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ABSTRACT

Advancements in single-cell RNA-sequencing (ScCRNA-seq) technologies generate a wealth of gene expression data that provide
exciting opportunities for studying gene-gene interactions systematically at individual cell resolution. Genetic interactions within
a cell are tightly regulated and often highly dynamic in response to internal cellular signals and external stimuli. Evidence of
these dynamic interactions can often be observed in scRNA-seq data by examining conditional co-expression changes. Existing
approaches for studying these dynamic interaction changes in SCRNA-seq data do not address the multi-subject hierarchical design
commonly considered in single-cell experiments. In this paper, we propose a Mixed-effects framework for differential Coexpression
and transcriptional interaction modeling in Single-Cell RNA-seq (scCOSMiX) to account for the cell-cell correlation from the same
individual. The proposed copula-based approach allows the zero-inflation, marginal, and association parameters to be modeled
as functions of covariates with subject-level random effects, to enable analyses to be tailored to the data under consideration. A
series of simulation analyses were conducted to evaluate and compare the performance of scCOSMiX to other existing approaches.
We applied the proposed method to both droplet and plate-based scRNA-seq data sets GSE266919 and GSE108989 to illustrate its
applicability across distinct sScRNA-seq experimental protocols.

1 | Introduction

The genetic system responsible for cellular development and
function is regulated by intricate networks of thousands
of genetic molecules [1]. Understanding how these genetic
molecules interact with each other in biological systems is
an ongoing focus in many biomedical studies [2-4]. Popu-
lar approaches for studying genetic interactions using gene
expression measurements such as WGCNA [5], scLink [6], and

graphical LASSO [7] assume static interactions between genes
and do not seek to determine the dynamics of changes in genetic
interactions in living cells. However, interactions between cel-
lular molecules are likely to be tightly regulated and highly
dynamic, varying across cell types, over cell age, or in response
to perturbations such as drug treatment [8, 9]. The advent
of single-cell RNA sequencing (scRNA-seq) has provided new
opportunities to study these dynamic interaction changes with
single-cell resolution. To study such variation in gene-gene
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interactions, researchers use differential co-expression analysis,
a framework for characterizing how gene-gene relationships vary
across different biological states or experimental conditions.

Effective estimation of differential co-expression requires careful
attention to the distributional properties of the gene expression
data being modeled. In scRNA-seq, gene expression measure-
ments are often generated using one of two main experimen-
tal protocols: droplet-based and plate-based methods. Although
both protocols produce non-negative integer counts, the statis-
tical distribution of these counts differs substantially between
the two [10]. Specifically, droplet-based methods, such as 10x
Genomics Chromium [11], Drop-seq [12], and inDrop [13], pro-
duce gene expression measurements characterized by high spar-
sity, shallow sequencing depth per cell, and lower amplifica-
tion bias [10, 14]. In contrast, plate-based methods, such as
SMART-seq2 [15], yield gene expression measurements with
broader dynamic range, deeper sequencing depth per cell, and
a greater prevalence of technical zeros arising from inefficient
transcript capture and amplification biases [10, 14]. Extensive
efforts have been made to identify flexible distributions for mod-
eling the gene expression data generated by various protocols,
with particular attention to whether zero-inflated distributions
are required [16]. Using real scRNA-seq data sets, researchers
applied AIC comparisons [17], Bayes factor comparisons [18],
likelihood ratio tests [19], and zeros in excess of a negative bino-
mial fit [20] to assess whether the additional complexity of a
zero-inflated model is warranted. Across these studies, support
for zero-inflated models was observed for 1% — 10% of genes in
droplet-based data sets and 19% — 50% of genes in plate-based
data sets [17-20].

Beyond the choice of an appropriate modeling distribution,
another major challenge in scRNA-seq analysis is the proper
handling of data sets containing cells from multiple patients.
Such multipatient studies are becoming increasingly common,
reflecting a shift toward designs intended to improve biomarker
discovery and facilitate broader characterization of disease and
treatment-related effects [21, 22]. However, the hierarchical
structure inherent in the resulting data presents unique sta-
tistical challenges. In particular, when multiple cells are sam-
pled from the same individual, their expression profiles can
be considered statistically dependent, as cells from the same
subject tend to be more similar to each other than to cells
from different individuals [23, 24]. Failure to account for this
dependence can lead to inflated type I error rates and spuri-
ous discoveries, since treating dependent observations as inde-
pendent exaggerates the effective sample size and undermines
the validity of statistical inference [25-27]. Researchers have
utilized GLMM [25], GEE [26], and pseudobulk approaches
[23, 28] to address this within-patient correlation in the con-
text of differential expression, but such approaches have not yet
been extended to differential coexpression. Most existing dif-
ferential coexpression methods assume independence between
all observations, making them unsuitable for multipatient
studies [8, 29-33].

Together, these characteristics of sScRNA-seq data give rise to a
distinct set of challenges for differential coexpression analysis in
multipatient settings. Methods must address the dependence of

gene-gene coexpression on covariates, the within-subject correla-
tion among cells, and the count-based nature of gene expression
measurements, including the potential for excess zeros. Exist-
ing approaches differ in how fully they account for these chal-
lenges. The Liquid Association (LA) framework introduced by
Li [8, 29] provided one of the first formal approaches to mod-
eling dynamic changes in gene-gene relationships, but its nor-
mality assumptions and permutation-based inference make it
poorly suited to the count-based characteristics and hierarchi-
cal structure of scRNA-seq data. Ho et al. (2010) [30] proposed
a likelihood-based extension of LA called CNM, which modeled
the expression of two genes as conditionally bivariate Gaussian.
Tu et al. (2022) [31] employed a similar bivariate Gaussian model,
named CoCoA, with estimation carried out using restricted maxi-
mum likelihood. While both models boast fast computation times
and enjoy the computational advantages of the Gaussian fam-
ily, they do not accommodate the count nature of the data or the
within-subject correlation.

To address the restrictive normality assumptions of earlier frame-
works, Yang and Ho [32] introduced a model called ZENCO,
which models coexpression in count data using a zero-inflated
Poisson-Gamma mixture with Gaussian copula dependence.
Building on this work, Ma et al. [34] proposed a flexible cop-
ula model accommodating a range of marginal distributions
and allowing for covariate effects in the zero-inflation parame-
ters. These approaches, implemented in the R package scDECO
[35], adopt a Bayesian framework with Markov chain Monte
Carlo (MCMC) estimation, enabling robust uncertainty quantifi-
cation. However, they do not account for the hierarchical struc-
ture of multipatient data, and their reliance on MCMC introduces
substantial computational costs, limiting scalability to larger
datasets.

