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Abstract—Recently, cross-domain few-shot facial expression
recognition (CF-FER), which identifies novel compound expres-
sions with a few images in the target domain by using the
model trained only on basic expressions in the source domain,
has attracted increasing attention. Generally, existing CF-FER
methods leverage the multi-dataset to increase the diversity of
the source domain and alleviate the discrepancy between the
source and target domains. However, these methods learn feature
embeddings in the Euclidean space without considering imbal-
anced expression categories and imbalanced sample difficulty
in the multi-dataset. Such a way makes the model difficult to
capture hierarchical relationships of facial expressions, resulting
in inferior transferable representations. To address these issues,
we propose a hyperbolic self-paced multi-expert network (HSM-
Net), which contains multiple mixture-of-experts (MoE) layers
located in the hyperbolic space, for CF-FER. Specifically, HSM-
Net collaboratively trains multiple experts in a self-distillation
manner, where each expert focuses on learning a subset of
expression categories from the multi-dataset. Based on this, we
introduce a hyperbolic self-paced learning (HSL) strategy that
exploits sample difficulty to adaptively train the model from easy-
to-hard samples, greatly reducing the influence of imbalanced
expression categories and imbalanced sample difficulty. Our
HSM-Net can effectively model rich hierarchical relationships
of facial expressions and obtain a highly transferable feature
space. Extensive experiments on both in-the-lab and in-the-wild
compound expression datasets demonstrate the superiority of our
proposed method over several state-of-the-art methods. Code will
be released at https://github.com/cxtjl/HSM-Net.

Index Terms—Compound facial expression recognition, Cross-
domain few-shot learning, Self-paced learning, Mixture-of-
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Fig. 1: Illustration of (a) hierarchical relationships of facial
expressions and (b) feature distributions in the Euclidean and
hyperbolic spaces, where ‘HaSu’ and ‘HaDi’ represent the
happily-surprised and happily-disgusted expressions, respec-
tively. The hierarchy arises from compound expressions (com-
binations of two basic expressions), basic expressions, and
emotional valence (positive, neutral, and negative expressions).

experts, Hierarchical representation learning.

I. INTRODUCTION

FACIAL expressions, as one of the most natural and uni-
versal ways for humans to express their emotions, play an

important role in interpersonal communication [1], [2]. Over
the past few decades, facial expression recognition (FER) has
attracted considerable attention in computer vision due to its
widespread applications, such as human-computer interaction,
psychological assessment, and interactive entertainment [3].

With the rapid development of deep learning, a variety
of FER methods [2], [3] have been developed and achieved
excellent classification performance in both in-the-lab and in-
the-wild environments. Most of these methods focus on classi-
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fying basic expression categories (including angry, disgusted,
fearful, happy, sad, surprised, contempt, and neutral) [4].

Unfortunately, basic expressions fail to fully capture human
emotions in real-life scenarios. To cover more human emo-
tions, Du et al. [5] define compound expression categories
(e.g., happily-surprised), where each compound expression is
the combination of two basic expressions. Generally, com-
pound expressions can describe human emotions more com-
prehensively. Unlike basic expressions, compound expressions
show more subtle variations, and they are more challenging
to be identified. Thus, most existing compound FER meth-
ods [6], [7] rely heavily on large-scale labeled compound
expression data for training. However, annotating such data is
time-consuming and labor-intensive due to subtle differences
between compound expressions.

Recently, few-shot learning (FSL) has emerged as a promis-
ing learning scheme to avoid expensive annotations. Inspired
by FSL, some methods [8], [9] study the cross-domain few-
shot FER (CF-FER) task, which largely reduces the require-
ment of annotating large-scale compound expression data in
conventional compound FER methods. They typically identify
novel compound expressions (which involve only a limited
number of reference images in the target domain) by using
the model trained on multiple basic expression datasets in the
source domain. By utilizing easily accessible basic expression
datasets, such a task greatly alleviates the heavy burden of
expensive annotation costs and expands potential applications
of compound FER. In this paper, we study the CF-FER task
following the same settings as the above methods [8], [9].

Generally, the hierarchical relationships between images
are very common in many computer vision tasks [10], [11].
For CF-FER, there also exist rich hierarchical relationships
of facial expressions. As illustrated in Fig. 1(a), a com-
pound expression (e.g., happily-disgusted) can be described
as a combination of two basic expressions (e.g., happy and
disgusted). The happy and disgusted expressions belong to
different emotional valences (i.e., the positive and negative
expressions, respectively). In fact, humans can easily learn
the hierarchical structure of facial expressions and apply it to
identify new compound expressions with only a few images.
Therefore, exploiting hierarchical relationships of expressions
for model learning not only facilitates the full utilization
of limited data in FSL, but also encourages the model to
understand facial expressions comprehensively. This greatly
improves the model’s capability to transfer knowledge from
basic expressions to novel compound expressions.

Existing CF-FER methods [8], [9] leverage the multi-dataset
to increase the diversity of the source domain and learn a
transferable space. Unfortunately, these methods often learn
feature embeddings in the Euclidean space without consider-
ing imbalanced expression categories and imbalanced sample
difficulty in the multi-dataset. As a result, they are prone
to focus on learning the expression categories involving a
larger number of samples and ignore the distinction between
easy and hard samples, failing to sufficiently capture the
inherent hierarchical relationships of facial expressions. This
significantly reduces the model’s transferability.

To address these issues, we propose a hyperbolic self-

paced multi-expert network (HSM-Net) for CF-FER. HSM-
Net consists of multiple mixture-of-experts (MoE) convo-
lutional layers, where each expert focuses on learning a
relatively balanced subset of expression categories from the
multi-dataset. Such a way effectively reduces the issue of
imbalanced expression categories. Based on it, we introduce
a hyperbolic self-paced learning (HSL) strategy. The strategy
projects features from the Euclidean space to the hyperbolic
space and leverages the inherent geometric properties of hyper-
bolic space to capture the hierarchical structure of expressions.
According to the Riemannian gradient update characteristics
in the hyperbolic space, we can naturally perform self-paced
learning to train the model from easy-to-hard samples, thereby
alleviating the issue of imbalanced sample difficulty.

Under the above designs, we can learn effective feature
embeddings in the hyperbolic space by reducing the influence
of both imbalanced expression categories and imbalanced
sample difficulty. As a result, the hierarchical relationships
of facial expressions are fully exploited to improve the gen-
eralization performance of our model on the target domain.
Fig. 1(b) illustrates the feature distributions in the Euclidean
and hyperbolic spaces. The Euclidean space treats feature
embeddings of different expression categories equally. In con-
trast, the hyperbolic space appropriately models hierarchical
relationships of expressions, revealing the intrinsic connections
between basic and compound expressions.

