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Abstract
Massive Aerial Processing for X (MAP-X) is an 

innovative framework for reconstructing spatially 
correlated ground data, such as environmental 
or industrial measurements distributed across a 
wide area, into data maps using a single high alti-
tude pseudo-satellite (HAPS) and a large number 
of distributed sensors. With subframe-level data 
reconstruction, MAP-X provides a transformative 
solution for latency-sensitive IoT applications. This 
article explores two distinct approaches for AI 
integration in the post-processing stage of MAP-X. 
The model-driven pointwise estimation approach 
enables real-time, adaptive reconstruction through 
online training, while the end-to-end image recon-
struction approach improves reconstruction accu-
racy through offline training with non-real-time 
data. Simulation results show that both approach-
es significantly outperform the conventional 
inverse discrete Fourier transform (IDFT)-based 
linear post-processing method. Furthermore, 
to enable AI-enhanced MAP-X, we propose a 
ground-HAPS cooperation framework, where ter-
restrial stations collect, process, and relay training 
data to the HAPS. With its enhanced capability in 
reconstructing field data, AI-enhanced MAP-X is 
applicable to various real-world use cases, includ-
ing disaster response and network management.

Introduction
The exponential growth of connected devices 
has established the Internet of Things (IoT) as a 
foundational technology in modern digital infra-
structure [1]. IoT networks now play a critical 
role in wide-area monitoring by leveraging spa-
tiotemporal correlations in industrial and environ-
mental data to facilitate real-time intelligence and 
decision-making. Existing IoT solutions, however, 
still face challenges in coverage, data acquisition 
speed, and connectivity, particularly in vast or 
remote areas. Addressing these limitations requires 
breakthrough wide-area sensing technologies that 
provide broader coverage, ultra-low-latency, and 
scalable support for massive device access.

Geographic information systems (GIS), which 
map spatially referenced information, are a key 

objective of wide-area sensing technologies [2]. 
Traditionally, GIS has been implemented through 
either wireless sensor networks (WSNs) or 
remote sensing. The conventional data commu-
nication-based approach reconstructs large-scale 
field data using methods such as kriging interpo-
lation or spatial estimation from distributed sensor 
measurements [3, 4]. In contrast, remote sensing 
collects indirect environmental information via 
satellite or aerial imagery by capturing reflected 
sunlight or emitted radiation. Figure 1 presents 
a conceptual hierarchy of wide-area sensing 
approaches, with the proposed MAP-X framework 
positioned as a WSN-based system leveraging 
unlimited non-orthogonal access.

Each conventional approach has its own 
strengths and limitations. Satellite remote sensing 
provides broad coverage but often relies on indi-
rect inference, limiting its ability to capture certain 
ground-level parameters [5]. UAV-based sensing 
and hybrid ground-air architectures offer deploy-
ment flexibility but are constrained by limited 
flight time, coordination overhead, and latency. 
Traditional WSNs enable targeted data acquisition 
through distributed low-power sensors, but their 
limited communication range typically necessi-
tates multi-hop relay or scheduled access, which 
introduces latency and protocol complexity.

To increase access scalability in IoT networks, 
non-orthogonal communication schemes such 
as non-orthogonal multiple access (NOMA) and 
over-the-air computation (OAC)-based approach-
es have been proposed [6, 7]. However, these 
approaches require uplink channel estimation 
and phase-level synchronization, which limit the 
number of simultaneously supported devices and 
increase system complexity.

In contrast, MAP-X introduces a new paradigm 
that combines:
•	 Unlimited non-orthogonal access, enabling 

all devices to transmit simultaneously. This 
design leverages spatial redundancy for reli-
ability and increases the expected signal 
power through random superposition.

•	 One-shot processing, completed within a few 
OFDM subframes, without requiring iterative 
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scheduling or feedback overhead.
•	 Aggregated channel estimation, which replac-

es per-device channel estimation by capturing 
the collective spatial response during a shared 
reference transmission phase.