Motivated by the need for faster and more scalable inference,
Su et al. [33] proposed CS-CORE, a model-based approach
capable of efficiently estimating co-expression structures for
potentially thousands of genes. However, the method does
not allow for covariates in the mean or in the depen-
dence structure, and it relies on permutation-based strate-
gies to assess differential co-expression between conditions.
As a result, CS-CORE is not readily extendable to settings in
which co-expression evolves smoothly with continuous covari-
ates such as pseudotime, treatment dosage, or patient char-
acteristics, and it also does not account for within-subject
correlation.

Thus far, none of the methods discussed simultaneously account
for all three of the core challenges described above. Seeking
a unified solution, we build upon the flexible bivariate copula
regression framework introduced by Marra and Radice (2017)
[36] and extended by van der Wurp et al. (2020) [37]. The meth-
ods by Marra and van der Wurp, implemented in popular R
package GIRM [38], link the marginal parameters as well as
the copula association parameter to additive predictors through
one-to-one transformations and estimate all model components
jointly through penalized maximum likelihood. To adapt this
framework for differential co-expression analysis of multi-patient
scRNA-seq data, we incorporate joint-level covariate-dependent
zero-inflation, introduce patient-specific random effects through
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the additive predictor structure, and include offsets in the
marginal means to adjust for sequencing depth variation.

The structure of the paper is as follows. First, we introduce
the droplet-based and plate-based data sets which motivate the
design of our simulation studies and serve as the focus of our
real data analyses. Second, we formally define the scCOSMiX
model and outline the nested optimization approach used for
penalized maximum likelihood estimation. Next, through a series
of simulation studies, we assess the statistical power, coverage,
robustness, FDR control, precision-recall, and computation time
of our method alongside existing methods. Finally, we present
the results of our real data analyses, where we apply scCOSMiX
to the aforementioned data sets and identify significant differen-
tially co-expressed gene pairs.

2 | Materials and Methods

2.1 | DataSets

To demonstrate the flexibility of scCOSMiX across differ-
ent scRNA-seq protocols, we conduct all analyses using a
droplet-based and a plate-based data set. The droplet-based data
set comes from a triple-negative breast cancer (TNBC) study by
Zhang et al. [39] (GEO accession GSE266919). In this study,
tumor biopsies were collected from patients before and after treat-
ment with paclitaxel, nab-paclitaxel, or their combinations with
the anti-PD-L1 antibody atezolizumab. Single-cell RNA sequenc-
ing was performed using the 10x Genomics Chromium platform.
Immune cell dynamics were profiled across treatment regimens,
revealing treatment-associated shifts in the abundance and tran-
scriptional states of T cells, B cells, myeloid cells, and natural
killer cells. Myeloid cells were found to undergo transcriptional
reprogramming in response to treatment with nab-paclitaxel, and
this finding serves as the motivation for our real data analysis of
this data set.

We investigate changes in gene-gene co-expression between
pre-treatment and post-treatment myeloid cells from patients
classified as responders to paclitaxel-based therapies. The
data set includes pre- and post-treatment samples from 44
patients, annotated with treatment regime, cell type, and
responder/non-responder status. For our analysis, we filter the
data set to include the myeloid cells of patients who had their
biopsies taken from breast tissue; had at least 30 myeloid cells
in both their pre- and post-treatment samples; were treated
with nab-paclitaxel or nab-paclitaxel plus atezolizumab, and
were classified as responders. This resulted in a final set of 8
patients and 5018 cells (2215 cells pre-treatment and 2803 cells
post-treatment).

The plate-based data set comes from a colorectal cancer (CRC)
study by Zhang et al. [40] (GEO accession GSE108989). In this
study, samples from tumor tissue, adjacent normal tissue, and
peripheral blood were collected from 12 CRC patients who had
not received chemotherapy or radiation therapy. T cells were
isolated and profiled using the Smart-seq2 protocol, and clonal
expansion and transcriptional diversity across the T cell compart-
ment were profiled, with particular focus given to the CD4 and

CD8 subsets. The CD4 subset was found to be characterized by
transcriptional profiles associated with immune regulation and
helper function, while the CD8 subset showed evidence of clonal
expansion and expressed genes linked to cytotoxicity and exhaus-
tion. In our real data analysis of this dataset, we examine how
these subset-specific characteristics are differentially reflected in
patterns of gene-gene co-expression. To this end, we filter the data
to just CD4 and CDS8 T cells derived from tumor tissue, and we
retain only patients with at least one cell from each lineage. This
results in a final analysis set of 11 patients and 4032 cells (2466
CD4 cells and 1566 CDS cells).

2.2 | Model

We start by considering the expression measurements for a gene
pair. Let Y, = [Y; Yy ... Y,,I]T, Y,=[Y, Y, ... YnZ]T rep-
resent the expression levels of two genes in n cells. Thus, Y;; repre-
sents the expression level in gene j in cell i, where i € {1, ..., n},
Jj €{1,2}. Let X and Z be design matrices for fixed effects and
random effects, respectively. In the scCOSMiX framework, the
joint expression of Y};, Y;, is modeled using a zero-inflated bivari-
ate copula. Every parameter in the model can be modeled as a
linear combination of relevant fixed and random effects via an
appropriate one-to-one transformation. We first outline the joint
pmfofY;,Y,, in a single cell, before expanding it to the joint pmf
of Y,,Y,.

The flexibility of the copula model allows arbitrary marginals
to be considered in the scCOSMiX framework. In this paper,
we apply the negative binomial marginal distributions for
scRNA-seq count data. Let Fy; be the negative binomial cdf
under the NBII parameterization from Greene [41]. This dis-
tribution has two parameters: a mean parameter y and an
over-dispersion parameter ¢ and has expectation y and variance
u+ p?c. The o is referred to as the over-dispersion parameter
because it controls how much larger the variance is than the
mean. As ¢ moves toward 0, the variance becomes equal to the
mean and the distribution becomes a Poisson (y) distribution, but
as o moves away from 0, the variance becomes increasingly larger
than the mean.

Dependence between Y;; and Y, is imparted through a bivariate
copula. While various copulas, including the Clayton [42], Joe
[43], Gumbel [44], and Frank [45], are compatible with our pro-
posed framework, in this paper we focus on the Gaussian copula.
The Gaussian copula is a popular choice in the literature for ana-
lyzing scRNA-seq data [34, 46-48], and its association parameter
p, being the correlation coefficient of a multivariate Gaussian dis-
tribution, is readily interpretable. The cdf of a bivariate Gaussian
copula with negative binomial marginals takes the form:

G(J’m Vizs Hi1:0i15 Hi2: 0j2» Pi)
= P(Yil <y Yo Sy Mil’o-il’”iZ’d[Z’pi)
=, (CD?I {FNB(yil; Hir» Gil)}’ (Dil{FNB(in; Hizs Uiz)}? Pi)
where @, (., -; p;) denotes the cdf of the bivariate standard normal
distribution with correlation p;, and ®~! is the quantile function

of the standard normal distribution. Similarly, the joint pmf of Y},
and Y},, before accounting for zero-inflation, is given by:
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g(yil’in; ﬂilsailsﬂiz"’iz’/’i)
= P(Yil =Y Yo = Viab B> 0is Higs © ,27P,)
= G(yil’yiz; ﬂilv“ilvﬂiZsaizsPi)
(yxl —Lyp: llil’o'ilaﬂfz"’fz,ﬁ’i)
(ymyzz 1 /41'1"71'1’/4[2"7[2"0:')
+G(

