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Abstract

Public electric vehicle (EV) charging infrastructure is crucial for accelerating EV adop-
tion and reducing transportation emissions; however, disparities in infrastructure access
have raised significant equity concerns. This review synthesizes existing knowledge and
identifies gaps regarding equity in EV public charging research. Following structured
review protocols, 91 peer-reviewed studies from Scopus and Google Scholar were analyzed,
focusing explicitly on equity considerations. The findings indicate that current research on
EV public charging equity mainly adopts geographic information systems (GIS), network
optimization, behavioral modeling, and hybrid analytical frameworks, yet lacks consis-
tent normative frameworks for assessing equity outcomes. Equity assessments highlight
four key dimensions: spatial accessibility, cost burdens, reliability and usability, and user
awareness and trust. Socio-economic disparities, particularly income, housing tenure,
and ethnicity, frequently exacerbate inequitable access, disproportionately disadvantaging
low-income, renter, and minority populations. Additionally, infrastructure-specific choices,
including charger reliability, strategic location, and pricing strategies, significantly influence
adoption patterns and equity outcomes. However, the existing literature primarily reflects
the contexts of North America, Europe, and China, revealing substantial geographical
and methodological limitations. This review suggests the need for more robust norma-
tive evaluations of equity, comprehensive demographic data integration, and advanced
methodological frameworks, thereby guiding targeted, inclusive, and context-sensitive
infrastructure planning and policy interventions.

Keywords: electric vehicles; public charging infrastructure; systematic review; charging
equity; charging behavior; Socioeconomic disparities

1. Introduction
Electric mobility has rapidly emerged as a cornerstone in the global endeavor to reduce

carbon emissions and achieve more sustainable transportation networks. The International
Energy Agency (IEA) highlights substantial global disparities in access to EV public charg-
ing, emphasizing the importance of equitable infrastructure to enable a widespread shift
to electric mobility [1]. Various national governments have intensified efforts to deploy
robust EV public charging networks, allocating significant budgetary outlays and incen-
tives for both charging infrastructure and advanced battery technologies. Notably, several
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European nations and China continue to pilot large-scale charging infrastructure initiatives.
In the United States, recent legislative instruments, alongside directives from agencies
such as the U.S. Department of Transportation, aim to catalyze EV adoption through the
expansion of public charging access. While public investment and targets accelerate de-
ployment, these benefits are not automatically shared evenly. Prior studies show that
charger placement often follows profitability and visibility (e.g., highways, commercial
districts), leaving neighborhoods with low home-charging availability, typically affecting
renters and residents of multi-unit dwellings, who are dependent on a thinner, less reliable
public network [1–3]. In such contexts, policy objectives (adoption, emissions reduction,
and mobility inclusion) hinge on whether public charging is equitably distributed and
accessible to those who cannot charge at home.

Equity concerns and user behavior are tightly coupled rather than separate topics: the
same users who rely most on public charging, such as renters, drivers with smaller battery
packs, and those facing longer detours, also exhibit distinct charging preferences and
constraints (price sensitivity, range-anxiety hedging, time windows), which shape when
and where public infrastructure is actually usable for them [2–16]. Several studies indicate
that the widespread deployment of strategically placed charging stations can mitigate
range anxiety and encourage broader EV adoption [17,18]. Early efforts in infrastructure
expansion often focused on ensuring reliable coverage, with governments and private
stakeholders installing chargers along major highways and in city centers to increase
consumer confidence in EV usability on inter-city and intra-urban trips [19,20]. However,
as EVs expand beyond affluent or early adopters into mainstream markets, researchers
and policymakers increasingly recognize that simply achieving coverage is insufficient.
Attention must also be paid to whether the infrastructure is evenly distributed, how it
caters to different user groups, and how it can be scaled sustainably while meeting evolving
mobility and energy demands [21,22]. Research also shows that the lack of equitable and
user-centric development could leave traditionally underserved communities, including
rural and low-income populations, behind in the shift to electric mobility [23,24]. For
instance, wide-ranging accessibility studies in dense urban areas have demonstrated that
installing chargers near lucrative commercial centers or affluent residential districts is often
more profitable for private operators; however, it frequently results in the unintentional
underserving of neighborhoods where residents lack private home charging options, often
lower-income communities or areas dominated by multi-unit dwellings. This disparity
constitutes a critical equity issue, as those most reliant on public infrastructure face the
greatest access barriers. Uneven charger distribution risks limiting EV adoption in these
communities, potentially excluding them from the economic and environmental benefits
of electric mobility and deepening existing socioeconomic divides [2–6]. Consequently,
resolving issues of inclusivity and equitable distribution of charging stations has emerged
as a focal challenge not only for municipalities, utilities, and regulators but also for EV
manufacturers and prospective investors in charging services.

Beyond equity concerns, a second dimension involves the interplay of user behavior
with charging infrastructure design. EV user typologies can be broadly classified into five
categories: routine-driven (regular commuting patterns) [7], convenience-oriented (minimal
route deviation) [8,9], economic (price sensitivity) [10–12], risk-management (range anxiety
mitigation) [13,14], and time-sensitive (scheduling constraints) [15,16]. These patterns
directly influence charging decisions through distinct mechanisms. Routine-driven users
prefer charging locations that are integrated into their daily routines, while convenience-
oriented users prioritize minimal detours. Economically motivated users respond to pricing
incentives and time-of-use rates, whereas risk-averse users charge preemptively even when
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unnecessary. Each typology represents distinct charging behaviors. Table 1 summarizes
these charging behaviors across diverse charging typologies.

Table 1. Existing charging behaviors across charging typologies.

Typology ↓/
Charging

Behavior →
H1 * O-L2 L-DC T-DC

Routine-
driven Medium ** High Medium Low–Medium

Convenience-
oriented
(detour)

Low High High Medium

Economic/price-
sensitive Low–Medium High High Medium

Risk-
management

(buffer/uptime)
Low–Medium High High High

Time-sensitive Low Medium High High
* H1 refers to home-dominant and rare public charging, O-L2 refers to opportunity level 2 public charging,
denoting charging on work/retail places plus peaks during the day, L-DC refers to local DC fast charging,
denoting reliance on frequent public charging on community/metro DC fast chargers, T-DC refers to long-
distance DC fast charging, denoting weekend DC fast charging usage for range extension/road trips. ** We
evaluated each charging behavior within each charging typology using a range from “Low” to “High” to show
how each charging behavior is presented in each typology based on relevant studies’ evidence.

Accordingly, infrastructure that is dense but poorly sited for non-home-charging users,
or fast but unreliable, can raise time and cost burdens for precisely the populations policy
aims to support, weakening the effectiveness of otherwise substantial public investment.

EV public charging decisions consequently hinge on a variety of factors, ranging
from cost, time-of-day rates, charging speeds, and trip patterns, to psychological aspects
such as range anxiety and perceived station reliability [8,25]. Evidence points to frequent
mismatches between the available infrastructure and the actual needs of drivers. For
example, while many current deployments favor fast-charging corridors along highways, a
substantial portion of EV owners may value slower but more conveniently located chargers,
particularly near work sites or shopping malls. In this context, ignoring the heterogeneous
behavior of EV users can diminish returns on large-scale infrastructure investments.

