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Abstract: This perspective outlines a selection of research directions'that members of the JPCM
editorial board anticipate may shape the frontier of condensed matter physics over the next decade.
Rather than a comprehensive review or formal roadmap, this.perspective reflects a set of informed
views drawn from diverse areas of expertise. Our intention, is to spark curiosity, provoke
discussion, and encourage readers to imagine -- and pursue =- the exciting possibilities that lie
ahead.
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What might the next ten years hold for condensed matter physics? In this perspective, several
section editors and editorial board members of the Journal of Physics: Condensed Matter and have
drawn upon our collective expertise. Though by no means exhaustive, this perspective outlines
topics we think may expand our understanding and which are coupled to questions that the
community will likely investigate. Topics such as magnetic ordering, ferroelectric materials,
superconductivity, non-equilibrium physics, phononics, soft materials, nanoscale conductance,
symmetry breaking, chemical physics and advances in condensed matter theory.are briefly touched
upon but this is not intended to be a complete picture of the future of condensed.matter physics,
for the next 10 years as this is not a comprehensive review, nor a definitive roadmap. Instead, it
reflects our shared sense of areas that could see significant development or yield unexpected
breakthroughs. We hope it will serve as a springboard for discussion and4magination. As we have
experienced in writing this article, thinking collectively about wheresour field is going has been a
stimulating experience, and we invite readers to engage with the,samedsense of curiosity and
possibility.

Magnetic ordering, spin currents and symmetry breaking:

The study of magnetism dates back millennia, but advances continue to keep the study of
magnetism at the forefront of condensed matter physiess The field of magnetism is now undergoing
another revolution on several fronts. There has béen the identification of novel forms of chiral
magnetism, including a ferromagnetic double helix'[1], a variety of 3D chiral spin textures, such
as helical spins [2] and skyrmion-like tube structures [3]; with the latter two reported for FeGe
alloys. This deepens our understanding of the vector spin exchange known as the Dzyaloshinskii—
Moriya interaction, and its consequences. Recently, there has also been an increasing recognition
of novel magnetic materials that arespmneither like colinear ferromagnets nor colinear
antiferromagnets. Attracting much attention are the non-colinear antiferromagnets, now dubbed
altermagnets. Altermagnets break time-reversal symmetry yet retain zero net magnetization
despite exhibiting a spin-split bandsstructure [4]. Rotation connects the opposite-spin sublattices
but not translation nor inversion [4]:, From angle- and spin-resolved photoemission, such
altermagnetism has been recently identified in MnTe [5, 6]. Using angle-resolved photoemission
in combination with angle-resolved:magnetic circular and natural circular dichroism asymmetries
has also been used to identify RuO, as an altermagnet [7]. It is worth noting that, without realizing,
Shubnikov had already described, in the 1950's, the colored point groups of altermagnets [8] that
allow one to classify altermagnets.

Chirality-indueed ‘spin selectivity has now been identified in inorganic chiral crystals
Cry3NbS, [9], transition-metal disilicides NbSi, and TaSi, [10], and chiral crystals of Te [11]
leading to observations of current-induced magnetization in elemental tellurium [11] and chirality-
induced spin currents [11-13]. While the loss of inversion symmetry will lead to spin-orbit
coupling (SOC), as occurs in chiral systems, the systems with heavier elements are thought to have
more spin-obit coupling, thus interplay of chirality, spin-orbit coupling, and chirality-induced spin
currents(is very far from fully elucidated [14].

When interfacing organic materials with ferromagnets, there is a growing body of
expefiment to,suggest that the paramagnetic correlation lengths in the organic film or material are
large, perhaps of the order of many nanometers [15]. If this is ultimately verified, it will be
unprecedented and would require a full theoretical explanation. But first an experiment must
establishif the suggested large paramagnetic correlation lengths exist, as indicated in some organic
materials. What is clear that organic chiral molecules [12,16-22], of a single enantiomer (left or
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right handed), also exhibit chirality-induced spin selectivity. We envision that demonstrations of
topologically protected spin current in organic chiral phototransistors may also be possible.