Yin— 1, Yia — 1; Hi1>0i15 Hizs Oj» P,’) (1)

To incorporate zero-inflation into this model, we introduce
parameters p,; and p,,, which represent the probabilities of a
dropout event affecting gene 1 and gene 2, respectively, in cell i.
The scCOSMiX joint pmf for Y;;, Y;, is then defined as a mixture
model, where these dropout probabilities act as weights:

S Wit Yi2 3 i1 i1 Hizs iz, P Pit> Piz)
= P(Yil =y, Yo =

=1- Pil)(l -

Yia s Mil’o_il’”il’O_i2’pispi1’pi2)
Pi2) 8YinsYin s Hi1> Gis Hizs Oizs P;)

0 ify; >0and y;;, >0
A= pi) P2 fneWin 5 Hins011) if y; >0and y;; =0
+120( = pi2) gz 5 Hizs012)

pirPiz + (1= py) Pia SneWin 5 it 011)

ify; =0and y;; >0

+pi (1= pp2) FapWia s Hizs 0i2) if y; =0and y, =0
)
The marginal distributions of this joint pmf are given by:
pij+ A= pij) fxpWijs mijo0iy)  ify; =0
fj(y[j; llfj,ﬁij,P,-j)= Y 7 NB vy ) Y
A= pij) fneWijs Hij»035) if y;; >0

which are zero-inflated negative binomial pmfs.

The parameters O = {y;, H;z, 011,02, PisPi1> Pz} Can  be
covariate-dependent in the following way:

log{”xl} X1y1ﬁ1+zluuu1+log(si)
log {u,} = X,Mzﬂ2+Z,”uﬂz+log(S,-)
log {O-il} = Xiﬁ al + Zlaluo'l

log{o,} =X, 0,+Z,

1,0y (7'2
atanh{p,} = X, 1+ Z, u,
logit{p, } = X; nKitZ,u,
logit{p,} = X, K, + Z, , u, (3)

where the log, atanh, and logit transformations on the left-hand
side ensure that each parameter remains within its valid parame-
ter space. X, and Z, are submatrices of the full design matrices X
and Z, containing only the columns relevant to parameter 6. Fol-
lowing the approach taken by Su et al. [33] and Mallick et al. [16],
the log(S;) term is an offset equal to the logarithm of the total
sequencing depth of cell i. The random effects design matrix Z,
is structured such that each row is a standard basis vector indi-
cating the category of the grouping factor for that observation.
For example, if we are fitting a patient-level random intercept
for 6 in a 4-patient data set, and cell i belongs to patient 2, then
Z,5=101 0 0] [49]. The random effects u, follow a normal
distribution u, ~ N (0, Z,), where %, is a diagonal covariance

matrix whose entries share a common value for components of
u, that with the same variance component, and distinct values for
components associated with different variance components. So in
the 4-patient random intercept example, the covariance matrix
could be X, = diag{(c,c.c,c)}.

This random effects structure falls within the class of mixed
models laid out by Wood [50], which can be fit using penalized
log-likelihood. Rather than incorporating the distribution of the
random effects into the likelihood, they are instead treated as
parameters and shrunk toward 0 by a penalty. Gathering all fixed
effects coefficients into one vector 8, and all random effects coeffi-
cients into one vector u, we arrive at the penalized log-likelihood
for the full data set y,, y,:

1(6.u:Y.Y,) = Zlog FOin. v Sow) — z diag{lg}ug (4)

i= He@

The penalty vector 4, is structured to align with diag(%,), such
that all components of u, corresponding to the same variance
group receive the same penalty. Note that the normal distribution
of the random effects does not appear in the above log-likelihood.
The u from Equation (3) are treated as parameters just like the 6,
except that the u are subject to the ridge penalty while the 6 are
not [51].

2.3 | Estimation

The estimation of the penalized log-likelihood Equation (4) is
carried out using the nested optimization approach from Marra
et al. [52]. In the outer iteration of this procedure, the smooth-
ing parameters 4, ,4,,, 4, , ..., 4, are estimated by minimizing
an expression analogous to the Akaike information criterion but
with effective degrees of freedom used instead of number of
parameters. In the inner iteration, the smoothing parameters are
kept constant, and Equation (4) is maximized over 6, u.

Maximizing the log-likelihood in the inner iteration is achieved
using trust region optimization [53]. In trust region optimiza-
tion, a quadratic approximation of the objective function, cen-
tered at the current iterate, is formed using the gradient and Hes-
sian of the objective function (derivations of the gradient and
Hessian are provided in Appendix 3). Then, a candidate step is
chosen as the step that maximizes the quadratic surface within a
previously defined trust region around the current iterate. The
increase in the actual objective function that results from tak-
ing that candidate step is compared to the increase predicted
by the quadratic approximation. If the actual increase is signif-
icantly smaller than was predicted, then we reject the candidate
step, decrease the trust region radius, and try again. Otherwise,
the candidate step is taken, and if the step is sufficiently large
and the quadratic approximation sufficiently accurate, then the
trust region radius is increased. The algorithm terminates when
a step is taken that increases either the objective function or the
quadratic approximation to the objective function by less than
/- MachineS$double.eps.

The benefit of iteratively expanding and shrinking the trust
region radius is that small steps are taken in locations where the
quadratic model is a poor approximation to the true objective
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function, and large steps are taken in locations where it is a good
approximation. This allows the algorithm to search carefully in
difficult regions and to stride confidently in straightforward ones.
Consider an example objective function that has a long flat ridge:
while a line-search algorithm would potentially take a very long
step along the ridge, thus bypassing potentially important fea-
tures and reducing efficiency, the trust region algorithm’s step
sizes are limited by the trust region radius. Another advantage
of trust region optimization is that the quadratic model it uses
to approximate the objective function protects against potentially
non-definite evaluations of the actual objective function. This is
because steps that lead to non-definite evaluations of the approxi-
mate objective function are never taken and thus the actual objec-
tive function is never exposed to such inputs. A comprehensive
discussion of trust region optimization can be found in [53].

Note that trust region optimization requires starting values
to be provided for each parameter. Starting values for the
zero-inflation parameters k,,k,,u, ,u, are obtained by fitting
logit{ P(Y;; = 0)} = Xis, k1 + Z;5 u, and logit{ P(Y;, = 0)} =
X, s, K2t Z, 57 U , using loglstlc regressmn from R package mgcv
[49] with welghts of 0.5 assigned to Y;; = 0 observations and
weights of 1 assigned to Y;; >0 observatlons Starting values
for the remaining parameters are obtained using the methods
from Marra and Radice [36], again following the same weighting
scheme as outlined above.

