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Abstract

Extensive neuroimaging research in temporal lobe epilepsy with hippocampal sclerosis (TLE-HS)
has identified brain atrophy as a disease phenotype. While it is also related to a complex genetic
architecture, the transition from genetic risk factors to brain vulnerabilities remains unclear. Using
a population-based approach, we examined the associations between epilepsy-related polygenic
risk for HS (PRS-HS) and brain structure in healthy developing children, assessed their relation to
brain network architecture, and evaluated its correspondence with case-control findings in TLE-

HS diagnosed patients relative to healthy individuals

We used genome-wide genotyping and structural T1-weighted magnetic resonance imaging (MRI)
of 3,826 neurotypical children from the Adolescent Brain Cognitive Development (ABCD) study.
Surface-based linear models related PRS-HS to cortical thickness measures, and subsequently
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contextualized findings with structural and functional network architecture based on epicentre
mapping approaches. Imaging-genetic associations were then correlated to atrophy and disease
epicentres in 785 patients with TLE-HS relative to 1,512 healthy controls aggregated across

multiple sites.

Higher PRS-HS was associated with decreases in cortical thickness across temporo-parietal as well
as fronto-central regions of neurotypical children. These imaging-genetic effects wereanchored to
the connectivity profiles of distinct functional and structural epicentres. Compared with disease-
related alterations from a separate epilepsy cohort, regional and network cotrelates of PRS-HS
strongly mirrored cortical atrophy and disease epicentres observed.in patients with TLE-HS, and
highly replicable across different studies. Findings were consistent-when using statistical models

controlling for spatial autocorrelations and robust to variations in analytic methods.

Capitalizing on recent imaging-genetic initiatives, .our._study provides novel insights into the
genetic underpinnings of structural alterations in - TLE-HS, revealing common morphological and
network pathways between genetic vulnerability and disease mechanisms. These signatures offer
a foundation for early risk stratification.and personalized interventions targeting genetic profiles

in epilepsy.

Author affiliations:

1 Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4,

Canada

2 Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 1A1,
Cabada

3 Department of Human Genetics, McGill University, Montreal, QC, H3A 1Y2, Canada
4'Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, JIH 5N4, Canada
5 Department of Psychiatry and Psychotherapy, University of Liibeck, Liibeck, 23538, Germany
6 Centre of Brain, Behavior and Metabolism, University of Liibeck, Liibeck, 23562, Germany

7 Department of Medical Imaging, Nanjing University School of Medicine, Nanjing, 211166,
China

Gz0zZ Jequieldes 9z uo Jesn ejnyisu| [elusg uewised Aq 6ZSYEZ8/6GZIBM./UIRIG/SE0 L 0 L /I0P/8|o1le-00UBAPER/UIRIG/WO0D dNO"0IWSPE.//:Sd)Y WO} papEojumo(



11

12

13
14

15
16

17

18
19

20

21
22

23

24
25

26
27

8 Centre for Sleep and Cognition, National University of Singapore, Singapore, 117549

Singapore

9 Centre for Translational Magnetic Resonance, National University of Singapore, Singapore,

117549, Singapore

10 Department of Electrical and Computer Engineering, National University of Singapore,

Singapore, 117583, Singapore
11 Department of Neurology, Duke University, Durham, NC, 27710, USA
12 Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA

13 Institute of Neuroscience and Medicine (INM-7), Forschungszentrum Jiilich, Jiilich, 52428,

Germany

14 Neuroscience Research Center, University Magna Grecia, Catanzaro, 88100, [taly

15 Institute of Neurology, University Magna Gracia, Catanzaro, 88100, Italy

16 Institute of Neurobiology, Universidad Nacional Auténoma de México, Querétaro, 76230,
México

17 Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool,
L69 7BE, UK

18 Walton Centre NHS Foundation Trust, Liverpool, L9 7LJ, UK

19 Department of Neurology, University of Campinas—UNICAMP, Campinas, Sao Paulo,
13083887, Brazil

20 Department of Neurology, Emory University, Atlanta, GA, 30322, USA

21 Department of Neurology, Medical University of South Carolina, Charleston, SC, 29425,
USA

22 Department of Neurology, University of Medicine Gottingen, Géttingen, 37075, Germany

23 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research,
University of Tiibingen, Tiibingen, 72076, Germany

24 Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University,
Melbourne, Melbourne, VIC, 3004, Australia

Gz0zZ Jequieldes 9z uo Jesn ejnyisu| [elusg uewised Aq 6ZSYEZ8/6GZIBM./UIRIG/SE0 L 0 L /I0P/8|o1le-00UBAPER/UIRIG/WO0D dNO"0IWSPE.//:Sd)Y WO} papEojumo(



10
11

12
13

14
15

16
17

18

19

20
21

22

23
24

25
26

27

25 Departments of Medicine and Radiology, The Royal Melbourne Hospital, University of
Melbourne, Parkville, VIC, 3050, Australia

26 Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, 41126, Italy

27 Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio
Emilia, Modena, 41125, Italy

28 Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European
Reference Network for Rare and Complex Epilepsies EpiCARE, Kuopio, 70210, Finland

29 Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, University of
Eastern Finland, Kuopio, 70210, Finland