Magnetism in reduced dimensions, multiferroics and magneto-electric coupling:

It has been recognized that the magnetic Curie temperature has a dimensionality crossover,
with decreasing magnetic film thickness, from 3-dimensional to 2-dimensional [23=25]. So how
magnetism behaves in two dimensions has not only been one of the enduring questions in
condensed matter physics, but understanding magnetism in reduceéd dimensionality has
significance for our understanding of magnetism generally. Thus, the advent ©f van der Waals
magnets has provided opportunities for new insights into questions regarding 2-dimensional
magnetism and progress has been amazing, despite their relatively short history [25,26]. One area
of development is the confirmation that intrinsically two-dimensional'magnets can be profoundly
different from bulk magnets and exhibit novel functionalities [27]. " Another exciting development
is the realization of novel quantum states using these .materials, »whether in the form of
heterostructures or twisted systems [28]. Equally intriguing is. the €onnection to fundamental
quantum-mechanical concepts such as the quantum mettic and Berry curvature [29]. How these
quantum properties are revealed and realized in van der Waals magnets remains an open question
and exciting avenue for research.

Two-dimensional magnetism can emerge exclusively from orbital degrees of freedom,

bypassing conventional electron spin mechanisms [30,31]. The orbital motion simultaneously

generates a novel ferroic order - the ferrovalley in whichthe spin—orbit coupling coexists with the
intrinsic exchange interaction [32]. As an example, the ferromagnetic semiconductor VSe,
monolayer is predicted to have potentially spontaneous valley polarization and chiral dependent
optical excitations [32]. These dual ferroic otders share a common orbital origin, resulting in
inherently strong ferroic couplings and large responses to external fields, endowing such two-
dimensional multiferroic materials (materials with the coexistence of two or more ferroic orders)
with potentially extraordinary multifunctional adaptability [33]. More generally, the ferrovalley is
the spontaneous valley polarization, and. is generally coupled with other ferroic orders, like
ferromagnetism (spin polarizatic@ or ferroelectricity (charge polarization). Much work remains
to be done both for fundamental understanding of the ensuing mechanisms and the attainment of
practical applications.

The use of on-sufface synthesis to fabricate open-shell nano-graphenes with atomic precision
has enabled the long-amticipated emergence of m-magnetism to be experimentally realized,
providing a versatile platform for exploring localized spin states, magnetic exchange interactions,
and strong electron correlations at the atomic scale [34]. The evolution of synthetic routes to
stabilize larger.and more complex open-shell structures might provide the setting for optimal
quantum coherence and manipulation, as well as to scale up these systems to form controllable
quantum spin lattices. These advances may also provide unprecedented opportunities for research
in low-dimensional.multiferroics in which the coupling mechanisms among ferroic orders, strong
electronic correlations, and emergent topological states in orbital-derived multiferroics constitute
both challenges and opportunities for condensed matter physics in the coming decade. The unique
interplay of symmetry-breaking orbital textures and quantum geometric effects in these systems is
poised to redefine fundamental paradigms in quantum material design while pushing the
boundaries of non-volatile memory and neuromorphic computing technologies. These systems are
now central to efforts at realizing highly entangled quantum spin states, with potential applications
n spintronics and quantum information science. Their flexibility and controllability place them
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within the broader context of an emerging quantum-coherent nanoscience, where cohérenee and
interaction effects are engineered at the nanoscale [35].

If we look at much broader impacts, there is an ever-wider recognition that the growth of
logic and memory results in unsustainable increases in energy consumptiom[36]. A recent paper
on this topic stated, "One promising type of energy efficient logic devices in research is'based on
the use of magnetoelectric (ME) materials." [37] Not surprisingly, an increasing number of device
schemes have been discussed and various magnetoelectric devices have also been demonstrated
[38]. Yet, a great deal of physics remains to be fully established, despite'the growing attention
given to this topic. For magneto-electric devices based on magneto-electric antifetromagnets, there
is an open question of what limits the antiferromagnetic domain switching speed [39]. While
antiferromagnetic switching is widely touted to be faster than fertomagnetic switching, a better
understanding and better characterization of switching mechanism isimportant. There is also much
yet to be understood about the applicable scaling arguments, as this wouldnot only affect switching
speed, but would limit how small a device could be made, as well as determine the limits to the
possible reduction of the coercive voltage.