•	 AI-enhanced post-processing, enabling accu-
rate field reconstruction from superimposed 
signals using neural models at a centralized 
high altitude pseudo-satellite (HAPS).
These characteristics make MAP-X particularly 

suited for time-sensitive applications such as disas-
ter response, infrastructure monitoring, and large-
scale network management.

MAP-X for Real-Time Wide-Area Data Imaging
In this section, we introduce the MAP-X frame-
work by detailing the system model and the 
operational phases that enable real-time wide-ar-
ea data imaging. We begin by outlining the sys-
tem model, including the sensing target, devices, 
non-terrestrial station, terrestrial station, and envi-
ronments. We then describe the three sequential 
communication phases of MAP-X. Finally, we dis-
cuss the key innovations in waveform design and 
transmission strategy that empower the system.

System Model of MAP-X
HAPS equipped with multiple-input multiple-out-
put (MIMO) or reconfigurable intelligent surfac-
es (RIS) are expected to play a key role in future 
non-terrestrial networks (NTNs), providing active 
spatial processing at altitude [8, 9]. MAP-X lever-
ages a non-orthogonal, direct device-to-HAPS 
transmission scheme for wide-area and low-la-
tency GIS. In this framework, numerous ground 
devices simultaneously transmit unique multi-car-
rier radio-frequency (RF) waveforms over shared 
time-frequency resources. These randomly super-
imposed signals are captured by a HAPS equipped 
with a uniform planar array (UPA) antenna.

Using angle-of-arrival (AoA) domain process-
ing, MAP-X superimposes signals from nearby 
devices while spatially distinguishing those from 
more distant sources. Given that environmen-
tal and industrial data typically exhibit high spa-
tial correlation, adjacent devices transmit nearly 
identical data, leading to overlapping signals that 
reinforce each other. This increases the average 
signal-to-noise ratio (SNR), making direct transmis-
sion from low-power devices to the HAPS more 
efficient. Mathematical analysis in [10] confirms 
that effective data reconstruction is attainable 
using a simple inverse discrete Fourier transform 
(IDFT)-based linear post-processing method.

MAP-X can be considered a type of WSN 
framework; however, it differs significantly in 
its operational principles. Instead of orthogo-
nal access and per-device data communication, 
MAP-X relies on a unique combination of non-or-
thogonal simultaneous transmission, spatial redun-
dancy, and centralized aerial processing. Below, 
we outline the distinct characteristics required by 
each component in the MAP-X framework.

Sensing Target: MAP-X is specifically designed 
for spatially correlated data fields, such as environ-
mental, industrial, or network metrics, where near-
by sensors tend to measure similar values. Unlike 
conventional systems, it enables one-shot, wide-ar-
ea reconstruction of such fields within millisec-
onds by exploiting spatial redundancy. This makes 
MAP-X suitable not only for slowly varying signals, 
but also for fast-changing, time-sensitive phenom-
ena that require immediate situational awareness.

Devices: The key distinction in MAP-X is that 
all devices transmit simultaneously over shared 
time-frequency resources without establishing 
uplink connections. Each device encodes its 
sensing value into the amplitude of a predefined 
waveform, and applies a location-dependent 
phase modulation across subcarriers and OFDM 
symbols. These operations are performed auton-
omously and locally, based only on each device’s 
location and sensing value. This eliminates the 
need for individual phase-level synchronization, 
feedback, or channel estimation.

Non-Terrestrial Station: MAP-X requires a 
high-altitude fusion center capable of resolving 
superimposed signals in the AoA domain. In this 
work, we adopt an aerostatic HAPS as the primary 
implementation due to its quasi-stationary position-
ing, suitable coverage range for MAP-X, and mini-
mal Doppler shifts. Importantly, aerostatic HAPSs 
offer sufficient payload capacity to accommodate a 
large UPA and the associated RF chains needed for 
MAP-X’s AoA-domain signal separation. This aerial 
station plays a central role by receiving simultane-
ous transmissions from thousands of devices and 
reconstructing the spatial data field from a single 
aggregated reception, bypassing the need for per-
link demodulation as in conventional WSNs.

