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Abstract

We investigate Selmer groups of Jacobians of curves that
admit an action of a non-trivial group of automorphisms,
and give applications to the study of the parity of Selmer
ranks. Under the Shafarevich-Tate conjecture, we give
an expression for the parity of the Mordell-Weil rank of
an arbitrary Jacobian in terms of purely local invariants;
the latter can be seen as an arithmetic analogue of local
root numbers, which, under the Birch—-Swinnerton-Dyer
conjecture, similarly control parities of ranks of abelian
varieties. As an application, we give a new proof of
the parity conjecture for elliptic curves. The core of the
paper is devoted to developing the arithmetic theory of
Jacobians for Galois covers of curves, including decom-

URF\R\180011 position of their L-functions, and the interplay between
Brauer relations and Selmer groups.
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1 | INTRODUCTION

Tate’s proof of the analytic continuation and the functional equation of Hecke L-functions inter-
preted the sign in the functional equation as a product of certain local constants. The existence of
such an expression for Artin representations was proved by Langlands and Deligne, who, more-
over, extended the definition of the local constants to more general Galois representations. The
local Langlands correspondence tells us that these local constants are compatible with those aris-
ing for L-functions of automorphic forms. However, the compatibility of this theory with the
Birch-Swinnerton-Dyer conjecture and its generalisations remains an open problem. The sign
in the functional equation of the L-function of a curve X over a number field K determines the
parity of the order of vanishing of the L-function at the central point s = 1, and hence should
match the parity of the Mordell-Weil rank of its Jacobian Jacy. In other words, one expects the
parity conjecture

(_1)rk JacX — H w(X/KU),

v place of K

where the w(X /K,) are the local constants (local root numbers) given by Langlands and Deligne.
The aim of this paper is to define local constants w, ;;,(X/K,) for curves’ over local fields X /K,
that determine the parity of ranks of Jacobians of curves over number fields:

Theorem 1.1 (=Theorem 7.13(i)). If the Shafarevich-Tate conjecture holds for Jacobians of all
curves over a number field K, then for all curves X /K,

(_1)rk facx = H warith(X/KU)'

v place of K

We will not address the compatibility of our arithmetic local constants w, 4, (X /K, ) with local
root numbers w(X /K,,) in general. We will, however, illustrate their use by giving a new proof of
the parity conjecture for elliptic curves assuming the finiteness of I1I. A similar result was proved
in [16, Theorem 1.2].

Theorem 1.2 (= Theorem 6.1). Let E : y*> = x>+ ax + b be an elliptic curve over a number
field K with a # 0. Let E’ be the elliptic curve given by y> = x> — 27bx? — 27ax. IflLI(E) has finite
3-primary part and II(E") has finite 2- and 3-primary parts, then the parity conjecture holds for E.

Remark 1.3. When a = 0, the elliptic curve E has a 3-isogeny over K. Thus, if III(E) has finite
3-primary part, then the parity conjecture holds for E by [16, Theorem 1.8].

T Strictly speaking, curves together with a choice of map to P'.
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Our approach to Theorem 1.1 has some ingredients in common with [16, Theorem 1.2],
namely the 2-parity conjecture for elliptic curves with a 2-isogeny, and the 3-parity conjecture
over totally real fields. However, the resulting statements have different assumptions on the
Tate-Shafarevich group.

In the context of understanding the parity of ranks of Jacobians, the key new feature of our
approach is the use of higher genus curves to control the arithmetic of curves of lower genus.
For instance, the proof of the above theorem for elliptic curves makes use of auxiliary curves of
genus 3.

The role played by these higher genus curves is similar to that of extensions of the base number
field, which one makes when studying Heegner points, Iwasawa theory, the parity conjecture,
and so forth. Smooth projective curves over number fields are in 1-to-1 correspondence with
their function fields (finitely generated extensions of Q of transcendence degree 1). For exam-
ple, the elliptic curve E : y?> = x3+ax+b over Q corresponds to Q(x, V/x3 + ax + b), and its base
change to Q(i) corresponds to the quadratic extension Q(x, v/x3+ax+b, i). The quadratic exten-
sion Q( \/Z Vx3 + ax + b) instead corresponds to the double cover of E given by y* = t%+at?+b.
As we shall explain, the theory of Jacobians of such covers of curves mimics that of extensions of
the base number field extremely well.

To fixideas, consider a (smooth, projective) curve X over a number field K, let G be a finite group
of K-automorphisms of X, and let X /G denote the quotient curve. In the language of function
fields, G is simply the Galois group Gal(K(X)/K(X/G)).

First of all, rational points on Jacobians satisfy ‘Galois descent’ (see [29, Theorem 1.3], or
Theorem 1.15): G acts naturally on Jacy(K) and

Jacy (K)E = Jacy /6(K)c, ()

where ‘¢’ is shorthand for ® ,C.

Secondly, L-functions of covers of curves can be decomposed analogously to the factorisation
of Dedekind zeta functions into Artin L-functions. For representations 7 of G, we will define’
L-functions L(X7, s) that in particular satisfy ‘Artin formalism’ (Definition 2.17, Proposition 2.21):

LX71®%5) = LX,)LX%s) and LK™, 5) = LIX/H, 9), @

We will also define the root number w(X7) that controls the sign in the conjectural functional
equation of L(X7, 5) (Definition 2.15, Conjecture 2.20(2)).

Finally, these L-functions are related to arithmetic by the following generalisation of the
Birch and Swinnerton-Dyer conjecture and the parity conjecture (see Conjecture 2.23 and Theo-
rem 2.24). It is the analogue of the equivariant versions (or that for ‘Artin twists of elliptic curves’)
of these conjectures in the context of extensions of the base number field, see, e.g. [43, section 2]
or [13, Conjecture 1.1].

Conjecture 1.4. Let X /K be a curve over a number field and G a finite group of K-automorphisms
of X. Let T be a representation of G.

TWe will not define X7, though it is to be thought of as a motive coming from the first cohomology groups of the variety
X and the idempotent corresponding to 7 in C[G]; see Section 2 for a more detailed discussion, and Definition 2.3 for a
definition of the underlying #-adic representation.
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1) ord,_,L(X7,s) = (r,Jacx(K)c)-
(2) Iftis self-dual, then w(X7) = (—1){TIax(Kc),

Thus, the situation is like in the good old days. In particular, these properties allow us to adapt
the method of Brauer relations and regulator constants of [13, 15] from the setting of extensions
of number fields to covers of curves. This is the key input for controlling the parity of ranks
of Jacobians. Recall that a Brauer relation in a finite group G is a formal linear combination
of subgroups (up to conjugacy) © = Y, H; — 3, iH J’., such that the associated permutation rep-
resentations @@; C[G/H;] and jCIG/H ;.] are isomorphic. The theory of ‘regulator constants’
associates to a Brauer relation © and a prime p|#G a representation 7g , (Definition 3.11 or
[13], Section 2). The multiplicity of these representations in the group of points Jacy(K)c can
be controlled using local data:

Theorem 1.5 (see Theorems 4.3 & 5.1). Let X be a curve over a number field K, let G be a finite
group of K-automorphisms of X, let® = Y, H; — Zj H; be a Brauer relation for G and p a prime.

(1) There is an isogeny Hj Jacy pr — I Jacy . inducing an equality of L-functions of curves
J L

Hj L(X/Hj.,s) =[], L(X/H;, 9).
(2) Suppose that Q' (Jacy) is self-dual as a G-representation.” If ll(Jacy) is finite, then

(TopJacy(®)c)= ). ord,Ag(X/K,) mod 2.
v place of K
The precise expression for the local invariant Ag is given in Definition 5.16. When K is an
extension of Q ps it is of the form

[1; cQacyy,)

Ao = T etiac )

- powers of 2 and p,

where c denotes the local Tamagawa number over K. For the present discussion, the crucial point
is that it is a purely local invariant.

To deduce Theorem 1.1, we will show that the supply of curves, Brauer relations and represen-
tations ¢ , is large enough to determine the parity of the rank of every Jacobian. There is, in fact,
a further trick up our sleeve, which puts us at an advantage compared to the theory of regula-
tor constants for extensions of number fields. Specifically, if H < G is such that the quotient curve
X /H has genus 0, then we have full control of the multiplicity of Indgﬂ in Jacy (K)¢: by Frobenius
reciprocity and Galois descent (1), (Indgﬂ ,Jacy (K)¢) = dim JacX(K)g = dim Jacp1 (K)e = 0. We
will illustrate this process in Example 1.9 below in the case of elliptic curves.

Conjecture 1.4(2) tells us that the parity of (z,Jacy(K)c) is controlled by the root number
w(X"), which is defined as the product of local root numbers w(X*/K,). Compatibility with
Theorem 1.5(2) requires the following ‘product formula’ for w(X e» /KU)(—l)OrdPAO(X /K),

Conjecture 1.6. Let X be a curve defined over a number field K, and G a finite group of K-
automorphisms of X. Suppose that Q'(Jacy ) is self-dual as a G-representation. Then for every Brauer
relation © in G and every prime p,

*This is automatic if G is either a symmetric or a dihedral group, or if K has a real place.

A '€ 'SZ0Z ‘XpZ09rT

wouy

SUONIPUOD PUe SWLB | 31 88S *[SZ02/0T/20] uo AiqiauluQ /B[IMm ‘S01nes Aeiqi JON uopuo as| o AiseAlun Aq £800. SWId/ZTTT OT/I0pAU0d" A3 M A

FETIIS

35UB0 |17 SUOWIWOD dAIER.D 3 el idde 8y Aq peusenoh ae sapiLe O ‘8sn Jo s3ni Joj Ariqiauliuo A3|IAm uo



PARITY OF RANKS OF JACOBIANS OF CURVES 50f 50

[T woxmos/k,) (-1 tol/ = )
v place of K

Our expression for the parity of the rank of a Jacobian in Theorem 1.1 is built up from Brauer
relations. Thus, we can also deduce the following:

Theorem 1.7 (= Corollary 7.14). If the Shafarevich-Tate conjecture and Conjecture 1.6 hold for all
Jacobians of curves over a fixed number field K, then so does the parity conjecture, that is,

(=)™ = y(Jacy)
for every curve X defined over K. Here w(Jacy ) denotes the global root number of Jacy.

Conjecture 1.6 thus gives an approach to the parity conjecture for general Jacobians. For exam-
ple, if for curves over local fields K we always had the identity w(X7e» /KC) = (—1)°"dpPeX/K),
then, assuming the finiteness of III, we would deduce the parity conjecture for all Jacobians over
number fields. Unfortunately, the identity is false in general, and the correct relation between
w(X'er /K) and Ag(X/K) is yet to be found. However, we understand it well enough to prove
the parity conjecture for elliptic curves (see Theorem 1.2), as well as Conjecture 1.6 for general
semistable curves when p is odd:

Theorem 1.8 (see [37] Theorem 1.2). Conjecture 1.6 holds for all semistable curves X and odd primes
D, such that Jacy has good ordinary reduction at all primes above p. Moreover, if llI(Jacy) is finite,
then for every finite group G of K-automorphisms of X and Brauer relation © for G,

w X‘[@’P) — (_1)<1®,p,JacX(K)C)’
so that Conjecture 1.4(2) holds for X*o-»,

Let us illustrate the above ideas with an extended example, and sketch the proof of Theorem 1.1
in the setting of elliptic curves.

Example 1.9. Let E be an elliptic curve over a number field K given by E : y?> = x>+ ax+b
with a # 0. We view E as a degree 3 cover of P! (with parameter y). The condition a # 0
ensures that the discriminant h(y) = Disc(x? + ax + b — y?) = —27y* + 54by? — (4a> + 27b?)
has no repeated roots. In particular, K(y, x)/K(y) is non-Galois and its Galois closure is an S;-
extension of K(y). It has the following field diagram, with the corresponding covers of curves

given on the right.

K(y,x A)

e
SN

K(y, x)
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6 of 50 | DOKCHITSER ET AL.

Here D and B are the curves' given by A% = h(y) and by {y?> = f(x), A% = h(y)}. The Jacobian
of D is the elliptic curve denoted E’ in the statement of Theorem 1.2 (cf. [10, section 4]).

Now, S; acts on B by automorphisms, and hence on the K-rational points of its Jacobian.

Consider the decomposition Jacz(K). = 19" @ ¢®™ @ p®* into irreducible representations,
where 1, €, p denote the trivial, sign and 2-dimensional irreducible representation of S;. Galois
descent () for G = S; tells us that n = rkJacp: = 0. Repeating with G = C, and C; givestk E = k
and rk Jac,, = m, respectively. In particular, we see that rk Jacy = 2rk E + rk Jacp,.

Assuming the Birch and Swinnerton-Dyer conjecture, we can also deduce this from decompos-
ing L-functions. Indeed, by Artin formalism (),

L(B,s)L(P', s)* = L(B'®'®1®<®p®r ) = I(E, 5)’L(D, 5), *

and taking s — 1 recovers rk Jacy = 2rk E + rk Jacp,. It is also easy to verify Conjecture 1.4(1): For
example, ord,_; L(B,s) = ordszlLL((F}i’fs)) =k = (p,Jacy(K)c).

Note that the identity (*) also indicates that B has genus 3 (comparing degrees of Euler factors)
and that E X E X Jacp, is isogenous to Jacy (by Faltings’ theorem).

The Birch-Swinnerton-Dyer conjecture is compatible with isogenies (Cassels-Tate [8, 50]), so,
considering the leading terms of the L-functions at s = 1, we obtain a corresponding identity of

the form

2
RegERngaCD _ [LI(JacB)| |E(K)tors|4|JaCD(K)tors |2
Reg]acB |]_H(E)|2|H_[(J3.CD)| |JaCB(K)tors|2

. H (local terms),
v

where the local terms account for the periods, local Tamagawa numbers and other local ‘fudge
factors’ in the Birch-Swinnerton-Dyer formula. A computation with heights shows that the
ratio of regulators is of the form 3"*"+k . (square), so the above expression leads to 3"+m+k =
I1,A, - (square), for a suitable (purely local) term A, involving invariants of E/K,, D/K, and
B/K,,. Finally, taking 3-adic valuations gives a formula for the parity of the sum of the ranks of E
and Jacp in terms of local data:

rk E + rkJacp = Z ord;A, mod 2.
v

Theorem 1.5 automates this process. Formula (*) came from the representation-theoretic iden-
tity Indc’i 1192 ~ (Indgzﬂ)GBZ ) Indg 1, which corresponds to the Brauer relation ® = 2C, +
C; — 2S5 — {1}. The theorem immediately tells of the existence of an isogeny Jacy; - E X E X Jacy,
and the L-function identity (*¥). Moreover, this Brauer relation has To3=1@ecdp (see, e.g.
Example 3.14 or [13, Example 2.53]), so, assuming the finiteness of IlI(Jacy), Theorem 1.5(2)
together with Galois descent () give

tk E + rkJacy = (7g 3, Jacg(K)c) = Z ord;Ag(B/K,) mod 2.
v

Example 1.10. Consider a hyperelliptic curve of the form X : w? = ¢g(z?) over a number field K.
It has a natural action of C, X C,, which gives the following diagrams of function fields and of the

fWhen giving a curve by affine equations, we always mean the unique smooth projective curve birational to it.
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PARITY OF RANKS OF JACOBIANS OF CURVES 7 of 50

corresponding covers of curves.