Once the algorithm has converged, we use the observed Hessian
of the penalized log-likelihood, along with the point estimates, to
obtain confidence intervals and carry out hypothesis tests about
the different parameters as laid out in [51].

3 | Simulation Studies

To assess the performance of scCOSMiX and compare it with
existing methods, we conduct six simulation studies: power, cov-
erage, robustness, FDR control, precision-recall, and computa-
tion time. Each study is carried out under a droplet-based and a
plate-based setup, as described in Section 2.1. To evaluate the per-
formance of scCOSMiX in terms of power, coverage, and robust-
ness, we simulate data from our proposed model using the fol-
lowing procedure:

1. Simulate random effect realizations from u, ~ N (0, Z,).
Thenfori=1,...,n,

2. Calculate  p;y, H;5, 011,005, 0> Pi-Pp as  defined in
Equation (3), given specified coefficients, random effects,
and offsets.

3. Simulate (z;, z;,)" from N, (0,1, p;); the standard bivariate
Gaussian distribution with correlation coefficient p,.

4. For j =1,2,setv;; = Fl{®(z;;); ;. 0, }-

5. Simulate §;; ~ Bern(p;;), where {;; =1 indicates that v;; is
dropped due to zero-inflation.

6. Sety, = (1-¢)u;;.

The parameters utilized in the power, coverage, and robust-
ness simulation scenarios are chosen based on the analyses in

Sections 4.1 and 4.2. We use gene pair (GPNMB, SGKI) from
Table 4 for the droplet case, and gene pair (BATF, GLRX) from
Table S5 for the plate case. These parameter values are:

[ﬂovﬁu’ﬂoz’ﬁlzs%190‘11’aozsawfo’71’1701’1711’P02’P12]T
=[-7.26, 045, —7.10, 0.20, —0.46, —0.19, —0.44,
—0.04, 0.06, —0.20, 0.01, 0.05, 0.01, 0.01]" (5)

and

[ﬁopﬁlvﬁozsﬂ129a01,‘111!‘x()z’alz,TOsT17Po17P117P029P12]T =
=[-7.43, —1.26, —8.26, —0.65, 0.51, 0.65, 0.85, 0.26, 0.35,
—0.34, 0.08, 0.14, 0.11, 0.21]" (6)

for the droplet and plate cases, respectively. Offsets are set to
log(3 x 10*) for the droplet case and log(5 x 10°) for the plate case,
reflecting the mean sequencing depth in cells from their respec-
tive data sets.

For the FDR, precision-recall, and computation time evalua-
tions, we use the statistical simulator named scDesign3 [54]
to generate synthetic data sets that mirror the gene expression
distributions, sequencing depth, and metadata structure of our
template datasets. We then assess the ability of our method,
along with competing approaches, to recover the true gene-gene
co-expression signals. Because these data are simulated from
a third-party mechanism distinct from scCOSMiX, they pro-
vide an opportunity to assess the methods’ robustness to model
misspecification.

For scenarios involving comparisons to existing approaches, we
consider CS-CORE [33], the R package GJIRM [38], CoCoA [31],
scDECO [34], CNM [30], and sctransform-rho [33, 55] as com-
peting methods. Both CS-CORE and sctransform-rho rely on per-
mutation testing for assessing significance, which requires speci-
fying the number of permutations. We adopt the authors’ recom-
mended default of 100 permutations [33]. Similarly, as a Bayesian
method estimated via MCMC, scDECO requires specifying the
number of burn-in and sampling iterations. To balance compu-
tational cost and estimation accuracy, we set the burn-in to 1000
and retain 5000 post-burn-in samples. Special accommodations
must be made for some of these methods to ensure their com-
patibility with the simulation scenarios being evaluated. Most
notably, since none of the approaches other than GJRM account
for patient-level variability while still producing population-level
parameter estimates, we pool the data from different subjects
together before applying them. Additionally, because CoCoA and
CNM model their response variables as Gaussian, we pre-process
their input data using the probability integral transform as rec-
ommended by Tu et al. [31].

Scenario 1: Power. In the scCOSMiX model specification from
Equations (5) and (6), the parameter 7; encodes differential
co-expression between the two groups. So to evaluate power to
detect differential co-expression, we simulate data according to
the specifications in Equations (5) and (6) with the value of 7, set
at0, and we vary the value of 7. At each 7, value, we simulate B =
500 datasets, with number of cells per patient fixed at 250, and we
track the proportion of simulations in which the null hypothesis
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of no differential co-expression is rejected. For scCOSMiX, this
corresponds to testing H, : 7; = 0, while the competing methods
are evaluated under their own respective null hypotheses.

The first test evaluates the power of scCOSMiX to detect differen-

tial co-expression in data sets containing m € {5, 10, 15} patients.
The results are displayed in Figures 1 and S1.

Power by number of patients

1.00
0.75
# Patients
g = 15
nC_> 0.50 -e- 10
-A- 5
0.25
0.0 0.1 0.2 0.3
[
FIGURE1 | Droplet scenario: Power of scCOSMiX to detect differ-

ential co-expression in data sets with 5,10, 15 patients. Data is simu-
lated using parameter values specified in Equation (5) based on the
droplet-based data set GSE266919. The null hypothesis being tested is
that there is no differential co-expression (H, : 7, = 0). The number of
patients is set to m € {5, 10,15}, 7, is set to 0, and 7, is varied between 0
and 0.4. For each combination of 7; and m, B = 500 data sets are simu-
lated, and power is calculated as the proportion of times in which the null
hypothesis is rejected.

0% zero—-inflation 15% zero—inflation

FIGURE2 |

As shown in Figures 1 and S1, power increases with the number
of patients, with a substantial gain between 5 and 10 patients and
a more modest improvement between 10 and 15 patients.

The second analysis evaluates the power of scCOSMiX, alongside
competing methods, to detect differential co-expression in data
sets with varying amounts of zero-inflation. In this setting, the
number of patients is fixed at m = 10, and the zero-inflation is
varied with p, = p, € {0,0.15,0.30}. The results are displayed in
Figures 2 and 3.

In the 0% zero-inflation setting from Figures 2 and 3, we observe
inflated type I error rates in all methods that do not account
for within-patient variability, especially in droplet-based data.
This is a well-documented consequence of treating dependent
observations as independent in scRNA-seq data [25-27]. As
zero-inflation increases, type I error rates fall back toward the
nominal level, as the greater degree of model misspecifica-
tion resulting from not accounting for zero-inflation leads to
fewer rejections overall and thus fewer false positives. Addi-
tionally, it can be seen that as the amount of zero-inflation in
the data increases, scCOSMiX becomes increasingly more pow-
erful than competing methods. The trend is less pronounced
in the plate-based data than in the droplet-based data because
the plate-based data were generated with higher over-dispersion
values. High over-dispersion values are typically observed in
plate-based data, and they reduce the impact of zero-inflation,
enabling misspecified distributions to capture the overall shape
of the data without explicitly modeling excess zeros. A more
detailed analysis of this phenomenon is provided in Appendix 2.