Terrestrial Station: The terrestrial station is not 
involved in the real-time communication loop but 
plays a crucial role in supporting AI-based post-pro-
cessing. It gathers ground-truth training data (either 
scalar measurements or full field maps) for training 
AI models used in reconstruction.

Environments: MAP-X is robust to spatial inho-
mogeneity and irregular terrain [10]. Unlike con-

FIGURE 1. Comparison of GIS approaches, with MAP-X as a non-orthogonal WSN-based method.

Using angle-of-arrival (AoA) 
domain processing, MAP-X 
superimposes signals from 
nearby devices while spa-
tially distinguishing those 

from more distant sources. 
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ventional WSNs that require structured routing 
or relay communications, MAP-X performs well 
with non-uniform device distributions. The system 
experiences only minor performance degradation 
in non-line-of-sight (NLoS) conditions, primarily 
due to SNR reduction. The system requires chan-
nel coherence on the order of several millisec-
onds, which is a realistic assumption given the low 
mobility of sensing devices and the pseudo-sta-
tionary position of the HAPS. Moreover, because 
MAP-X does not require channel estimation for 
each individual device-to-HAPS link, it avoids per-
formance issues related to channel estimation 
errors or feedback overhead.

Three Transmission Phases of MAP-X
MAP-X is an efficient data collection and field 
reconstruction strategy within a WSN, dis-
tinguished by its use of non-orthogonal, simul-
taneous uplink transmissions and centralized 
aerial signal fusion. Unlike conventional WSNs 
that require individual connections and channel 
estimation per device, MAP-X exploits spatial sig-
nal structure and timing alignment to estimate 
data collectively. Figure 2 illustrates the three key 
phases of MAP-X operation.

Device Triggering: The MAP-X process begins 
with the HAPS broadcasting a trigger signal to all 
sensing devices. This signal includes metadata such 
as the type of data to be transmitted, the HAPS’s 
location, and a reference delay corresponding to 
the nearest device. Additionally, the trigger sig-
nal synchronizes the devices’ local oscillators and 
clocks, ensuring time alignment based on their dis-
tance from the HAPS. For instance, the nearest 
device maintains the earliest clock timing, while the 
farthest device operates on the latest clock timing.

Reference Transmission: Following synchro-
nization, each device generates a waveform 
according to a shared protocol. Using a unique-
ly designed OFDM-based waveform structure, 
all devices apply a predefined phase modulation 
across time-frequency resource elements (i.e., 
across OFDM subcarriers and symbols), while fix-
ing the symbol amplitude to a known constant 
(e.g., 1). The resulting signal received at the HAPS 
is the random superposition of all device transmis-
sions. Through receiver beamforming using the 
HAPS’s UPA antenna, this superimposed signal 

can be spatially separated into narrow angle-of-ar-
rival AoA bins, each representing the aggregat-
ed channel response of devices within a specific 
angular region. This process replaces the need for 
per-device uplink channel estimation, as required 
in conventional communication-based WSNs.

Information Transmission: Immediately after 
the reference transmission, each device transmits 
again using the same waveform and phase mod-
ulation pattern. However, this time the symbol 
amplitudes encode the devices’ sensing data, 
mapped to positive real values using a predefined 
encoding function. Because neighboring devic-
es observe similar environmental conditions, the 
amplitude values tend to have high local correla-
tion. Since both transmissions occur within the 
channel coherence time, the HAPS can associate 
the two received signals, reference and informa-
tion, as corresponding measurements from the 
same spatial region. By dividing the information 
signal by the reference signal in each AoA-domain 
bin, the aggregated channel effects are canceled, 
and the original data value for that spatial region 
is recovered with signal noise.