Recent work, investigating the Néel vector orientation, has brought some novel new
insights to light. Antiferromagnets are now seen tosave a thermally fluctuating Néel vector
independent of the crystal symmetry [40]. There are alse. demonstrations that the Néel vector under
an applied voltage that deviates from the polar axis of #he boron doped antiferromagnet
Cr,03(0001) [41]. The diminished role of the expected antiferromagnetic magneto-crystalline
anisotropy remains puzzling and needs to be fully explained.

Superconductivity:

Nickel-based oxides (nickelates) have emerged as a new family of superconductors with
unconventional high-7; superconductivity. With Ni being the nearest neighbor of copper in the
periodic table of elements, the guest of nickelate superconductors began soon after the discovery
of the cuprate high-7, superconduetors. Eventually, Nd; (Sr,NiO, thin films were found to be
superconducting (7. = 9-15 K, withyinfinite-layer structure [42]. The family of nickelate
superconductors quickly expanded to include the bilayer and trilayer Ruddlesden-Popper phases
of the form R;+1Ni,Os,4; (07=253) [43,44], as well as the hybrid Ruddlesden-Popper phase
LasNi3Oq; [45]. This in turn led to the discovery of non-cuprate unconventional superconductor
surpassing the boiling peint of liquid nitrogen, i.e., the bilayer La;Ni,O; with 7, ~80 K under about
14 GPa [43]. Very recently, ambient-pressure superconductivity, with 7.°®¢ over 40 K, has been
successively realizedwin bilayer nickelate (La,Pr);Ni,O; thin films, stabilized via in-plane
compressive strain and 0zeone post-annealing process [46-48]. Yet further optimization of the
nickelates is needed.in order to achieve similar high 7, values as seen in the pressurized nickelate
bulk samples.Despite encouraging progress, there remain critical questions to be addressed in this
field. For example, both the infinite-layer and Ruddlesden-Popper nickelates suffer from sample
quality problems and/the latter are prone to intergrowth of different Ruddlesden-Popper phases
while oXygen vacancies lead to complications [49,50]. In addition, unlike the single-band model
for the euprates superconductors, both e, orbitals, i.e. the d,2 and dy2.,2, should play an important
rolesin’ governing high-7; superconductivity. In the absence of consensus, more in-depth
investigations are needed to reveal the superconducting mechanism(s).

Broken inversion symmetry is a critical feature of materials, not only intrinsic to
magnetism (as discussed above), ferroelectric properties, but also may affect superconductivity.
Chiral superconductors may emerge in novel topological materials in which the superconducting
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states break time reversal symmetry or inversion symmetry [51]. Although uncommon, secent
work on non-oxide 2D heterolayers may have now given us a more convincing example of chiral
superconductors [52] beyond metals like LaPt;P [53] and Sr,RuQO, [54]. One approach to achieving
chiral superconductors is by introducing the moiré superlattice between adjacent graphene or
graphene and h-BN layers [55-58]. Convincing proof of chiral superconductivity  remains
challenging, with perhaps the most compelling proof, to date, recently shown in thombohedral
graphene [59], with a T, of 300 mK. Despite the challenges, chiral saperconductors, while
extremely fragile, may be the key to identifying the presence of Majorana zero modes [51].
Majorana bound states are specific examples of non-Abelian anyons [60] whichdare quasiparticles
that do not follow typical fermionic or bosonic statistics and, so far,-have been quite elusive [61-
63]. The anyon, or quasiparticles that exist in 2 (or lower) dimensions: With statistics between
fermions and bosons was, we note in passing, originally discussed and named by Frank Wilczek
in 1982 [64], and reviewed in a "Physics World" perspective later [65].

The interplay between magnetism and superconductivity remains a rich area of study.
Scanning tunneling microscopy (STM) enables the creation and probing of Yu—Shiba—
Rusinov (YSR) states, which arise from the interaction, of magnetic impurities with a
superconducting condensate [66]. This atomic-scale control underpins research efforts to
realize topologically non-trivial superconducting states hosting Majorana modes [67 ], as
well as broader explorations of topological superconductiyity in artificial spin lattices [68].
Advances in atomic-scale fabrication and theoretical modelling are expected to deliver
transformative insights into topological phases of matter. One goal that could result from a
synergy of characterization techniques would be a compelling demonstration of Majorana
modes.

