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Abstract
We investigate Selmer groups of Jacobians of curves that
admit an action of a non-trivial group of automorphisms,
and give applications to the study of the parity of Selmer
ranks. Under the Shafarevich–Tate conjecture, we give
an expression for the parity of the Mordell–Weil rank of
an arbitrary Jacobian in terms of purely local invariants;
the latter can be seen as an arithmetic analogue of local
root numbers, which, under the Birch–Swinnerton-Dyer
conjecture, similarly control parities of ranks of abelian
varieties. As an application, we give a new proof of
the parity conjecture for elliptic curves. The core of the
paper is devoted to developing the arithmetic theory of
Jacobians for Galois covers of curves, including decom-
position of their 𝐿-functions, and the interplay between
Brauer relations and Selmer groups.
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1 INTRODUCTION

Tate’s proof of the analytic continuation and the functional equation of Hecke 𝐿-functions inter-
preted the sign in the functional equation as a product of certain local constants. The existence of
such an expression for Artin representations was proved by Langlands and Deligne, who, more-
over, extended the definition of the local constants to more general Galois representations. The
local Langlands correspondence tells us that these local constants are compatible with those aris-
ing for 𝐿-functions of automorphic forms. However, the compatibility of this theory with the
Birch–Swinnerton-Dyer conjecture and its generalisations remains an open problem. The sign
in the functional equation of the 𝐿-function of a curve 𝑋 over a number field 𝐾 determines the
parity of the order of vanishing of the 𝐿-function at the central point 𝑠 = 1, and hence should
match the parity of the Mordell–Weil rank of its Jacobian Jac𝑋 . In other words, one expects the
parity conjecture

(−1)rk Jac𝑋 =
∏

𝑣 place of 𝐾

𝑤(𝑋∕𝐾𝑣),

where the𝑤(𝑋∕𝐾𝑣) are the local constants (local root numbers) given by Langlands and Deligne.
The aim of this paper is to define local constants 𝑤arith(𝑋∕𝐾𝑣) for curves† over local fields 𝑋∕𝐾𝑣
that determine the parity of ranks of Jacobians of curves over number fields:

Theorem 1.1 (=Theorem 7.13(i)). If the Shafarevich–Tate conjecture holds for Jacobians of all
curves over a number field 𝐾, then for all curves 𝑋∕𝐾,

(−1)rk Jac𝑋 =
∏

𝑣 place of 𝐾

𝑤arith(𝑋∕𝐾𝑣).

We will not address the compatibility of our arithmetic local constants 𝑤arith(𝑋∕𝐾𝑣)with local
root numbers 𝑤(𝑋∕𝐾𝑣) in general. We will, however, illustrate their use by giving a new proof of
the parity conjecture for elliptic curves assuming the finiteness of Ш. A similar result was proved
in [16, Theorem 1.2].

Theorem 1.2 (= Theorem 6.1). Let 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 be an elliptic curve over a number
field 𝐾 with 𝑎 ≠ 0. Let 𝐸′ be the elliptic curve given by 𝑦2 = 𝑥3 − 27𝑏𝑥2 − 27𝑎3𝑥. If Ш(𝐸) has finite
3-primary part and Ш(𝐸′) has finite 2- and 3-primary parts, then the parity conjecture holds for 𝐸.

Remark 1.3. When 𝑎 = 0, the elliptic curve 𝐸 has a 3-isogeny over 𝐾. Thus, if Ш(𝐸) has finite
3-primary part, then the parity conjecture holds for 𝐸 by [16, Theorem 1.8].

† Strictly speaking, curves together with a choice of map to ℙ1.
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Our approach to Theorem 1.1 has some ingredients in common with [16, Theorem 1.2],
namely the 2-parity conjecture for elliptic curves with a 2-isogeny, and the 3-parity conjecture
over totally real fields. However, the resulting statements have different assumptions on the
Tate–Shafarevich group.

In the context of understanding the parity of ranks of Jacobians, the key new feature of our
approach is the use of higher genus curves to control the arithmetic of curves of lower genus.
For instance, the proof of the above theorem for elliptic curves makes use of auxiliary curves of
genus 3.
The role played by these higher genus curves is similar to that of extensions of the base number

field, which one makes when studying Heegner points, Iwasawa theory, the parity conjecture,
and so forth. Smooth projective curves over number fields are in 1–to–1 correspondence with
their function fields (finitely generated extensions of ℚ of transcendence degree 1). For exam-
ple, the elliptic curve 𝐸 ∶ 𝑦2 = 𝑥3+𝑎𝑥+𝑏 overℚ corresponds toℚ(𝑥,

√
𝑥3 + 𝑎𝑥 + 𝑏), and its base

change to ℚ(𝑖) corresponds to the quadratic extension ℚ(𝑥,
√
𝑥3+𝑎𝑥+𝑏, 𝑖). The quadratic exten-

sionℚ(
√
𝑥,
√
𝑥3 + 𝑎𝑥 + 𝑏) instead corresponds to the double cover of 𝐸 given by 𝑦2 = 𝑡6+𝑎𝑡2+𝑏.

As we shall explain, the theory of Jacobians of such covers of curves mimics that of extensions of
the base number field extremely well.
To fix ideas, consider a (smooth, projective) curve𝑋 over a number field𝐾, let𝐺 be a finite group

of 𝐾-automorphisms of 𝑋, and let 𝑋∕𝐺 denote the quotient curve. In the language of function
fields, 𝐺 is simply the Galois group Gal(𝐾(𝑋)∕𝐾(𝑋∕𝐺)).
First of all, rational points on Jacobians satisfy ‘Galois descent’ (see [29, Theorem 1.3], or

Theorem 1.15): 𝐺 acts naturally on Jac𝑋(𝐾) and

Jac𝑋(𝐾)
𝐺
ℂ
≃ Jac𝑋∕𝐺(𝐾)ℂ, (†)

where ‘ℂ’ is shorthand for⊗ℤℂ.
Secondly, 𝐿-functions of covers of curves can be decomposed analogously to the factorisation

of Dedekind zeta functions into Artin 𝐿-functions. For representations 𝜏 of 𝐺, we will define†
𝐿-functions 𝐿(𝑋𝜏, 𝑠) that in particular satisfy ‘Artin formalism’ (Definition 2.17, Proposition 2.21):

𝐿(𝑋𝜏1⊕𝜏2, 𝑠) = 𝐿(𝑋𝜏1, 𝑠)𝐿(𝑋𝜏2, 𝑠) 𝑎𝑛𝑑 𝐿(𝑋Ind
𝐺
𝐻
𝟙, 𝑠) = 𝐿(𝑋∕𝐻, 𝑠). (‡)

We will also define the root number 𝑤(𝑋𝜏) that controls the sign in the conjectural functional
equation of 𝐿(𝑋𝜏, 𝑠) (Definition 2.15, Conjecture 2.20(2)).
Finally, these 𝐿-functions are related to arithmetic by the following generalisation of the

Birch and Swinnerton-Dyer conjecture and the parity conjecture (see Conjecture 2.23 and Theo-
rem 2.24). It is the analogue of the equivariant versions (or that for ‘Artin twists of elliptic curves’)
of these conjectures in the context of extensions of the base number field, see, e.g. [43, section 2]
or [13, Conjecture 1.1].

Conjecture 1.4. Let 𝑋∕𝐾 be a curve over a number field and 𝐺 a finite group of 𝐾-automorphisms
of 𝑋. Let 𝜏 be a representation of 𝐺.

†We will not define 𝑋𝜏 , though it is to be thought of as a motive coming from the first cohomology groups of the variety
𝑋 and the idempotent corresponding to 𝜏 in ℂ[𝐺]; see Section 2 for a more detailed discussion, and Definition 2.3 for a
definition of the underlying 𝓁-adic representation.
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(1) ord𝑠=1𝐿(𝑋𝜏, 𝑠) = ⟨𝜏, Jac𝑋(𝐾)ℂ⟩.
(2) If 𝜏 is self-dual, then 𝑤(𝑋𝜏) = (−1)⟨𝜏,Jac𝑋(𝐾)ℂ⟩.
Thus, the situation is like in the good old days. In particular, these properties allow us to adapt

the method of Brauer relations and regulator constants of [13, 15] from the setting of extensions
of number fields to covers of curves. This is the key input for controlling the parity of ranks
of Jacobians. Recall that a Brauer relation in a finite group 𝐺 is a formal linear combination
of subgroups (up to conjugacy) Θ =

∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
, such that the associated permutation rep-

resentations
⨁

𝑖 ℂ[𝐺∕𝐻𝑖] and
⨁

𝑗 ℂ[𝐺∕𝐻
′
𝑗
] are isomorphic. The theory of ‘regulator constants’

associates to a Brauer relation Θ and a prime 𝑝|#𝐺 a representation 𝜏Θ,𝑝 (Definition 3.11 or
[13], Section 2). The multiplicity of these representations in the group of points Jac𝑋(𝐾)ℂ can
be controlled using local data:

Theorem 1.5 (see Theorems 4.3 & 5.1). Let 𝑋 be a curve over a number field 𝐾, let 𝐺 be a finite
group of𝐾-automorphisms of𝑋, letΘ =

∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
be a Brauer relation for𝐺 and 𝑝 a prime.

(1) There is an isogeny
∏
𝑗 Jac𝑋∕𝐻′𝑗

→
∏
𝑖 Jac𝑋∕𝐻𝑖 inducing an equality of 𝐿-functions of curves∏

𝑗 𝐿(𝑋∕𝐻
′
𝑗
, 𝑠) =

∏
𝑖 𝐿(𝑋∕𝐻𝑖, 𝑠).

(2) Suppose thatΩ1(Jac𝑋) is self-dual as a 𝐺-representation.† If Ш(Jac𝑋) is finite, then

⟨𝜏Θ,𝑝, Jac𝑋(𝐾)ℂ⟩ ≡ ∑
𝑣 place of 𝐾

ord𝑝ΛΘ(𝑋∕𝐾𝑣) mod 2.

The precise expression for the local invariant ΛΘ is given in Definition 5.16. When  is an
extension of ℚ𝑝, it is of the form

ΛΘ(𝑋∕) =

∏
𝑖 𝑐(Jac𝑋∕𝐻𝑖 )∏
𝑗 𝑐(Jac𝑋∕𝐻′𝑗

)
⋅ powers of 2 and 𝑝,

where 𝑐 denotes the local Tamagawa number over. For the present discussion, the crucial point
is that it is a purely local invariant.
To deduce Theorem 1.1, we will show that the supply of curves, Brauer relations and represen-

tations 𝜏Θ,𝑝 is large enough to determine the parity of the rank of every Jacobian. There is, in fact,
a further trick up our sleeve, which puts us at an advantage compared to the theory of regula-
tor constants for extensions of number fields. Specifically, if𝐻 ⩽ 𝐺 is such that the quotient curve
𝑋∕𝐻 has genus 0, thenwe have full control of themultiplicity of Ind𝐺𝐻𝟙 in Jac𝑋(𝐾)ℂ: by Frobenius
reciprocity and Galois descent (†), ⟨Ind𝐺𝐻𝟙, Jac𝑋(𝐾)ℂ⟩ = dim Jac𝑋(𝐾)𝐻ℂ = dim Jacℙ1(𝐾)ℂ = 0. We
will illustrate this process in Example 1.9 below in the case of elliptic curves.
Conjecture 1.4(2) tells us that the parity of ⟨𝜏, Jac𝑋(𝐾)ℂ⟩ is controlled by the root number

𝑤(𝑋𝜏), which is defined as the product of local root numbers 𝑤(𝑋𝜏∕𝐾𝑣). Compatibility with
Theorem 1.5(2) requires the following ‘product formula’ for 𝑤(𝑋𝜏Θ,𝑝∕𝐾𝑣)(−1)

ord𝑝ΛΘ(𝑋∕𝐾𝑣).

Conjecture 1.6. Let 𝑋 be a curve defined over a number field 𝐾, and 𝐺 a finite group of 𝐾-
automorphisms of𝑋. Suppose thatΩ1(Jac𝑋) is self-dual as a𝐺-representation. Then for every Brauer
relation Θ in 𝐺 and every prime 𝑝,

† This is automatic if 𝐺 is either a symmetric or a dihedral group, or if 𝐾 has a real place.
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∏
𝑣 place of 𝐾

𝑤(𝑋𝜏Θ,𝑝∕𝐾𝑣)(−1)
ord𝑝ΛΘ(𝑋∕𝐾𝑣) = 1.

Our expression for the parity of the rank of a Jacobian in Theorem 1.1 is built up from Brauer
relations. Thus, we can also deduce the following:

Theorem 1.7 (= Corollary 7.14). If the Shafarevich–Tate conjecture and Conjecture 1.6 hold for all
Jacobians of curves over a fixed number field 𝐾, then so does the parity conjecture, that is,

(−1)rk Jac𝑋 = 𝑤(Jac𝑋)

for every curve 𝑋 defined over 𝐾. Here 𝑤(Jac𝑋) denotes the global root number of Jac𝑋 .

Conjecture 1.6 thus gives an approach to the parity conjecture for general Jacobians. For exam-
ple, if for curves over local fields  we always had the identity 𝑤(𝑋𝜏Θ,𝑝∕) = (−1)ord𝑝ΛΘ(𝑋∕),
then, assuming the finiteness of Ш, we would deduce the parity conjecture for all Jacobians over
number fields. Unfortunately, the identity is false in general, and the correct relation between
𝑤(𝑋𝜏Θ,𝑝∕) and ΛΘ(𝑋∕) is yet to be found. However, we understand it well enough to prove
the parity conjecture for elliptic curves (see Theorem 1.2), as well as Conjecture 1.6 for general
semistable curves when 𝑝 is odd:

Theorem1.8 (see [37] Theorem 1.2). Conjecture 1.6 holds for all semistable curves𝑋 and oddprimes
𝑝, such that Jac𝑋 has good ordinary reduction at all primes above 𝑝. Moreover, if Ш(Jac𝑋) is finite,
then for every finite group 𝐺 of 𝐾-automorphisms of 𝑋 and Brauer relation Θ for 𝐺,

𝑤(𝑋𝜏Θ,𝑝 ) = (−1)⟨𝜏Θ,𝑝,Jac𝑋(𝐾)ℂ⟩,
so that Conjecture 1.4(2) holds for 𝑋𝜏Θ,𝑝 .

Let us illustrate the above ideas with an extended example, and sketch the proof of Theorem 1.1
in the setting of elliptic curves.

Example 1.9. Let 𝐸 be an elliptic curve over a number field 𝐾 given by 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏
with 𝑎 ≠ 0. We view 𝐸 as a degree 3 cover of ℙ1 (with parameter 𝑦). The condition 𝑎 ≠ 0
ensures that the discriminant ℎ(𝑦) = Disc(𝑥3 + 𝑎𝑥 + 𝑏 − 𝑦2) = −27𝑦4 + 54𝑏𝑦2 − (4𝑎3 + 27𝑏2)
has no repeated roots. In particular, 𝐾(𝑦, 𝑥)∕𝐾(𝑦) is non-Galois and its Galois closure is an 𝑆3-
extension of 𝐾(𝑦). It has the following field diagram, with the corresponding covers of curves
given on the right.
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6 of 50 DOKCHITSER et al.

Here 𝐷 and 𝐵 are the curves† given by Δ2 = ℎ(𝑦) and by {𝑦2 = 𝑓(𝑥), Δ2 = ℎ(𝑦)}. The Jacobian
of 𝐷 is the elliptic curve denoted 𝐸′ in the statement of Theorem 1.2 (cf. [10, section 4]).
Now, 𝑆3 acts on 𝐵 by automorphisms, and hence on the 𝐾-rational points of its Jacobian.
Consider the decomposition Jac𝐵(𝐾)ℂ = 𝟙⊕𝑛 ⊕ 𝜖⊕𝑚 ⊕ 𝜌⊕𝑘 into irreducible representations,

where 𝟙, 𝜖, 𝜌 denote the trivial, sign and 2-dimensional irreducible representation of 𝑆3. Galois
descent (†) for𝐺 = 𝑆3 tells us that 𝑛 = rk Jacℙ1 = 0. Repeating with𝐺 = 𝐶2 and 𝐶3 gives rk 𝐸 = 𝑘
and rk Jac𝐷 = 𝑚, respectively. In particular, we see that rk Jac𝐵 = 2rk𝐸 + rk Jac𝐷 .
Assuming the Birch and Swinnerton-Dyer conjecture, we can also deduce this from decompos-

ing 𝐿-functions. Indeed, by Artin formalism (‡),

𝐿(𝐵, 𝑠)𝐿(ℙ1, 𝑠)2 = 𝐿(𝐵𝟙⊕𝟙⊕𝟙⊕𝜖⊕𝜌⊕𝜌, 𝑠) = 𝐿(𝐸, 𝑠)2𝐿(𝐷, 𝑠), (*)

and taking 𝑠 → 1 recovers rk Jac𝐵 = 2rk𝐸 + rk Jac𝐷 . It is also easy to verify Conjecture 1.4(1): For
example, ord𝑠=1𝐿(𝐵𝜌, 𝑠) = ord𝑠=1

𝐿(𝐸,𝑠)

𝐿(ℙ1,𝑠)
= 𝑘 = ⟨𝜌, Jac𝐵(𝐾)ℂ⟩.

Note that the identity (*) also indicates that 𝐵 has genus 3 (comparing degrees of Euler factors)
and that 𝐸 × 𝐸 × Jac𝐷 is isogenous to Jac𝐵 (by Faltings’ theorem).
The Birch–Swinnerton-Dyer conjecture is compatible with isogenies (Cassels–Tate [8, 50]), so,

considering the leading terms of the 𝐿-functions at 𝑠 = 1, we obtain a corresponding identity of
the form

Reg2
𝐸
RegJac𝐷

RegJac𝐵
=

|Ш(Jac𝐵)||Ш(𝐸)|2|Ш(Jac𝐷)| |𝐸(𝐾)tors|4|Jac𝐷(𝐾)tors|2|Jac𝐵(𝐾)tors|2 ⋅
∏
𝑣

(local terms),

where the local terms account for the periods, local Tamagawa numbers and other local ‘fudge
factors’ in the Birch–Swinnerton-Dyer formula. A computation with heights shows that the
ratio of regulators is of the form 3𝑛+𝑚+𝑘 ⋅ (square), so the above expression leads to 3𝑛+𝑚+𝑘 =∏
𝑣Λ𝑣 ⋅ (square), for a suitable (purely local) term Λ𝑣 involving invariants of 𝐸∕𝐾𝑣, 𝐷∕𝐾𝑣 and

𝐵∕𝐾𝑣. Finally, taking 3-adic valuations gives a formula for the parity of the sum of the ranks of 𝐸
and Jac𝐷 in terms of local data:

rk 𝐸 + rk Jac𝐷 ≡
∑
𝑣

ord3Λ𝑣 mod 2.

Theorem 1.5 automates this process. Formula (*) came from the representation-theoretic iden-
tity Ind𝐺

{1}
𝟙 ⊕ 𝟙⊕2 ≃ (Ind𝐺𝐶2

𝟙)⊕2 ⊕ Ind𝐺𝐶3
𝟙, which corresponds to the Brauer relation Θ = 2𝐶2 +

𝐶3 − 2𝑆3 − {1}. The theorem immediately tells of the existence of an isogeny Jac𝐵 → 𝐸 × 𝐸 × Jac𝐷
and the 𝐿-function identity (*). Moreover, this Brauer relation has 𝜏Θ,3 = 𝟙 ⊕ 𝜖 ⊕ 𝜌 (see, e.g.
Example 3.14 or [13, Example 2.53]), so, assuming the finiteness of Ш(Jac𝐵), Theorem 1.5(2)
together with Galois descent (†) give

rk 𝐸 + rk Jac𝐷 = ⟨𝜏Θ,3, Jac𝐵(𝐾)ℂ⟩ ≡∑
𝑣

ord3ΛΘ(𝐵∕𝐾𝑣) mod 2.

Example 1.10. Consider a hyperelliptic curve of the form 𝑋 ∶ 𝑤2 = g(𝑧2) over a number field 𝐾.
It has a natural action of 𝐶2 × 𝐶2, which gives the following diagrams of function fields and of the

†When giving a curve by affine equations, we always mean the unique smooth projective curve birational to it.
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PARITY OF RANKS OF JACOBIANS OF CURVES 7 of 50

corresponding covers of curves.

The curves 𝑋1 and 𝑋2 are explicitly given by 𝑡2 = 𝑟g(𝑟) and by 𝑠2 = g(𝑟), respectively.
The group 𝐶2 × 𝐶2 has the Brauer relation Ψ = 𝐶𝑎2 + 𝐶

𝑏
2
+ 𝐶𝑐

2
− 2𝐶2 × 𝐶2 − {1}, which has

𝜏Ψ,2 = Ind
𝐶2×𝐶2
{1}

𝟙; here the 𝐶𝑖
2
are the three subgroups of order two. Theorem 1.5(1) tells us that

there is a 𝐾-isogeny Jac𝑋 → Jac𝑋1 × Jac𝑋2 . (When g is a square-free cubic polynomial, this recov-
ers the classical fact that the Jacobian of 𝑤2 = g(𝑧2) is isogenous to a product of two elliptic
curves.) Assuming finiteness of Ш(Jac𝑋), Theorem 1.5(2) tells us

rk Jac𝑋 = ⟨𝜏Ψ,2, Jac𝑋(𝐾)ℂ⟩ ≡ ∑
𝑣 place of 𝐾

ord2ΛΨ(𝑋∕𝐾𝑣) mod 2.

In other words, we can control the parity of the rank of the Jacobians of such curves.

Combining Examples 1.9 and 1.10 (for the curve 𝐷), we immediately deduce the following
expression for the parity of ranks of elliptic curves.

Theorem 1.11. Let 𝐸 be an elliptic curve over a number field𝐾 given by 𝐸 ∶ 𝑦2 = 𝑓(𝑥) = 𝑥3 + 𝑎𝑥 +
𝑏 with 𝑎 ≠ 0. Let g(𝑦2) ∈ 𝐾[𝑦] be the discriminant of 𝑓(𝑥) − 𝑦2, and define curves 𝐷 ∶ Δ2 = g(𝑦2)

and 𝐵 ∶ {𝑦2 = 𝑓(𝑥), Δ2 = g(𝑦2)}. If Ш(𝐸) and Ш(Jac𝐷) are finite, then

rk 𝐸 ≡
∑

𝑣 place of 𝐾

(ord3ΛΘ(𝐵∕𝐾𝑣) + ord2ΛΨ(𝐷∕𝐾𝑣)) mod 2,

where Θ and Ψ are the Brauer relations from Examples 1.9 and 1.10 for the groups 𝑆3 and 𝐶2×𝐶2
acting on 𝐵 and 𝐷, respectively.

In order to prove the parity conjecture for elliptic curves (Theorem 1.2), we need to compare the
local termsΛΘ andΛΨ to the corresponding local root numbers.Wewill, in fact, prove Conjecture
1.6 for the two Brauer relationsΘ andΨ (Theorem 6.6 &Remark 6.7). Theorem 1.2 will then follow
from a mild strengthening of Theorem 1.11.