The impetus for this review lies at the intersection of two pressing concerns:
First, improving equitable deployment of EV public charging networks through com-

prehensive equity assessments based on spatial access (SA), cost burden (CB), reliability
and usability (RU), user awareness and trust of public charging (AT). Specifically, SA refers
to geographic equity asks whether chargers are located close enough for routine use by
all groups. GIS studies link higher station density to shorter detours and faster adoption,
while highlighting rural and minority “charging deserts” [2,26,27]; CB represents that even
where chargers exist, users face heterogeneous out-of-pocket costs, including session fees,
detour fuel, or peak-period tariffs. Income-stratified analyses show that low-income and
renter households pay a higher share of disposable income for public charging [3,28]; RU
means equity also hinges on whether chargers are operational, fast, and easy to use. Field
audits reveal that a quarter of public DC fast chargers may be non-functional at a given
time, disproportionately discouraging first-time and price-sensitive users [29]; AT denotes
that social-psychological access includes knowledge of charger locations and confidence in
their reliability. Surveys find lower familiarity and trust among minority and lower-income
drivers, compounding physical and financial barriers [30,31]. By systematizing how each
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dimension is conceptualized and measured, we move beyond one-dimensional notions of
“access” and capture the layered barriers facing diverse EV users.

Second, accounting for diverse public charging-related influencing factors such as user
socio-economic and demographics, charging behaviors and preferences, public charging
infrastructure supply and operations, and system-level plus climate contexts in planning
models. Although policy discussions around EV public charging infrastructure continue to
expand, particularly in light of the United Nations’ Sustainable Development Goals, extant
research has only begun to address how equity, accessibility, and technological imperatives
converge. Often, location-allocation models (optimization tools that choose station sites
and assign demand to them to minimize travel/queuing time or maximize coverage under
budget/power constraints) and operational frameworks for EV public charging largely
assume homogeneous or idealized EV user charging behaviors, while socio-demographic
insights remain under-integrated.

The review aims to answer the following research questions (RQs) to understand how
literature measures, what factors matter, where, and with what effects for these factors in
the context of EV public charging equity:

• RQ1: What are the main methodological frameworks and analytical approaches used
to assess the equity of public charging infrastructure?

• RQ2: What are the key factors influencing the equity of EV public charging at the
micro, socio-economic, infrastructure, and system levels?

• RQ3: How do the identified influencing factors affect the equity of EV public charging
across SA, CB, RU, and AT dimensions?

Following this introduction, Section 2 elaborates on the systematic methodology
employed to gather and analyze the relevant literature on EV public charging. Section 3
distills the findings into thematic clusters, summarizing existing methodologies adopted
into public charging equity assessment, listing identified factors categorized into four
groups that influence public charging equity, and discussing the implications for those
factors’ impacts. Section 4 synthesizes key insights, maps out policy-oriented strategies for
equitable public charging expansion, and identifies important directions for future research,
including the opportunities presented by advanced battery technologies, real-time pricing
models, and cross-sector collaborations in mitigating disparities.

2. Materials and Methods
2.1. Material Search and Inclusion Strategy
2.1.1. Resources Search and Identification

We used a systematic review approach to identify and synthesize scholarly works
related to EV public charging infrastructure. The database search was conducted in Scopus
and Google Scholar, using sets of keywords that combined terms “electric vehicle” OR “EV”
with “public charging” OR “publicly accessible charging” OR “non-residential charging”
and relevant modifiers (“charging infrastructure” OR “charging station”). Additional
keywords captured dimensions of equity and accessibility (“disparity,” “inclusi*,” “social
justice”), user behavior (“travel behavior,” “charging behavior,” “preference,” “adoption”),
and socio-economic/demographic factors (workflow showing in Figure 1).
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Figure 1. PRISMA search and selection workflow.

2.1.2. Resources Screening, Quality, and Eligibility Assessment

The search yielded a combined total of 357 references from both databases by using
pre-defined keyword combinations. Then duplicate records (13 in total) were removed,
resulting in 344 unique items. A set of exclusion and inclusion criteria was applied to screen
those items, including: (1) Only English-language publications were retained. (2) Only
studies published between 2010 and 2025 were considered. Large-scale public-charging
roll-outs and the first peer-reviewed equity studies did not appear until the early 2010s,
so earlier literature provides little relevant evidence. (3) Studies focusing exclusively on
“home charging” were excluded. (4) Peer-reviewed journal articles, conference papers, book
chapters, and dissertations were included, while excluding non-peer-reviewed sources
such as reports, news articles, or editorials.

We screened titles and abstracts to confirm relevance to at least one of three key re-
view focuses: (1) Equity, accessibility, or distribution aspects of public charging. (2) User
preference or charging behavior associated with public charging. (3) Socio-economic or
demographic impacts of public charging. Two authors independently conducted this
screening to ensure quality and relevance by subjectively selecting an option from “highly
related”, “related”, to “not related”, with disagreements resolved through internal dis-
cussion based on the options that the two authors selected. When either author selected
“highly related” in the context, the material was included. Papers deemed relevant at the
abstract level were subject to full-text review to verify their detailed treatment of the same
three focus areas. Finally, each full-text was examined by two authors for final eligibility,
resolving any discrepancies via consensus following the same process as abstract examina-
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tions. Through this iterative screening and assessment process (see Figure 1), we compiled
the final set of studies for in-depth synthesis. The subsequent sections elaborate on the
synthesis, interpretation, and policy implications derived from these selected materials.
One thing worth noting is that to ensure no relevant materials were missed, backward
tracking and forward tracking were further conducted for the selected 91 studies by re-
viewing their reference lists (backward tracking) and inspecting all articles that cite them in
Web of Science (forward tracking), following defined inclusion and exclusion criteria; the
results remained unchanged.

2.2. Review Statistics

A total of 91 relevant studies were included in this review on equity and charging
behaviors in EV public charging infrastructure. Figure 2 provides summaries of the main
statistical results, which are discussed in more detail below. First, scholarly output has
accelerated sharply since 2021, with publications rising from 4 papers in 2020 to 13 in 2021,
16 in 2022, 15 in 2023, and 20 in 2024. The first quarter of 2025 has already seen 13 studies
published, signaling sustained momentum and continued policy relevance. By counting
the co-occurrence of keywords that appeared in 91 studies and mapping publication years,
Figure 2 illustrates an interesting trend that reflects the growing academic and policy
interest in sustainable and equitable transportation solutions, particularly as EV equity
becomes more mainstream. Because VOSviewer (v1.6.20) treats singular and plural tokens
separately, both ‘electric vehicle’ and ‘electric vehicles’ appear as distinct nodes, although
they designate the same research theme. Throughout the discussion, we treat them as
one concept.

Figure 2. Keywords’ co-occurrence networks among observed studies (produced by VOSviewer).

Regarding the study type, the majority of the reviewed papers (76 studies; 83.5%) were
published as journal articles, while 15 studies (16.5%) appeared in conference proceedings.
With regard to the type of data utilized, the analysis reveals that 52.7% of the studies relied
on secondary datasets, whereas 38.5% employed primary empirical data collected through
surveys, experiments, or direct measurements. Geographically, the studies covered a wide
range of regions. China (23 studies, 25.27%), the United States (23 studies, 25.27%) were
the most-analyzed countries, together accounting for almost half of all studies. India,
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Germany, and the Netherlands followed (6 studies, 6.59%; 6 studies, 6.59%; 4 studies, 4.40%,
respectively). A long tail of single- or double-study appearances includes Norway, New
Zealand, Kuwait and several sub-national regions (for instance, Ontario, King County).
7 (7.69%) studies adopted a global theoretical scope untethered to real-world locations,
signaling an emerging, but still modest, interest in transferable modeling frameworks.
This pattern indicates that while the research interest is global, empirical field-based
studies remain largely concentrated in high-income countries. This geographical focus
also aligns closely with global EV deployment patterns. In 2023, nearly 14 million new
electric cars were registered worldwide, bringing the total EV stock to about 40 million,
with battery-electric vehicles accounting for approximately 70 percent of that total [1]. New
registrations were overwhelmingly concentrated in three markets: China (~60 percent),
Europe (~25 percent), and the U.S. (~10 percent) [1]. In the United States, a systematic
review of infrastructure needs estimates 13–30 million light-duty EV chargers by 2030, with
cumulative investment up to USD 97 billion (vs. about USD 24 billion announced at the
time) and an average of 0.8 chargers per vehicle [32]. In the United Kingdom, public support
has included GBP 80 million for charging infrastructure and GBP 37 million for innovative
charging projects, with some analyses projecting up to 10 million EVs by 2030 [33]. In
Turkey, national reviews highlight low but growing adoption and a charging-station density
map indicating under-provision in eastern regions, supporting calls to expand coverage
beyond the western corridor [34]. Global EV trends continue to develop, as in 2024, EV
sales surged past 17 million, surpassing 20 percent of all new car sales [35], mainly with
BEVs and PHEVs, but limited on Fuel Cell Electric Vehicles (FCEVs) at this stage [36].