Specifically, each MoE layer consists of a parameter-shared
router and a vanilla convolutional layer from the backbone
CNN model. The router is composed of a preference score
estimation network (PSE-Net) to estimate preference scores
for all experts, and an expert selection network (ES-Net) to
select channel features from the backbone network based on
these preference scores. In this way, each expert is adap-
tively learned to focus on specific expression categories in
the multi-dataset. To enable the router to select the optimal
expert for each facial image in the training set, we propose
a preference loss. By optimizing the preference loss across
multiple MoE layers, these experts are collaboratively trained
to capture feature representations from relatively balanced ex-
pression category subsets, effectively mitigating the influence
of imbalanced expression categories. The HSL strategy trains
the model in a self-paced manner, addressing the influence
of imbalanced sample difficulty. Based on the above, our
method jointly alleviates the issues of imbalanced expression
categories and imbalanced sample difficulty by incorporating
the geometric properties and optimization mechanisms of
hyperbolic space into the multi-expert network. Such a manner
can facilitate the modeling of hierarchical relationships among
expressions and enable the learning of a highly transferable
feature space.

In summary, our main contributions are given as follows:

• We propose a novel HSM-Net for FER under the cross-
domain few-shot settings. Our HSM-Net can substantially
reduce the influence of imbalanced expression categories
and imbalanced sample difficulty in the multi-dataset,
thereby effectively capturing the hierarchical relationships
of facial expressions.
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• We develop an HSL strategy to train the model adaptively
from easy-to-hard samples in the hyperbolic space. Our
HSL strategy greatly enhances the model’s transferability
from seen basic facial expressions to unseen compound
facial expressions.

• We conduct extensive experiments on both in-the-lab and
in-the-wild compound expression datasets to show the
effectiveness of our HSM-Net over several state-of-the-art
FSL methods for the CF-FER task.

The remainder of this paper is organized as follows. First,
Section II briefly reviews the related work. Then, Section III
presents the details of our proposed method. Next, Section IV
provides extensive experimental results on compound expres-
sion datasets. Finally, Section V gives the conclusion.

II. RELATED WORK

In this section, we briefly review compound FER, few-shot
FER, imbalanced learning, self-paced learning, and hyperbolic
deep learning, which are closely related to our method.

A. Compound FER
Following Ekman and Friesen’s work [4], [12], the con-

ventional FER task classifies an input facial image into one of
the basic expression categories. We define such a task as the
basic FER task. A variety of FER methods [2], [3] concentrate
on the basic FER task. Regrettably, basic expressions cannot
completely characterize the diversity of human emotions in
nature since human emotions involve compound expressions.
Du et al. [5] reveal that facial images contain compound
expressions, which can provide a more subtle distinction
between different human emotions. Compound expressions
are highly useful for accurately capturing and understanding
human emotional states in practical applications.

Compared with the basic FER task, the compound FER
task aims to identify compound expressions containing subtle
variations. Compound FER is still in its infancy, leaving room
for improvement. Li et al. [6] collect a real-world affective
facial database annotated with compound emotions (RAF-
CE), where both compound expression labels and AU labels
are provided. Moreover, they propose a meta-based multi-
task learning (MML) method for the compound FER task.
Jiang et al. [7] propose an expression soft label mining
(ESLM) method to address the negative influence of hard
expression labels. Dong et al. [13] design a bi-center loss,
which encourages deep neural networks to learn compound
emotion features.

The above methods usually rely on abundant annotated com-
pound expression data for training. Unfortunately, annotating
high-quality compound expression data is time-consuming and
often requires guidance from experts in psychology. Unlike
these methods, we study compound FER under the cross-
domain FSL setting, which largely alleviates the heavy burden
of acquiring large-scale compound expression training data.

B. Few-Shot FER
Few-shot FER aims to identify new expressions with an

extremely limited number of samples. Ciubotaru et al. [14]

first study the mainstream FSL methods on basic expression
datasets, exploring the feasibility of few-shot FER. Shome et
al. [15] propose a few-shot federated learning framework for
FER under decentralized training. The above methods apply
FSL to the classification of basic expressions. Later, Zou et
al. [8] are the first to study the CF-FER task and propose
a dual-branch emotion guided similarity network (EGS-Net)
to perform knowledge transfer from the source domain to
the target domain. Subsequently, Zou et al. [9] develop a
cascaded decomposition network (CDNet) that cascades sev-
eral learn-to-decompose modules with shared parameters to
obtain a transferable feature space. Chen et al. [16] introduce
a self-supervised visual Transformer (SSF-ViT) based on self-
supervised learning (SSL) and FSL, enabling the training of
models with fewer labeled samples.

Following the same settings as [8], [9], we study the CF-
FER task. However, different from existing methods, we focus
on addressing the challenge of capturing the inherent hierar-
chical relationships of facial expressions caused by imbalanced
expression categories and imbalanced sample difficulty in the
Euclidean space, aiming to improve the generalization of the
model on the unseen target domain.

C. Imbalanced Learning and Self-Paced Learning
Facial expression datasets often involve significantly imbal-

anced expression categories. To address this, existing meth-
ods can be roughly divided into data pre-processing, re-
weighting, and model ensemble methods. This paper mainly
studies model ensemble methods. To tackle class imbalance
and expression similarity in both source and target domains,
Yang et al. [17] propose a residual attentive sharing network
(RASN), which introduces a shared affinity feature module
to compensate for inadequate feature learning of minority
classes. Sreenivas et al. [18] propose a method to tackle class
imbalance and expression similarity in both source and target
domains. Unlike traditional methods that combine multiple
models to improve the performance, we introduce a mixture-
of-experts (MoE) layer, which enhances robustness and gen-
eralization by dynamically activating a subset of specialized
networks for each input.

The idea of self-paced learning is to simulate the human
learning process, which generally starts by learning simpler
samples of a learning task and then gradually introduces
more complex examples into training, effectively addressing
imbalanced sample difficulty. Zhang et al. [19] propose a
progressive learning strategy to extend the conventional one-
stage meta learning into a multi-stage training process. Re-
cently, self-paced learning is also introduced to FER. Shao et
al. [20] develop a self-paced label distribution learning strat-
egy, which initially focuses on learning easy samples with
reliable label distributions and gradually progresses to more
complex samples. This reduces the negative influence caused
by noisy samples and unreliable label distributions. In contrast
to traditional self-paced learning methods that are based on
the Euclidean space, we study hyperbolic self-paced learning,
which employs hyperbolic uncertainty to determine the algo-
rithmic learning pace. Such a way is beneficial for accurately
learning hierarchical relationships of facial expressions.
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D. Hyperbolic Deep Learning

Although the Euclidean space has been the standard way
to learn visual representations, its inherent properties are not
suitable for all types of data. For hierarchical structures,
hyperbolic geometry can provide a direct fit [11]. Recent
studies have shown that the hyperbolic space has advantages in
hierarchical representation learning. Accordingly, hyperbolic
deep learning has made rapid progress across various vision
tasks. Dai et al. [21] propose a hyperbolic-to-hyperbolic graph
convolutional network (H2H-GCN), which operates directly
on hyperbolic manifolds, avoiding the distortion caused by
tangent space approximations and preserving the global hy-
perbolic structure. Li et al. [22] propose a simple yet effective
method to capture the hierarchical relationships between im-
ages for the few-shot image generation task by using data from
seen categories in the hyperbolic space.