Ferroelectricity:

If broken inversion symmetry causesia switchable spontaneous polarization, one has a
ferroelectric material. For this reason, the discovery of new ferroelectric materials is always
exciting. Among the novel ferroelectric.materials, orthorhombic hafnia, which was discovered a
little more than a decade ago, stands out because of its CMOS compatibility (basically with
possible implementation consistent.with current silicon memory chip manufacturing) [69]. Its
uniqueness as a condensed matter system was later realized in that the unit cell of ferroelectric
hatnia, HfO,, consists of ‘beth a non-polar layer and a polar layer. The hafnia ferroelectric
polarization reversal comes from m-layer displacement of oxygen atoms [70]. This weakens the
interaction between dipoles of neighbouring polar layers, causing the so-called flat phonon bands
and polarization switching that is nearly independent of film thickness and domain size (down to
the single unit cell) thus “scale-free” ferroelectricity [71]. Moreover, negative domain-wall
formation energy was revealed, suggesting that the polarization in neighbouring polar layers tends
to be antiparallel./Heng¢e, orthorhombic hafnia might be close to a model antiferroelectric system,
with a ferroelectric metastable state that resembles Kittel's proposal [72]. The next 10 years may
very well see more in-depth exploration of the ferroelectricity in orthorhombic hafnia down to the
two-dimensional limit, the role of oxygen displacement, as well as its antiferroelectricity, which
is much needed for energy storage applications. Ferroelectric behavior in 2 dimensions, already
seen some time ago in organic ferroelectrics [ 73], might well be expanded to 2D multiferroics [74].

Establishing a link to neighboring fields [74], we also need to mention the development
and the understanding of ferroelectric liquid crystals which will likely be of major interest in the
near, future. Indeed, there is now some recognition that the long-sought [75] and recently
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demonstrated ferroelectric nematic liquid crystals [76] can adopt chiral ground states, even,when
made from achiral molecules [77].

Nanoscale conductance:

Not only is there recognition of dimensionality-driven magnetic behaviour, but scaling
effects are also now seen with the nonmetal-to-metal transition and condu¢tance. For example,
SrIrO;(001) exhibits a film-thickness-driven metal-insulator transition [78480]. As wires become
smaller and smaller, are Cu, Ag and Au still the best conductors? While Cu'is generally considered
one of the very best conductors (1.68 p€2 cm), the resistance of Cu wires beconies less appealing
at wire widths on the nanometer scale because of grain boundary andssurface scattering. There is
promise in the quasi-one dimensional trichalcogenide wires of TaS¢s [§1}and ZrTe; [82] that may
well do better at wire widths of a few nanometers. These quasi-one-dimensional materials surpass
Cu for very narrow wires because of diminished edge scattering, eéven thetigh the conductivity of
bulk Cu, Ag and Au is higher. The effect of temperature makes a comparison between these quasi-
one-dimensional material and the better known conductors €ven more complex as resistance
changes due to a charge density wave (at about/63 K for bulk ZrTe; [83-86]) and
superconductivity, which can set in at much lower temperatures»in the region of 2 K [85-87].
Making the physics even richer, the periodic lattice distertion can be incommensurate [88]. So, the
effect of dimensionality (in this case wire widths) remains farfrom fully explored.

Phononics and nonequilibrium:

Another important topic is quantum phononics [89-96], which promises to develop the
next-generation techniques for single-phonon, manipulation and detection. If realized, these
breakthroughs may rival those single partiele techniques that have long existed for electrons and
photons. The field of quantum phononicsiseeks to'move on from the concept of the uncontrolled
phonon bath as a source of decoherence, to develop techniques in which phonons can be generated,
transmitted and detected at the level of countable numbers of quanta. There are also fundamental
questions to address, as quantum’phononics also involves the need to engineer phononic coupling
to the environment via suitable materials choice and structural design. In addition to basic interest
in this problem from a perspéctive of fundamental, solid-state physics, the potential applications
are broad, including quantum sensing [93], quantum computing [94,97] and quantum
communications [89,91,95,96]. Experimental examples, pointing to the potential applications
abound, as in the recent demonstration of inelastic tunneling creating phonon emission at a defect
[98]. Chiral phonons{99,100], as occur in systems with threefold rotational symmetry, imparting
a quantized pseudo angular momentum, may induce spin polarization in a nonmagnetic electronic
structure [101,102].