The data sources used in the found literature were highly diverse, encompassing
survey-based data, public datasets, corporate data from electric utilities, social media-
derived information, and synthesized data generated through simulation models. Survey
data and public databases were among the most common sources, although the signifi-
cant use of synthetic datasets in some studies points to ongoing challenges in accessing
comprehensive real-world data.

The distribution of research questions discussed by the reviewed studies provides
further insights. 58 studies were observed to primarily focus on behavioral, operational,
and usage aspects of EV public charging, making it the most prominent research focus.
49 studies were found to discuss public charging equity assessments and social dimensions.
In comparison, 26 studies appeared to relate to public charging spatial distribution, while
only 16 studies dealing with systemic barriers and policy implications were the least ad-
dressed. Furthermore, an analysis of research focus co-occurrence revealed that operational
aspects and equity dimensions are frequently studied together, suggesting an increasing
combination of usage behavior analysis with social equity concerns. In contrast, infras-
tructure planning and systemic barriers are rarely discussed in combination, indicating a
potential fragmentation in how infrastructure and policy challenges are conceptualized. Fu-
ture research would benefit from more integrated frameworks that simultaneously address
spatial planning, policy barriers, and equity outcomes.

3. Results and Discussion
Based on 91 studies, this section first surveys the analytical lenses applied to charging

equity (Section 3.1 answers RQ1), then synthesizes multi-level factors (Section 3.2 answers
RQ2), and finally discusses how those determinants manifest across four equity assess-
ment dimensions in geographic, socio-economic, and climate contexts while highlighting
evidence gaps (Section 3.3 answers RQ3).
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3.1. Measurement of EV Public Charging Equity
3.1.1. Existing Methodological Frameworks

Within 91 selected studies, 52 were reviewed to have adopted a wide range of method-
ological frameworks to assess public charging infrastructure accessibility, each with distinct
strengths and limitations. Based on (1) how the physical charging network, user demand,
and policy levers are abstracted; (2) the mathematical or computational paradigm used
to link inputs to outputs; and (3) the equity-related indicators it produces. Table 2 pro-
vides a summary of the classifications of existing frameworks proposed in the previous
literature. Individual studies may implement a framework with different datasets or
solution techniques, but they remain comparable because they operate under the same
overarching analytical architecture. Widely used accessibility measures (gravity/2SFCA
and kernel density) often assume homogeneous user behavior and static conditions, for
instance, identical value of time, uniform trip purposes, and equal ability to substitute
between chargers, while omitting reliability and price variability. As a result, they can
overstate equity for renters and multi-unit-dwelling drivers who cannot shift to home
charging [2–4,6]. Empirical work shows that charging demand is heterogeneous across
user types and time windows, challenging these assumptions [10,16,37]. Likewise, siting
optimization studies that maximize coverage or flow capture without RU/price inputs risk
recommending stations that are dense but functionally inaccessible to non-home-charging
users [38–40].

Table 2. Summary of existing adopted frameworks to assess equity in public charging infrastructures.

Framework Main Idea Outputs Strengths Limitations Relevant Study
Count (%)

Network equilibrium
and flow capturing

Treat charging
stations as nodes on a
multimodal network;

jointly optimize
travel cost and

charging demand.

Optimal station
siting, equilibrium

flows.

Captures route
substitution and
queuing effects.

High data and
parameterization

burden; equilibrium
assumptions may
break down under
stochastic demand.

8 (15.38%)

Spatial accessibility

Measure geographic
reach (for instance,

coverage radius,
2SFCA, kernel

density) relative to
population or vehicle

stock.

Accessibility scores,
hotspot maps.

Intuitive,
GIS-friendly; works

with sparse data.

May over- or
under-estimate

access in rural/low-
pop-density areas;
ignores temporal

variation.

16 (30.77%)

Behavioral decision

Embed user
heterogeneity (value
of time, range anxiety,
socio-demographics)

in choice or
game-theoretic

models.

Choice probabilities,
elasticities, equity

impacts.

Captures
distributional effects;

aligns with survey
evidence.

Sensitive to survey
bias and

stated-preference
artifacts; heavy

parameterization.

20 (38.46%)

Hybrid frameworks *

Combine two or
more of the above

(for instance,
equilibrium +

behavioral logit, or
GIS kernel density
feeding a system

dynamic adoption
loop).

Multi-scale KPIs
(coverage, queuing
delay, equity index).

Bridges technical and
socio-behavioral

lenses; better policy
realism.

Integration increases
data demands and

computational
complexity.

8 (15.38%)

* In addition to these three core paradigms, a growing body of studies has sought to integrate them, giving rise to
hybrid frameworks. These hybrid designs are not a separate paradigm per se but rather combine features of the
three to reconcile technical precision with socio-behavioral realism.

Specifically, Network-equilibrium and flow-capturing frameworks treat chargers as
nodes on coupled road–power networks and solve mathematical-programming or optimiza-
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tion problems to reach system-wide equilibrium, thereby reproducing routing constraints
and queuing dynamics [9,41,42]. Spatial-accessibility frameworks adopt GIS coverage
indices, floating-catchment areas, and kernel-density estimates to juxtapose charger supply
with population demand, producing intuitive hotspot maps for planners, even though
their outputs can be distorted in low-density regions and are sensitive to radius or travel-
time thresholds [17,28,38,43,44]. From a user perspective, behavioral-decision frameworks
incorporate heterogeneous user preferences, including value of time, range anxiety, and
socio-demographics, through discrete choice, Bayesian, or AI estimators, yielding equity-
relevant insights at the cost of large, representative survey requirements and potential
stated-preference bias [26,39,45–48].

Finally, integrated or hybrid frameworks purposely fuse two or more of the foregoing
approaches, for example, Analytic Hierarchy Process (AHP)—entropy—Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS) multi-criteria ranking embedded
in an equilibrium model or GIS hotspot detection feeding a system-dynamics loop to
reconcile engineering precision with social realism, though such syntheses raise data
demands and computational complexity [25,49,50].

Overall, these frameworks have broadened the empirical and conceptual base for
evaluating EV public charging accessibility, yet network equilibrium remains numerically
smaller, largely due to higher demand for rich traffic, power-flow, and socio-economic
data, which is similar to the adoption of hybrid frameworks. The choice of these frame-
works, therefore, depends on the planning objective and data environment: long-range
corridor design favors equilibrium models; cities lacking detailed trip data may start with
GIS coverage indices; equity audits or tariff design call for behavioral models; and large
public–private programs increasingly adopt hybrids to capture grid constraints and demo-
graphic heterogeneity. Framing the approaches along this strategic–tactical–operational
spectrum clarifies that they are orthogonal tools in a common toolbox rather than rungs on
a maturity ladder. To further investigate what are the current potential methodology gap in
measuring EV public charging equity, detailed analytical approaches are discussed for both
engagement in 52 studies related to frameworks and adoption frequency among 91 studies.