Key Techniques Underlying the Transmission Phases
The main innovation of MAP-X lies in its novel 
waveform design and non-orthogonal transmission 
strategy. The mathematical foundations and perfor-
mance analysis of these techniques are detailed in 
[10]. This section focuses on the technical implica-
tions and practical effects of these advancements.

OFDM-Based Multi-Resource Waveform: One 
of the primary challenges in aerial platforms is the 
physical limitation on the size of the antenna array, 
imposed by weight and energy constraints. To 
address this, MAP-X employs an innovative wave-
form that uses additional time-frequency resource 
elements to effectively “extend” the spatial 
domain resolution. In both reference and informa-
tion transmission steps, devices modulate OFDM 
symbol phases, which are computed using a pre-
defined formula based on their precise location 
relative to the HAPS. This allows the received sym-
bols in the time-frequency domain to be unfolded 
into a virtually extended spatial domain, as illustrat-
ed in Fig. 2. As a result, this technique simulates 
the effect of an extended antenna array, signifi-
cantly enhancing the resolution of AoA domain 

FIGURE 2. Three transmission phases of MAP-X and the two key techniques supporting its operation.
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channelization. Narrowing the AoA domain chan-
nel increases the uniformity of data from a single 
AoA region, thereby maximizing the effectiveness 
of the superposition-based transmission scheme.

Overlapping Signals via Non-Orthogonal 
Transmission: As outlined in the three transmis-
sion phases of MAP-X, all devices transmit signals 
over the same multiple time-frequency resources, 
leading to signal superposition at the receiver. 
A related technique, OAC, intentionally exploits 
signal overlap from different devices to perform 
nomographic operations [7]. MAP-X also leverag-
es signal superposition to ensure that information 
from closely located devices is effectively aver-
aged, while signals from spatially distant devices 
remain fully distinguishable in the AoA domain, as 
illustrated in Fig. 2. Unlike OAC, which requires 
uplink channel state information at the transmit-
ters to achieve phase and magnitude alignment 
at the receiver, MAP-X avoids this requirement 
entirely, as it does not rely on such alignment. 
This non-orthogonal transmission strategy offers 
several key advantages:
•	 Overlapping data from adjacent devices 

exploits spatial correlation in the raw data, 
improving accuracy.

•	 Non-orthogonal transmission significantly short-
ens transmission time compared to data gather-
ing through orthogonal data transmission.

•	 The SNR enhancement from signal overlap 
enables direct device-to-HAPS transmission, 
mitigating the high pathloss.

•	 Under the channel coherence time assump-
tion, MAP-X operates without requiring channel 
knowledge or individual data decoding, making 
it resilient to incoherent signal superposition.

AI-Enhanced Post-Processing for MAP-X
Upon completing the three transmission phases 
of MAP-X, the HAPS fusion center acquires two 
received symbol tensors: one from the reference 
transmission and another from the information 
transmission (Fig. 2). These tensors are four-di-
mensional, spanning the spatial x- and y-axes 
(antenna array coordinates), time (symbols), and 

frequency (subcarriers). Based on our wave-
form design, the time-frequency structure can 
be unfolded into a 2D virtually extended spatial 
domain. According to the mathematical deriva-
tion in [10], field reconstruction can be achieved 
by applying a 2D IDFT to the unfolded data, fol-
lowed by element-wise division and clipping. This 
linear reconstruction process, which relies solely 
on the received signals, serves as the foundation 
for the advanced deep learning-based methods 
discussed next.

Model-Driven Pointwise Estimation Method
The model-driven pointwise estimation method 
is rooted in a closed-form estimator and enhanc-
es it with two learnable modules: a spatial filter 
and a soft-clipping function, as illustrated in Fig. 
3. These modules are introduced to better adapt 
to variations in signal characteristics and noise 
across operating environments. Because these 
functions are relatively simple and mathematically 
grounded, they can be implemented with com-
pact DNNs, making this approach ideal for real-
time adaptation and lightweight deployment.