Remark 1.12. As stated, Theorem 1.5(1) is a result of Kani and Rosen (see [26, Theorem 3]). We will
generalise the notion of Brauer relations to ‘pseudo Brauer relations’ (Definition 3.1), which also
give rise to isogenies and can be used to obtain data on parities of ranks.
Brauer relations appear to be a very rich source of isogenies. One can verify that isogenies in

all of the following cases can be obtained by applying Theorem 1.5(1) to suitable pseudo Brauer
relations [28] (with certain assumptions in (3)–(5)):

(1) isogenies between elliptic curves;
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8 of 50 DOKCHITSER et al.

(2) isogenies Jac𝑋 × Jac𝑋𝑑 → Res
𝐾(
√
𝑑)∕𝐾

Jac𝑋 , where𝑋 is a hyperelliptic curve,𝑋𝑑 is its quadratic

twist by 𝑑 ∈ 𝐾× and Res
𝐾(
√
𝑑)∕𝐾

denotes Weil restriction from 𝐾(
√
𝑑) to 𝐾;

(3) Richelot isogenies between Jacobians of genus 2 curves;
(4) isogenies from Jacobians of genus 2 curves to products of elliptic curves;
(5) isogenies Jac𝑋 → Jac𝑌 × Jac𝑍 , where 𝑋 is a curve that admits an unramified double cover to

a trigonal curve 𝑌, and Jac𝑍 is the associated Prym;
(6) isogenies between products of Weil restrictions,

∏
𝑖 Res𝐹𝐻𝑖 ∕𝐾Jac𝑌 →

∏
𝑖 Res

𝐹
𝐻′
𝑗 ∕𝐾
Jac𝑌 ,

where 𝑌 is a curve over 𝐾, 𝐹∕𝐾 is a Galois extension and
∑
𝐻𝑖 −

∑
𝐻′
𝑗
is a Brauer relation in

its Galois group (see [15, Proof of Theorem 2.3]).

(We are not aware of an example of isogenous Jacobians where an isogeny provably cannot be
constructed from a pseudo Brauer relation.)
Isogenies have been extensively used to derive formulae for the parities of various ranks in

terms of local data, including all of those listed above:

(1) Cassels (see [22, Appendix]),
(2) Kramer for 𝑋 elliptic [30] and Morgan for 𝑋 hyperelliptic [36],
(3) Dokchitser–Maistret [21],
(4) Coates–Fukaya–Kato–Sujatha for 𝑝 ≠ 2 [9] and Green–Maistret for 𝑝 = 2 [24],
(5) Docking [12],
(6) Mazur–Rubin for dihedral groups [32] and Dokchitser–Dokchitser [15].

Theorem 1.5(2) provides the means for deriving local formulae for all of these rank expressions in
a uniform way [28].

1.1 Overview of the paper

The core of this paper relies on the study of Galois covers of curves. One subtlety is that we adhere
to the following convention:

Convention 1.1. Throughout this paper, curves are assumed to be smooth and proper, but are not
assumed to be connected, nor are their connected components assumed to be geometrically con-
nected.

The reason for considering this broader notion of a ‘curve’ is that they arise naturally in
the context of Galois covers. For example, considering Example 1.9 with 𝑎 = 0 and 𝐾 = ℚ, the
discriminant curve coincides with the normalisation of 𝐷 ∶ Δ2 = −27(𝑦2 − 𝑏)2, which is not geo-
metrically connected. After base changing toℚ7,𝐷 fails to be connected. For a thorough treatment
of the arithmetic of curves and Jacobians in the context of Convention 1.1, see [29].
In Section 2, we construct the 𝐿-functions 𝐿(𝑋𝜏, 𝑠) and local root numbers𝑤(𝑋𝜏) and show that

they satisfy the Artin formalism (‡) mentioned above (Proposition 2.21). These are constructed
from the 𝓁-adic representations Hom𝐺(𝜏 ⊗ℚ

ℚ𝓁 , 𝐻
1
𝓁(𝑋)) where 𝐻

1
𝓁(𝑋) = 𝐻

1
𝑒́𝑡
((Jac𝑋), ℚ𝓁). We

show that these form a compatible system of 𝓁-adic representations and possess other desired
properties (Theorem 2.13 and Corollary 2.14). We conclude by showing that Conjecture 1.4 fol-
lows from the Birch–Swinnerton-Dyer conjecture and other standard conjectures on 𝐿-functions
(Conjecture 2.23 and Theorem 2.24).
Sections 3–5 are devoted to proving Theorem 1.5(2) for Selmer groups.
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PARITY OF RANKS OF JACOBIANS OF CURVES 9 of 50

In Section 3, we introduce pseudo Brauer relations, a generalisation of Brauer relations, and we
verify that the theory of regulator constants remains applicable in this setting (Theorem 3.7).
In Section 4, we discuss isogenies arising from pseudo Brauer relations (as in Theorem 1.5(1)).
In Section 5, we prove Theorem 1.5(2) and its generalisation to Selmer groups (Theorem 5.1).

In particular, we define ΛΘ(𝑋∕), an explicit invariant associated to curves over local fields of
characteristic 0 and pseudo Brauer relations for their automorphism groups (Definition 5.16). We
also discuss variations of Theorem 5.1 which use alternative local invariants (Theorems 5.8 and
5.12).
Sections 6–8 focus on applications of these results to the parity conjecture.
In Section 6, we prove Theorem 1.2 via the 3-parity conjecture for 𝐸 × Jac𝐷 (Theorem 6.6) and

the 2-parity conjecture for elliptic curves admitting a 2-isogeny.
In Section 7, we prove that there are enough Brauer relations and representations of the form

𝜏Θ,𝑝 to control the parity of the rank of arbitrary Jacobians, and to deduce Theorem 1.1.
In Section 8, we describe an approach to the parity conjecture for arbitrary Jacobians from

Theorem 1.1. This relies on a conjectural relationship between the local invariant ΛΘ(𝑋∕𝐾𝑣) and
the local root number𝑤(𝑋𝜏Θ,𝑝∕𝐾𝑣) (Conjecture 1.6).We end by presenting some evidence towards
this conjecture (Theorem 8.1 and Corollary 8.2).

1.2 Notation

Throughout this paper, we adhere to the following notation. We write 𝐾 for a number field and 𝑣
for a place. We write 𝐿 for any field and for a local field, usually of characteristic 0.

𝑋 a curve (see Convention 1.13)
Jac𝑋 the Jacobian variety of 𝑋
𝑋∕𝐻 quotient of 𝑋 defined over 𝐿 by a finite group𝐻 ⩽ Aut𝐿(𝑋)

𝐴 an abelian variety
𝑝(𝐴) Homℤ𝑝

(lim
SS→

Sel𝑝𝑛 (𝐴), ℚ𝑝∕ℤ𝑝) ⊗ ℚ𝑝 , the dual 𝑝∞-Selmer group of 𝐴

rk𝑝𝐴 the 𝑝∞-Selmer rank of 𝐴, that is the ℚ𝑝-dimension of 𝑝(𝐴)
𝑤(𝐴∕) the local root number of 𝐴 defined over a local field
𝑤(𝐴)

∏
𝑣 𝑤(𝐴∕𝐾𝑣), the global root number of 𝐴 defined over number field 𝐾

𝑉𝓁(𝐴) 𝑇𝓁(𝐴) ⊗ ℚ𝓁 , where 𝑇𝓁(𝐴) is the 𝓁-adic Tate module of 𝐴
Ω1(𝐴) the 𝐿-vector space of regular differentials on 𝐴 defined over a field 𝐿
𝑐(𝐴) the Tamagawa number of 𝐴 defined over a non-archimedean local field| ⋅ |, | ⋅ |𝑣 the normalised absolute value on (resp. 𝐾𝑣), extended to (resp. 𝐾𝑣)
Frob a (choice of) arithmetic Frobenius element in the absolute Galois group of
𝐼 inertia group of⟨⋅, ⋅⟩ the inner product of characters of 𝐺-representations
𝜌∗, 𝜌𝐻 the dual (resp.𝐻-invariant vectors, for𝐻 ⩽ 𝐺) of a 𝐺-representation 𝜌
Θ a (pseudo) Brauer relation, see Definition 3.1
Θ() regulator constant for  , see Definition 3.6
1,2
Θ

() Θ() computed with respect to the bases 1, 2, see Definition 3.6
𝜏Θ,𝑝 self-dual ℂ[𝐺]-representation encoding regulator constants, see Definition 3.11

(Continues)
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10 of 50 DOKCHITSER et al.

ΛΘ(𝑋∕) an explicit local invariant of 𝑋, see Definition 5.16
𝐷2𝑛 the dihedral group of order 2𝑛
𝟙 the trivial representation

We remind the reader that the parity conjecture has the following analogue for Selmer groups.

Conjecture 1.13 (The 𝑝-parity conjecture). Let𝐴 be an abelian variety over a number field 𝐾 and
𝑝 a prime. Then

(−1)rk𝑝 𝐴 = 𝑤(𝐴).

Remark 1.14. If we assume that the 𝑝-primary part of the Shafarevich–Tate group of 𝐴∕𝐾 is finite,
then we have rk𝑝 𝐴 = rk𝐴. In particular, the 𝑝-parity conjecture for 𝐴∕𝐾 is equivalent to the
parity conjecture under this assumption.

We will frequently use the following result regarding the action of automorphisms of a curve𝑋
on its Jacobian, including the ‘Galois descent’ (†) mentioned above.

Theorem 1.15. Let 𝑋∕𝐾 be a curve over a field of characteristic 0, let 𝐺 be a finite subgroup of
Aut𝐾(𝑋). Then,

(1) 𝑉𝓁(Jac𝑋)
𝐺 ≃ 𝑉𝓁(Jac𝑋∕𝐺),

(2) Ω1(Jac𝑋)𝐺 ≃ Ω1(Jac𝑋∕𝐺).

When 𝐾 is a number field,

(3) (Jac𝑋(𝐾) ⊗ ℚ)𝐺 ≃ Jac𝑋∕𝐺(𝐾) ⊗ ℚ,
(4) 𝑝(Jac𝑋)

𝐺 ≃ 𝑝(Jac𝑋∕𝐺),

and moreover,

(5) 𝑝(Jac𝑋) is self-dual as a 𝐺-representation,
(6) if Ш(Jac𝑋)[𝑝

∞] is finite, then Ш(Jac𝑋∕𝐺)[𝑝
∞] is finite,

(7) if a representation 𝜌 does not appear in the𝓁-adic Tatemodule𝑉𝓁(Jac𝑋), then it does not appear
in rational points or in 𝑝∞-Selmer groups:

⟨𝜌, 𝑉𝓁(Jac𝑋)⟩ = 0 ⇒ ⟨𝜌, Jac𝑋(𝐾) ⊗ ℚ⟩ = ⟨𝜌,𝑝(Jac𝑋)⟩ = 0.
Similarly, if ⟨𝜌, 𝑉𝓁(Jac𝑋)⟩ = 0, then ⟨𝜌,Ω1(Jac𝑋)⟩ = 0 for general characteristic 0 fields.

Proof. This is proved in [29]: for (1), (3), (4) see Theorem 1.3, for (2) see Remark 4.29 with
𝐹 = Ω1(−), for (5) see Theorem 1.2, for (6) see Theorem 5.2(3) and for (7) see Proposition 1.4 and
Remark 5.6. □

2 MOTIVIC PIECES OF CURVES

In the introduction, we factorised the 𝐿-function of a curve𝑋 with a group of automorphisms𝐺 as
a product of the 𝐿-function ‘pieces’ 𝐿(𝑋𝜏, 𝑠). Decompositions of this kind were alreadymentioned

 1460244x, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70083 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [02/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PARITY OF RANKS OF JACOBIANS OF CURVES 11 of 50

by Serre [45] as coming from ‘Artin 𝐿-functions in the setting of schemes’. In this section, we for-
malise this construction and justify the generalisation of the Birch–Swinnerton-Dyer conjecture
for these 𝐿-functions given in Conjecture 1.4. The reader who is willing to take the formulation of
the latter conjecture on trust (and its Selmer group analogue given in Conjecture 2.23) can fairly
safely skip this section; the only other results that will be used later are the existence and basic
properties of the local and global root numbers 𝑤(𝑋𝜏∕) and 𝑤(𝑋𝜏) (Propositions 2.21, 2.22) in
Sections 7–8.
Formally, 𝑋𝜏 should be constructed as a motive — it comes from the first cohomology groups

of the variety 𝑋 and the idempotent corresponding to 𝜏 in ℂ[𝐺]. We will not set up the entire
motivic machinery here and instead will just concentrate on the system of 𝓁-adic representations
attached to 𝑋𝜏. We will show that these are independent of 𝓁 and form a compatible system and
satisfy other desired properties (Theorem 2.13, Corollary 2.14).
Throughout this section, we will phrase everything in terms of principally polarised abelian

varieties 𝐴 with an action of a finite group 𝐺 by automorphisms. The case of interest for the rest
of the paper is 𝐴 = Jac𝑋 for a curve 𝑋∕𝐾 with 𝐺 coming from 𝐾-automorphisms of 𝑋. Thus, we
will simply write

𝐿(𝑋𝜏, 𝑠) = 𝐿(𝐴𝜏, 𝑠) and 𝑤(𝑋𝜏) = 𝑤(𝐴𝜏).

While much of what follows remains true without assuming the existence of a principal polarisa-
tion, several statements are cleaner in the presence of this assumption. Since ourmain application
is to Jacobians of curves, we elect to work in the principally polarised setting throughout.
In this section we will adopt the following conventions and notation.

Convention. For the purpose of working with 𝓁-adic representations, we fix embeddings ℚ ⊂
ℚ𝓁 ⊂ ℂ for all 𝓁 (with the resulting embedding ℚ ⊂ ℂ independent of 𝓁).

Notation 2.1. When a prime 𝓁 is fixed, we write 𝜒cyc for the 𝓁-adic cyclotomic character.

Notation 2.2. We take all 𝑑-dimensional representations 𝜏 of finite groups to be valued inGL𝑑(ℚ),
and implicitly extend scalars to GL𝑑(ℚ𝓁) or GL𝑑(ℂ) whenever necessary.
For a finite group 𝐺 and a 𝐺-representation 𝜏, we write ℚ(𝜏) for the (abelian) number field

generated by the values of the character of 𝜏, that is, by Tr𝜏(g) for all g ∈ 𝐺. For 𝛼 ∈ Gal(ℚ(𝜏)∕ℚ),
we write 𝜏𝛼 for the representation that is 𝛼-conjugate to 𝜏, that is, Tr𝜏𝛼(g) = 𝛼(Tr𝜏(g)) for all
g ∈ 𝐺.

Convention. By an automorphism 𝜎 of a principally polarised abelian variety, we alwaysmean one
that respects the polarisation. That is, such that 𝜎†◦𝜎 = 1, where † denotes the Rosati involution.

Definition 2.3. For an abelian variety 𝐴 over a field 𝐿, we write

𝐻1𝓁(𝐴) = (𝑇𝓁(𝐴) ⊗ℤ𝓁
ℚ𝓁)

∗

for its associated 𝓁-adic Galois representation.
If a finite group 𝐺 acts on 𝐴 by 𝐿-automorphisms, then 𝐻1𝓁(𝐴) carries an induced action of

𝐺 that commutes with the action of Gal(𝐿∕𝐿). For a representation 𝜏 of 𝐺, we define the 𝓁-adic
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12 of 50 DOKCHITSER et al.

Galois representation

𝐻1𝓁(𝐴
𝜏) = Hom𝐺(𝜏,𝐻

1
𝓁(𝐴)).

We caution the reader that this notation depends on the underlying group𝐺, for example,𝐻1𝓁(𝐴
𝟙)

is the subspace of 𝐺-invariants of𝐻1𝓁(𝐴).

The following abelian variety 𝐴𝐺 plays the role of the (Jacobian of the) quotient curve 𝑋∕𝐺 in
Section 1.

Definition 2.4. Let 𝐴 be an abelian variety over a field 𝐿 and let 𝐺 be a finite group acting on 𝐴
by 𝐿-automorphisms. We write

𝐴𝐺 = connected component of identity of 𝐴
𝐺,where 𝐴𝐺 =

⋂
g∈𝐺

ker (g − 1) .

𝐴𝐺 is an abelian subvariety of 𝐴, and 𝐴𝐺 is a subgroup variety.

Remark 2.5. The abelian variety 𝐴𝐺 satisfies the analogue of Galois descent in Section 1(†):

(𝐴(𝐿) ⊗ ℚ)𝐺 ≃ 𝐴𝐺(𝐿) ⊗ ℚ.

Indeed, the natural inclusion 𝐴𝐺 → 𝐴𝐺 induces an injection 𝐴𝐺(𝐿) → 𝐴𝐺(𝐿) = 𝐴(𝐿)𝐺 , whose
cokernel is annihilated by the order of the component group of 𝐴𝐺 .

Remark 2.6 (see [29], Sections 3 and 4). Let 𝑋 be a curve over a field 𝐿 of characteristic 0.
The Jacobian 𝐴 = Jac𝑋 carries a canonical principal polarisation. Moreover, if 𝐺 is a finite
group of 𝐿-automorphisms of 𝑋, then 𝐺 acts naturally (but possibly not faithfully) on Jac𝑋
by 𝐿-automorphisms. In this setting, Jac𝑋∕𝐺 is isogenous to (Jac𝑋)𝐺 , and so they can be used
interchangeably in many arithmetic situations.

2.1 Galois representation of 𝑨𝝉

Before discussing the 𝓁-adic representation for 𝐴𝜏, we first record the following property of
𝐻1𝓁(𝐴𝐺), analogous to Theorem 1.15.

Proposition 2.7. Let𝐴 be a principally polarised abelian variety over a field 𝐿 and 𝐺 a finite group
acting on 𝐴 by 𝐿-automorphisms. For𝐻 ⩽ 𝐺,

𝐻1𝓁(𝐴𝐻) ≃ 𝐻
1
𝓁(𝐴)

𝐻

as Gal(𝐿∕𝐿)-representations, and as 𝐺∕𝐻 × Gal(𝐿∕𝐿)-representations if𝐻 is normal in 𝐺.

Proof. Write 𝑁𝐻 =
∑
ℎ∈𝐻 ℎ, which we view as an endomorphism of 𝐴. Note that 𝑁𝐻(𝐴) ⊆ 𝐴𝐻 .

Denoting by 𝑖𝐻 the inclusion of 𝐴𝐻 into 𝐴, we thus have maps 𝑁𝐻 ∶ 𝐴 → 𝐴𝐻 and 𝑖𝐻 ∶ 𝐴𝐻 → 𝐴.

 1460244x, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70083 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [02/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PARITY OF RANKS OF JACOBIANS OF CURVES 13 of 50

Noting that the image of 𝑁∗
𝐻
∶ 𝐻1𝓁(𝐴𝐻) → 𝐻1𝓁(𝐴) is contained in 𝐻

1
𝓁(𝐴)

𝐻 , we obtain maps

𝑁∗𝐻 ∶ 𝐻
1
𝓁(𝐴𝐻) → 𝐻1𝓁(𝐴)

𝐻 and 𝑖∗𝐻 ∶ 𝐻
1
𝓁(𝐴)

𝐻 → 𝐻1𝓁(𝐴𝐻).

The composition𝑁𝐻◦𝑖𝐻 is multiplication by |𝐻| on𝐴𝐻 , hence 𝑖∗𝐻◦𝑁∗𝐻 is multiplication by |𝐻| on
𝐻1𝓁(𝐴𝐻). Similarly,𝑁

∗
𝐻
◦𝑖∗
𝐻
is multiplication by |𝐻| on𝐻1𝓁(𝐴)𝐻 . We conclude that both𝑁∗𝐻 and 𝑖∗𝐻

are isomorphisms as in the statement. □

Proposition 2.8. Let𝐴 be a principally polarised abelian variety over a field 𝐿 of characteristic 0, let
𝐺 be a finite group acting on 𝐴 by 𝐿-automorphisms and let 𝓁 be a prime. There are isomorphisms
of Gal(𝐿∕𝐿)-representations as follows:

(1) For 𝐺-representations 𝜏, 𝜏′,𝐻1𝓁(𝐴
𝜏⊕𝜏′) ≃ 𝐻1𝓁(𝐴

𝜏) ⊕ 𝐻1𝓁(𝐴
𝜏′).

(2) If𝐻 ⩽ 𝐺 and 𝜌 is a representation of𝐻, then𝐻1𝓁(𝐴
Ind𝐺

𝐻
𝜌) ≃ 𝐻1𝓁(𝐴

𝜌).
(3) If 𝜎 factors through 𝐺∕𝑁 for𝑁 ⊲ 𝐺, then𝐻1𝓁(𝐴

𝜎) ≃ 𝐻1𝓁((𝐴𝑁)
𝜎).

(4) For𝐻 ⩽ 𝐺,𝐻1𝓁(𝐴
Ind𝐺

𝐻
𝟙) ≃ 𝐻1𝓁(𝐴𝐻).

(5) There is a non-degenerate Gal(𝐿∕𝐿)-equivariant bilinear pairing

𝐻1𝓁(𝐴
𝜏) × 𝐻1𝓁(𝐴

𝜏∗) → 𝜒∗cyc.

If 𝜏 is self-dual and orthogonal, this pairing is alternating and dim𝐻1𝓁(𝐴
𝜏) is even.

(6) 𝐻1𝓁(𝐴
𝜏)∗ ≃ 𝐻1𝓁(𝐴

𝜏∗) ⊗
ℚ𝓁
𝜒cyc.

(7) If 𝜏 is self-dual, then (det𝐻1𝓁(𝐴
𝜏))⊗2 ≃ 𝜒

∗⊗dim𝐻1
𝓁
(𝐴𝜏)

cyc . If 𝜏 is orthogonal, then det𝐻1𝓁(𝐴
𝜏) ≃

𝜒
∗⊗1

2
dim𝐻1

𝓁
(𝐴𝜏)

cyc .

Proof.

(1) Follows from the fact thatHom𝐺 commutes with finite direct sums in the first variable.
(2) Since induction is left adjoint to restriction, for any 𝐺-representation 𝑉 there is an

isomorphism

Hom𝐺(Ind
𝐺
𝐻𝜌, 𝑉) ≃ Hom𝐻(𝜌, 𝑉)

which is functorial in 𝑉. Taking 𝑉 = 𝐻1𝓁(𝑋) gives the result.
(3) By Proposition 2.7𝐻1𝓁(𝐴𝑁) ≃ 𝐻

1
𝓁(𝐴)

𝑁 . Since 𝜎 factors through 𝐺∕𝑁, the natural map

Hom𝐺
(
𝜎,𝐻1𝓁(𝐴)

𝑁
)
→ Hom𝐺

(
𝜎,𝐻1𝓁(𝐴)

)
is an isomorphism, from which the claim follows.