3.1.2. How Do Analytical Approaches Engage in Existing Frameworks

Analytical approaches to assess public charging accessibility through network-
optimization logic employ mathematical programming or flow-capturing models to deter-
mine where and how large stations should be located. Corridor-scale studies use mixed-
integer and flow-capturing formulations to minimize system-wide travel cost or traveler
“inconvenience” [41,42]. More behaviorally rich variants add Bayesian or car-following
sub-modules [45,50] and even incorporate equity or dual objectives of efficiency and fair-
ness [51]. Their prescriptive power is high, yet all remain sensitive to congestion-queuing
parameters and become computationally prohibitive once national networks or stochastic
demand scenarios are introduced [9,52,53]. Meta-heuristic hybrids (genetic algorithms with
mathematical programs, for instance) alleviate but do not eliminate scale and calibration
issues [54].

A second stream relies on spatial-statistical and GIS techniques to portray how chargers
are distributed relative to people, trips, or deprivation scores. Kernel-density estimation,
floating-catchment areas, and G2SFCA measures dominate this family, producing intuitive
equity maps but often overstating access in low-density tracts [17,27]. Cluster-detection
algorithms such as DBSCAN, hierarchical, and K-Prototype approaches sharpen hotspot
detection and reveal socio-spatial disparities [4,43,55]. Multi-criteria decision-making
(AHP, entropy weighting, improved TOPSIS) is regularly coupled with GIS layers to
rank candidate sites [20,25] or to blend efficiency and equity targets [56,57]. Still, these
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approaches hinge on user-defined buffer radii and survey-derived demand weights, making
cross-city transferability weak [21,58].

Machine learning (ML) pipelines wrapped in micro-services forecast temporal demand
and feed siting heuristics [46,59], whereas spatial–temporal load-forecasting models link
trip chains, Dijkstra routing, and coordinated slow/fast-charge scheduling to anticipate
sub-hourly load bursts [60]. Stock-and-flow system dynamics or multi-stakeholder ne-
gotiations embed policy feedback and scheduling constraints [49,61], and several studies
now propose analytical templates that explicitly fold equity metrics into broader acces-
sibility goals [45,62]. These integrated approaches promise greater realism but demand
high-resolution mobility traces, charger-load data, and interdisciplinary calibration, placing
large data and computational burdens on researchers.

Table 3 further summarizes six detailed approaches that were frequently used in
observed studies. Optimization and mathematical programming models lead the pack
with 10 papers (11%). When linking with equity evaluation, such as constraints ensuring
minimum service levels in low-income or rural tracts, these models can directly redistribute
charging access. Several studies show that adding equity constraints raises costs only
modestly while cutting detour distance and waiting times for underserved groups [42,51].
Regression and other econometric tools, as well as spatial-statistical/GIS techniques, follow
closely, each with nine studies (9.9%), and together anchor most empirical work on charger
use and socio-spatial patterns. From an equity lens, indices such as kernel density or 2SFCA
visualize where ‘charging deserts’ align with disadvantaged communities. However, unless
weighted by socio-demographic factors (e.g., renter households, minority populations),
these metrics risk describing patterns rather than diagnosing fairness. Studies that integrate
deprivation indices or Gini-type measures provide stronger evidence of equity gaps [44,56].
Clustering and other unsupervised methods (eight studies; 8.8%) help uncover latent
demand hotspots, while simulation approaches, for instance, trip-chain, agent-based,
or power-flow, appear with the same frequency and capture time-varying vehicle-grid
interactions. Finally, structured surveys and stated-preference experiments (five studies;
5.5%) and a small but growing group of machine-learning pipelines (four explicit ML-first
articles; 4.4%) add behavioral depth and predictive power.

Table 3. Frequently used approaches in assessing public charging infrastructure accessibility.

Approach Class
(Keywords) Studies (N = 91) % of Corpus 1 Cum. (%) 1 Strengths Assumptions/Cautions

Optimization 10 11% 11.00%

Precise siting and
sizing decisions;

handles constraints
explicitly.

Parameter-sensitive;
solution time grows

quickly with network
size.

Regression 9 9.9% 20.90%
Quantifies utilization

drivers; easy
statistical inference.

Causal interpretation
tenuous if confounders

omitted.

Spatial statistics 9 9.9% 30.80%

Hotspot
identification,

clustering, and
Moran’s I for equity

patterns.

Results hinge on
distance thresholds and
population weighting.

Clustering and
unsupervised

learning
8 8.8% 39.60%

Reveals latent usage
archetypes without
pre-defined classes.

Sensitive to feature
scaling; cluster

meaning must be
interpreted post hoc.
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Table 3. Cont.

Approach Class
(Keywords) Studies (N = 91) % of Corpus 1 Cum. (%) 1 Strengths Assumptions/Cautions

Simulation
(trip-chain,

agent-based,
power-flow)

8 8.8% 48.40%

Captures temporal
dynamics and
vehicle–grid
interactions.

Requires granular
Origin-Destination
(OD), charger, and

battery data that are
rarely public.

Structured surveys 5 5.5% 53.90%

Direct insight into
user

willingness-to-pay,
equity perceptions.

Sampling bias: stated
vs. revealed behavior

gap.

Advanced ML 4 * 4.4% 58.30%
High predictive

accuracy for demand
and dwell time.

Data-hungry black-box
models hinder policy

transparency.

* ML count reflects only explicit ML-first studies; several optimization papers embed ML modules and are counted
above. 1 “% of corpus” refers to (number of studies in that row ÷ 91 total studies) × 100, “Cum. (%)” refers to the
cumulative percentage.

Each approach brings clear strengths, precise optimization, transparent regression,
intuitive GIS mapping, data-driven clustering, dynamic simulation, or direct behavioral
insight, but they also share two concrete gaps. First, only a handful of studies compare
their model outputs with observed charger utilization or track equity outcomes over
time, so external validity remains limited. Second, the persistence of silos is especially
problematic for equity: siting decisions that appear optimal under network constraints
may still underserve low-income renters, while GIS equity maps can highlight “charging
deserts” without showing whether system-level reliability is maintained. Promising hybrid
approaches demonstrate the value of integration. Patil et al. [49] embed behavioral charging
behavior into optimization, producing more realistic and equitable siting outcomes. Liu
et al. [51] add equity constraints directly into optimization, showing that modest cost
increases deliver substantial accessibility gains for disadvantaged tracts. By contrast, Bian
et al. [63] illustrate the risks of partial integration: demand forecasting improved, but
without socio-demographic features feeding into siting, equity insights remained limited.
Beyond technical modularity, practical barriers hinder integration: transportation and
energy agencies often operate in silos, privacy restrictions limit the use of household-level
data, and policy frameworks frequently prioritize cost recovery over fairness. Addressing
these barriers is essential if integrated frameworks are to move from research prototypes to
real-world equity planning tools.

3.2. Multi-Level Influencing Factors of EV Public Charging Equity

Existing studies have adopted various analytical approaches that involve considering
factors into five types of frameworks and have identified multiple factors that can signifi-
cantly impact public charging infrastructure accessibility and equity across regions and
demographic groups.