Scenario 2: Coverage. To assess the effectiveness of scCOSMiX
parameter estimation, we simulate data sets using the parameters
specified in (5) and (6) and calculate the average mean squared
error (MSE), average mean bias error (MBE), the proportion of
times that the true parameter value falls within its confidence

30% zero-inflation

method

-+ scCOSMiX
= GJRM

-e- CS-CORE

-G sctransform-rho
A- CNM.full

A- CoCoA

X- scDECO

Droplet scenario: Power of scCOSMiX and competing methods to detect differential co-expression in data sets with 0%, 15%, 30%

zero-inflation. Data is simulated using parameter values specified in Equation (5) based on the droplet-based data set GSE266919. The null hypothesis
being tested is that there is no differential co-expression. The number of patients is set at m = 10, 7, is set to 0, 7, is varied between 0 and 0.55, and
Py = p; € {0,0.15,0.30}. For each combination of z; and p;, B = 500 data sets are simulated, and power is calculated as the proportion of times in

which the null hypothesis is rejected.
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Plate scenario: Power of scCOSMiX and competing methods to detect differential co-expression in data sets with 0%, 15%, 30%

zero-inflation. Data is simulated using parameter values specified in Equation (6) based on the plate-based data set GSE108989. The null hypothesis
being tested is that there is no differential co-expression. The number of patients is set at m = 10, 7, is set to 0, 7, is varied between 0 and 0.55, and
p1 = p, € {0,0.15,0.30}. For each combination of z; and p;, B = 500 data sets are simulated, and power is calculated as the proportion of times in

which the null hypothesis is rejected.

interval (coverage), and also the average width of each confidence
interval (CI Width). We carry out this study using m € {5, 10, 15}
patients, with the number of cells per patient set at 200, and
the number of iterations at B = 500. The results are displayed in
Tables 1 and S1.

As demonstrated in Tables 1 and S1, the parameters are accu-
rately estimated, as reflected by proper coverage rates and low
MSE, MBE, and confidence interval widths. Estimation perfor-
mance improves with the number of patients, with coverage
increasing and error metrics decreasing as number of patients
increases.

Scenario 3: Robustness. To assess the effectiveness of scCOS-
MiX parameter estimation in a scenario without zero-inflation,
we simulate B = 500 samples using the same parameters as in
the previous section except this time with zero-inflation set to
zero. Then we calculate the MSE, MBE, coverage, and CI Width
as done in Scenario 2. Once again, we use 5, 10, and 15 patients,
with the number of cells per patient set at n» = 200, and the num-
ber of iterations at B = 500. The results are displayed in Tables 2
and S2.

In Tables 2 and S2, we observe that estimation performance
remains consistent in the absence of zero inflation. In both
droplet- and plate-based settings, coverage is close to nominal,
and MSE, MBE, and CI width improve as the number of patients
increases. Overall, results are similar to those observed in the
zero-inflated setting, indicating that scCOSMiX is robust even if
the data are not zero-inflated. An additional robustness study is
conducted for the case where zero inflation is present in only one
marginal. The results of this study, presented in Tables S3 and S4,
demonstrate that scCOSMiX maintains robust performance even
under asymmetric zero inflation.

Scenario 4: FDR. To evaluate FDR, we use scDesign3 to gener-
ate B = 100 simulated replicates of our template datasets from
Section 2.1. These replicates are designed to mirror the charac-
teristics of the original datasets. A subset of 1225 gene pairs is
selected and their differential co-expression is manually set to O.
Then, for each of the B = 100 datasets, we apply scCOSMiX and
competing methods to the 1225 gene pairs and record the result-
ing 1225 differential co-expression p-values for each method.
Since the data were simulated under the null hypothesis for those
gene pairs, the distribution of p-values under the null should fol-
low Unif(0, 1). The resulting Q-Q plots for each method, averaged
over the B = 100 replicates, are presented in Figures 4 and S2.

In the droplet-based setting (Figure 4), scCOSMiX produces
well-calibrated p-values under the null, and GJRM performs
similarly, though with slight conservativeness. The remain-
ing methods exhibit an excess of small p-values indicating
anti-conservative behavior. This behavior matches the inflated
type I errors seen in the 0% zero-inflation droplet-based
power study, and is a well-studied consequence of ignoring
within-patient variability. In the plate-based setting (Figure S2),
p-value calibration improves across all methods, matching the
proper type I error rates observed in Figure 3.

Scenario 5: Precision-Recall To evaluate precision-recall per-
formance, we generate data under the same framework as in the
FDR simulation, except we manually set 140 of the 1225 gene
pairs to have differential co-expression of 0.20. The remaining
gene pairs have their differential co-expression parameters kept
at 0, and we proceed to simulate the data sets using scDesign3.
The precision and recall, averaged over the B = 100 data sets, are
plotted in Figures 4 and S2.

In Figures 5 and S3, scCOSMiX achieves the highest pre-
cision across the entire recall range. At a certain level of
recall, CS-CORE and sctransform-rho both reach a plateau
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TABLE1 | Droplet scenario: Estimation performance for scCOSMiX, evaluated on data sets simulated with parameter values specified in
Equation (5) based on the droplet-based data set GSE266919. Number of patients is set to m € {5, 10,15}, and for each value of m, B = 500 datasets
are simulated, and estimates and confidence intervals are obtained for each parameter.

5 Patients 10 Patients 15 Patients

Parameter Coverage MSE MBE CIWidth Coverage MSE MBE CIWidth Coverage MSE MBE CI Width

