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Abstract 

This study explores the complex nonlinear relationship between wear and noise, expanding 

traditional tribological methods. We conducted friction and wear experiments using two 

polymers and six metals across a wide temperature range, focusing on the noise generated at 

the friction interface. The research analyzes the wear mechanisms of polymer-metal tribopairs 

at low temperatures and establishes a model to clarify the relationship between wear and 

noise. We employed three machine learning algorithms—LightGBM, AdaBoost, and Extra 

Trees—to develop a regression model that correlates noise emission with the amount of wear, 

enhancing feature selection and model robustness through KPCA. 
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1.Introduction 

Low-temperature valves are critical components in the pressurization and delivery systems 

of launch vehicles, primarily responsible for controlling the opening and closing, direction 

switching, flow, and pressure regulation of cryogenic propellants such as liquid hydrogen and 

liquid oxygen. Their performance and reliability directly impact the safety of the launch 

vehicle's propulsion system[1-3]. Under conditions of high load, strong vibrations, and multiple 

openings and closings, wear due to friction between polymer-metal guiding pairs is almost 

unavoidable. Over time, the accumulated wear between the guiding pairs can lead to frequent 

sealing leakage issues in the valves. In this context, exploring the wear amount generated from 

polymer-metal friction is particularly urgent. 

Traditional methods for measuring wear amount primarily include mass loss, surface 

morphology analysis, and functional testing. These methods, based on the principle of "static 

comparison," require interrupting the friction process at specific time points to perform 

measurements. While they can provide discrete wear amount data, they fail to capture the 
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transient behavior during dynamic wear processes (such as particle migration and material 

fatigue accumulation). With the advancements in in-situ detection technologies such as high-

speed cameras and micro-force sensors, wear assessment is gradually evolving towards real-

time and multi-dimensional approaches. 

The behavior of tribological systems is complex and difficult to predict, as the wear process 

involves intricate relationships among material properties, motion states, and operating 

conditions, exhibiting high non-linearity[4-9]. Data-driven machine learning methods 

demonstrate unique advantages in addressing complex tribological problems: they can 

autonomously extract nonlinear relationships from high-dimensional experimental data, 

facilitating deep integration of information within friction systems[10-16].Currently, the 

application of machine learning in friction and wear research primarily follows a "first 

experiment, then predict" model, wherein various data are collected under predetermined 

experimental conditions to establish intelligent predictive models for material wear. For 

instance, Chen et al.[17] compared the wear type classification accuracy of six suitable machine 

learning algorithms and employed the Lsboost algorithm to regress wear rates; Thomas Bergs 

et al.[18] used fully convolutional networks (FCN) to monitor wear areas on microscopic tool 

images; Cheng et al.[19] established a mapping relationship between the time-frequency 

domain features of friction noise and the friction coefficient using three machine learning 

algorithms: LightGBM, CatBoost, and XGBoost, achieving monitoring of tribological 

performance; Liao et al.[20] constructed an extended model for time series prediction using 

TCN and TCN-GRU algorithms, successfully predicting the friction coefficient of FEP; Zhao 

et al.[21] combined variational mode decomposition with machine learning algorithms and 

norm feature selection to build a mapping model for the friction coefficient of polymers, 

realizing precise monitoring of friction coefficients.Notably, the exploration of physical 

behavior by machine learning in monitoring tribological behavior is limited, and its application 

in tribology mainly focuses on predicting tribological performance (such as wear rate and 

friction coefficient) while lacking attention to the practical engineering value of friction. Wear 

amount is a quantitative indicator of material loss or geometric morphology changes, directly 

reflecting the reduction effect of materials after wear. Therefore, this study aims to construct a 

noise signal regression model for wear amount, striving to fill the gap in previous research 

regarding the exploration of machine learning and tribology in terms of engineering application 

value, and to provide new insights for understanding the reliability and wear resistance of 

materials in friction processes. 

In this study, under varying temperature, pressure, and rotational speed conditions, we 

collected friction noise data from the polymer-metal friction process. We utilized three 

algorithms—LightGBM, AdaBoost, and Extra Trees—to build a regression model for wear 

amount based on noise signals. Additionally, we introduced the optimization algorithm KPCA 



for wear monitoring, further enhancing the accuracy and robustness of the overall model's 

regression predictions. Thus, this paper proposes an effective method for monitoring wear 

amount. 

2. Noise Generation and Wear Mechanisms of Polymers and Metals at Low Temperatures 

The generation mechanism of noise in polymer-metal friction pairs can be attributed to the 

non-steady-state time-varying characteristics of interfacial contact interactions. When two 

heterogeneous materials undergo relative motion, the randomness and fluctuations in the 

microscopic mechanical state at the contact interface disrupt the dynamic equilibrium of the 

mechanical system, resulting in noise signals with random characteristics. Analyzing from a 

mesoscopic scale, the friction interface can be viewed as a composite system composed of 

numerous discrete contact elements, each modeled as a vibrating subsystem with mass, stiffness, 

and damping characteristics. During the friction process, these vibrating elements are subjected 

to the coupled effects of normal loads and tangential traction forces, leading to complex 

adhesive-slip dynamic responses of each subsystem, while the contact area stores potential 

energy in the form of elastic and plastic deformations. As this energy accumulates and exceeds 

a critical threshold, surface material begins to wear[22-25]. Meanwhile, this sustained coupling 

of multiple physical fields can trigger ongoing self-excited vibrations at the interface, 

converting mechanical vibration energy into acoustic energy.Therefore, the generation of 

friction noise and the occurrence of wear are fundamentally closely related to energy dissipation, 

and there is a high degree of nonlinear relationship between the noise signal and the amount of 

wear. 

