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Abstract

We introduce a general framework for latent variable modeling, named Generalized Latent Variable Models
for Location, Scale, and Shape parameters (GLVM-LSS). This framework extends the generalized linear
latent variable model beyond the exponential family distributional assumption and enables the modeling
of distributional parameters other than the mean (location parameter), such as scale and shape parameters,
as functions of latent variables. Model parameters are estimated via maximum likelihood. We present
two real-world applications on public opinion research and educational testing, and evaluate the model’s
performance in terms of parameter recovery through extensive simulation studies. Our results suggest that
the GLVM-LSS is a valuable tool in applications where modeling higher-order moments of the observed
variables through latent variables is of substantive interest. The proposed model is implemented in the R
package glvmlss, available online.

Keywords: distributional regression; EM algorithm; GAMLSS; heteroscedasticity; latent variable models

1. Introduction

Latent variable models (LVMs) are widely used in the social sciences to measure unobserved con-
structs of interest using several correlated observed variables. The Generalized Linear LVM (GLLVM,
Bartholomew et al., 2011; Moustaki & Knott, 2000; Skrondal & Rabe-Hesketh, 2004) is a versatile
modeling framework where (i) conditional on the latent variables, each observed variable follows a
distribution from the exponential family, and (ii) only the mean of this conditional distribution depends
on the latent variables. The GLLVM encompasses various LVMs for continuous, categorical, and count
observed variables, making it a widely used tool for analyzing multivariate data.

While the GLLVM framework is flexible, it can sometimes oversimplify real-world scenarios by
relying only on distributions from the exponential family. In specific applications, it is essential to model
higher-order moments of the observed variables, such as variance, skewness, and kurtosis, as functions
of the latent variables. Ignoring these features of the observed data can result in underestimated standard
errors (SEs), biased parameter estimates, and inaccurate model fit indices (Lai, 2018; Lei & Lomax, 2005;
Wall et al., 2015).

The challenges above have been extensively studied in the literature. Limited information and robust
estimation methods have been proposed to address deviations from distributional assumptions (e.g.,
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Bollen, 1996; Browne, 1984; Moustaki & Victoria-Feser, 2006). Furthermore, new advanced models have
been developed, such as the heteroscedastic factor models (e.g., Hessen & Dolan, 2009; Lewin-Koh &
Amemiya, 2003), LVMs for continuous data displaying skewness and/or kurtosis (e.g., Asparouhov &
Muthén, 2016; Liu & Lin, 2015; Molenaar et al., 2010; Montanari & Viroli, 2010), factor models for
discrete, count, and bounded continuous data with zero/one/maximum inflation and heaping (e.g.,
Magnus & Thissen, 2017; Molenaar et al., 2022; Niku et al., 2017; Wall et al., 2015; Wang, 2010),
and LVMs for censored/truncated data (e.g., Moustaki & Steele, 2005). However, these models have
primarily been developed in isolation and differ in their estimation and inferential methods.

This article introduces a comprehensive modeling framework called the Generalized LVM for Loca-
tion, Scale, and Shape parameters (GLVM-LSS). This framework models the conditional distribution of
each observed variable as a function of latent variables. We achieve this by defining the distributional
parameters characterizing each observed variable’s conditional distribution as functions of the latent
variables. Since the mean and other higher-order moments of the observed variables are expressed in
terms of their distributional parameters, they also depend on the latent variables.

The GLVM-LSS borrows ideas from the Generalized Additive Model for Location, Scale, and Shape
(GAMLSS) regression framework (Klein et al., 2015; Rigby & Stasinopoulos, 2005; Umlauf et al., 2018),
and applies them to models with latent variables. The GAMLSS is a flexible regression framework where
observed covariates have linear or nonlinear effects on the distributional parameters characterizing the
distribution of the outcome variable. It can also accommodate spatial, temporal, and random effects. For
a comprehensive treatment of the GAMLSS regression framework, see, e.g., Stasinopoulos et al. (2017,
2024), and Rigby et al. (2020). In this article, we only consider linear effects of the latent variables on
the distributional parameters.

Our proposed framework shares similarities with previous works in the LVM literature. For example,
in multilevel or longitudinal studies (Hedeker & Gibbons, 2006; Skrondal & Rabe-Hesketh, 2004),
location-scale mixed-effects models accommodate covariates and random effects on both location and
scale parameters for continuous (Hedeker et al., 2008, 2012) and binary/ordered categorical (Greene,
2003; Hedeker et al., 2006, 2009, 2016) observed variables (the latter using an underlying response
formulation, see Remark 2). These models can be fitted using commercial software like the gllamm
module in Stata (Rabe-Hesketh et al., 2004) or the PROC NLMIXED routine in SAS. An important
remark is that multiple group LVMs (Davidov et al., 2018) also allow for different (conditional) means
and (conditional) variances among the groups.

1.1. Motivating examples
We present two motivating examples from different fields where modeling higher-order moments
of complex multivariate datasets is of substantive interest. These examples are discussed further in
Section 3.

Example 1. The first example comes from public opinion research, where we examine people’s attitudes
toward different social groups using survey data from the 2020 American National Election Study
(ANES 2020). Respondents rate their feelings about these groups on a scale from 0 to 100, with
higher ratings indicating more favorable opinions. Although the questions are not explicitly designed to
measure a particular latent construct, they provide insight into respondents’ positions on a conservative–
progressive belief scale. We could model the conditional mean of these doubly-bounded responses as a
function of the latent variable using a Beta factor model (Noel, 2014; Noel & Dauvier, 2007; Revuelta
et al., 2022). However, research has shown that liberals are more likely to have similar political attitudes
compared to conservatives (Ondish & Stern, 2018), suggesting that the conservative–progressive latent
factor influences not only the conditional mean but also the conditional variance of the responses.
Addressing this issue is possible with a heteroscedastic Beta factor model, which we introduce in
Section 2.1. Most work on factor models for continuous doubly-bounded observed variables focuses
on modeling only the location parameter (conditional mean) in terms of the latent variables. The
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scale parameter related to the conditional variance does not depend on the latent variables. A notable
exception is the mixed and mixture Beta regression model by Verkuilen & Smithson (2012), where the
scale parameter of the Beta distribution is modeled using random effects.

Example 2. The second example comes from educational testing, using data from the PISA 2018
computer-based mathematics exam. We present a confirmatory factor model to analyze binary item
responses (IRs) and continuous response times (RTs) simultaneously. van der Linden (2007, 2009)
proposed a joint model in which the two-parameter logistic model is applied to the IRs, while a linear
factor model is used for the log-RTs. To account for the “speed-accuracy trade-off ” in educational
testing (Zimmerman, 2011), it is assumed that the latent ability and speed factors are correlated.
However, van der Linden’s model for the log-RTs (conditional mean) can be restrictive because RTs
tend to have a variance that increases with the mean (De Boeck & Jeon, 2019; Van Zandt, 2002).
Specifically, the variance parameter, which helps discriminate between test takers with different speed
levels, does not depend on the respondent’s latent speed trait. Furthermore, modeling additional aspects
of the RT distribution as a function of the latent speed trait, such as the (conditional) variance and
(conditional) skewness, can provide further insights into individuals’ test-taking strategies and items’
characteristics. In Section 2.1, we present a joint model for IRs and RTs in which log-RTs follow a Skew-
Normal distribution (SN, Azzalini, 1985, 2005), with distributional parameters influencing higher order
moments modeled as functions of the individual’s latent speed trait. Although alternative parametric
distributions have been used to model RTs in the hierarchical model framework (e.g., Loeys et al., 2011),
the focus is still on the location parameter.

The article is organized as follows. In Section 2, we introduce the GLVM-LSS model, discuss
parameter estimation via full-information marginal maximum likelihood (MML) estimation, and
examine model identification. In Section 3, we apply the proposed method to real-world data on public
opinion research and educational testing. To demonstrate the properties of our proposed method under
finite sample settings, we conduct simulation studies in Section 4. Finally, we discuss some limitations
and future research directions.