This method focuses on estimating a single 
data value at a given spatial location. Therefore, 
its input consists of the received signal and the 
coordinate of the target location, and its output is 
the estimated data value. As shown in Fig. 3, the 
signal is first transformed into the AoA domain. 
The trained spatial filter selectively shapes this 
domain, and the soft-clipping function mitigates 
outlier distortion caused by symbol division.

In our simulations, the spatial filter module is 
implemented using a four-layer MLP with dimen-
sions 2, 96, 192, and 192 (ReLU activations), 
while the soft-clipping module uses a four-layer 
MLP with dimensions 1, 3, 3, and 1 (Tanh activa-
tion). Due to its compact structure and low data 
requirements, this method enables online train-
ing. The HAPS collects received signals auton-
omously, while the required ground-truth data 
(location-measurement pairs) are gathered by ter-
restrial stations via sidelink communication and 
forwarded to the HAPS for training. Since the 

FIGURE 3. Training and inference pipelines for the two deep learning-based post-processing methods. In the pointwise estimation method, only the blue modules are implemented using lightweight AI models.
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base estimator performs reasonably well without 
training, only limited data are needed to fine-tune 
the filter and clipping functions, making this meth-
od adaptable in real-time.

End-to-End Image Reconstruction Method
The end-to-end image reconstruction method 
takes a fully data-driven approach to spatial field 
estimation. Unlike the model-driven pointwise 
estimation method, which outputs individual point 
estimates, this method generates an entire 2D 
map from the received signal. It uses a U-Net 
CNN architecture that is trained to learn the full 
transformation from the AoA-domain input to the 
ground-truth spatial field, including denoising and 
nonlinear distortions. The processing begins with 
a 2D IDFT and division to obtain a coarse recon-
struction in the AoA domain. This intermediate 
output is then passed through the U-Net, which 
performs nonlinear transformation and refinement 
to produce a high-precision field map. The model 
architecture and signal flow are shown in Fig. 3.

To train this model, a complete dataset of 

received signals and corresponding field maps is 
required. These ground-truth maps are generat-
ed offline by terrestrial stations using local sensor 
measurements and high-quality spatial interpola-
tion (e.g., kriging or covariance-based estimation). 
This dataset is then used to train the model, either 
on the HAPS or at a terrestrial station, with the 
final model deployed to the HAPS for inference. 
Due to its large parameter count and the difficulty 
of acquiring high-quality, full-resolution ground-
truth maps in real-time, this method is restrict-
ed to offline training. However, once trained, it 
achieves superior reconstruction accuracy and 
denoising capability compared to the model-driv-
en pointwise method.

Capabilities of AI-Enhanced MAP-X
We compare MAP-X, integrated with linear, mod-
el-driven pointwise estimation, and end-to-end 
image reconstruction post-processing strategies, 
against the conventional orthogonal data com-
munication-based data reconstruction method. 
In the orthogonal data communication-based 
approach, a ground fusion center assigns each 
device a unique time-frequency resource element 
to transmit its location and measurement as a sin-
gle symbol, without requiring prior signaling. The 
collected data are then used to reconstruct the 
continuous 2D field using the S-BLUE method, 
an optimal linear estimator that assumes perfect 
knowledge of the first- and second-order statistics 
of the spatial signal [4]. Based on this knowledge, 
S-BLUE computes optimal coefficients to fuse the 
individual observations into a field estimate. As a 
result, the orthogonal data communication-based 
method represents a highly idealized baseline. In 
contrast, MAP-X requires no prior statistical knowl-
edge of the data, making it significantly more 
practical and scalable for real-world deployments.