(4) By (2) and Proposition 2.7,𝐻1𝓁(𝐴
Ind𝐺

𝐻
𝟙) ≃ 𝐻1𝓁(𝐴)

𝐻 ≃ 𝐻1𝓁(𝐴𝐻).
(5) It suffices to construct a 𝐺-invariant pairing

Hom(𝜏,𝐻1𝓁(𝐴)) × Hom(𝜏
∗,𝐻1𝓁(𝐴))⟶ 𝜒∗cyc (*)
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14 of 50 DOKCHITSER et al.

with the same properties. Restricting this to 𝐺-invariants then gives the sought pairing on
𝐻1𝓁(𝐴

𝜏) (the restriction remains non-degenerate by [13, Lemma 2.15]). Note that the standard
isomorphisms of vector spaces

Hom(𝜏,𝐻1𝓁(𝐴)) ≃ 𝐻
1
𝓁(𝐴) ⊗ 𝜏

∗ and Hom(𝜏∗,𝐻1𝓁(𝐴)) ≃ 𝐻
1
𝓁(𝐴) ⊗ 𝜏

are 𝐺 × Gal(𝐿̄∕𝐿)-equivariant, where 𝐺 acts diagonally on the tensor products and Gal(𝐿̄∕𝐿)
acts via the first factors. Having made these identifications, the tensor product of the Weil
pairing on𝐻1𝓁(𝐴)with the natural ‘evaluation’ pairing between 𝜏 and 𝜏

∗ gives the pairing (*).
That this is alternatingwhen 𝜏 is self-dual and orthogonal follows from the fact that the tensor
product of an antisymmetric pairing with a symmetric pairing is antisymmetric.

(6) Follows from (5).
(7) The first claim follows from (6) on taking determinants. The second claim follows from the

orthogonal case of (5) and the Pfaffian identity pf (MT𝑀𝑡) = 𝑑𝑒𝑡(𝑀)pf (𝑇), where 𝑇 is an
antisymmetric matrix and𝑀 an arbitrary square matrix (see, e.g. [6, section 5.2, Proposition
1]). □

2.2 Local Galois representation of 𝑨𝝉

We now turn to the properties of 𝐻1𝓁(𝐴
𝜏) over local fields. We begin by recalling some stan-

dard results on the 𝓁-adic representation 𝐻1𝓁(𝐴) for semistable abelian varieties, except that we
additionally keep track of the action of a finite group of automorphisms.

Notation 2.9. Let be a non-archimedean local field with ring of integers and residue field 𝑘.
Let 𝐴∕ be a principally polarised abelian variety, and let 𝐺 be a finite group acting on 𝐴. Recall
(e.g. from [25, Definition 3.4]) that if 𝐴 is semistable, then by definition there is a short exact
sequence of 𝑘-group schemes

0⟶ 𝑇⟶ 0
𝑘
⟶ 𝐵⟶ 0,

where 0
𝑘
is the identity component of the special fibre of the Néron model ∕ of 𝐴, 𝑇 is a

torus and 𝐵 an abelian variety.
We denote by 𝔛𝐴 the character lattice of 𝑇.
The action of 𝐺 extends uniquely to, inducing actions on 𝑇, 𝐵 and𝔛𝐴.

Proposition 2.10. Continuing with the setup of Notation 2.9, let 𝓁 be a prime distinct from the
characteristic of 𝑘.

(1) We have

𝐻1𝓁(𝐴)∕𝐻
1
𝓁(𝐴)

𝐼 ≃ (𝔛𝐴 ⊗ℤ ℚ𝓁) ⊗ 𝜒
∗
cyc

as 𝐺 × Gal(𝑘̄∕𝑘)-modules.
(2) Let g = (g0, 𝜎) ∈ 𝐺 ×𝑊, where𝑊 is the Weil group of. Then Tr(g|𝐻1𝓁(𝐴)𝐼) is a rational

number independent of 𝓁. If 𝜎 acts on 𝑘 as a non-negative power of the geometric Frobenius, then
Tr(g|𝐻1𝓁(𝐴)𝐼) ∈ ℤ.
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PARITY OF RANKS OF JACOBIANS OF CURVES 15 of 50

Proof. The Weil pairing 𝑇𝓁(𝐴) ⊗ 𝑇𝓁(𝐴) → ℤ𝓁(1) induces an isomorphism

𝐻1𝓁(𝐴) ≃ 𝑇𝓁(𝐴)(−1) ⊗ℤ𝓁
ℚ𝓁 (*)

of 𝐺 × Gal(𝐾̄∕𝐾)-modules, where the −1 denotes a Tate twist. The description of the 𝓁-adic Tate
module of a semistable abelian variety given in [25] (see also [39, section 3] for a summary) is
readily checked to be compatible with the action of 𝐺. In particular, we have a 𝐺 × Gal(𝐾̄∕𝐾)-
stable filtration

0 ⊆ 𝑇𝓁(𝐴)
𝑡 ⊆ 𝑇𝓁(𝐴)

𝐼 ⊆ 𝑇𝓁(𝐴),

whose graded pieces are unramified and are, respectively,

𝔛∗(𝑇) ⊗ ℤ𝓁(1), 𝑇𝓁(𝐵) and 𝔛𝐴 ⊗ ℤ𝓁 .

Here 𝔛∗(𝑇) ≃ Hom(𝔛𝐴,ℤ) is the cocharacter lattice of 𝑇. Twisting by (−1) and using (*), we
deduce part (1).
For part (2), the above discussion gives

Tr
(
g ∣ 𝐻1𝓁(𝐴)

𝐼
)
= Tr
(
g ∣ 𝑇𝓁(𝐵)(−1)

)
+ Tr(g ∣ 𝔛∗(𝑇)).

Consequently, it suffices to consider the trace of g on 𝑇𝓁(𝐵)(−1). The Weil pairing on 𝐵 gives an
isomorphism of𝐺 ×𝑊-modules 𝑇𝓁(𝐵)(−1) ≃ Hom(𝑇𝓁(𝐵∨), ℤ𝓁), where 𝜏 ∈ 𝐺 acts on 𝑇𝓁(𝐵∨) as
(𝜏−1)∨. If 𝜎 acts on 𝑘̄ as a non-negative power of the geometric Frobenius, then g−1 acts on 𝑇𝓁(𝐵∨)
as a geometric endomorphism. Thus, by [34, Proposition 12.9], the characteristic polynomial of
g−1 on 𝑇𝓁(𝐵∨) has integer coefficients independent of 𝓁. This implies the result. □

Proposition 2.11. Let 𝐴 be a principally polarised abelian variety over a non-archimedean local
field, let 𝐺 be a finite group acting on𝐴 by-automorphisms, and let 𝓁 be a prime different from
the residue characteristic of.

(1)

Tr(Frob |𝐻1𝓁(𝐴𝜏)𝐼) = 1|𝐺| ∑
g∈𝐺

Tr(g−1|𝜏)Tr(Frob ⋅ g|𝐻1𝓁(𝐴)𝐼).
(2) For 𝛼 ∈ Gal(ℚ(𝜏)∕ℚ) the characteristic polynomials of Frob on 𝐻1𝓁(𝐴

𝜏)𝐼 and on 𝐻1𝓁(𝐴
𝜏𝛼 )𝐼

are 𝛼-conjugate. In other words, if det(𝑡 − Frob|𝐻1𝓁(𝐴𝜏)𝐼) = ∑𝑛𝑖=0 𝑎𝑖𝑡𝑖 , then det(𝑡 −

Frob|𝐻1𝓁(𝐴𝜏𝛼 )𝐼) = ∑𝑛𝑖=0 𝛼(𝑎𝑖)𝑡𝑖 .
(3) If 𝐴∕ is semistable, then 𝐻1𝓁(𝐴

𝜏)∕𝐻1𝓁(𝐴
𝜏)𝐼 ≃ Hom𝐺(𝜏,𝔛𝐴 ⊗ ℚ𝓁) ⊗ 𝜒

−1
cyc as a Gal(∕)-

module.

Proof.

(1) For irreducible 𝜏 this follows from Lemma 2.12(2) below, applied to 𝑉 = 𝐻1𝓁(𝐴)
𝐼 , 𝐻 =

Gal(∕), ℎ = Frob, and observing that 𝐻1𝓁(𝐴
𝜏)𝐼 ≃ Hom𝐺(𝜏,𝐻

1
𝓁(𝐴)

𝐼) as Gal(∕)-
modules. The general case then follows from Proposition 2.8(1).
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16 of 50 DOKCHITSER et al.

(2) The coefficients of the characteristic polynomial are symmetric functions in the eigenvalues of
Frobenius, and hence can be expressed as universalℤ-linear combinations of TrFrob𝑖 for 𝑖 =
0, …𝑛. It therefore suffices to show that Tr(Frob𝑖|𝐻1𝓁(𝐴𝜏𝛼 )𝐼) = 𝛼Tr(Frob𝑖|𝐻1𝓁(𝐴𝜏)𝐼). This
follows from (1), since by definition 𝛼Tr(g−1|𝜏) = Tr(g−1|𝜏𝛼) and as Tr(Frob ⋅ g|𝐻1𝓁(𝐴)𝐼) ∈
ℚ by Proposition 2.10(2).

(3) This follows from Proposition 2.10(1). □

Lemma 2.12. Let 𝑉 be a representation of 𝐺 × 𝐻 with 𝐺 finite. For a 𝐺-representation 𝜏 define
𝑉𝜏 = Hom𝐺(𝜏, 𝑉). Then, for an irreducible 𝐺-representation 𝜏

(1) 𝑉(𝜏⊕dim𝜏) is isomorphic to the 𝜏-isotypic component of 𝑉, and
(2) for ℎ ∈ 𝐻,

Tr(ℎ | 𝑉𝜏) = 1|𝐺| ∑
g∈𝐺

Tr(g−1|𝜏)Tr(ℎ ⋅ g|𝑉).
Proof.

(1) The map which sends 𝑉 to its 𝜏-isotypic component is isomorphic, as a functor, to 𝑉 ↦ 𝜏 ⊗

Hom(𝜏, 𝑉). Since𝐻 acts trivially on 𝜏, then 𝜏 ⊗ Hom(𝜏, 𝑉) ≃ 𝑉𝜏⊕dim𝜏 as an𝐻-representation.
(2) dim 𝜏|𝐺| ∑Tr(g−1|𝜏)g ∈ ℂ[𝐺] acts as the projector to the 𝜏-isotypic component. □

Theorem 2.13. Let 𝐴 be a principally polarised abelian variety over a local field of characteristic
0 with finite residue field 𝔽𝑞 . Let 𝐺 be a finite group acting on 𝐴 by -automorphisms, and let 𝜏 be
a representation of 𝐺. The local Weil–Deligne representation associated to𝐻1𝓁(𝐴

𝜏) is independent of
𝓁, weight-monodromy compatible and Frobenius-semisimple; more precisely, it can be written in the
form

𝜌1 ⊕ (𝜌2 ⊗ 𝑆𝑝(2)),

where 𝜌𝑖 are continuous complex representations of theWeil group that are independent of the choice
of 𝓁 ∤ 𝑞, Frobenius acts semisimply on the 𝜌𝑖 with eigenvalues of absolute value |𝑞|−1+ 𝑖

2 , and 𝑆𝑝(2)
denotes the 2-dimensional special representation.

Proof. It suffices to prove the result for irreducible 𝜏, as the general case then follows on tak-
ing direct sums (Proposition 2.8(1)). As 𝐴 is an abelian variety, the Weil–Deligne representation
associated to 𝐻1𝓁(𝐴) admits as decomposition of the above form (see, e.g. [44] Proposition 1.10).
By Lemma 2.12(1), 𝐻1𝓁(𝐴

𝜏)⊕dim𝜏 is isomorphic to a direct summand of 𝐻1𝓁(𝐴), and therefore
also admits such a decomposition (which is also Frobenius-semisimple and weight-monodromy
compatible, but may not be independent of 𝓁). Hence so does the Weil–Deligne representation
associated to 𝐻1𝓁(𝐴

𝜏).
It remains to prove independence of 𝓁 ∤ 𝑞. For a fixed integer 𝑑 ⩾ 0 and finite extension of

the coefficient field 𝐹∕ℚ𝓁 , [18] Theorem 7 and Corollary 8 show that there is a finite list of finite
extensions 𝑖∕ with the property that

(1) Every abelian variety 𝐵∕ with dim𝐵 ⩽ 𝑑 has semistable reduction over each 𝑖 , and
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PARITY OF RANKS OF JACOBIANS OF CURVES 17 of 50

(2) Every Frobenius-semisimple weight-monodromy compatible continuous 𝓁-adic represen-
tation 𝜌 ∶ Gal(∕) → GL𝑛(𝐹) for 𝑛 ⩽ 2𝑑 is uniquely determined by the set of traces
Tr𝜌

𝐼𝑖 (Frob𝑖 ) for all 𝑖.

Taking 𝑑 = dim𝐴 and  = ℚ𝓁(𝜏), we deduce that the local Weil–Deligne representation associ-
ated to 𝐻1𝓁(𝐴

𝜏) is determined by the traces of Frob𝑖 acting on 𝐻
1
𝓁(𝐴

𝜏)
𝐼𝑖 . These traces do not

depend on the choice of 𝓁 by Proposition 2.10(2) and Proposition 2.11(1). □

Corollary 2.14. Let𝐴 be a principally polarised abelian variety over a number field 𝐾, 𝐺 be a finite
groupacting on𝐴 by𝐾-automorphisms, and 𝜏 a representation of𝐺. Then𝐻1𝓁(𝐴

𝜏) forma compatible
system of 𝓁-adic representations, in the sense that for every prime 𝑣 of 𝐾, its associated local Weil–
Deligne representation is independent of the choice of 𝓁 for 𝑣 ∤ 𝓁.

2.3 𝑳-functions and root numbers of 𝑨𝝉

We refer to Tate’s [49] and Deligne’s [11] for the general definition of 𝐿-functions and 𝜖-factors.

Definition 2.15. Let 𝐴 be a principally polarised abelian variety over a local field , let 𝐺 be
a finite group acting on 𝐴 by -automorphisms, let 𝜏 be a representation of 𝐺 and 𝓁 a prime
different from the residue characteristic of.
When is non-archimedean the local polynomial is defined by the usual formula,

𝑃(𝐴𝜏∕, 𝑇) = det(1 − Frob−1 𝑇|𝐻1𝓁(𝐴𝜏)𝐼).
The local root number 𝑤(𝐴𝜏∕) is defined as the local root number associated to the Galois
representation𝐻1(𝐴𝜏) via the theory of 𝜖-factors,

𝑤(𝐴𝜏∕) =
𝜖(𝐻1𝓁(𝐴

𝜏), 𝜇, 𝜓)|𝜖(𝐻1𝓁(𝐴𝜏), 𝜇, 𝜓)|
for some choice of Haar measure 𝜇 and nontrivial additive character 𝜓 on . In view of Theo-
rem 2.13, the choice of 𝓁 is immaterial, at least if  has characteristic 0 (we will not discuss the
case of equal characteristic here).
When  is archimedean, the local 𝜖-factor (and the Γ-factor in the functional equation) is

defined in terms of the corresponding Hodge structure (see [11] (5.3)). We will only use that the
Hodge structure for𝐴𝜏 is non-zero only in degrees (0,1) and (1,0) and that the dimension satisfies

dim(𝐻(1,0)(𝐴𝜏) ⊕ 𝐻(0,1)(𝐴𝜏)) = dim𝐻1𝓁(𝐴
𝜏).

(Like the 𝓁-adic representation, the Hodge structure is constructed as aHom from that of 𝜏 to that
of𝐴. The former is concentrated in degree (0,0) where it is just the underlying vector space of the
representation with its 𝐺-action. The latter, by the functoriality of the Hodge decomposition (see,
e.g. [1, Section 12]), satisfies

𝐻(1,0)(𝐴) ⊕ 𝐻(0,1)(𝐴) ≃ 𝐻1𝓁(𝐴)
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18 of 50 DOKCHITSER et al.

as 𝐺-representations. The dimension formula follows on applying Hom𝐺(𝜏, ∙).)
See Proposition 2.22 below for an explicit formula for the local root number when 𝐴∕𝐾 is

semistable or 𝐾 is archimedean.

Lemma 2.16. The local root number 𝑤(𝐴𝜏∕) does not depend on the choice of measure 𝜇. If 𝜏
is orthogonal, then 𝑤(𝐴𝜏∕) does not depend on the choice of additive character 𝜓 and, moreover,
𝑤(𝐴𝜏∕) ∈ {±1}.

Proof. Independence of 𝜇 is standard and applies to local root numbers generally, as scaling the
measure merely scales the 𝜖-factor by a positive real number; see [49] (3.4.3) for the case of Weil
representations and (4.1.6) for the general case. Independence of 𝜓 and that the local root number
is ±1 generally holds for representations with positive determinant by [49] (3.4.4) and (4.1.6), and
by [11] (5.5.1), respectively. This applies to𝐻1𝓁(𝐴

𝜏) by Proposition 2.8(5). □

Definition 2.17. Let 𝐴 be a principally polarised abelian variety over a number field 𝐾, let 𝐺 be
a finite group acting on 𝐴 by 𝐾-automorphisms and 𝜏 a representation of 𝐺. The 𝐿-function and
global root number are defined as usual by

𝐿(𝐴𝜏, 𝑠) =
∏
𝑣∤∞

1

𝑃(𝐴𝜏∕𝐾𝑣, 𝑞
−𝑠
𝑣 )
, 𝑤(𝐴𝜏) =

∏
𝑣

𝑤(𝐴𝜏∕𝐾𝑣),

where 𝑞𝑣 is the size of the residue field at 𝑣, and the two products are taken over all the non-
archimedean places of 𝐾 and over all the places of 𝐾, respectively. (In this paper, we will be
interested in the representations 𝜏Θ,𝑝, which are always orthogonal. We will thus not discuss to
what extent the root number is well-defined for general 𝜏.)

Remark 2.18. The roots of 𝑃(𝐴𝜏∕𝐾𝑣, 𝑇) are a subset of those of the local polynomial for 𝐴∕𝐾𝑣. A
standard argument then shows that the 𝐿-series for 𝐴𝜏 converges on Re(𝑠) > 3

2
.

Lemma 2.19. Let 𝐴 be a principally polarised abelian variety over a number field 𝐾 and let 𝐺 be
a finite group acting on 𝐴 by 𝐾-automorphisms. For a representation 𝜏 of 𝐺, the coefficients of the
𝐿-series

𝐿(𝐴𝜏, 𝑠) =
∑

0≠𝐧⊲𝐾

𝑎𝐧
𝑁𝐾∕ℚ(𝑛)

𝑠

have 𝑎𝐧 ∈ ℚ(𝜏). Moreover, for 𝛼 ∈ Gal(ℚ(𝜏)∕ℚ), the 𝐿-series for 𝐴𝜏
𝛼 is given by

𝐿(𝐴𝜏
𝛼
, 𝑠) =

∑
0≠𝐧⊲𝐾

𝛼(𝑎𝐧)

𝑁𝐾∕ℚ(𝑛)
𝑠
.

Proof. This is a direct consequence of Proposition 2.11(3), which shows the corresponding Galois
equivariance property for each Euler factor. □

Standard conjectures on 𝐿-functions and Deligne’s conjecture on the ‘Galois equivariance’
properties of 𝐿-functions (see [11] section 5.2 and Conjecture 2.7), together with the above lemma,
imply the following conjecture.Wewill not make the terms 𝑎, 𝑏 explicit as they will not be used in
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PARITY OF RANKS OF JACOBIANS OF CURVES 19 of 50

this paper; see [49] (3.4.7), (4.1.6), (4.2.4) and [11] 5.3 for formulae relating them to the associated
conductor and the appropriate powers of 2 and 𝜋.

Conjecture 2.20. Let 𝐴 be a principally polarised abelian variety over a number field 𝐾 and let 𝐺
be a finite group acting on 𝐴 by 𝐾-automorphisms. For a representation 𝜏 of 𝐺,

(1) 𝐿(𝐴𝜏, 𝑠) has an analytic continuation to ℂ;
(2) 𝐿(𝐴𝜏, 𝑠) satisfies

𝐋(𝐴𝜏, 𝑠) = 𝑤(𝐴𝜏) ⋅ (𝑎𝑏𝑠) ⋅ 𝐋(𝐴𝜏
∗
, 2 − 𝑠),

where 𝐋(𝐴𝜏, 𝑠) = 𝐿(𝐴𝜏, 𝑠)Γ(𝑠)
[𝐾∶ℚ]

2
dim𝐻1

𝓁
(𝐴𝜏) and 𝑎, 𝑏 > 0 are constants that depend on 𝐴𝜏 and

𝐾, but not on 𝑠;
(3) ord𝑠=1𝐿(𝐴𝜏

𝛼
, 𝑠) = ord𝑠=1𝐿(𝐴

𝜏, 𝑠) for 𝛼 ∈ Gal(ℚ(𝜏)∕ℚ).

These 𝐿-functions and root numbers satisfy the usual ‘Artin formalism’. This follows from
Proposition 2.8 and standard properties of 𝐿-functions and root numbers under direct sums and
induced representations:

Proposition 2.21. Let 𝐴 be a principally polarised abelian variety over a number field 𝐾 and let 𝐺
be a finite group acting on 𝐴 by 𝐾-automorphisms.

(1) For 𝐺-representations 𝜏, 𝜏′,

𝐿(𝐴𝜏⊕𝜏
′
, 𝑠) = 𝐿(𝐴𝜏, 𝑠)𝐿(𝐴𝜏

′
, 𝑠) and 𝑤(𝐴𝜏⊕𝜏

′
) = 𝑤(𝐴𝜏)𝑤(𝐴𝜏

′
).

(2) If𝐻 ⩽ 𝐺 and 𝜌 is a representation of𝐻,

𝐿(𝐴Ind
𝐺
𝐻
𝜌, 𝑠) = 𝐿(𝐴𝜌, 𝑠) and 𝑤(𝐴Ind

𝐺
𝐻
𝜌) = 𝑤(𝐴𝜌).

(3) If 𝜏 is a representation of 𝐺 that factors through 𝐺∕𝑁 for𝑁 ⊲ 𝐺, then

𝐿(𝐴𝜏, 𝑠) = 𝐿(𝐴𝜏𝑁) and 𝑤(𝐴𝜏) = 𝑤(𝐴𝜏𝑁).

(4) If𝐻 ⩽ 𝐺, then

𝐿(𝐴Ind
𝐺
𝐻
𝟙, 𝑠) = 𝐿(𝐴𝐻, 𝑠) and 𝑤(𝐴Ind

𝐺
𝐻
𝟙) = 𝑤(𝐴𝐻).

Finally, we record the following explicit formula for 𝑤(𝐴𝜏∕) in the case when  is
archimedean or 𝐴∕ is semistable.

Proposition 2.22. Let 𝐴 be a principally polarised abelian variety over a local field , 𝐺 a finite
group acting on 𝐴 by-automorphisms and 𝜏 an orthogonal 𝐺-representation.
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20 of 50 DOKCHITSER et al.

(1) If is archimedean, then

𝑤(𝐴𝜏∕) = (−1)
1
2
dim𝐻1

𝓁
(𝐴𝜏).