K(w,z2) X
PN / | \
K(z*, wz) K(z) K(z*,w) X, P! X,
>~ | 7 \ | /
K(z?) p!

The curves X, and X, are explicitly given by t> = rg(r) and by s*> = g(r), respectively.

The group C, X C, has the Brauer relation ¥ = C7 + Cé’ + €5 — 2C, X C, — {1}, which has
{Clz}xczﬂ; here the C; are the three subgroups of order two. Theorem 1.5(1) tells us that
there is a K-isogeny Jacy — Jacy X Jacy,.(When g is a square-free cubic polynomial, this recov-
ers the classical fact that the Jacobian of w? = g(z?) is isogenous to a product of two elliptic

curves.) Assuming finiteness of IlI(Jacy ), Theorem 1.5(2) tells us

le,z == Ind

rkJacy = (ty,,Jacy(K)c) = Z ord,Ay(X/K,) mod 2.
v place of K

In other words, we can control the parity of the rank of the Jacobians of such curves.

Combining Examples 1.9 and 1.10 (for the curve D), we immediately deduce the following
expression for the parity of ranks of elliptic curves.

Theorem 1.11. Let E be an elliptic curve over a number field K given by E : y*> = f(x) = x> + ax +
b with a # 0. Let g(y*) € K[y] be the discriminant of f(x) — y?, and define curves D : A> = g(y?)
and B : {y? = f(x), A? = g(y*)}. IfUI(E) and (Jacy) are finite, then

rkE = Z (ord;Ag(B/K,) + ord,Ay(D/K,)) mod 2,
v place of K

where © and ¥ are the Brauer relations from Examples 1.9 and 1.10 for the groups S; and C,XC,
acting on B and D, respectively.

In order to prove the parity conjecture for elliptic curves (Theorem 1.2), we need to compare the
local terms Ag and Ay to the corresponding local root numbers. We will, in fact, prove Conjecture
1.6 for the two Brauer relations ® and ¥ (Theorem 6.6 & Remark 6.7). Theorem 1.2 will then follow
from a mild strengthening of Theorem 1.11.

Remark 1.12. As stated, Theorem 1.5(1) is a result of Kani and Rosen (see [26, Theorem 3]). We will
generalise the notion of Brauer relations to “pseudo Brauer relations’ (Definition 3.1), which also
give rise to isogenies and can be used to obtain data on parities of ranks.

Brauer relations appear to be a very rich source of isogenies. One can verify that isogenies in
all of the following cases can be obtained by applying Theorem 1.5(1) to suitable pseudo Brauer
relations [28] (with certain assumptions in (3)-(5)):

(1) isogenies between elliptic curves;
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8 of 50 | DOKCHITSER ET AL.

(2) isogeniesJacy X J acy, — Res Jacy, where X is a hyperelliptic curve, X ; is its quadratic

K(Vd)/K
twist by d € K* and ResK Va)/K denotes Weil restriction from K( \/E) to K;

(3) Richelot isogenies between Jacobians of genus 2 curves;

(4) isogenies from Jacobians of genus 2 curves to products of elliptic curves;

(5) isogenies Jacy — Jacy X Jac,, where X is a curve that admits an unramified double cover to
a trigonal curve Y, and Jac, is the associated Prym;

(6) isogenies between products of Weil restrictions, [[; Resgn; rJacy — [I; ResFH} /KJ acy,

where Y is a curve over K, F/K is a Galois extension and ) H; — > H J’ is a Brauer relation in
its Galois group (see [15, Proof of Theorem 2.3]).

(We are not aware of an example of isogenous Jacobians where an isogeny provably cannot be
constructed from a pseudo Brauer relation.)

Isogenies have been extensively used to derive formulae for the parities of various ranks in
terms of local data, including all of those listed above:

(1) Cassels (see [22, Appendix]),

(2) Kramer for X elliptic [30] and Morgan for X hyperelliptic [36],

(3) Dokchitser-Maistret [21],

(4) Coates-Fukaya-Kato-Sujatha for p # 2 [9] and Green-Maistret for p = 2 [24],
(5) Docking [12],

(6) Mazur-Rubin for dihedral groups [32] and Dokchitser-Dokchitser [15].

Theorem 1.5(2) provides the means for deriving local formulae for all of these rank expressions in
a uniform way [28].

1.1 | Overview of the paper

The core of this paper relies on the study of Galois covers of curves. One subtlety is that we adhere
to the following convention:

Convention 1.1. Throughout this paper, curves are assumed to be smooth and proper, but are not
assumed to be connected, nor are their connected components assumed to be geometrically con-
nected.

The reason for considering this broader notion of a ‘curve’ is that they arise naturally in
the context of Galois covers. For example, considering Example 1.9 with a = 0 and K = Q, the
discriminant curve coincides with the normalisation of D : A?> = —27(y? — b)?, which is not geo-
metrically connected. After base changing to Q-, D fails to be connected. For a thorough treatment
of the arithmetic of curves and Jacobians in the context of Convention 1.1, see [29].

In Section 2, we construct the L-functions L(X7, s) and local root numbers w(X") and show that
they satisfy the Artin formalism (1) mentioned above (Proposition 2.21). These are constructed
from the #-adic representations Hom(7 ®g @K,H}(X )) where H(X) = H;l((JacX)E, Q,). We
show that these form a compatible system of #-adic representations and possess other desired
properties (Theorem 2.13 and Corollary 2.14). We conclude by showing that Conjecture 1.4 fol-
lows from the Birch-Swinnerton-Dyer conjecture and other standard conjectures on L-functions
(Conjecture 2.23 and Theorem 2.24).

Sections 3-5 are devoted to proving Theorem 1.5(2) for Selmer groups.
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PARITY OF RANKS OF JACOBIANS OF CURVES | 9 of 50

In Section 3, we introduce pseudo Brauer relations, a generalisation of Brauer relations, and we
verify that the theory of regulator constants remains applicable in this setting (Theorem 3.7).

In Section 4, we discuss isogenies arising from pseudo Brauer relations (as in Theorem 1.5(1)).

In Section 5, we prove Theorem 1.5(2) and its generalisation to Selmer groups (Theorem 5.1).
In particular, we define Ag(X/K), an explicit invariant associated to curves over local fields K of
characteristic 0 and pseudo Brauer relations for their automorphism groups (Definition 5.16). We
also discuss variations of Theorem 5.1 which use alternative local invariants (Theorems 5.8 and
5.12).

Sections 6-8 focus on applications of these results to the parity conjecture.

In Section 6, we prove Theorem 1.2 via the 3-parity conjecture for E X Jacy, (Theorem 6.6) and
the 2-parity conjecture for elliptic curves admitting a 2-isogeny.

In Section 7, we prove that there are enough Brauer relations and representations of the form
Tg,p to control the parity of the rank of arbitrary Jacobians, and to deduce Theorem 1.1.

In Section 8, we describe an approach to the parity conjecture for arbitrary Jacobians from
Theorem 1.1. This relies on a conjectural relationship between the local invariant Ag(X/K,) and
the local root number w(X*®-r /K,) (Conjecture 1.6). We end by presenting some evidence towards
this conjecture (Theorem 8.1 and Corollary 8.2).

1.2 | Notation

Throughout this paper, we adhere to the following notation. We write K for a number field and v
for a place. We write L for any field and K for a local field, usually of characteristic 0.

X a curve (see Convention 1.13)

Jacy the Jacobian variety of X

X/H quotient of X defined over L by a finite group H < Aut; (X)

A an abelian variety

X,(4) Homzp (H_H)l Sel,.(A),Q,/Z,) ® Q,, the dual p*-Selmer group of A

k,A the p*-Selmer rank of A, that is the Q,-dimension of X,(A)

w(A/K) the local root number of A defined over a local field K

w(A) 1, w(A/K,), the global root number of A defined over number field K
V,(A) T,(A) ® Q,, where T,(A) is the #-adic Tate module of A

Ql(A) the L-vector space of regular differentials on A defined over a field L

c(A) the Tamagawa number of A defined over a non-archimedean local field

[ e |- 1y the normalised absolute value on K (resp. K,)), extended to x (resp. K_U)
Frob, a (choice of) arithmetic Frobenius element in the absolute Galois group of K
I inertia group of K

() the inner product of characters of G-representations

o, ot the dual (resp. H-invariant vectors, for H < G) of a G-representation p

(€] a (pseudo) Brauer relation, see Definition 3.1

Co(V) regulator constant for V, see Definition 3.6

Cg VP2 ») Co(V) computed with respect to the bases B;, B,, see Definition 3.6

Top self-dual C[G]-representation encoding regulator constants, see Definition 3.11

(Continues)
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10 of 50 DOKCHITSER ET AL.

Ag(X/K) an explicit local invariant of X, see Definition 5.16
D,

1 the trivial representation

the dihedral group of order 2n

n

We remind the reader that the parity conjecture has the following analogue for Selmer groups.

Conjecture 1.13 (The p-parity conjecture). Let A be an abelian variety over a number field K and
p a prime. Then

(=)™ 4 = w(A).

Remark 1.14. If we assume that the p-primary part of the Shafarevich-Tate group of A/K is finite,
then we have rk, A = rk A. In particular, the p-parity conjecture for A/K is equivalent to the
parity conjecture under this assumption.

We will frequently use the following result regarding the action of automorphisms of a curve X
on its Jacobian, including the ‘Galois descent’ () mentioned above.

Theorem 1.15. Let X /K be a curve over a field of characteristic 0, let G be a finite subgroup of
Autp(X). Then,

(1) V,(acy)® ~V,(Jacy )
(2) Q'(Jacy)® ~ Q'(Jacyq).

When K is a number field,

(3) (Jacy(K) ® @)¢ = Jacy6(K) ® Q,
(4) Xp(JaCX)G = Xp(JaCX/G)’

and moreover,

(5) XP(J acy) is self-dual as a G-representation,

(6) if(Jacy)[p™] is finite, then H_I(JacX/G)[p‘”] is finite,

(7) if a representation p does not appear in the ¢ -adic Tate module V ,(Jacy), then it does not appear
in rational points or in p®-Selmer groups:

<p’Vf(JaCX)> =0 = (P’JaCX(K)®Q> = <p’Xp(JaCX)> =0.
Similarly, if {p,V ,(Jacy)) = 0, then {p, Q'(Jacy)) = 0 for general characteristic 0 fields.
Proof. This is proved in [29]: for (1), (3), (4) see Theorem 1.3, for (2) see Remark 4.29 with

F = Q!(-), for (5) see Theorem 1.2, for (6) see Theorem 5.2(3) and for (7) see Proposition 1.4 and
Remark 5.6. d

2 | MOTIVIC PIECES OF CURVES

In the introduction, we factorised the L-function of a curve X with a group of automorphisms G as
a product of the L-function ‘pieces’ L(X", s). Decompositions of this kind were already mentioned
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PARITY OF RANKS OF JACOBIANS OF CURVES | 11 of 50

by Serre [45] as coming from ‘Artin L-functions in the setting of schemes’. In this section, we for-
malise this construction and justify the generalisation of the Birch-Swinnerton-Dyer conjecture
for these L-functions given in Conjecture 1.4. The reader who is willing to take the formulation of
the latter conjecture on trust (and its Selmer group analogue given in Conjecture 2.23) can fairly
safely skip this section; the only other results that will be used later are the existence and basic
properties of the local and global root numbers w(X*/K) and w(X™) (Propositions 2.21, 2.22) in
Sections 7-8.

Formally, X* should be constructed as a motive — it comes from the first cohomology groups
of the variety X and the idempotent corresponding to 7 in C[G]. We will not set up the entire
motivic machinery here and instead will just concentrate on the system of #-adic representations
attached to X*. We will show that these are independent of # and form a compatible system and
satisfy other desired properties (Theorem 2.13, Corollary 2.14).

Throughout this section, we will phrase everything in terms of principally polarised abelian
varieties A with an action of a finite group G by automorphisms. The case of interest for the rest
of the paper is A = Jacy for a curve X /K with G coming from K-automorphisms of X. Thus, we
will simply write

L(XT,s) = L(A%,s) and w(X") = w(A").

While much of what follows remains true without assuming the existence of a principal polarisa-
tion, several statements are cleaner in the presence of this assumption. Since our main application
is to Jacobians of curves, we elect to work in the principally polarised setting throughout.

In this section we will adopt the following conventions and notation.

Convention. For the purpose of working with #-adic representations, we fix embeddings @ C
Q, C C for all # (with the resulting embedding Q@ C C independent of ).

Notation 2.1. When a prime 7 is fixed, we write x for the Z-adic cyclotomic character.

Notation 2.2. We take all d-dimensional representations 7 of finite groups to be valued in GL,(Q),
and implicitly extend scalars to GL, (@f) or GL;(C) whenever necessary.

For a finite group G and a G-representation 7, we write Q(7) for the (abelian) number field
generated by the values of the character of 7, that is, by Trz(g) for all ¢ € G. For a € Gal(Q(r)/Q),
we write 7 for the representation that is a-conjugate to 7, that is, Trr%(g) = a(Trz(g)) for all
g €G.

Convention. By an automorphism o of a principally polarised abelian variety, we always mean one
that respects the polarisation. That is, such that ofoo = 1, where T denotes the Rosati involution.

Definition 2.3. For an abelian variety A over a field L, we write
H(A) = (T/(A) ®,, Q)"

for its associated #-adic Galois representation.
If a finite group G acts on A by L-automorphisms, then H;(A) carries an induced action of

G that commutes with the action of Gal(Z/L). For a representation 7 of G, we define the #-adic
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12 of 50 | DOKCHITSER ET AL.

Galois representation
HJ(A") = Homg(z, H)(A)).

We caution the reader that this notation depends on the underlying group G, for example, H } A"
is the subspace of G-invariants of H ;’(A)‘

The following abelian variety A plays the role of the (Jacobian of the) quotient curve X /G in
Section 1.

Definition 2.4. Let A be an abelian variety over a field L and let G be a finite group acting on A
by L-automorphisms. We write

A = connected component of identity of A%, where A® = ﬂ ker(g —1).
geG

Ay is an abelian subvariety of A, and A® is a subgroup variety.
Remark 2.5. The abelian variety A satisfies the analogue of Galois descent in Section 1(F):
(AL ® 0)° = Ag(L) ® Q.

Indeed, the natural inclusion A; — A® induces an injection A;(L) — A°(L) = A(L)®, whose
cokernel is annihilated by the order of the component group of A°.

Remark 2.6 (see [29], Sections 3 and 4). Let X be a curve over a field L of characteristic 0.
The Jacobian A = Jacy carries a canonical principal polarisation. Moreover, if G is a finite
group of L-automorphisms of X, then G acts naturally (but possibly not faithfully) on Jacy

by L-automorphisms. In this setting, Jacy ¢ is isogenous to (Jacy)g, and so they can be used
interchangeably in many arithmetic situations.