Temperature is a key factor influencing the performance of thermoplastic polymers and 

determines the friction characteristics of polymer-metal pairs. Taking FEP and PCTFE, the 

subjects of this study, as examples, below the glass transition temperature, the polymer chains 

are in a frozen glassy state, exhibiting minimal segmental motion. This allows the material to 

maintain a relatively stable structure and performance during temperature variations. In this 

phase, thermal vibrations and deformations are primarily governed by weak intermolecular 

forces, such as van der Waals forces. As the temperature decreases, the modulus and hardness 

of the polymer materials improve, enhancing their wear resistance, while the contact area 

during friction correspondingly reduces, significantly lowering wear and energy loss. However, 

as the temperature continues to drop to the material's critical point, the increase in shear force 

begins to dominate the stiffness effect, surpassing the contributions of hardness and elastic 

modulus to friction performance, resulting in increased wear and energy dissipation [26-29].As 

a result, it is evident that more polymers will exhibit more complex wear mechanisms, making 

it challenging to quantify the relationship between noise and wear between polymers and metals 

across a wide temperature range. Therefore, we employ machine learning algorithms to explore 

the nonlinear regression relationship between noise signals and wear amount, as illustrated in 



Figure 1. 

[Figure 1] 

3. Tribological Testing Process at Low Temperatures 

In this study, friction and wear tests were conducted using the tribological test module of the 

Anton Paar MCR301 rheometer, as shown in Figure 2. The instrument applies a normal force 

to a metal ball fixed between three plates, causing the polymer to rotate and creating a controlled 

friction and wear environment. The contact mode involves point contact between the three 

plates and the ball, with dry friction as the friction type. The dimensions of the polymer plates 

are 14.92 × 5.88 × 3.06 mm, while the steel ball has a diameter of 12.7 mm, a maximum 

circumference of 0.03990 m, a precision grade of G100, and a hardness of 180 HV.Three 

different operating conditions were compared: loads and rotational speeds of 5 N at 750 rpm, 

10 N at 1000 rpm, and 15 N at 1250 rpm. Five temperature points were established using an 

external liquid nitrogen tank: 25, 0, -20, -70, and -120 °C. Noise signals were captured using a 

sound pressure transducer (378C1, PCB Company, USA), positioned 40 mm away from the 

three-plate ball apparatus, with a sampling frequency of 51,200 data points per second. Each 

data frame lasted for 40 milliseconds, corresponding to a capture rate of 25 frames per second. 

Within each frame, a total of 2048 data points were collected, and the tests were conducted for 

durations of 60 and 900 seconds. 

In this experiment, we focused on two low-temperature performing thermoplastic polymers: 

polychlorotrifluoroethylene (PCTFE) and fluorinated ethylene-propylene copolymer (FEP). 

The metal ball testing materials included two aluminum alloys (5A06 and 2A12), one aluminum 

bronze (QAL9-2), and three alloy steels (F151, GH4169, and 304). After the polymers and 

metals were subjected to friction for a specified duration, the samples were ultrasonically 

cleaned in water and dried with cold air. The wear amount was determined by measuring the 

mass difference before and after the experiment using an electronic balance with an accuracy 

of 0.01 mg. 

[Figure 2] 

4. Model for Relating Friction Noise Signals to Wear Amount 

Noise is characterized by randomness and irregularity, making direct observation of the noise 

signal waveforms only superficially qualitative in terms of their variation patterns. To establish 

a deeper quantitative relationship between noise and wear amount, it is essential to first extract 

features from the noise. The noise signal waveforms can be viewed as more disordered and 

irregular function graphs, where analysis typically focuses on characteristics such as slope, rate 

of change, extrema, inflection points, and symmetry. Similarly, when describing a segment of 

noise signal, one often pays attention to features like extreme values, density, steepness, 



sharpness, and symmetry.In this study, we extracted time-dependent noise amplitudes in the 

time domain. Using the following formulas, we computed six key features from the sound 

pressure amplitude signals to characterize the noise properties over intervals of 900 seconds 

and 60 seconds: the maximum sound pressure level (Pmax), minimum sound pressure level 

(Pmin), root mean square value (Prms), crest factor (Pcrest), kurtosis (Pku), and skewness (Psk). 

These six state feature values are summarized in Table 1. [30-32]. 

[Table 1] 

In the equation, x(n) represents the sound amplitude values at n feature points, where n is 

defined by the duration of the testing period, specifically 900 seconds and 60 seconds for this 

test. 