Nonequilibrinmydynamics in quantum systems has gathered tremendous momentum over
the last couple ofdecades. Initial work in this area involved study of situations where a parameter
of the Hamiltonian describing a quantum system is changed suddenly (quench) or at a fixed rate
(ramp) from an initial to a final value. The more recent studies of nonequilibrium dynamics in
quantum mechanics have mostly focused on periodically driven systems [103-109]. The dynamics
of such periodically driven systems at times which are integer multiple of drive periods, are
described by their Floquet Hamiltonians. Typically, such driven systems heat up to an infinite
temperature steady state [110]. At high frequencies or amplitudes, the systems, however, tend to
show a variety of phenomena such as dynamical freezing, dynamical localization, realization of
time crystalline state of matter and generation of topological states [103-109] at an intermediate,
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prethermal, timescale. These phenomena do not have an analogue in either equilibriumyor for
systems subjected to aperiodic or random drives. Indeed, many of these phenomena‘may be tied
to the presence of an approximate emergent symmetry of the Floquet Hamiltonian that controls
the dynamics of such systems occupying a large pre-thermal timescale [409]. Ultracold atom
systems, being sufficiently decoupled from the environment, serve as an impottant experimental
platform for such dynamical phenomena [111]. A long-standing problemin nonequilibrium
systems has concerned the nature of the field-induced breakdown of msulating behavior in
correlated materials such as charge-density wave systems. Driven by an€lectric field, or thermal
effects, quantum mechanical processes can result in a cascade-like or quantum avalanche transition
from an insulating to a conducting state [112]. Recent theoretical advances [112], invoking the
role of “quantum avalanching” to account for this behavior, /provide~a new direction for
interpreting the behavior of quantum systems far-from-equilibrium. Highlighting the role of virtual
phonon processes in the excitation of transport, this work also demenstrates how transport under
nonequilibrium may differ profoundly from that in the linear (weak bias) regime.

Several theoretical challenges remain in this field. For example, the concept of universality
and renormalization group, which has been central to quantumisystems in equilibrium, is not fully
understood for either closed or open driven quantum systems. Seeking a uniform theoretical
framework for understanding universality and finding @, possible classification of universal
features that may arise in such systems constitute important theoretical problems [113]. In
addition, there are theoretical challenges that emerge when one tries to understand periodically
driven open quantum systems, i.e. quantumisystems connected to an external bath. There are
approaches to understanding effect of a bath on @non-driven quantum system through Lindblad
operators but, for driven systems, the issue of existence of such Lindblad operators is still in
question [114]. Thus, a general understanding of the nature of the steady states of periodically
driven open quantum systems is still lacking. As an aside, the ramp dynamics of driven quantum
systems, through a quantum critical point, showed universal power-law behavior, termed as
Kibble-Zurek scaling, for excitation density and absorbed energies [115-119], and we note that
Tom Kibble (of Kibble-Zurek scaling).and Ajit Srivastava edited a special issue for JPCM on
"Condensed matter analogues of cosmology" [120]."

N
Time-resolved spectroscopies andphysics at the ultrafast time scale:

In recent decades, time-resolved ultrafast laser techniques, based on pump-probe
technology, have been combined with various experimental methods in condensed matter physics,
leading to the develepment of time-resolved absorption and photoemission spectroscopy [121,
122], time-resolved angle-tesolved photoemission spectroscopy (TR-ARPES) [123-125], ultrafast
scanning tunneling microscopy (ultrafast STM) [126], ultrafast electron diffraction (UED) [127].
Focusing laser pulsesiin‘the THz range onto the STM tunnel junction generates transient
bias pulses | with femtosecond temporal resolution, enabling the tracking of intrinsic
dynamics_in ‘sifigle molecules [128] and the probing of defect states in two-dimensional
materials on timescales faster than lattice vibrations [68]. These methods combine
atomic | spatial | resolution with sub-picosecond temporal and millielectronvolt energy
resolution. 'STM-based optical techniques, like scanning tunnelling luminescence and tip-
enhanced photoluminescence, enable direct measurement of optoelectronic properties of
single molecules and defects, including single-photon emitters with relevance to quantum
technologies [129]. All of this has opened the door to investigation of ultrafast excited state
dynamics in condensed matter systems, such as lattice, electrons, and spins.
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As new experimental techniques become available, understanding the physical‘picture of
the ultrafast dynamics has required developing real-time first-principles methods. Recently, real-
time dynamical methods have gradually been adopted to study such problems. Excited-state
dynamics can be divided into two parts: the photoexcitation and thesrelaxation. For the
photoexcitation process, the crucial point is to describe the light-matter interaction.  Various
methods have been developed, such as the time-dependent Schrodinger equation (FDSE) [130],
the semiconductor Bloch equations (SBE) [130], real-time Time-dependent Density Functional
Theory (rt-TDDFT) [131-134]. Time-dependent Bethe-Salpeter Equation (TDBSE) [136], time-
dependent adiabatic GW, Green’s function (TD-aGW) methods [137]; and density matrix based
TDDFT [138,139]. For systems in which electron correlations are significant, a methodology that
combines Dynamical Mean Field Theory (DMFT) with TDDFT 140-44%] has been proposed.
These methods enable the study of the dynamics of charge carriers‘excited by light, nonlinear
optical effects, and the many-body effects of electron-hole pairs,forming excitons during the
excitation processes. Based on the Boltzmann transport,equation, sthe real-time Boltzmann
Transport Equation (rt-BTE) method has been developed to study carrier relaxation dominated by
electron-phonon coupling within the quasi-classical approximation [142]. Beyond the quasi-
classical approximation, and closer to "quantum dynamics," are methods that incorporate non-
adiabatic effects. Currently, two main approaches have,been developed that include non-adiabatic
effects: one involves combining of rt-TDDFT with Ehrenfest dynamics, to study the dynamics of
the coupled lattice and electrons together in the meansfield potential surface [131-135] The other
approach involves combining the time-dependent Kohn-Sham equation (TDKS) with the surface-
hopping method, introducing a classical " pathyapproximation (CPA) [143]. Non-adiabatic
molecular dynamics (NAMD) is based on the classicalpath approximation. Moreover, the various
theoretical framework can be combined with. different levels of electronic structure methods. For
example, combining with spin-orbit coupling can be used to study spin dynamics [ 144]; combining
with the GW + BSE method (GW + real-time BSE) can be used to study exciton relaxation [145];
and directly introducing the electton-phonon coupling matrix into the Hamiltonian allows for
studying charge carrier dynamig§ in momentum space (NAMD _k) [146]. NAMD codes, such as
Hefei-NAMD and Pyxaid, are increasingly being applied to condensed matter systems [143,147]
broadening our understanding of ultrafast excited state dynamics in condensed matter systems. At
the same time exciton-phonon interactions appear to compete with electron-phonon interactions in
controlling the binding.energy and lifetime of excitons in two-dimensional transitional metal
dichalcogenides [139]. Yet, in the field of first-principles calculations, theoretical methods to study
the excited-state dynamics of electrons, holes, spins, excitons, and other carriers are still in their
early stages. We (expect to see important developments in these areas driven by improved
methodologies and. increasing computational capabilities. Further developments in these
theoretical and computational techniques should enable direct comparison with the multitude of
pump-probe measurementsusing a variety of time and angle-resolved spectroscopic technique that
document structural and electronic evolution of low dimensional systems far from equilibrium.

Density functional theory-based machine learned approaches:

In recent years, condensed matter physics has witnessed a paradigm shift from traditional
density functional theory (DFT) calculations to machine learning (ML) driven approaches,
revolutionizing material property predictions [148]. While DFT plays a foundational role for much
of condensed matter theory, in part because of the quantum-scale accuracy, there are difficulties
inapply DFT to very large systems. Although increasingly larger systems are now accessible to
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DFT, ML models trained on DFT datasets now bridge the gap between the size scale‘typical of
DFT and much greater length scales, enabling efficient simulations at mesoscopic or even
macroscopic scales. State-of-the-art implementations, including graph-based neural networks and
equivariant architectures, demonstrate remarkable successes possible 4n predicting phase
transitions [149], electronic structure [150]], mechanical responses [151], and high-order, tensor
properties [ 152]. Machine-learning driven approaches are a route to achieving near-DFT accuracy
while operating at time and space scales inaccessible to traditional quantum simulations. This
methodological advancement enables the exploration of complex systéms with atomic-level
resolution across experimentally accessible scales, thereby bridging the gap bétween quantum-
mechanical precision and mesoscopic/macroscopic material behaviorsThe synergistic integration
of physics-informed neural architectures with scalable data-driven frameworks is expected to
facilitate the accelerated discovery of emergent phenomena in larger=scale systems such as twisted
moiré superlattices and designer metamaterials in the near future.