30 Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and

Computer Engineering, University of Tehran, Tehran, 1439957131, Iran

31 Departments of Research Administration andRadiology, Henry Ford Health System, Detroit,
48202, USA

32 Division of Neurology, Department of Medicine, Queen’s University, Kingston, ON, K7L
2V7, Canada

33 Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of
Neurology, London, WCIN 3BG, UK

34 Chalfont Centre for Epilepsy, Bucks, SL9 ORJ, UK
35 Institute for Molecular Medicine, University of Southern Denmark, Odense, s5230 Denmark

36 Neuroscience and Human Genetics Department, Meyer Children’s Hospital IRCCS, Florence,
50139, Italy

37 University of Florence, Florence, 50121, Italy

38 The Wales Epilepsy Unit, Department of Neurology, University Hospital of Whales, Cardiff,
CF14 4XW, UK

39 Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical
Sciences, Cardiff University, Cardiff, CF24 4HQ, UK

40 Department of Epileptology, University of Bonn Medical Center, Bonn, 53127, Germany

Gz0zZ Jequieldes 9z uo Jesn ejnyisu| [elusg uewised Aq 6ZSYEZ8/6GZIBM./UIRIG/SE0 L 0 L /I0P/8|o1le-00UBAPER/UIRIG/WO0D dNO"0IWSPE.//:Sd)Y WO} papEojumo(



10
11

12
13

14
15

16
17

18
19

20
21

22

23

24

25

26

41 Department of Neuroradiology, University of Bonn Medical Center, Bonn, 53127, Germany
42 German Center for Neurodegenerative Diseases, Gottingen, 37075, Germany

43 Center for Medical Data Usability and Translation, University of Bonn, Bonn, 53113,

Germany

44 Department of Neurology, NY U Grossman School of Medicine, New York, NY, 10017, USA

45 Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child
Health, University of Genova, Genova, 16147, Italy

46 Department of Radiation Medicine and Applied Sciences, University of California San Diego,

La Jolla, CA, 92093, USA

47 Department of Neurosciences, Center for Multimodaldmaging and Genetics, University of

California San Diego, La Jolla, CA, 92093, USA

48 Department of Neurology, Inselspital, Sleep-Wake=Epilepsy-Center, Bern University
Hospital, University of Bern, Bern, 3010, Switzerland

49 Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital
University of Zurich, Zurich, 8008, Switzerland

50 Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals,

Geneva, 1205, Switzerland

51 Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics,

Keck School.of Medicine, University of Southern California, Los Angeles, CA, 90033, USA

52 Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of
California San Diego, La Jolla, CA, 92093, USA

Correspondence to: Boris C. Bernhardt, PhD
3801 University Street, Montreal, Quebec, Canada H3A 2B4

Email: boris.bernhardt@mcgill.ca

Gz0zZ Jequieldes 9z uo Jesn ejnyisu| [elusg uewised Aq 6ZSYEZ8/6GZIBM./UIRIG/SE0 L 0 L /I0P/8|o1le-00UBAPER/UIRIG/WO0D dNO"0IWSPE.//:Sd)Y WO} papEojumo(



14
15
16
17
18
19
20
21
22
23
24

25
26
27
28

Running title: Structural correlates of epilepsy genetic risk
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Introduction

Epilepsy is characterized by an enduring predisposition to recurrent spontaneous.seizures and
affectsover 50 million people worldwide.! One of the most common forms-ofepilepsy is temporal
lobe epilepsy (TLE), a focal epilepsy associated pathologically with hippocampal sclerosis (HS)
and pharmaco-resistance. Cumulative evidence has underscored the complexity of TLE-HS,
revealing contributions from genetic and acquired factors in epileptogenesis. With seizure onsets
typically in childhood and adolescence,? developmental transitions spanning youth represent a key
window for epilepsy risk. Adequately capturing the condition’s effects on brain organization,
particularly in development, may advance our understanding of brain mechanisms giving rise to

seizures and may have important implications for disease monitoring and early diagnosis.

In addition to its typical association with mesiotemporal pathology, neuroimaging evidence in
patients with TLE-HS has identified widespread structural alterations. Magnetic resonance
imaging (MRI) analysis of brain-morphology has established robust structural compromise in the
hippocampus, subcortical regions, as well as more widespread temporal and fronto-central cortical
systems. These findings were initially shown in single centre studies,®® and more recently
confirmed in large-scale multisite consortia, notably ENIGMA -Epilepsy.”-® The latter initiative has
mapped consistent patterns of multilobar atrophy in TLE-HS, and further contextualized findings
with measures of brain network architecture, confirming temporo-limbic regions as epicentres of
distributed structural pathology.’ Despite a likely influence of environmental factors and clinical
eventson brain structure in TLE,' there has been growing evidence of important genetic

influence,!! suggesting a possible mechanism affecting this classical disease phenotype.