2.1 | Galois representation of A®

Before discussing the Z-adic representation for A, we first record the following property of
H;(AG), analogous to Theorem 1.15.

Proposition 2.7. Let A be a principally polarised abelian variety over a field L and G a finite group
acting on A by L-automorphisms. For H < G,

Hy(Ap) = Hy(A)"
as Gal(L/L)-representations, and as G /H x Gal(L/L)-representations if H is normal in G.

Proof. Write Ny = Y,y h, which we view as an endomorphism of A. Note that Nj;(A) C Ay.
Denoting by ij; the inclusion of Aj; into A, we thus have maps Ny; : A - Ay and iy : Ay — A.
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PARITY OF RANKS OF JACOBIANS OF CURVES | 13 of 50

Noting that the image of N7, : H;(AH) . H;(A) is contained in H;(A)H , we obtain maps
Nj, t Hy(Ag) - H) (A" and i, : HY(A" - H (Ap).

The composition Ny oiy is multiplication by |H| on Ay, hence i7,0N7; is multiplication by |[H| on
H)(Ap). Similarly, N}, oif, is multiplication by |[H| on H,(A)". We conclude that both N}, and i},
are isomorphisms as in the statement. [

Proposition 2.8. Let A be a principally polarised abelian variety over a field L of characteristic O, let
G be a finite group acting on A by L-automorphisms and let £ be a prime. There are isomorphisms
of Gal(L/L)-representations as follows:

(1) For G-representations 7,1/, H;(ATGBT/) ~ H;(AT) o) H;(AT').

(2) IfH < G and p is a representation of H, then H}(Amdgp ) ~ H;(AP).
(3) Ifo factors through G /N for N < G, then H;(AC’) ~ H}((AN)").

(4) ForH < G, H\(A™ ") = H!(Ay).

(5) There is a non-degenerate Gal(L/L)-equivariant bilinear pairing
HY A XHY(AT) > Xiye
If T is self-dual and orthogonal, this pairing is alternating and dim H L}, (A7) is even.

(6) H(A")* =~ HL(A™) ®F Xeye
*® dim H}(Af)

(7) If T is self-dual, then (det H)(A7))®? = x.
*®3 dim HL(AT)
Acye .

. If T is orthogonal, then det H},(A") =~

Proof.

(1) Follows from the fact that Hom, commutes with finite direct sums in the first variable.
(2) Since induction is left adjoint to restriction, for any G-representation V there is an
isomorphism

HomG(Indep, V) ~ Homg(p, V)

which is functorial in V. Taking V = H}(X ) gives the result.
(3) By Proposition 2.7 H}(Ay) ~ H}(A)N. Since o factors through G /N, the natural map

Homg (0, H,(AYN) — Homg (o, H}(A))
is an isomorphism, from which the claim follows.
(4) By (2) and Proposition 2.7, H;(Alndg“) ~ HL(AM ~ H.(Ap).

(5) Itsuffices to construct a G-invariant pairing

Hom(r, H,(A)) X Hom(t*, H}(A)) — Xiye (*)
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14 of 50 | DOKCHITSER ET AL.

with the same properties. Restricting this to G-invariants then gives the sought pairing on
H}(Af) (the restriction remains non-degenerate by [13, Lemma 2.15]). Note that the standard
isomorphisms of vector spaces

Hom(7,H}(A)) ~ H,(A)®t* and Hom(z*,H}(A)) ~ H,(A)®1

are G x Gal(L/L)-equivariant, where G acts diagonally on the tensor products and Gal(L/L)
acts via the first factors. Having made these identifications, the tensor product of the Weil
pairing on H ; (A) with the natural ‘evaluation’ pairing between t and t* gives the pairing (*).
That this is alternating when 7 is self-dual and orthogonal follows from the fact that the tensor
product of an antisymmetric pairing with a symmetric pairing is antisymmetric.

(6) Follows from (5).

(7) The first claim follows from (6) on taking determinants. The second claim follows from the
orthogonal case of (5) and the Pfaffian identity pf(MTM') = det(M)pf(T), where T is an
antisymmetric matrix and M an arbitrary square matrix (see, e.g. [6, section 5.2, Proposition

1]). (]

2.2 | Local Galois representation of A*

We now turn to the properties of H}(AT) over local fields. We begin by recalling some stan-
dard results on the #-adic representation H} (A) for semistable abelian varieties, except that we
additionally keep track of the action of a finite group of automorphisms.

Notation 2.9. Let K be a non-archimedean local field with ring of integers Oy and residue field k.
Let A/K be a principally polarised abelian variety, and let G be a finite group acting on A. Recall
(e.g. from [25, Definition 3.4]) that if A is semistable, then by definition there is a short exact
sequence of k-group schemes

0—>T—>A2—>B—>0,

where Az is the identity component of the special fibre of the Néron model A/O of A, T is a
torus and B an abelian variety.

We denote by X 4 the character lattice of T.

The action of G extends uniquely to .4, inducing actions on T, B and X 4.

Proposition 2.10. Continuing with the setup of Notation 2.9, let £ be a prime distinct from the
characteristic of k.

(1) We have
HL(A)/HH(A* = (X, ®7 Q) ® Xiye

as G x Gal(k/k)-modules.
(2) Let g = (95,0) € G X Wy, where W is the Weil group of K. Then Tr(g|H,(A)'<) is a rational

number independent of . If o acts on kasa non-negative power of the geometric Frobenius, then
Tr(g|HL(A)'x) € Z.
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Proof. The Weil pairing T,(A) ® T,(A) - Z,(1) induces an isomorphism
HJ(A) =T, (A)(-1) ®;, Q, *)

of G x Gal(K /K)-modules, where the —1 denotes a Tate twist. The description of the #-adic Tate
module of a semistable abelian variety given in [25] (see also [39, section 3] for a summary) is
readily checked to be compatible with the action of G. In particular, we have a G X Gal(K/K)-
stable filtration

0 C T,(A) CT,(A)x CT,(A),
whose graded pieces are unramified and are, respectively,
X.T®z,»Q), T,(B) and X,Q® Z,.

Here X.(T) ~ Hom(X 4, Z) is the cocharacter lattice of T. Twisting by (—1) and using (*), we
deduce part (1).
For part (2), the above discussion gives

Tr(g | Hy(A)'®) = Tr(g | T,(B)(-1)) + Tr(g | £,(T)).

Consequently, it suffices to consider the trace of g on T,(B)(—1). The Weil pairing on B gives an
isomorphism of G X W .-modules T,(B)(—1) ~ Hom(T,(B"), Z,), where T € G actson T,(B") as
(z7Y)V.If o acts on k as a non-negative power of the geometric Frobenius, then g~! acts on T,(B")
as a geometric endomorphism. Thus, by [34, Proposition 12.9], the characteristic polynomial of
g~ on T,(BY) has integer coefficients independent of #. This implies the result. O

Proposition 2.11. Let A be a principally polarised abelian variety over a non-archimedean local
field IC, let G be a finite group acting on A by K-automorphisms, and let £ be a prime different from
the residue characteristic of K.

@

1

Tr(Froby | HL(A)'%) = I

2 Tr(g~"|2)Tr(Froby. - g|HL(A)'X).
geCG

(2) For a € Gal(Q(r)/Q) the characteristic polynomials of Frob,. on H})(AT)’/C and on H}(Afa Yie
are a-conjugate. In other words, if det(t — Frobg|H,(A")'x) = Y  a;t', then det(t—
Frob,C|H;,(AT“)I:c) =y ala)t.

(3) If A/K is semistable, then HL(A")/H}(A")'x =~ Homg(z, £, ® Q) ® x5\ as a Gal(K/K)-
module.

Proof.

(1) For irreducible 7 this follows from Lemma 2.12(2) below, applied to V = H;(A)IIC, H=
Gal(K/K), h = Froby, and observing that H(A™)'x ~ Homg(z, HL(A)'x) as Gal(K/K)-
modules. The general case then follows from Proposition 2.8(1).
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(2) The coefficients of the characteristic polynomial are symmetric functions in the eigenvalues of
Frobenius, and hence can be expressed as unive;sal Z-linear combinations of TrFrobiC fori =
0, ... n. It therefore suffices to show that Tr(Frob'.|H ;(AT“ e ocTr(FrobiC |H}(A")"x). This
follows from (1), since by definition aTr(g~!|7) = Tr(¢~!|z%) and as Tr(Froby. - g|H ; (A)x) e
Q by Proposition 2.10(2).

(3) This follows from Proposition 2.10(1). O

Lemma 2.12. Let V be a representation of G X H with G finite. For a G-representation t define
V™ = Hom(7, V). Then, for an irreducible G-representation

¢)) yE®amn i isomorphic to the t-isotypic component of V, and
(2) forh e H,

Tr(h [V = = 3 Tr(g™ o) Tr(h - g|V).
G| &

Proof.

(1) The map which sends V to its 7-isotypic component is isomorphic, as a functor, to V = 7 ®
Hom(z, V). Since H acts trivially on 7, then 7 ® Hom(z, V) ~ v asan H -representation.

@) dligllf > Tr(g~'|t)g € C[G] acts as the projector to the r-isotypic component. O

Theorem 2.13. Let A be a principally polarised abelian variety over a local field K of characteristic
0 with finite residue field F . Let G be a finite group acting on A by K-automorphisms, and let T be
a representation of G. The local Weil-Deligne representation associated to H L}, (A7) is independent of
¢, weight-monodromy compatible and Frobenius-semisimple; more precisely, it can be written in the
form

P1 ® (0, ® Sp(2)),

where p; are continuous complex representations of the Weil group that are independent of the choice

of ¢ 1 q, Frobenius acts semisimply on the p; with eigenvalues of absolute value |q|_1+§, and Sp(2)
denotes the 2-dimensional special representation.

Proof. 1t suffices to prove the result for irreducible 7, as the general case then follows on tak-
ing direct sums (Proposition 2.8(1)). As A is an abelian variety, the Weil-Deligne representation
associated to H;(A) admits as decomposition of the above form (see, e.g. [44] Proposition 1.10).
By Lemma 2.12(1), H;(AT)QB dim7 j5 jsomorphic to a direct summand of H}(A), and therefore
also admits such a decomposition (which is also Frobenius-semisimple and weight-monodromy
compatible, but may not be independent of #). Hence so does the Weil-Deligne representation
associated to H ; (AD).

It remains to prove independence of # } q. For a fixed integer d > 0 and finite extension of
the coefficient field F/Qy, [18] Theorem 7 and Corollary 8 show that there is a finite list of finite
extensions F; /K with the property that

(1) Every abelian variety B/K with dim B < d has semistable reduction over each F;, and
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(2) Every Frobenius-semisimple weight-monodromy compatible continuous £-adic represen-
tation p : Gal(K/K) — GL,(F) for n < 2d is uniquely determined by the set of traces
Tro': (Froby.) for all i.

Taking d = dim A and 7 = Q,(7), we deduce that the local Weil-Deligne representation associ-
ated to H;(AT) is determined by the traces of Froby. acting on H}(AT)I Fi. These traces do not
depend on the choice of # by Proposition 2.10(2) and Proposition 2.11(1). O

Corollary 2.14. Let A be a principally polarised abelian variety over a number field K, G be a finite
group acting on A by K-automorphisms, and t a representation of G. Then H;(Af) form a compatible
system of £-adic representations, in the sense that for every prime v of K, its associated local Weil-
Deligne representation is independent of the choice of £ forv } ¢.

2.3 | L-functions and root numbers of A”
We refer to Tate’s [49] and Deligne’s [11] for the general definition of L-functions and e-factors.

Definition 2.15. Let A be a principally polarised abelian variety over a local field K, let G be
a finite group acting on A by K-automorphisms, let 7 be a representation of G and ¢ a prime
different from the residue characteristic of K.

When K is non-archimedean the local polynomial is defined by the usual formula,

P(AT/K,T) = det(1 — Frob,' T|H(A)'x).

The local root number w(A*/K) is defined as the local root number associated to the Galois
representation H'(A") via the theory of e-factors,

e(HL(AT), 1, )

wAT /)= ————
W =
for some choice of Haar measure u and nontrivial additive character 3 on K. In view of Theo-
rem 2.13, the choice of # is immaterial, at least if K has characteristic 0 (we will not discuss the
case of equal characteristic here).
When K is archimedean, the local e-factor (and the I'-factor in the functional equation) is
defined in terms of the corresponding Hodge structure (see [11] (5.3)). We will only use that the
Hodge structure for AT is non-zero only in degrees (0,1) and (1,0) and that the dimension satisfies

dim(H(AT) @ HOV(A")) = dim HL(A).

(Like the 7-adic representation, the Hodge structure is constructed as a Hom from that of 7 to that
of A. The former is concentrated in degree (0,0) where it is just the underlying vector space of the
representation with its G-action. The latter, by the functoriality of the Hodge decomposition (see,
e.g. [1, Section 12]), satisfies

HY94) @ HOV(A) ~ HL(A)
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as G-representations. The dimension formula follows on applying Hom(z, «).)
See Proposition 2.22 below for an explicit formula for the local root number when A/K is
semistable or K is archimedean.

Lemma 2.16. The local root number w(A" /K) does not depend on the choice of measure u. If T
is orthogonal, then w(A" /K) does not depend on the choice of additive character 1 and, moreover,
w(AT/K) € {£1}.

Proof. Independence of u is standard and applies to local root numbers generally, as scaling the
measure merely scales the e-factor by a positive real number; see [49] (3.4.3) for the case of Weil
representations and (4.1.6) for the general case. Independence of  and that the local root number
is +1 generally holds for representations with positive determinant by [49] (3.4.4) and (4.1.6), and
by [11] (5.5.1), respectively. This applies to H;,(AT) by Proposition 2.8(5). O

Definition 2.17. Let A be a principally polarised abelian variety over a number field K, let G be
a finite group acting on A by K-automorphisms and 7 a representation of G. The L-function and
global root number are defined as usual by

T —_ 1 T\ — T
L(AT,s) = 1;[0 AR w(A") = 1:[w(A /Ky,

where g, is the size of the residue field at v, and the two products are taken over all the non-
archimedean places of K and over all the places of K, respectively. (In this paper, we will be
interested in the representations 7g ,, which are always orthogonal. We will thus not discuss to
what extent the root number is well-defined for general 7.)

Remark 2.18. The roots of P(A™ /K, T) are a subset of those of the local polynomial for A/K,. A
standard argument then shows that the L-series for A” converges on Re(s) > %

Lemma 2.19. Let A be a principally polarised abelian variety over a number field K and let G be
a finite group acting on A by K-automorphisms. For a representation t of G, the coefficients of the
L-series

a

L(A%,s) = —n
0#nao, IV k/a(n)’

have a,, € Q(t). Moreover, for & € Gal(Q(r)/Q), the L-series for A™ is given by

a ala
L(AT |s) = %
om0, N/

Proof. This is a direct consequence of Proposition 2.11(3), which shows the corresponding Galois
equivariance property for each Euler factor. O

Standard conjectures on L-functions and Deligne’s conjecture on the ‘Galois equivariance’
properties of L-functions (see [11] section 5.2 and Conjecture 2.7), together with the above lemma,
imply the following conjecture. We will not make the terms a, b explicit as they will not be used in
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this paper; see [49] (3.4.7), (4.1.6), (4.2.4) and [11] 5.3 for formulae relating them to the associated
conductor and the appropriate powers of 2 and 7.