2. GLVM-LSS

2.1. Proposed model framework
Let y = (y1,...,yp)⊺ be a random vector of observed variables with domainD ⊆Rp, and z = (z1,...,zq)⊺ ∈
R

q a random vector of continuous latent variables, with q (much) smaller than p. Assuming local
independence (Bartholomew et al., 2011, Chapter 1), the marginal distribution of y is:

f (y) = ∫
Rq

[
p

∏
i=1

fi(yi ∣z;θi)]p(z;Φ) dz, (1)

where, for observed variables i = 1, . . . ,p, fi(yi ∣ z;θi) is the conditional distribution of yi given z and
θi = (θ(1)i ,...,θ(D)i )⊺ is a D-dimensional vector of distributional parameters indexing fi. The (condi-
tional) distributional moments of yi (mean, variance, skewness) are functions of the parameters θi.
p(z) is the prior distribution of z, commonly assumed to be a multivariate Normal distribution with
covariance matrix Φ, z ∼N(0,Φ).

We propose a class of GLVM-LSS where the distributional parameters θ(d)i ∈ θi are expressed as
monotone functions of linear combinations of the latent variables. We write θ(d)i (z) to denote the
functional dependence of the distributional parameter on z, but in most cases we omit it to simplify
notation. Moreover, we use the sub-index (i,θd) to indicate that the corresponding function or model
parameter is related to θ(d)i (z). The relationship between yi and z is therefore through the vector θi(z)
in fi and is determined by the system of equations:
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vi,θd(θ
(d)
i (z)) = ηi,θd ∶= αi0,θd +

q

∑
j=1

αij,θd zj, d = 1,...,D, (2)

where the parameter-specific link function, denoted by vi,θd , is used to ensure that the distributional
parameters have appropriate restrictions. The link function can be identity, log, logit, or any other
suitable monotone function. ηi,θd represents the linear combination of latent variables, with intercept
αi0,θd and factor loadings grouped in the q-dimensional vector αi,θd = (αi1,θd,...,αiq,θd)⊺.

The distributional parameters θi that describe the shape of fi can be divided into three categories:
location, scale, or shape parameters. Their role depends on which distributional moment of yi they
define. To simplify notation, we refer to the location parameter as μ ∶= θ(1)i , the scale parameter as
σi ∶= θ(2)i , and the shape parameters as νi ∶= θ(3)i and τi ∶= θ(4)i . In most cases, a maximum of four
parameters (one location, one scale, and two shape parameters) is enough. However, this framework
can be extended to include distributions with multiple location, scale, or shape parameters. We then
write θi = (μi,σi,νi,τi)⊺ to denote the vector of distributional parameters indexing fi, and use φi ∈ θi to
refer to any location, scale, or shape parameter in the (conditional) distribution of yi.

For a more compact matrix notation, let φ = (φ1,...,φp)⊺ be the vector of the same distributional
parameter φ for all yi’s. Denote α0,φ = (α10,φ,...,αp0,φ)⊺ as a vector of intercepts, and let Aφ be a (p×q)
factor loadings matrix with rows corresponding to the vectors αi,φ. Finally, let vφ be the vector function
that applies the corresponding link function vi,φ to each entry of φ. Under this convention, the set of
equations for a distributional parameter φ is vφ(φ(z)) = α0,φ+Aφz.

To further simplify notation, we write the vector of parameters θ⊺ = (μ⊺,σ⊺,ν⊺,τ⊺), the vector of
intercepts α⊺0 = (α⊺0,μ,α⊺0,σ,α⊺0,ν,α⊺0,τ), and the factor loading matrix A⊺ = [A⊺μ ,A⊺σ ,A⊺ν ,A⊺τ ], to compactly
express the system of equations of a GLVM-LSS model as:

v(θ(z)) = α0+Az. (3)

Remark 1. The GLVM-LSS framework is most useful when observed variables follow distributions
with multiple location, scale and shape parameters, and it is appropriate and essential to model their
higher-order moments as functions of the latent variables.

Remark 2. While standard LVMs for categorical data fit within the GLVM-LSS framework, accommo-
dating models that involve scale parameters—such as the family of scaled (heteroscedastic) logistic or
probit models for binary and ordinal data (see, e.g., Greene, 2003; Hedeker et al., 2006, 2009, 2016;
Molenaar, 2015; Molenaar et al., 2012)—requires an alternative model specification. These models
employ an underlying variable formulation (Jöreskog & Moustaki, 2001) for categorical variables where
the observed category denoted by ci of the ordinal manifest variable yi is determined by an unobserved
continuous response y∗i ∈ R underlying the ordinal variable yi. The connection between yi and y∗i is
yi = ci ⇐⇒ τ(ci−1)

i < y∗i ≤ τ(ci)
i , where ci ∈ {1, . . . ,Ci} and τ(0)i = −∞, τ(1)i <⋯ < τ(Ci−1)

i , τ(Ci)
i = +∞ are

called threshold parameters. Here, y∗i ∣ z ∼ N(μ∗i (z),σ∗i (z)), and appropriate measurement equations
for the location and scale parameters of the underlying response are chosen. Binary variables are
special cases. In principle, the underlying response formulation for binary and ordered categorical data
can be accommodated within the GLVM-LSS framework. However, the current proposed GLVM-LSS
framework includes only the homoscedastic logit model. We plan to incorporate the heteroscedastic
logit/probit model in future work on the GLVM-LSS framework.

Remark 3. Additional attention is required for discrete observed variables following distributions
with distributional parameters taking values in a discrete space (e.g., the natural numbers). In some
cases, a reparametrization is available such that the distributional parameters are in the real numbers
(see, e.g., Rigby et al. (2020, p. 483) for the Negative Binomial distribution case), and common
modeling techniques can be used. However, if no alternative parametrization exists, these parameters
should be treated as fixed and known. Otherwise, modeling these distributional parameters requires
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computational methods that are beyond the scope of this article (see, e.g., Choirat & Seri, 2012;
Hammersley, 1950).

We now revisit the motivating examples in Section 1.1 to illustrate how the GLVM-LSS framework
extends the existing LVM literature by modeling features of the observed data beyond the conditional
mean.

Example 1 (continued). A heteroscedastic Beta factor model: We propose a novel heteroscedastic Beta
factor model to model the conditional variance of the doubly-bounded variables in the 2020 ANES
dataset. The observed variables conditional on the conservative–progressive latent variable (denoted by
z) follow a location-scale reparametrization of the Beta distribution, yi ∣ z ∼ Beta(μi(z),σi(z)), where
the location parameter μi(z) ∈ (0,1) and the scale parameter σi(z) ∈ (0,1) are modeled as functions
of z (Rigby et al., 2020, p. 461). Under this parametrization, we have E(yi ∣ z) = μi(z) and Var(yi ∣ z) =
σ2

i (z)μi(z)(1−μi(z)).
This parametrization is closely related to the location-precision parametrization in the heteroscedas-

tic Beta regression literature (Smithson & Verkuilen, 2006; Verkuilen & Smithson, 2012), where a preci-
sion parameter ϕi(z) ∈R+ replaces the scale parameter, and Var(yi ∣z) = (1+ϕi(z))−1μi(z)(1−μi(z)).
Notably, σ2

i (z) ≡ (1+ ϕi(z))−1, meaning σ2
i (z) → 0 when ϕi(z) → ∞ and σ2

i (z) → 1 when ϕi(z) →
0. However, the authors of the papers above report computational challenges and biased coefficient
estimates in the precision parameter equation. Our empirical application results in Section 3.1 and the
simulations study in Section 4.1 show that the location-scale parametrization used in this article avoids
these issues while enabling a direct interpretation of the effect of the latent variables on the conditional
variance of the items.