Epilepsy has a complex genetic architecture, with many contributory genetic factors.!?~1® Variants
underlying many different monogenic forms of epilepsy are rare, yet of large effect that can confer
high risk or be causally responsible for the disease.!”-!® Despite the clinical implications of these

variants, common epilepsy syndromes, particularly TLE-HS, rarely carry such variants and
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presumably have a complex, multigenic inheritance.!® Causation may therefore be attributable to
the synergy of multiple genetic variants interacting with each other, together with acquired
environmental factors. Recent genome-wide association studies (GWAS) have identified common
risk alleles.'>~16 These individual genetic risk variants are usually of small effect and cannot
quantify risk or inform prognosis and treatment.2® However, genome-wide profiling using
polygenic risk scores (PRS) may provide a window into the genetic liability of the disease. By
estimating the combined effect of individual single nucleotide polymorphisms (SNPs), it can
collectively capture the variance explained by these common alleles and provide an‘individualized
measure of genetic risk.>!=23 While previous studies have revealed enriched genetic vulnerability
for epilepsy in patients,?*2° the consequences of epilepsy susceptibility on disease phenotypes,
such as brain morphology, have not been systematically charted. Investigating this micro-to-
macroscale mechanism may provide insight into the translation of genetic vulnerability to disease

etiology or consequences.

In this study, we aimed to uncover the cumulative effects of epilepsy-related genetic risk variants
on structural brain organization during development. We analyzed structural MRI and genotyping
data in a large population-based cohort of neurotypical children from the Adolescent Brain
Cognitive Development study (ABCD).?’ To investigate associations between genetic risk factors
for epilepsy-related HS and brain-wide morphology, we generated PRS-related models of cortical
thickness and subcortical volume. Network contextualization further identified connectome
epicentres of PRS-HS effects—network pathways that may govern the genetically affected
morphological patteming. To pinpoint common processes between genetic risk and disease
pathologies, we‘employed spatial correlations with autocorrelation preserving null models and
related structural effects of PRS-HS to disease-related atrophy and epicentres derived from large

multi-site MRT-based datasets of patients and controls (Fig. 1).28-3°
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Materials and methods

Participants

Adolescent Brain Cognitive Development (ABCD).

The present study used the demographic, genetic, and neuroimaging data of 3,826 unrelated
neurotypical children (mean + standard deviation [SD] age = 10.0 + 0.6 years;2,052 males) from
the multisite ABCD 2.0.1 release?! and selected based on the availability. of high-quality T1-
weighted MRI and genome-wide genotyping data, as well as European genetic ancestry (described
in the subsequent sections). Briefly, participants were recruited based-onprobability sampling of
schools near the study sites. Parents or guardians provided written'consent, while the child
provided written assent. All aspects of the ABCD study were approved by the Institutional Review
Board at the University of California, San Diego, United-States. Overall, the large size of this
cohort allows for unprecedented exploration of genetic risk for TLE-HS and its potential effects

on brain organization in an a priori neurotypical child population.

Human Connectome Project (HCP)

We also selected 50 unrelated ‘healthy adults from the HCP dataset (imaging acquisition and
processing are described in.the Supplementary Materials).>> Such initiatives provide normative

structural and functional connectivity information to employ network epicentre mapping of PRS-
HS.

Enhancing Neuro Imaging Genetics through Meta Analysis Epilepsy
Consortium (ENIGMA-Epilepsy)

Imaging-genetic associations from neurotypical children were compared to MRI-based disease
effects observed between 732 patients with TLE and radiological evidence of HS (mean =+ SD age
= 38.6 = 10.6 years; 329 males; 391 left-sided focus) and 1,418 (mean + SD age = 33.8 = 10.5
years; 643 males) healthy controls (HC). Details of case-control cohorts are described in the

Supplemental Materials and elsewhere.?®
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Independent TLE-HS case-control datasets

To assess the replication of the aforementioned analysis, imaging-genetic associations were also
compared to structural alterations observed between 53 individuals with pharmaco-resistant TLE-
HS and 93 age- (r = 1.51, p =0.13) and sex-matched (y* = 0.13, p = 0.72) healthy controls (HC).
Case-control participants were selected from (i) Montreal Neurological Institute.and Hospital
(MICs; nrtiLe-nsmc = 23/36)° and (i) Jinling Hospital (NKG; nrie-nsmc = 37/57).%°
Sociodemographic, clinical and imaging details of the two sites are in'the Supplementary

Materials.
Genomic data acquisition and processing of ABCD
SNP genotyping

A total of 550,000 SNPs were genotyped from saliva=samples using the Affymetrix Axiom
Smokescreen  Array platform.33:3* The data.. were prepared for imputation using
“imputePrepSanger” pipeline (https://hub.docker.com/r/eauforest/imputeprepsanger/),
implemented on CBRAIN?3 and the Human660W-Quad_v1 A-b37-strand chip as reference.