3.2.1. Micro-Level Factors: User Charging Behavior, Preference, EV Performance

We define micro-level behavior as choices over when, where, and how fast to charge,
mediated by travel purposes and perceived costs (time, money, risk). Studies repeatedly
document distinct patterns among home-dominant, opportunity L2, local DCFC-reliant,
and long-distance DCFC travelers [10,16,37]. These patterns have inequitable consequences
when RU (uptime, queues) and CB (tariffs/fees) vary sharply across neighborhoods, even
where SA appears adequate [2–4,6,38–40].

User preferences reflect the relative importance individuals place on different charging
attributes, with cost sensitivity and convenience being central to infrastructure utilization.
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Discrete choice models (infer how users trade off detour, price, and speed from observed
or stated choices) consistently show that users value proximity, speed, and reliability in
public charging options [28,47,57,64]. Embedding psychological cost terms changes optimal
locations and lowers detour kilometers in Sioux Falls [13]. EV performance characteristics
refer to the technical specifications of the EV itself, such as battery range and charging speed,
which directly influence the frequency and nature of charging needs. Owners of smaller-
battery EVs often require more frequent public charging access [4,65]. Integrated models
using real-time pricing and mobility patterns illustrate how dynamic pricing structures can
interact with user behavior and infrastructure demand [10,16,37].

Charging behaviors then encompass the patterns and decisions EV users make regard-
ing when, where, and how often they charge their EVs. These behaviors are shaped by
variables such as the state of charge (SOC), proximity to charging stations, and trip character-
istics. Long-distance travelers prioritize fast charging and reduced waiting times [43,66,67],
whereas urban users exhibit more varied charging patterns based on location types, such
as workplaces and shopping centers, as well as seasonal factors [7,8,15,68,69]. Data-mining
work on 189 k Illinois ChargePoint sessions confirms that morning, multifamily or com-
mercial sites, and low start-SOC dominate public use, while workplace sessions are shorter
on weekdays [70]. Ride-hailing traces from Nanjing show clear private vs. commercial
patterns; a Cumulative Prospect Theory model reveals risk-seeking station choice that cuts
waiting time by >10% [71]. Seasonality also matters: winter demand is lowest and autumn
highest, with random-forest forecasts yielding MAPE 0.08% [15]. Early work in Amsterdam
derived a user-type taxonomy (residents, commuters, taxis, car-sharing, etc.) with distinct
temporal-load profiles, providing a foundation for utilization forecasting [72]. Behavioral
studies further reveal that range anxiety, trip purpose, and daily routines are key drivers of
charging decisions, with users often preferring chargers conveniently located along daily
travel routes [6,9,51].

Several approaches implicitly treat users as homogeneous, including equal value
of time, identical substitution across charger types/locations, and stable availability—
assumptions that conflict with observed differences across H1, O-L2, L-DC, and T-DC
users [10,16,37]. Empirical variation in RU and pricing further undermines these assump-
tions [38–40]. SA metrics (distance/coverage) systematically miss equity losses from RU
(downtime/queues) and CB (tariffs/fees), which disproportionately affect O-L2 and L-DC
users who depend on public networks [2–4]. Drawing policy implications from static
hotspot maps without behavioral inputs or RU/CB terms risks siting that is dense yet
unusable for non-home-charging communities [10,16,37,38].

3.2.2. Socio-Economic and Demographic Influences

Socioeconomic and demographic factors, including income, education, and housing
status, have a profound influence on EV adoption and infrastructure accessibility. Higher-
income and better-educated populations typically enjoy greater access to public charging
facilities. However, most income-related studies measure income at the census tract or
regional level, which may obscure intra-community variation and risks ecological fallacy.
Few studies control for confounding variables such as car ownership rates, housing density,
or existing transport services, which can also explain observed inequities. This limits the
causal interpretation of income as a driver of inequitable charging access [2,28,38,39,73]. Re-
cent spatial–statistical analyses across ten Chinese cities found significant intra-city inequity
in public charging station access [27]. Home ownership and housing type also determine
the ability to charge at home, with renters and individuals living in multi-unit dwellings
more dependent on public charging networks. While findings are consistent across multi-
ple contexts, most rely on stated-preference surveys rather than revealed behavior, which
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raises concerns about response bias. Moreover, the emphasis on multi-unit dwellings often
overlooks rural renters who may face equal or greater challenges due to sparse public
infrastructure [3,40,74]. Furthermore, existing infrastructure often clusters in affluent or
commercial areas, exacerbating accessibility barriers for marginalized groups [14,44,75].
Studies have observed that certain nationalities or ethnic groups dominate EV usage in
some contexts, indicating uneven participation in the EV transition [22,24,76,77]. These
socio-demographic filters determine who must rely on public charging; the next section
(Section 3.2.3) examines whether the existing network’s availability, siting, and design
translate that latent demand into real accessibility.

3.2.3. Infrastructure Supply and Operations: Availability, Siting, Design, and Pricing

Research consistently shows that the availability, strategic placement, and thoughtful
design of EV public charging infrastructure play a crucial role in influencing EV adoption
rates, user awareness, and utilization patterns across diverse regions and demographic
groups. Strategic infrastructure deployment reduces range anxiety and enhances conve-
nience, thereby increasing EV adoption. Yet many siting studies implicitly optimize for
utilization rather than equity. By prioritizing traffic density or expected demand, they
may inadvertently reinforce advantages for affluent, high-traffic zones. Only a small
subset of models [51] explicitly include equity constraints, showing how different method-
ological assumptions produce different distributional outcomes. Spatial analyses in New
Zealand [78] and optimization models in China [54] demonstrate the importance of neigh-
borhood effects, while a bi-level siting model that embeds a range-anxiety cost term shifts
the optimal fast-charger set and cuts detour distances [13]. Large-scale trace mining in
Nanjing further shows that risk-seeking drivers pick stations that minimize perceived wait
time; a Cumulative Prospect Theory engine trims waiting costs by >10% and illustrates how
behavior-aware siting can boost perceived accessibility [71]. Similarly, areas with denser
and more reliable charging networks consistently show higher EV adoption, as accessible
infrastructure improves user confidence and lowers barriers to entry [9,38–40].

Placement strategies that prioritize high-traffic, visible, and convenient locations have
been shown to boost user awareness and the perceived viability of EVs for everyday
travel [2,44,48]. For instance, clustered stations in Amsterdam [18] and fast-charging hubs
along U.S. corridors [41] enhance accessibility and foster adoption through reciprocal ef-
fects, where increased infrastructure availability encourages more users. A coordinated
load-forecasting framework that links trip-chain demand with home, destination, and
en-route charging helps operators proactively avoid local overloads [60]. Theoretical sim-
ulations suggest that access to both home and public charging amplifies market share
through indirect network effects, highlighting the synergistic benefits of a combined in-
frastructure strategy [79]. However, current deployments often favor urban and affluent
areas, leaving rural and underserved communities with limited access to charging, which
restricts adoption potential and perpetuates regional disparities [3,4,75].

Infrastructure design features, including charger type (Level 2 versus DC fast charg-
ing), charging speed, pricing models, and user interface design, have significant impacts
on utilization and user satisfaction [14,28,47,64]. Studies in Norway [67] and Slovakia [10]
reveal diverse user preferences for fast charging and smart charging incentives, which
influence how infrastructure is perceived and used. Conversely, experiences of “Charge
Point Trauma” in the United Kingdom [29] show that issues such as charger operability, reli-
ability, and complex payment systems can hinder user satisfaction and discourage adoption.
High-speed chargers placed along major travel corridors support long-distance EV mobility,
especially for drivers lacking reliable home charging options [57,80]. In contrast, poorly
maintained or confusingly designed stations deter usage, particularly among first-time
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EV drivers or those less familiar with EV technologies [73,74,81]. Beyond physical design,
cooperative deep-reinforcement-learning schemes for multi-station networks raise total
profit by ≈ 24% and smooth loads compared with independent pricing, demonstrating how
adaptive tariffs can both entice users and protect the grid [12]. Similar coordinated-behavior
load-forecasting models improve network-operation forecasts [60].