Por 0.882 0.008  0.071 0.479 0.926 0.004 0.048 0.241 0.938 0.002  0.039 0.195
P 0.918 0.016  0.102 0.632 0.956 0.007  0.068 0.346 0.948 0.005  0.057 0.281
Po 0.894 0.008 0.071 0.602 0.922 0.004  0.049 0.239 0.934 0.003  0.041 0.202
fra 0.896 0.016  0.100 0.779 0.924 0.008  0.069 0.342 0.952 0.005  0.057 0.283
Ay 0.956 0.005 0.056 0.280 0.950 0.002  0.040 0.198 0.946 0.002 0.034 0.162
ap 0.968 0.010 0.078 0.411 0.950 0.005  0.058 0.292 0.940 0.004 0.051 0.239
gy 0.956 0.005  0.057 0.280 0.938 0.003  0.044 0.198 0.960 0.002  0.033 0.162
a, 0.942 0.011  0.084 0.399 0.948 0.005  0.060 0.283 0.976 0.003  0.044 0.231
T 0.946 0.003  0.045 0.325 0.932 0.001  0.030 0.154 0.934 0.001  0.026 0.125
T 0.958 0.006  0.061 0.458 0.960 0.003  0.042 0.219 0.966 0.002  0.035 0.176
Po 0.950 0.000  0.009 0.052 0.972 0.000  0.006 0.033 0.950 0.000  0.005 0.027
P 0.928 0.000  0.006 0.167 0.938 0.000  0.005 0.085 0.942 0.000  0.004 0.041
Poz 0.958 0.000  0.005 0.084 0.964 0.000  0.004 0.034 0.950 0.000  0.003 0.017
P12 0.924 0.000  0.004 0.150 0.940 0.000  0.003 0.048 0.948 0.000  0.002 0.027
TABLE2 | Droplet scenario: Robustness performance for scCOSMiX, evaluated on datasets simulated with parameter values specified in

Equation (5) based on the droplet-based dataset GSE266919, with p; = p, = 0. Number of patients is set to m € {5,10, 15}, and for each value of m,
B = 500 datasets are simulated, and estimates and confidence intervals are obtained for each non-zero-inflation parameter.

5 Patients 10 Patients 15 Patients

Parameter Coverage MSE MBE CIWidth Coverage MSE MBE CIWidth Coverage MSE MBE CI Width

Por 0.894 0.010 0.080 0.398 0.918 0.006  0.060 0.285 0.939 0.004  0.050 0.240
P 0.906 0.021 0.120 0.591 0.934 0.012 0.085 0.468 0.945 0.008 0.070 0.344
Poa 0.898 0.011 0.086 0.400 0.942 0.005  0.057 0.372 0.947 0.004 0.048 0.243
fra 0.918 0.023 0.121 0.575 0.938 0.010 0.081 0.493 0.954 0.007  0.069 0.343
Ay 0.948 0.006  0.062 0.296 0.934 0.003  0.046 0.210 0.937 0.002  0.037 0.172
ap 0.956 0.013  0.090 0.446 0.952 0.007  0.064 0.316 0.952 0.004 0.051 0.259
Ay 0.932 0.006  0.063 0.300 0.936 0.003  0.046 0.215 0.928 0.002  0.037 0.176
a, 0.958 0.012 0.088 0.438 0.944 0.006 0.063 0.312 0.958 0.004 0.049 0.256
T 0.950 0.003  0.040 0.224 0.962 0.001 0.028 0.150 0.954 0.001 0.023 0.119
T 0.966 0.005  0.057 0.320 0.964 0.002  0.039 0.216 0.952 0.002  0.033 0.170
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1

2075

C

©

pm}

(¢)

= 0.50

Q

g

I 0.25

0
0 025050075 1 0 025050075 1 0 025050075 1 0 025050075 1 0 025050075 1 0 025050075 1 0 0.250.500.75 1
Theoretical Quantile
FIGURE4 | Dropletscenario: Q-Q plots for the distribution of p-values for differential co-expression, based on datasets generated using scDesign3

with the droplet-based dataset GSE266919 as a template. For each of the B = 100 simulated replicates, 1225 gene pairs are simulated under the null
hypothesis. Each method is then applied to each replicate dataset, and p-values are computed for all 1225 gene pairs. The black curves show the empirical
distribution of p-values, averaged across replicates for each method. The dashed line represents the expected Unif(0, 1) distribution under the null.
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where precision cannot increase further. This is due to
their permutation-based approach, where the granularity of
their p-values is constrained by the number of permutations
performed. Mirroring the findings from the power study,
precision-recall performance in all methods is higher in the
plate-based setting than in the droplet-based setting. CoCoA
and CNM show particular improvement between the two set-
tings, as their Gaussian pre-processing transformation is more
effective on the high over-dispersion, high mean expressions
that characterize plate-based data. GJIRM performs well in the
droplet-based setting and moderately well in the plate-based
setting. This mirrors the findings of the power and FDR studies,
where accounting for within-patient variability proved more
important in the low over-dispersion, low mean environment of
droplet-based data.

Scenario 6: Computation Time We recorded the average com-
putation time (in seconds) required to fit a single gene pair from
the data simulated under the scenario from the previous section.
To calculate this, we simulate a data set from the droplet-based
and plate-based settings using scDesign3, and we select 1225 gene
pairs to use in the evaluation. We then fit each method, and
divide their total computation time by 1225 to obtain the aver-
age computation time to fit a single gene pair. Computations are
performed on an Intel Xeon E5-2680 v4 CPU (2.40 GHz, 8 cores)
with 128 GB RAM. Results are presented in Table 3.

The computation time required for CS-CORE, sctransform-rho,
and scDECO depends on the number of permutation iterations

Average precision-recall

1.00
method

- scCOSMiX
0.75 = GJRM

-e- CS-CORE
-0~ sctransform-rho
- CNM.full

A- CoCoA

*

- scDECO

precision

0.00 0.25 0.50 0.75 1.00
recall

FIGURES5 |
co-expression, evaluated on data simulated based on data sets generated

Droplet scenario: Precision-recall curves for differential

using scDesign3 with the droplet-based data set GSE266919 as a template.
B =100 data sets were simulated using scDesign3 based on a subset of
1225 gene pairs from the template data set. 140 of the gene pairs were
randomly selected and manually given a differential co-expression of 0.20
while the remaining 1085 gene pairs have no differential co-expression.

TABLE3 |

or the number of MCMC iterations. As shown in Table 3, com-
putational time varies considerably across the different meth-
ods. The Bayesian method scDECO proves to be the most com-
putationally intensive, followed by the methods that account
for within-patient variability (scCOSMiX and GJRM). Methods
that assume normality (CoCoA and CNM) rank next in speed,
while methods that do not rely on likelihood-based estimation
(CS-CORE and sctransform-rho) seem to be fast with 100 per-
mutation iterations. However, the time required for CS-CORE
and sctransform-rho depends on the number of permutation
iterations specified, and the number of permutation iterations
influences the precision of the p-value calculation. The com-
putational efficiency of these seemingly faster methods comes
at the cost of estimation bias and modeling restrictions. The
Gaussian transformation used by CoCoA and CNM is inef-
fective when applied to sparse or over-dispersed count data,
while the assumption of identically distributed cells within each
cell type renders CS-CORE and sctransform-rho incapable of
modeling covariate effects in the mean, over-dispersion, and
co-expression parameters. Furthermore, none of the fast meth-
ods can be directly applied to multi-patient data sets without
discarding patient information or aggregating cells across indi-
viduals. In contrast, scCOSMiX accommodates covariate effects,
patient-level variation, and potential zero-inflation in a unified
likelihood-based framework, enabling flexible and interpretable
modeling of gene expression and co-expression across complex
experimental designs.