The equations for the location and scale parameters are:

logit(μi(z)) = αi0,μ+αi1,μz, (4)

logit(σi(z)) = αi0,σ +αi1,σz, (5)

with the logit link function mapping the equations onto the correct space for the corresponding
distributional parameter.

Example 2 (continued). A confirmatory factor model for binary items and skewed RTs: The GLVM-LSS
specification of the joint model for IRs and responses times (RTs) is as follows. For IRs yi, i = 1, . . . ,p,
we assume yi ∣ z1 ∼ Bernoulli(πi(z1)), where z1 represents the student’s latent ability. The equations for
the location parameters of the Bernoulli distribution are modeled as:

logit(πi(z1)) = αi0,π +αi1,πz1, (6)

where αi0,π and αi1,π denote item i’s difficulty and discrimination parameters, respectively. For the RTs,
we assume log(ti) ∣ z2 ∼ SN(μi(z2),σ2

i (z2),νi(z2)), with ti denoting item’s i RT in minutes and z2 the
student’s latent speed trait. Under this reparametrization of the SN distribution1, the equations for the
location μi(z2) ∈R, scale σi(z2) ∈R+, and shape νi(z2) ∈ (0,1) parameters are:

μi(z2) = αi0,μ+αi1,μz2 , (7)

log(σi(z2)) = αi0,σ +αi1,σz2 , (8)

logit(νi(z2)) = αi0,ν+αi1,νz2 , (9)

1For modeling convenience, the shape parameter is restricted to the (0,1) interval. We achieve this by applying a monotonic
transformation of the shape parameter in the “centered” parametrization outlined in Azzalini (1985) and described in Azzalini
& Capitanio (1999). We refer the readers to Section A1 of the Supplementary Material for further details.
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respectively, with the identity, log, and logit links mapping the equations onto the respective spaces of
the distributional parameters. The (conditional) moments for the log-RTs are E(log(ti) ∣ z2) = μi(z2),
Var(log(ti) ∣ z2) = σ2

i (z2), and Skewness(log(ti) ∣ z2) = γ̃(2νi(z2) − 1), with γ̃ =
√

2(4 − π) ⋅ (π −
2)−3/2 ≈ 0.9953. Finally, to capture the “speed-accuracy trade-off,” the latent ability and speed traits
are distributed as (z1,z2)⊺ ∼N2(0,Φ), where Φ is a correlation matrix.
Remark 4. The proposed framework can be extended to accommodate linear and non-linear structural
relationships between latent variables and/or observed covariates effects. Let x = (x1, . . . ,xs)⊺ ∈ Rs

denote a vector of observed covariates. A linear structural model with covariate effects can be written
in matrix form as:

z =Gz+Bx+δ,

where G is a q×q matrix of structural parameters satisfying recursive restrictions (Bollen, 1989), B is
a q× s matrix of regression coefficients, and δ ∼ N(0,Iq) is a vector of independent standard Normal
errors.

Similarly, assuming the vector of covariates x has a linear and additive effect on the linear component,
the measurement equation for an arbitrary distributional parameter φi ∈ θi indexing fi(yi ∣ z,x;θi)
becomes:

vi,φ(φi(z,x)) = αi0,φ+
q

∑
j=1

αij,φzj+
s
∑
r=1

βir,φxr , (10)

where βi,φ = (βi1,φ, . . . ,βis,φ)⊺ is a vector of regression coefficients. The measurement equation in (10)
can also include interactions between the observed covariates and the latent variables to enable the
study of “distributional” differential item functioning (DIF), where the assessment of DIF goes beyond
the (conditional) mean and extends to the items’ (conditional) higher-order moments.

While Remark 4 highlights how the GLVM-LSS can be expanded into a more general LVM
framework, this article aims to establish a foundation for future methodological developments in
distributional LVM research. It should be noted, however, that the current implementation of the
GLVM-LSS improves model fit over traditional approaches and proves valuable in empirical research
where, from a measurement perspective, higher-order moments of observed variables carry substantive
meaning or reflect important item characteristics.

For example, in the ANES 2020 application (Section 3.1), we examine whether individuals with
liberal values have more homogeneous views on the social groups in question. If so, the (conditional)
variance of the thermometer items should be lower for individuals on the liberal side of the latent scale
than for those on the conservative side. In the PISA 2018 application (Section 3.2), modeling the scale
(variance) and shape (skewness) parameter of the (log-)RTs as functions of the latent speed factor could
help testing agencies better understand test-taking strategies and item characteristics.

2.2. Model identification
The generality of the proposed model makes it challenging to derive general conditions for global
identification (e.g., Skrondal & Rabe-Hesketh, 2004, Chapter 5), so we instead resort to the weaker
notion of (strict) local identification (Rothenberg, 1971).

As in the GLLVM, strict local identifiability in the GLVM-LSS is only possible for points on
the reduced parameter space that results from imposing at least q2 restrictions across the factor
loadings matrix A and the latent variables covariance matrix Φ. These restrictions address rotational
indeterminacy and fix the scale of the latent variable space (Anderson & Rubin, 1956). Denote by
Ξ such reduced parameter space and Θ ∈ Ξ a point of free (unrestricted) model parameters. A point
Θ0 ∈Ξ is strictly locally identifiable if the expected information matrix I(Θ0) is strictly positive definite
(Rothenberg, 1971). However, in the GLVM-LSS framework, model identifiability can be challenging
even after imposing appropriate restrictions on the parameters due to the presence of multiple (possibly
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correlated) location, scale, and shape parameters. In what follows, we present theoretical results on the
identifiability of GLVM-LSS models for continuous observed data following distributions with multiple
distributional parameters.

Under suitable regularity conditions, we show that GLVM-LSS is generically locally identifiable in
the sense that the model is strictly locally identifiable for almost all parameters in Ξ except for a subset
with Lebesgue measure zero. More precisely, we define “generic local identifiability” as follows.
Definition 2.1. A statistical model is generically locally identified if every Θ ∈ Ξ/V is (strictly) locally
identifiable, where V is a proper sub-variety of Ξ and thus has Lebesgue measure zero in Ξ.

This notion of identifiability is closely related to and can be seen as a weaker version of the concept
of “generic identifiability” (Allman et al., 2009; Gu & Xu, 2020) that has been commonly adopted for
studying the identifiability of LVMs. The following theorem holds:
Theorem 2.1. Assume:

(A1) There exists a point in the reduced parameter space Θ0 ∈ Ξ such that I(Θ0) is strictly positive
definite,

(A2) fi(yi ∣ z;θi(Θ)), i = 1, . . . ,p, in the measurement part, and p(z;Θ) in the structural part of a
GLVM-LSS model, are infinitely differentiable in Ξ and D, and their respective supports are
independent of Θ.

Then, the GLVM-LSS model is generically locally identified.
Assumption (A1) avoids trivial non-identification issues, and follows from the restrictions imposed

to solve the rotational and scale indeterminacies. This assumption also rules out cases where the distri-
butional parameters in θi are linearly dependent. Assumption (A2) relates to smoothness and regularity
conditions often met in practice for continuous distributions indexed by multiple location, scale, and
shape parameters. The proof of Theorem 2.1, and auxiliary definitions, lemmas, and propositions are
provided in the Section A3 of the Supplementary Material.

While Theorem 2.1 addresses models with continuous observed data, establishing general identifi-
cation conditions for GLVM-LSS models with categorical data are more challenging due to the finite
amount of information in the data. In these cases, parameter identification follows from the existence
of a finite-dimensional sufficient statistic. Indeed, once appropriate parameter restrictions are imposed,
a necessary condition for a GLVM-LSS with categorical items to be identified is that the number of
parameters is less than the number of possible response patterns (e.g., 2p for binary items or ∏p

i=1 Ci
for categorical items, where Ci is the number of categories for item i). We note that, as mentioned
in Remark 2, the current specification of the proposed framework does not cover heteroscedastic
models for binary/ordinal categorical data and therefore the identification constraints described in,
e.g., Skrondal and Rabe-Hesketh (2004, Chapter 2), Hedeker et al. (2006, 2009) or Molenaar (2015),
Molenaar et al. (2012), do not apply to the current setting.

