR must address the needs of diverse
stakeholders beyond end-users based on their roles, expertise,
and information needs [2]. XCBR faces significant diffi-
culties in managing the diversity of interpretations required
for heterogeneous case bases [2]. As case libraries contain
objects with varying structures, semantics, and feature spaces,
constructing explanation models that generalize across this
diversity remains an open challenge. Technical challenges are
heightened by data limitations, including small sample sizes,
class imbalance, label noise, and inadequate representation of
rare conditions, all hindering system generalizability. As case
bases grow, the demand for scalable indexing and practical
similarity search algorithms rises to support prompt decision-
making in critical areas, particularly healthcare. Moreover,
maintaining consistent and reliable explanations during case
base expansion poses additional challenges for long-term
system maintenance [2].

XAI is essential for advancing responsible Al [15]], [98]]
while XCBR faces challenges in developing trustworthy sys-
tems. A universal XCBR framework is needed to support
diverse stakeholders by standardizing case retrieval, adapta-
tion, and explanation mechanisms while ensuring explanations
remain understandable and meaningful across clinical, regula-
tory, and technical domains. Establishing such a framework
would allow systematic evaluation of explanation effective-
ness, including stakeholder trust, comprehension, and clini-
cal utility, through carefully designed human studies. While
CBR offers an intuitive foundation for generating explanations
through prior cases, its broader adoption in XAI remains
limited, particularly when dealing with highly complex or
high-dimensional AI models. Current CBR contributions to
XAI have demonstrated value in domains such as image
classification, text analysis, and neural network interpretation;
however, the full potential of XCBR for complex decision
support tasks has yet to be fully realized [2]. The hybrid
integration of CBR with model-based XAI techniques, such
as SHAP, Anchors, and Influence Functions, offers a path-
way toward richer, multi-level explanations that combine the
strengths of precedent-based reasoning with data-driven model
interpretability. In addition, improving human-AI collabora-
tion [4] within XCBR requires the development of adaptive

explanation strategies that can modify explanations according
to the stakeholder’s level of expertise, information needs,
and contextual elements. Drawing insights from philosophy,
psychology, and cognitive science can refine XCBR systems
to align with human explanation processing and evaluation [4].
Moreover, incorporating knowledge from various sectors can
further develop human-centric XCBR approaches.

The evolving landscape of XAI increasingly emphasizes
auditing Al models and enhancing the usability and compre-
hensibility of XAI interfaces. While many approaches offer
explanations for complex models, they often lack customiza-
tion for non-expert stakeholders. XCBR provides explanations
based on past cases but may not effectively identify the most
relevant examples for specific stakeholders. Future research
should focus on developing interactive XCBR tools that adapt
to various stakeholders’ needs and thought processes. This
transition from static to interactive explanations is essential
for the future of explainable, stakeholder-centered Al. Key
focus areas should include personalized systems incorporating
stakeholder models, feedback mechanisms, and context sensi-
tivity to improve interpretability, trustworthiness, and decision-
making support.

Development challenges in responsible human-centered Al
deployment focus on enhancing data quality communication
and addressing analysis sparsity through innovative methods
[98]. Future advancements in XCBR require new design
patterns, knowledge graphs, ontology creation methodologies
[98]], [99],and integration techniques with Al. User studies are
crucial for evaluating how ontologies enhance understanding
and transparency. Effective communication of data quality to
stakeholders, addressing completeness and fairness, is vital
for responsible Al development.Another probable direction for
advancement is the integration of Large Language Models
(LLMs) [100] into XCBR systems. The potential in these
models lies in improving the ability to generate clear and
natural language explanations by making the systems more
engaging and user-friendly to interact with. This aligns well
with ongoing Al research, where efforts are being directed
towards creating precise, transparent systems centered on the
stakeholder’s experience [101]. The future of XCBR involves
developing frameworks that clarify Al processes, meet diverse
stakeholder needs, uphold ethical principles, and support trans-
parent human-Al interactions, necessitating a multidisciplinary
approach.

VI. CONCLUSIONS

In this paper, we examined XCBR through a cycle-aligned
perspective that examined how explainability can be system-
atically supported across the four core phases of the CBR
process: Retrieve, Reuse, Revise, and Retain. By merging
the strengths of CBR, which offers inherently interpretable,
stakeholder-focused, case-based explanations, with XAI for
transparency and accountablility, we positioned XCBR as a
powerful intersection of these paradigms. The XCBR systems
utilizes CBR for case-based explanations or generating ex-
planations using CBR techniques, a significant advancement
in demystifying decision-making. Our work identified six
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functional goals for explainability, including semantic interpre-
tation, intuitive & relatable explanations, continual relevance
& accuracy of explanations, optimal performance & relevance,
refine explanations, and evaluate the performance and explain-
ability. These goals were mapped to six thematic categories:
structured case representation, domain knowledge, experience-
based reasoning, similarity retrieval, case adaptation, case
storage and management, user feedback, and performance
evaluation, forming the foundation of a comprehensive XCBR
taxonomy. This taxonomy serves a descriptive framework and
a diagnostic tool to analyze, compare, and design XCBR
systems.

There remain challenges in building interactive, adaptive,
and scalable XCBR systems that align with diverse stakeholder
needs and real-world constraints despite CBR’s natural com-
patibility with XAI objectives. There are also opportunities for
enhancing stakeholder-personalized explanations, employing
LLMs to generate explanations, and integrating human-centric
measures into evaluation procedures. In this paper, we review
the significance of ongoing research and innovation in XCBR
to fulfill the evolving requirements of Al deployment. Contin-
ued collaboration, methodological care, and collective effort
are needed to develop genuinely explainable and trustable Al
to build systems that benefit and serve humankind.
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