Regional variations also play a crucial role in shaping outcomes. In Canada, the “EV
Duck Curve” illustrates challenges related to grid stability caused by the clustering of
public fast-charger demand [8], while infrastructure scarcity in Kuwait limits EV adoption
to wealthier nationals [76]. Cold climates further exacerbate charging needs by reduc-
ing battery efficiency, requiring more frequent charging, and impacting infrastructure
demand [6,81]. AI-driven design improvements [46] have enhanced user confidence glob-
ally, suggesting the potential for technology-driven solutions to improve infrastructure
utilization. Despite these advances, several limitations remain, including a reliance on
hypothetical scenarios [66], small sample sizes [82], and region-specific data [83], which
highlight the need for broader empirical validation across diverse socioeconomic and
geographic contexts.

Collectively, these supply-side choices ripple outward, influencing EV adoption pat-
terns, altering peak grid loads, affecting local economic activity, and reshaping emissions
footprints. The system-level outcomes are examined next in Section 3.2.4.

3.2.4. System-Level Impacts: Adoption, Grid Loads, Economic and
Environmental Outcomes

The socio-economic and environmental impacts of EV public charging infrastructure
have been explored through various frameworks and across different geographical con-
texts. Public charging infrastructure can stimulate local economic growth by attracting
businesses, creating new job opportunities, and increasing property values near station lo-
cations [3,9,37,74]. However, these benefits are often concentrated in wealthier urban areas,
thereby exacerbating existing socio-economic disparities [4,73,75]. Regions with limited
infrastructure investment face reduced access to economic opportunities, emphasizing the
need for equity-focused planning and deployment strategies [44,84].

On the environmental side, expanding public charging availability encourages
EV adoption, leading to reductions in greenhouse gas emissions and urban air pollu-
tion [38,40,63,85]. However, the net environmental benefit of public EV infrastructure
largely depends on the energy generation mix. Regions powered by renewable energy
sources realize greater emission reductions, whereas areas still reliant on fossil fuels may
see more limited environmental gains [6,86]. Climatic conditions further influence infras-
tructure performance and outcomes; colder climates, for example, reduce battery efficiency,
necessitating more frequent and prolonged charging, which can stress local electricity grids
and potentially increase emissions if clean energy is not available [11,87,88].

Several studies highlight emerging concerns about the resilience of EV public charging
networks in the face of extreme weather events associated with climate change, which can
disrupt charging availability and reliability [47,80]. Broader social impacts include shifts in
transportation habits, land use changes, and urban dynamics, which require integrated and
flexible planning approaches [51,89–91]. Tailored regional strategies, such as incentivizing
rural charging deployments or integrating charging stations with renewable microgrids,
have been shown to promote more equitable and sustainable outcomes [14,58,92,93].

Specific modeling efforts, such as a study using machine learning and microservices-
oriented architecture, have demonstrated the potential of smart grid-integrated EV adoption
and charging station planning to enhance energy sustainability, although these models
often rely on synthetic data, limiting empirical applicability [59]. Similarly, Canadian
studies reveal that EV public charging can contribute to new peak electricity loads, posing
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challenges to grid stability under seasonal variations, though socio-demographic and
spatial data gaps remain a limitation [8]. A global panel data study covering 14 countries
found that renewable energy availability, education, and population density, rather than
GDP alone, influence EV demand [77], though the study did not account for micro-level
socio-economic factors.

Without deliberate and inclusive planning, public EV infrastructure risks reinforcing
environmental injustices by disproportionately benefiting already advantaged popula-
tions [2,5,94]. Innovative policy measures, such as dynamic pricing, public–private partner-
ships, and community-led planning, are proposed to maximize both the socio-economic
and environmental benefits of EV public charging networks. Dynamic pricing could lower
off-peak costs for low-income users but risks penalizing those with inflexible schedules
(e.g., shift workers). Public–private partnerships may accelerate rollout but often prioritize
return-on-investment, raising the risk that underserved communities remain neglected
unless subsidies or equity mandates are built in. Community-led planning has strong
potential to align siting with local needs, yet implementation faces challenges in data access,
funding, and coordination across municipalities. Without explicit mechanisms to incorpo-
rate marginalized voices, such approaches may reproduce existing inequalities under the
guise of “participation [27,30,61,95,96]. Overall, while EV public charging infrastructure
offers substantial societal and environmental benefits, realizing these benefits equitably
requires context-sensitive, inclusive, and forward-looking strategies that address regional
and climatic differences.

Despite these insights, the effectiveness of the current charging infrastructure is often
compromised by overly simplified planning approaches that fail to adequately account
for dynamic user behaviors and regional variations [21,49]. Socioeconomic conditions,
particularly income, education, and race, interact with geographic factors, resulting in rural,
minority, and low-income urban areas facing notably lower charger density [38,56,80,88].
Surveys suggest that minority and lower-income users have lower awareness and trust
toward public charging reliability, often feeling marginalized in the shift to electric mobil-
ity [6,30,31,97]. Finally, policy and planning practices further complicate equity outcomes.
Site selection processes frequently prioritize areas with higher expected utilization, inadver-
tently reinforcing accessibility advantages for affluent communities [50,91,95]. However,
several studies highlight that targeted awareness campaigns and inclusive planning strate-
gies can improve equity outcomes by addressing the needs and barriers faced by diverse
user groups [5,64,81,92].

Additionally, Table 4 demonstrates how policy levers explicitly discussed in Section 3
are mapped to the four equity dimensions, including SA (spatial access), CB (cost burden),
RU (reliability and usability), AT (awareness and trust), and linked to the system-level
outcome categories emphasized in Section 3.2.4 (Adoption, Grid Loads, Economic, Envi-
ronmental).

Table 4. Policy levers mapped to equity dimensions (SA/CB/RU/AT) and system-level outcomes
(adoption, grid loads, economic, environmental).

Policy Lever/Intervention SA CB RU AT System-Level
Outcomes **

Availability;
Strategic placement (high-traffic,

visible sites; corridor hubs)
✓ * ✓

Adoption;
Grid;

Economic;
Environmental

Behavior-aware siting to align supply
with observed demand patterns
(avoid clustering in underserved

regions)

✓ ✓ ✓

Adoption;
Grid;

Economic;
Environmental
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Table 4. Cont.

Policy Lever/Intervention SA CB RU AT System-Level
Outcomes **

Infrastructure design;
Station quality (charger type;

canopy/lighting; clear wayfinding);
Maintenance

✓ ✓
Adoption;
Economic

Pricing strategies
(time-of-day/peak-price tariffs;

dynamic pricing)
✓

Adoption;
Grid;

Economic;
Environmental

Payment simplicity (reduce complex
payment systems that discourage use) ✓ ✓ Adoption

Data-driven operations;
Load forecasting (improve

network-operation forecasts, e.g., RF
forecast error, MAPE)

✓
Grid;

Economic

Queue management/scheduling
(address waiting and temporal

concentration)
✓ ✓

Adoption;
Grid;

Economic

* A ✓ indicates a primary linkage to the specified equity dimension as discussed in Section 3. A blank cell
means that dimension was not a primary focus for that lever in these sections. ** Lists the outcome categories
(Section 3.2.4) to which each lever is connected in the manuscript: Adoption, Grid Loads, Economic, and
Environmental. The table does not assert directionality; see Section 3.2.4 for context (e.g., adoption dynamics, peak-
load considerations, and resilience, operational/consumer cost implications, environmental effects conditioned
on charging times and grid mix).