The maximum sound pressure level (Pmax) represents the highest sound pressure level 

measured within a sound wave, indicating the maximum loudness during the friction and wear 

process at the polymer-metal interface. It can be utilized to monitor changes in noise 

characteristics associated with equipment wear. The minimum sound pressure level (Pmin) 

denotes the lowest sound pressure level, providing a background noise level during equipment 

operation, which serves as baseline data for acoustic monitoring. The root mean square value 

(Prms) reflects the energy of the noise signal, with an increase in RMS typically indicating an 

escalation in wear severity. The crest factor (Pcrest), defined as the ratio of the maximum sound 

pressure level to the root mean square value, illustrates the signal's instantaneous variation and 

dynamic range, aiding in the identification of sudden events caused by wear. Kurtosis (Pku) 

measures the concentration of peaks in the noise signal, assisting in the detection of early wear 

signals. Skewness (Psk) evaluates the symmetry of the noise signal, with variations indicating 

uneven wear or potential failures. 

This study considers specific operating conditions for polymer-metal friction, including 

temperature, load, speed, and pairing codes, resulting in a total of 11 friction characteristics and 

the corresponding wear amount. A total of 208 pairs were tested, yielding 2,496 data points. 

Training and testing sets were established to validate the effectiveness of the algorithms. To 

ensure the model adequately learns the underlying patterns and characteristics of friction noise 

rather than noise data, it is crucial that the training set is larger than the testing set. A small 

training set may lead to unstable evaluation results when assessing unseen data in the testing 

set, thereby failing to reflect the model's true performance . Consequently, this study establishes 

appropriate gradient ratios by gradually increasing the proportion of the training set, setting 

four ratio types: 3:2, 7:3, 4:1, and 9:1, for the evaluation and testing of machine learning 

algorithms. Additionally, to quantitatively characterize the deviation between predicted and 

actual values and assess model fitting[33-34], four metrics—MSE, RMSE, MAE, and R²—are 

introduced as evaluation indicators, as shown in Table 2. 



[Table 2] 

Mean Squared Error (MSE) represents the average of the squared differences between 

predicted values and actual values, making it suitable for evaluating the predictive accuracy of 

wear models. Root Mean Squared Error (RMSE), which is the square root of MSE, can detect 

anomalies in wear noise; a value exceeding a specified threshold indicates potential wear or 

failure. Mean Absolute Error (MAE) represents the average of absolute errors and reflects the 

overall condition of wear. The coefficient of determination (R²) is used to measure the model's 

ability to explain the variability of the predicted results for wear data. 

5. Machine learning model 

The relationship between the noise generated from metal-polymer friction and the wear rate 

is highly nonlinear. Therefore, this study introduces three tree-based model algorithms to 

construct wear amount regression models and extract the underlying relationships.Table 3 

summarizes the main parameter settings for the three machine learning algorithms: Random 

Forest (RF), AdaBoost, and LightGBM.Table 4 compares the characteristics of the three 

algorithms. Table 5 provides the parameter tuning methods for the three algorithms. 

[Table 3.4.5] 

5.1 Prediction model based on Boosting algorithm 

This study considers the inherent nonlinearity and complexity of the dataset. To reduce the 

impact of redundant features from small samples on the overall prediction accuracy of the 

model, we introduce the core idea of Boosting algorithms, which involves iteratively adjusting 

weights in each round to continuously correct the previous model's prediction bias for specific 

wear stages, thereby enhancing the global approximation capability for complex wear patterns. 

Among these, LightGBM and AdaBoost are two typical Boosting algorithms, as illustrated in 

Figure 3 and the equations. LightGBM employs Gradient-based One-Side Sampling 

(GOSS)[35], while AdaBoost mitigates the influence of outliers through sample weight 

decay[36]. Both algorithms continuously adapt to local patterns with abrupt changes while 

retaining the main wear trends, thereby achieving high prediction accuracy for wear amount. 

[Figure 3] 
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N is the total number of training samples,ht(xi)is the predicted value of sample xi by the t-th 

base model, 𝑦𝑖 is the true value,wi is the weight of sample i in the current iteration,αtht(x) is 

the weighted predicted value of the t-th base model. 

5.2 Prediction model based on Bagging algorithm 

In the prediction of industrial wear amount, Bagging algorithms generate differentiated 

training sets based on Bootstrap resampling. By employing multiple decision trees to learn 

different combinations of operating conditions in parallel, these algorithms avoid the sensitivity 

of a single tree to noise. The Extra Trees algorithm is based on the Bagging framework[37], as 

shown in Figure 4. It achieves efficient modeling through a dual randomness anti-noise 

mechanism and high-dimensional feature parsing capability, ensuring that the prediction results 

align with wear mechanisms while also possessing generalization ability across different 

operating conditions. This provides reliable support for the real-time monitoring of complex 

systems. 

[Figure 4] 

6. Feature Engineering Based on KPCA Dimensionality Reduction 

In the analysis of wear data, we employ the polynomial kernel KPCA method to address the 

nonlinear coupling between noise features and wear amount. By adapting the unstandardized 

features using a polynomial kernel function, we avoid the performance degradation caused by 

distance distortion in the RBF kernel, while preserving the global associative characteristics 

among the features. This approach maps the original data to a high-dimensional space, 

achieving the linear separation of nonlinear noise and effectively extracting key wear principal 

components. It balances noise resistance and small sample adaptability, significantly reducing 

the risk of overfitting[38-39]. 