The task of FSL is concerned with the generalization
performance of the model to adapt to unseen data. For the
few-shot FER task, existing methods [8], [9], [15] are often
based on metric learning, which computes the Euclidean
distance between image representations extracted by deep
neural networks as a measure of similarity. On the contrary,
we study few-shot FER in the hyperbolic space, which models
the inherent hierarchical relationships of facial expressions in
the source domain, thereby facilitating improving the model’s
transferability in the unseen target domain based on the close
correlations between basic and compound expressions.

III. METHOD

In this section, we introduce our HSM-Net in detail. First,
we give the problem formulation in Section III-A. Then, we
provide an overview of HSM-Net in Section III-B. Next, we
present the key components of HSM-Net in Sections III-C and
III-D. Finally, we give the overall loss in Section III-E.

A. Problem Definition

In this paper, we consider the compound FER task in
the cross-domain FSL setting, where only a few novel class
samples are required to identify a compound expression
category in the target domain. Given a labeled training set
(the source domain) Dtrain = {Xtrain,Ytrain}, consisting
of Cbase base classes. Here, Xtrain = {xi}Ti=1 denotes the
basic facial expression images, Ytrain = {yt

i
}T
i=1 is the set of

ground-truth labels, and T represents the number of training
samples. For the test set (the target domain), we denote it as
Dtest = {Xtest,Ytest}, consisting of Cnovel novel classes.

In this paper, we aim to learn a model on the source
domain so that it can be well generalized to the target domain.
Following previous settings [8], [9], the base classes refer to
the basic expression categories, while the novel classes refer
to the compound expression categories. To enrich the diversity
of the training set and alleviate the discrepancy between the
source and target domains, multiple easily accessible basic
expression datasets are used as the source domain. Note that
the base classes and novel classes are disjoint and the number
of base classes is limited in the source domain.

The few-shot task classifies the query images with the
reference of the support images. After training the model on
Dtrain, we design multiple few-shot learning tasks on Dtest

to evaluate the performance of the model learned in the target
domain. Each few-shot task (an N -way K-shot task) samples
N classes from Cnovel classes, and each class contains K
labeled support samples and Q unlabeled query samples.
Similar to representative FSL methods [36], we assign the
query images to their nearest classes in the learned expression
feature space.

B. Overview
In this paper, we develop a hyperbolic self-paced multi-

expert network (HSM-Net), which contains multiple mixture-
of-experts (MoE) convolutional layers located in the hyper-
bolic space, for CF-FER. HSM-Net collaboratively trains
multiple experts in a self-distillation manner, where each
expert focuses on classifying only a subset of expression
categories. Such a way effectively addresses the influence
of imbalanced expression categories. Based on it, we further
introduce a hyperbolic self-paced learning (HSL) strategy to
transform the feature space from the Euclidean space to the
hyperbolic space and formulate the training process as self-
paced learning. Thus, we can adaptively train the model from
easy-to-hard samples, mitigating the influence of imbalanced
sample difficulty.

Based on the above designs, our method can capture hier-
archical relationships of facial expressions in the hyperbolic
space by reducing the influence of imbalanced expression
categories and imbalanced sample difficulty. As a result,
the model’s transferability from basic facial expressions to
compound expressions is greatly enhanced and thus a highly
transferable feature space is learned. The overview of our
method is shown in Fig. 2.

C. Hyperbolic Self-Paced Multi-Expert Network (HSM-Net)
HSM-Net incorporates multiple MoE layers, where each

layer includes a parameter-shared router and a vanilla con-
volutional module derived from the backbone CNN (we use
ResNet [23] in this paper). The router includes a preference
score estimation network (PSE-Net) to estimate preference
scores for experts and an expert selection network (ES-Net) to
select a subset of channel features from the backbone network
based on preference scores. By enforcing each expert to focus
on a relatively balanced subset of expression categories, the
model can effectively learn appropriate decision boundaries to
reduce the influence of imbalanced expression categories in
the multi-dataset.

For each MoE layer, we define E experts, each of which
is responsible for learning representations from a subset of
expression categories. Suppose that the original backbone
network has C1 channels in the first convolutional layer. By
scaling the model (i.e., varying the number of kernels) with
the ratio r (0 < r → 1), we update the first convolutional
layer containing rEC1 channels, where each expert selects
rC1 channels in the first convolutional layer. Similarly, the i-th
convolutional layer in the updated backbone network contains

Page 9 of 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

6XSSRUW 6HW

S

H[SHUW 
�

URXWHU

4XHU\ 6HW

36(�1HW

…

&
RQY

(6�1HW

+6/ 
6WUaWHJ\

 
 

 
 

 

 
  

  

+60�1HW

URXWHU

/a\HU �

«

/a\HU M

T

  

H[SHUW 
E

H[SHUW 
z

PaVN

…H[SHUW 
�

H[SHUW 
E

H[SHUW 
z

36(�1HW (6�1HW
PaVN

URXWHU

URXWHU

URXWHU

(XFOLGHaQ VSaFH

f�,�

f�,�

f�,�

f�,�

Fig. 2: Overview of our proposed HSM-Net. HSM-Net consists of multiplemixture-of-experts (MoE) convolutional layers,
where each layer includes a parameter-shared router and a vanilla convolutional module derived from the backbone CNN.
The router contains a preference score estimation network (PSE-Net) and an expert selection network (ES-Net) to estimate
preference scores for experts and select a subset of channel features from the backbone network, respectively. In this figure,
‘Conv’ denotes the convolutional layer, T represents the teacher model and S represents the student model.

rECi channels, where Ci is the channel number in the i-th
convolutional layer of the original backbone network.

Specifically, given an input image xi ↑ R3→H→W in the
training set, we first pass it through a preprocessing block (i.e.,
containing a 2↓2 convolutional layer, followed by a ReLU
activation function and an average pooling operation) of the
backbone network to extract the basic feature f0

i
. Then, f0

i
is

fed into PSE-Net in the router which calculates the preference
scores s1

i
↑ RE for E experts in the first convolutional layer of

the backbone network through multiple parallel convolutional
blocks (i.e., each block consists of a 2↓2 convolutional layer,
an average pooling layer, and a fully connected layer). Then,
the expert z with the highest preference score is selected.