Genotyping quality control and imputation

Genotyping was quality ¢ontrolledusing PLINK 1.9.3¢ Steps included: (i) assessment of
heterozygosity using the PLINK:-~indep-pairwise command with parameters set to 200, 50, and
0.15; (if) removal of samples:whose heterozygosity F coefficient was greater than 3 SD units from
the mean; (iii) - removal of samples and SNPs with low call rate at 0.01 and all SNPs with minor
allele frequency (MAF) < 0.01; (iv) removal of individuals with mismatched sex and gender; (v)
exclusion of non-European individuals by PCA with Hapmap; (vi) removal of samples with a first-
or second=degree relative in the cohort (m > 0.125); (vii) application of a haplotype-based test for
non-random missing genotype datato remove SNPs at p < 1 x 10~* where they had non-random
associations between unobserved genotypes and missingness; and (viii) application of a test for
Hardy-Weinberg equilibrium (HWE) and removal of SNPs significant at p <1 x 10, Imputation
was performed using the Michigan Imputation Service with the Haplotype Reference Consortium

(HRC) rl.1 2016 (hg19) as a reference panel.’’
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Deriving polygenic risk scores

Individualized PRS were computed using the summary statistics from an epilepsy genome-wide
association study for focal epilepsy with documented HS.!3 While this may not necessarily equate
to TLE-HS, we used this classification as a close proxy given the high prevalence and relative
specificity of HS in TLE. SNPs with an INFO < 0.8 and an MAF < 0.01 were excluded, and
duplicate SNPs were removed. PRSice-2 was used to calculate genetic risk scores.’® Given that an
optimal probability threshold (Psnp) related to HS was not previously reported, we used multiple
Psnp that significantly predicted focal epilepsy: 0.001, 0.05, 0.1, 0.2,70.3, 0.4, 0.5.2% All main
analyses used PRS constructed at Psnp < 0.1, with consistency-of findings evaluated across

remaining thresholds.
Imaging acquisition and processing of ABCD
Acquisition

All participants underwent 3T MRI scanning with prospective motion correction to reduce head
motion and distortions, including a 3D. Tl-weighted (T1w) anatomical scan based on a

magnetization-prepared rapid acquisition gradient echo sequence.?!

Processing

Tlw data were processed using FreeSurfer (version 5.3.0) to generate cortical surface and
subcortical segmentations.’?*° Based on the Desikan-Killiany anatomical atlas,*' subject-specific
maps of cortical thickness were sampled across 68 grey matter brain regions, and volume measures
were obtained from 12 subcortical gray matter regions (bilateral amygdala, caudate, nucleus

accumbens, pallidum, putamen, and thalamus) and bilateral hippocampi.
Multisite data harmonization

Morphological data were harmonized across sites using ComBat

(https:/github.com/Jfortinl/ComBatHarmonization), a post-acquisition statistical batch

normalization of between-site effects, while preserving age, sex and genetic risk.4?

10
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Statistical analyses

Structural correlates of PRS-HS

We  implemented  surface-based linear models in  BrainStat (version . 0.4.2;

https://brainstat.readthed ocs.io/)*? with age, sex, and the first 10 genetic principal components as

covariates, similar to previous imaging-genetics studies.*446 These related PRS-HS to cortical
thickness and subcortical volume in neurotypical children from ABCD. Multiple. comparisons

were then corrected using the false discovery rate (FDR) procedure.*’

To assess potential hemispheric asymmetry in the association between PRS-HS and cortical
morphology, we computed interhemispheric asymmetric indices for thickness across homologous
regions: Al = (left —right) / |(left + right)/2|, where Al is asymmetry index and left and
right are the cortical thickness of left and right areas. Correlations between asymmetry and PRS-

HS were assessed using similar linear models.

Network substrates of PRS-related structural changes

We identified morphological polygenic risk epicentres by spatially correlating each brain region’s
healthy functional and structural connectivity profiles from the HCP dataset to the imaging-genetic
map (i.e., the unthresholded t=statistic map from the above analysis). This approach was repeated
systematically across all-cortical and subcortical regions with non-parametric spin permutation
null models to control for spatial autocorrelation (5,000 repetitions),*® implemented in the

ENIGMA toolbox. (version 2.0.3; https:/enigma-toolbox.readthedocs.io/).** Higher spatial

similarity between a. given node’s connectivity profile and whole-brain patterns of PRS-HS

vulnerability supported that the node was an epicentre.

Dissociating the effects of network architecture from potential confounds introduced in
normative connectomes, we also generated PRS-related epicentres using TLE-specific structural
and functional connectomes (image processing and connectivity computations are described in

the Supplementary Materials).

We identified the spatial overlap between imaging-genetic correlates from ABCD and epilepsy-
related alterations. The latter were obtained previously published statistical case-control atrophy

and epicentre maps for left and right TLE-HS from ENIGMA-Epilepsy.®-?® Spin permutation-

11
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based testing (5,000 repetitions) assessed significant spatial associations between imaging-genetic

and case-control effects, at the regional and network level.

We furthermore performed spatial correlations with case-control atrophy and epicentre maps for
left and right TLE-HS from independent case-control datasets (MICs and NKG). Patient<specific
morphology maps were z-scored relative to controls. We then used surface-based linear models
with age, sex, and site as covariates to compare between groups. Subsequent epicentre analysis
was performed on the TLE-HS atrophy profile. Spin permutation-based testing (5,000 repetitions)

evaluated significant spatial correlations between imaging-genetic and ease-control effects.*8:4