Conjecture 2.20. Let A be a principally polarised abelian variety over a number field K and let G
be a finite group acting on A by K-automorphisms. For a representation t of G,

(1) L(AY,s) has an analytic continuation to C;
(2) L(A", s) satisfies

L(A%,s) = w(A") - (ab®) - L(A™ ,2 —5),
T _ T K9] gim HL(A7) T
where L(AT,s) = L(AT,s)['(s) 2 ¢ and a,b > 0 are constants that depend on A™ and
K, but notons;
3) ordszlL(Afa, s) = ord,_;L(A7, 5) for a € Gal(Q(7)/Q).
These L-functions and root numbers satisfy the usual ‘Artin formalism’. This follows from
Proposition 2.8 and standard properties of L-functions and root numbers under direct sums and

induced representations:

Proposition 2.21. Let A be a principally polarised abelian variety over a number field K and let G
be a finite group acting on A by K-automorphisms.

(1) For G-representations T, 7/,

L(A™®,5) = L(A%$)L(AT,5) and w(A™®") = w(A")w(A").

(2) IfH < G and p is a representation of H,

L(AMP §) = L(AP,s) and w(A™9P) = w(AP).

(3) Ift is a representation of G that factors through G /N for N < G, then

L(A",s) = L(Ay) and w(A") = w(A}).

(4) IfH < G, then
LA™ 5) = L(Ay,s) and w(A™") = w(Ay).

Finally, we record the following explicit formula for w(A™/K) in the case when K is
archimedean or A/K is semistable.

Proposition 2.22. Let A be a principally polarised abelian variety over a local field K, G a finite
group acting on A by K-automorphisms and t an orthogonal G-representation.
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(1) IfK is archimedean, then

1 4. T
w(AT/K) = (=17 4 HAD,

(2) If K is non-archimedean and A/ K is semistable, then
W(AT/K) = (—1)EABOT)
In particular, w(A™ /K) = 1 if A has good reduction.

Proof.
(1) This follows from Definition 2.15 and [11] {5.3.
(2) By Proposition 2.11(3),

H'(AT)/H'(AT)'* = Homg (7, X4 ® Q) ® Xy

By [49] (4.2.4), the root number of an #-adic representation V is related to that of its

sgn det(—FrobEl |V§f)

semisimplification Vi by w(V/K) = w(V,/ IC)W

. Applying this to H}(A"),

W(AT/K) = w(H(A7),,/K) - sgn det(~Froby! [Homg (1, €4 ® O,) ® x1).
Both H'(A%)/x and H'(A")/H'(A")!x are unramified, hence so is H'(A7),,. By [49] (3.2.6.1),
w(H(A%),,/K) = 1 (here we choose the additive character ¥ to have ny =0; by Lemma 2.16
w(A" /K) is independent of this choice). Thus,
w(A"/K) = det(—Froby' |Homg (7, ¥4 ® Q,)).
Astisorthogonal and X 4 is a lattice, both can be realised over R, and hence the eigenvalues of
Frob)_c1 on Homg(7, ¥4, ® Q) must be real or come in complex conjugate pairs. As Frobenius

acts by an element of finite order on X 4 and trivially on 7, we deduce that

w(AT/K) = (_1)dimHomG(T,fA(XJZ@f)Fmb/C — (_1)<f,(3€A®Zc)Fr°b/c>’

as required. O

2.4 | Arithmetic conjectures

We can now explain our analogues of the Shafarevich-Tate conjecture, the Birch-Swinnerton-
Dyer conjectural rank formula, the parity conjecture and the p-parity conjecture for A”.

Conjecture 2.23. Let A be a principally polarised abelian variety over a number field K, let G be a
finite group acting on A by K-automorphisms and let T be a representation of G. Then
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PARITY OF RANKS OF JACOBIANS OF CURVES 21 of 50

(1) for every prime p, (7, X,(A/K)c) = (r, A(K)c);
(2) ord,_,L(A%,5) = (1, A(K)¢c);

(3) if T is self-dual, then w(A7) = (—1){-AK)c),

(4) if 7 is self-dual, then w(A?) = (—=1)%¥%A/Kc),

Theorem 2.24. Let A be a principally polarised abelian variety over a number field K and let G a
finite group acting on A by K-automorphisms.

(1) Conjecture 2.23 (1) follows from the Shafarevich-Tate conjecture for A/K;

(2) Conjecture 2.23 (2) follows from Conjecture 2.20 (1,3) for L(AT, s) for all representations t of G
and from the Birch-Swinnerton-Dyer conjecture for rk Ay; for all H < G;

(3) Conjecture 2.23 (3) follows from Conjecture 2.23 (2) and Conjecture 2.20 (2);

(4) Conjecture 2.23 (4) follows from Conjecture 2.23 (1) and (3).

Proof.

(1) The inclusion A(K) ®, Q p = Xp (A/K)* is G-equivariant, by functorialilty of the connecting
maps in Galois cohomology. Since X,(A /K) is self-dual by Theorem 1.15(5), if ILI(A)[p*°] is
finite, then X,(A /K)¢ =~ A(K)¢ as a G-module.

Q) Ifr = Indgﬂ for some H < G, then

ord,_, L(A, ) = ord,_, L(Ay, s) = tk Ay = dimAK)Y = (z, AK)c),

by Proposition 2.21(iv), the Birch-Swinnerton-Dyer rank formula for Ay, Remark 2.5 and
Frobenius reciprocity.
If 7 has rational character, then one can write 79" @ @, Indgiﬂ = i IndIG{,_ 1 for some
J

n > 1 and subgroups H;, H ; < G, as the Burnside ring has finite index in the rational repre-
sentation ring (see, e.g. [47, Theorem 2.1.3]). The result then follows from the previous case
and multiplicativity of L-functions (Proposition 2.21(i)).

Finally, for general 7 let p = @qcqaia(r)/a)T”- As A(K)c is a rational representation,
(1, A(K)¢) = (7%, A(K)) for all a € Gal(Q(r)/Q). The result now follows from Conjec-
ture 2.20 and the previous case applied to p, which has rational character:

OrdSZIL(Ap’S) _ <p’A(K)C>
|Gal(Q(7)/@)|  |Gal(@Q(r)/Q)|

ord,_,L(A%,s) = = (7, A(K)¢).

(3) Clear, since, by the functional equation, the parity of ord,_, L(A7, 5) is determined by w(A7)
whenever T = 7%,
(4) Clear. O

3 | PSEUDO BRAUER RELATIONS AND REGULATOR CONSTANTS

We now define pseudo Brauer relations and their regulator constants, extending the notion of
regulator constants for Brauer relations considered in [13]. Most key properties are retained in
this expanded framework. Much of Sections 3.1-3.3 will be familiar to readers experienced with
these concepts.
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Throughout this section, L is a field of characteristic 0 with a fixed embedding L < C, G is a
finite group, H is a set of representatives of the subgroups of G up to conjugacy and (, ) is the
standard inner product on characters. All representations are assumed finite dimensional.

3.1 | Pseudo Brauer relations

Definition 3.1. Let ¥ be an L[G]-representation. An element © = ), H; — Zj H;. € Z[H] is a
pseudo Brauer relation relative to V if there are C[G]-representations p; and p,, satisfying (o;, V) =
(p,, V) = 0, such that

p1 @ €D CIG/H] = 0, ® P CIG/H])
i J

Remark 3.2. When V = L[G], we necessarily have p; = p, = 0. In this case, Definition 3.1
coincides with the existing notion of a Brauer relation.

Remark 3.3. The choice of representatives in H will be immaterial in practice (see Remark 3.23 for
a thorough discussion). When specific choices are required (for instance in Section 6), these will
be explicitly stated.

The set of all pseudo Brauer relations relative to V forms a subgroup of Z[H]. The following
result describes the rank of this subgroup.

Proposition 3.4. Let V be an L[G |-representation and let Irr,(G) be the set of isomorphism classes
of irreducible representations of G over Q. Then,

rk, PBR(V) = #{conj. classes of non — cyclic H < G} + #{p € Irro(G) : (p,V) = 0},
where PBR(V) C Z[H] denotes the subgroup of pseudo Brauer relations relative to V.

Proof. Denote by BR C Z[H] the subgroup of Brauer relations. It is well known that the rank of
BR is equal to the number of conjugacy classes of non-cyclic subgroups of G. Indeed, denoting
by R(G) the rational representation ring, we have a natural linear map « : Q[H] - R(G) ® @
sending ), n;H; to Y niIndgi 1. The kernel of a is BR ® Q, the dimension of R(G) ® Q is equal
to the number of conjugacy classes of cyclic subgroups of G by [46, Section 13.1, Corollary 1], and
a is surjective by the induction theorem [46, Section 13.1, Theorem 30].

The restriction of @ to PBR(V) ® Q is readily seen to have image contained in the subspace
of R(G) ® Q spanned by irreducible rational representations p with (o, V) = 0. To complete the
proof, we wish to show that, conversely, any such p lies in the image of «. This, again, is a
consequence of the induction theorem [46, Section 13.1, Theorem 30]. O

3.2 | Regulator constants

Notation 3.5. Let © = 3, H; — }; H ; € Z[H] be a pseudo Brauer relation relative to a self-dual
L[G]-representation V. Given a non-degenerate, G-invariant, L-bilinear pairing {, )) on V, we
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denote by (, ); the pairing

1 .
() = @m«, ) on the vector space @vhﬁ’
1 1

and define the pairing {, ), on j VH;' similarly. Given a basis B = {v;} for @, Vi, we denote

by (B, B); the matrix with (i, j)th entry (v;,v;),, and define (B', B'), for a basis B’ of (P, v
similarly. By [13, Lemma 2.15], both (, ); and {, ), are non-degenerate.

Definition 3.6. Let © = }, H; — 3 H ; € Z[H] be a pseudo Brauer relation relative to a self-
dual L[G]-representation V, and let ((, )) be a non-degenerate, G-invariant, L-bilinear pairing on

YV taking values in some field extension L of L. Given bases B for ), Vi and B’ for (§ i VH}, we
define

det(1, B),
det(B’, B'),

X

BB _
C@ (v) -

We then define the regulator constant of V relative to ©, denoted Cy(V), to be the class of
Cg B /(V) in L'*/L*? for any choice of bases B, B’ (the result being independent of this choice).

Many properties of regulator constants associated to Brauer relations [13, Section 2.ii] continue
to hold for the pseudo Brauer relations of Definition 3.6. Specifically, we have the following:

Theorem 3.7. Let L be a field of characteristic 0O, G be a finite group and V,V;,V, be
finite-dimensional self-dual L[G]-representations. Then,

(1) given a pseudo Brauer relation O relative to V, Co(V) is independent of the choice of pairing (, )),
and takes values in L* /L*?,
(2) given pseudo Brauer relations ©, and ©, relative to V, we have

C(al +@2(V) = Ce)l ) C@2 »),

(3) if © is a pseudo Brauer relation relative to both V, and V,, then
Co(V) @ V,) = Co(V)Co(Vy).
In particular, if V ~ P, Vl."i is a decomposition into self-dual L[G]-representations, then

Co) = [[ o™

We will prove Theorem 3.7 after introducing an alternative description of regulator constants
/
in Section 3.4. We note that an analogue of (1) also holds for Cg’B (V), see Remark 3.22.

Remark 3.8. We note that Cg is compatible with extension of scalars: If K /L is a field extension,
then Co(V) = Co(Y ®; K) in K*/K*2. On the other hand, if V descends to a K[G]-representation
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W for a subfield K C L, then W is unique up to K[G]-isomorphism. In particular, we can associate
to V a well-defined regulator constant Co(W) € K*/K*2. We will often omit W from the notation
and simply view Cg(V) as an element of KX /K*? without comment.

Theorem 3.7 represents a generalisation of [13, Theorem 2.17 and Corollary 2.18]. In addition,
the following result generalises [13, Corollary 2.25 and Lemma 2.26].

Lemma3.9.Let®@ =) ,H;, — ), iH ; be a pseudo Brauer relation relative to V. If either

(1) Vissymplectic, or
) (V,LIG/H;]) = (V,LIG/H]]) = 0 for alli, ,

then Co(V) = 1modL*2.
Proof. See [13, Corollary 2.25, Lemma 2.26]. O
We use this to show that Cg (V) can be taken to be a positive real number.

Lemma 3.10. Let © be a pseudo Brauer relation relative to a self-dual L[G]-representation V. Then,
there exists a positive real number in the same class as Co(V) in L* /L*%. (Recall that we fixed an
embedding L < C at the start of the section.)

Proof. Write V =~ 1, @ ¥, where 3, (resp. ¥,) is an orthogonal (resp. symplectic) representation.
Then Co(V) = Co(¥1)Ce(¥,) = Co(¥;) by Theorem 3.7(3) and Lemma 3.9. Now 1), is realisable
over R, say on a real vector space W, which necessarily admits a positive definite G-invariant
pairing (take the average, over g € G, of any inner product). The associated pairings (, ), (, ), (as
in Notation 3.5) are then positive definite. Computing Co(W) with respect to these pairings we
obtain a positive real number. By Remark 3.8, this gives the result. [

3.3 | The representations 7 ,

We now introduce a special class of representations 7 , in the case L = Q,, which feature
throughout the paper.

Definition 3.11. Let © be a pseudo Brauer relation relative to a self-dual Q,[G]-representation V.
Consider the set Ry, of all self-dual @, [G]-representations 7 all of whose irreducible constituents
appear in V, that is 7 for which (o, V) = 0 implies (o, 7) = 0 for all Q,[G]-representations p. We
define 7 ,, to be (any choice of) self-dual C[G]-representation, all of whose complex irreducible
constituents are orthogonal, that satisfies

(To,psP) = o0rd,Co(p) mod 2, Vo € Ry,.
(For the purposes of this paper, the choice of 7g , will be immaterial.)

Remark 3.12. A choice for 7 , always exists by Lemma 3.9(1). For instance, let {z;}; be the set of
all self-dual and Q ,-irreducible representations of G with ord,Cg(7;) odd. Then we can take
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Top = @(any@—irreducible constituent of 7;).
i

In particular, when all irreducible representations of G are realisable over Q, we can take
76,, = @ (ord,Co (D)1,
T

where the sum ranges over all irreducible representations of G, and ord,Co(7) is taken in {0, 1}.

Remark 3.13.1f © is a Brauer relation (see Remark 3.2), then any choice for 7 |, defines an element
of the set denoted T, p in [13, Definition 2.50].