Next, ES-Net generates a mask m1
i
↑ {0, 1}rEC1 , which

is used to select the subset of channels corresponding to the
selected expert z. The element in the mask is set to 1 when a
channel is selected and 0 otherwise. Finally, we apply m1

i
to

extract the channel feature (denoted as f1
i
) for the expert z. f1

i
is

served as the input feature for the second convolutional layer.
Analogously, for each subsequent convolutional layer of the
backbone network, the feature from the previous convolutional
layer is fed into the router to select the optimal expert. These
selected channels then form an end-to-end pathway, building
an expert model for xi. The final expression feature extracted
by this expert model is denoted as fe

i
.

During the channel selection process, it is critical that
the router can effectively give appropriate preference scores
so that the experts can correctly focus on the subsets of
expression categories. To achieve this, we leverage a cross-
entropy loss based on the preference scores to constrain the
experts selected by the router. Technically, inspired by hierar-
chical relationships of expressions, we first divide expression

categories into three subsets (positive, neutral, and negative
expression subsets) according to emotional valence. To balance
the number of samples in each subset, we further split the
expression subset into several smaller subsets to ensure the
balanced number of samples in each subset. Each subset is
learned by an expert. Hence, we define the loss as

Lce =
L∑

l=1

CE(sl
i
, ye), (1)

where CE(·, ·) is the cross-entropy loss; L denotes the total
number of convolutional layers; sl

i
represents the preference

scores of the i-th input image calculated in the l-th convolu-
tional layer; ye ↑ [1, E] denotes the index of the expert w.r.t.
the input image xi.

To enhance the generalization performance of the expert
model on compound expressions, we apply the flooding
scheme [24] to the above loss, which intentionally prevents
further reduction of the training loss when it reaches a rea-
sonably small value. The preference loss is defined as

Lp = |Lce ↔ b|+ b, (2)

where b > 0 is the flood level used to control the range of loss
fluctuation. With the flooding scheme, the model will continue
to “random walk” with the same non-zero training loss, and
drift into an area with a flat loss landscape. This allows the
router to have some margins of errors when selecting experts
(the router can choose the expert that does not correspond to
the current sample category based on preference scores). Thus,
each expert can learn not only fixed-category expressions but
also information from other expression categories. This facil-
itates better generalization from basic expressions to unseen
compound expressions.
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Fig. 3: Illustration of the Hyperbolic Self-Paced Learning
(HSL) strategy. This strategy captures the hierarchical rela-
tionships of expression features in the hyperbolic space while
training the model in a self-paced manner.

D. Hyperbolic Self-Paced Learning (HSL) Strategy
To stabilize the learning process, we adopt a self-distillation

network architecture [25] to distill knowledge from the embed-
ding model (denoted as the teacher model) into a new model
with an identical architecture (denoted as the student model).
Given an input image xi, we obtain expression features fe

i,t
and

fe
i,s

from the teacher and student models, respectively. How-
ever, the feature embeddings learned by the teacher or student
models are still in the Euclidean space and cannot capture
hierarchical relationships of facial expressions. Moreover, the
training process is further influenced by imbalanced sample
difficulty, resulting in inferior transferability for the CF-FER
task. Therefore, we introduce an HSL strategy to capture the
hierarchical relationships of facial expression features in the
hyperbolic space, where we can leverage sample difficulty to
facilitate training from easy-to-hard samples, thus improving
the transferability from basic expressions to compound expres-
sions. The illustration of the HSL strategy is shown in Fig. 3.

Inspired by [26], we use the exponential map function
Expc

o
(·) to project the features fe

i,t
and fe

i,s
from the Euclidean

space to the hyperbolic embedding space (i.e., the Poincaré
ball centered at the origin o), denoted as hi,t and hi,s

hi,t = Expc
o
(fe

i,t
) = tanh(

↗
c↘fe

i,t
↘)

fe
i,t↗

c↘fe
i,t
↘
, (3)

hi,s = Expc
o
(fe

i,s
) = tanh(

↗
c↘fe

i,s
↘)

fe
i,s↗

c↘fe
i,s
↘
, (4)

where c represents the curvature of the hyperbolic space; ↘ ·
↘ the standard Euclidean L2-norm; tanh(·) is the hyperbolic
tangent function.

In the hyperbolic space, we aim to minimize the Poincaré
distance between hi,t and hi,s, that is,

Lhyp = cosh↑1

(
1 + 2

↘hi,s ↔ hi,t↘2

(1↔ ↘hi,s↘2) (1↔ ↘hi,t↘2)

)
, (5)

where ↘hi,s↘ and ↘hi,t↘ respectively denote the radii of hi,s

and hi,t in the Poincaré ball and cosh↑1(·) denotes the inverse
hyperbolic cosine function.

In the Poincaré ball, the local volume exponentially expands
from the center to the boundary. This causes the learned

feature embeddings to preferentially project hard samples near
the center of the Poincaré ball, while moving easy samples
towards the boundary of the Poincaré ball [10], [27]. In
addition, the characteristic of the hyperbolic space allows us to
use the center of the Poincaré ball as a reference point, where
the hyperbolic uncertainty is defined as the distance from the
embedding to the center. Therefore, the distance between an
embedding and the center provides a natural estimation of
sample difficulty. Based on the geometric characteristics of
hyperbolic space, the input images with lower sample difficulty
(i.e., easy samples) are mapped closer to the boundary, while
images with higher sample difficulty (i.e., hard samples) are
mapped closer to the center. This property aligns well with the
nature of expression feature learning (where ambiguous, low-
quality, or domain-shifted expression samples typically exhibit
higher uncertainty), whereas typical and high-quality expres-
sion samples are more confidently classified. This representa-
tion of sample difficulty or uncertainty is termed hyperbolic
uncertainty. Following [28], our method leverages hyperbolic
uncertainty to indicate sample difficulty, facilitating training
from easy-to-hard samples.

We update the teacher model using the exponential moving
average of the student model. That is, ω = εω + (1 ↔ ε)ω↓,
where ε is the controllable weight (we set it to 0.99); ω and ω↓

represent the network parameters of the teacher model and the
student model, respectively. Thus, in the early training stage,
the teacher model provides a more stable estimation of sample
difficulty than the student model [29], [30]. In this way, we
can define the sample difficulty of the hyperbolic embedding
hi,t w.r.t. the feature fe

i,t
as

uhi,t = 1↔ ↘hi,t↘, (6)

where uhi,t denotes the sample difficulty.
Optimization. To learn the model parameters, we employ
stochastic Riemannian gradient descent [31] to minimize the
Poincaré distance between hi,t and hi,s. This is based on
the Riemannian gradient of Eq. (5), which is computed w.r.t.
the hyperbolic embedding hi,s of the student model. The
optimization procedure pushes the student embedding to match
the teacher embedding hi,t

≃Lhyp =

(
1↔ ↘hi,s↘2

)2

2
√

(1↔ ↘hi,s↘2) (1↔ ↘hi,t↘2) + ↘hi,s ↔ hi,t↘2

↓
(

hi,s ↔ hi,t

↘hi,s ↔ hi,t↘
+

hi,s↘hi,s ↔ hi,t↘
1↔ ↘hi,s↘2

)
.