To evaluate the specificity of imaging-genetic effects to TLE-HS,we repeated the same analyses
with idiopathic generalized epilepsy (IGE), another common epilepsy syndrome,?® and six
psychiatric disorders (attention deficit disorder [ADHD], autism spectrum disorder [ASD], bipolar
disorder [BD], major depressive disorder [MDD], ebsessive-compulsive disorder [OCD], and
schizophrenia [SCZ]), all acquired from the ENIGMA Consortium.*->? Correlation coefficients
were statistically compared to those observed in TLE-HS using Fisher z-transformation.
Significance testing of these correlations.and theirdifferences was assessed using spin permutation

tests with 5,000 repetitions.*8:4?
Transcriptomic associations

To investigate the molecular pathways that may link cortical vulnerability to disease atrophy,
regional imaging-genetic and case-control patterns were related with gene expression derived from
the ENIGMA toolbox,*® which aggregates preprocessed post-mortem bulk microarray data from
the Allen Human Brain Atlas.’! For each available gene (nwot = 12,668), we computed the spatial
correlation between regional expression and imaging phenotype of interest (i.e., PRS-mediated
thinning and left/right TLE-HS atrophy). Based on autocorrelation-preserving null models (n =
5,000),484° we identified significantly correlated genes for both maps, and subsequently their

intersection. A gene ontology enrichment analysis (https://webgestalt.org) was utilized to uncover

biological processes enriched in the list of shared genes.>?

Robustness analyses

To verify that results were not biased by choosing a particular threshold, we repeated the PRS

analyses and associations with case-control atrophy across all predictive Psnp thresholds (0.001,

12
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0.05,0.1, 0.2, 0.3, 0.4, 0.5).2¢ Specifically, PRS-HS was constructed at each threshold and spatial
correlations between all pairs of imaging-genetic brain maps were performed. Spin permutation-
based testing (5,000 repetitions) evaluated significant spatial correlations between imaging-genetic

and case-control effects.*3:49

Results

Structural correlates of PRS-HS

We observed a significant and negative association between global cortical thickness and genetic
vulnerability (left hemisphere: Pearson’s correlation coefficient [r] = -0.041, prpr < 0.05; right
hemisphere: » = -0.044, pror < 0.05; Fig. 2A). Adopting a regional approach, these effects
colocalized to bilateral temporal pole and postcentral gyrus, left precuneus, inferior parietal and
lateral occipital regions as well as right superior andmiddle temporal, precentral and paracentral

gyri (range r =-0.0501 —-0.0362, prpr < 0.05; Fig..2B).

After correcting for multiple comparisons, no significant relationships between PRS-HS and
subcortical and hippocampal volume (all*prpr = 0.05; Supplementary Fig. 1), as well as

morphological-related asymmetry-was.observed (all prpr > 0.05; Supplementary Fig. 2).
Network substrates of PRS-related structural changes

Given the large-scale‘ effects of PRS-HS on cortical thickness, contextualizing imaging-genetic
correlations with connectome architecture may provide insight into how localized genetic
susceptibility’ propagates through distributed brain networks and predicts structural vulnerabilities.
We systematically correlated imaging-genetic patterns (see Fig. 2) to the functional and structural
connections.of each cortical and subcortical region (Fig. 3A).#8 This implicated bilateral temporal-
limbic and parietal cortices, amygdalae, hippocampi, and thalami as the most significant functional

and structural epicentres (all pspin < 0.05; Fig. 3B).

Network profiles were also similar when using TLE-specific connectomes (functional: » = 0.86,

Pspin <0.001; structural: 7 = 0.98, pspin < 0.001; Supplementary Fig. 3).
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Relation to epilepsy-specific atrophy and network epicentres

To link genetic vulnerability to disease alterations, we examined the spatial resemblance between
imaging-genetic findings to atrophy patterns observed in individuals with TLE-HS. Assessing
structural alterations in patients relative to controls (ENIGMA -Epilepsy), profound atrophy was
observed, with strongest effects in bilateral precuneus, precentral, paracentral, -and temporal
cortices (prpr < 0.05; Fig. 4A). Correlating alteration maps with PRS effects (from ABCD, see
Fig. 1) showed significant overlap with left (» = 0.63, pspin = 0.001) and right TLE-HS (» = 0.59,
pspin = 0.0006; Fig. 4B).

Network mapping of atrophy (ENIGMA-Epilepsy) revealed significant temporo-limbic and
parieto-occipital epicentres in TLE-HS (prpr < 0.05; Fig. 5A)...Similarly, imaging-genetic
epicentres (from ABCD, see Fig. 2) were strongly correlated with disease epicentres in left TLE-
HS (functional: »=0.95, pspin < 0.001; structural: » = 0.78, pspin<0.001), right TLE-HS (functional:
r=0.93, pspin < 0.001; structural: » = 0.94, pspin < 0:001; Fig. 5B), suggesting potential pathway
convergence between PRS-HS and TLE-HS effects.

These region- and network-level correlations were highly consistent when correlating PRS effects
(from ABCD, see Fig. I and Fig. 2) with separate, independent patient-control sites (MICs, NKG).
Comparison between PRS effects (from ABCD, see Fig. /) and disease-related atrophy (Fig. 4A)
revealed moderate and highly significant positive correlations for left (» =0.50, pspin=0.0002) and
right TLE-HS (r = 041, pspin = 0.009; Fig. 4B). Imaging-genetic epicentres (from ABCD, see Fig.
2) were also strongly similar with disease epicentres (Fig. SA) in left (functional: » = 0.93, prpr <
0.001; structural:'» =.0.77, prpr < 0.001) and right TLE-HS (functional: » = 0.89, prpr < 0.001;
structural: » = 0:89, prpr < 0.001; Fig. 5B).