(2) If is non-archimedean and 𝐴∕ is semistable, then

𝑤(𝐴𝜏∕) = (−1)⟨𝜏,(𝔛𝐴⊗ℂ)Frob ⟩.
In particular, 𝑤(𝐴𝜏∕) = 1 if 𝐴 has good reduction.

Proof.

(1) This follows from Definition 2.15 and [11] ¶5.3.
(2) By Proposition 2.11(3),

𝐻1(𝐴𝜏)∕𝐻1(𝐴𝜏)𝐼 ≃ Hom𝐺(𝜏,𝔛𝐴 ⊗ ℚ𝓁) ⊗ 𝜒
−1
cyc.

By [49] (4.2.4), the root number of an 𝓁-adic representation 𝑉 is related to that of its

semisimplification 𝑉𝑠𝑠 by 𝑤(𝑉∕) = 𝑤(𝑉𝑠𝑠∕)
sgn det(−Frob−1 |𝑉𝐼𝑠𝑠 )
sgn det(−Frob−1 |𝑉𝐼 ) . Applying this to𝐻1𝓁(𝐴𝜏),

𝑤(𝐴𝜏∕) = 𝑤(𝐻1(𝐴𝜏)𝑠𝑠∕) ⋅ sgn det(−Frob
−1
 |Hom𝐺(𝜏,𝔛𝐴 ⊗ ℚ𝓁) ⊗ 𝜒

−1
cyc)).

Both 𝐻1(𝐴𝜏)𝐼 and 𝐻1(𝐴𝜏)∕𝐻1(𝐴𝜏)𝐼 are unramified, hence so is 𝐻1(𝐴𝜏)𝑠𝑠. By [49] (3.2.6.1),
𝑤(𝐻1(𝐴𝜏)𝑠𝑠∕) = 1 (here we choose the additive character 𝜓 to have 𝑛𝜓 = 0; by Lemma 2.16
𝑤(𝐴𝜏∕) is independent of this choice). Thus,

𝑤(𝐴𝜏∕) = det(−Frob−1 |Hom𝐺(𝜏,𝔛𝐴 ⊗ ℚ𝓁)).

As 𝜏 is orthogonal and𝔛𝐴 is a lattice, both can be realised overℝ, and hence the eigenvalues of
Frob−1 onHom𝐺(𝜏,𝔛𝐴 ⊗ ℚ𝓁)must be real or come in complex conjugate pairs. As Frobenius
acts by an element of finite order on 𝔛𝐴 and trivially on 𝜏, we deduce that

𝑤(𝐴𝜏∕) = (−1)dimHom𝐺(𝜏,𝔛𝐴⊗ℤℚ𝓁)
Frob

= (−1)⟨𝜏,(𝔛𝐴⊗ℤℂ)Frob ⟩,
as required. □

2.4 Arithmetic conjectures

We can now explain our analogues of the Shafarevich–Tate conjecture, the Birch–Swinnerton-
Dyer conjectural rank formula, the parity conjecture and the 𝑝-parity conjecture for 𝐴𝜏.

Conjecture 2.23. Let 𝐴 be a principally polarised abelian variety over a number field 𝐾, let 𝐺 be a
finite group acting on 𝐴 by 𝐾-automorphisms and let 𝜏 be a representation of 𝐺. Then
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PARITY OF RANKS OF JACOBIANS OF CURVES 21 of 50

(1) for every prime 𝑝, ⟨𝜏,𝑝(𝐴∕𝐾)ℂ⟩ = ⟨𝜏, 𝐴(𝐾)ℂ⟩;
(2) ord𝑠=1𝐿(𝐴𝜏, 𝑠) = ⟨𝜏, 𝐴(𝐾)ℂ⟩;
(3) if 𝜏 is self-dual, then 𝑤(𝐴𝜏) = (−1)⟨𝜏,𝐴(𝐾)ℂ⟩;
(4) if 𝜏 is self-dual, then 𝑤(𝐴𝜏) = (−1)⟨𝜏,𝑝(𝐴∕𝐾)ℂ⟩.
Theorem 2.24. Let 𝐴 be a principally polarised abelian variety over a number field 𝐾 and let 𝐺 a
finite group acting on 𝐴 by 𝐾-automorphisms.

(1) Conjecture 2.23 (1) follows from the Shafarevich–Tate conjecture for 𝐴∕𝐾;
(2) Conjecture 2.23 (2) follows from Conjecture 2.20 (1,3) for 𝐿(𝐴𝜏, 𝑠) for all representations 𝜏 of 𝐺

and from the Birch–Swinnerton-Dyer conjecture for rk𝐴𝐻 for all𝐻 ⩽ 𝐺;
(3) Conjecture 2.23 (3) follows from Conjecture 2.23 (2) and Conjecture 2.20 (2);
(4) Conjecture 2.23 (4) follows from Conjecture 2.23 (1) and (3).

Proof.

(1) The inclusion𝐴(𝐾) ⊗ℤ ℚ𝑝 → 𝑝(𝐴∕𝐾)
∗ is 𝐺-equivariant, by functorialilty of the connecting

maps in Galois cohomology. Since 𝑝(𝐴∕𝐾) is self-dual by Theorem 1.15(5), if Ш(𝐴)[𝑝∞] is
finite, then 𝑝(𝐴∕𝐾)ℂ ≃ 𝐴(𝐾)ℂ as a 𝐺-module.

(2) If 𝜏 = Ind𝐺𝐻𝟙 for some𝐻 ⩽ 𝐺, then

ord𝑠=1𝐿(𝐴
𝜏, 𝑠) = ord𝑠=1𝐿(𝐴𝐻, 𝑠) = rk𝐴𝐻 = 𝑑𝑖𝑚𝐴(𝐾)

𝐻
ℂ
= ⟨𝜏, 𝐴(𝐾)ℂ⟩,

by Proposition 2.21(iv), the Birch–Swinnerton-Dyer rank formula for 𝐴𝐻 , Remark 2.5 and
Frobenius reciprocity.
If 𝜏 has rational character, then one can write 𝜏⊕𝑛 ⊕

⨁
𝑖 Ind

𝐺
𝐻𝑖
𝟙 =
⨁

𝑗 Ind
𝐺
𝐻′
𝑗

𝟙 for some

𝑛 ⩾ 1 and subgroups 𝐻𝑖,𝐻′𝑗 ⩽ 𝐺, as the Burnside ring has finite index in the rational repre-
sentation ring (see, e.g. [47, Theorem 2.1.3]). The result then follows from the previous case
and multiplicativity of 𝐿-functions (Proposition 2.21(i)).
Finally, for general 𝜏 let 𝜌 = ⊕𝛼∈Gal(ℚ(𝜏)∕ℚ)𝜏𝛼. As 𝐴(𝐾)ℂ is a rational representation,⟨𝜏, 𝐴(𝐾)ℂ⟩ = ⟨𝜏𝛼, 𝐴(𝐾)ℂ⟩ for all 𝛼 ∈ Gal(ℚ(𝜏)∕ℚ). The result now follows from Conjec-

ture 2.20 and the previous case applied to 𝜌, which has rational character:

ord𝑠=1𝐿(𝐴
𝜏, 𝑠) =

ord𝑠=1𝐿(𝐴
𝜌, 𝑠)|Gal(ℚ(𝜏)∕ℚ)| = ⟨𝜌,𝐴(𝐾)ℂ⟩|Gal(ℚ(𝜏)∕ℚ)| = ⟨𝜏, 𝐴(𝐾)ℂ⟩.

(3) Clear, since, by the functional equation, the parity of ord𝑠=1𝐿(𝐴𝜏, 𝑠) is determined by 𝑤(𝐴𝜏)
whenever 𝜏 = 𝜏∗.

(4) Clear. □

3 PSEUDO BRAUER RELATIONS AND REGULATOR CONSTANTS

We now define pseudo Brauer relations and their regulator constants, extending the notion of
regulator constants for Brauer relations considered in [13]. Most key properties are retained in
this expanded framework. Much of Sections 3.1–3.3 will be familiar to readers experienced with
these concepts.
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22 of 50 DOKCHITSER et al.

Throughout this section, 𝐿 is a field of characteristic 0 with a fixed embedding 𝐿 ↪ ℂ, 𝐺 is a
finite group,  is a set of representatives of the subgroups of 𝐺 up to conjugacy and ⟨, ⟩ is the
standard inner product on characters. All representations are assumed finite dimensional.

3.1 Pseudo Brauer relations

Definition 3.1. Let  be an 𝐿[𝐺]-representation. An element Θ =
∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
∈ ℤ[] is a

pseudoBrauer relation relative to if there areℂ[𝐺]-representations 𝜌1 and 𝜌2, satisfying ⟨𝜌1,⟩ =⟨𝜌2,⟩ = 0, such that
𝜌1 ⊕

⨁
𝑖

ℂ[𝐺∕𝐻𝑖] ≃ 𝜌2 ⊕
⨁
𝑗

ℂ[𝐺∕𝐻′
𝑗
].

Remark 3.2. When  = 𝐿[𝐺], we necessarily have 𝜌1 = 𝜌2 = 0. In this case, Definition 3.1
coincides with the existing notion of a Brauer relation.

Remark 3.3. The choice of representatives in will be immaterial in practice (see Remark 3.23 for
a thorough discussion). When specific choices are required (for instance in Section 6), these will
be explicitly stated.

The set of all pseudo Brauer relations relative to  forms a subgroup of ℤ[]. The following
result describes the rank of this subgroup.

Proposition 3.4. Let  be an 𝐿[𝐺]-representation and let Irrℚ(𝐺) be the set of isomorphism classes
of irreducible representations of 𝐺 over ℚ. Then,

rkℤ PBR() = #{conj. classes of non − cyclic 𝐻 ⩽ 𝐺} + #{𝜌 ∈ Irrℚ(𝐺) ∶ ⟨𝜌,⟩ = 0},
where PBR() ⊆ ℤ[] denotes the subgroup of pseudo Brauer relations relative to  .

Proof. Denote by 𝐵𝑅 ⊆ ℤ[] the subgroup of Brauer relations. It is well known that the rank of
𝐵𝑅 is equal to the number of conjugacy classes of non-cyclic subgroups of 𝐺. Indeed, denoting
by 𝑅(𝐺) the rational representation ring, we have a natural linear map 𝛼 ∶ ℚ[] → 𝑅(𝐺) ⊗ ℚ

sending
∑
𝑖 𝑛𝑖𝐻𝑖 to

∑
𝑖 𝑛𝑖Ind

𝐺
𝐻𝑖
𝟙. The kernel of 𝛼 is 𝐵𝑅 ⊗ ℚ, the dimension of 𝑅(𝐺) ⊗ ℚ is equal

to the number of conjugacy classes of cyclic subgroups of 𝐺 by [46, Section 13.1, Corollary 1], and
𝛼 is surjective by the induction theorem [46, Section 13.1, Theorem 30].
The restriction of 𝛼 to PBR() ⊗ ℚ is readily seen to have image contained in the subspace

of 𝑅(𝐺) ⊗ ℚ spanned by irreducible rational representations 𝜌 with ⟨𝜌,⟩ = 0. To complete the
proof, we wish to show that, conversely, any such 𝜌 lies in the image of 𝛼. This, again, is a
consequence of the induction theorem [46, Section 13.1, Theorem 30]. □

3.2 Regulator constants

Notation 3.5. Let Θ =
∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
∈ ℤ[] be a pseudo Brauer relation relative to a self-dual

𝐿[𝐺]-representation  . Given a non-degenerate, 𝐺-invariant, 𝐿-bilinear pairing ⟨⟨, ⟩⟩ on  , we
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PARITY OF RANKS OF JACOBIANS OF CURVES 23 of 50

denote by ⟨, ⟩1 the pairing
⟨, ⟩1 =⨁

𝑖

1|𝐻𝑖| ⟨⟨, ⟩⟩ on the vector space ⨁𝑖 𝐻𝑖 ,

and define the pairing ⟨, ⟩2 on⨁𝑗 
𝐻′
𝑗 similarly. Given a basis  = {𝑣𝑖} for

⨁
𝑖 

𝐻𝑖 , we denote

by ⟨,⟩1 the matrix with (𝑖, 𝑗)th entry ⟨𝑣𝑖, 𝑣𝑗⟩1, and define ⟨′,′⟩2 for a basis ′ of⨁𝑗 
𝐻′
𝑗

similarly. By [13, Lemma 2.15], both ⟨, ⟩1 and ⟨, ⟩2 are non-degenerate.
Definition 3.6. Let Θ =

∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
∈ ℤ[] be a pseudo Brauer relation relative to a self-

dual 𝐿[𝐺]-representation  , and let ⟨⟨, ⟩⟩ be a non-degenerate, 𝐺-invariant, 𝐿-bilinear pairing on
 taking values in some field extension 𝐿′ of 𝐿. Given bases  for

⨁
𝑖 

𝐻𝑖 and ′ for
⨁

𝑗 
𝐻′
𝑗 , we

define

,′

Θ
() =

det⟨,⟩1
det⟨′,′⟩2 ∈ 𝐿′×.

We then define the regulator constant of  relative to Θ, denoted Θ(), to be the class of
,′

Θ
() in 𝐿′×∕𝐿×2 for any choice of bases , ′ (the result being independent of this choice).

Many properties of regulator constants associated to Brauer relations [13, Section 2.ii] continue
to hold for the pseudo Brauer relations of Definition 3.6. Specifically, we have the following:

Theorem 3.7. Let 𝐿 be a field of characteristic 0, 𝐺 be a finite group and  ,1,2 be
finite-dimensional self-dual 𝐿[𝐺]-representations. Then,

(1) given a pseudo Brauer relationΘ relative to , Θ() is independent of the choice of pairing ⟨⟨, ⟩⟩,
and takes values in 𝐿×∕𝐿×2,

(2) given pseudo Brauer relations Θ1 and Θ2 relative to  , we have

Θ1+Θ2() = Θ1()Θ2(),

(3) if Θ is a pseudo Brauer relation relative to both 1 and 2, then

Θ(1 ⊕ 2) = Θ(1)Θ(2).

In particular, if  ≃
⨁

𝑖 
𝑛𝑖
𝑖
is a decomposition into self-dual 𝐿[𝐺]-representations, then

Θ() =
∏
𝑖

Θ(𝑖)
𝑛𝑖 .

We will prove Theorem 3.7 after introducing an alternative description of regulator constants
in Section 3.4. We note that an analogue of (1) also holds for ,′

Θ
(), see Remark 3.22.

Remark 3.8. We note that Θ is compatible with extension of scalars: If 𝐾∕𝐿 is a field extension,
then Θ() = Θ( ⊗𝐿 𝐾) in𝐾×∕𝐾×2. On the other hand, if  descends to a𝐾[𝐺]-representation
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24 of 50 DOKCHITSER et al.

 for a subfield𝐾 ⊆ 𝐿, then is unique up to𝐾[𝐺]-isomorphism. In particular, we can associate
to  a well-defined regulator constant Θ() ∈ 𝐾×∕𝐾×2. We will often omit from the notation
and simply view Θ() as an element of 𝐾×∕𝐾×2 without comment.

Theorem 3.7 represents a generalisation of [13, Theorem 2.17 and Corollary 2.18]. In addition,
the following result generalises [13, Corollary 2.25 and Lemma 2.26].

Lemma 3.9. Let Θ =
∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
be a pseudo Brauer relation relative to  . If either

(1)  is symplectic, or
(2) ⟨ , 𝐿[𝐺∕𝐻𝑖]⟩ = ⟨ , 𝐿[𝐺∕𝐻′𝑗]⟩ = 0 for all 𝑖, 𝑗,
then Θ() ≡ 1mod𝐿

×2.

Proof. See [13, Corollary 2.25, Lemma 2.26]. □

We use this to show that Θ() can be taken to be a positive real number.

Lemma 3.10. LetΘ be a pseudo Brauer relation relative to a self-dual 𝐿[𝐺]-representation  . Then,
there exists a positive real number in the same class as Θ() in 𝐿×∕𝐿×2. (Recall that we fixed an
embedding 𝐿 ↪ ℂ at the start of the section.)

Proof.Write  ≃ 𝜓1 ⊕ 𝜓2 where 𝜓1 (resp. 𝜓2) is an orthogonal (resp. symplectic) representation.
Then Θ() = Θ(𝜓1)Θ(𝜓2) = Θ(𝜓1) by Theorem 3.7(3) and Lemma 3.9. Now 𝜓1 is realisable
over ℝ, say on a real vector space  , which necessarily admits a positive definite 𝐺-invariant
pairing (take the average, over g ∈ 𝐺, of any inner product). The associated pairings ⟨, ⟩1, ⟨, ⟩2 (as
in Notation 3.5) are then positive definite. Computing Θ() with respect to these pairings we
obtain a positive real number. By Remark 3.8, this gives the result. □

3.3 The representations 𝝉𝚯,𝒑

We now introduce a special class of representations 𝜏Θ,𝑝 in the case 𝐿 = ℚ𝑝, which feature
throughout the paper.

Definition 3.11. LetΘ be a pseudo Brauer relation relative to a self-dualℚ𝑝[𝐺]-representation  .
Consider the set of all self-dual ℚ𝑝[𝐺]-representations 𝜏 all of whose irreducible constituents
appear in  , that is 𝜏 for which ⟨𝜌,⟩ = 0 implies ⟨𝜌, 𝜏⟩ = 0 for all ℚ𝑝[𝐺]-representations 𝜌. We
define 𝜏Θ,𝑝 to be (any choice of) self-dual ℂ[𝐺]-representation, all of whose complex irreducible
constituents are orthogonal, that satisfies

⟨𝜏Θ,𝑝, 𝜌⟩ ≡ ord𝑝Θ(𝜌) mod 2, ∀𝜌 ∈  .

(For the purposes of this paper, the choice of 𝜏Θ,𝑝 will be immaterial.)

Remark 3.12. A choice for 𝜏Θ,𝑝 always exists by Lemma 3.9(1). For instance, let {𝜏𝑖}𝑖 be the set of
all self-dual and ℚ𝑝-irreducible representations of 𝐺 with ord𝑝Θ(𝜏𝑖) odd. Then we can take
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PARITY OF RANKS OF JACOBIANS OF CURVES 25 of 50

𝜏Θ,𝑝 =
⨁
𝑖

(anyℂ−irreducible constituent of 𝜏𝑖).

In particular, when all irreducible representations of 𝐺 are realisable over ℚ, we can take

𝜏Θ,𝑝 =
⨁
𝜏

(ord𝑝Θ(𝜏))𝜏,

where the sum ranges over all irreducible representations of 𝐺, and ord𝑝Θ(𝜏) is taken in {0, 1}.

Remark 3.13. IfΘ is a Brauer relation (see Remark 3.2), then any choice for 𝜏Θ,𝑝 defines an element
of the set denoted 𝐓Θ,𝑝 in [13, Definition 2.50].

Example 3.14 (see [13] Examples 2.3, 2.4, 2.20, 2.22). The following table describes generators for
the group of Brauer relations in𝐶2×𝐶2, 𝑆3 and𝐷2𝑝, alongwith the associated representations 𝜏Θ,𝑝
for the relevant primes 𝑝. For 𝐺 = 𝑆3 and 𝐶2 × 𝐶2, these choices of 𝜏Θ,𝑝 appeared in Examples 1.9
and 1.10.

𝐺 Θ 𝑝 𝜏Θ,𝑝

𝐶2 × 𝐶2 𝐶
𝑎
2
+ 𝐶𝑏

2
+ 𝐶𝑐

2
− 2𝐶2×𝐶2 − {1} 2 𝟙 ⊕ 𝜖𝑎 ⊕ 𝜖𝑏 ⊕ 𝜖𝑐

𝑆3 2𝐶2 + 𝐶3 − 2𝑆3 − {1} 3 𝟙 ⊕ 𝜖 ⊕ 𝜌

𝐷2𝑝 2𝐶2 + 𝐶𝑝 − 2𝐷2𝑝 − {1} 𝑝 𝟙 ⊕ 𝜖 ⊕ 𝜌

Here 𝐶𝑎
2
, 𝐶𝑏

2
, 𝐶𝑐

2
are the order 2 subgroups and 𝜖𝑎, 𝜖𝑏, 𝜖𝑐 the non-trivial order 2 characters of 𝐶2 ×

𝐶2, 𝜌 is a (choice of) 2-dimensional irreducible representation of 𝑆3 or 𝐷2𝑝 and 𝜖 = det 𝜌.

3.4 Alternative description of regulator constants

The following reinterpretation of regulator constants is based on expositions, in the case of Brauer
relations, given in [3, Section 3] and [14, Lemma 3.2]. We begin with some notation.

Notation 3.15. Let 𝑀 be a ℤ[𝐺]-module (below we will take 𝑀 =  to be a self-dual 𝐿[𝐺]-
representation, but this greater generality will be useful in later sections). For each subgroup 𝐻
of 𝐺, we have an isomorphism

Hom𝐺(ℤ[𝐺∕𝐻],𝑀)⟶̃𝑀𝐻 (*)

given by evaluating homomorphisms at the trivial coset. Given subgroups 𝐻1,… ,𝐻𝑛 and
𝐻′
1
, … ,𝐻′𝑚 of 𝐺, define 𝐺-sets 𝑆 =

⨆𝑛
𝑖=1 𝐺∕𝐻𝑖 and 𝑆

′ =
⨆𝑚
𝑗=1 𝐺∕𝐻

′
𝑗
. Taking ℤ[𝑆] and ℤ[𝑆′] to be

the corresponding permutation modules, (*) induces isomorphisms

Hom𝐺(ℤ[𝑆],𝑀) ≃
⨁
𝑖

𝑀𝐻𝑖 and Hom𝐺(ℤ[𝑆
′],𝑀) ≃

⨁
𝑗

𝑀
𝐻′
𝑗 .
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26 of 50 DOKCHITSER et al.

Consequently, given Φ ∈ Hom𝐺(ℤ[𝑆], ℤ[𝑆′]), the map from Hom𝐺(ℤ[𝑆
′],𝑀) to Hom𝐺(ℤ[𝑆],𝑀)

sending 𝑓 to 𝑓◦Φ induces a homomorphism

Φ∗ ∶
⨁
𝑗

𝑀
𝐻′
𝑗 →
⨁
𝑖

𝑀𝐻𝑖 .

The 𝐺-module ℤ[𝑆] (resp. ℤ[𝑆′]) is canonically self-dual, via the pairing making the elements
of 𝑆 (resp. 𝑆′) an orthonormal basis. Given Φ ∈ Hom𝐺(ℤ[𝑆], ℤ[𝑆′]), we denote by Φ∨ the
corresponding dual homomorphism Φ∨ ∶ ℤ[𝑆′] → ℤ[𝑆].

Definition 3.16. Let Θ =
∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
∈ ℤ[] be a pseudo Brauer relation relative to a self-

dual 𝐿[𝐺]-representation  . We say that a ℤ[𝐺]-module homomorphism Φ ∶
⨁

𝑖 ℤ[𝐺∕𝐻𝑖] →⨁
𝑗 ℤ[𝐺∕𝐻

′
𝑗
] realises Θ if the induced map

Φ∗ ∶
⨁
𝑗


𝐻′
𝑗 →
⨁
𝑖

𝐻𝑖

is an isomorphism.