(7)

The above learning process is self-paced, where the gradient
changes according to the sample difficulty uhi,t from the
teacher model (Eq. (6)), i.e., the larger the radius ↘hi,t↘ is,
the easier hi,t is, and the stronger the gradient ≃Lhyp is,
regardless of hi,s. Such a way can achieve a training strategy
from easy-to-hard samples.

Different from the Euclidean space, the hyperbolic space
can naturally embed hierarchical structures [32], [33]. There-
fore, during the optimization process of the hyperbolic space,
the hierarchical relationships of facial expression features are
implicitly captured by the multi-expert network (as illustrated
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in Fig. 1(a)), encouraging the router to better understand
facial features, calculate more accurate preference scores, and
enhance the optimization of expert models. Therefore, learning
high-level hierarchical structural information can enable the
model to obtain an effective transferable space. Furthermore,
without introducing additional cost as previous self-paced
learning methods [34], [35], our HSL strategy adaptively
assigns larger gradient changes to easy samples and smaller
gradient changes to hard samples.

Finally, the expression feature obtained by the student model
of our HSM-Net is used for expression classification. Same as
ProtoNet [36], each query image is assigned to its nearest
center of the support class in the learned feature space. The
expression classification loss of a query image is

Lcls = ↔
N∑

n=1

1[n=yq ] log
(
softmax

(
↔M

(
fe
q,s

,Rn

)))
, (8)

where fe
q,s

and yq are the final expression feature and the
expression label of the query image, respectively; Rn =
1
K

∑
K

k=1(f
e

s,s
)n
k

represents the center of class n and (fe
s,s

)n
k

is the expression feature of the k-th image in class n in the
support set; M(·) denotes the metric module; N is the number
of sampled classes; softmax(·) denotes the softmax function.

E. Overall Loss
Based on the above, the overall loss is

L = (1↔ ϑ)Lcls + ϑhLhyp + ϖLp, (9)

where ϑ, h, and ϖ are the balancing parameters. Note that
the parameter ϑ is dynamically set to ϱ u

U
(u represents the

current epoch, U represents the total number of epochs, and
ϱ denotes the trade-off parameter (we empirically set it to
0.5)). The choice of ϑ is inspired by curriculum learning so
that the model can initially focus on the classification loss and
gradually shift to hyperbolic space optimization.

IV. EXPERIMENTS

In this section, we first introduce the experimental settings,
including facial expression datasets and implementation details
in Section IV-A. Then, we perform ablation studies and
give some visualization results in Section IV-B. Finally, we
compare our method with several state-of-the-art methods and
discuss the limitations of our method in Section IV-C.

A. Experimental Settings
Datasets. Our HSM-Net is trained on multiple basic expres-
sion datasets and tested on the compound expression dataset.
To ensure the diversity of basic expressions, we use five
basic expression datasets, including three in-the-lab datasets:
CK+ [37], MMI [38], and Oulu-CASIA [39], as well as
two in-the-wild datasets: RAF-DB [40] and SFEW [41] to
construct the training set. Three compound expression datasets
(CFEE C [5], EmotioNet C [42], and RAF C [40]) are used
to evaluate the performance of the learned model.
Basic Expression Datasets. CK+ contains 593 video sequences
from a total of 123 different subjects, where 327 video

sequences are annotated with seven basic expressions. MMI
contains 326 video sequences with six basic expressions (205
frontal-view sequences are used). Oulu-CASIA consists of
2,880 video sequences with six basic expressions (480 normal
indoor illumination sequences are used). Three peak frames
of each sequence in the above in-the-lab datasets are selected.
RAF-DB consists of a basic subset with seven basic expres-
sions and a compound subset with 11 compound expressions.
The basic subset contains 12,271 training images. SFEW is
labeled with seven basic expressions with 958 training images.
All the samples in these basic expression datasets are used for
training. Note that the imbalance ratio of the training set is
up to 1:114 (the ratio between the contempt expressions and
the happy expressions), indicating significantly imbalanced
expression categories.

Compound Expression Datasets. CFEE C is derived from the
CFEE dataset. It is an in-the-lab dataset and annotated with
15 compound expressions for 230 subjects, including a total
of 5,046 facial expression images. EmotioNet C is collected
from the EmotioNet challenge, where the samples (including
2,471 facial expression images) are collected in the wild
and annotated with ten compound expressions. RAF C is the
compound subset of RAF-DB with 11 compound expressions
and a total of 3,162 facial expression images.

Implementation Details. Our method is implemented by
PyTorch. All the facial images in the training set are first
aligned and resized to the size of 256 ↓ 256. Then, they are
randomly cropped to the size of 224 ↓ 224, followed by a
random horizontal flip and color jitter as data augmentation.
Following [8], [9], we use a mapping function to unify the
expression labels in basic expression datasets. In the training
set, the number of images in the negative expression subset is
larger than those in the positive and neutral subsets. Hence, we
split the negative expression subset into two smaller subsets
to ensure the balanced expression categories. Therefore, the
number of experts E is set to 4. We do not employ pre-
trained models in our method. We use the identical network
structures for both the teacher model and the student model
for self-distillation, where we update the teacher model by
momentum updates.

We employ RFS [25] as our baseline method, where
ResNet-12 is used as the backbone. Our model is trained
using the stochastic gradient descent (SGD) optimizer with
a learning rate of 0.1, and the weight decay is set to 5↓10↑4.
For the training stage, the model is optimized by 100 epochs of
self-distillation batch training. For a few-shot task, following
RFS [25], we only update the parameters of the predictor
based on the support set and evaluate the model on the query
set while keeping the backbone parameters fixed. We set the
number of classes N = 5, the number of support samples K
= 1 or 5, and the number of query samples Q = 16 for each
class. The flood level b in Eq. (2) is set to 0.7. The curvature
of the hyperbolic space c in Eq. (3) and Eq. (4) is set to 1.0.
The balancing parameters ϑ, h and ϖ in Eq. (9) are set to 0.5,
0.01 and 0.5, respectively. The ratio r is set to 0.3.
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TABLE I: Details of six variants of our HSM-Net and the corresponding ablation study results on the CFEE C and RAF C
datasets. The test accuracy (%) of 5-way few-shot classification tasks with 95% confidence intervals is reported.