7. Algorithm Experiment Process 

This study conducts a multi-stage experiment on three algorithms: LightGBM, AdaBoost, 

and Extra Trees. First, a series of preliminary experiments are performed to optimize the 

parameters. Subsequently, polynomial kernel KPCA is introduced for feature space 

reconstruction, and a dimension sensitivity analysis is conducted to determine the optimal 



reduced dimensionality. Finally, under fixed dataset partitions, the differences in predictive 

performance before and after integrating KPCA are compared to validate its optimization effect 

against noisy data. The specific process is illustrated in the algorithm experimental framework 

shown in Figure 5. 

[Figure 5] 

8. Result analysis 

8.1 Analysis of physical experimental results 

This study constructed a dataset of 208 wear amount test samples, ranging from -2E-5 mg to 

4.5E-4 mg, which comprehensively covers potential wear scenarios. This dataset aids the model 

in learning the entire process from initial wear to a stable state. Additionally, the data exhibits 

a decreasing trend within a certain range, a pattern that can be easily captured by the polynomial 

kernel function of KPCA, thereby achieving nonlinear dimensionality reduction.The statistical 

results of the actual wear amount are shown in the figure 6. 

[Figure 6] 

8.2 Analysis of algorithm experimental results 

In the construction of the standard model, all three algorithms exhibited goodness-of-fit 

values exceeding 0.79, indicating that the models can explain 79% of the observed data, 

demonstrating a good level of fit. Among them, the Extra Trees algorithm performed the best, 

with an average value of 0.898 and the smallest error, as shown in Figures 7, 8, 9, and 10. This 

advantage in addressing the wear amount issue stems from the robustness and generalization 

capability of Extra Trees. In contrast, while AdaBoost also performs well by dynamically 

adjusting sample weights and combining weak learners, its performance on the noisy wear 

dataset is not as strong as that of Extra Trees. The histogram-based dimensionality reduction 

method used by LightGBM may lead to feature loss, especially in small datasets or when feature 

weights are similar, resulting in lower accuracy compared to the other two algorithms. Overall, 

the decision tree-based machine learning model architecture is well-suited for addressing this 

complex nonlinear problem. This framework does not require prior assumptions about the 

distribution of wear data or the mathematical relationships between wear features. By 

implementing multi-level nonlinear segmentation and multi-node decision boundary settings 

within a tree structure, it effectively uncovers the interactions between features and provides 

visualized decision pathways. This opens up new avenues for utilizing black-box models to 

explore the deeper mechanisms between noise and wear. Furthermore, the performance of the 

parallel weak learner model surpasses that of the sequential weak learner model, indicating that 

the parallel model can better cover different feature subspaces through the parallel learning of 

multiple decision trees. This result suggests that the nonlinear relationship between wear and 



noise is composed of multiple independent mechanisms, providing new insights for future 

exploration of wear amounts using hierarchical composite models. 

In the construction of the dimensionality reduction model, the average goodness-of-fit for 

the AdaBoost algorithm is 0.915, the average goodness-of-fit for the Extra Trees algorithm is 

0.899, and the goodness-of-fit for the LightGBM algorithm is 0.874. Notably, the improvement 

in goodness-of-fit for the LightGBM algorithm with KPCA polynomial kernel dimensionality 

reduction is the most significant, as shown in Table 6. This enhancement can be attributed to 

the more compact feature space after KPCA reduction, which reduces the model's reliance on 

incidental patterns in the training data and lowers the risk of overfitting. The improvement in 

goodness-of-fit for the Extra Trees algorithm is minimal, and there is even a decline in 

robustness. This is because Extra Trees, with its random selection of features and split values, 

inherently possesses strong resistance to high-dimensional noise and the ability to handle 

nonlinear problems; thus, KPCA's dimensionality reduction did not yield additional benefits. 

Instead, it may introduce unnecessary noisy features and overfitting information. Overall, the 

KPCA dimensionality reduction method is suitable for handling nonlinear friction and wear 

data, as it can simplify the complexity of friction models while retaining the original 

information. This finding provides an effective feature engineering strategy for tribological 

modeling. 

[Figure 7.8.9.10] 

[Table 6] 

9. Conclusion 

The noise regression model for wear amount is characterized by a high degree of nonlinearity. 

In this study, the LightGBM, AdaBoost, and Extra Trees algorithms were employed, in 

conjunction with KPCA for dimensionality reduction, to perform regression predictions of wear 

amount resulting from friction noise. The main contributions of this research are summarized 

as follows: 

1. A novel wear amount prediction model based on noise has been proposed for regressing 

the wear amount of polymers and six metals under varying operational conditions across a wide 

temperature range. 

2. A decision tree-based algorithm framework was implemented for the first time in noise 

regression modeling of wear amount. Comparative evaluation revealed that the LightGBM, 

AdaBoost, and Extra Trees algorithms exhibited the highest prediction accuracy, with Extra 

Trees demonstrating superior performance. This systematic study successfully established the 

feasibility of constructing generalizable wear amount prediction models using a decision tree 

framework and highlighted the advantages of employing multiple parallel decision trees. 