Lemma 3.17. Let Θ =
∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
be a pseudo Brauer relation relative to a self-dual 𝐿[𝐺]-

representation  . Then, there exists a 𝐺-module homomorphism Φ realising Θ.

Proof. By Definition 3.1, there are ℂ𝐺-representations 𝜌1, 𝜌2 such that 𝜌1 ⊕
⨁

𝑖 ℂ[𝐺∕𝐻𝑖] is
isomorphic to 𝜌2 ⊕

⨁
𝑗 ℂ[𝐺∕𝐻

′
𝑗
]. We may assume that 𝜌1 and 𝜌2 have no common irre-

ducible constituents, so that, in particular, they are both realisable over ℚ. We can then find
free ℤ[𝐺]-modules 𝑉1 and 𝑉2 such that 𝑉1 ⊗ℤ ℂ ≃ 𝜌1 and 𝑉2 ⊗ℤ ℂ ≃ 𝜌2, and a 𝐺-module
homomorphism

𝜙 ∶ 𝑉1 ⊕
⨁
𝑖

ℤ[𝐺∕𝐻𝑖] → 𝑉2 ⊕
⨁
𝑗

ℤ[𝐺∕𝐻′
𝑗
]

with finite kernel and cokernel. Denoting by 𝜄 and 𝜋 the inclusion/projection in/out of the
permutation modules, one checks that Φ = 𝜋◦𝜙◦𝜄 realises the pseudo Brauer relation Θ. □

Remark 3.18. If Θ =
∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
is a Brauer relation, then a 𝐺-map realising it is precisely a

𝐺-injection Φ ∶
⨁

𝑖 ℤ[𝐺∕𝐻𝑖] →
⨁

𝑗 ℤ[𝐺∕𝐻
′
𝑗
] with finite cokernel.

Notation 3.19. Given finite-dimensional 𝐿-vector spaces 𝑉,𝑊, with bases 1 = {𝑣𝑖}𝑖,2 = {𝑤𝑗}𝑗 ,
respectively, and given an 𝐿-linear map 𝑇 ∶ 𝑉 → 𝑊, we write [𝑇]21 to denote the matrix of 𝑇
relative to 1 and 2. Similarly to Notation 3.5, given a pairing ⟨⟨, ⟩⟩ between 𝑉 and𝑊, we denote
by ⟨⟨1,2⟩⟩ the matrix with (𝑖, 𝑗)th entry ⟨⟨𝑣𝑖, 𝑤𝑗⟩⟩.
The following proposition (alongwithCorollary 3.21) gives the promised alternative description

of regulator constants. Analogues for Brauer relations appear as [3, Theorem 3.2], [14, Lemma 3.2].
We highlight that, while we have not yet shown that ,′

Θ
() is independent of the choice of

pairing ⟨⟨, ⟩⟩ made in its definition, the proof of the proposition applies regardless of the choice
made. As a by-product, this will prove the sought independence.

 1460244x, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70083 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [02/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PARITY OF RANKS OF JACOBIANS OF CURVES 27 of 50

Proposition 3.20. LetΘ =
∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
be a pseudo Brauer relation relative to a self-dual 𝐿[𝐺]-

representation  . For any 𝐺-module homomorphism Φ realising Θ, we have

,′

Θ
() =

𝑑𝑒𝑡[(Φ∨)∗]
′



𝑑𝑒𝑡[Φ∗]′
,

where , ′ are bases for
⨁

𝑖 
𝐻𝑖 ,
⨁

𝑗 
𝐻′
𝑗 , respectively.

Proof. Fix a non-degenerate𝐺-invariant pairing ⟨⟨, ⟩⟩ on  . We follow the proof of [14, Lemma 3.2].
For a finite 𝐺-set 𝑇, we define the pairing (, )𝑇 on Hom𝐺(ℤ[𝑇],) by setting

(𝑓1, 𝑓2)𝑇 =
1|𝐺| ∑

𝑡∈𝑇

⟨⟨𝑓1(𝑡), 𝑓2(𝑡)⟩⟩.
Take 𝑆 =

⨆
𝑖 𝐺∕𝐻𝑖 and 𝑆′ =

⨆
𝑗 𝐺∕𝐻

′
𝑗
. After identifyingHom𝐺(ℤ[𝑆],) with

⨁
𝑖 

𝐻𝑖 as in Nota-
tion 3.15, the pairing (, )𝑆 identifies with the pairing ⟨, ⟩1 of Notation 3.5. Similarly, the pairing (, )𝑆′
identifies with the pairing ⟨, ⟩2. An easy computation then shows that Φ∗ and (Φ∨)∗ are adjoint
for the pairings ⟨, ⟩1 and ⟨, ⟩2. We now compute

,′

Θ
() =

det⟨,⟩1
det⟨′,′⟩2 = det⟨, Φ∗′⟩1

det[Φ∗]′
⋅

det[(Φ∨)∗]
′



det⟨(Φ∨)∗,′⟩2 . □

Corollary 3.21. Let Θ =
∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
be a pseudo Brauer relation relative to a self-dual 𝐿[𝐺]-

representation  . Let Φ be a 𝐺-module homomorphism realising Θ and  a basis for
⨁

𝑖 
𝐻𝑖 . Then

,Φ∨
Θ

() =
1

𝑑𝑒𝑡(Φ∨Φ)∗
.

In particular, ,Φ∨
Θ

() is independent of .

Proof. Immediate from Proposition 3.20. □

Proof of Theorem 3.7. Parts (2) and (3) follow readily from part (1). To prove (1), pick someΦ realis-
ing the pseudo Brauer relation Θ, and pick a pairing ⟨⟨, ⟩⟩ as in the definition of Θ(). The proof
of Proposition 3.20 then shows that

Θ() ≡ 𝑑𝑒𝑡(Φ
∨Φ)

∗
mod 𝐿×2.

Since the right-hand side is an element of 𝐿× which is independent of ⟨⟨, ⟩⟩, the result follows. □

Remark 3.22. By the same argument, for any bases  and ′ as in Definition 3.6, the quantity
,′

Θ
() lies in 𝐿×, and is independent of the choice of pairing ⟨⟨, ⟩⟩ used to define it.

Remark 3.23. The choice of representatives in  made at the start of this section does not affect
the above results in any meaningful way. For instance, if Θ =

∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
∈ ℤ[] is a pseudo
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28 of 50 DOKCHITSER et al.

Brauer relation relative to  , and we set𝑀𝑖 = g𝑖𝐻𝑖g
−1
𝑖
,𝑀′

𝑗
= g ′

𝑗
𝐻′
𝑗
g ′−1
𝑗

for some g𝑖 , g ′𝑗 ∈ 𝐺, then
we have canonical isomorphisms

⨁
𝑖 

𝐻𝑖 ≃
⨁

𝑖 
𝑀𝑖 and

⨁
𝑖 ℤ[𝐺∕𝑀𝑖] ≃

⨁
𝑖 ℤ[𝐺∕𝐻𝑖] given by

(𝑥𝑖) ↦ (g𝑖𝑥𝑖) and (𝑦𝑖𝑀𝑖) ↦ (𝑦𝑖g𝑖𝐻𝑖), respectively. Similarly for 𝐻′𝑗 . We conclude that the calcu-
lation of a regulator constant from Definition 3.6 and the notion of realising a pseudo Brauer
relation from Definition 3.16 are consistent even after a change from Θ to Θ′ =

∑
𝑖 𝑀𝑖 −

∑
𝑗 𝑀

′
𝑗
.

In addition, a change from Θ to Θ′ does not affect Proposition 3.20 or Corollary 3.21.

4 ISOGENIES INDUCED FROM PSEUDO BRAUER RELATIONS

Let𝑋 be a curve defined over a field𝐾 of characteristic 0 and let𝐺 be a finite subgroup ofAut𝐾(𝑋).
In what follows, we will exploit a consequence of [29, Theorem 4.14], presented as Theorem 4.3
below, which allows us to associate certain isogenies to pseudo Brauer relations relative to the
𝓁-adic Tate module 𝑉𝓁(Jac𝑋).

Definition 4.1. Let 𝓁 denote any prime. We say that Θ is a pseudo Brauer relation for 𝐺 and 𝑋 if
Θ is a pseudo Brauer relation relative to 𝑉𝓁(Jac𝑋) in the sense of Definition 3.1. When there is no
ambiguity, we call these pseudo Brauer relations for 𝑋.

Remark 4.2. Having fixed an embedding 𝐾 ↪ ℂ, we have a ℚ𝓁[𝐺]-isomorphism

𝐻1(Jac𝑋(ℂ), ℤ) ⊗ ℚ𝓁 ≃ 𝑉𝓁(Jac𝑋)

for every prime 𝓁. Thus the notion of a pseudo Brauer relation for 𝐺 and 𝑋 is independent of 𝓁.

Theorem 4.3. Let 𝑋 be a curve over a field 𝐾 of characteristic 0, and 𝐺 be a finite subgroup
of Aut𝐾(𝑋). Let

∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
be a pseudo Brauer relation for 𝑋 realised by Φ (in the sense of

Definition 3.16). Then, the following hold.

(1) The 𝐺-map Φ induces a 𝐾-isogeny

𝑓Φ ∶
∏
𝑗

Jac𝑋∕𝐻′
𝑗
→
∏
𝑖

Jac𝑋∕𝐻𝑖 .

(2) IfΦ′ realises a pseudo Brauer relation
∑
𝑗 𝐻

′
𝑗
−
∑
𝑘 𝐻

′′
𝑘
for𝑋, then the compositionΦ′Φ realises∑

𝑖 𝐻𝑖 −
∑
𝑘 𝐻

′′
𝑘
and 𝑓Φ′Φ = 𝑓Φ𝑓Φ′ .

(3) The dual homomorphism Φ∨ (as in Notation 3.15) realises the pseudo Brauer relation
∑
𝑗 𝐻

′
𝑗
−∑

𝑖 𝐻𝑖 for 𝑋, and we have 𝑓Φ∨ = (𝑓Φ)∨ where (𝑓Φ)∨ denotes the dual of 𝑓Φ with respect to the
canonical principal polarisations.

Proof. (1) follows from [29, Theorem 4.14(1,3)]. For (2), it is clear that Φ′Φ realises the pseudo
Brauer relation

∑
𝑖 𝐻𝑖 −

∑
𝑘 𝐻

′′
𝑘
, while the equailty 𝑓Φ′Φ = 𝑓Φ𝑓Φ′ follows from [29, Theorem

4.14(2)]. (3) follows from [29, Theorem 4.14(1)]. □

The next result concerns the degree of the isogeny 𝑓Φ.
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PARITY OF RANKS OF JACOBIANS OF CURVES 29 of 50

Proposition 4.4. Suppose thatΩ1(Jac𝑋) is a self-dual 𝐺-representation.

(1) With respect to any basis 1 forΩ1(
∏
𝑖 Jac𝑋∕𝐻𝑖 ), we have

1,Φ
∨1

Θ
(Ω1(Jac𝑋))

−1 = ±deg(𝑓Φ).

(2) IfΩ1(Jac𝑋) is orthogonal, then

1,Φ
∨1

Θ
(Ω1(Jac𝑋))

−1 = deg(𝑓Φ).

(3) For any 𝐺-maps Φ1, Φ2 realising Θ, deg(𝑓Φ1)∕deg(𝑓Φ2) lies in ℚ
×2.

Proof. For (1), we compute

1,Φ
∨1

Θ
(Ω1(Jac𝑋))−2

Cor. 3.21 &
[29, Lem. 5.10(1)]

= det
(
(Φ∨Φ)

∗ |||| 𝑉𝓁

(∏
Jac𝑋∕𝐻𝑖

))
[29, Lem. 4.28]

= det
(
𝑓Φ∨Φ

|||| 𝑉𝓁

(∏
Jac𝑋∕𝐻𝑖

))
[34, Prop. 12.9]

= deg(𝑓Φ∨Φ)

Thm. 4.3 (2),(3)
= deg(𝑓Φ)2.

For (2), the 𝐺-representationΩ1(Jac𝑋) is realisable over ℝ, say on an ℝ-vector space𝑊ℝ. By eval-
uating 1,Φ

∨1
Θ

(Ω1(Jac𝑋)) with respect to an ℝ-basis 1 for
∏
𝑖(𝑊ℝ)

𝐻𝑖 , Lemma 3.10 combined
with Theorem 3.7(1) tell us that 1,Φ

∨1
Θ

(Ω1(Jac𝑋)) is a positive real number. Since the equality
in (1) holds for any 1, we obtain the result. For (3), note that Ω1(Jac𝑋)⊕2 is realisable over ℚ by
[29, Lemma 5.10(2)]. It follows from [41, Theorem 32.15] that there exist infinitely many distinct
quadratic extensions 𝐿∕ℚ such thatΩ1(Jac𝑋) is realisable over 𝐿. For each such, we deduce from
part (1) and Theorem 3.7(1) that ±

deg(𝑓Φ1
)

deg(𝑓Φ2
)
∈ 𝐿×2. This is only possible if

deg(𝑓Φ1
)

deg(𝑓Φ2
)
∈ ℚ×2. □

5 LOCAL FORMULAE FOR SELMER RANK PARITIES

Let𝑋∕𝐾 be a curve defined over a number field𝐾, and let 𝐺 be a finite subgroup ofAut𝐾(𝑋). The
main result of this section expresses the valuation of the regulator constant of the dual 𝑝∞-Selmer
group, 𝑝(Jac𝑋), in terms of explicit local invariants.

Theorem 5.1. Let 𝑋 be a curve over a number field 𝐾, and 𝐺 be a finite subgroup of Aut𝐾(𝑋). Let
Θ be a pseudo Brauer relation for 𝑋, and suppose that Ω1(Jac𝑋) is a self-dual 𝐾[𝐺]-representation.
Then

ord𝑝Θ(𝑝(Jac𝑋)) ≡
∑

𝑣 place of 𝐾

ord𝑝ΛΘ(𝑋∕𝐾𝑣) mod 2,
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30 of 50 DOKCHITSER et al.

where the local invariant ΛΘ(𝑋∕𝐾𝑣) is as in Definition 5.16. In particular, for any choice of 𝜏Θ,𝑝 as
in Definition 3.11,

⟨𝜏Θ,𝑝,𝑝(Jac𝑋)⟩ ≡ ∑
𝑣 place of 𝐾

ord𝑝ΛΘ(𝑋∕𝐾𝑣) mod 2.

To prove this theorem, we begin by defining a local invariant 𝜆Θ,Φ(𝑋∕𝐾𝑣) which is shown in
Lemma 5.7 to be given by

𝜆Θ,Φ(𝑋∕𝐾𝑣) =
#coker𝑓Φ(𝐾𝑣)

#ker𝑓Φ(𝐾𝑣)
⋅

∏
𝑖𝜇𝑣(𝑋∕𝐻𝑖)∏
𝑗𝜇𝑣(𝑋∕𝐻

′
𝑗
)
,

where Φ is a 𝐺-map realising Θ, 𝑓Φ(𝐾𝑣) is the map on 𝐾𝑣-points induced by the corresponding
isogeny 𝑓Φ and 𝜇𝑣 encodes whether a curve is deficient at a place 𝑣 (see Section 5.1 below). We
prove an analogue of Theorem 5.1 with 𝜆Θ,Φ in place of ΛΘ (see Theorem 5.8). Unfortunately,
𝜆Θ,Φ depends on the choice of Φ. To remove this dependence (see Lemma 5.11(1)), we introduce a
revised invariant

𝜆̃Θ(𝑋∕𝐾𝑣) = 𝜆Θ,Φ(𝑋∕𝐾𝑣) ⋅
||||
√
deg(𝑓Φ)

||||𝑣.
The drawback now is that ord𝑝𝜆̃Θ ≡ 0, 1

2
, 1 or 3

2
mod 2 . We finally fix this (see Theorem 5.17(1))

by defining

ΛΘ(𝑋∕𝐾𝑣) = 𝜆̃Θ(𝑋∕𝐾𝑣) ⋅
||||
√

sf
Θ
(Ω1(Jac𝑋))

||||𝑣,
where sf

Θ
∈ ℕ denotes the square-free part of deg(𝑓Φ), calculated with respect to any Φ. We

caution that whilst 𝜆̃Θ is multiplicative in Θ, in general ΛΘ is not.

Remark 5.2. When 𝐾𝑣∕ℚ𝓁 is a finite extension and 𝑝 ≠ 2,𝓁, we will additionally show that

ord𝑝 ΛΘ(𝑋∕𝐾𝑣) = ord𝑝

∏
𝑖𝑐𝑣(Jac𝑋∕𝐻𝑖 )∏
𝑗𝑐𝑣(Jac𝑋∕𝐻′𝑗

)
,

where 𝑐𝑣(𝐴) denotes the Tamagawa number of an abelian variety𝐴∕𝐾𝑣. Indeed, this follows from
taking ord𝑝 in Lemma 5.19, which also details the analogue of this formula for all 𝑝.

Remark 5.3. By Theorem 1.15(5),(7), 𝑝(Jac𝑋) is a self-dual 𝐺-representation for all 𝑝, and any
pseudo Brauer relation for 𝑋 is a pseudo Brauer relation relative to 𝑝(Jac𝑋). Thus, the left-hand
side of the formula in Theorem 5.1 is well-defined.

5.1 Deficiency

Here we remind the reader of the notion of deficiency for curves over local fields. It is well known
that when the curve arises via base change from a number field, this concept controls the size,
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PARITY OF RANKS OF JACOBIANS OF CURVES 31 of 50

modulo rational squares, of the 2-primary part of the Shafarevich–Tate group of its Jacobian (see
[40, Section 8] for geometrically connected curves, and [29, Section 5.5] for an extension to the
curves of Convention 1.1).

Definition 5.4 ([29], Definition 5.13). Let be a local field of characteristic 0.
A geometrically connected curve𝑋∕ of genus g is called deficient if it has no-rational divisor

of degree g − 1. For such 𝑋, we define

𝜇(𝑋) =

{
2 if 𝑋 is def icient,

1 otherwise.

Suppose that 𝑋∕ is connected (but not necessarily geometrically connected). We write  for
the minimal field of definition of one of its geometric components, 𝑌 say, and define 𝜇(𝑋) =
𝜇(𝑌).
Finally, writing 𝑋 =

⨆
𝑖 𝑋𝑖 as a disjoint union of connected components, we define 𝜇(𝑋) =∏

𝑖 𝜇(𝑋𝑖).
If the field is clear from context, we will often omit it from the notation. Further, when =

𝐾𝑣 is the completion of a number field 𝐾 at a place 𝑣, we write 𝜇𝑣(𝑋) in place of 𝜇𝐾𝑣(𝑋).

5.2 A local formula in 𝝀𝚯,𝚽(𝑿∕)

Here we prove the analogue of Theorem 5.1 obtained by replacingΛΘ with the local invariant 𝜆Θ,Φ
mentioned above and defined in Definition 5.6 below.

Notation 5.5. For an abelian variety 𝐴 over a local field  of characteristic 0, and a choice of a
non-zero exterior form 𝜔 on 𝐴, we write

𝐶(𝐴, 𝜔) =

⎧⎪⎨⎪⎩
𝑐(𝐴) ⋅ |𝜔∕𝜔0| when∕ℚ𝑝is f inite,
∫
𝐴() |𝜔| when = ℝ,

2dim(𝐴) ∫𝐴() |𝜔 ∧ 𝜔̄| when = ℂ.

Here 𝜔∕𝜔0 ∈ × is such that 𝜔 = (𝜔∕𝜔0) ⋅ 𝜔0, where 𝜔0 is a Néron exterior form on 𝐴.

Definition 5.6. Let  be a local field of characteristic 0, 𝑋∕ be a curve, 𝐺 be a finite sub-
group of Aut(𝑋) and Θ =

∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
be a pseudo Brauer relation for 𝑋. Fix bases 1, 2

for Ω1(
∏
𝑖 Jac𝑋∕𝐻𝑖 ), Ω

1(
∏
𝑗 Jac𝑋∕𝐻′𝑗

) and write 𝜔(1), 𝜔(2) for the exterior forms given by the
wedge product of the elements in 1, 2, respectively. We define

𝜆
1,2
Θ

(𝑋∕) =
𝐶
(∏

𝑖 Jac𝑋∕𝐻𝑖 , 𝜔(1)
)

𝐶
(∏

𝑗 Jac𝑋∕𝐻′𝑗
, 𝜔(2)

) ⋅

∏
𝑖 𝜇(𝑋∕𝐻𝑖)∏
𝑗 𝜇(𝑋∕𝐻

′
𝑗
)
,

where 𝐶 is given in Notation 5.5 and 𝜇 is as in Definition 5.4.
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32 of 50 DOKCHITSER et al.

Given a 𝐺-map Φ realising Θ, write Φ∨1 for the basis obtained by applying (Φ∨)∗ to the
elements of 1 (cf. Notation 3.15). We additionally define

𝜆Θ,Φ(𝑋∕) = 𝜆
1,Φ

∨1
Θ

(𝑋∕).

We write 𝑓Φ() for the map on-points induced by the isogeny 𝑓Φ.

Lemma 5.7.We have

𝜆Θ,Φ(𝑋∕) =
#coker𝑓Φ()

#ker𝑓Φ()
⋅

∏
𝑖𝜇(𝑋∕𝐻𝑖)∏
𝑗𝜇(𝑋∕𝐻

′
𝑗
)
.

In particular, 𝜆Θ,Φ(𝑋∕) ∈ ℚ× is independent of the choice of 1.

Proof. By applying [29, Remark 4.29] with 𝐹 = Ω1(−), and taking exterior powers, we deduce that
𝑓∗
Φ
𝜔(1) = 𝜔(Φ

∨1). As in the proof of [33, Theorem 7.3], we have

𝐶
(∏

𝑖Jac𝑋∕𝐻𝑖 , 𝜔(1)
)

𝐶
(∏

𝑗Jac𝑋∕𝐻′𝑗
, 𝜔(Φ∨1)

) = #coker𝑓Φ()

#ker𝑓Φ()
,

giving the required result. □

Theorem 5.8. Let 𝑋 be a curve over a number field 𝐾 and 𝐺 be a finite subgroup ofAut𝐾(𝑋). LetΘ
be a pseudo Brauer relation for 𝑋, Φ a 𝐺-map realising Θ and 𝑝 a prime. Then,

ord𝑝Θ(𝑝(Jac𝑋)) ≡
∑

𝑣 place of 𝐾

ord𝑝𝜆Θ,Φ(𝑋∕𝐾𝑣) mod 2.