4 | Experimental Data Analyses

4.1 | Application to the TNBC Dataset

We apply scCOSMiX to the droplet-based TNBC data set
GSE266919 described in Section 2.1, focusing on myeloid
cells from 8 TNBC patients who responded to treatment with
nab-paclitaxel or nab-paclitaxel plus atezolizumab. We investi-
gate the changes in gene-gene co-expression patterns in myeloid
cells between pre- and post-treatment. This analysis aims to
uncover changes in transcriptional interactions associated with
the treatments.

To carry out the analysis, we define the fixed- and random-effect
structures for each parameter 6 € {y,, u,, 6, 65, p, p;, p,} accord-
ing to the model framework described in Section 2.2. For each
0, we define the fixed-effects design matrix X;, to consist
of an intercept and an indicator for post-treatment status, in
order to allow systematic shifts between pre- and post-treatment
conditions to be modeled for each parameter. We specify
the random-effects design matrix Z,,, the associated random

Computation time (in seconds) for fitting a single gene pair. Times are averages over 1225 gene pairs from data simulated using scDesign3

with droplet-based data set GSE266919 and plate-based data set GSE108989 as templates. Computations performed on an Intel Xeon E5-2680 v4 CPU

(2.40 GHz, 8 cores) with 128 GB RAM.

scCOSMiX CS-CORE* sctransform-rho* CoCoA CNM GJRM scDECO
Droplet 163.03 0.02 0.15 0.47 0.54 140.63 477.43
Plate 271.58 0.02 0.12 0.39 0.38 329.14 348.28

Note: * 100 permutations.
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intercept vector u,, and the variance structure X, as follows. For
the dropout probabilities (6 € {p,.p,}), Z,, encodes random
intercepts at the patient level, with a shared variance compo-
nent across the eight patients (diag(%,) = 6715). For the mean
and co-expression parameters (9 € {uy, uy, p}), Z, , encodesran-
dom intercepts at the patient-by-timepoint level, with separate
variance components for the pre- and post-treatment groups
(diag(ZG) =(c 2 18)>. For the dispersion parameters

6,post
(6 € {oy, 02}), following the rationale in Malfait et al. [26], we
set Z;, =0and u, = 0.

2 .
0,pre18’ o

Defining the fixed- and random-effects structures in this way
enables systematic modeling of timepoint effects while account-
ing for subject-level and longitudinal heterogeneity in the
dropout, mean, and co-expression parameters. Before carry-
ing out the analysis, we filter out mitochondrial, housekeeping
(Eisenberg and Levanon [56]), and non-protein-coding (Durinck
et al. [57]) genes from consideration. We further remove genes
if they have more than 70% of their expression counts equal
to 0 or if their 97.5% upper quantile is less than 4. After this
pre-processing, 251 genes (31 375 gene pairs) remain in the anal-
ysis. For each pair of genes, we fit the above model and obtain a
p-value for the 7, parameter. The Benjamini-Hochberg (BH) cor-
rection [58] is then applied to those 31375 p-values to adjust for
multiple testing and control the false discovery rate. After the cor-
rection, 61 gene pairs were found to be significant. The top 25
gene pairs in terms of |Ap| are displayed in Table 4. In Figure 6,
we present heatmaps of the pre-treatment and post-treatment
co-expression for selected gene pairs, along with a heatmap illus-
trating the co-expression changes between the two conditions.

The heatmaps in Figure 6 illustrate some of the co-expression
changes induced within myeloid cells by treatment with
nab-paclitaxel. Co-expression changes in gene pairs such as
SRGN-RAB31 and CXCL16-HEXB reflect the underlying repro-
gramming of myeloid regulatory networks described in the orig-
inal study of this data set [39]. In prior research, SRGN has
been shown to regulate the packaging and secretion of inflam-
matory cytokines such as TNF-a [59], while RAB31 has been
identified as a contributor to early-stage immune signaling and
intracellular transport of signaling molecules [60]. The increased
co-expression of these two genes following treatment is consis-
tent with the original study’s findings that nab-paclitaxel pro-
motes inflammatory macrophage states with elevated immune
activity. In contrast, CXCL16, which promotes monocyte recruit-
ment and supports stromal activation in triple-negative breast
cancer [61], and HEXB, a marker of metabolically active
tumor-associated macrophages involved in glycolytic signaling
[62], show decreased co-expression — reflecting the disruption
of suppressive myeloid states and the shift toward inflammatory
reprogramming reported in the original study.

4.2 | Application to the CRC Data Set

We apply the scCOSMiX model to the plate-based CRC data set
GSE108989 described in Section 2.1, focusing on tumor-derived
CD4 and CD8 T cells from 11 colorectal cancer patients. In their
original study, Zhang et al. [40] reported that tumor-infiltrating
lymphocytes are highly heterogeneous with respect to gene

TABLE4 |
between pre-treatment and post-treatment cells from droplet-based
TNBC dataset GSE266919.

Droplet scenario: Top table of co-expression differences

# Gene 1 Gene 2 p(pre)  p(post) |Ap]|
1 GPNMB SRGN —0.001 -0.279 0.277
2 CDKN1A SRGN 0.045 0.251 0.205
HSPA1A C1QB 0.093 -0.112 0.205
4 GPNMB KLF6 —0.034 —0.236 0.203
5 GPNMB SGK1 0.063 —-0.137  0.200
6 IF127 PILRA 0.148 —0.050 0.198
7 APOE SRGN 0.021 -0.177  0.197
8 SLC16A3  SH3BGRL3 0.013 0.209 0.196
9 RNF213 NFKBIA —0.065 0.127 0.193
10 SRGN PPP1R15A 0.068 0.260 0.192
11 ISG15 NR4A2 —0.150 0.037 0.187
12 LITAF SCPEP1 0.155 —0.026 0.181
13 GM2A SRGN 0.045 —-0.134  0.178
14 LIPA SRGN 0.002 -0.173 0.175
15 CTSS SGK1 0.027 -0.144  0.171
16 CCL4 FABP5 —0.059 —0.226 0.167
17 LAIR1 C1QB 0.234 0.067 0.167
18 NFKBIA CCL4 0.549 0.383 0.166
19 CMTM6 CTSS 0.078 —0.086 0.164
20 CD53 FCGRT 0.143 —0.021 0.164
21 IFI6 NR4A2 -0.311 —0.148 0.164
22 CTSL PILRA 0.125 —0.037 0.161
23 NR4A2 RAB31 —0.066 0.095 0.161
24 APOC1 MCL1 —0.131 —0.292 0.161
25 PRNP FOSB —0.007 0.154 0.161

expression profiles and clonal expansion patterns, with CD4
and CD8 T cells exhibiting markedly different transcrip-
tional programs. We use scCOSMiX to examine whether these
lineage-specific transcriptional differences are reflected in dis-
tinct patterns of gene-gene co-expression between CD4 and CD8
T cells.