Methods
Details of Variants CFEE C RAF C

Baseline MoE Router Lp HSL Lhyp 1-shot 5-shot 1-shot 5-shot

Baseline
→

↑ ↑ ↑ ↑ ↑ 54.96 ± 0.73 65.71 ± 0.61 43.05 ± 0.59 60.08 ± 0.46

HSM-Net w/o (R+H)
→ →

↑ ↑ ↑ ↑ 55.74 ± 0.86 67.21 ± 0.70 45.18 ± 0.60 61.82 ± 0.43

HSM-Net w R

→ → →
↑ ↑ ↑ 56.35 ± 0.87 68.03 ± 0.71 46.07 ± 0.61 62.68 ± 0.45

HSM-Net w Lp

→ → → →
↑ ↑ 57.09 ± 0.87 68.92 ± 0.72 46.90 ± 0.62 63.49 ± 0.46

HSM-Net w H

→ →
↑ ↑

→ →
57.17 ± 0.86 68.97 ± 0.70 46.96 ± 0.62 63.44 ± 0.43

HSM-Net
→ → → → → →

57.96 ± 0.86 69.89 ± 0.70 48.02 ± 0.60 64.23 ± 0.45

B. Ablation Studies

We evaluate the performance obtained by six variants of
our proposed method, including: 1) the baseline method;
2) the method (denoted as HSM-Net w/o (R+H)) that only
constructs multiple experts to classify samples without using
routers and the HSL strategy; 3) the method (denoted as HSM-
Net w R) that employs routers to randomly select experts
without the preference loss and the HSL strategy; 4) the
method (denoted as HSM-Net w Lp ) that employs the routers
and the preference loss Lp in Eq. (1); 5) the method (denoted
as HSM-Net w H ) that employs the HSL strategy and Lhyp

to capture hierarchical relationships of facial expressions and
train the model from easy-to-hard; 6) our proposed method
(denoted as HSM-Net) that adopts the routers and the HSL
strategy by optimizing both Lp and Lhyp. The details of six
variants of our method and the corresponding ablation study
results are summarized in Table I. We use the CFEE C and
RAF C datasets for ablation studies.
Effectiveness of the Mixture-of-Experts (MoE) Convo-
lutional Layers. As observed from Table I, the HSM-
Net w/o (R+H) method obtains better performance than the
baseline method on the CFEE C and RAF C datasets.
Specifically, compared with the baseline method, the HSM-
Net w/o (R+H) method improves the performance by 0.78%
on CFEE C and 2.13% on RAF C for the 5-way 1-shot
classification task. These results show the effectiveness of
learning multiple MoE layers that can focus on different
expression categories, reducing the influence of imbalanced
expression categories and enhancing the final performance.
Effectiveness of the Router. Compared with the HSM-
Net w/o (R+H) method, HSM-Net w R improves the accu-
racy by 0.61% and 0.89% on CFEE C and RAF C, respec-
tively, for the 5-way 1-shot classification task. The router
can enable the model to learn accurate preference scores,
encouraging the experts to focus on the expression categories
they excel at handling. Therefore, a more appropriate decision
boundary can be obtained, and the generalization performance
on the target domain is improved. In addition, as shown in
Table I, the HSM-Net w Lp method gives better results than
the HSM-Net w R method, showing that selecting the optimal
expert for input images with the preference loss contributes to
the final performance. This validates the effectiveness of the
preference loss.
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Fig. 4: Influence of the flood level b for the 5-way 5-shot
classification task on the CFEE C and RAF C datasets. The
best results are obtained when the value of b is set to 0.7 on
the CFEE C dataset and 0.5 on the RAF C dataset.

TABLE II: Ablation study results of different data-splitting
strategies on the CFEE C and RAF C datasets. Test accuracy
(%) of 5-way few-shot classification tasks with 95% confi-
dence intervals is reported.

Methods
CFEE C RAF C

1-shot 5-shot 1-shot 5-shot

Strategy 0 55.21 ± 0.72 64.65 ± 0.63 44.03 ± 0.61 62.22 ± 0.42

Strategy 1 56.44 ± 0.70 66.11 ± 0.62 46.12 ± 0.61 62.67 ± 0.44

Strategy 2 55.66 ± 0.70 65.27 ± 0.62 44.30 ± 0.60 62.52 ± 0.43

Our Strategy 57.96 ± 0.86 69.89 ± 0.70 48.02 ± 0.62 64.23 ± 0.42

Effectiveness of the Hyperbolic Self-Paced Learning (HSL)
Strategy. Compared with the HSM-Net w/o (R+H) method,
HSM-Net w H improves the accuracy by 1.43% and 1.78%
on CFEE C and RAF C, respectively, for the 5-way 1-
shot classification task. This indicates that our HSL strategy
can effectively faciliate the model to capture hierarchical
relationships of facial expressions in the hyperbolic space.
Such hierarchical relationships provide useful structural in-
formation, enabling the network to better generalize to new
compound expressions. Moreover, the HSL strategy further
enhances the model’s generalization performance by training
the model from easy-to-hard samples. Meanwhile, as shown
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Fig. 5: Visualization of the features of different expression
categories extracted by the baseline method and our HSM-
Net method on the CFEE C dataset under the 5-way 5-shot
setting. Different colors represent different facial expression
categories.

OULU
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Fig. 6: Visualization of the extracted features obtained by
(a) the baseline method and (b) HSM-Net on multi-source
domains and the target domain (CFEE C), with different
colors representing different datasets. Our HSM-Net reduces
the domain discrepancy between the multiple source domains
and the target domain, thereby enhancing the cross-domain
FER task.

in Table I, the HSM-Net method achieves better results than
HSM-Net w Lp methods. The above results demonstrate the
effectiveness of the HSL strategy.
Influence of Different Data-Splitting Strategies. We evaluate
the influence of different data-splitting strategies on the final
performance. The results are given in Table II. Strategy 0 refers
to the strategy that divides the dataset into four subsets using
a random data-splitting method without considering emotional
valence or sample size. Strategy 1 refers to the strategy
that divides the dataset into three subsets (positive, negative,
and neutral expression subsets) based on emotional valence.
Strategy 2 refers to the strategy that divides the datasets into
4 subsets to ensure a balanced sample size according to the
number of class samples instead of emotional valence. Our
strategy refers to the proposed strategy that divides the datasets
into 4 subsets by considering both emotional valence and
sample size.

We can see that Strategy 0 yields the worst model per-
formance. In contrast, Strategy 1 and Strategy 2 significantly
improve the recognition accuracy. Note that Strategy 1 models
the hierarchy of facial expressions while Strategy 2 mitigates
the adverse influence of class imbalance during model training.