Cross-referencing our imaging-genetic patterns (From ABCD, see Fig. I and 2) with atrophy and
disease epicentre maps from IGE and six common psychiatric disorders, specificity analyses
showed that spatial correlations between PRS-HS and TLE-HS effects (see Fig. 3 and 4) were
statistically among the highest even when compared against the different conditions (Table 1;

IGE: Supplementary Fig. 4; psychiatric conditions: Supplementary Fig. 5 and 6).
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Transcriptomic associations

Structural effects of PRS-HS shared a large number of genes with atrophy distributions in left
(l’loverlapping = 2,274,pFDR < 0001) and rlght (l’loverlapping = 2,264,pFDR < 0001) TLE-HS. Ontological
enrichment of these genes revealed biological processes involved in ion transmembrane transport,

synaptic signaling, and neuronal development (all prpr < 0.05; Supplementary Fig. 7).

Robustness analyses

Our findings were not affected by varying the Psnp thresholds (n = 7; 0.001, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5) used to construct individualized PRS-HS. Across the range of predictive thresholds,
widespread decreases in thickness were related to PRS-HS, with strongest associations again in
parietal and temporal regions (Supplementary Fig. 8A). Recapitulating the reliability of
threshold-specific effects, we demonstrated high similarities.among different thresholds (100.0%
of correlations were significant, pspin < 0.05)..-Moreover, we found comparable associations
between imaging-genetic and cortical atrophy maps.in left (89.2% of correlations were significant,
pspin < 0.05) and right TLE-HS (67.9% " of. correlations were significant, pspin < 0.05;
Supplementary Fig. 8B).

Translating this approach to network models of PRS-HS, temporo-limbic and parietal epicentres
identified in the main analyses were consistent across different Psnp thresholds (Supplementary
Fig. 9A). The spatial-distribution of these network epicentres was highly correlated with one

another (100% of'correlations were significant, pspin < 0.05; Supplementary Fig. 9B).
Discussion

Emerging.. literature emphasizes the importance of genotype-phenotype associations in
understanding the etiological mechanisms of epilepsy. Capitalizing on recent imaging-genetic
initiatives, we combined genetic risk and whole-brain anatomy to characterize the polygenic
burden of epilepsy-related HS in typical development. We found widespread decreases in cortical
thickness associated with elevated PRS-HS, with the greatest effects in temporal and parietal
regions. These imaging-genetic correlations were anchored to the connectivity profiles of fronto-
parietal and temporo-limbic epicentres, and may play a crucial role in the network vulnerability of

the brain. Structural correlates of PRS-HS further mirrored case-control atrophy and network
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epicentres observed in patients with TLE-HS. Findings were replicable across different Psnp
thresholds as well as different epilepsy case-control studies. Taken together, PRS-associated
structural vulnerabilities may represent an early biomarker for TLE-HS pathogenesis, offering new

avenues for risk stratification and pre-emptive interventions based on their genetic profiles:

Structural brain organization in typical development includes a complex, andgenetically
determined cascade of changes from childhood to adolescence and ultimately to adulthood. Cross-
sectional and longitudinal characterization of cortical gray matter tissue has'demonstrated global
and regional thinning during this period.>3—7 Despite being an important aspect of normal
maturation, deviations from typical development have been associated with vulnerability for
various neurological and psychiatric conditions, 479 including TLE-HS.6'-93 While the exact
pathogenesis of TLE-HS remains unknown, genetic studiesthave characterized the role of common
susceptibility variants in patient cases.!3~1¢ These variants.account for a moderate proportion of
disease phenotypic variance, and may have adverse effeets on structural brain development. !> Core
to our analytical framework is the association of individualized genetic risk profiling and mapping
of structural brain phenotypes, pinpointing the morphological vulnerabilities influenced by
underlying predisposition to the disease.  Particularly relevant for a complex disorder that is
affected by many small-effect variants, PRS provides a personalized and compact measure of
overall genetic liability.?! 23 Linked imaging-derived phenotypes would help visualize the
structural, biological impacts of common variant accumulation.”® Examining a neurotypical
population, we identified widespread cortical thinning in children with elevated PRS-HS, and
conversely no relationship in the hippocampus: genetic risk may not be determinant or causative
of HS, but rather serve to influence the cortical alterations. These changes may reflect a
predisposition to developing a network of regions with greater propensity for epilepsy. Enrichment
of risk variants related to focal epilepsy have been reported in patients with early onset seizures.?42°
Childhood-onset epilepsy has also been associated with widespread structural alterations
extending beyond the seizure focus.®3-%4 Given that thickness changes in development reflect
pruning and neuronal maturation,®>-%7 high genetic risk to TLE-HS may accelerate and alter
synaptic elimination and/or strengthening, potentially promoting an epileptogenic network.5®
Atypical structural modelling of the developing brain related to genetic risk may therefore help