There are other applications for machine learning (ML) derived potentials for DFT
calculations. There is increasing evidence that in most cases thestructure of a catalyst is not static
but changes dynamically with the external conditions/of temperature, pressure, etc. Catalytic
activity as ferroelectric surfaces can differ at ferroelectric domain'walls and on polarization, thus
can be voltage controlled. Modeling these various_eemplexities is presently out of reach of ab
initio molecular dynamics (MD) simulations, but in developing accurate machine learning
potential may lead to descriptions of dynamical phenomena and in particular structural evolution
during heterogeneous catalysis reactions [ 153]. One open<challenge, however, is to include long-
range interactions in these ML-potentials, whichis likely to become a focus area.

In parallel, tensor-network methods, especially the density matrix renormalization group
(DMRG) and matrix product states (MPS), have become indispensable for simulating low-
dimensional strongly correlated systems [154]. These methods have revealed a rich landscape of
many-body phenomena, including the interplay. between antiferromagnetic interactions, geometric
frustration, and topological order in. quantum magnets. Recent developments such as projected
entangled pair states (PEPS) and'infinite PEPS (iPEPS) have extended these capabilities into two
dimensions. Beyond classical simulation, tensor networks are increasingly informing quantum
algorithm design, for example through variational ansétze inspired by MPS and PEPS structures
and serve as key benchmarks for near-term quantum simulation experiments. We envision that
such hybrid classical-quantum algorithms may become a scalable route to simulating strongly
correlated materials and accelerate progress toward practical quantum simulation on noisy
intermediate-scale quantum (NISQ) devices.

Chemical Physies:

Better inderstanding of chemical bonding, catalysis and the mechanisms for chemical
reactions have been aided by advances in theory as well as vast improvements in molecular
imaging. Atomic force microscopy (AFM) can achieve higher spatial resolution than scanning
tunneling microscopy (STM), particularly when employing chemically functionalized tips
(e.g., CO-terminated). This has enabled images of individual molecules offering a rare visual
connéctionto’ the atomic world [155]. The identification of increasingly complex
molecules¢and improved chemical sensitivity is anticipated over the next decade [156].
Complementary advances in on-surface synthesis are allowing access to elusive molecular
structures through thermal, optical, or tip-induced reactions. This opens pathways to
engineered molecular systems with high-spin ground states, artificial spin lattices [157],
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topologically non-trivial properties, and increasingly sophisticated molecular machines.
Many opportunities remain in extending these studies to new substrates and’integrating
complementary techniques such as inelastic electron tunnelling spectroscopy (IETS), as noted
above, and electron spin resonance (ESR) [158].

Solid surfaces will continue to be the playground for the creation of nanoscale materials
through either supramolecular overlayer formation or simply the formation/of hybrid interfaces
whether it is metal-semiconductor or organic-inorganic or some other vafiation. These reduced
dimensional systems typically display electronic states that are distinct"from the bulk and are
responsible for properties such as catalytic activity, novel growth modes, ‘and quantum
confinement. There continues to be interest in inducing novel quantumypreperties by reducing the
dimensionality of the surface electrons, as has been the case with “molecular overlayers
manipulating the characteristics of the “quasi” free two-dimensional electron gas present at
the (111) surfaces of noble metals, leading to tunable artificial lattices, moelecular nanogratings, or
quantum dot arrays [159]. It has long been recognized that the surfacestate of Cu(111), Ag(111)
and Au(111) can influence molecular adsorbate packing [160,161]. Indeed, perturbations to the
free electron density at the surface are compatible with‘the much older concept of the 'through
metal bond'. A recent focus is on engineering quantum states in artificial electronic Kagome
lattices that may appear through an intricate interactiomof molecular overlayers with surface states
on metals such as Au and Cu [162]. IS