In practice, some fi’s might be indexed by distributional parameters that are correlated (yet linearly
independent). Due to sampling variability, the latter can lead to situations where the model is not
empirically identified. In this case, empirical local identification of the MLE can be verified if the
estimated expected information matrix, Î(Θ̂), is non-singular (McDonald & Krane, 1977).

2.3. Parameter estimation and computation
For a random sample of n independent observations, the marginal log-likelihood is:

�(Θ;Y) =
n
∑
m=1

log
⎛
⎜
⎝
∫
Rq

[
p

∏
i=1

fi(ymi ∣z;θi(α0,A))] p(z;Φ) dz
⎞
⎟
⎠
, (11)
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where Y ∈ Rn×p is the observed data matrix with rows given by the p-dimensional vectors of observed
variables ym = (ym1, . . . ,ymp)⊺ from units m = 1, . . . ,n, and Θ is a K-dimensional vector of unknown
model parameters. For computational convenience, we parameterize the factor covariance matrix
through its Cholesky decomposition Φ = LL⊺, where L is a lower triangular matrix. When the latent
variables are uncorrelated, L is fixed to the identity matrix, and Θ⊺ = (α⊺0 ,vec(A)⊺), where “vec” is the
vectorization operator that concatenates the free entries of A in a vector. In confirmatory settings, where
the latent variables are correlated, Θ⊺ = (α⊺0 ,vec(A)⊺,vech(L)⊺), where “vech” is the half-vectorization
operator that concatenates the free lower-triangular entries of L in a vector.

The model parameters are estimated via full-information MML. Let Ξ⊆RK be the reduced parameter
space. The maximum likelihood estimate (MLE), denoted by Θ̂, is:

Θ̂ = arg max
Θ∈Ξ

�(Θ;Y).

To compute the MLE, we find the solution to the system of (non-linear) score equations S(Θ;Y) ∶=
∇Θ� = 0, with entries of the general form

Si,φi(Θ;Y) ∶= ∂�(Θ;Y)
∂αi,φ

=
n
∑
m=1
∫
Rq
[∂ log fi(yim ∣z)

∂φi

∂φi

∂ηi,φ

∂ηi,φ

∂αi,φ
] p(z ∣ym;Θ) dz (12)

for the vector of factor loadings αi,φ in the measurement equation of the distributional parameter φi ∈ θi,
i = 1, . . . ,p. We provide expressions of the score equations (12) for the GLVM-LSS models introduced
in this article in the Section A1 of the Supplementary Material. Scores for the [j,k]th entry in L are:

SL[j,k](Θ;Y) ∶= ∂�(Θ;Y)
∂L[j,k]

= −n tr(L⊺(LL⊺)−1Djk)+
n
∑
m=1
[tr(GjkVm)+ z̆⊺mGjkz̆m], (13)

where Djk = ∂L/∂L[j,k] is a square matrix of dimension q, with a value of 1 in the [j,k] position and zero
elsewhere; Gjk = (LL⊺)−1DjkL⊺(LL⊺)−1; and the conditional mean z̆m = E(z ∣ ym;Θ) and conditional
variance Vm = E((z− z̆m)(z− z̆m)⊺ ∣ym;Θ) are obtained using the properties of the trace operator and
the linearity of the conditional expectation. Details on the computation of L are discussed in the Section
A2 of the Supplementary Material.

In most cases, Θ̂ is computed using iterative score-based optimization algorithms. Our estimation
strategy begins with a warm-up phase using the Expectation–Maximization (EM) algorithm (Bock &
Aitkin, 1981; Dempster et al., 1977), followed by a direct maximization of the marginal log-likelihood
with the BFGS quasi-Newton algorithm (Nocedal & Wright, 2006, Chapter 6). The transition between
these two algorithms is possible due to the equivalence of the score functions of the complete-data and
the marginal log-likelihoods (Louis, 1982).

Upon computation of the MLE, in exploratory settings, an orthogonal or oblique rotation can be
applied to the estimated factor loading matrix, Â, to obtain a more interpretable and sparse solution
(e.g., Jennrich, 2004, 2006; Liu et al., 2023).

Unless the objective function is strictly concave, both the (quasi-)Newton update in the EM
algorithm’s M-step and the BFGS algorithm converge to a local maximum. This means that the final
solution can depend on the initial values chosen. Using different starting values and comparing the
resulting marginal log-likelihood estimates is advisable to determine the best solution.

For the one- and two-dimensional models presented in Sections 3 and 4, it is sufficient to evaluate
the integrals in the score vector and the information matrices numerically using an ordinary Gauss–
Hermite (GH) rule. This can be done with a fixed number of user-defined quadrature points on each
dimension of the space of the latent variables. However, the GH approach runs into computational
challenges when the dimension of the latent space is high. In such cases, alternatives like adaptive GH
quadrature (Rabe-Hesketh et al., 2005; Schilling & Bock, 2005) or stochastic approximation methods
(Cai, 2010; Zhang & Chen, 2022) should be considered.

For model selection, we suggest using information criteria for nested (e.g., with restrictions on
the model parameters) and non-nested (e.g., GLVM-LSS models with different distributions on the
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measurement model) models. The Akaike Information Criterion (AIC, Akaike, 1974) and the Bayesian
Information Criterion (BIC, Schwarz, 1978) are popular criteria to evaluate model fit. The AIC and
BIC often concur and are commonly used together in applied research (Kuha, 2004). However, in case
of divergent results, we suggest referring to the AIC when dimensionality reduction is the primary
goal, as it favors (expected) predictive performance (Shao, 1997); while using the BIC when the
study involves substantive interpretation of the latent variables, as it favors consistent model selection
(Nishii, 1984).

3. Empirical applications

We present two empirical applications that follow from the GLVM-LSS examples introduced in
Section 2.1.

3.1. ANES 2020: “Thermometer” variables
The ANES 2020 dataset contains “feeling thermometer” variables on social groups, including sexual
orientation and gender identity groups (Gay men and Lesbians, Transgender people), social and political
movements (Feminists, #MeToo and BLM movements), and groups that were trending in the news
during 2020 (labor unions, journalists, scientists) from the post-election sample of the 2020 American
National Election Study (ANES)2. Participants rate their feelings toward social groups on a scale of
0–100, where higher ratings indicate more favorable attitudes.

The ANES thermometer variables have been used in some studies as a substitute for political
orientation and measures of personal and societal values (e.g., Abelson et al., 1982; Guth, 2019; Krasa &
Polborn, 2014). Similarly, they provide insights into an individual’s position on a conservative-progressive
belief scale. We present results for the one-factor Beta model3 .

We model the observed variables using the heteroscedastic Beta factor model discussed in Sec-
tion 2.1, i.e., yi ∣ z ∼ Beta(μi(z),σi(z)), i = 1, . . . ,8. We scale the responses by 1/100 so the observed
variables are within the interval (0,1). We also replace extreme responses on the boundaries of the
interval with numerical values that are arbitrarily close to 0 and 1 (1−9 and (1−1−9), respectively). We
exclude individuals with incomplete interviews or technical errors in their answers from the analysis,
treat responses of “Don’t know”, “Don’t recognize”, and “Refuse” as missing data. The resulting sample
consists of 7253 respondents.