Our strategy not only captures the hierarchical structure of
facial expressions but also addresses class imbalance, achiev-
ing the best model performance across all the tasks. Our
strategy provides a clearer semantic structure by exploiting
prior expression knowledge and a more stable data distribution,
enhancing the model’s robustness and generalization ability.
Influence of the Flood Level b. We evaluate the influence
of different values of the flood level b for the 5-way 5-shot
classification task on the CFEE C dataset. The performance
obtained by our HSM-Net method with the different values of
b is given in Fig. 4. The best results are obtained when the
value of b is set to 0.7 on the CFEE C dataset and 0.5 on the
RAF C dataset.
Influence of the Sample Size. We evaluate the influence of
the sample size on the CFEE C, EmotioNet C, and RAF C
datasets. The results are given in Table III, where we report
the test accuracy for 5-way 1-shot, 5-way 5-shot, and 5-way
10-shot classification tasks.

As shown in Table III, the classification performance is
significantly boosted as the number of training samples per
class is increased from 1 to 10. For example, the accuracy
is improved from 48.02% (1-shot) to 68.00% (10-shot) on
the RAF C dataset. A larger sample size often provides more
expression information, allowing the model to learn discrimi-
native features and generalize to novel compound expression
recognition tasks more effectively.
Influence of the Number of Layers. We evaluate the in-
fluence of the number of layers in the router network on
model performance. We test the model performance with the
different numbers of layers (including 1, 2, 3, and 4) for
the 5-way 1-shot classification task on the CFEE C dataset.
The performance obtained by our HSM-Net method with the
different numbers of layers d is given in Fig. 7.

We can see that the number of layers in the router network
significantly affects the model performance. When the router
network contains only 1 or 2 layers, its ability to learn
complex routing decisions is limited, leading to relatively low
performance. When the number of layers is set to 3, the model
achieves the best accuracy, indicating that a deeper routing
network enhances feature selection and expert assignment.
However, when the number of layers is set to 4, the perfor-
mance slightly drops. This is because of the increased model
complexity, leading to overfitting under the few-shot setting.
These results suggest that the appropriate number of layers
can balance complexity and effectiveness in routing expert
selection.
Influence of the Hyperparameter c. We evaluate the influ-
ence of the hyperparameter c in the hyperbolic space on model
performance. We test the model performance with the different
values of c (including 0.00001, 0.1, 0.5, 1, 5, and 10) for the
5-way 1-shot classification task on the CFEE C dataset. The
results are given in Table IV.

As shown in Table IV, the choice of c significantly affects
model performance. When the value of c is too small (e.g., c =
0.00001), the hyperbolic space becomes nearly the Euclidean
space. This limits the model’s ability to capture hierarchical
relationships and results in suboptimal performance. As the
value of c is larger, the model benefits from hyperbolic
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TABLE III: Ablation study results on the influence of the sample size on the CFEE C, EmotioNet C, and RAF C datasets.
Test accuracy (%) of 5-way 1-shot, 5-way 5-shot, and 5-way 10-shot classification tasks with 95% confidence intervals is
reported.

Method
CFEE C EmotioNet C RAF C

1-shot 5-shot 10-shot 1-shot 5-shot 10-shot 1-shot 5-shot 10-shot

HSM-Net 57.96 ± 0.86 69.89 ± 0.70 74.12 ± 0.67 57.33 ± 0.66 64.95 ± 0.58 66.59 ± 0.67 48.02 ± 0.60 64.23 ± 0.45 68.00 ± 0.54

TABLE IV: Ablation study results of different hyperbolic space hyperparameter c on the CFEE C dataset. Test accuracy (%)
of 5-way 1-shot classification task with 95% confidence intervals is reported.

c 0.00001 0.1 0.5 1 5 10

1-shot 57.52 ± 0.82 57.64 ± 0.85 57.72 ± 0.85 57.96 ± 0.86 57.64 ± 0.86 52.94 ± 0.85
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Fig. 7: Influence of the number of layers (d) in the router net-
work for the 5-way 1-shot classification task on the CFEE C
dataset. The best results are obtained when the number of
layers d is set to 3.

representations, achieving the highest accuracy at c = 1.
However, when the value of c becomes too large (e.g., c = 10),
the performance degrades significantly. This is because the
excessive curvature value can distort feature representations
and hinder effective classification. These observations suggest
that a moderate curvature value offers the optimal trade-off
between feature expressiveness and model stability in the
hyperbolic space.
Visualization of the Hierarchical Relationships of Facial
Expressions. We visualize the features of different expression
categories extracted by the baseline method and HSM-Net on
the CFEE C dataset under the 5-way 5-shot setting, as shown
in Fig. 5. As shown in Fig. 5(a), the features of different
expression categories obtained by the baseline method are
more separated, especially between the “happily-disgusted”
“happy” and “disgusted” facial expressions. This shows that
the baseline method fails to capture the hierarchical structure
of expressions. In contrast, in Fig. 5(b), the overlapped pink,
blue, and yellow circles in HSM-Net indicate the strong
correlations between “Happy”, “Disgusted” and “Happily-
disgusted”. This shows that HSM-Net effectively models the
hierarchical relationships of facial expressions in the hyper-
bolic space.

Visualization of the Learned Features by the Baseline
Method and our HSM-Net. To visually demonstrate the
effectiveness of our HSM-Net, we visualize the features ex-
tracted by the baseline method and HSM-Net in the source
domain and the target domain (CFEE C) in Fig. 6. As shown
in the figure, for the baseline method, the distribution gap
between different datasets is distinct. In contrast, for HSM-
Net, the distributions of different datasets (from both the
source and target domains) are indistinguishable, indicating
that the domain discrepancy is minimized. By collaboratively
training multiple experts across different datasets, our method
effectively addresses the problem of biased learning caused
by imbalanced expression categories. In addition, the HSL
strategy fully exploits the hierarchical relationships of facial
expressions in the hyperbolic space based on a self-paced
learning method, greatly improving the transferability from
basic facial expressions to compound facial expressions.

C. Comparison with State-of-the-Art Methods

We compare our proposed HSM-Net with several state-of-
the-art FSL methods, including episodic training-based FSL
methods, batch training-based FSL methods, and hybrid FSL
methods. For a fair comparison, our reported results of these
competing methods are obtained by using the source codes
provided by the respective authors under the same settings as
ours, as done in Zou et al. [9].

From Table V, we can see that our HSM-Net method
achieves the best results on the three datasets for both the 5-
way 1-shot and 5-way 5-shot classification tasks. These results
clearly validate the excellent performance of our method.
Specifically, HSM-Net achieves an accuracy of 57.96% on
CFEE C, 57.33% on EmotioNet C, and 48.02% on RAF C
in 5-way 1-shot classification tasks, and 69.89% on CFEE C,
64.95% on EmotioNet C, and 64.23% on RAF C in 5-way 5-
shot classification tasks, respectively. For batch training-based
FSL methods, our method outperforms CDNet B (which also
employs the batch training strategy as ours) with improve-
ments of 3.41%, 4.57%, and 6.00% on three datasets in 5-way
1-shot classification tasks, respectively. It is worth noting that
our method achieves better performance than all hybrid FSL
methods. This indicates that HSM-Net can obtain appropriate
decision boundaries by using multiple experts, addressing the
influence of imbalanced expression categories across multiple
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TABLE V: Comparisons with state-of-the-art FSL methods on three different compound expression datasets. Test accuracy
(%) of 5-way few-shot classification tasks with 95% confidence intervals is reported. The best and second-best results are
marked in bold and underlined, respectively.