Example 3.14 (see [13] Examples 2.3, 2.4, 2.20, 2.22). The following table describes generators for
the group of Brauer relations in C, XC,, S; and D, ,, along with the associated representations 7 ,
for the relevant primes p. For G = S5 and C, X C,, these choices of 7 , appeared in Examples 1.9
and 1.10.

G (0] p To,p
Cy X C,[|CE + CY + CS —2C,xC, — {1}|2[1 D e, D e, B,
S, 2C,+C,—28,—{1} [3] 1@ec@p
D,, 2C,+C,—2D,,—-{1} [p| 1®cdp

Here C7, CS’ , C; are the order 2 subgroups and €, €, €. the non-trivial order 2 characters of C, X
C,, p is a(choice of) 2-dimensional irreducible representation of S; or D, and € = det p.

3.4 | Alternative description of regulator constants

The following reinterpretation of regulator constants is based on expositions, in the case of Brauer
relations, given in [3, Section 3] and [14, Lemma 3.2]. We begin with some notation.

Notation 3.15. Let M be a Z[G]-module (below we will take M =V to be a self-dual L[G]-
representation, but this greater generality will be useful in later sections). For each subgroup H
of G, we have an isomorphism

Homg(Z[G/H], M)~—=—M"! @)
given by evaluating homomorphisms at the trivial coset. Given subgroups Hj,...,H, and

H},..,H), of G, define G-sets S = | |, G/H; and 8" = | |7, G/H/,. Taking Z[S] and Z[S'] to be
the corresponding permutation modules, (*) induces isomorphisms

Homg(2[S], M) = @M"  and Homg(z[S'],M) =~ @M.
i j
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Consequently, given ® € Hom(Z[S], Z[S’]), the map from Hom(Z[S’], M) to Hom;(Z[S], M)
sending f to fo® induces a homomorphism

@M - Pm.
J i

The G-module Z[S] (resp. Z[S’]) is canonically self-dual, via the pairing making the elements
of S (resp. S’) an orthonormal basis. Given ® € Homg(Z[S], Z[S’]), we denote by ®V the
corresponding dual homomorphism @V : Z[S'] — Z[S].

Definition 3.16. Let ©® = }, H; - 3, H ; € Z[H] be a pseudo Brauer relation relative to a self-
dual L[G]-representation V. We say that a Z[G]-module homomorphism ® : ), Z[G/H;] -
&b ; Z|G/H ;.] realises © if the induced map

o* ; GBVH} = @vHi
J i

is an isomorphism.

Lemma 3.17. Let © = ). H; — Ej H; be a pseudo Brauer relation relative to a self-dual L[G]-
representation V. Then, there exists a G-module homomorphism ® realising ©.

Proof. By Definition 3.1, there are CG-representations p;,p, such that p, @ €, C[G/H;] is
isomorphic to p, @EB]- C[G/HJ’.]. We may assume that p; and p, have no common irre-
ducible constituents, so that, in particular, they are both realisable over Q. We can then find
free Z[G]-modules V; and V, such that V; ®, C ~ p; and V, ®, C ~ p,, and a G-module
homomorphism

$:vVie@Pzic/H] -V, P zIc/H]]
i J

with finite kernel and cokernel. Denoting by ¢ and 7 the inclusion/projection in/out of the
permutation modules, one checks that ® = wogot realises the pseudo Brauer relation ©. 1

Remark 318. 1f @ = ). H; — ), H ; is a Brauer relation, then a G-map realising it is precisely a
G-injection @ : P, Z[G/H;] — EBJ- Z[G/H;.] with finite cokernel.

Notation 3.19. Given finite-dimensional L-vector spaces V, W, with bases B; = {v;};, B, = {w ) it
respectively, and given an L-linear map T : V — W, we write [T], P2 to denote the matrix of T

relative to /3, and /3,. Similarly to Notation 3.5, given a pairing ((, ) between V and W, we denote
by (B, B,)) the matrix with (i, j)th entry (v;, w;)).

The following proposition (along with Corollary 3.21) gives the promised alternative description
of regulator constants. Analogues for Brauer relations appear as [3, Theorem 3.2], [14, Lemma 3.2].

We highlight that, while we have not yet shown that Cg’B,(V) is independent of the choice of
pairing ((, )) made in its definition, the proof of the proposition applies regardless of the choice
made. As a by-product, this will prove the sought independence.
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Proposition 3.20. Let®@ = ), H; — Y, H ; be a pseudo Brauer relation relative to a self-dual L[G]-
representation V. For any G-module homomorphism ® realising ©, we have

_ det[(@V)'])

cBP ) =
© det[®+]?,

!
where BB, B’ are bases for @, Vi P i VHJ', respectively.

Proof. Fix a non-degenerate G-invariant pairing ((, )) on V. We follow the proof of [14, Lemma 3.2].
For a finite G-set T, we define the pairing (, ); on Hom;(Z[T], V) by setting

1

(f1, fr = ﬁ

D (f10), £

terT
Take S = | |;G/H;and §" = | |; G/H;.. After identifying Hom(Z[S], V) with @, Vi as in Nota-
tion 3.15, the pairing (, ) identifies with the pairing (, ), of Notation 3.5. Similarly, the pairing (, )y

identifies with the pairing (, ),. An easy computation then shows that ®* and (®V)* are adjoint
for the pairings (, ); and (, ),. We now compute

det(B,B); _ det(B,®*B'), det[(fbv)*]g

cBP () = = _ .
det(B” B’)z det[q)*]g/ det(((I)V) B’ B/>2 I:‘

Corollary 3.21. Let © = Y, H; — ), H ; be a pseudo Brauer relation relative to a self-dual L[G]-

representation V. Let ® be a G-module homomorphism realising ® and B a basis for @, VHi, Then

v 1
PPy = ———.
o det(dVD)*

In particular, Cg’q)VB(V) is independent of 1.
Proof. Immediate from Proposition 3.20. O
Proof of Theorem 3.7. Parts (2) and (3) follow readily from part (1). To prove (1), pick some & realis-
ing the pseudo Brauer relation @, and pick a pairing (, )) as in the definition of Cg (V). The proof
of Proposition 3.20 then shows that

Co(V) = det(®V®)" mod L*.

Since the right-hand side is an element of L* which is independent of ((, )), the result follows. []

Remark 3.22. By the same argument, for any bases B and B’ as in Definition 3.6, the quantity
Cg’B (V) lies in L*, and is independent of the choice of pairing (, )) used to define it.

Remark 3.23. The choice of representatives in H made at the start of this section does not affect
the above results in any meaningful way. For instance, if ® = ), H; — ) H ; € Z[H] is a pseudo
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Brauer relation relative to V, and we set M; = giHigi_l, M} = g}’.H}’.gJ’._1 for some g;, g]’. € G, then
we have canonical isomorphisms @, Vi ~ @, Y™ and @, Z[G/M;] ~ D, Z|G/H;] given by
(x;) ~ (g;x;) and (y;M;) — (y;9;H;), respectively. Similarly for H’. We conclude that the calcu-
lation of a regulator constant from Definition 3.6 and the notion of realising a pseudo Brauer
relation from Definition 3.16 are consistent even after a change from © to ®' = 3, M; — 3, M ;
In addition, a change from © to ®' does not affect Proposition 3.20 or Corollary 3.21.

4 | ISOGENIES INDUCED FROM PSEUDO BRAUER RELATIONS

Let X be a curve defined over a field K of characteristic 0 and let G be a finite subgroup of Autg (X).
In what follows, we will exploit a consequence of [29, Theorem 4.14], presented as Theorem 4.3
below, which allows us to associate certain isogenies to pseudo Brauer relations relative to the
¢-adic Tate module V ,(Jacy).

Definition 4.1. Let # denote any prime. We say that © is a pseudo Brauer relation for G and X if
O is a pseudo Brauer relation relative to V,(Jacy) in the sense of Definition 3.1. When there is no
ambiguity, we call these pseudo Brauer relations for X.

Remark 4.2. Having fixed an embedding K < C, we have a Q,[G]-isomorphism
for every prime #. Thus the notion of a pseudo Brauer relation for G and X is independent of #.

Theorem 4.3. Let X be a curve over a field K of characteristic 0, and G be a finite subgroup
of Autg(X). Let Y, H; — Zj H} be a pseudo Brauer relation for X realised by ® (in the sense of
Definition 3.16). Then, the following hold.

(1) The G-map @ induces a K-isogeny

fo: HJacX/H} - HJacX/Hi.
j i

(2) If @' realises a pseudo Brauer relation ¥, ; H ; — X H}! for X, then the composition ®'® realises
2iH =2 H;I{, and forp = fofo-
(3) The dual homomorphism ®" (as in Notation 3.15) realises the pseudo Brauer relation Y, iH ; —

Y H; for X, and we have fgv = (fg)" where (fg)" denotes the dual of f4 with respect to the
canonical principal polarisations.

Proof. (1) follows from [29, Theorem 4.14(1,3)]. For (2), it is clear that ®'® realises the pseudo
Brauer relation Y, H; — ¥, H)/, while the equailty foiq = fofq follows from [29, Theorem
4.14(2)]. (3) follows from [29, Theorem 4.14(1)]. O

The next result concerns the degree of the isogeny f .
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Proposition 4.4. Suppose that Q'(Jacy) is a self-dual G-representation.

(1) With respect to any basis B, for Q'([]; Jacy /H,)» we have

By,

2P Ql Jacy)) ! = +deg(fo).

C

(2) IfQ'(Jacy) is orthogonal, then

v (@ Facy)) ™! = deg(fo).
(3) Forany G-maps ®,, ®, realising ©, deg(f )/deg(fs,) liesin Q*2.
Proof. For (1), we compute

Cor. 3.21&
v 29, Lem. 5.10(1
2P (@ (Jacy )y M) det<(<I>V<I>)*

Vf<H Jacy /p, ))
v, (HJacX/Hi)>

[29, Lem. 4.28]

= det <f¢,v o)

[34, Prop. 12.9]
= deg(fovo)

Thm. 4.3 (2),(3)
= deg(fo)-

For (2), the G-representation Q!(Jacy) is realisable over R, say on an R-vector space Wp. By eval-
\%
uating Cgl’cp Bl(Ql(Jacx)) with respect to an R-basis B, for [];(Wy)i, Lemma 3.10 combined

with Theorem 3.7(1) tell us that Cg Y5 (Q'(Jacy)) is a positive real number. Since the equality
in (1) holds for any B,, we obtain the result. For (3), note that Q! (Jacy)®? is realisable over Q by
[29, Lemma 5.10(2)]. It follows from [41, Theorem 32.15] that there exist infinitely many distinct
quadratic extensions L/Q such that Q!(Jacy) is realisable over L. For each such, we deduce from

d d
part (1) and Theorem 3.7(1) that + eUw,) eV,) € Q%2 O

X2 . . . .
TeeTa,) € L*“. This is only possible if deefa,)

5 | LOCAL FORMULAE FOR SELMER RANK PARITIES

Let X /K be a curve defined over a number field K, and let G be a finite subgroup of Autg(X). The
main result of this section expresses the valuation of the regulator constant of the dual p*-Selmer
group, X,(Jacy), in terms of explicit local invariants.

Theorem 5.1. Let X be a curve over a number field K, and G be a finite subgroup of Autg(X). Let
© be a pseudo Brauer relation for X, and suppose that Q' (Jacy) is a self-dual K[G]-representation.
Then

orde@(Xp(JacX)) = Z ordpAe(X/KU) mod 2,
v place of K
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where the local invariant Ag(X /K,) is as in Definition 5.16. In particular, for any choice of 7g ,, as
in Definition 3.11,

(To,p XpJacy)) = Z ord,Ag(X/K,) mod 2.
v place of K

To prove this theorem, we begin by defining a local invariant 1 ¢(X/K,) which is shown in
Lemma 5.7 to be given by

#ookerfo(K,) [1;x,(X/H;)
#kerfo(K,) Hjl"v(X/H})’

)LG),<I>(X/KU) =

where @ is a G-map realising 0, f4(K,) is the map on K,-points induced by the corresponding
isogeny f¢ and u, encodes whether a curve is deficient at a place v (see Section 5.1 below). We
prove an analogue of Theorem 5.1 with 4g ¢ in place of Ag (see Theorem 5.8). Unfortunately,
Ao depends on the choice of ®. To remove this dependence (see Lemma 5.11(1)), we introduce a

revised invariant
Zo(X/K,) = Ao o(X/K,) - '\/ deg(fs)

1
’5’

Ao(X/Ky) = Ao(X/K,) - ]\/cgmlaacx))‘ ,

where C(Saf € N denotes the square-free part of deg(fy), calculated with respect to any ®. We
caution that whilst A is multiplicative in ©, in general Ag is not.

v

The drawback now is that ord p/i(a =0
by defining

lor % mod 2 . We finally fix this (see Theorem 5.17(1))

Remark 5.2. When K, /Q, is a finite extension and p # 2, ¢, we will additionally show that

[Tic,Qacy )

ord, Ag(X/K,) =0ord) ————,
S | X T

where c,(A) denotes the Tamagawa number of an abelian variety A/K,,. Indeed, this follows from
taking ord, in Lemma 5.19, which also details the analogue of this formula for all p.

Remark 5.3. By Theorem 1.15(5),(7), Xp(JaCX) is a self-dual G-representation for all p, and any
pseudo Brauer relation for X is a pseudo Brauer relation relative to X,(Jacy). Thus, the left-hand
side of the formula in Theorem 5.1 is well-defined.

5.1 | Deficiency

Here we remind the reader of the notion of deficiency for curves over local fields. It is well known
that when the curve arises via base change from a number field, this concept controls the size,
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modulo rational squares, of the 2-primary part of the Shafarevich-Tate group of its Jacobian (see
[40, Section 8] for geometrically connected curves, and [29, Section 5.5] for an extension to the
curves of Convention 1.1).

Definition 5.4 ([29], Definition 5.13). Let K be a local field of characteristic 0.
A geometrically connected curve X / K of genus g is called deficient if it has no K-rational divisor
of degree g — 1. For such X, we define

2 if X is deficient,
1 otherwise.

Mpe(X) = {

Suppose that X /K is connected (but not necessarily geometrically connected). We write £ for
the minimal field of definition of one of its geometric components, Y say, and define u;-(X) =

pp(Y).
Finally, writing X = | |; X; as a disjoint union of connected components, we define 1;-(X) =

[T e (X0).
If the field K is clear from context, we will often omit it from the notation. Further, when K =
K, is the completion of a number field K at a place v, we write ,(X) in place of ug (X).

5.2 | Alocal formulain 44 (X /K)

Here we prove the analogue of Theorem 5.1 obtained by replacing Ag with the local invariant 1¢ g
mentioned above and defined in Definition 5.6 below.

Notation 5.5. For an abelian variety A over a local field K of characteristic 0, and a choice of a
non-zero exterior form w on A, we write

c(A) - o/ when K/Q,is finite,
CA,w) = fA(,C) ] when K =R,
24ImA) [ oy lw Ad|  when K = C.

Here w/w® € KX is such that w = (w/w?) - @°, where " is a Néron exterior form on A.