The Section A4a of the Supplementary Material presents descriptive statistics for the observed vari-
ables. Most variables have negatively skewed marginal empirical distributions and negative excess kur-
tosis, except item Scientists. The empirical cumulative distribution functions (ECDF) for the observed
variables are displayed in Figure 1. Although the thermometer ratings are measured on a continuous
scale, respondents tend to round their answers to the nearest 5 or 10, resulting in a stepped appearance
in the ECDFs. Some questions show a higher frequency of extreme responses (either zero or one). Most
responses tend to cluster around 0.5, suggesting that respondents are reluctant to take a clear position on
issues related to the conservative-progressive belief spectrum. We estimated a baseline (homoscedastic)
model, which assumes a constant scale parameter, and an alternative (heteroscedastic) model, which
allows the scale parameter to vary based on the latent variable. The heteroscedastic model was selected
using the AIC and BIC criteria, as detailed in Table 1. Additionally, Table 2 presents the parameter
estimates along with their corresponding estimated (SEs) for the heteroscedastic model.

2American National Election Studies, 2021. (www.electionstudies.org). Full Release (dataset and documentation). July 19,
2021 version. These materials are based on work supported by the National Science Foundation under grant numbers SES-
1444721, 2014-2017, the University of Michigan, and Stanford University.

3We also explored two-factor Beta models, but careful analysis of the expected information matrix (evaluated at the MLE)
reveals that the heteroscedastic Beta factor model with q = 2 is not of full rank. Thus, the model is not empirically identified
for this dataset.
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Figure 1. ANES 2020: Empirical cumulative distribution function (ECDF).

Note: Highlighted variables: Feminists (solid line, ), Gay men and Lesbians (dashed line, ), BLM movement (dotted line, ),

and Scientists (dash-dot line, ).

Table 1. ANES 2020: AIC and BIC for the homoscedastic and

heteroscedastic Beta factor models. Information criteria for the

best fitting model are in bold.

Model AIC BIC K

Beta (μ(z),σ) −270,078.20 −269,912.86 24

Beta (μ(z),σ(z)) −271,002.07 −270,781.62 32

Note: K = dim(Θ̂) is the number of parameters in the corresponding model.

Table 2. ANES 2020: Estimated (Est.) coefficients and their standard errors (SE) for the heteroscedastic Beta factor model

Location parameter (μ)
measurement equation

Scale parameter (σ)
measurement equation

Item α̂i0,μ α̂i1,μ α̂i0,σ α̂i1,σ

Est. SE Est. SE Est. SE Est. SE

Gay men and Lesbians 1.00 (0.03) 1.54 (0.02) 0.52 (0.01) −0.25 (0.01)

Transgender people 0.61 (0.03) 1.70 (0.02) 0.36 (0.01) −0.15 (0.01)

Feminists 0.49 (0.02) 1.56 (0.02) 0.29 (0.01) −0.14 (0.01)

#MeToo movement 0.47 (0.03) 1.65 (0.03) 0.57 (0.01) −0.28 (0.01)

BLM movement 0.12 (0.02) 1.32 (0.03) 1.28 (0.01) −0.25 (0.01)

Labor Unions 0.46 (0.02) 0.83 (0.01) 0.77 (0.01) −0.16 (0.01)

Journalists −0.06 (0.02) 1.21 (0.02) 0.71 (0.01) −0.16 (0.01)

Scientists 1.72 (0.02) 0.84 (0.02) 0.71 (0.01) −0.19 (0.01)
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The initial values for the estimation algorithm were chosen by conducting a principal component
analysis on the observed data matrix. We then used the first principal component as the explanatory
variable in a series of independent distributional regression analyses with a Beta distribution for
the outcome variable. To explore potential local solutions, we tested various random starting values;
however, the results remained consistent with those reported below.

We first discuss the results of the location parameter equations. The estimated slopes (α̂i1,μ’s) are
positive and statistically significant, indicating that more progressive individuals tend to rate these
groups higher on average. In addition, lower intercept values (α̂i0,μ’s) indicate that the items are
perceived as more challenging, meaning a more progressive position on the latent scale is necessary
to achieve at least 50% on these items.

In discussing the scale parameter equations, all the estimated slopes (α̂i1,σ ’s) are negative and
statistically significant. This indicates that individuals on the “progressive” side of the latent scale tend
to hold more homogeneous views about these groups than those on the ‘conservative’ side, in line with
previous findings in public opinion research literature. The estimated intercepts (α̂i0,σ ’s) determine the
conditional variance for the “average” position on the latent scale (i.e., z = 0). Larger intercepts imply
greater heterogeneity in people’s responses near the middle point of the latent scale.

A comparison of the fitted (conditional) distribution implied by the homoscedastic and het-
eroscedastic models for selected variables is shown in Figure 2. The plot includes the fitted mean,
median, and percentiles (10th, 25th, 75th, and 90th) for both models. The homoscedastic model (shown
in Figure 2a and 2c) does not effectively capture the asymmetries in the conditional distributions of the
observed variables along the latent scale. In contrast, the heteroscedastic model, illustrated in Figure 2b
and 2d, successfully captures these asymmetries.

3.2. PISA 2018: A joint model for IRs and RTs
The second dataset was obtained from the 2018 PISA computer-based mathematics exam. We focused
on a sample of Brazilian students who answered nine binary items from the first testing booklet. Only
individuals who provided complete responses were included, resulting in a final sample size of 1,280
students. RTs for each binary item were recorded in logarithmic minutes. Descriptive statistics for the
IRs and log RTs are available in the Section A4b of the Supplementary Material.

RTs provide valuable information about a student’s ability and test-taking strategies and are also
helpful in item calibration and test design (van der Linden, 2007, 2008; van der Linden & Guo, 2008;
van der Linden et al., 2010). A hierarchical model for speed and accuracy on test items was initially
proposed in van der Linden (2007, 2009), and later extended in Bolsinova & Molenaar (2018); Bolsinova
et al. (2017); Molenaar et al. (2015) and others. For a review of models involving items and RTs, see De
Boeck & Jeon (2019).

The baseline model in van der Linden (2007) assumes that the log-RTs follow a Normal distribution,
with only the conditional mean (location parameter) depending on the latent speed factor. Factor
loadings for log-RTs are fixed4, but the variance of the latent speed factor is freely estimated. We extend
this model by employing the SN distribution, which models varying heterogeneity and skewness in the
log-RTs along the latent speed factor as described in Section 2.1. Variances for the latent ability and latent
speed factors are fixed at 1, while the factor loadings are freely estimated. Higher-order moments of RTs
can provide valuable insight into students’ test-taking strategies, thought processing during high-stakes
standardized tests, and information on item quality.

The empirical and model-implied marginal distributions of the RTs in log minutes are displayed in
Figure 3. We observed that the majority of the log-RTs showed some degree of skewness. The model fit
improved when the log-RTs were assumed to follow an SN distribution (solid line) rather than a Normal
distribution (dashed line).

4Slopes in the log-RTs equations are implicitly fixed to −1 in van der Linden’s hierarchical model.
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Figure 2. ANES 2020: Fitted conditional expected values (solid line, ——), median (dashed line, —), and percentiles (dotted lines, ).

We estimated seven increasingly complex models, including the proposed confirmatory factor model
discussed in Section 2.1, using the full-information maximum likelihood procedure described in
Section 2.3. We tried different starting values to check for local solutions, and the results remained
consistent across estimations. We began the estimation process by implementing a warm-start strategy,
which involved a PCA decomposition on the matrix of observed variables. We then retained q = 2
principal components to use them as observed covariates in a series of distributional regressions with
IRs and log-RTs as outcomes. The two-dimensional integrals were numerically evaluated using the GH
quadrature, with 45 quadrature points in each latent dimension (a total of 2025 quadrature points).