Another area of growing interest may be th¢ exploitation of metallic surface states of
topological materials for chemical reactions such as watersplitting, the oxygen evolution reaction
(OER), the hydrogen evolution reaction (HER), etc. [163]. The idea is appealing as the
topologically protected states in these materials provide a stable electron reservoir with high
electronic conductivity and carrier mobility,and well-defined spin states. In electrocatalytic water
splitting, for example, control of the electron spin through chirality and magnetization using
topological chiral semimetals (RhSi, RhSn and, RhBiS) has helped overcome the sluggish kinetics
of the anodic oxygen evolution reaction owing to the spin-dependent electron transfer process
[164]. There is, however, the neéd to carry out fundamental studies of the physical and chemical
properties of these intriguing quantum materials before we can fully understand the role of spin
and chirality in facilitating chemical reactions. Development of computation techniques beyond
single references DFT, as afforded by multi-reference wave-function-based methods [165] may
provide better description of electron correlations and spin characteristics of these and other hybrid
systems involving organic-inorganic interfaces.

Soft matter, biophysics, liquids and organic electronics:

Expanding on progress in the highly active research fields of soft matter, biophysics, and
liquids, the tréemendous-technical advances now allow experimentalists to manipulate and to
observe single molecules. Yet, fundamental challenges to understand and to classify the observed
out-of-equilibrium properties of these systems remain. A challenge is to push forward the design
of smart models_(theory and simulation) and the synthesis of smart micro-particles or of active
matter systems, inspired by real particles, where “smart” refers to clusters or particles able to
respond to their'environment in order to adapt properties and shape to their surrounding.

A particular challenge will arise in this field from the extremely broad range of scales that
extends from the microscopic level to macroscopic scales. Tremendous progress in novel
techniques allow observation, manipulation and investigation of particles and fluids at the smallest
scale, where microscopic interaction effects become relevant. To cope with the disparity in scales,

11
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new techniques have to be developed in experiment, theory and simulation in an effort to
understand — starting from the microscopic level — macroscopic properties. Increasingly complex
functionalities of microscopic units (and their related models) could then lead to unusual properties
of the macroscopic system. This route can, alternatively, also be realized imthe inverse direction
(“inverse design’) which lead to highly complex microscopic entities ([bio-]molecules, colloids,
etc.) which then may self-ensemble into macroscopic systems with desired; targeted properties.
We foresee such progress in this arena in the coming years.

Recently, organic electronic materials have seen increased recognition, pattly driven by the
demonstration of nonvolatile voltage-controlled switching of the spin state that appears to be
correlated to abrupt changes in thin film conductance [166], byscombining spin crossover
molecular films with ferroelectric thin films. These transistor devices might be competitive with
silicon technology if their resistance can be lowered, as they are ‘demonstrated to work at room
temperature and above. Yet the origin of the conductance, given that most spin crossover
complexes have a large highest occupied to lowest unoccupied molecular orbital gap and why
there is a conductance change with changing spin state remains elusive. Likewise, organic
ambipolar transistors, when first suggested [167] attracted a lot,of attention, but those papers then
had to be retracted [167,168], resulting in considerable uncertainty. Finally, with the increasing
number of demonstrations of verifiable working .erganic ambipolar transistors [169], some
resolution to the potential of organic ambipolar transistorssnow has much more firm ground. Yet
again, the origin of the conductance, for both electrons and holes in these systems is not fully
explained. Nor is there much understood ‘as to what{may limit switching speed, as most
experiments have depended on fast optical probesy rather than voltage. Given the fact that there is
little theory addressing these questions, such systems seem ripe for future exploration.

In Summary:

It is clear that a lot of emerging condensed matter physics is driven by symmetry (breaking
of inversion symmetry, presencenof chirality, etc.) as well as improved techniques, both
experimental and theoretical. Chirality;and symmetry breaking, for example, can play a crucial
role in magnetism, spin selectivity, superconductivity and there is now reason to believe that chiral
phonons exist as well. Dimensionality and interfaces, both of long-standing interest in condensed
matter, continue to play an important role in emerging condensed matter physics. The reader is
reminded that this perspective, by necessity, is incomplete. Yet it remains our hope that we’ve
highlighted some exciting avenues where we expect much progress in the coming 10 years. We
hope to see more disecussion.regarding the future prospects in chemical physics, more discussion
of the varied ongoing research in soft matter, a deeper dive into momentum microscopy
implementation ‘of \time and angle-resolved photoemission, a much-expanded discussion of
machine learning whileimaking more of the links between physics and biology, materials science,
in the future. Correctly mapping the changing face of condensed matter, however, can only be
done looking backwards, and this is forward looking.
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