3. The application of KPCA dimensionality reduction to wear amount prediction was 

conducted for the first time, resulting in significant improvements in feature extraction and 

prediction accuracy. This approach enhanced the ability of machine learning models to address 

nonlinear issues and provided an effective feature engineering strategy for tribological 

modeling. 

This study still has the following limitations: both machine learning models and the KPCA 

dimensionality reduction method are inherently black box models, making it difficult to clearly 

explain the interaction mechanisms between specific physical quantities. However, experiments 

have demonstrated that this black box model is suitable for establishing relationships related to 

friction behavior. Specifically, machine learning algorithms based on a decision tree framework 

can capture complex combinations of noise and operational parameters while providing 

interpretable decision pathways, and the KPCA dimensionality reduction method simplifies the 

complexity of friction models while retaining original information. Achieving the same high 

level of prediction accuracy for each pair of friction materials under different operating 

conditions is challenging.In the future, this research is expected to continue developing in the 

following aspects: Building upon the superiority of the existing decision tree framework, 

machine learning models that are more tightly integrated with the physical background of 

tribology could be constructed based on the decision tree structure, thereby enhancing the 

model's generalization capability and prediction accuracy. Furthermore, by leveraging the 

interpretable internal structure of decision trees, the potential mechanisms of noise and wear 

could be further explored, making it possible to predict wear amount under more friction 

conditions and improving the prediction accuracy for more material pairs. 

 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

Acknowledgments 

This work was financially supported by the projects of Tsinghua University-China Dat

ang Corporation Joint Institute for Green and Smart Energy Technology (No.10002552

D24KJZB00011) 

Data Availability 

Data will be made available on request. 

[Appendix A. Tables] 

Reference: 



[1]Ganlin Cheng,Fei Guo,Xiaohua Zang,Zhaoxiang Zhang,Xiaohong Jia,XiaolianYan,202

2,“Failure analysis and improvement measures of airplane actuator seals”,Engineeri

ng Failure Analysis 133:105949.https://doi.org/10.1016/j.engfailanal.2021.105949 

[2]J.Pinho,L.Peveroni,M.R.Vetrano,J.-M.Buchlin,J.Steelant,M.Strengnart,2019,“Experimenta

l and numerical study of a cryogenic valve using liquid nitrogen and water”, Aer

ospace Science and Technology 93:105331.https://doi.org/10.1016/j.ast.2019.105331 

[3]Jean-Luc Bozet,2001,“Modelling of friction and wear for designing cryogenic valve

s”,Tribology International 34:207-215.https://doi.org/10.1016/S0301-679X(01)00003-2 

[4]Honghao Zhao,Zi Yang,Bo Zhang,Chong Xiang,Fei Guo,“Machine Learning Algorith

ms for Predicting Wear Rates on the Basis of Friction Noise”,Tribology Transacti

ons 67:730-743.https://doi.org/10.1080/10402004.2024.2336005 

[5]Xiaohui Li,Pan Fu,Kan Chen,Zhibin Lin,Erqing Zhang,2016,“The Contact State Mon

itoring for Seal End Faces Based on Acoustic Emission Detection”,Shock and Vib

ration 1:8726781.https://doi.org/10.1155/2016/8726781 

[6]Zhi Zhang,Xiaohui Li,2014,“Acoustic Emission Monitoring for Film Thickness of M

echanical Seals Based on Feature Dimension Reduction and Cascaded Decision”,S

ixth International Conference on Measuring Technology and Mechatronics Automat

ion 64-70.http://doi.org/10.1109/ICMTMA.2014.201 

[7]Juan Vargas-Machuca,Félix García,Alberto M. Coronado,2020,“Detailed Comparison 

of Methods for Classifying Bearing Failures Using Noisy Measurements”,Journal 

of Failure Analysis and Prevention 20:744-754.https://doi.org/10.1007/s11668-020-0

0872-3 

[8]Yannis L Karnavas,Achilles Vairis,2011,“Modelling of Frictional Phenomena using N

eural Networks: Friction Coefficient Estimation”,Applied Simulation and Modelling 54

-58, http://doi.org/10.2316/P.2011.715-055 

[9]Georg Peter Ostermeyer,2009,“On Tangential Friction Induced Vibrations in Brake S

ystems,Non-smooth Problems in Vehicle Systems Dynamics”,Non-smooth Problems

 in Vehicle Systems Dynamics 101-111,https://doi.org/10.1007/978-3-642-01356-0_9 

[10]Jinjiang Wang,Yilin Li,Rui Zhao,Robert X.Gao,2020,“Physics guided neural network

 for machining tool wear prediction”,Journal of Manufacturing Systems 57:298-31

0,https://doi.org/10.1016/j.jmsy.2020.09.005 

[11]Nian Yin,Pufan Yang,Songkai Liu,Shuaihang Pan,Zhinan Zhang,2024,“AI for tribolo

gy: Present and future”,Friction 12:1060-1097,https://doi.org/10.1007/s40544-024-08