Models 1 to 3 assume the log-RTs follow a conditional Normal distribution. Model 1 serves as the
baseline hierarchical model described in van der Linden (2007). Model 2 allows to freely estimate the
factor loadings in the log-RT model, similar to the ‘unrestricted model’ in Molenaar et al. (2015), while
fixing the variance of the latent speed factor to Var(z2) = 1 for identification purposes. Model 3 is a
heteroscedastic version of Model 2. In models 4 to 7, we assume that the log-RTs follow a conditional
SN distribution. In Model 4, only the location parameter (μ) depends on the latent speed factor, while
the scale (σ) and shape (ν) parameters remain constant. Models 5 and 6 model (μ,σ)⊺ and (μ,ν)⊺ as
functions of z2, respectively. Model 7, the full-SN model, treats all distributional parameters as functions
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Figure 3. PISA 2018: Empirical and model-implied marginal distributions for response times (in log-minutes).

Note: The solid line (——) is the SN model, and the dashed line (—) the Normal model.

of the latent speed trait. In all cases, the IRT model for the IRs remains consistent with what was
described above, with the equation given in (6). Results are presented in Table 3. Notably, models with
SN log-RTs demonstrate better model fit compared to those with Normal log-RTs. Model 7 provides the
best fit based on its AIC and BIC values.

Estimates for the intercepts, loadings, and factor correlation in Model 7, along with their corre-
sponding estimated SEs, are presented in Table 4. The interpretation of the intercepts and slopes in
the equations for the location parameter of the IRs (πi’s) and log-RTs (μi’s) is straightforward. The α̂i0,π ’s
and α̂i1,π ’s represent the difficulty and discrimination parameters for the IRs. In other words, items with
lower α̂i0,π values are considered more difficult, while those with higher α̂i1,π values are seen as having
more discrimination power.

The α̂i0,μ’s in log-RTs represent the average log-RTs for z2 = 0, also known as the item’s average time
intensity (van der Linden, 2007). The estimated slopes α̂i1,μ in the equation for the location parameter
of the log-RTs are all negative. This suggests that individuals with a higher latent speed trait will respond
faster to any given item.

The estimated correlation between the latent ability and the speed factor is−0.28 (SE 0.04), suggesting
that test takers with higher latent ability generally take longer to respond. This result aligns with
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Table 3. PISA 2018: AIC and BIC for GLVM-LSS for the joint modeling of item responses and response

times. Information criteria for the best fitting model are in bold.

Model AIC BIC K

1. Bernoulli (π(z1)) + Normal (μ(z2), fixed αi1,μ’s) 26,173.61 26,369.49 38

2. Bernoulli (π(z1)) + Normal (μ(z2)) 25,908.68 26,145.79 46

3. Bernoulli (π(z1)) + Normal (μ(z2),σ(z2)) 25,754.91 26,038.42 55

4. Bernoulli (π(z1)) + Skew-Normal (μ(z2)) 25,326.08 25,609.58 55

5. Bernoulli (π(z1)) + Skew-Normal (μ(z2),σ(z2)) 25,281.44 25,611.33 64

6. Bernoulli (π(z1)) + Skew-Normal (μ(z2),ν(z2)) 25,232.76 25,562.66 64

7. Bernoulli (π(z1)) + Skew-Normal (μ(z2),σ(z2),ν(z2)) 25,172.12 25,548.41 73

Note: K = dim(Θ̂) is the number of parameters in the corresponding model.

previous studies on the speed-accuracy trade-off, which indicates that individuals who respond slowly
make fewer mistakes compared to those who respond quickly and make more mistakes (e.g., van der
Linden, 2007, and Heitz, 2014 for a general overview on the subject). Previous studies have found
correlations between the latent ability and the latent speed trait of similar sign and magnitude in large-
scale educational testing of quantitative subjects (e.g., van der Linden & Guo, 2008).

The equations for the scale (standard deviation) and shape (skewness) parameters of the log-RTs
provide valuable information about the items and RTs. The estimates α̂i1,σ and α̂i1,ν indicate that some
log-RTs exhibit heteroscedasticity (items 2, 3, 4, 5, 8) and varying skewness (items 2, 3, 4, 6, 7, 8, 9) in
their log-RTs as the latent speed factor changes. Selected item characteristic curves (ICC) for the IRs
and the fitted SN conditional distributions for the log-RTs (parameterized by the coefficients in Table 4)
are shown in Figures 4 and 5. The (conditional) mean, median, and percentiles (0.025, 0.10, 0.25, 0.75,
0.90, and 0.975) for the log-RTs are plotted to illustrate how the distribution’s shape changes as the latent
speed factor dimension varies.

Figures 4a and 4b illustrate item 2, while Figure 4c and 4d depict item 3. The figures show how
the variance of log(t2) and log(t3) changes as we move along the latent speed factor dimension—the
conditional skewness, however, changes in opposite directions. For instance, log(t2) is positively skewed
for individuals in the left tail of the latent speed factor, while log(t3) is negatively skewed for the same
group of students. On the other hand, the RTs’ distributions are symmetric for individuals on the right
tail of the speed factor dimension. Figure 5a and 5b depict item 5, while Figure 5c and 5d correspond
to item 8. The estimated positive slope for the scale parameter suggests a larger variance in the RTs for
individuals on the upper tail of the latent speed factor distribution. These items are among the most
difficult ones, with higher α̂i0,π values, and also require more time on average, with higher α̂i0,μ values.
Furthermore, they also exhibit varying skewness parameters. For example, for item 8, the direction of
the skewness changes depending on the location along the latent speed factor scale. These results might
suggest differences in item characteristics, such as the wording, task, difficulty, or cognitive processes
required for their completion.

4. Simulation studies

We performed several simulation studies to evaluate the accuracy of the parameter estimates obtained
through the MML algorithm explained in Section 2.3, along with their corresponding SEs. Simu-
lations were conducted in R (R Core Team, 2022) using the package glvmlss, with underlying
functions programmed in C++ using packages Rcpp (Eddelbuettel, Francois, Allaire, et al., 2023),
RcppArmadillo, (Eddelbuettel, Francois, Bates, et al., 2023), and RcppEnsmallen (Balamuta &
Eddelbuettel, 2018). Code and replication files are available at https://github.com/ccardehu/glvmlss.

https://doi.org/10.1017/psy.2025.7 Published online by Cambridge University Press

https://github.com/ccardehu/glvmlss
https://doi.org/10.1017/psy.2025.7


946
Cárdenas-H

urtado
etal.

Table 4. PISA 2018: Estimated coefficients (Est.) and Standard Errors (SE) for a joint model of item responses and response times (Model 7)

Estimated coefficients in the

equation for item responses (IR)
Estimated coefficients in the equations for (log-)response times (log-RT)

Location parameter (πi) Location parameter (μi) Scale parameter (σi) Shape parameter (νi)

Item α̂i0,π α̂i1,π α̂i0,μ α̂i1,μ α̂i0,σ α̂i1,σ α̂i0,ν α̂i1,ν

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

Item 1 0.64 (0.07) 0.79 (0.10) 0.19 (0.01) −0.17 (0.01) −0.95 (0.02) −0.03 (0.02) 0.63 (0.14) −0.03 (0.16)

Item 2 −0.47 (0.07) 1.03 (0.11) 0.30 (0.01) −0.24 (0.01) −0.89 (0.02) −0.10 (0.02) 1.56 (0.16) −0.78 (0.19)

Item 3 −0.04 (0.10) 1.94 (0.21) 0.42 (0.02) −0.25 (0.02) −0.61 (0.02) −0.08 (0.02) −1.07 (0.14) 0.81 (0.16)

Item 4 −0.69 (0.08) 0.96 (0.11) 0.45 (0.02) −0.34 (0.01) −0.87 (0.02) −0.05 (0.02) −1.45 (0.14) −0.33 (0.16)

Item 5 −2.85 (0.23) 2.28 (0.25) 1.00 (0.02) −0.36 (0.02) −0.68 (0.02) 0.14 (0.02) −1.04 (0.14) −0.32 (0.21)

Item 6 −0.91 (0.07) 0.32 (0.08) 0.16 (0.02) −0.36 (0.01) −0.97 (0.02) 0.03 (0.03) 0.11 (0.13) −0.88 (0.22)

Item 7 −4.84 (0.45) 2.52 (0.34) 0.65 (0.01) −0.33 (0.01) −1.15 (0.02) −0.04 (0.02) 0.35 (0.15) −0.58 (0.18)

Item 8 −3.64 (0.32) 2.36 (0.29) 1.02 (0.02) −0.39 (0.01) −1.02 (0.02) 0.12 (0.03) −1.22 (0.22) −1.61 (0.30)

Item 9 −2.73 (0.17) 1.45 (0.16) 0.58 (0.02) −0.30 (0.01) −0.90 (0.02) −0.00 (0.02) 0.30 (0.10) 0.36 (0.14)

Estimated latent correlation (z1,z2): ϕ̂z = −0.28 (SE: 0.04)
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Figure 4. PISA 2018: Fitted conditional expected values (solid line, ——), median (dashed line, —), and percentiles (dotted lines, )

for IR and log-RT for items 2 and 3.