Definition 5.6. Let K be a local field of characteristic 0, X/K be a curve, G be a finite sub-
group of Autp(X)and © = Y, H; — 3, H j be a pseudo Brauer relation for X. Fix bases 13;, BB,

for Ql(Hi JacX/Hi), Ql(Hj JacX/H}) and write w(/3;), w(/3,) for the exterior forms given by the
wedge product of the elements in B;, 3,, respectively. We define

C (Hl Jacy /1., co(BQ) [[; wX/H;)

AP x /ey = ‘ )
) C<HJ JE‘CX/H}’CQ(Bz)) I, n(X/H})

where C is given in Notation 5.5 and u is as in Definition 5.4.
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Given a G-map @ realising ©, write ®V3; for the basis obtained by applying (®¥)* to the
elements of /3, (cf. Notation 3.15). We additionally define

Ao (X /K) = AL Prx /K).
We write f(X) for the map on K-points induced by the isogeny f.

Lemma 5.7. We have
#ookerfo(K) [IixX/H))
#ker f(K) Hj#(X/H;-) '

A@,@(X/]C) =

In particular, Ag (X /K) € Q* is independent of the choice of B;.

Proof. By applying [29, Remark 4.29] with F = Q!(-), and taking exterior powers, we deduce that
faw(By) = w(®Y B;). As in the proof of [33, Theorem 7.3], we have

c (HiJaCX/Hi’w(Bl)> _ #cokerf(K)
C (HjJacX/H;,co((IJVBl)) #kerfo(K0)

giving the required result. O

Theorem 5.8. Let X be a curve over a number field K and G be a finite subgroup of Autg(X). Let ©
be a pseudo Brauer relation for X, ® a G-map realising ® and p a prime. Then,

ord,Ce(X,Jacy)) = Z ord,1g »(X/K,) mod 2.
v place of K

Proof. For a K-isogeny f : A — B, we write
Q(f) = #coker(f : AK)/AK)ors = BK)/B(K)iors) - Hker(f : I(A)gy — TI(B)giv)

where Illy;, denotes the divisible part of LII. Thus, if f is a self-isogeny of A, then ord,Q(f) =
ordpdet(flxp(A)). We let B; be a basis for the K-vector space Ql(HiJacX/Hi /K) and write w(3,)
for the global exterior form on [],Jacy /H, /K obtained by taking the wedge product of elements
in By, and similarly for w(®"B;). As in the proof of Lemma 5.7, w(®"B,) = fw(B;) and so

Q(fg) [15 Thm. 43] I, €1 Jack g, 0(By))  [1; #1(Jacy /5 )[2%]

QL) T, Cu(TT; Jacx - fo(BD) - TT; #1ll(acy /) (2]

[29, Prop. 5.14]
) H/lg’q)(X/KU) mod @,
L

where C,(A, w) denotes C(A, w) for A/K,,. On the other hand, by parts (2)-(3) of Theorem 4.3, we
have
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Q(f o)

~ = Qfe)Q(fy) = Afafy) = Qfofov) = Qfgve) mod Q*2.
Q(f )

XP<H Jacy /Hl_))
Xp<1:[JacX/Hi>)

= ord,Ce(X,(Jacy)) mod 2

Putting everything together, we see that

ord, [[AeeX/K,) =  ord,det ( fove
v

[29, Lem. 4.28

= ] ord, det <(<I>V<I>)*

as claimed. O

5.3 | The local invariant 1,(X/K)

Assuming that Q'(Jacy) is a self-dual K[G]-representation, we now define a revised version of
the local invariant Ag g.

Definition 5.9. Let K be a local field of characteristic 0, X/K be a curve, G be a finite sub-
group of Aute(X)and ® = 3, H; — ¥ H ; be a pseudo Brauer relation for X. Fix bases 13;, 13, for

Q(IT; Jack /), QN[ Jacy /pr). Assuming that Q'(Jacy) is self-dual as a K[G]-representation,
i j
we define

AP x /K0

Ao(X/K) = _
‘\/ 2P Q1 (Jacy )
K

5

where Cg 15 is the regulator constant evaluated with respect to /3;, 13, as in Definition 3.6.

Remark 5.10. By Theorem 1.15(7), any pseudo Brauer relation © for X is also a pseudo Brauer
relation relative to Q'(Jacy). Thus, Cg P2 (Ql(Jacy)) is well-defined.

Lemma 5.11. Suppose that Q'(Jacy) is a self-dual X[G]-representation.

(1) Ag(X/K) is independent of the bases By, BB,.
) i@(X /K) is independent of how © is expressed as a formal linear combination of conjugacy
classes of subgroups of G. That is, for all subgroups H of G,

Ao(X/K) = Ao 4(r1-mX /K.
(3) Given pseudo Brauer relations ©;, O, for X,

Ao 10,(X/K) = Ao (X /K)o, (X /K.
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(4) For every G-map ® realising ©,

- _ #eokerfo(K) [nX/H))
Ao(X/K) = Hkerf o (K) : HjM(X/H}) : ‘Vdeg(f@)

K

Proof. (1) holds since, using Notation 3.19,

det([Id]gi)

BB Biy?
e Co @ acy))  detlidl)

Ao/
AgrPx /K0

det([1d) P21 (acy)) det([Id]gz)Z.

K

For (2), given a basis Bj; for Q'(Jacy /i), We write B = B, U By for the corresponding basis
for Q'([],Jacy /H; X Jacy /p)- Similarly, we write B}, = B, LI B;. Evaluating Ao+ X /K) with
respect to 3}, B} and Ao(X/K) with respect to B;, B,, gives the desired equality, which holds for
any choice of bases by (1). (3) follows in the same way as (2). (4) follows from part (1), Lemma 5.7
and Proposition 4.4(1). O

Theorem 5.12. With the same setup as in Theorem 5.8, and supposing that Q'(Jacy) is a self-dual
K[G]-representation, we have

ord,,Co(X,(Jacy)) = Z ord,Ae(X/K,) mod 27,
v place of K

where we extend ord,, to @(\/]_)) so that ordp/T@(X/Kv) € %Z.

Proof. Let @ be any G-map realising ©. By Lemma 5.11(4), (X /K,) = g (X /K) - |deg(f¢)|ll)/2
for all v independently of ®. Since [],|deg(fs)|, = 1, we deduce that
~ Thm.5.8
ord, [[leX/K,) = ord, [Jles(X/K,) = ord,Ce(X,(Jack)) mod 2. -
1% 1%

Although 1o(X /K) is independent of the underlying bases of differentials, it is difficult to work
with in practice since it may not be rational.

5.4 | Thelocal invariant Ay(X/K) and proof of Theorem 5.1

Here we detail how Ag is obtained from the local invariant 1o (X /K) introduced in Definition 5.9.
This involves introducing a correction term which we will denote by C(Saf . We show that Ag is
rational and conclude the section by proving Theorem 5.1.

Definition 5.13. Let L be a field of characteristic 0, X /L be a curve, G be a finite subgroup
of Aut;(X) and © be a pseudo Brauer relation for X realised by a G-map ®. Assuming that
Q!(Jacy) is self-dual as an L[G]-representation, we define C(f)f (Q'(Jacy)) to be the square-free
integer equivalent to deg(f,) mod Q*2. This is independent of ® by Proposition 4.4(3).
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When the G-representation Q!(Jacy) is realisable over Q, we view Co(Q!(Jacy)) as an element
of @%/Q*? via Remark 3.8.

Lemma 5.14. Suppose that Q' (Jacy) is realisable over Q. Then,
CH(Q' (Jacy)) = Co(Q' (Jacy)) mod @*2.

Proof. Let ® be any G-map realising ®. Then,

P 4.4(2 v Thm.3.7(1
Q' (Jacy)) = deg(fo) = CEVB@I(Tacy) 2 Co(Q(Tacy)) mod @2, [

Remark 5.15. For the proof of Theorem 1.1, we will only need to consider the cases G = C, X C,,
Dg or D,), for a prime p. In these cases Q!(Jacy) is realisable over Q by [29, Lemma 5.10(2)], and
so the description of Cg (Q'(Jacy)) given above applies.

Definition 5.16. Let K be a local field of characteristic 0, X /K be a curve, G be a finite sub-
group of Aut(X)and © = ), H; — ), iH ; be a pseudo Brauer relation for X. Fix bases 13;, B3,

for Q(T; Jacy /), Ql(Hj Jacy /) and write w(B,), w(/3,) for the exterior forms given by the
i j

wedge product of the elements in B;, B,, respectively. Assuming that Q!(Jacy) is self-dual as a
K[G]-representation, we define

c(Ly , (B ) ' Sl
Ag(X/K) = (IT; aCx/H, w(By)) HIM(X/HL). \J o( (Jacy))

C(ITJacx juy @(5B,)) I X /H) 2P (Q1(Jacy) ]C'

For the definitions of C, p, Cg and Cgl’B2 see Notation 5.5, and Definitions 5.4, 5.13, 3.6,

respectively. In particular, Ag(X/K) = 1(X/K) - |Cé)f (Ql(Jacx))ﬁc/z.

Theorem 5.17. Let X be a curve over a local field K of characteristic 0, and G be a finite subgroup
of Aut,(X). Let @ = ), H; — Zj H;. be a pseudo Brauer relation for X, and suppose that Q'(Jacy)
is a self-dual K[G]-representation. Then, the following hold.

1) Ag(X/K)is a rational number independent of 3,, 13,.
(2) Ag(X/K) is independent of how O is expressed as a formal linear combination of conjugacy
classes of subgroups of G. That is, for any subgroup H of G,

AG)(X/]C) = A@+(H_H)(X//C).

(3) For any G-map @ realising ©,

#coker f () . [Liux/H;)

Ao = et TL e/

[Vaee(ro) - (@ acy)

(4) IfK = C, then Ag(X/C) = CF(Q(Jacy)).
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Proof. Independence of the bases B;, B, follows from Lemma 5.11(1). (2) follows from
Lemma 5.11(2), provided we show that C(S;)f = Cz)f, where ® = © + (H — H). Let ® be any G-map
realising ©, and consider @ := ® @ id, where id is the identity on Z[G/H]. Then, @' realises ©’
and fo = fo X idlj,c, - Therefore, Y, = deg(fq) = deg(fg) = C mod @2, and so they must
be equal. (3) follows from Lemma 5.11(4), and (4) follows from (3) since coker f 4(K) is trivial when
K = C. It remains to show that Ag is rational, to complete the proof of (1). By Proposition 4.4(3),

deg(fo) - Cz)f € Q*? independently of @, and so rationality follows from (3). O

We are now able to prove Theorem 5.1.

Proof of Theorem 5.1. We note that Ag(X/K,) = Ao o(X/K,) - Ideg(fs) - CH(Q'Jacy )",
and so [, Ag(X/K,)=1]],des(X/K,) since deg(fs)- C(Salc € 0*2. By Theorem 5.17(1),
ord, [T, Ae(X/K,) = ¥, ord,Ag(X/K,) and the result then follows by Theorem 5.8. O

Unfortunately, one drawback of the invariant Ay is that it is generally not multiplicative in ©
(unlike g, see Lemma 5.11(3)). This is the case since generally Cgl +0, # C(Saf1 . ng.

Lemma 5.18. Let ©, ©,, ©, be pseudo Brauer relations for X. Then,

bl

Nopro, &/K) ‘ \/ €8 10, (@ Iacx)
K

@ Ao, (X/K)Ng, (X /K) cgl (Q1(Jacy ))c;;)f2 (Q(Jacy))

@) Ae(X/K)A_o(X/K) = |CH(Q Tacy))],..

Proof. (1) follows from Lemma 5.11(3). For (2), let ¥ be the trivial pseudo Brauer relation (i.e. one
of the form ), H; — ), H;). Then, Ay(X/K) = C&,f(Ql(JacX)) = 1. By part (1), we get

Ao(X /KA _o(X/KC) = ‘\/ €3 (@ Jae))Co (@ (Tacy)|

hm.4.
Let @ be any G-map realising ©. Then ®V realises —© and C%f = deg(fp) = deg(fy) Thmd36)
deg(fev) = Cifemod@xz. Since C(f)f and Cife are square-free integers, they must be equal. O

The following lemma provides a simplification of Ag(X/K) when K is non-archimedean.

Lemma 5.19. Let K be a non-archimedean local field of characteristic 0. Let J;; be the Néron model
of Jacy /; over Oy and let B(Jy) be a basis for the Oy-module QY (Jy). Letting N7 = ||, B(Jy,)

Ao /1) = Lictaexm) - KXTHD | Co (@' Uacy))
© - Hjc(JacX/H})-M(X/H;-) Cgfl’Nz(Ql(JaCX)) .
K

Proof. For a Néron basis B(J), the exterior form w(B(Jy)) on Jacy JH coincides with the exterior
form on the Néron model of J;; over Oy.. O
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6 | PARITY CONJECTURE FOR ELLIPTIC CURVES

Here we compare the local terms appearing in Example 1.9 to the corresponding root numbers.
This gives a new proof of the parity conjecture for elliptic curves over number fields, assuming
finiteness of Tate-Shafarevich groups.

Theorem 6.1. LetE : y?> = x3 + ax + b bean elliptic curve over a number field K with a # 0. Define
the elliptic curve E' @ y? = x3 — 27bx? — 27a3x. If WI(E) has finite 3-primary part and 1I(E") has
finite 2- and 3-primary parts, then the parity conjecture holds for E.

Remark 6.2. An elliptic curve E : y? = x3 + b admits a 3-isogeny and so, assuming that the 3-
primary part of I(E) is finite, the parity conjecture is known to hold by [16, Theorem 1.8].

The proof of Theorem 6.1 uses the theory of covers of curves developed in Sections 4 and 5, as
opposed to the proof given in [16, Theorem 1.2] which comes from studying elliptic curves over
extensions of number fields. We adhere to the following notation.

Notation 6.3. Let E : y? = f(x) := x> + ax + b be an elliptic curve over a field K with a # 0. Let
g(»?) = =27y* + 54by? — (4a® + 27b%) € K[y] be the discriminant of f(x) — y?. The discriminant
curveis D : A% = g(y?) and the bihyperelliptic cover of Eis B : {y*> = f(x), A% = g(y*)}.

The coefficient a being non-zero ensures that the genus of D is 1 and that K(B)/K(y) is an
S;-Galois extension (cf. Example 1.9). In particular, S; acts on B by automorphisms. Example 1.9
asserts that B has genus 3 (we call it ‘the bihyperelliptic cover of E’ because it has a bihyperelliptic
model), that Jacy, is the elliptic curve E’ appearing in the statement of Theorem 6.1, the existence
of an isogeny involving E, Jac, and Jacg, and a local formula for the parity of the rank of E X Jacp,.

Theorem 6.4. Let E : y*> = x> + ax + b be an elliptic curve over a number field K with a # 0, let D
be its discriminant curve and let B be its bihyperelliptic cover. Then,

tky E + rksJacpy = Z ord;Ag(B/K,) mod 2,
v place of K

where ©@ = 2C, + C; — 2S5 — {1}.