Proof. For a 𝐾-isogeny 𝑓 ∶ 𝐴 → 𝐵, we write

𝑄(𝑓) = #coker(𝑓 ∶ 𝐴(𝐾)∕𝐴(𝐾)tors → 𝐵(𝐾)∕𝐵(𝐾)tors) ⋅ #ker(𝑓 ∶ Ш(𝐴)div → Ш(𝐵)div),

where Шdiv denotes the divisible part of Ш. Thus, if 𝑓 is a self-isogeny of 𝐴, then ord𝑝𝑄(𝑓) =
ord𝑝𝑑𝑒𝑡(𝑓|𝑝(𝐴)). We let 1 be a basis for the 𝐾-vector spaceΩ1(∏𝑖Jac𝑋∕𝐻𝑖∕𝐾) and write 𝜔(1)
for the global exterior form on

∏
𝑖Jac𝑋∕𝐻𝑖∕𝐾 obtained by taking the wedge product of elements

in 1, and similarly for 𝜔(Φ∨1). As in the proof of Lemma 5.7, 𝜔(Φ∨1) = 𝑓∗Φ𝜔(1) and so

𝑄(𝑓Φ)

𝑄(𝑓∨
Φ
)

[15, Thm. 4.3]
≡

∏
𝑣 𝐶𝑣(
∏
𝑖 Jac𝑋∕𝐻𝑖 , 𝜔(1))∏

𝑣 𝐶𝑣(
∏
𝑗 Jac𝑋∕𝐻′𝑗 , 𝑓

∗
Φ
𝜔(1))

⋅

∏
𝑖 #Ш0(Jac𝑋∕𝐻𝑖 )[2

∞]∏
𝑗 #Ш0(Jac𝑋∕𝐻′

𝑗
)[2∞]

[29, Prop. 5.14]
≡

∏
𝑣

𝜆Θ,Φ(𝑋∕𝐾𝑣) mod ℚ×2,

where 𝐶𝑣(𝐴, 𝜔) denotes 𝐶(𝐴, 𝜔) for𝐴∕𝐾𝑣. On the other hand, by parts (2)–(3) of Theorem 4.3, we
have
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PARITY OF RANKS OF JACOBIANS OF CURVES 33 of 50

𝑄(𝑓Φ)

𝑄(𝑓∨
Φ
)
≡ 𝑄(𝑓Φ)𝑄(𝑓

∨
Φ
) = 𝑄(𝑓Φ𝑓

∨
Φ
) = 𝑄(𝑓Φ𝑓Φ∨) = 𝑄(𝑓Φ∨Φ) mod ℚ×2.

Putting everything together, we see that

ord𝑝
∏
𝑣

𝜆Θ,Φ(𝑋∕𝐾𝑣) ≡ ord𝑝 det

(
𝑓Φ∨Φ

|||||| 𝑝
(∏

𝑖

Jac𝑋∕𝐻𝑖

))
[29, Lem. 4.28]

≡ ord𝑝 det

(
(Φ∨Φ)∗

|||||| 𝑝
(∏

𝑖

Jac𝑋∕𝐻𝑖

))
Cor. 3.21
≡ ord𝑝Θ(𝑝(Jac𝑋)) mod 2

as claimed. □

5.3 The local invariant 𝝀̃𝚯(𝑿∕)

Assuming that Ω1(Jac𝑋) is a self-dual [𝐺]-representation, we now define a revised version of
the local invariant 𝜆Θ,Φ.

Definition 5.9. Let  be a local field of characteristic 0, 𝑋∕ be a curve, 𝐺 be a finite sub-
group of Aut(𝑋) andΘ =

∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
be a pseudo Brauer relation for 𝑋. Fix bases1,2 for

Ω1(
∏
𝑖 Jac𝑋∕𝐻𝑖 ), Ω

1(
∏
𝑗 Jac𝑋∕𝐻′𝑗

). Assuming that Ω1(Jac𝑋) is self-dual as a [𝐺]-representation,
we define

𝜆̃Θ(𝑋∕) =
𝜆
1,2
Θ

(𝑋∕)||||
√

1,2
Θ

(Ω1(Jac𝑋))
||||
,

where 1,2
Θ

is the regulator constant evaluated with respect to 1, 2 as in Definition 3.6.

Remark 5.10. By Theorem 1.15(7), any pseudo Brauer relation Θ for 𝑋 is also a pseudo Brauer
relation relative to Ω1(Jac𝑋). Thus, 

1,2
Θ

(Ω1(Jac𝑋)) is well-defined.

Lemma 5.11. Suppose thatΩ1(Jac𝑋) is a self-dual[𝐺]-representation.

(1) 𝜆̃Θ(𝑋∕) is independent of the bases 1, 2.
(2) 𝜆̃Θ(𝑋∕) is independent of how Θ is expressed as a formal linear combination of conjugacy

classes of subgroups of 𝐺. That is, for all subgroups𝐻 of 𝐺,

𝜆̃Θ(𝑋∕) = 𝜆̃Θ+(𝐻−𝐻)(𝑋∕).

(3) Given pseudo Brauer relations Θ1, Θ2 for 𝑋,

𝜆̃Θ1+Θ2(𝑋∕) = 𝜆̃Θ1(𝑋∕)𝜆̃Θ2(𝑋∕).
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34 of 50 DOKCHITSER et al.

(4) For every 𝐺-map Φ realising Θ,

𝜆̃Θ(𝑋∕) =
#coker𝑓Φ()

#ker𝑓Φ()
⋅

∏
𝑖𝜇(𝑋∕𝐻𝑖)∏
𝑗𝜇(𝑋∕𝐻

′
𝑗
)
⋅
||||
√
deg(𝑓Φ)

||||.
Proof. (1) holds since, using Notation 3.19,

𝜆
̃1,̃2
Θ

(𝑋∕)

𝜆
1,2
Θ

(𝑋∕)
=

||||det([Id]1̃1 )||||||||det([Id]2̃2 )||||
and

̃1,̃2
Θ

(Ω1(Jac𝑋))

1,2
Θ

(Ω1(Jac𝑋))
=
det([Id]

1
̃1
)
2

det([Id]
2
̃2
)
2
.

For (2), given a basis 𝐻 for Ω1(Jac𝑋∕𝐻), we write ′
1
= 1 ⊔ 𝐻 for the corresponding basis

forΩ1(
∏
𝑖Jac𝑋∕𝐻𝑖 × Jac𝑋∕𝐻). Similarly, we write 

′
2
= 2 ⊔ 𝐻 . Evaluating 𝜆̃Θ+(𝐻−𝐻)(𝑋∕)with

respect to ′
1
, ′

2
and 𝜆̃Θ(𝑋∕) with respect to 1, 2, gives the desired equality, which holds for

any choice of bases by (1). (3) follows in the same way as (2). (4) follows from part (1), Lemma 5.7
and Proposition 4.4(1). □

Theorem 5.12.With the same setup as in Theorem 5.8, and supposing that Ω1(Jac𝑋) is a self-dual
𝐾[𝐺]-representation, we have

ord𝑝Θ(𝑝(Jac𝑋)) ≡
∑

𝑣 place of 𝐾

ord𝑝𝜆̃Θ(𝑋∕𝐾𝑣) mod 2ℤ,

where we extend ord𝑝 to ℚ(
√
𝑝) so that ord𝑝𝜆̃Θ(𝑋∕𝐾𝑣) ∈

1

2
ℤ.

Proof. Let Φ be any 𝐺-map realising Θ. By Lemma 5.11(4), 𝜆̃Θ(𝑋∕𝐾𝑣) = 𝜆Θ,Φ(𝑋∕) ⋅ ||deg(𝑓Φ)||1∕2𝑣
for all 𝑣 independently of Φ. Since

∏
𝑣|deg(𝑓Φ)|𝑣 = 1, we deduce that

ord𝑝
∏
𝑣

𝜆̃Θ(𝑋∕𝐾𝑣) = ord𝑝
∏
𝑣

𝜆Θ,Φ(𝑋∕𝐾𝑣)
Thm.5.8
≡ ord𝑝Θ(𝑝(Jac𝑋)) mod 2.

□

Although 𝜆̃Θ(𝑋∕) is independent of the underlying bases of differentials, it is difficult to work
with in practice since it may not be rational.

5.4 The local invariant 𝚲𝚯(𝑿∕) and proof of Theorem 5.1

Here we detail howΛΘ is obtained from the local invariant 𝜆̃Θ(𝑋∕) introduced in Definition 5.9.
This involves introducing a correction term which we will denote by sf

Θ
. We show that ΛΘ is

rational and conclude the section by proving Theorem 5.1.

Definition 5.13. Let 𝐿 be a field of characteristic 0, 𝑋∕𝐿 be a curve, 𝐺 be a finite subgroup
of Aut𝐿(𝑋) and Θ be a pseudo Brauer relation for 𝑋 realised by a 𝐺-map Φ. Assuming that
Ω1(Jac𝑋) is self-dual as an 𝐿[𝐺]-representation, we define sf

Θ
(Ω1(Jac𝑋)) to be the square-free

integer equivalent to deg(𝑓Φ) mod ℚ×2. This is independent of Φ by Proposition 4.4(3).
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PARITY OF RANKS OF JACOBIANS OF CURVES 35 of 50

When the 𝐺-representationΩ1(Jac𝑋) is realisable over ℚ, we view Θ(Ω
1(Jac𝑋)) as an element

of ℚ×∕ℚ×2 via Remark 3.8.

Lemma 5.14. Suppose thatΩ1(Jac𝑋) is realisable over ℚ. Then,

sfΘ (Ω
1(Jac𝑋)) ≡ Θ(Ω

1(Jac𝑋)) mod ℚ
×2.

Proof. Let Φ be any 𝐺-map realising Θ. Then,

sf
Θ
(Ω1(Jac𝑋)) ≡ deg(𝑓Φ)

Prop.4.4(2)
≡ ,Φ∨

Θ
(Ω1(Jac𝑋))

Thm.3.7(1)
≡ Θ(Ω

1(Jac𝑋)) mod ℚ×2. □

Remark 5.15. For the proof of Theorem 1.1, we will only need to consider the cases 𝐺 = 𝐶2 × 𝐶2,
𝐷8 or 𝐷2𝑝 for a prime 𝑝. In these cases Ω1(Jac𝑋) is realisable over ℚ by [29, Lemma 5.10(2)], and
so the description of sf

Θ
(Ω1(Jac𝑋)) given above applies.

Definition 5.16. Let  be a local field of characteristic 0, 𝑋∕ be a curve, 𝐺 be a finite sub-
group of Aut(𝑋) and Θ =

∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
be a pseudo Brauer relation for 𝑋. Fix bases 1, 2

for Ω1(
∏
𝑖 Jac𝑋∕𝐻𝑖 ), Ω

1(
∏
𝑗 Jac𝑋∕𝐻′𝑗

) and write 𝜔(1), 𝜔(2) for the exterior forms given by the
wedge product of the elements in 1, 2, respectively. Assuming that Ω1(Jac𝑋) is self-dual as a
[𝐺]-representation, we define

ΛΘ(𝑋∕) =
𝐶(
∏
𝑖Jac𝑋∕𝐻𝑖 , 𝜔(1))

𝐶(
∏
𝑗Jac𝑋∕𝐻′𝑗

, 𝜔(2))
⋅

∏
𝑖𝜇(𝑋∕𝐻𝑖)∏
𝑗𝜇(𝑋∕𝐻

′
𝑗
)
⋅

|||||||
√√√√ sf

Θ
(Ω1(Jac𝑋))

1,2
Θ

(Ω1(Jac𝑋))

|||||||.
For the definitions of 𝐶, 𝜇, sf

Θ
and 1,2

Θ
see Notation 5.5, and Definitions 5.4, 5.13, 3.6,

respectively. In particular, ΛΘ(𝑋∕) = 𝜆̃Θ(𝑋∕) ⋅ |sfΘ (Ω1(Jac𝑋))|1∕2
.

Theorem 5.17. Let 𝑋 be a curve over a local field  of characteristic 0, and 𝐺 be a finite subgroup
of Aut(𝑋). Let Θ =

∑
𝑖 𝐻𝑖 −

∑
𝑗 𝐻

′
𝑗
be a pseudo Brauer relation for 𝑋, and suppose that Ω1(Jac𝑋)

is a self-dual[𝐺]-representation. Then, the following hold.

(1) ΛΘ(𝑋∕) is a rational number independent of 1, 2.
(2) ΛΘ(𝑋∕) is independent of how Θ is expressed as a formal linear combination of conjugacy

classes of subgroups of 𝐺. That is, for any subgroup𝐻 of 𝐺,

ΛΘ(𝑋∕) = ΛΘ+(𝐻−𝐻)(𝑋∕).

(3) For any 𝐺-map Φ realising Θ,

ΛΘ(𝑋∕) =
#coker𝑓Φ()

#ker𝑓Φ()
⋅

∏
𝑖𝜇(𝑋∕𝐻𝑖)∏
𝑗𝜇(𝑋∕𝐻

′
𝑗
)
⋅
||||
√
deg(𝑓Φ) ⋅ 

sf
Θ
(Ω1(Jac𝑋))

||||.
(4) If = ℂ, then ΛΘ(𝑋∕ℂ) = sf

Θ
(Ω1(Jac𝑋)).
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36 of 50 DOKCHITSER et al.

Proof. Independence of the bases 1, 2 follows from Lemma 5.11(1). (2) follows from
Lemma 5.11(2), provided we show that sf

Θ
= sf

Θ′
where Θ′ = Θ + (𝐻 − 𝐻). Let Φ be any 𝐺-map

realising Θ, and consider Φ′ ∶= Φ⊕ id, where id is the identity on ℤ[𝐺∕𝐻]. Then, Φ′ realises Θ′
and 𝑓Φ′ = 𝑓Φ × id|Jac𝑋∕𝐻 . Therefore, sfΘ′ ≡ deg(𝑓Φ′) = deg(𝑓Φ) ≡ sf

Θ
mod ℚ×2, and so they must

be equal. (3) follows fromLemma 5.11(4), and (4) follows from (3) since coker𝑓Φ() is trivial when
 = ℂ. It remains to show that ΛΘ is rational, to complete the proof of (1). By Proposition 4.4(3),
deg(𝑓Φ) ⋅ 

sf
Θ
∈ ℚ×2 independently of Φ, and so rationality follows from (3). □

We are now able to prove Theorem 5.1.

Proof of Theorem 5.1. We note that ΛΘ(𝑋∕𝐾𝑣) = 𝜆Θ,Φ(𝑋∕𝐾𝑣) ⋅ |deg(𝑓Φ) ⋅ sfΘ (Ω1(Jac𝑋))|1∕2𝑣 ,
and so

∏
𝑣 ΛΘ(𝑋∕𝐾𝑣) =

∏
𝑣 𝜆Θ,Φ(𝑋∕𝐾𝑣) since deg(𝑓Φ) ⋅ 

sf
Θ
∈ ℚ×2. By Theorem 5.17(1),

ord𝑝
∏
𝑣 ΛΘ(𝑋∕𝐾𝑣) =

∑
𝑣 ord𝑝ΛΘ(𝑋∕𝐾𝑣) and the result then follows by Theorem 5.8. □

Unfortunately, one drawback of the invariant ΛΘ is that it is generally not multiplicative in Θ
(unlike 𝜆̃Θ, see Lemma 5.11(3)). This is the case since generally sfΘ1+Θ2 ≠ sf

Θ1
⋅ sf
Θ2
.

Lemma 5.18. Let Θ,Θ1,Θ2 be pseudo Brauer relations for 𝑋. Then,

(1)
ΛΘ1+Θ2

(𝑋∕)

ΛΘ1
(𝑋∕)ΛΘ2 (𝑋∕)

=

||||||
√

sf
Θ1+Θ2

(Ω1(Jac𝑋))

sf
Θ1
(Ω1(Jac𝑋))

sf
Θ2
(Ω1(Jac𝑋))

||||||,
(2) ΛΘ(𝑋∕)Λ−Θ(𝑋∕) = |sfΘ (Ω1(Jac𝑋))|.
Proof. (1) follows from Lemma 5.11(3). For (2), let Ψ be the trivial pseudo Brauer relation (i.e. one
of the form

∑
𝑖 𝐻𝑖 −

∑
𝑖 𝐻𝑖). Then, ΛΨ(𝑋∕) = sf

Ψ
(Ω1(Jac𝑋)) = 1. By part (1), we get

ΛΘ(𝑋∕)Λ−Θ(𝑋∕) =
||||
√

sf
Θ
(Ω1(Jac𝑋))

sf
−Θ
(Ω1(Jac𝑋))

||||.
Let Φ be any 𝐺-map realising Θ. Then Φ∨ realises −Θ and sf

Θ
≡ deg(𝑓Φ) = deg(𝑓

∨
Φ
)
Thm.4.3(3)
=

deg(𝑓Φ∨) ≡ sf
−Θ
modℚ×2. Since sf

Θ
and sf

−Θ
are square-free integers, they must be equal. □

The following lemma provides a simplification of ΛΘ(𝑋∕) when is non-archimedean.

Lemma 5.19. Let be a non-archimedean local field of characteristic 0. Let 𝐻 be the Néronmodel
of Jac𝑋∕𝐻 over  and let (𝐻) be a basis for the -module Ω1(𝐻). Letting 1 =

⨆
𝑖 (𝐻𝑖 )

and2 =
⨆
𝑗 (𝐻′𝑗

),

ΛΘ(𝑋∕) =

∏
𝑖𝑐(Jac𝑋∕𝐻𝑖 ) ⋅ 𝜇(𝑋∕𝐻𝑖)∏
𝑗𝑐(Jac𝑋∕𝐻′𝑗

) ⋅ 𝜇(𝑋∕𝐻′
𝑗
)
⋅

|||||||
√√√√√ sf

Θ
(Ω1(Jac𝑋))

1,2

Θ
(Ω1(Jac𝑋))

|||||||.
Proof. For a Néron basis(𝐻), the exterior form 𝜔((𝐻)) on Jac𝑋∕𝐻 coincides with the exterior
form on the Néron model of 𝐻 over . □
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PARITY OF RANKS OF JACOBIANS OF CURVES 37 of 50

6 PARITY CONJECTURE FOR ELLIPTIC CURVES

Here we compare the local terms appearing in Example 1.9 to the corresponding root numbers.
This gives a new proof of the parity conjecture for elliptic curves over number fields, assuming
finiteness of Tate–Shafarevich groups.

Theorem6.1.Let𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 be an elliptic curve over anumber field𝐾with𝑎 ≠ 0. Define
the elliptic curve 𝐸′ ∶ 𝑦2 = 𝑥3 − 27𝑏𝑥2 − 27𝑎3𝑥. If Ш(𝐸) has finite 3-primary part and Ш(𝐸′) has
finite 2- and 3-primary parts, then the parity conjecture holds for 𝐸.

Remark 6.2. An elliptic curve 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑏 admits a 3-isogeny and so, assuming that the 3-
primary part of Ш(𝐸) is finite, the parity conjecture is known to hold by [16, Theorem 1.8].

The proof of Theorem 6.1 uses the theory of covers of curves developed in Sections 4 and 5, as
opposed to the proof given in [16, Theorem 1.2] which comes from studying elliptic curves over
extensions of number fields. We adhere to the following notation.

Notation 6.3. Let 𝐸 ∶ 𝑦2 = 𝑓(𝑥) ∶= 𝑥3 + 𝑎𝑥 + 𝑏 be an elliptic curve over a field 𝐾 with 𝑎 ≠ 0. Let
g(𝑦2) = −27𝑦4 + 54𝑏𝑦2 − (4𝑎3 + 27𝑏2) ∈ 𝐾[𝑦] be the discriminant of𝑓(𝑥) − 𝑦2. Thediscriminant
curve is 𝐷 ∶ Δ2 = g(𝑦2) and the bihyperelliptic cover of 𝐸 is 𝐵 ∶ {𝑦2 = 𝑓(𝑥), Δ2 = g(𝑦2)}.

The coefficient 𝑎 being non-zero ensures that the genus of 𝐷 is 1 and that 𝐾(𝐵)∕𝐾(𝑦) is an
𝑆3-Galois extension (cf. Example 1.9). In particular, 𝑆3 acts on 𝐵 by automorphisms. Example 1.9
asserts that 𝐵 has genus 3 (we call it ‘the bihyperelliptic cover of 𝐸’ because it has a bihyperelliptic
model), that Jac𝐷 is the elliptic curve 𝐸′ appearing in the statement of Theorem 6.1, the existence
of an isogeny involving 𝐸, Jac𝐷 and Jac𝐵, and a local formula for the parity of the rank of 𝐸 × Jac𝐷 .

Theorem 6.4. Let 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 be an elliptic curve over a number field𝐾 with 𝑎 ≠ 0, let𝐷
be its discriminant curve and let 𝐵 be its bihyperelliptic cover. Then,

rk3 𝐸 + rk3 Jac𝐷 ≡
∑

𝑣 place of 𝐾

ord3ΛΘ(𝐵∕𝐾𝑣) mod 2,

where Θ = 2𝐶2 + 𝐶3 − 2𝑆3 − {1}.

Proof. This follows from Theorem 1.15(4) and Theorem 5.1, via an identical argument to that given
in Example 1.9. (The assumption on the self-duality of Ω1(Jac𝐵) needed to apply Theorem 5.1 is
automatically satisfied here since 𝐺 = 𝑆3.) □

For a prime 𝑝, recall from Conjecture 1.13 and Remark 1.14 the statement of the 𝑝-parity
conjecture and its relationship to the parity conjecture.
To deduce the 3-parity conjecture for 𝐸 × Jac𝐷 from Theorem 6.4 it remains to suitably relate

ΛΘ(𝐵∕𝐾𝑣) to the product of local root numbers 𝑤(𝐸∕𝐾𝑣)𝑤(Jac𝐷∕𝐾𝑣).

Theorem 6.5. Let 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 be an elliptic curve over a local field  of characteristic 0
with 𝑎 ≠ 0, let 𝐷 be its discriminant curve and let 𝐵 be its bihyperelliptic cover. Then,

(−1)ord3ΛΘ(𝐵∕) = 𝑤(𝐸∕)𝑤(Jac𝐷∕),

where Θ = 2𝐶2 + 𝐶3 − 2𝑆3 − {1}.

 1460244x, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70083 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [02/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



38 of 50 DOKCHITSER et al.

Before proving this relationship, we note some immediate consequences. For the following
result only, we allow for the possibility that 𝑎 = 0.

Theorem 6.6. Let 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 be an elliptic curve over a number field 𝐾 and 𝐷 its
discriminant curve. The 3-parity conjecture holds for 𝐸 × Jac𝐷 .

Proof. If 𝑎 = 0, then Jac𝐷 = 0 and the Theorem holds by Remark 6.2.
If 𝑎 ≠ 0, then Theorem 6.5 says that (−1)ord3ΛΘ(𝐵∕𝐾𝑣) = 𝑤(𝐸∕𝐾𝑣)𝑤(Jac𝐷∕𝐾𝑣) for each place 𝑣

of 𝐾. Taking the product over all places and invoking Theorem 6.4 gives the result. □

Proof of Theorem 6.1. As above, 𝐸′ = Jac𝐷 . By Theorem 6.6, the 3-parity conjecture holds for 𝐸 ×
𝐸′. Since 𝐸′ has a 2-isogeny over 𝐾, the 2-parity conjecture holds for 𝐸′ by [16, Theorem 1.8].
Together, these statements give the result. □

Remark 6.7. Let Ψ be the Brauer relation for 𝐶2 × 𝐶2 identified in Example 1.10. Then,∏
𝑣 place of 𝐾

(−1)ord2ΛΨ(𝐷∕𝐾𝑣)𝑤(Jac𝐷∕𝐾𝑣)
Ex. 1.10
= (−1)rk2(Jac𝐷)𝑤(Jac𝐷)

[16, Thm. 1.8]
= 1.