3.3. Effects of Identified Factors Across Diverse Contexts

Recent equity in transportation and energy stresses that public charging justice is
multi-dimensional; a single metric such as distance to the nearest charger cannot capture
the full distribution of benefits and burdens. Building on factors identified from existing
studies (see Section 3.2), we evaluate each factor against four dimensions that appear in the
literature (see Section 1). By considering the effects of factors on these four dimensions, EV
public charging equity could be comprehensively evaluated from physical reachability (SA),
direct or indirect user expenditures (CB), functional availability of charging infrastructures
(RU), and knowledge of charger locations as well as confidence in their operability (AT),
and then further identify potential evidence gaps in geographic, socio-economic, and
climate contexts.

Table 5 demonstrates that public EV-charging equity is multidimensional, influenced
by diverse factors across spatial access, cost burden, reliability and usability, and awareness
and trust. While the four-dimensional evaluations provide a structured way to organize ev-
idence, they necessarily simplify the real-world dynamics. In practice, these factors interact
non-linearly: socio-economic constraints (e.g., income, tenure) shape vehicle choice, which
feeds into range anxiety; infrastructure reliability influences trust and willingness to use
distant chargers; and policy interventions can simultaneously affect multiple dimensions
(e.g., pricing schemes altering both cost burdens and spatial access. Micro-level determi-
nants, such as range anxiety and battery size, significantly affect users’ reliance on public
chargers, often driving increased financial burdens due to more frequent usage or longer
detours. This effect is shaped by several mechanisms. Psychologically, uncertainty about
the remaining range amplifies perceived risk, leading many drivers—particularly inexperi-
enced or risk-averse users—to prioritize the nearest available charger [13,14]. Informational
gaps, such as the lack of reliable real-time data on charger status, further discourage users
from venturing to more distant stations. Finally, charging network design plays a role:
sparse or unevenly distributed infrastructure raises the penalty of miscalculation, reinforc-
ing the tendency to choose closer, sometimes costlier stations. These mechanisms mean
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that range anxiety is not just a psychological barrier but an equity issue, as low-income
users, who often drive smaller-battery vehicles and have less access to advanced in-car
information systems, face sharper trade-offs and higher cumulative costs. Additionally,
daily trip purposes such as commuting or retail influence users’ habitual charger selection
and familiarity, potentially reinforcing existing spatial disparities.

Socio-economic and demographic factors further highlight stark equity issues. Income
disparities frequently result in higher charger density in affluent areas, leaving lower-
income communities underserved. Renters or individuals living in multi-unit dwellings
disproportionately depend on public chargers, incurring higher cumulative costs and
experiencing greater inconvenience. Ethnicity and nationality also emerge as critical factors,
with marginalized groups often confronting compounded accessibility and trust barriers
due to fewer chargers and lower perceived reliability.

Infrastructure supply and operational choices substantially shape user experiences.
Higher charger density enhances spatial accessibility, reducing charging deserts, yet place-
ment strategies favoring affluent or high-traffic zones frequently exacerbate inequities.
Issues of charger reliability significantly impede usability, notably affecting first-time and fi-
nancially constrained users, while dynamic pricing and smart scheduling can alleviate cost
burdens but require careful implementation to avoid disadvantaging specific user groups.

Finally, broader system-level and climatic considerations have substantial impacts
on equity outcomes. Cold climates and increased peak-load demands necessitate more
frequent public charging, raising costs and exacerbating inequities in regions without ro-
bust infrastructure support. These findings underscore the necessity of comprehensive and
integrated planning, emphasizing regional sensitivity, targeted infrastructure deployment,
and proactive engagement with underserved communities to effectively address the multi-
dimensional nature of EV public charging equity. However, the diversity of study contexts
raises caution in generalizing these findings. Evidence from Sioux Falls or Amsterdam
reflects urbanized settings with relatively high data availability, while studies in China
or Kuwait highlight structural inequities shaped by national policies and cultural factors.
Nordic countries and cold US states emphasize climate constraints that may not be adopted
elsewhere. Thus, observed impacts are highly context-specific, and equity outcomes are
contingent on local governance, regulatory environments, and cultural norms. This context
dependency suggests that equity analyses must be interpreted as situational rather than
universal. Rather than prescribing one-size-fits-all solutions, comparative frameworks
are needed to test whether observed inequities, such as charging deserts, renter disad-
vantages, or range anxiety, are consistent across contexts or unique to specific policy and
cultural environments.
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Table 5. Factor evidence on how each impacts the four equity dimensions of EV public charging.

Factor Group Factor SA * SA Impact CB * CB Impact RU * RU Impact AT * AT Impact Typical
Context References

Micro-level

Range anxiety ↓

Users restrict
search radius,
choose nearest

chargers

↑
Pay a

premium to
avoid detours

— — ↓
Lower trust

where sites are
few

Sioux Falls,
USA; national

surveys
[6,9,13,51]

Battery size ↑

Smaller packs
require a
denser

network

↑
More frequent
paid top-ups

per km
— — — —

Entry-level
EVs, CN, and

US
[4,65]

Trip purpose
(work/retail/

long-haul)
↓

Workplace
sessions
cluster at

offices; retail at
malls

— — — — ↑

Regular
commuters

learn “home”
sites

Amsterdam,
NL; Illinois,
US; Nanjing,

CN

[7,8,70,71]

Socio-
economic and
demographic

Income level ↑
High-income

areas host
more chargers

↓

Higher
incomes

absorb fees;
low incomes
face ↑ burden

— — ↑
Affluent users

report more
trust

10 Chinese
cities; US

metros

[2,27,28,38,39,
73]

Housing type
(renters,
MUDs)

↓

Renters and
MUD

residents rely
on curbside

public
chargers

↑

Regular public
use raises
monthly

spend

— — — —

US
multifamily;

CN
apartments

[3,40,74]

Ethnicity/nationality ↓
Minority

districts have
fewer stations

↑
Longer

detours raise
cost

— — ↓
Lower

awareness and
trust

Kuwait;
minority areas

US

[22,24,30,31,76,
77,97]
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Table 5. Cont.

Factor Group Factor SA * SA Impact CB * CB Impact RU * RU Impact AT * AT Impact Typical
Context References

Infrastructure
supply and
operations

Network
density

(stations/km2)
↑

Higher density
shortens the

average
distance

— — — — — — NZ rollout;
CN megacities [9,38–40,54,78]

Siting bias to
affluent/high-

traffic areas
↓

Rural and
low-income

zones left
sparse

— — — — ↑

Visibility
boosts

perceived
access in

wealthy zones

Amsterdam,
NL; US

corridors
[2,18,41,44,48]

Charger
reliabil-

ity/operability
— — ↑

Extra
fuel/time

when units fail
↓ Faults, slow

payment apps ↓
Repeat users

lose
confidence

UK public
audit [29]

Dynamic
pricing/smart

scheduling
— — ↓

Off-peak
tariffs cut bills;

peak rates ↑
burden

↑

Load
balancing
shortens
queues

— —
CN

multi-station
DRL studies

[10,12,16,37,
60]

Charger type
(DCFC vs.
Level 2)

↑
DCFC extends

viable trip
range

↑
Higher

per-kWh fees
at DCFC

↑
Faster sessions;

Level 2 is
slower

— —

Norway
highways;
Slovakia

incentives; US

[10,14,28,47,57,
64,67]

System-level
and climate

Cold-climate
battery loss ↓

More stops
needed in

winter
↑

Extra energy
and session

fees
— — — — Nordic and

cold US states [6,11,81,87,88]

Peak-
load/“EV

duck curve”
— — ↑

Peak tariffs or
demand
charges

↓ Voltage sag
slows charging — — Canada winter

peaks [8,59]

* SA = spatial access; CB = cost burden; RU = reliability and usability; AT = awareness/trust. Arrows show direction: ↑ = increases/improves, ↓ = decreases/worsens, — = no
observed impact.
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4. Conclusions
This review synthesizes extensive findings from 91 peer-reviewed studies examining

equity considerations in EV public charging infrastructure across North America, Europe,
and Asia. The review points out the emerging trend in EV public charging equity research in
recent years, critically compares major methodological frameworks and analytical methods
used in prior research, and highlights essential factors influencing equitable access and
adoption of EV public charging infrastructure.