4.1. Simulation study I
The first simulation study closely resembles the empirical application discussed in Section 3.2. In this
study, we examine observed continuous variables within the interval (0,1), which are assumed to follow
a location-scale parametrization of the Beta distribution. Specifically, the heteroscedastic Beta factor
model features location and scale parameters that are defined as functions of a single latent variable, i.e.,
yi ∣z ∼ Beta(μi(z),σi(z)).

The values for the population parameters in the location parameter equation are selected from two
uniform distributions: αi0,μ ∼Unif(−1.5,1.5) and αi1,μ ∼Unif(0.5,1). The signs of the αi1,μ’s are assigned
randomly with a probability of 0.5. The parameters for the scale equation are sampled from the uniform
distribution (αi0,σ,αi1,μ)⊺ ∼ Unif(0.1,0.5), with the signs of the slopes also assigned randomly. We
generate the true parameters in this way to ensure that the conditional densities fi(yi ∣z) are uni-modal.
Although the Beta distribution allows for bimodal densities for certain combinations of μi and σi, this
is not common in the applications of interest (see Noel (2014) for a unidimensional unfolding Beta
factor model that handles the bi-modality of the observed variables). The integrals involved in parameter
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Figure 5. PISA 2018: Fitted conditional expected values (solid line, ——), median (dashed line, —), and percentiles (dotted lines, )

for IR and log-RT for items 5 and 8.

computation were numerically evaluated using a fixed-point Gauss–Hermite rule with 100 quadrature
points.

We generated R = 300 datasets for each of the 12 conditions. These conditions were created by
combining four different sample sizes (200, 500, 1,000, and 5,000) with three different numbers of
observed variables (5, 10, and 20). The quality of the estimated parameters was assessed by the mean
squared error (MSE):

MSE(α̂k) =
1
R

R
∑
r=1
(α̂(r)k −αk)2, k = 1,...,K ,

and the absolute bias (AB):

AB(α̂k) = ∣
1
R

R
∑
r=1

α̂(r)k −αk∣, k = 1,...,K ;
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where α̂(r)k ∈ Θ̂(r) is an arbitrary parameter estimate from the rth replication, and αk ∈Θ∗ is the true value
for the model parameter. We report the average MSE (AvMSE) and the average AB (AvAB) separately
for the intercepts and slopes in the equations of the location (μ) and scale (σ) parameters indexing the
Beta distribution. For completeness, we include box-plots with the simulation results for individual
parameters (p = 10) in the Section A5 of the Supplementary Material. Similar results hold for other
numbers of observed variables.

To evaluate the accuracy of the estimated SEs and corresponding confidence intervals, we calculate
the average coverage rate across replications for various intercepts and slopes in the location and scale
parameters equations. The coverage rate (CR) of the (1−α)×100% confidence interval for a parameter
estimate α̂ ∈ Θ̂ is:

CRα(α̂k) =
1
R

R
∑
r=1

1(L̂(r)k ≤ αk ≤ Û(r)k ), k = 1,...,K

where L̂(r)k = α̂(r)k − zα/2 ⋅ ŜE(α̂(r)k ) is the sample-dependent lower bound, Û(r)k = α̂(r)k + zα/2 ⋅ ŜE(α̂(r)k )
is the sample-dependent upper bound, and zα/2 corresponds to the (α/2)th quantile of the standard
Normal distribution. The customary level of the nominal rate is α = 0.05. Coverage rates close to 0.95
indicate a good estimation of the 95% confidence intervals. We report the average CR (AvCR) for
intercepts and slopes separately.

Table 5 gives all the results. As expected, the AvMSE and the AvAB tend to decrease as the sample size
increases for all values of p. As for the AvCRs, they reach the nominal level as the sample size increases.
It is worth noting that estimated SEs are slightly overestimated for smaller sample sizes, leading to more
conservative confidence intervals.

4.2. Simulation study II
The second study resembles the empirical application in Section 3.2. We study the finite sample
performance of a confirmatory GLVM-LSS model with two latent variables (q = 2) and sixteen observed
variables (p = 16). The first eight variables are distributed as Bernoulli, conditional on the first factor,
yi ∣ z1 ∼ Bernoulli(πi(z1)) for i = 1,...,8. The remaining eight variables are distributed SN, conditional
on the second factor, yi ∣ z2 ∼ SN(μi(z2),σi(z2),νi(z2)) for i = 9,...,16. The latent variables follow a
multivariate standard Normal distribution, (z1,z2)⊺ ∼ N(0,Φ), where Φ is a correlation matrix with
non-zero off-diagonal entries denoted by ϕ12 = ϕ21 = ϕz.

The simulation study considers three sample sizes, n = {500,1,000,3,000}. The intercepts, slopes,
and factor correlation are fixed to the parameter estimates for items 1–7 and 9 in Table 45. As
before, we compute the AvMSE and AvAB for the estimated parameters and assess the properties of
the estimated confidence intervals via the AvCR. The above measures were obtained from R = 300
independently simulated datasets. The multidimensional integrals were numerically evaluated using the
Gauss–Hermite rule with 35 quadrature points on each latent dimension (a total of 1,225 quadrature
points).

For better numerical stability, we estimate the model parameters by letting the EM algorithm run
for a large number of iterations, using a gradient descent update rule with adaptive learning rate6. After
500 iterations, the algorithm switches to the quasi-Newton direct maximization step. Table 6 presents
the results for each sample size.

For simplicity, we present the aggregate results for intercepts and factor loadings in each matrix Âφ,
φ ∈ θ. In all cases, the AvMSE and AvAB decrease with sample size, as expected. The results in Table 6
also suggest that the factor correlation ϕz is consistently estimated. Coverage rates are around nominal

5These eight items were chosen randomly from the nine in the original PISA 2018 application.
6The initial learning rate was κ = 0.0001, and it was halved if the objective function in the EM algorithm did not increase

between iterations.
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Table 5. Simulation Study I: Average Mean Squared Error (AvMSE), Average Absolute Bias (AvAB), Average Coverage Rate (AvCR), and Average computation time in minutes

(CT) for the MLE of an LVM with Beta distributed observed variables, by test length and sample size

Average MSE (AvMSE) Average AB (AvAB) Average CR (AvCR)

Inter. Load. Inter. Load. Inter. Load. Inter. Load. Inter. Load. Inter. Load. Average

p n (α̂i0,μ) (α̂i1,μ) (α̂i0,σ ) (α̂i1,σ ) (α̂i0,μ) (α̂i1,μ) (α̂i0,σ ) (α̂i1,σ ) (α̂i0,μ) (α̂i1,μ) (α̂i0,σ ) (α̂i1,σ ) CT (mins.)