In the simulation, we consider a total of 
50,000 devices distributed over a 40 km  40 km 
area, resulting in a device density of 31.25 devic-
es per km2. The raw target data in the simula-
tion are modeled as a 2D Gaussian random field 
with normalized variance, filtered by a Gaussian 
function [10]. This filtering yields a correlation 
coefficient between two data points that decays 
proportionally to a Gaussian function of their sep-
aration distance. The HAPS is equipped with a 16 
 16 antenna array, and each subframe consists 
of 12 symbols and 12 subcarriers. Each device 
has a single isotropic antenna; the transmit signal 
is centered at 2.5 GHz, with a transmission power 
of 0 dBm. The direct device-to-HAPS transmission 
channel is modeled as Rician fading.

Image Reconstruction Results: Figure 4 pres-
ents the field reconstruction results produced by 
MAP-X using deep learning-based post-process-
ing methods. In our simulations, four pairs of sub-
frames are used to generate four independent 
estimates of the ground-truth data map, which are 
then averaged to produce a single, high-accura-
cy result. For a fair comparison, eight subframes 
are allocated to the orthogonal data commu-
nication-based data collection method. For the 
model-driven pointwise estimation method, val-
ues across the entire field are obtained by repeat-
ing the orthogonal data communication-based 
approach. However, due to the division step in 
the estimation process, it exhibits a heavy-tailed 

FIGURE 5. Comparison of image reconstruction SNR performance between 
the conventional data communication-based method, the HAPS 
standalone method, and the methods incorporating deep learning 
models. The black solid line represents the upper bound performance of 
conventional distributed sensing with orthogonal transmission.

FIGURE 4. Image reconstruction results of the conventional data communication-based method and deep learn-
ing-aided MAP-X with equivalent resource consumption.
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error distribution that results in salt-and-pepper 
noise. This noise can be effectively mitigated by 
the CNN model, which not only improves estima-
tion accuracy but also recovers finer signal details. 
Overall, these results demonstrate that MAP-X can 
accurately reconstruct field data, making it suit-
able for a wide range of applications, as further 
discussed next.

Latency vs. Accuracy Performance Analysis: 
Figure 5 compares the performance of MAP-X 
with conventional data communication-based field 
reconstruction. The x-axis represents the number 
of subframes used to reconstruct a single data 
map. S-BLUE utilizes additional subframes to gath-
er more device data, while MAP-X employs a scal-
able approach, averaging the results of multiple 
MAP-X processes. As shown in Fig. 5, the upper 
bound performance of the traditional data com-
munication-based method is significantly lower 
than the performance achieved by MAP-X. The 
DNN trained through online training improves 
performance, while the CNN, which requires 
offline training, achieves much higher accuracy 
under the same latency conditions. The pointwise 
estimation method is preferable for scenarios with 
rapidly changing signal characteristics and limited 
training data, whereas the image reconstruction 
method is more effective when target data exhibit 
strong temporal correlation and ample datasets 
are available from the terrestrial station.

Strengths of MAP-X and Future Applications
As demonstrated in the previous sections, MAP-X 
offers a new paradigm for large-scale data acqui-
sition by leveraging simultaneous, non-orthogo-
nal transmissions and centralized aerial fusion. 
One of its most critical strengths is its ability to 
reconstruct high-precision data maps within a few 
milliseconds, significantly faster than conventional 
WSN-based approaches that rely on multi-hop 
transmission, protocol handshaking, or sequential 
scheduling to gather data from individual links 
[11]. The MAP-X pipeline consists of only three 
tightly coupled stages: a one-shot device trigger-
ing signal, reference and information transmis-
sions over two OFDM subframes, and lightweight 
post-processing at the HAPS. This architecture 
enables data collection and field reconstruction 
at latency levels on the order of few milliseconds, 
regardless of the number of participating devices.

This ultra-low-latency performance is a key 
differentiator in scenarios where rapid, wide-ar-
ea sensing is critical. Environmental and industrial 
monitoring systems, for example, require frequent 
data snapshots of specific physical phenomena, 
often under constraints of unreliable connectivity 
or large sensing coverage. In such contexts, MAP-X 
functions as an extremely efficient GIS, capable of 
producing high-precision spatial maps from super-
imposed signals, without the need for per-device 
channel estimation or connection setup. This is 
particularly advantageous when sensing targets 
exhibit strong spatial correlation but limited tempo-
ral variation, as high-resolution data can be recon-
structed from a single transmission round.