The explicit relationship between (−1)ord2ΛΨ(𝐷∕𝐾𝑣) and 𝑤(Jac𝐷∕𝐾𝑣) appears to be complicated.

We now prove Theorem 6.5.

Notation 6.8. Let 𝜎, 𝜏 ∈ 𝑆3 have orders 3 and 2, respectively, with 𝐾(𝐸) = 𝐾(𝐵)⟨𝜏⟩ and 𝐾(𝐷) =
𝐾(𝐵)⟨𝜎⟩. Let Φ denote the injective 𝑆3-module homomorphism

ℤ[𝑆3∕⟨𝜏⟩]𝑦1 ⊕ ℤ[𝑆3∕⟨𝜏⟩]𝑦2 ⊕ ℤ[𝑆3∕⟨𝜎⟩]𝑦3 ⟶ ℤ𝑥1 ⊕ ℤ𝑥2 ⊕ ℤ[𝑆3]𝑥3

given by 𝑦1 ↦ 𝑥1 + (1 + 𝜏)𝑥3, 𝑦2 ↦ 𝑥1 + 𝑥2 + (𝜎 + 𝜏𝜎)𝑥3 and 𝑦3 ↦ 𝑥1 + 𝑥2 + (1 + 𝜎 + 𝜎
2)𝑥3. By

Theorem 4.3, there are isogenies

𝑓Φ ∶ Jac𝐵 → 𝐸 × 𝐸 × Jac𝐷 and 𝑓Φ∨ = 𝑓
∨
Φ
∶ 𝐸 × 𝐸 × Jac𝐷 → Jac𝐵.

From the explicit construction of these isogenies given in [29, section 4.3], we see that

𝑓Φ = (𝜋𝐸∗, 𝜋𝐸∗◦𝜎∗, 𝜋𝐷∗) and 𝑓∨
Φ
= 𝜋∗𝐸 + 𝜎

∗◦𝜋∗𝐸 + 𝜋
∗
𝐷,

where 𝜋𝐸 ∶ 𝐵 → 𝐸, 𝜋𝐷 ∶ 𝐵 → 𝐷 denote the quotient maps.

Lemma 6.9. We have deg 𝑓Φ = deg 𝑓∨Φ = 9 and ker(𝑓Φ) = 𝜋
∗
𝐷
(Jac𝐷[3]). The first projection 𝐸 ×

𝐸 × Jac𝐷 → 𝐸 induces an isomorphism of Galois modules ker(𝑓∨
Φ
) ≃ 𝐸[3].

Proof. Let 𝑃,𝑄 ∈ 𝐸 and 𝑅 ∈ Jac𝐷 . Then (𝑓Φ◦𝑓∨Φ)(𝑃, 𝑄, 𝑅) =
(
2𝑃 − 𝑄, 2𝑄 − 𝑃, 3𝑅

)
. For the first

entry, this follows using that 𝜋𝐸∗◦𝜋∗𝐸 = [2], 𝜋𝐸∗◦𝜎
∗◦𝜋∗

𝐸
= [−1] and 𝜋𝐸∗◦𝜋∗𝐷 = 0, and similarly

for the second entry. For the third entry, we additionally use that 𝜋𝐷∗◦𝜋∗𝐷 = [3]. We therefore
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PARITY OF RANKS OF JACOBIANS OF CURVES 39 of 50

deduce that

ker(𝑓Φ◦𝑓
∨
Φ
) = {(𝑃, −𝑃, 𝑅) ∶ 𝑃 ∈ 𝐸[3], 𝑅 ∈ Jac𝐷[3]}

and deg 𝑓Φ = deg 𝑓∨Φ = 9. Further, the identities above show that 𝜋∗
𝐷
(Jac𝐷[3]) is contained in

ker(𝑓Φ). By [2, Lemma 6], since 𝐵 → 𝐷 has no non-trivial unramified subcover, 𝜋∗
𝐷
∶ Jac𝐷 →

Jac𝐵 is injective. Since deg 𝑓Φ = 9, this gives ker(𝑓Φ) = 𝜋∗𝐷(Jac𝐷[3]). Finally, the description of
ker(𝑓Φ◦𝑓

∨
Φ
) given above shows that the first projection induces a map 𝛼 ∶ ker(𝑓∨

Φ
) → 𝐸[3]whose

kernel is contained in 0 × 0 × Jac𝐷[3]. Since 𝜋∗𝐷 is injective, 0 × 0 × Jac𝐷[3] and ker(𝑓∨Φ) have
trivial intersection. Thus, 𝛼 is injective. Since deg(𝑓∨

Φ
) = 9, 𝛼 is an isomorphism. □

Remark 6.10. The proof of Lemma 6.9 shows that 𝜋∗
𝐷
is injective. We conclude that ker(𝑓Φ) ≃

Jac𝐷[3] and ker(𝑓∨Φ) ≃ 𝐸[3] as Galois modules. Since 𝐸[3] is its own Cartier dual, we have an
isomorphism of Galois modules Jac𝐷[3] ≃ 𝐸[3].

Remark 6.11. Since deg 𝑓Φ = 9, the ‘correction term’ sfΘ (Ω
1(Jac𝐵)) of Definition 5.13 is equal to 1.

Proposition 6.12. Theorem 6.5 holds when = ℂ or ℝ.

Proof.We have𝑤(𝐸∕) = 𝑤(Jac𝐷∕) = −1. The case = ℂ then follows from Theorem 5.17 and
Remark 6.11. Henceforth, we suppose that = ℝ.
In the notation of Definition 5.6, we have ord3#coker𝑓∨Φ() = 0 and #ker𝑓∨

Φ
() = 3 (by

Lemma 6.9). We deduce that

ord3ΛΘ(𝐵∕)
Lem.5.18(2)

= −ord3Λ−Θ(𝐵∕)

Thm.5.17(3)&
Lem.6.9
= −ord3(1) = 0. □

Notation 6.13. In the computations that follow, we will exploit the existence of a degree 8 isogeny
𝜂 ∶ Jac𝐵 → 𝐸 × Jac𝐶 where 𝐶 ∶ 𝑧2 = −(3𝑥2 + 4𝑎)(𝑥3 + 𝑎𝑥 + 𝑏) has genus 2 (cf. [7, section 2.2]).
Briefly, making the change of variables 𝑡 = Δ∕(3𝑥2 + 𝑎), one sees that 𝐵 can be given by the
equations {𝑦2 = 𝑓(𝑥), 𝑡2 = −(3𝑥2 + 4𝑎)}. We have a degree 2 morphism 𝜋𝐶 ∶ 𝐵 → 𝐶 given by
(𝑥, 𝑦, 𝑡) ↦ (𝑥, 𝑡𝑦). Then 𝜂 = (𝜋𝐸∗, 𝜋𝐶∗) gives the sought isogeny (to compute its degree, note that
𝜂∨ = 𝜋∗

𝐸
+ 𝜋∗

𝐶
and 𝜂◦𝜂∨ = 2).

Remark 6.14. One can also construct the isogeny 𝜂 via Theorem 4.3, using the Brauer relation Ψ
of Example 1.10 in the 𝐶2 × 𝐶2 extension 𝐾(𝐵) = 𝐾(𝑥, 𝑦, 𝑡)∕𝐾(𝑥).

Recall that 𝑐(𝐴) denotes the Tamagawa number of an abelian variety 𝐴 defined over a non-
archimedean local field.

Proposition 6.15. Theorem 6.5 holds when ∕ℚ𝑝 is finite with 𝑝 ≠ 2, 3, and 𝐸 × Jac𝐷∕
is semistable.

Proof. After a change of variable, we may assume that 𝑎, 𝑏 ∈ . Let 𝜋 be a uniformiser for ,
and write 𝑣 for the normalised valuation on (so that 𝑣(𝜋) = 1).
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40 of 50 DOKCHITSER et al.

By Remark 5.2, we have ord3ΛΘ(𝐵∕) ≡ ord3(𝑐(Jac𝐵)𝑐(Jac𝐷)) mod 2. Since the isogeny 𝜂 ∶
Jac𝐵 → 𝐸 × Jac𝐶 has degree a power of 2, it suffices to show that

(−1)ord3(𝑐(Jac𝐷)𝑐(𝐸)𝑐(Jac𝐶)) = 𝑤(𝐸∕)𝑤(Jac𝐷∕).

Indeed, 𝑐(Jac𝐵) = 2𝑛𝑐(𝐸)𝑐(Jac𝐶) for some 𝑛 ∈ ℤ, by an easy generalisation of [17, Lemma 6.2].
We remind the reader that an elliptic curve ∕ of type 𝐼𝑛 has 𝑐() = 𝑛,𝑤() = −1 in the case

of split multiplicative reduction, and 𝑐() = gcd(𝑛, 2), 𝑤() = 1 otherwise (see [42, 48, section
19]). We will compute 𝑐(Jac𝐶) using the theory of cluster pictures (see [19, Definitions 1.1 and 1.13,
Tables 1 and 3]).
As above, Jac𝐷 is given by theWeierstrass equation𝑌2 = 𝑋3 − 27𝑏𝑋2 − 27𝑎3𝑋. Let 𝑑 ∶= 4𝑎3 +

27𝑏2, then Δ𝐸 = −24 ⋅ 𝑑, ΔJac𝐷 = 2
4 ⋅ 39 ⋅ 𝑎6𝑑 and Δ𝐶 = 212 ⋅ 33 ⋅ 𝑎𝑑3. Since 𝐸 is semistable, we

may assume that if 𝑣(𝑎) > 0 then 𝑣(𝑏) = 0.
Suppose 𝑎, 𝑑 are units.𝐸, Jac𝐷 and Jac𝐶 have good reduction, so 𝑐(Jac𝐷) = 𝑐(𝐸) = 𝑐(Jac𝐶) = 1

and 𝑤(𝐸∕) = 𝑤(Jac𝐷∕) = 1.
Suppose 𝑎 ≡ 0 (mod 𝜋). Then 𝑏, 𝑑 are units, so 𝐸 has good reduction and 𝑐(𝐸) = 1,𝑤(𝐸∕) =

1. The reductions of Jac𝐷 and 𝐶 are 𝑌2 = 𝑋2(𝑋 − 27𝑏) of type 𝐼6𝑣(𝑎), and 𝑧2 = −3𝑥2(𝑥3 + 𝑏)
with cluster picture for 𝐶 given by . If −3𝑏 is a square modulo 𝜋 then 𝜖 = + and
𝑐(Jac𝐷) = 6𝑣(𝑎), 𝑐(Jac𝐶) = 2𝑣(𝑎),𝑤(Jac𝐷∕) = −1. Otherwise, 𝜖 = − and 𝑐(Jac𝐷) = 𝑐(Jac𝐶) = 2,
𝑤(Jac𝐷∕) = 1.
Suppose 𝑑 ≡ 0 (mod 𝜋). Then 𝑎, 𝑏 are units. The reductions of 𝐸, Jac𝐷 and 𝐶 are 𝑦2 =

(𝑥 − 3𝑏

𝑎
)(𝑥 + 3𝑏

2𝑎
)2, 𝑌2 = 𝑋(𝑋 − 27

2
𝑏)2 both of type 𝐼𝑣(𝑑), and 𝑧2 = −3(𝑥 −

3𝑏

𝑎
)2(𝑥 + 3𝑏

2𝑎
)2(𝑥 + 3𝑏

𝑎
)

with cluster picture for 𝐶 given by . If 6𝑏 is a square modulo 𝜋, then 𝜖 = +
and 𝑐(𝐸) = 𝑐(Jac𝐷) = 𝑣(𝑑), 𝑐(Jac𝐶) = 8𝑣(𝑑)2,𝑤(𝐸∕) = 𝑤(Jac𝐷∕) = −1. Otherwise, 𝜖 = − and
𝑐(𝐸) = 𝑐(Jac𝐷) = gcd(𝑣(𝑑), 2), 𝑐(Jac𝐶) = 4, 𝑤(𝐸∕) = 𝑤(Jac𝐷∕) = 1. □

When  is a finite extension of ℚ3, the following result expresses ord3ΛΘ(𝐵∕) in terms of
invariants associated to the genus 1 curves 𝐸 and 𝐷, and the genus 2 curve 𝐶. This is used to
establish the local constancy of ord3ΛΘ(𝐵∕) given in Lemma 6.17 below. In the statement, we
use [35, Proposition 2.2] to identify regular differentials on a curve𝑋∕with differentials on Jac𝑋 .
We write 𝜔0

𝑋
for the Néron exterior form, viewed on 𝑋 via this identification.

Lemma 6.16. Let∕ℚ3 be finite. Then,

ord3ΛΘ(𝐵∕) = ord3

(
𝑐(𝐸)𝑐(Jac𝐷)

𝑐(Jac𝐶)

|||| 𝛾𝛼𝛽 ||||
)
,

where 𝛼, 𝛽, 𝛾 ∈  are such that 𝜔0
𝐸
= 𝛼𝑑𝑥

𝑦
, 𝜔0

𝐷
= 𝛽

𝑑𝑦

Δ
and 𝜔0

𝐶
= 𝛾(𝑑𝑥

𝑧
∧ 𝑥 𝑑𝑥

𝑧
).

Proof. Let 1 =
{
( 𝑑𝑥
𝑦
, 0, 0), (0, 𝑑𝑥

𝑦
, 0), (0, 0,

𝑑𝑦

Δ
)
}
be a basis for Ω1(𝐸 × 𝐸 × Jac𝐷). Evaluating ΛΘ

with 2 = Φ
∨1 and using Proposition 4.4(2), Remark 6.11 and Lemma 6.9 gives

ord3ΛΘ(𝐵∕) = ord3

⎛⎜⎜⎝
𝑐(𝐸)2𝑐(Jac𝐷)

𝑐(Jac𝐵)

||||||
𝜔(1)

𝜔0
𝐸×𝐸×Jac𝐷

⋅
𝜔0
Jac𝐵

𝜔(Φ∨1)

|||||||3|
⎞⎟⎟⎠ ,

 1460244x, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70083 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [02/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PARITY OF RANKS OF JACOBIANS OF CURVES 41 of 50

where𝜔(1) and𝜔(Φ∨1) denote the exterior forms on 𝐸 × 𝐸 × Jac𝐷 and Jac𝐵 obtained by taking
the wedge product of the elements in 1 and Φ∨1, respectively.
As in the proof of Proposition 6.15, the isogeny 𝜂 ∶ Jac𝐵 → 𝐸 × Jac𝐶 forces ord3(𝑐(Jac𝐵)) =

ord3(𝑐(𝐸)𝑐(Jac𝐶)). Similarly, a straightforward generalisation of [17, Lemma 4.3] gives

||||||
𝜔0
Jac𝐵

𝜔(Φ∨1)

|||||| =

||||||
𝜔0
Jac𝐵

𝜂∗𝜔0
𝐸×Jac𝐶

⋅
𝜂∗𝜔0

𝐸×Jac𝐶

𝜔(Φ∨1)

|||||| =

||||||
𝜂∗𝜔0

𝐸×Jac𝐶

𝜔(Φ∨1)

||||||,
where 𝜔(Φ∨1) =

𝑑𝑥

𝑦
∧ 𝜎2 𝑑𝑥

𝑦
∧
𝑑𝑦

Δ
= ±3

4
(𝑑𝑥
𝑦
∧ 𝑑𝑥

𝑧
∧ 𝑥 𝑑𝑥

𝑧
). Using that Néron models respect prod-

ucts, we see that ||𝜂∗𝜔0𝐸×Jac𝐶∕𝜔(Φ∨1)|| = |𝛼𝛾∕3| and ||𝜔(1)∕𝜔0𝐸×𝐸×Jac𝐷 || = |1∕𝛼2𝛽|. This
completes the proof. □

Lemma 6.17. Let 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 an elliptic curve with 𝑎 ≠ 0 over a finite extension ∕ℚ𝑝.
There is an 𝜖 > 0 such that changing 𝑎, 𝑏 to any 𝑎′ ≠ 0, 𝑏′ with |𝑎 − 𝑎′|, |𝑏 − 𝑏′| < 𝜖 does not
change 𝑤(𝐸∕), 𝑤(Jac𝐷∕) and ord3ΛΘ(𝐵∕).

Proof. Root numbers are functions of 𝑉𝓁𝐸 = 𝑇𝓁𝐸 ⊗ ℚ𝓁 , so their local constancy can be seen
from that of the Tate module [27, p. 569]. The same argument applies to the 3-part of the Tam-
agawa number of an abelian variety𝐴∕when 𝑝 ≠ 3, since ord3𝑐(𝐴) = ord3#(Φ𝐴[3∞])

Frob and
Φ𝐴[3

∞] ≃ 𝐻1(𝐼, 𝑇3(𝐴))tors by [25, section 11] (Φ𝐴 denotes the component group of the special
fibre of the Néron model of 𝐴 over ).
Now consider ord3ΛΘ(𝐵∕) when 𝑝 = 3. By Lemma 6.16, we need to show that ord3𝑐(𝐸),

ord3𝑐(Jac𝐷), ord3𝑐(Jac𝐶) and ord3|𝛾∕𝛼𝛽| are all locally constant. For the terms concerning 𝐸
and Jac𝐷 , this follows from Tate’s algorithm [48]. For the terms concerning Jac𝐶 , we argue as in
the proof of [21, Lemma 11.2]. Specifically, each term can be encoded in terms of the special fibre of
the minimal regular model of 𝐶: for Tamagawa numbers, use [5, Section 1] and for Néron exterior
forms use [4, Section 3]. The result is now a consequence of Liu’s algorithm [31]. □

Proposition 6.18. Theorem 6.5 holds for any finite extension∕ℚ𝑝.

Proof.We will deduce the remaining cases from known instances of the 3-parity conjecture. To
do this, we approximate 𝑓(𝑥) by a separable cubic 𝑓0(𝑥) = 𝑥3 + 𝑎0𝑥 + 𝑏0 ∈ 𝐿[𝑥] with 𝑎0 ≠ 0
where 𝐿 is a totally real field, subject to certain conditions, and let 𝐸0 ∶ 𝑦2 = 𝑓0(𝑥) with 𝐷0 its
discriminant curve and 𝐵0 its bihyperelliptic cover.
To begin, we first verify Theorem 6.5 for the single elliptic curve 𝐸 ∶ 𝑦2 = 𝑥3 − 1

3
𝑥 + 35

108
over

ℚ2. This can be done by explicit computation; see [23, Lemma 5.2.5] for details.
Now suppose  is a finite extension of ℚ3. Let 𝐿 be a totally real number field with a unique

prime 𝔮 ∣ 3, that further satisfies 𝐿𝔮 ≃ , and is such that 𝐿𝔯 = ℚ2 for every prime 𝔯 ∣ 2 (to see that
such a field exists, if  = ℚ3[𝑥]∕(ℎ(𝑥)) for some monic ℎ(𝑥) ∈ ℚ3[𝑥], then approximate ℎ(𝑥) by
some ℎ̃(𝑥) ∈ ℚ[𝑥] that splits completely over ℝ and ℚ2; take 𝐿 = ℚ[𝑥]∕(ℎ̃(𝑥))).
With 𝐿 fixed as above, choose 𝑎0 (resp. 𝑏0) in 𝐿 to be 𝔮-adically close to 𝑎 (resp. 𝑏), and 𝔯-

adically close to−1
3
(resp. 35

108
) for all 𝔯 ∣ 2. For primes 𝔭 ∤ 2, 3, we do this in such a way that 𝔭 ∤ 𝑏0

whenever 𝔭 ∣ 𝑎0 (to arrange this, first pick 𝑎0 which is suitable at primes over 2,3, then pick a
suitable 𝑏0 given this).
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42 of 50 DOKCHITSER et al.

Combining Lemma6.17with Propositions 6.12 and 6.15, we see that Theorem6.5 holds for𝐸0∕𝐿𝑣
whenever 𝑣 ≠ 𝔮. Since the 3-parity conjecture holds for elliptic curves over totally real fields by
[38, Theorem E], we have

1 = (−1)rk3 𝐸0+rk3 Jac𝐷0𝑤(𝐸0)𝑤(Jac𝐷0)

Thm.6.4
=

∏
𝑣 place of 𝐿

(−1)ord3ΛΘ(𝐵0∕𝐿𝑣)𝑤(𝐸0∕𝐿𝑣)𝑤(Jac𝐷0∕𝐿𝑣)

= (−1)ord3ΛΘ(𝐵0∕𝐿𝔮)𝑤(𝐸0∕𝐿𝔮)𝑤(Jac𝐷0∕𝐿𝔮)

Lem.6.17
= (−1)ord3ΛΘ(𝐵∕)𝑤(𝐸∕)𝑤(Jac𝐷∕).

Next, suppose that∕ℚ2 is finite. This time, take 𝐿 be a totally real number field with a unique
prime 𝔮 ∣ 2, which further satisfies 𝐿𝔮 ≃ . Choose 𝑎0, 𝑏0 ∈ 𝐿 to be 𝔮-adically close to 𝑎, 𝑏,
respectively. For primes 𝔭 ∤ 2, 3, ensure that 𝔭 ∤ 𝑏0 whenever 𝔭 ∣ 𝑎0. Arguing as above, and using
the newly proven case at primes over 3, we see that Theorem 6.5 holds for 𝐸∕.
Finally, suppose that∕ℚ𝑝 is finite. Repeating the argument for 𝑝 = 2 but replacing 2 by 𝑝 and

the condition 𝔭 ∤ 2, 3 by 𝔭 ∤ 2, 3, 𝑝, we conclude that Theorem 6.5 holds for 𝐸∕. □

Proof of Theorem 6.5. Combine Proposition 6.12 with Proposition 6.18. □

7 PARITY OF RANKS OF JACOBIANS

The aim of this section is to define the ‘arithmetic analogue of root numbers’ 𝑤arith(𝑋∕) for
curves over local fields and prove Theorem 1.1.
In Section 5, we explained how to compute the parity of the multiplicity of certain representa-

tions 𝜏Θ,𝑝 inside Selmer groups of Jacobians using local data (see Definition 3.11 and Theorem 5.1).
In this section, we describe how to apply this result to determine the parity of the rank of Jaco-
bians of curves. This generalises the argument for elliptic curves given in Theorem 1.11. We also
comment on how our construction relates to the parity conjecture and prove Theorem 1.7.

7.1 Regulator constants in 𝑺𝒏

Theorem 7.3 shows that there is a large supply of representations of the form 𝜏Θ,𝑝. The proof
relies on understanding these representations in dihedral groups and on an induction theorem
for permutation representations.
For ease of notation, we will write the result in terms of characters of representations. Recall

that a generalised character is a formal ℤ-linear combination of characters of representations.
By a permutation character, we mean a ℤ-linear combination of characters of permutation
representations.