Methods CFEE C EmotioNet C RAF C
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

(a) Episodic training-based FSL methods

ProtoNet [36] 53.29 ± 0.73 66.60 ± 0.60 50.15 ± 0.66 60.04 ± 0.56 39.12 ± 0.56 58.41 ± 0.46

MatchingNet [45] 52.31 ± 0.69 62.24 ± 0.61 48.64 ± 0.63 54.19 ± 0.58 34.84 ± 0.54 52.45 ± 0.44

RelationNet [46] 50.58 ± 0.68 63.17 ± 0.60 48.33 ± 0.68 56.27 ± 0.58 36.18 ± 0.54 53.45 ± 0.46

GNN [47] 54.01 ± 0.74 64.26 ± 0.63 49.49 ± 0.68 58.67 ± 0.59 38.74 ± 0.56 57.15 ± 0.47

DSN [48] 49.61 ± 0.73 60.03 ± 0.62 48.25 ± 0.68 54.89 ± 0.58 40.09 ± 0.55 52.49 ± 0.47

InfoPatch [49] 54.19 ± 0.67 67.29 ± 0.56 48.14 ± 0.61 59.84 ± 0.55 41.02 ± 0.52 57.98 ± 0.45

(b) Batch training-based FSL methods

Softmax [50] 54.32 ± 0.73 66.35 ± 0.62 51.60 ± 0.68 61.83 ± 0.59 42.16 ± 0.59 58.57 ± 0.45

Cosmax [50] 54.97 ± 0.71 67.89 ± 0.61 50.87 ± 0.65 61.10 ± 0.56 40.87 ± 0.56 57.67 ± 0.46

Arcmax [51] 55.29 ± 0.71 67.72 ± 0.60 50.73 ± 0.65 61.70 ± 0.56 41.28 ± 0.57 57.94 ± 0.46

RFS [25] 54.96 ± 0.73 65.71 ± 0.61 51.91 ± 0.67 61.94 ± 0.57 43.05 ± 0.59 60.08 ± 0.46

LR+DC [52] 53.20 ± 0.73 64.18 ± 0.66 52.09 ± 0.70 60.12 ± 0.58 42.90 ± 0.60 56.74 ± 0.46

STARTUP [53] 54.89 ± 0.72 67.79 ± 0.61 52.61 ± 0.69 61.95 ± 0.57 43.97 ± 0.60 59.14 ± 0.47

CDNet B [9] 54.55 ± 0.71 68.09 ± 0.62 52.76 ± 0.67 61.76 ± 0.57 42.02 ± 0.58 61.75 ± 0.44

(c) Hybrid FSL methods

Meta-Baseline [54] 55.17 ± 0.74 67.15 ± 0.61 52.36 ± 0.67 62.01 ± 0.59 43.54 ± 0.61 61.59 ± 0.44

OAT [55] 54.28 ± 0.75 67.88 ± 0.62 52.92 ± 0.66 61.85 ± 0.59 42.75 ± 0.60 60.41 ± 0.43

BML [56] 52.42 ± 0.71 66.72 ± 0.61 51.31 ± 0.66 58.77 ± 0.57 41.91 ± 0.55 59.72 ± 0.45

EGS-Net [8] 56.65 ± 0.73 68.38 ± 0.60 51.62 ± 0.66 60.52 ± 0.56 44.07 ± 0.60 61.90 ± 0.46

CDNet [9] 56.99 ± 0.73 68.98 ± 0.60 55.16 ± 0.67 63.03 ± 0.59 46.07 ± 0.59 63.03 ± 0.45

HSM-Net (Ours) 57.96 ± 0.86 69.89 ± 0.70 57.33 ± 0.66 64.95 ± 0.58 48.02 ± 0.60 64.23 ± 0.45

TABLE VI: Comparison of accuracy (%) and inference time
(s) obtained by several representative methods for the 5-way
5-shot classification task on the CFEE C dataset.

Methods Accuracy Time

RFS 65.71 89.12

CDNet 68.98 95.58

HSM-Net 69.89 106.92

basic expression datasets. Meanwhile, it leverages sample
uncertainty to guide training from easy-to-hard samples in
the hyperbolic space, reducing the influence of imbalanced
sample difficulty in the Euclidean space. As a result, HSM-
Net enables the model to learn hierarchical relationships of
facial expressions in the hyperbolic space and enhances its
ability to generalize from seen basic expressions to unseen
compound expressions.
Limitations. The comparison of accuracy and inference time
obtained by several methods is given in Table VI. Although
our HSM-Net achieves the best results in all few-shot tasks
across the CFEE C, EmotioNet C, and RAF C datasets, the
introduction of the MoE layers increases computational load
and inference time. The increased training time and resource
demands may limit the scalability of our method, especially
in resource-constrained environments. To address this issue,
we adopt ResNet-12 as the backbone network instead of
the typically higher-performing ResNet-18 [23]. While the
selection of ResNet-12 reduces complexity, it also compro-

mises the model’s performance potential. Future work could
explore further optimization of the MoE layers or methods
to reduce model complexity without sacrificing performance.
Potential directions include: (1) Dynamic expert sparsification
that uses adaptive gating mechanisms to selectively activate
only the most relevant experts for each sample [57], [58]. (2)
Expert pruning that leverages pruning techniques to remove
less influential experts or connections based on their contri-
butions to the final performance [59], [60]. (3) Lightweight
expert architectures that design efficient expert structures to
reduce computational complexity while preserving model per-
formance [61].

V. CONCLUSIONS

In this paper, we develop a novel HSM-Net for CF-FER
by collaboratively training multiple experts across different
datasets, effectively addressing the challenge of hierarchical
relationship learning caused by imbalanced expression cate-
gories and imbalanced sample difficulties in the traditional
Euclidean space. Based on the MoE layers, we introduce an
HSL strategy to project features from the Euclidean space into
the hyperbolic space, where we perform self-paced learning
to train the model from easy-to-hard. As a result, our method
can fully exploit hierarchical relationships of facial expressions
and thus learn a transferable feature space. Experimental re-
sults on various compound FER datasets show the superiority
of our method over several state-of-the-art FSL methods,
validating the potential of learning transferable features in
basic expression datasets for compound FER.
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Currently, we leverage the simple ResNet-12 as the back-
bone. In future work, we will investigate more complicated
backbones (such as Transformer) to investigate the applica-
tions of MoE for CF-FER.
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