This review offers several significant observations to guide future research. Firstly,
this review classifies existing theoretical frameworks into three distinct groups, plus their
integration usage demonstrated in Figure 3. A significant proportion of adopting spatial
and user-related frameworks is observed (a total of 36 studies, accounting for 69.23%),
yet few studies have measured EV public charging equity from both spatial and behav-
ioral perspectives by adopting a hybrid framework due to data availability challenges.
Findings from the analytical approaches support this distribution. Network-optimization
work typically operationalizes equity by embedding minimum service thresholds or dual
objectives that balance efficiency with fairness (e.g., minimizing maximum detour distance
or waiting time). Spatial-accessibility studies define equity through geospatial indices
such as kernel density, 2SFCA, or KDE-plus-Gini, but their results are highly sensitive to
buffer radii and weighting assumptions. Behavioral-decision frameworks usually rely on
multinomial logit or latent-class choice models to assess how socio-economic attributes
(such as income, dwelling type, and range anxiety) shape charger uptake, though these
studies are constrained by survey bias and limited transferability. Early hybrid experiments
link agent-based demand models with power-flow simulations, measuring equity through
multi-criteria indices that couple grid stability with access fairness, but such models remain
data- and calibration-intensive. Each framework also carries distinct limitations beyond
general data constraints. Optimization assumes equilibrium behavior and often fails to
capture stochastic demand or behavioral adaptation. Spatial-accessibility methods are
static, rarely validating against real utilization patterns. Behavioral decision approaches
depend heavily on stated-preference data, which may not reflect actual usage. Hybrid mod-
els, while promising, are computationally demanding and difficult to validate empirically.
Since each framework isolates only one side of the problem, including flows, geography, or
user choice, comparative tests on a common dataset using standardized equity indicators
are now essential. Such head-to-head evaluations would clarify trade-offs, reveal where
each framework excels, and guide the design of flexible, context-aware planning tools.

Secondly, this review contributes beyond prior syntheses by offering a multidimen-
sional equity assessment framework that unites SA, CB, RU, and AT, and by examining
the effects of identified factors across four dimensions to comprehensively understand EV
public charging equity. At the individual-vehicle level, small battery capacity, high range
anxiety, and utilitarian trip purposes lengthen detours and raise paid-charging frequency,
worsening access and cost. Socio-economic factors such as low income, renting status, and
limited digital literacy consistently increase cost burdens and erode trust, with distance
effects varying by urban form. On the infrastructure level, higher-power, densely sited,
and well-maintained stations reduce access and reliability penalties, although peak-price
tariffs can offset these gains. Finally, system-context variables, for instance, cold climate,
constrained distribution grids, and uneven policy incentives, shape all four dimensions,
especially by amplifying winter demand and voltage sag in underserved regions. Com-
parative evidence shows that dense urban cores enjoy shorter average distances but face
higher tariffs and queueing, whereas rural drivers endure the opposite pattern; low-income
renters bear both poor proximity and higher reliance on costly public networks, while
owner-occupiers benefit from cheaper home charging despite longer travel. Cold north-
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ern cities and regions with weak grids further magnify cost and reliability gaps unless
coordinated fast-charger expansion and dynamic pricing are introduced. These findings
demonstrate that equitable charging provision cannot be achieved by addressing a single
driver; planners could model and monitor all four dimensions and incorporate variables
from each analytical level to uncover location- and group-specific interventions that deliver
the greatest equity gains. Meanwhile, planners should recognize that these levels and di-
mensions are not discrete “layers” but interdependent elements. Feedback loops—such as
how infrastructure siting affects user trust, or how socio-economic disadvantage amplifies
cost burdens through higher public-charging reliance—mean that equity outcomes emerge
from complex systems rather than linear hierarchies.

 
Figure 3. Methodological framework synthesis.

Policy could therefore: (1) institute longitudinal, spatial-temporal monitoring of at-
titudes and usage, which could be implemented through partnerships with utilities and
mobility providers to collect and anonymize high-frequency charging transaction data,
GPS traces, and app-based usage logs. Indicators should include not only charger availabil-
ity and utilization rates, but also wait times, pricing differentials, and disaggregation by
socio-economic group or neighborhood. Such monitoring allows agencies to track whether
interventions reduce disparities over time, rather than just increasing overall capacity;
(2) apply market segmentation to remove financial and access barriers for underserved
groups. Effective segmentation requires identifying user clusters (e.g., low-income renters,
rural drivers, delivery workers) using socio-demographic, housing, and travel-pattern
data. Targeted interventions might include discounted off-peak tariffs for low-income
households, priority siting of chargers near multi-unit dwellings, or mobility credits that
offset reliance on costly public fast charging. Pilot programs in California and the Nether-
lands suggest that subsidies tied to user group profiles can significantly reduce access
gaps; and (3) tailor charger attributes, including power level, location, and pricing, to local
contexts. In addition, comparative research should apply standardized benchmarks—such
as spatial access gaps, income-based cost shares, and reliability penalties—to assess the
relative merits of competing frameworks in diverse contexts. Future work could consider
refining integrated frameworks, comparing them on shared data, and fostering cross-sector
collaborations to realize inclusive, equitable, and sustainable charging networks.

However, we acknowledge that this review primarily synthesizes studies from North
America, Europe, and Asia, which together represent the largest EV markets and the ma-



World Electr. Veh. J. 2025, 16, 553 22 of 26

jority of available peer-reviewed work. Research coverage in Africa, Latin America, and
the Middle East remains very limited, reflecting both the nascent nature of EV adoption
in these regions and restricted data availability. The scarcity of equity-focused charging
studies in emerging EV markets (e.g., Latin America, Africa, the Middle East) highlights
a pressing need for future research. These regions often face unique equity challenges,
such as limited grid capacity, informal housing, and weaker regulatory frameworks, which
are underexplored in the current literature. Also, future research should focus on refining
integrated analytical frameworks, conducting comparative studies across methodologi-
cal approaches, and exploring advanced segmentation strategies to address diverse user
needs comprehensively. Such implementation requires standardized comparative exer-
cises across cities or regions, drawing on common datasets that combine travel surveys,
socio-demographic information, and charger utilization records. Frameworks should be
benchmarked against shared equity indicators, such as (i) average additional travel distance
for disadvantaged tracts, (ii) cost burden as a share of household income, and (iii) charger
reliability penalties. By grounding evaluations in harmonized benchmarks, researchers can
move beyond descriptive comparisons and provide robust evidence of trade-offs across
frameworks. Cross-sector collaborations involving policymakers, utilities, communities,
and private stakeholders are crucial to promoting inclusive, equitable, and sustainable
expansion of EV public charging infrastructure.
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