200 0.0105 0.0146 0.0102 0.0081 0.0037 0.0058 0.0240 0.0058 0.9587 0.9720 0.9587 0.9720 0.0415

500 0.0045 0.0055 0.0039 0.0031 0.0021 0.0050 0.0081 0.0058 0.9507 0.9633 0.9547 0.9660 0.1194

1,000 0.0021 0.0026 0.0018 0.0015 0.0016 0.0050 0.0038 0.0029 0.9553 0.9573 0.9540 0.9620 0.2286
5

5,000 0.0004 0.0006 0.0004 0.0003 0.0008 0.0044 0.0020 0.0032 0.9580 0.9420 0.9527 0.9473 1.4237

200 0.0117 0.0109 0.0079 0.0064 0.0050 0.0066 0.0153 0.0042 0.9630 0.9810 0.9640 0.9917 0.0851

500 0.0041 0.0042 0.0029 0.0026 0.0028 0.0060 0.0073 0.0036 0.9663 0.9733 0.9583 0.9723 0.2409

1,000 0.0021 0.0021 0.0014 0.0014 0.0012 0.0042 0.0040 0.0042 0.9570 0.9600 0.9590 0.9577 0.4608
10

5,000 0.0004 0.0004 0.0003 0.0003 0.0009 0.0038 0.0014 0.0037 0.9517 0.9470 0.9520 0.9403 3.0741

200 0.0103 0.0094 0.0067 0.0059 0.0060 0.0045 0.0161 0.0050 0.9860 0.9973 0.9853 0.9967 0.1842

500 0.0042 0.0037 0.0026 0.0024 0.0034 0.0050 0.0056 0.0039 0.9670 0.9790 0.9653 0.9780 0.4937

1,000 0.0020 0.0018 0.0013 0.0012 0.0020 0.0039 0.0040 0.0030 0.9605 0.9707 0.9555 0.9693 1.0251
20

5,000 0.0004 0.0004 0.0003 0.0003 0.0012 0.0031 0.0010 0.0028 0.9503 0.9452 0.9477 0.9440 6.5482

Note: Performance measures are computed for the estimated parameters α̂k in the location loading matrix (Âμ) and scale loading matrix (Âσ ).
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Table 6. Simulation Study II: Average Mean Squared Error (AvMSE), Average Absolute Bias (AvAB), Average

Coverage Rate (AvCR), and Average computation time in minutes (CT) for the MLE of a confirmatory GLVM-LSS

with Bernoulli and Skew-Normal distributed observed variables, by sample size and type of parameter

Average MSE Average AB Average CR Average CT

n Parameter (AvMSE) (AvAB) (AvCR) (AvCT, mins.)

Âπ 0.1166 0.0398 0.9631 24.996

Âμ 0.0006 0.0012 0.9613

Âσ 0.0017 0.0039 0.9672

Âν 0.2033 0.0498 0.9775

500

ϕ̂z 0.0036 0.0069 0.9860

Âπ 0.0553 0.0173 0.9599 70.152

Âμ 0.0003 0.0009 0.9597

Âσ 0.0008 0.0023 0.9607

Âν 0.0775 0.0212 0.9626

1,000

ϕ̂z 0.0017 0.0013 0.9730

Âπ 0.0203 0.0100 0.9496 197.136

Âμ 0.0001 0.0003 0.9575

Âσ 0.0003 0.0010 0.9563

Âν 0.0209 0.0101 0.9581

3,000

ϕ̂z 0.0005 0.0006 0.9867

Note: Performance measures are computed for the estimated parameters in the loading matrix for the Bernoulli items (Âπ ); the
loading matrices for the location (Âμ), scale (Âσ ), and shape (Âν) parameters for the Skew-Normal items; and the correlation

between the latent variables (ϕ̂z).

levels for medium and large samples, while, as discussed previously, the confidence intervals for the
smaller sample size are slightly conservative.

5. Discussion

This article presents a general framework for latent variable modeling called GLVM-LSS. In this
framework, all the distributional parameters characterizing each observed variable’s conditional dis-
tribution are modeled as functions of linear combinations of the latent variables. In this respect, the
(conditional) mean and higher-order (conditional) moments of the observed variables—expressed in
terms of the corresponding location, scale, and shape parameters—are also considered functions of the
latent variables. The GLVM-LSS offers a wide range of possibilities for modeling complex multivariate
datasets by allowing the modeling of data displaying heteroscedasticity, excess skewness, excess kurtosis,
zero/one/maximum value inflation, heaping, truncation, or censoring. Model parameters are estimated
via full-information maximum likelihood. We demonstrate the effectiveness of our framework by
presenting two GLVM-LSS applications using real-world data in public opinion research and educa-
tional testing. Our proposed method is implemented in the R package glvmlss, available online at
https://github.com/ccardehu/glvmlss.

The GLVM-LSS framework has numerous potential applications in empirical research areas where
modeling higher-order moments of observed variables as functions of latent variables is relevant.
For instance, in ecological momentary assessment designs, researchers are interested in individuals’
emotional response variability, in addition to the deviations from their baseline mood (Hedeker et al.,
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2006, 2008, 2012; Wang et al., 2012). While these models include random effects, incorporating a latent
variable specification could enrich the analysis. Another example is item quality control in educational
testing (Hessen & Dolan, 2009). Heteroscedastic items often exhibit low discrimination power, which
can reduce test accuracy if not revised or removed. From a dimensionality reduction perspective, it
is desirable to preserve as much information as possible and to model the essential aspects of the
observed data. Modeling the entire (conditional) distribution can result in better data recovery than
simply modeling the (conditional) mean (Shen & Meinshausen, 2024).

While the GLVM-LSS is a flexible tool for modeling multivariate data with latent variables, there are
still opportunities for improvement in future research. Currently, the model’s implementation in the
glvmlss package computes numerical integrals in the MML estimation algorithm and factor scoring
procedure using a fixed-point Gaussian–Hermite quadrature rule. This approach limits the number of
latent variables that can be included in the model without encountering computational bottlenecks.
Future updates of the glvmlss package will aim to address this limitation by incorporating either
adaptive Gaussian–Hermite quadrature rules (Rabe-Hesketh et al., 2005) or stochastic approximation
methods (Cai, 2010; Zhang & Chen, 2022). These alternatives for numerical integration have been
shown to produce fast and accurate solutions and thus should be explored further in the context of
the GLVM-LSS.

As discussed earlier, one potential extension of the GLVM-LSS framework is to incorporate observed
covariates into both the measurement and structural equations. This addition could enhance the
framework’s usefulness in latent regression contexts and aid in testing for measurement invariance or
DIF. Also, many datasets in the social sciences suffer from non-ignorable missingness, and thus, one
can extend the GLVM-LSS and implement methods developed, for example, in O’Muircheartaigh &
Moustaki (1999).

Moreover, increasing the flexibility to model distributional parameters also raises the number of
parameters that need to be estimated, which can lead to computational and interpretational challenges.
A regularized estimation approach for the GLVM-LSS can be developed to mitigate these issues. This
method aims to produce more sparse and interpretable factor loading solutions while also facilitat-
ing model selection through the appropriate choice of the regularization parameter (e.g., Cárdenas-
Hurtado, 2023; Geminiani et al., 2021).

Another extension of the GLVM-LSS framework involves relaxing the linearity assumption
in the specification of the (linear) predictor ηi,φ(z). Following the generalized additive model
specification in the GAMLSS regression framework, for each distributional parameter φi ∈ θi we
could model the relationship between the observed and latent variables using splines (de Boor,
2001; Ramsay & Abrahamowicz, 1989). This approach extends previous research in non-linear LVMs
using polynomials (McDonald, 1962, 1967; Rizopoulos & Moustaki, 2008; Yalcin & Amemiya, 2001).
It also has connections with existing models in the LVM literature, such as the unidimensional
semi-parametric IRT models (e.g., Falk & Cai, 2016a,b; Johnson, 2007; Ramsay & Winsberg, 1991;
Rossi et al., 2002).

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psy.2025.7.
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