Lemma 7.1. Suppose 𝐺 = 𝐶2×𝐶2, 𝐷8 (in which case set 𝑝=2) or 𝐷2𝑝 for an odd prime 𝑝. For every
character 𝜏 of 𝐺 of degree 2, there is a Brauer relation Θ such that 𝜏Θ,𝑝 = 𝜏 − 𝟙 − det 𝜏.
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PARITY OF RANKS OF JACOBIANS OF CURVES 43 of 50

Proof. See [13, Examples 2.53, 2.54]. □

Theorem 7.2. Let 𝐺 be a finite group. Every permutation character 𝜌 of 𝐺 of degree 0 and trivial
determinant can be written in the form

𝜌 = 𝜎 + 𝜎̄ +
∑
𝑖

𝑘𝑖Ind
𝐺
𝐻𝑖
(𝜏𝑖 − 𝟙𝐻𝑖 − det 𝜏𝑖),

for some generalised degree 0 character 𝜎 and degree 2 characters 𝜏𝑖 of subgroups 𝐻𝑖 that factor
through quotients of𝐻𝑖 isomorphic to 𝐶2 × 𝐶2, 𝐷8 or 𝐷2𝑝𝑖 for some odd prime 𝑝𝑖 , and 𝑘𝑖 ∈ ℤ.

Proof. See [20, Theorem 1.2]. □

Theorem 7.3. Let𝐺 = 𝑆𝑛. Let 𝜌 be the irreducible (𝑛−1)-dimensional character of𝐺 that is the nat-
ural permutation character on 𝑛 points minus the trivial character, and 𝜖 = det 𝜌 the sign character.
There are primes 𝑝𝑖 ⩽ 𝑛 and Brauer relations Θ𝑖 in 𝐺 such that

−𝑛𝟙 + 𝜖 + 𝜌 = 2𝜎 +
∑
𝑖

𝜏Θ𝑖,𝑝𝑖

for some character 𝜎.

Proof.Note that−𝑛𝟙 + 𝜖 + 𝜌 is a permutation character of degree zero and trivial determinant. By
Theorem 7.2, it can be written in the form

−𝑛𝟙 + 𝜖 + 𝜌 = 𝜎 + 𝜎̄ +
∑
𝑖

𝑘𝑖Ind
𝐺
𝐺𝑖
(𝜏𝑖 − 𝟙𝐺𝑖 − det 𝜏𝑖),

for some 𝑘𝑖 ∈ ℤ, 𝐺𝑖 ⩽ 𝐺 and characters 𝜏𝑖 of 𝐺𝑖 of degree 2 that factor through a 𝐶2×𝐶2-, 𝐷8- or
𝐷2𝑝𝑖 -quotient of 𝐺𝑖 for an odd prime 𝑝𝑖 ⩽ 𝑛; we set 𝑝𝑖 = 2 in case of a 𝐶2×𝐶2- or 𝐷8-quotient.
As all characters of 𝑆𝑛 are real-valued, 𝜎 = 𝜎̄, so that 𝜎 + 𝜎̄ = 2𝜎.
By Lemma 7.1, there is a𝐺𝑖-Brauer relationΘ′𝑖 =

∑
𝑗 𝑚𝑗,𝑖𝐻𝑗,𝑖 (with𝑚𝑗,𝑖 ∈ ℤ and𝐻𝑗,𝑖 ⩽ 𝐺𝑖) such

that 𝜏Θ′
𝑖
,𝑝𝑖
= 𝜏𝑖 − 𝟙𝐺𝑖 − det 𝜏𝑖 . Taking 𝑛𝑗,𝑖 = 𝑘𝑖𝑚𝑗,𝑖 , by [13, Theorem 2.56(3)] the 𝐺-Brauer relation

Θ𝑖 =
∑
𝑗 𝑛𝑗,𝑖𝐻𝑗,𝑖 has

𝜏Θ𝑖,𝑝𝑖 = 𝑘𝑖Ind
𝐺
𝐺𝑖
(𝜏𝑖 − 𝟙𝐺𝑖 − det 𝜏𝑖).

The result follows. □

The rough strategy for determining the parity of the rank of Jac𝑌 for a general curve 𝑌 is now
as follows. Suppose for this discussion that Ш is always finite. Write 𝑌 as a degree 𝑛 cover of
ℙ1 with Galois group 𝑆𝑛, and let 𝑋 correspond to its Galois closure,† for example, 𝐸 and 𝐵 in
Example 1.9. Taking the inner product of the formula in Theorem 7.3 with Jac𝑋(𝐾) ⊗ ℚ and using

† In fact, our method allows covers whose Galois group is smaller than 𝑆𝑛 by working instead with the 𝑆𝑛-closure of the
cover (cf. [29], section 2.5) in place of the Galois closure; the resulting curve𝑋 need not be geometrically connected, which
is the primary motivation for imposing Convention 1.1 throughout.
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44 of 50 DOKCHITSER et al.

Theorems 1.15 and 1.5 gives an expression of the form

rk Jac𝑌 + rk Jac𝑋∕𝐴𝑛 ≡ (localdata) mod 2.

This reduces the problem to determining the parity of rk Jac𝑋∕𝐴𝑛 . As 𝐴𝑛 has index 2 in 𝑆𝑛, 𝑋∕𝐴𝑛
is a hyperelliptic curve, say 𝑦2 = ℎ(𝑥) for ℎ of degree𝑚. Applying this construction again to𝑋∕𝐴𝑛
viewed as a degree𝑚 cover (!) of ℙ1 reduces the problem to understanding the parity of the rank
of the Jacobian of another hyperelliptic curve which, this time, is always of the form 𝑦2 = g(𝑥2)

(like the curve 𝐷 in Example 1.9). The latter curve has 𝐶2 × 𝐶2 in its automorphism group, and
the parity of the rank of its Jacobian can be determined using Example 1.10.
We now formalise this construction.

7.2 Arithmetic analogue of root numbers

Notation 7.4. Let 𝐿 be a field. We write ℙ1𝑥 for ℙ
1 (over 𝐿) together with a choice of an element 𝑥

that generates its function field over 𝐿.

Definition 7.5. Throughout this definition, we consider curves over a field 𝐿 of characteristic 0.

(i) For a cover𝑌 → ℙ1 of degree 𝑛wewrite𝑋𝑌 for its 𝑆𝑛-closure. This is a Galois cover𝑋𝑌 → ℙ1

with automorphism group 𝑆𝑛 and𝑋𝑌∕𝑆𝑛−1 ≃ 𝑌; see [29], Section 2.5. WewriteΔ𝑌 = 𝑋𝑌∕𝐴𝑛
for the associated ‘discriminant curve’ (cf. [29], Lemma 2.7).

(ii) For a cover𝑌 → ℙ1𝑥, the function field ofΔ𝑌 is a quadratic extension of𝐾(𝑥), and so it can be
written as𝐾(𝑥)(

√
𝑎g(𝑥)) for a uniquemonic squarefree g(𝑥) ∈ 𝐾[𝑥] and an element 𝑎 ∈ 𝐾×

that is well-defined up tomultiplication by𝐾×2. Strictly speaking, throughout this definition
we work with étale algebras. That is by 𝐾(𝑥)(

√
ℎ(𝑥)), we mean the algebra 𝐾(𝑥)[𝑡]∕(𝑡2 −

ℎ(𝑥)), which is of degree 2 over 𝐾(𝑥) even when ℎ(𝑥) is a perfect square.
DefineΔ1

𝑌
to be the double cover of ℙ1𝑥 with function field𝐾(𝑥)(

√
g(𝑥)); it is the quadratic

twist of the hyperelliptic curve Δ𝑌 by 𝑎. Writing 𝑦=
√
g(𝑥), Δ1

𝑌
∶ 𝑦2 = g(𝑥) comes with a

well-defined cover Δ1
𝑌
→ ℙ1𝑦 , which only depends on 𝑌 → ℙ1𝑥.

Define Δ2
𝑌
to be the 𝐶2×𝐶2-cover of ℙ1𝑥 with function field 𝐾(𝑥)(

√
g(𝑥),

√
𝑎).

(iii) For a cover𝑌 → ℙ1𝑥 of the form 𝑥
2 = 𝑓(𝑧), the curve Δ𝑌 is endowed with an action of 𝐶2×𝐶2

with quotient ℙ1
𝑥2
. Indeed, the discriminant (in 𝑥) of 𝑓(𝑧) − 𝑥2 is visibly a polynomial in 𝑥2,

so that Δ𝑌 is given by 𝑦2 = 𝑎ℎ(𝑥2) for some polynomial ℎ(𝑥). Thus, 𝐶2×𝐶2 acts on Δ𝑌 via
the automorphisms 𝑥 ↦ ±𝑥 and 𝑦 ↦ ±𝑦.

Notation 7.6. For every 𝑛 ⩾ 1, fix a list of primes 𝑝𝑖 = 𝑝
(𝑛)
𝑖

and of Brauer relations Θ𝑖 = Θ
(𝑛)
𝑖

in 𝑆𝑛
that satisfy the conclusion of Theorem 7.3.

Definition 7.7. Let be a local field of characteristic 0.

(i) For a cover 𝑌 → ℙ1 of degree 𝑛 over, define

𝛼(𝑌 → ℙ1∕) =
∑
𝑖

ord
𝑝
(𝑛)
𝑖

Λ
Θ
(𝑛)
𝑖

(𝑋𝑌∕).
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(ii) For a cover 𝑌 → ℙ1𝑥 over, define

𝛽(𝑌 → ℙ1𝑥∕) = ord2ΛΘ(Δ
2
𝑌∕),

where Θ = 2𝐶2×𝐶2 − 𝐶𝑎2 − 𝐶
𝑏
2
− 𝐶𝑐

2
+ {1} is a 𝐶2×𝐶2-Brauer relation.

(iii) For a cover 𝑌 → ℙ1𝑥 of the form 𝑥2=𝑓(𝑧) over, define

𝛾(𝑌 → ℙ1𝑥∕) = ord2ΛΘ(Δ𝑌∕),

where Θ = 2𝐶2×𝐶2 − 𝐶𝑎2 − 𝐶
𝑏
2
− 𝐶𝑐

2
+ {1} is a 𝐶2×𝐶2-Brauer relation of Δ𝑌 → ℙ1

𝑥2
.

(iv) For a cover𝑌 → ℙ1𝑥 overwe define the ‘arithmetic analogue of the local root number’ (with
respect to the cover 𝑌 → ℙ1𝑥) 𝑤arith(𝑌∕) ∈ {±1} as

𝑤arith(𝑌∕) = (−1)
𝛼(𝑌→ℙ1𝑥∕)(−1)𝛽(𝑌→ℙ

1
𝑥∕)(−1)

𝛼(Δ1
𝑌
→ℙ1𝑦∕)(−1)

𝛾(Δ1
𝑌
→ℙ1𝑦∕).

Remark 7.8. The constructions of curves and automorphism groups given in Definition 7.5 have
been set up so as to commute with extensions of scalars. Thus, for example, if 𝑌 → ℙ1 is defined
over a number field 𝐾 and 𝑣 is a place of 𝐾, then ‘𝑋𝑌∕𝐾𝑣’ in Definition 7.7 can be obtained by
constructing 𝑋𝑌 over 𝐾 from 𝑌∕𝐾. This is essential in order to apply global results on Selmer
groups (Theorem 5.1).

Remark 7.9. The invariant𝑤arith(𝑌∕) depends on themap𝑌 → ℙ1𝑥, althoughwehave suppressed
it in the notation. It also depends on the choice of Brauer relations in symmetric groups used in
Theorem 7.3. The latter is a purely group theoretic choice. It is applied to 𝑆𝑛 and 𝑆𝑚 where 𝑛 and
𝑚 are the degrees of 𝑌 → ℙ1𝑥 and Δ

1
𝑌
→ ℙ1𝑦 , respectively.

7.3 Parity of ranks of Jacobians

Theorem 7.10. Let 𝑌 → ℙ1 be a cover of degree 𝑛 over a number field 𝐾. Let 𝑋𝑌 → ℙ1 be its 𝑆𝑛
closure and Δ𝑌=𝑋𝑌∕𝐴𝑛 its associated discriminant curve.

(i) If the 𝑝-primary part of Ш(Jac𝑋𝑌 ) is finite for all primes 𝑝 ⩽ 𝑛, then

rk Jac𝑌 + rk JacΔ𝑌 ≡
∑

𝑣 place of 𝐾

𝛼(𝑌 → ℙ1∕𝐾𝑣) mod 2.

(ii) If Conjecture 1.6 holds, then

𝑤(Jac𝑌)𝑤(JacΔ𝑌 ) =
∏

𝑣 place of 𝐾

(−1)𝛼(𝑌→ℙ
1∕𝐾𝑣).

Proof. Write 𝜌 for the irreducible (𝑛−1)-dimensional character of 𝑆𝑛 that is the natural
permutation character on 𝑛 points minus the trivial character.

(i) We have
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46 of 50 DOKCHITSER et al.

⟨Jac𝑋𝑌 (𝐾), 𝟙⟩ = rk Jacℙ1 = 0,
⟨Jac𝑋𝑌 (𝐾), 𝜌⟩ = rk Jac𝑋𝑌∕𝑆𝑛−1 = rk Jac𝑌,
⟨Jac𝑋𝑌 (𝐾), 𝑑𝑒𝑡𝜌⟩ = rk Jac𝑋𝑌∕𝐴𝑛 = rk JacΔ𝑌 .

By Theorem 5.1 and the assumed finiteness of the 𝑝(𝑛)
𝑖
-primary part of Ш,

⟨Jac𝑋𝑌 (𝐾), 𝜏Θ(𝑛)
𝑖
,𝑝
(𝑛)
𝑖

⟩ ≡∑
𝑣

ord
𝑝
(𝑛)
𝑖

Λ
Θ
(𝑛)
𝑖

(𝑌∕𝐾𝑣) mod 2.

Taking the sum over 𝑖, we get

rk JacΔ𝑌 + rk Jac𝑌 = ⟨Jac𝑋𝑌 (𝐾), −𝑛1 + 𝜌 + 𝑑𝑒𝑡𝜌⟩ ≡∑
𝑣

𝛼(𝑌 → ℙ1∕𝐾𝑣) mod 2.

(By Remark 5.15, the assumption on the self-duality ofΩ1(Jac𝑋𝑌 ) needed to apply Theorem 5.1
is automatically satisfied here since all representations of 𝑆𝑛 are self-dual.)

(ii) The proof is analogous to (i). Using Proposition 2.21, we see that

𝑤(𝑋𝟙𝑌)=1, 𝑤(𝑋
𝜌

𝑌
)=𝑤(𝑌) and 𝑤(𝑋

det 𝜌

𝑌
) = 𝑤(Δ𝑌).

By Conjecture 1.6, 𝑤(𝑋
𝜏
Θ
(𝑛)
𝑖
,𝑝
(𝑛)
𝑖

𝑌
) =
∏
𝑣(−1)

ord
𝑝
(𝑛)
𝑖

Λ
Θ
(𝑛)
𝑖

(𝑌∕𝐾𝑣)

. Taking the product over 𝑖 gives
the result. □

Lemma 7.11. Let 𝑌 → ℙ1𝑥 be a cover over a number field 𝐾.

(i) If Ш(JacΔ𝑌 ) and Ш(JacΔ1
𝑌
) have finite 2-primary part, then

rk JacΔ𝑌 + rk JacΔ1𝑌
≡

∑
𝑣 place of 𝐾

𝛽(𝑌 → ℙ1𝑥∕𝐾𝑣) mod 2.

(ii) If Conjecture 1.6 holds, then

𝑤(JacΔ𝑌 )𝑤(JacΔ1𝑌
) =

∏
𝑣 place of 𝐾

(−1)𝛽(𝑌→ℙ
1
𝑥∕𝐾𝑣).

Proof.

(i) This is Theorem 5.1 applied to the 𝐶2×𝐶2-Brauer relation of Δ2𝑌 → ℙ1𝑥 with 𝑝 = 2.
(ii) This is Proposition 2.21 combined with Conjecture 1.6 for the same Brauer relation. □

Lemma 7.12. Let 𝑌 → ℙ1𝑥 be a cover of the form 𝑥
2=𝑓(𝑧) over a number field 𝐾.

(i) If Ш(JacΔ𝑌 ) has finite 2-primary part, then

rk JacΔ𝑌 ≡
∑

𝑣 place of 𝐾

𝛾(𝑌 → ℙ1𝑥∕𝐾𝑣) mod 2.
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(ii) If Conjecture 1.6 holds, then

𝑤(JacΔ𝑌 ) =
∏

𝑣 place of 𝐾

(−1)𝛾(𝑌→ℙ
1
𝑥∕𝐾𝑣).

Proof.

(i) This is Theorem 5.1 applied to the 𝐶2×𝐶2-Brauer relation of Δ𝑌 → ℙ1
𝑥2
with 𝑝 = 2.

(ii) This is Proposition 2.21 combined with Conjecture 1.6 for the same Brauer relation. □

Theorem 7.13. Let 𝑌 → ℙ1𝑥 be a degree 𝑛 cover defined over a number field 𝐾, and let 𝑋𝑌 be its 𝑆𝑛-
closure. LetΔ1

𝑌
→ ℙ1𝑦 be the associated cover 𝑦

2 = g(𝑥), let𝑚 be its degree and𝑋Δ1
𝑌
its 𝑆𝑚-closure.

(i) IfШ(Jac𝑋𝑌 ) andШ(Jac𝑋
Δ1
𝑌

) have finite 𝑝-primary part for 𝑝 ⩽ 𝑛 and 𝑝 ⩽ 𝑚, respectively, then

(−1)rk Jac𝑌 =
∏

𝑣 place of 𝐾

𝑤arith(𝑌∕𝐾𝑣).

(ii) If Conjecture 1.6 holds, then

𝑤(Jac𝑌) =
∏

𝑣 place of 𝐾

𝑤arith(𝑌∕𝐾𝑣).

Proof.Note that if the 𝑝-primary part of Ш(Jac𝑋𝑌 ) (respectively, of Ш(Jac𝑋
Δ1
𝑌

)) is finite, then so is

that of Ш(JacΔ𝑌 ) (respectively, Ш(JacΔ
Δ1
𝑌

)) by Theorem 1.15(6).

Now combine Theorem 7.10 for𝑌 → ℙ1𝑥 and forΔ
1
𝑌
→ ℙ1𝑦 togetherwith Lemma 7.11 for𝑌 → ℙ1𝑥

and with Lemma 7.12 for Δ1
𝑌
→ ℙ1𝑦 . □

Corollary 7.14. If the Shafarevich–Tate conjecture andConjecture 1.6 hold for all Jacobians of curves
over a fixed number field 𝐾, then so does parity conjecture, that is,

(−1)rk Jac𝑌 = 𝑤(Jac𝑌)

for every curve 𝑌 defined over 𝐾.

8 ON THE PARITY CONJECTURE FOR JACOBIANS

We end with a discussion on what one would need in order to prove the parity conjecture for
general Jacobians, assuming finiteness of Tate–Shafarevich groups. Recall fromCorollary 7.14 that
the supply of Brauer relations is sufficiently large as to control the parity of ranks of all Jacobians
using the local invariants Λ. What is required is the connection to local root numbers given by
Conjecture 1.6. Recall that this asserts that∏

𝑣 place of 𝐾

𝑤(𝑋𝜏Θ,𝑝∕𝐾𝑣)(−1)
ord𝑝ΛΘ(𝑋∕𝐾𝑣) = 1

for every curve𝑋 with a finite group 𝐺 acting by automorphisms, every prime 𝑝 and every Brauer
relation Θ for 𝑋.
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As the following theorem illustrates, the local terms 𝑤(𝑋𝜏Θ,𝑝∕𝐾𝑣) and (−1)
ord𝑝ΛΘ(𝑋∕𝐾𝑣) often

match. Part (1) of the theorem is a special case of the root number formula given in Proposi-
tion 2.22. We will not prove part (2) here; it is proved in [37, section 6.2]. We caution that slightly
more restrictions are placed on the choice of 𝜏Θ,𝑝 in that work, though the choices in Example 3.14
remain valid. See [37, section 6] for details.

Theorem 8.1. Let 𝑋 be a curve over a local field  of characteristic 0 and 𝐺 a finite group of
-automorphisms of 𝑋, such that Ω1(Jac𝑋) is self-dual as a 𝐺-representation. For an orthogonal
representation 𝜏 of 𝐺:

(1a) 𝑤(𝑋𝜏∕) = (−1)⟨𝜏,Ω1(Jac𝑋)⟩ if is archimedean;
(1b) 𝑤(𝑋𝜏∕) = (−1)⟨𝜏,(𝔛Jac𝑋⊗ℂ)Frob ⟩ if is non-archimedean, 𝑋∕ is semistable.

For every odd prime 𝑝 and pseudo Brauer relation Θ for 𝑋:

(2a) ord𝑝ΛΘ(𝑋∕) ≡ ⟨𝜏Θ,𝑝, Ω1(Jac𝑋)⟩mod 2 if = ℂ;
(2b) ord𝑝ΛΘ(𝑋∕) ≡ ⟨𝜏Θ,𝑝, (𝔛Jac𝑋 ⊗ ℂ)Frob⟩mod 2 if 𝑋∕ is semistable and either  is non-

archimedean of residue characteristic different from 𝑝 or if  is an extension of ℚ𝑝 of even
residue degree.

Since 𝜏Θ,𝑝 is always orthogonal, under the assumptions of the theorem,

𝑤(𝑋𝜏Θ,𝑝∕) = (−1)ord𝑝ΛΘ(𝑋∕).

In particular, Conjecture 1.6 holds for curves over number fields that satisfy these local constraints
at all places. In view of Theorem 5.1, we deduce the following case of the 𝑝-parity conjecture for
𝑋𝜏Θ,𝑝 (see Conjecture 2.23):

Corollary 8.2. Let 𝑋 be a curve over a number field 𝐾, 𝑝 an odd prime and 𝐺 a finite group of 𝐾-
automorphisms of𝑋 such thatΩ1(Jac𝑋) is self-dual as a𝐺-representation. Suppose moreover that𝑋
is semistable,𝐾 is totally complex and that [𝑘𝑣 ∶ 𝔽𝑝] is even for all 𝑣 ∣ 𝑝, where 𝑘𝑣 denotes the residue
field of 𝐾𝑣 . Then for all pseudo Brauer relations Θ for 𝑋,

(−1)⟨𝜏Θ,𝑝,𝑝(Jac𝑋)⟩ = 𝑤(𝑋𝜏Θ,𝑝 ).
Amore general version is proved in [37], which removes some of the assumptions at 𝓁 = 𝑝 and

allows real places. The local terms no longer agree in such generality. However, the discrepancy
can be expressed in terms of a certain Artin symbol, which, when ones takes the product over
all places of a number field, vanishes by the product formula. The case 𝑝=2 is more difficult,
although not without progress. In particular, the parity conjecture for hyperelliptic curves with
suitably good local behaviour should be within reach (see [23, section 1.3.3]).
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