79-2 



[12]Dongdong Kong,Yongjie Chen,Ning Li,2018,“Gaussian process regression for tool 

wear prediction”,Mechanical Systems and Signal Processing 104:556-574,https://doi.

org/10.1016/j.ymssp.2017.11.021 

[13]Jinjiang Wang,Peng Wang,Robert X.Gao,2015,“Enhanced particle filter for tool wea

r prediction”,Journal of Manufacturing Systems 36:35-45,https://doi.org/10.1016/j.jm

sy.2015.03.005 

[14]Alessandra Caggiano,2018,“Tool Wear Prediction in Ti-6Al-4V Machining through 

Multiple Sensor Monitoring and PCA Features Pattern Recognition”,Sensors 3:823,

https://doi.org/10.3390/s18030823 

[15]Silvia Logozzo,Maria Cristina Valigi,2019,“Investigation of instabilities in mechanic

al face seals: prediction of critical speed values”,Advances in Mechanism and Ma

chine Science 73:3865-3872.https://doi.org/10.1007/978-3-030-20131-9_383 

[16]Fei Guo,Ganlin Cheng,Zi Yang,Chong Xiang,Xiaohong Jia,2023,“Deep learning alg

orithm to predict friction coefficient of matching pairs at different temperature do

mains based on friction sound”,Tribology International 188:108903.https://doi.org/1

0.1016/j.triboint.2023.108903 

[17]Shengshan Chen,Ganlin Cheng,Fei Guo,Xiaohong Jia,Xiaohao Wen,2025,“Integrating

 Friction Noise for In Situ Monitoring of Polymer Wear Performance: A Machine

 Learning Approach in Tribology”,Journal of Tribology 147:061701.https://doi.org/1

0.1115/1.4066947 

[18]Thomas Berg,Carsten Holst,Pranjul Gupta,Thorsten Augspurger,2020,“Digital image 

processing with deep learning for automated cutting tool wear detection”,Procedia 

Manufacturing 48:947-958,https://doi.org/10.1016/j.promfg.2020.05.134 

[19]Ganlin Cheng,Chong Xiang,Fei Guo,Xiaohao Wen,Xiaohong Jia,2023,“Prediction of 

the tribological properties of a polymer surface in a wide temperature range using

 machine learning algorithm based on friction noise”,Tribology International 180:1

08213. https://doi.org/10.1016/j.triboint.2022.108213 

[20]Jiayu Liao,Honghao Zhao,Pengxiang Zhou,Li Chen,Fei Guo,2024,“A novel extensio

n model for predicting the friction coefficient of fluorinated ethylene propylene b

ased on temporal convolutional networks expansion algorithms”,Journal of Intellige

nt Manufacturing 1-19.https://doi.org/10.1007/s10845-024-02502-3 

[21]Honghao Zhao,Jiming E,Shengshan Chen,Ganlin Cheng,Fei Guo,2024,“Prediction of 

friction coefficient of polymer surface using variational mode decomposition and 

machine learning algorithm based on noise features”,Tribology International 191:10



9184.https://doi.org/10.1016/j.triboint.2023.109184 

[22]Sergienko V,Bukharov S,Kupreev A,2007,“Tribological processes on contact surface

s in oil-cooled friction pairs”,Proc. NAS Belarus 4:86-89 

[23]Bukharov S,2004,“Reduction of vibroacoustic activity of metal-polymer tribojoints i

n nonstationary friction processes”,Summary of Ph. D:Thesis 5 

[24]James Ringlein,Mark O. Robbins,2004,“Understanding and illustrating the atomic or

igins of friction”,American Journal of Physics 72:884-891,https://doi.org/10.1119/1.1

715107 

[25]Jacqueline Krim,2002,“Surface science and the atomic-scale origins of friction: wha

t once was old is new again”,Surface Science 500:741-758,https://doi.org/10.1016/

S0039-6028(01)01529-1 

[26]Jean-Michel Martin,Hong Liang,Thiery Le Mogne,Maryline Malroux,2003,“Low-Te

mperature Friction in the XPS Analytical Ultrahigh Vacuum Tribotester”,Tribology 

Letters 14:25-31.https://doi.org/10.1023/A:1021762115111 

[27] Ganlin Cheng,Bingzhe Chen,Fei Guo,Chong Xiang,Xiaohong Jia,2023,“Research o

n the friction and wear mechanism of a polymer interface at low temperature bas

ed on molecular dynamics simulation”,Tribology International 183:108396.https://do

i.org/10.1016/j.triboint.2023.108396 

[28]Jianjun Qu,Yanhu Zhang,Xiu Tian,Jinbang Li,2015,“Wear behavior of filled polyme

rs for ultrasonic motor in vacuum environments”,Wear 322-323:108-116,https://doi.