Latency-Critical Applications of MAP-X
The ultra-low-latency characteristics of MAP-X 
make it particularly effective in scenarios that 
demand fast, wide-area sensing. These include 
time-sensitive applications such as disaster 
response, real-time infrastructure monitoring, and 
network state management, where conventional 
WSNs suffer from protocol overhead, scheduling 
delays, or connectivity limitations. The potential 
use cases of MAP-X are illustrated in Fig. 6.

In disaster scenarios such as earthquakes, toxic 
chemical leaks, or radioactive incidents, rapid sens-
ing is critical for damage mitigation. Convention-
al systems struggle with disrupted infrastructure, 
sparse coverage, or delayed data aggregation. 
MAP-X, by contrast, can quickly reconstruct spatial 
fields from distributed ground sensors without rely-
ing on individual links or relays. For earthquakes, 
this enables rapid estimation of ground motion 
patterns [12]; for chemical or radiation leaks, it 
supports real-time safety zone mapping where tra-
ditional remote sensing cannot detect invisible or 
non-radiative hazards [3, 13]. Its ability to aggre-
gate field-level measurements from thousands of 
nodes into precise spatial maps is particularly useful 
for emergency response and forecasting.

Beyond disaster response, MAP-X can serve as a 
wide-area observatory for next-generation wireless 
network management. It enables subframe-level RF 
map generation to support real-time interference 
coordination, spectrum sharing in TN-NTN integra-
tion, and dynamic scheduling in multi-cell systems 
[14, 15]. While traditional RF mapping relies on 
long-term averaging or dedicated probes, MAP-X 

FIGURE 6. Potential use cases of MAP-X.

In disaster scenarios such 
as earthquakes, toxic chem-

ical leaks, or radioactive 
incidents, rapid sensing 

is critical for damage 
mitigation. 
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can generate low-latency, high-resolution spatial 
maps [14]. This allows base stations or satellites 
to adapt scheduling, beamforming, or spectrum 
allocation decisions based on timely environmental 
awareness. The combination of fast sensing, mas-
sive access, and AI-enhanced reconstruction gives 
MAP-X a strategic role in both emergency and 
infrastructure-level intelligence.

Future Research Directions and Challenges
Future work should focus on optimizing MAP-X 
under practical system constraints. This includes 
refining performance under realistic wireless chan-
nels, HAPS mobility, and device limitations such 
as imperfect synchronization and hardware non-
idealities. Furthermore, validation through hard-
ware-in-the-loop testing or prototyping is needed 
to assess feasibility in real-world deployments.

Another key direction is enhancing the AI pipe-
line. In addition to the AI-based post-processing 
introduced in this article, AI-based pre-processing 
can also be applied at the data level to compress 
multi-dimensional sensor readings into a low-
er-dimensional latent representation before trans-
mission. This approach is particularly effective in 
MAP-X, where each device transmits only one sca-
lar value per process. Optimizing the cooperation 
between ground stations and HAPS for efficient 
data relay and model adaptation will be essential to 
scaling MAP-X across various use cases.

Conclusion
In this article, we introduced the integration of 
AI with Massive Aerial Processing for X (MAP-
X), an innovative wide-area data reconstruction 
framework. We compared two deep learning 
approaches, model-driven pointwise estimation 
and end-to-end image reconstruction methods, 
built on top of the mathematically-driven linear 
model. While the pointwise estimation method 
enables fast adaptation to environmental chang-
es through online training, the image reconstruc-
tion method achieves higher data reconstruction 
accuracy by leveraging long-term data collection 
at terrestrial stations. These AI-enhanced MAP-X 
systems have the potential to revolutionize data 
collection and decision-making in latency-critical 
IoT applications, enabling faster and more accu-
rate responses across various real-world scenarios.
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