To this end, we apply the same fixed-effect, random-effect, and
offset specification as in Section 4.1, but with the factor of interest
changed from timepoint to cell type. The gene-filtering process
also remains the same, except this time we include an additional
filter on the variance of the gene expression counts. We remove
a gene if its normalized gene expression in either of the CD4 or
CDS cell types has standard deviation less than 0.4 or if the abso-
lute difference between the CD4 and CDS standard deviations is
less than 0.1. The normalization is carried out using the methods
from Hafemeister et al. [55] and is used to ensure the variance
calculated is not due to sequencing depth effects. After filtering,
276 genes (37950 gene pairs) remain for analysis. For each pair
of genes, we fit the scCOSMiX model and obtain a p-value for the
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Droplet scenario: Heatmaps of gene-gene correlation estimates for selected genes in pre-treatment and post-treatment cells from

droplet-based TNBC data set GSE266919, with an additional heatmap showing co-expression changes between the two conditions.

7, parameter. The BH correction is then applied to those 37950
p-values to adjust for multiple testing and control the false dis-
covery rate. After the correction, 548 gene pairs were found to be
significant. The top 25 gene pairs in terms of |Ap| are displayed
in Table S5. In Figure S4, we present heatmaps of the CD4 and
CD8 co-expression for selected gene pairs, along with a heatmap
illustrating the co-expression changes between the two lineages.

The heatmaps in Figure S4 illustrate some of the co-expression
differences found between CD4 and CD8 T cells in our analysis.
Decreased co-expression in gene pairs such as CD28-RHOG and
MAP2K3-TFRC reflects the transcriptional disorganization and
functional exhaustion of CD8 cells described in the original study
of the data set [40]. In prior research, CD28 has been found to
be a key co-stimulatory receptor for T cell activation, particularly
active in CD4 subsets [63], while RHOG has been identified as
a modulator of T cell activation by dampening TCR signaling in
later stages of the response [64]. Similarly, MAP2K3 contributes to
stress and survival signaling in colorectal cancer [65], and TFRC
supports iron uptake and metabolic activity required for prolif-
eration and effector function [66]. The reduced co-expression of
these two gene pairs in CDS cells indicates impaired coordination
of activation, signaling, and metabolic programs, consistent with
the original study’s finding that tumor-infiltrating CD8 T cells are
more exhausted, dysfunctional, and transcriptionally fragmented
than CD4 T cells.

5 | Discussion

In recent years, the proliferation of multi-patient scRNA-seq
studies has created rich opportunities to analyze dynamic
gene-gene interaction changes across cell types, developmen-
tal stages, treatment conditions, and other biological contexts.
However, such analyses involve substantial methodological chal-
lenges, including the hierarchical structure inherent in sam-
pling multiple cells from each patient, the count-based nature of
gene expression measurements with protocol-dependent distri-
butional properties, and the need to model covariate-dependent
changes in both the marginal expression levels and the gene-gene
dependence structure. To address these challenges, in this paper
we proposed scCOSMiX, a flexible zero-inflated bivariate copula

mixed-effects model for analyzing differential co-expression in
multi-patient scRNA-seq data appropriate for both plate-based
and droplet-based protocols.

We carried out simulation studies based on scenarios from
both droplet- and plate-based data sets, evaluating coverage,
robustness, power, FDR control, precision-recall, and computa-
tion time. As demonstrated by our simulations and experimen-
tal data analyses, the algorithm can flexibly estimate parame-
ter values generated by various experimental protocols. In the
coverage and robustness studies, scCOSMiX maintained proper
coverage rate and low MSE for all parameters, even when fit
to data generated without zero inflation. It performed simi-
larly well in the power studies, where it showed high power
on data simulated with 0%, 15%, and 30% zero-inflation. In the
computation time study (Table 3), we found the mixed effects
framework of scCOSMiX incurred a greater computational bur-
den compared to methods treating all cells as independent, but
this additional computational burden was offset by superior
performance in the FDR control, precision-recall, and power
studies.

The scCOSMiX framework provides flexibility for researchers to
specify both the marginal distributions and the copula to accom-
modate a wide range of data types. In this paper, we used a
Gaussian copula with negative binomial marginals to capture
gene co-expression in sScCRNA-seq data, but the model can be tai-
lored to suit data from contexts beyond gene expression, includ-
ing multi-omics and microbiome studies. For example, by set-
ting the first marginal as log-normal and the second marginal as
negative binomial, scientists could analyze whether the correla-
tion between protein abundance and chromatin accessibility is
in some way modulated by the cell type. Alternatively, to analyze
microbial relative abundances, which often exhibit non-elliptical
dependence structures [67], the user could specify a Frank copula
in place of a Gaussian copula. To ensure that these user-specified
marginal and copula choices provide a good fit to the data, model
fit can be evaluated using randomized quantile residuals [68, 69]
and corrected conditional AIC [70].

For a typical scRNA-seq data set, there are several search
heuristics that can be applied using scCOSMiX to identify
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differential co-expression gene pairs: (i) candidate gene sets or
pathways (ii) genome-wide screening. Depending on the number
of genes in the data set and the computing resources available,
one may employ pre-screening measures such as ¢, introduced
by Yu (2018) [71], fastLA, proposed by Gunderson and Ho (2014)
[72], or CS-CORE, developed by Su et al. (2023) [33].

Although the simulation studies and real data analyses in this
paper involved only a two-level categorical covariate (pre- vs.
post-treatment in the droplet case and CD4 vs. CD8 in the plate
case), the scCOSMiX framework can be used for modeling scenar-
ios involving continuous covariates, categorical covariates with
multiple levels, and interactions of covariates. The model-based
nature of scCOSMiX enables testing of complex hypotheses, such
as whether the co-expression of two genes changes with the
expression level of a third gene, and whether that change is dif-
ferent in one cell type versus another. This flexibility sets it apart
from existing methods such as CS-CORE, which does not permit
continuous covariates or categorical covariates with more than
two levels; CoCoA, which does not incorporate covariate effects
in the marginal parameters, and CNM, which does not allow
more than one covariate in the model.

We conducted two real data analyses: the first on droplet-based
TNBC data set GSE266919, and the second on plate-based
CRC data set GSE108989. In the TNBC data set, we inves-
tigated co-expression changes from pre- to post-treatment in
myeloid cells from 8 patients treated with nab-paclitaxel or
nab-paclitaxel plus atezolizumab. In the CRC data set, we ana-
lyzed co-expression differences between CD4 and CD8 T cells in
tumor tissue from 11 CRC patients. For both analyses, we pre-
sented top tables featuring the 25 gene pairs with the largest
differential co-expression, and we plotted heat maps for a select
number of genes to illustrate the phenomenon of co-expression
visually. The results of these analyses suggested plausible biolog-
ical hypotheses that matched prior research on the data sets.
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