org/10.1016/j.wear.2014.11.003 

[29]Liu Hongtao,Ji Hongmin,Wang Xuemei,2013,“Tribological properties of ultra-high 

molecular weight polyethylene at ultra-low temperature”,Cryogenics 58:1-4.https://d

oi.org/10.1016/j.cryogenics.2013.05.001 

[30]R.B.W. Heng,M.J.M. Nor,1998,“Statistical analysis of sound and vibration signals f

or monitoring rolling element bearing condition”,Applied Acoustics 53:211-226.http

s://doi.org/10.1016/S0003-682X(97)00018-2 

[31]C.K.Mukhopadhyay,T.Jayakumar,Baldev Raj,S.Venugopal,2012,“Statistical analysis of 

acoustic emission signals generated during turning of a metal matrix composite”,J

ournal of the Brazilian Society of Mechanical Sciences and Engineering 34:145-1

54.https://doi.org/10.1590/S1678-58782012000200006 

[32]Ujjal Kalita,Manpreet Singh,Sumit Shoor,Sumika Chauhan,Govind Vashishtha,2024,

“Investigating the Effect of Acoustic Performance on Vibration Signatures for Opt



imized Hybrid Muffler”,Journal of Vibration Engineering & Technologies 12:2325-

2338.https://doi.org/10.1007/s42417-024-01536-4 

[33]Yizhuo Chen,Wei Zou,Guanghong Wang,Chongtian Zhang,Chenglong Zhang,2025,

“Optimizing the impact toughness of PLA materials using machine learning algori

thms”,Materials Today Communications 44:111881.https://doi.org/10.1016/j.mtcomm.

2025.111881 

[34]Weizhang Liang,Suizhi Luo,Guoyan Zhao,Hao Wu,2020,“Predicting Hard Rock Pill

ar Stability Using GBDT, XGBoost, and LightGBM Algorithms”,Mathematics 8(5):

765.https://doi.org/10.3390/math8050765 

[35]Dehua Wang,Yang Zhang,Yi Zhao,2017,“LightGBM: An Effective miRNA Classific

ation Method in Breast Cancer Patients”,international conference on computational 

biology and bioinformatics 7-11.https://doi.org/10.1145/3155077.3155079 

[36]Ruihu Wang,2012,“AdaBoost for Feature Selection, Classification and Its Relation 

with SVM, A Review”,Physics Procedia 25:800-807.https://doi.org/10.1016/j.phpro.2

012.03.160 

[37]Saulo Martiello Mastelini,Felipe Kenji Nakano,Celine Vens,André Carlos Ponce de 

Leon Ferreira de Carvalho,2022,“Online Extra Trees Regressor”,IEEE Transactions 

on Neural Networks and Learning Systems 34,https://doi.org/10.1109/TNNLS.2022.

3212859 

[38]L.J. Cao,K.S. Chua,W.K. Chong,H.P. Lee,Q.M. Gu,2003,“A comparison of PCA, K

PCA and ICA for dimensionality reduction in support vector machine”,Neurocomp

uting 55,https://doi.org/10.1016/S0925-2312(03)00433-8 

[39]C.J. Twining,C.J. Taylor,2003,“The use of kernel principal component analysis to 

model data distributions”,Pattern Recognition 36:217-227.https://doi.org/10.1016/S00

31-3203(02)00051-1 

 

 

 

 

 

 

 



Figure captions list 

Fig.1. A strong nonlinear relationship between noise and wear 

Fig.2. Tribological test equipment for low temperature range and point contact friction 

Fig.3. Schematic diagram of LightGBM algorithm principle 

Fig.4. Principles of the Extra Trees algorithm 

Fig.5. Steps in machine learning for predicting wear amount 

Fig.6. The statistical results of the actual wear amount for PCTFE and FEP 

Fig.7. MSE in predicting wear amount 

Fig.8. RMSE in predicting wear amount 

Fig. 9. MAE in predicting wear amount 

Fig. 10. R2 in predicting wear amount 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table headings list 

Table 1 Friction noise time-domain signal characterization 

Table 2 Evaluation indicators for model predictions 

Table 3 Summary of the main parameter settings of the three machine learning 

algorithms 

Table 4 Comparison of three algorithms 

Table 5 KPCA downgrading steps 

Table 6 Analysis of the goodness of fit results for the three algorithms before and after 

dimensionality reduction 

Appendix A. Tables 

Tables A1–A4. 

Table A1 Predictive Evaluation Metrics for Noise Regression Wear MSE 

Table A2 Predictive Evaluation Metrics for Noise Regression Wear RMSE 

Table A3 Predictive Evaluation Metrics for Noise Regression Wear MAE 

Table A4 Predictive Evaluation Metrics for Noise Regression Wear R2 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.1. A strong nonlinear relationship between noise and wear 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.2.Tribological test equipment for low temperature range and point contact friction 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.3. Schematic diagram of LightGBM algorithm principle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.4.Principles of the Extra Trees algorithm 

 

 

 

 

 



 

Fig.5. Steps in machine learning for predicting wear amount 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.6.The statistical results of the actual wear amount for PCTFE and FEP 

 

 



 

Fig.7. MSE in predicting wear amount 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig.8. RMSE in predicting wear amount 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.9. MAE in predicting wear amount 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.10.R2 in predicting wear amount 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Friction noise time-domain signal characterization 

Feature Formula Feature Formula 
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Table 2. Evaluation indicators for model predictions 