Proof. This follows from Theorem 1.15(4) and Theorem 5.1, via an identical argument to that given
in Example 1.9. (The assumption on the self-duality of Q'(Jacy) needed to apply Theorem 5.1 is
automatically satisfied here since G = S;.) O

For a prime p, recall from Conjecture 1.13 and Remark 1.14 the statement of the p-parity
conjecture and its relationship to the parity conjecture.

To deduce the 3-parity conjecture for E X Jacp, from Theorem 6.4 it remains to suitably relate
Ag(B/K,) to the product of local root numbers w(E /K, )w(Jacy /K,).

Theorem 6.5. Let E : y*> = x3 + ax + b be an elliptic curve over a local field K of characteristic 0
with a # 0, let D be its discriminant curve and let B be its bihyperelliptic cover. Then,

(—1)°rds2eB/R) = yy(E /K)w(Jacy /K),

Wh.ere @ = 2C2 + C3 - 253 - {1}
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Before proving this relationship, we note some immediate consequences. For the following
result only, we allow for the possibility that a = 0.

Theorem 6.6. Let E : y?> = x> + ax + b be an elliptic curve over a number field K and D its
discriminant curve. The 3-parity conjecture holds for E X Jacy,.

Proof. If a = 0, then Jac,, = 0 and the Theorem holds by Remark 6.2.

If a # 0, then Theorem 6.5 says that (—1)°"4s4e(B/Kv) = w(E /K, )w(Jacy/K,) for each place v
of K. Taking the product over all places and invoking Theorem 6.4 gives the result. O
Proof of Theorem 6.1. As above, E’ = Jacj,. By Theorem 6.6, the 3-parity conjecture holds for E X
E’. Since E’ has a 2-isogeny over K, the 2-parity conjecture holds for E’ by [16, Theorem 1.8].

Together, these statements give the result. O

Remark 6.7. Let ¥ be the Brauer relation for C, X C, identified in Example 1.10. Then,

Ex. 110 16, Thm. 1.8
H (—1)°rd2Aly(D/Ku)w(JaCD/KU) X (_1)rk2(JacD)w(JaCD) [ hm | 1

v place of K
The explicit relationship between (—1)°"%24v(P/K) and w(Jacy, /K,,) appears to be complicated.
‘We now prove Theorem 6.5.

Notation 6.8. Let o, T € S; have orders 3 and 2, respectively, with K(E) = K(B){" and K(D) =
K(B)(9). Let ® denote the injective S;-module homomorphism

Z[S5/{(T)]y1 @ Z[S;/(T)]y, & Z[S;/(o)]y; — Zx, ® Zx, ® Z[S5]x5

given by y; = x; + (L +7)x3, ¥, = X; + X, + (0 + 70)x5 and y; = x; + x, + (1 + 0 + 0%)x5. By
Theorem 4.3, there are isogenies

fo :Jacg > EXExJac, and fgv = fy : EXE xJacp — Jacg.
From the explicit construction of these isogenies given in [29, section 4.3], we see that
fo = (g, p,00,,7p,) and  fg =7y 4+ 0 omy + 7},
where 7, : B — E, np : B — D denote the quotient maps.

Lemma 6.9. We have deg fq, = deg f; = 9 and ker(f) = 7j,(Jacp[3]). The first projection E x
E X Jacp — E induces an isomorphism of Galois modules ker(f ‘\1’)) ~ E[3].

Proof. Let P,Q € E and R € Jacy,. Then (fgofy)(P,Q,R) = (2P — Q,2Q — P, 3R). For the first
entry, this follows using that 7, o7y, = [2], 7p,00"onry. = [-1] and 7y, o7} = 0, and similarly
for the second entry. For the third entry, we additionally use that 7, o7} = [3]. We therefore
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deduce that
ker(fq,of;’)) ={(P,—P,R) : P € E[3], R € Jacp[3]}

and deg fq = deg f; = 9. Further, the identities above show that 7} (Jacp[3]) is contained in
ker(fg). By [2, Lemma 6], since B — D has no non-trivial unramified subcover, 77, : Jacp —
Jacg is injective. Since deg fq = 9, this gives ker(f) = 7;,(Jacp[3]). Finally, the description of
ker(fgof (\I’,) given above shows that the first projection induces a map « : ker(f (\1/)) — E[3] whose
kernel is contained in 0 X 0 X Jacp[3]. Since 7% is injective, 0 X 0 X Jacp[3] and ker(f(\lﬁ) have

D
trivial intersection. Thus, «a is injective. Since deg( f(;) =9, o is an isomorphism. O

Remark 6.10. The proof of Lemma 6.9 shows that 7} is injective. We conclude that ker(fg) ~
Jacp[3] and ker( fr\1/>) ~ E[3] as Galois modules. Since E[3] is its own Cartier dual, we have an
isomorphism of Galois modules Jacp[3] ~ E[3].

Remark 6.11. Since deg f4 = 9, the ‘correction term’ Cg (Q'(Jacp)) of Definition 5.13 is equal to 1.
Proposition 6.12. Theorem 6.5 holds when K = C or R.

Proof. We have w(E/K) = w(Jac,/K) = —1. The case K = C then follows from Theorem 5.17 and
Remark 6.11. Henceforth, we suppose that £ = R.

In the notation of Definition 5.6, we have ord;#cokerfy(K) =0 and #kerfy(K) =3 (by
Lemma 6.9). We deduce that

Thm.5.17(3)&

Lem.s. Lem.6.9
T oA oB/K) E —ordy1) = o0 C

ord;Ag(B/K)

Notation 6.13. In the computations that follow, we will exploit the existence of a degree 8 isogeny
n : Jacg — E x Jac. where C : z2 = —(3x2 + 4a)(x* + ax + b) has genus 2 (cf. [7, section 2.2]).
Briefly, making the change of variables t = A/(3x? + a), one sees that B can be given by the
equations {y? = f(x),t* = —(3x? + 4a)}. We have a degree 2 morphism 7 : B — C given by
(x,,t) = (x,ty). Then = (7g,, 7c,) gives the sought isogeny (to compute its degree, note that
n' =my +njandnon’ = 2).

Remark 6.14. One can also construct the isogeny 7 via Theorem 4.3, using the Brauer relation ¥
of Example 1.10 in the C, X C, extension K(B) = K(x, y,t)/K(x).

Recall that c(A) denotes the Tamagawa number of an abelian variety A defined over a non-
archimedean local field K.

Proposition 6.15. Theorem 6.5 holds when K/Q,, is finite with p # 2,3, and E XJacp/K
is semistable.

Proof. After a change of variable, we may assume that a,b € O. Let 7 be a uniformiser for K,
and write v for the normalised valuation on K (so that v(x) = 1).
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By Remark 5.2, we have ord;Ag(B/K) = ord;(c(Jacg)c(Jacp)) mod 2. Since the isogeny 7 :
Jacy — E X Jac has degree a power of 2, it suffices to show that

(_1)0rd3(c(JacD)c(E)c(Jacc)) — w(E/]C)w(JacD/IC).

Indeed, c(Jacy) = 2"c(E)c(Jac) for some n € Z, by an easy generalisation of [17, Lemma 6.2].

We remind the reader that an elliptic curve £/K of type I,, has c¢(£) = n, w(€) = —1in the case
of split multiplicative reduction, and c(€) = ged(n, 2), w(E) = 1 otherwise (see [42, 48, section
19]). We will compute c(Jac.) using the theory of cluster pictures (see [19, Definitions 1.1 and 1.13,
Tables 1 and 3]).

As above, Jac), is given by the Weierstrass equation Y2 = X3 — 27bX? — 27a3X. Letd := 4a> +
27b%, then Ay = —2* - d, Ay, =2*-3%-a®d and Ac = 2'*- 3% - ad’. Since E is semistable, we
may assume that if v(a) > 0 then v(b) = 0.

Suppose a, d are units. E, Jac,, and Jac have good reduction, so c(Jacp) = ¢(E) = c(Jacy) =1
and w(E/K) = w(Jacp /K) = 1.

Suppose a = 0 (mod 7). Then b, d are units, so E has good reduction and ¢(E) = 1, w(E/K) =
1. The reductions of Jac, and C are Y? = X*(X — 27b) of type I, and z> = —3x*(x’ + b)
with cluster picture for C given by 0. If —3b is a square modulo 7 then € = + and
c(Jacp) = 6v(a), c(Jacy) = 2v(a), w(Jacy /K) = —1. Otherwise, € = — and c(Jacp) = c(Jacy) = 2,
w(Jacp/K) = 1.

Suppose d =0 (mod 7). Then a, b are units. The reductions of E, Jac, and C are y: =
(x - %)(x + %)2, Y2 =X(X - 2—27b)2 both of type I,,4), and z* = —3(x — %)z(x + %)Z(x + %)
with cluster picture for C given by 0. If 6b is a square modulo 7, then € = +
and c(E) = c(Jacp) = v(d), c(Jac) = 8v(d)?, w(E/K) = w(Jac, /K) = —1. Otherwise, ¢ = — and
¢(E) = c(Jacp) = ged(v(d), 2), c(Jacy) = 4, w(E/K) = w(Jacp /K) = 1. O

When K is a finite extension of Q,, the following result expresses ord;Ag(B/K) in terms of
invariants associated to the genus 1 curves E and D, and the genus 2 curve C. This is used to
establish the local constancy of ord;Ag(B/K) given in Lemma 6.17 below. In the statement, we
use [35, Proposition 2.2] to identify regular differentials on a curve X / K with differentials on Jacy.
We write wg’( for the Néron exterior form, viewed on X via this identification.

Lemma 6.16. Let K/Q; be finite. Then,

c(E)c(Jacp)
c(Jacc)

r

ord;Ag(B/K) = ord, < o

J

0 _ ,dx 0 _ pdy 0 _ ,dx dx
whereoc,,@,yeICaresuchthath—ocy,wD—ﬁA andwc—y(z /\xz).

Proof. Let By = {(‘%,0, 0), (0, %,0),(0, 0, d—y)} be a basis for Q'(E x E x Jacp,). Evaluating Ag
with B, = ®¥ B, and using Proposition 4.4(2), Remark 6.11 and Lemma 6.9 gives

0
c(E)*c(Jacp)| w(B;) DJac
ord;Ag(B/K) = ord, “Gac)) 5 T ((DV;) 13|
B wExEXJacD 1 K
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where w(/3;) and w(®" B;) denote the exterior forms on E X E X Jac, and Jacy obtained by taking
the wedge product of the elements in /3; and @V /3, respectively.

As in the proof of Proposition 6.15, the isogeny 7 : Jacy — E X Jac, forces ord;(c(Jacg)) =
ord;(c(E)c(Jac)). Similarly, a straightforward generalisation of [17, Lemma 4.3] gives

0 0 0 %00
Jacg _ Jacg 77*CUExJacc _ n wExJacC
v T 500 ) v - v ’
w(®VB,;) e n wEXJacC w(®VB,) e w(®VB;) e
v _ dx 2dx dy _ ,3.dx dx dx . .
where w(®VB;) = 5 AC n ANy = 12(7 A=A x;). Using that Néron models respect prod-
ucts, we see that |77*cu}%>dmc/cu(CDVBl)|lC = |ay /3|, and |w(B1)/w%XEXJaCD|K, = |1/a*B|. This
completes the proof. O

Lemma 6.17. Let E : y?> = x> + ax + b an elliptic curve with a # 0 over a finite extension K/Q,.
There is an € > 0 such that changing a, b to any a’ # 0, b’ with |a — a’|, |b — b| < € does not
change w(E /K), w(Jacp /K) and ord;Ag(B/K).

Proof. Root numbers are functions of V,E = T, E ® Q,, so their local constancy can be seen
from that of the Tate module [27, p. 569]. The same argument applies to the 3-part of the Tam-
agawa number of an abelian variety A/ when p # 3, since ord;c(A) = ord; #(P A[3°°])Fr°b’c and
®,[3%°] ~ H' (I, T;(A))tors by [25, section 11] (@, denotes the component group of the special
fibre of the Néron model of A over Oy.).

Now consider ord;Ag(B/K) when p = 3. By Lemma 6.16, we need to show that ord;c(E),
ordsc(Jacp), ordsc(Jacy) and ord,;|y/af|, are all locally constant. For the terms concerning E
and Jacp,, this follows from Tate’s algorithm [48]. For the terms concerning Jac., we argue as in
the proof of [21, Lemma 11.2]. Specifically, each term can be encoded in terms of the special fibre of
the minimal regular model of C: for Tamagawa numbers, use [5, Section 1] and for Néron exterior
forms use [4, Section 3]. The result is now a consequence of Liu’s algorithm [31]. O

Proposition 6.18. Theorem 6.5 holds for any finite extension K/Q,,.

Proof. We will deduce the remaining cases from known instances of the 3-parity conjecture. To
do this, we approximate f(x) by a separable cubic f,(x) = x> + ayx + b, € O [x] with a, # 0
where L is a totally real field, subject to certain conditions, and let E, : y*> = f,(x) with D, its
discriminant curve and B, its bihyperelliptic cover.

To begin, we first verify Theorem 6.5 for the single elliptic curve E : y* = x3 — %x + % over
Q,. This can be done by explicit computation; see [23, Lemma 5.2.5] for details.

Now suppose K is a finite extension of Q5. Let L be a totally real number field with a unique
prime q | 3, that further satisfies L, ~ K, and is such that L, = Q, for every prime t | 2 (to see that
such a field exists, if £ = Q3[x]/(h(x)) for some monic h(x) € Qs[x], then approximate h(x) by
some /(x) € Q[x] that splits completely over R and Q,; take L = Q[x]/(A(x))).

With L fixed as above, choose q, (resp. by) in O; to be g-adically close to a (resp. b), and t-
adically close to —% (resp. %) for all v | 2. For primes p ¢ 2, 3, we do this in such a way that p } b,
whenever p | a, (to arrange this, first pick a, which is suitable at primes over 2,3, then pick a
suitable b, given this).
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Combining Lemma 6.17 with Propositions 6.12 and 6.15, we see that Theorem 6.5 holds for E, /L,
whenever v # q. Since the 3-parity conjecture holds for elliptic curves over totally real fields by
[38, Theorem E], we have

1= (_l)rk3 E0+rk3 JaCDO w(EO)w(JacDO)

Thm.6.4
= [T orsre®o/mwE,/L, )wiacy, /L,)
v place of L

= (—1)* oo/ lyy(Ey /L yw(Iacy, /L)

LT 1)ordsAe(B/K) g/ Kyw(Tacy /KC).

Next, suppose that K/Q, is finite. This time, take L be a totally real number field with a unique
prime q | 2, which further satisfies Lq ~ K. Choose ay, b, € O; to be q-adically close to a,b,
respectively. For primes p 1 2, 3, ensure that p } b, whenever p | a,. Arguing as above, and using
the newly proven case at primes over 3, we see that Theorem 6.5 holds for E /K.