predict a child’s susceptibility to epilepsy.
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While imaging-genetic analyses indicate significant associations between PRS-HS and structural
brain changes, the observed effect sizes are relatively low, in line with those reported in previous
studies across different, genetically mediated conditions.**-4%% It is essential to consider the
context of a typically developing cohort where the genetic burden of TLE-HS is reduced. The
adverse impacts of risk variants on brain structure may be more subtle than those observed in a
patient population with cumulative consequences of genetic, environmental, and disease-related
factors. Moreover, it is difficult to identify the predictive value of PRS-related morphological
changes in disease onset without systematic long-term clinical follow up. Ideally, the latter would
have sufficient depth to determine a potential future epilepsy conversion of/individuals initially
deemed as neurotypical. Longitudinal patient-level data containing both genetics and imaging,
prior and subsequent to disease onset, are necessary to addressthe pivot from PRS-related changes
to clinically relevant phenotypes, but have not been collected to date at large scale. Despite these
methodological challenges, using a population-based cohort, such as ABCD, provides a starting
point to detect these relationships and improve our understanding of how genetic predispositions
associated with certain clinical phenotypes correlate with brain structural vulnerabilities at the

population level.

Alterations in TLE-HS commonly implicate many brain regions organized within interconnected
systems.”?-79-75 Understanding theseinteractions and their contributions to epileptogenesis
requires theintegration of connectome architecture. Epicentre mapping emerges as a valuable data-
driven method to pinpoint critical regions—termed epicentres—that may serve as critical anchors
in the manifestation” of common genetic variants.”-’¢-7® Analyzing how localized genetic
vulnerabilities propagate through distributed brain regions can identify potential network pathways
that link genetic risk to pathological mechanisms. In particular, marked PRS-related thinning
oceurs in regions strongly connected to temporo-limbic and parietal territories. Diffusion MRI is
highly. effective at detecting long-range fibre bundles and direct monosynaptic structural
connections, but it does not fully capture short-range intracortical and spatially distributed
polysynaptic cortical systems.”® By contrast, resting-state functional MRI can detect functional
connectivity in the absence of direct structural connections, and thus is more informative about
polysynaptic configurations.®%-8! These temporo-limbic and parietal epicentres are characterized
by a disproportionately high number of mono- and polysynaptic connections and serve as crucial

areas for the integration and signal broadcasting across different structural and functional
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networks. Consequently, such regions are inherently vulnerable to TLE-HS pathology.®74-32 Given
the convergence between functional and structural genetic epicentres, these regions also show
susceptibility to the effects of accumulated genetic risk factors. Local changes related to PRS-HS
may therefore disrupt global network organization, such that it increases vulnerability to targeted
hub attacks, and potentially to seizure activity. The spatial and system-level context provided by
these imaging-genetic associations—beyond PRS alone—may help identify vulnerable circuits for

enhanced monitoring and neuromodulatory therapeutics.®?

To bridge the transition from genetic vulnerability to clinical phenetype, we contextualized
regional and network correlates of PRS with case-control atrophy and epicentres, revealing strong
spatial resemblance: thinner areas in children with elevated genetic risk tend to be thinner in
patients and be highly connected to disease-related netweorks. Structural alterations have been
consistently identified in TLE-HS, and are most marked “in mesiotemporal, limbic, and
sensorimotor areas.3~’-83 These alterations are also anchored to the connectivity profiles of distinct
temporo-limbic and parietal epicentres.” While family-based studies have shown low heritability
for these atrophy patterns in healthy relatives,3*=36 these predisposed regions may be too subtle and
difficult to capture in endophenotype paradigms due to the complexity of epilepsy. Large sample
sizes with varying genetic risk,as utilized herein, are required to characterize these imaging-
genetic associations.?” In combination with disease contextualization, we found a common driving
process between geneticrisk manifestations and disease effects. The polygenic burden of TLE-HS
may therefore impact biological mechanisms—neuronal signaling, ion transport, and
neurodevelopmental pathways as identified in transcriptomic associations—underlying brain
structure and. network architecture, and potentially influence disease vulnerability and
pathogenesis. Although insufficient to cause TLE-HS alone due to its multifaceted components,
genetics may increase susceptibility to the consequences of external factors?%-#® in vulnerable

regions.and their networks through specific biological pathways.

Imaging-genetic associations also mirrored IGE-related atrophy and epicentres, to a lesser extent
than TLE-HS. Pleiotropy—whereby a genetic variant influences multiple traits—occurs in the
genetics of complex traits and disorders.??-°0 Relevant to epilepsy, certain genetic variants may
contribute to the vulnerability to both generalized and focal syndromes. !> Despite the wide clinical
spectrum of epilepsy, theshared genetic architecture may play a role in some common pathological

features.’! Supported by literature demonstrating similar patterns of cortical thinning across
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different subtypes,’ our imaging-genetic model further addstoa common structural signature, such
that widespread atrophy may originate from shared genetic pathways and reflect a more general
epilepsy-related phenomenon. Similarly shown with disease epicentres herein, such a concept may
also translate to network-level alterations. These associations may be potential biomarkers and
encourage further exploration of the shared and trait-specific effects of common genetic factors in

TLE-HS and the broader spectrum of epilepsy.