Index Formula Index Formula 
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Table3.Summary of the main parameter settings of the three machine learning 

algorithms 

Method            Extra Trees            AdaBoost             LightGBM 

Parameter 

learning Mode            bagging             boosting               boosting 

base learner           decision trees         decision trees              gbdt 

n_estimators              160                 300                   170 

learning rate               -                 0.9998                 1.008 

min_data_in_leaf            2                   -                     10 

max_depth               80                  -                     10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4.Comparison of three algorithms 

Tree Algorithm 

Name LightGBM AdaBoost Extra Trees 

Type Boosting Bagging 

 

Construction Method 
Histogram 
algorithm 

Weighted weak 
learner 

Multiple decision 
trees 

Processing category 

characteristics 
Native support  

Solo thermal 

coding 

Solo thermal 

coding 

Hyperparameterization Complex tuning 

Mainly learning 

rate and number 

of iterations 

Mainly the number 

and depth of trees 

Application Big Data 
Improved Base 

model 
Multi-feature 

Support for parallel 

computing 
Support Not support Support 

Memory Usage 
Lower for 

large-scale data 

Higher for  

multiple 

weak learners 

Higher for 

storing 

 multiple trees 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5.KPCA downgrading steps 

1.Data Centering:The noise features are centered by subtracting the mean of each 

feature, resulting in a dataset with a mean of zero. 

2. Kernel Matrix Calculation:The kernel matrix K is computed using a polynomial 

kernel function to evaluate the relationships between data points, ( , )Kij xi xj= (16) 

3.Centered Kernel Matrix:The kernel matrix is centered to obtain a new kernel 

matrix K': 
2

1 1 1
' 1 1 1 1K K K K K

n n n
= − − + (17). 

4.Eigenvalue Decomposition:Eigenvalue decomposition is performed on the 

centered matrix K' to obtain the eigenvalues and eigenvectors. 

5.Principal Component Selection:The top k eigenvalues and their corresponding 

eigenvectors are selected to form the new principal components. 

6.Data Mapping:The original data points are mapped into the new feature space, 

resulting in the KPCA outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table.6.Analysis of the goodness of fit results for the three algorithms before and 

after dimensionality reduction 

Algorithm Mean Variance Maximum Minimum 

LightGBM 0.795 0.00117 0.833 0.742 

LightGBM+KPCA 0.885 0.00034 0.912 0.864 

AdaBoost 0.897 0.00038 0.914 0.864 

AdaBoost+KPCA 0.915 0.000086 0.924 0.903 

Extra Trees 0.898 0.000091 0.921 0.847 

Extra Trees 

+KPCA 

0.899 0.00149 0.942 0.842 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A. Tables 

Tables A1–A4. 

Table A1 Predictive Evaluation Metrics for Noise Regression Wear MSE 

MSE 

 3:2 7:3 4:1 9:1 

LightGBM 7.697E-10 8.27E-10 9.505E-10 9.86E-10 

LightGBM+KPCA 6.258E-10 3.938E-10 5.224E-10 4.256E-10 

AdaBoost 4.51E-10 4.114E-10 3.895E-10 4.835E-10 

AdaBoost+KPCA 4.479E-10 3.41E-10 3.208E-10 3.258E-10 

Extra Trees 3.638E-10 4.348E-10 3.599E-10 5.437E-10 

Extra Trees+KPCA 5.218E-10 2.589E-10 3.348E-10 4.672E-10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A2 Predictive Evaluation Metrics for Noise Regression Wear RMSE 

RMSE 

 3:2 7:3 4:1 9:1 

LightGBM 2.774E-5 2.876E-5 3.083E-5 3.148E-5 

LightGBM+KPCA 2.501E-5 1.984E-5 2.286E-5 2.063E-5 

AdaBoost 2.121E-5 2.012E-5 1.949E-5 2.183E-5 

AdaBoost+KPCA 2.116E-5 1.845E-5 1.788E-5 1.802E-5 

Extra Trees 1.946E-5 2.083E-5 1.895E-5 2.331E-5 

Extra Trees+KPCA 2.282E-5 1.607E-5 1.828E-5 2.116E-5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A3 Predictive Evaluation Metrics for Noise Regression Wear MAE 

MAE 

 3:2 7:3 4:1 9:1 

LightGBM 1.653E-5 1.639E-5 1.764E-5 3.037E-5 

LightGBM+KPCA 1.313E-5 1.287E-5 1.521E-5 1.38E-5 

AdaBoost 1.369E-5 1.321E-5 1.416E-5 1.386E-5 

AdaBoost+KPCA 1.187E-5 1.109E-5 1.104E-5 1.306E-5 

Extra Trees 1.138E-5 1.201E-5 1.178E-5 1.43E-5 

Extra Trees+KPCA 1.135E-5 8.914E-6 1.06E-5 1.338E-5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A4 Predictive Evaluation Metrics for Noise Regression Wear R2 

R2 

 3:2 7:3 4:1 9:1 

LightGBM 0.833 0.815 0.790 0.742 

LightGBM+KPCA 0.864 0.912 0.884 0.881 

AdaBoost 0.902 0.908 0.914 0.864 

AdaBoost+KPCA 0.903 0.924 0.924 0.909 

Extra Trees 0.921 0.903 0.920 0.847 

Extra Trees+KPCA 0.887 0.942 0.926 0.842 

 

 