Finally, suppose that K/Q, is finite. Repeating the argument for p = 2 but replacing 2 by p and
the condition p 4 2,3 by p } 2, 3, p, we conclude that Theorem 6.5 holds for E/K. O

Proof of Theorem 6.5. Combine Proposition 6.12 with Proposition 6.18. O

7 | PARITY OF RANKS OF JACOBIANS

The aim of this section is to define the ‘arithmetic analogue of root numbers’ w,;,(X/K) for
curves over local fields and prove Theorem 1.1.

In Section 5, we explained how to compute the parity of the multiplicity of certain representa-
tions 7 , inside Selmer groups of Jacobians using local data (see Definition 3.11 and Theorem 5.1).
In this section, we describe how to apply this result to determine the parity of the rank of Jaco-
bians of curves. This generalises the argument for elliptic curves given in Theorem 1.11. We also
comment on how our construction relates to the parity conjecture and prove Theorem 1.7.

7.1 | Regulator constantsin S,

Theorem 7.3 shows that there is a large supply of representations of the form ¢ ,. The proof
relies on understanding these representations in dihedral groups and on an induction theorem
for permutation representations.

For ease of notation, we will write the result in terms of characters of representations. Recall
that a generalised character is a formal Z-linear combination of characters of representations.
By a permutation character, we mean a Z-linear combination of characters of permutation
representations.

Lemma 7.1. Suppose G = C,XC,, Dg (in which case set p=2) or D,, for an odd prime p. For every
character T of G of degree 2, there is a Brauer relation © such that g , = 7 — 1 — det .
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Proof. See [13, Examples 2.53, 2.54]. ]

Theorem 7.2. Let G be a finite group. Every permutation character p of G of degree 0 and trivial
determinant can be written in the form

p=0+4+0+ z kiIndgi(ri =Ty, — dett;),
i

for some generalised degree O character ¢ and degree 2 characters t; of subgroups H; that factor
through quotients of H; isomorphic to C, X Cy, Dg or D,, for some odd prime p;, and k; € Z.

Proof. See [20, Theorem 1.2]. O

Theorem 7.3. Let G = S,,. Let p be the irreducible (n—1)-dimensional character of G that is the nat-
ural permutation character on n points minus the trivial character, and € = det p the sign character.
There are primes p; < n and Brauer relations ©; in G such that

—nl+e+p = 20+2r@i,pi
i

for some character o.

Proof. Note that —n1 + € + p is a permutation character of degree zero and trivial determinant. By
Theorem 7.2, it can be written in the form

—nl+e+p = J+5+Zki1ndg'(‘ri—ﬂci—detfi),
i

for some k; € Z, G; < G and characters 7; of G; of degree 2 that factor through a C,xC,-, Dg- or
D,,, -quotient of G; for an odd prime p; < n; we set p; = 2 in case of a C,XC,- or Dg-quotient.

As all characters of S, are real-valued, o = &, so thato + & = 20.

By Lemma 7.1, there is a G;-Brauer relation ©] = Zj m;;H;; (withm;; € Zand H;; < G;) such
that Tolp, =T~ lg, = det7;. Taking n;; = k;m; ;, by [13, Theorem 2.56(3)] the G-Brauer relation
®i = Z] nj’l'Hj,i haS

TGi’pi = klIndg(TL - HGi - det Ti).
The result follows. O

The rough strategy for determining the parity of the rank of Jacy for a general curve Y is now
as follows. Suppose for this discussion that III is always finite. Write Y as a degree n cover of
P! with Galois group S,,, and let X correspond to its Galois closure,’ for example, E and B in
Example 1.9. Taking the inner product of the formula in Theorem 7.3 with Jacy(K) ® Q and using

In fact, our method allows covers whose Galois group is smaller than S,, by working instead with the S,-closure of the
cover (cf. [29], section 2.5) in place of the Galois closure; the resulting curve X need not be geometrically connected, which
is the primary motivation for imposing Convention 1.1 throughout.
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Theorems 1.15 and 1.5 gives an expression of the form
rkJacy +rkJacy,, = (localdata) mod 2.

This reduces the problem to determining the parity of rk Jacy,, . As A, hasindex2inS,, X/A,
is a hyperelliptic curve, say y*> = h(x) for h of degree m. Applying this construction again to X /A,
viewed as a degree m cover (!) of P! reduces the problem to understanding the parity of the rank
of the Jacobian of another hyperelliptic curve which, this time, is always of the form y? = g(x?)
(like the curve D in Example 1.9). The latter curve has C, X C, in its automorphism group, and
the parity of the rank of its Jacobian can be determined using Example 1.10.

We now formalise this construction.

7.2 | Arithmetic analogue of root numbers

Notation 7.4. Let L be a field. We write [P’)lC for P! (over L) together with a choice of an element x
that generates its function field over L.

Definition 7.5. Throughout this definition, we consider curves over a field L of characteristic O.

(i) ForacoverY — P! of degree n we write Xy for its S,,-closure. This is a Galois cover Xy, — P!
with automorphism group S,, and Xy /S,,_; =~ Y; see [29], Section 2.5. We write Ay = Xy /A,
for the associated ‘discriminant curve’ (cf. [29], Lemma 2.7).

(ii) ForacoverY — IP’}C, the function field of Ay is a quadratic extension of K(x), and so it can be
written as K(x)(y/ag(x)) for a unique monic squarefree g(x) € K[x] and an element a € K*
that is well-defined up to multiplication by K*2. Strictly speaking, throughout this definition
we work with étale algebras. That is by K(x)(1/h(x)), we mean the algebra K(x)[t]/(t*> —
h(x)), which is of degree 2 over K(x) even when h(x) is a perfect square.

Define A; to be the double cover of [P’}C with function field K(x)(4/g(x)); it is the quadratic
twist of the hyperelliptic curve Ay by a. Writing y =4/g(x), A%, . y2 = g(x) comes with a
well-defined cover A}, — [FDJI), which only depends on Y — PL.

Define A%, to be the C,xC,-cover of [P’)lc with function field K(x)(4/g(x), \/E).

(iii) ForacoverY — P! of the form x* = f(2), the curve Ay is endowed with an action of C,XC,
with quotient [P’)lcz. Indeed, the discriminant (in x) of f(z) — x? is visibly a polynomial in x?,
so that Ay is given by y? = ah(x?) for some polynomial h(x). Thus, C,XC, acts on Ay via
the automorphisms x —» +x and y — +y.

Notation 7.6. For every n > 1, fix a list of primes p; = pE”) and of Brauer relations ©; = @g") inS,

that satisfy the conclusion of Theorem 7.3.

Definition 7.7. Let K be a local field of characteristic O.

(i) ForacoverY — P! of degree n over K, define

a(Y > n:bl/]c) = Z ordp@)/\egn)(Xy/lC)'
i ! !
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(ii) ForacoverY — P! over K, define
BY — P./K) = ord,Ag(A3 /K),

where © = 2C,XC, — C — C’2J — €5 + {1} is a C, XC,-Brauer relation.
(iii) Fora cover Y — P} of the form x? = f(z) over K, define

y(Y = PL/K) = ord,Ag(Ay /K),

where © = 2C,XC, — C — Cé’ — €] +{1}is a C,XC,-Brauer relation of Ay — P)lﬂ'
(iv) ForacoverY — [P’)lc over K we define the ‘arithmetic analogue of the local root number’ (with
respect to the cover Y — P1) w,;,(Y/K) € {1} as

Warin (Y /) = (~1)X =P/ =P/ )F By =Py By =P/,

Remark 7.8. The constructions of curves and automorphism groups given in Definition 7.5 have
been set up so as to commute with extensions of scalars. Thus, for example, if Y — P! is defined
over a number field K and v is a place of K, then ‘X /K’ in Definition 7.7 can be obtained by
constructing Xy over K from Y /K. This is essential in order to apply global results on Selmer
groups (Theorem 5.1).

Remark 7.9. The invariant w, ;;, (Y /K) depends on the map Y — P2, although we have suppressed
it in the notation. It also depends on the choice of Brauer relations in symmetric groups used in
Theorem 7.3. The latter is a purely group theoretic choice. It is applied to S, and S,, where n and
m are the degrees of Y — P and A} — [P’}}, respectively.

7.3 | Parity of ranks of Jacobians

Theorem 7.10. Let Y — P! be a cover of degree n over a number field K. Let Xy, — P! be its S,,
closure and Ay =Xy [/ A,, its associated discriminant curve.
(i) If the p-primary part of W(Jacy ) is finite for all primes p < n, then

rkJacy +rk Jac, = Z a(Y - P'/K,) mod 2.
v place of K

(ii) If Conjecture 1.6 holds, then

w(JaCY)LU(JaCAy) = H (_1)0!(Y—>|]3’1 /Kl))
v place of K

Proof. Write p for the irreducible (n—1)-dimensional character of S, that is the natural
permutation character on n points minus the trivial character.

(i) We have
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(Jacxy(K),ﬂ) =rk Jacp =0,
(Jack, (K), p) =1k Jacy ,q ~ =r1kJacy,
(Jacy (K),detp) = rkJacy, 4 =rklJac,, .
By Theorem 5.1 and the assumed finiteness of the pi(")—primary part of 111,

(Jacy (K), fegn>,p5n)> = ordpgn)Aegn)(Y/KU) mod 2.
v

Taking the sum over i, we get

rk Jac, + rk Jacy = (Jacy, (K),—nl+ p + detp) = Z a(Y - P'/K,) mod 2.
v

(By Remark 5.15, the assumption on the self-duality of Q' (J acxy) needed to apply Theorem 5.1
is automatically satisfied here since all representations of S,, are self-dual.)
(ii) The proof is analogous to (i). Using Proposition 2.21, we see that

wXPD=1, wE)=w®¥) and  wWEFP) = wAy).
Te(n) (n) Ordpgn)Aegn)(Y/KU)

By Conjecture 1.6, w(X,, i ) =T[1,(-D) . Taking the product over i gives
the result. O

Lemma 7.11. Let Y — IP}C be a cover over a number field K.

(i) IfH_I(JacAy) and H_I(JacAly) have finite 2-primary part, then

rkJacy  +rkJac, = 2 B(Y — P./K,) mod 2.
Y v place of K

(ii) If Conjecture 1.6 holds, then

_ _1)BO=PL/K,)
w(lacy Jw@acy)= [ D :
v place of K

Proof.

(i) This is Theorem 5.1 applied to the C, xC,-Brauer relation of A}, — PL with p = 2.
(ii) This is Proposition 2.21 combined with Conjecture 1.6 for the same Brauer relation. O

Lemma 7.12. Let Y — P)lc be a cover of the form x* = f(z) over a number field K.

(1) IflllJacy, ) has finite 2-primary part, then

rkJac,, = Z y(Y - PL/K,) mod 2.
v place of K
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(ii) If Conjecture 1.6 holds, then

wlacy )= [] (=¥ mE),
v place of K

Proof.

(i) Thisis Theorem 5.1 applied to the C,XC,-Brauer relation of Ay — I]J’)lc2 with p = 2.
(ii) This is Proposition 2.21 combined with Conjecture 1.6 for the same Brauer relation. O

Theorem 7.13. Let Y — [P’}C be a degree n cover defined over a number field K, and let Xy, be its S, -
closure. Let A%, - IP}) be the associated cover y* = g(x), let m be its degree and X 1 its S,,-closure.
Y

(i) Ifll(Jacy )and IH(JacXAl ) have finite p-primary part for p < n and p < m, respectively, then
Y

(_1)rk Tacy = H warith(Y/Kv)'

v place of K

(ii) If Conjecture 1.6 holds, then

w(Jacy) = H Waritn (Y /K.
v place of K
Proof. Note that if the p-primary part of Ill(Jacy, ) (respectively, of LLI(J acy , )) is finite, then so is
Y
that of IlI(Jac Ay) (respectively, III(J acy )) by Theorem 1.15(6).
Y

Now combine Theorem 7.10 for Y — P} and for Aj, — P} together with Lemma 7.11for Y — P}
and with Lemma 7.12 for A}, — [P’;. O

Corollary 7.14. If the Shafarevich-Tate conjecture and Conjecture 1.6 hold for all Jacobians of curves
over a fixed number field K, then so does parity conjecture, that is,

(_1)rk Jacy — W(JaCY)

for every curve Y defined over K.

8 | ON THE PARITY CONJECTURE FOR JACOBIANS

We end with a discussion on what one would need in order to prove the parity conjecture for
general Jacobians, assuming finiteness of Tate-Shafarevich groups. Recall from Corollary 7.14 that
the supply of Brauer relations is sufficiently large as to control the parity of ranks of all Jacobians
using the local invariants A. What is required is the connection to local root numbers given by
Conjecture 1.6. Recall that this asserts that

[T wocor /K )1t/ = g
v place of K

for every curve X with a finite group G acting by automorphisms, every prime p and every Brauer
relation © for X.
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As the following theorem illustrates, the local terms w(X*®» /K,) and (—1)°rdPA@(X /Ko) often
match. Part (1) of the theorem is a special case of the root number formula given in Proposi-
tion 2.22. We will not prove part (2) here; it is proved in [37, section 6.2]. We caution that slightly
more restrictions are placed on the choice of 7 ,, in that work, though the choices in Example 3.14
remain valid. See [37, section 6] for details.

Theorem 8.1. Let X be a curve over a local field K of characteristic 0 and G a finite group of
KC-automorphisms of X, such that Q'(Jacy) is self-dual as a G-representation. For an orthogonal
representation t of G:

(1a) wXT/K) = (=1)@Q'Tacx)) if K is archimedean;
rob
(1b) w(X7/K) = (—1)TFracx ®O)0K) if K is non-archimedean, X / K is semistable.

For every odd prime p and pseudo Brauer relation © for X:

(2a) ord,Ag(X/K) = (7g p, Q' (Jacy))mod 2 if K = C;

(2b) ord,Ag(X/K) = (Tg p, (Xjae, ® ©)™cymod 2 if X /K is semistable and either K is non-
archimedean of residue characteristic different from p or if K is an extension of Q, of even
residue degree.

Since 7g ,, is always orthogonal, under the assumptions of the theorem,
w XT@]p/K) — (_1)OrdpA@(X//C).

In particular, Conjecture 1.6 holds for curves over number fields that satisfy these local constraints
at all places. In view of Theorem 5.1, we deduce the following case of the p-parity conjecture for
X'or (see Conjecture 2.23):

Corollary 8.2. Let X be a curve over a number field K, p an odd prime and G a finite group of K-
automorphisms of X such that Q'(Jacy) is self-dual as a G-representation. Suppose moreover that X
is semistable, K is totally complex and that [k, : F,]iseven forallv | p, where k, denotes the residue
field of K,,. Then for all pseudo Brauer relations © for X,

(_1)<T®,pﬂxp(JacX)> = w(X er).

A more general version is proved in [37], which removes some of the assumptions at # = p and
allows real places. The local terms no longer agree in such generality. However, the discrepancy
can be expressed in terms of a certain Artin symbol, which, when ones takes the product over
all places of a number field, vanishes by the product formula. The case p=2 is more difficult,
although not without progress. In particular, the parity conjecture for hyperelliptic curves with
suitably good local behaviour should be within reach (see [23, section 1.3.3]).
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