Specificity of these associations was supported by the fact that spatial correlations between
imaging-genetic effects and disease effects in TLE-HS ranked the highest compared to several
common psychiatric disorders. Many neurological and psychiatric conditions exhibit converging
spatial patterns of cortical changes and network profiles, commonly colocalizing to higher-order,
transmodal regions which are known to serve as epicentres of network organization and
vulnerability.”?°3 Regional pathological processes might propagate from common disease
epicenters to connected brain regions leading to metwork-spreading patterns of cortical
alterations.”76-7894-96 These centrally located areas in the network are therefore particularly
vulnerable to pathophysiological perturbations.and may explain the statistical significance of
multiple correlations in our analyses. However, the consistent and greater associations of PRS-HS
with TLE-HS suggest that—despite the broad involvement of distributed brain networks—there
may be a disease-specific signature.in‘'the imaging-genetic associations that reflects meaningful

biological specificity.

Limitations of imaging-genetic associations with respect to the GWAS-identified SNPs need to be
highlighted. Firstly, summary statistics used for PRS calculation was based on GWAS of “focal
epilepsy with documented HS”.!> Although it represents the most common pathological substrate
for TLE-HS, hippocampal alterations occur in other epilepsy syndromes, and may be a cause, or
consequence of epilepsy, or both.!%-°7-% This phenotypic heterogeneity may impact the genetic
associations identified. A more accurate delineation is crucial for detecting variants related to TLE -
HS and its downstream effects, which may not be fully captured in our PRS correlations. Secondly,
the same GWAS was mainly conducted in individuals of European ancestry.!> While our findings
may be specific to European populations, they may not generalize to other under-represented
groups.’® Replication of imaging-genetic effects, particularly using a GWAS that includes larger
and more diverse cohorts—ideally with inclusion criteria that specifically define TLE-HS—could

enhance the reliability and generalizability of imaging-genetic effects. This would improve the
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power to detect smaller effect sizes and refine the understanding of how specific genetic variants

influence brain structure.

In summary, the present work highlights the potential for applying imaging-genetic frameworks
to uncover interplay between genetic predisposition, neuroanatomical changes, and epilepsy
pathogenesis. Structural vulnerabilities linked to high PRS-HS in childhood resembled atrophy
and epicentres commonly observed in patients. Collectively, these results highlight important
candidates for stratification efforts that can unravel the complex etiology of epilepsy, advancing
the use of PRS as a potential biomarker for disease risk and for developing targeted interventions

that prevent or limit progression of epilepsy.

Data availability
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https://db.humanconnectome.org/. Neuroimaging data from the ENIGMA (meta-analysis of
summary statistics) are available for download (https:/github.com/MICA-MNI/ENIGMA).
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Figure legends

Figure 1 Overview of study design. Regional and epicentre profiles of imaging-genetic
associations (leff) are correlated to disease effects observed in case-control studies (right). HC,
healthy control; SNP, single nucleotide polymorphism; TLE-HS, temporal lobe epilepsy with

hippocampal selerosis.

Figure 2/ PRS-HS associations with cortical thickness (ABCD). (A) Distribution of genetic risk
effectson. morphology across the different lobes (in order from top to bottom: all, frontal, limbic,
occipital, parietal, temporal). (B) Regional imaging-genetic correlations between PRS-HS and
thickness. Blue and red colours represent negative and positive correlations, respectively. White
outline indicates prpr < 0.05. L, left; PRS-HS; polygenic risk score for epilepsy-related

hippocampal sclerosis; R, right.

Figure 3 Network epicentres of morphological changes associated with PRS-HS. (A)
Schematic representation of epicentre mapping approach using seed-based cortico- and subcortico-

cortical connectivity. PRS-HS, polygenic risk score for epilepsy-related hippocampal sclerosis.
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(B) Correlation coefficients indexing spatial similarity between imaging-genetic effects and seed-
based functional (fop) and structural (bottom) connections forevery cortical and subcortical region.
Red and blue colours represent negative associations, while grey depicts positive correlations.

White outline indicates pspin < 0.05. L, left; R, right.

Figure 4 Comparison between PRS-HS effects and epilepsy case-control atrophy. (A) Case-
control differences in left and right TLE-HS from ENIGMA-Epilepsy (top) and from MICs and
NKG (bottom). Blue and red colours point to atrophy and hypertrophy in patients relative to
healthy controls, respectively. Outline in white represents prpr < 0.05. L) left; R, right; TLE-HS,
temporal lobe epilepsy with hippocampal sclerosis. (B) Spatial correlations between epilepsy-
related atrophy (fop: ENIGMA-Epilepsy; bottom: MICs and NKG) and imaging-genetic effect
maps (ABCD) are compared against permutation-based null correlations. Points represent the
empirical correlation (with significance defined as pspin < 0:05).In the boxplots, the ends of boxes
represent the first (25%) and third (75%) quartiles, the centre line (median) represents the second
quartile of the null distribution (n = 5,000 permutations), the whiskers represent the non-outlier

endpoints of the distribution.

Figure 5 Comparison between imaging-genetic and epilepsy-related disease epicentres. (A)
Functional and structural disease epicentres in left and right TLE-HS from ENIGMA -Epilepsy
(top) and from MICs and NKG(bottom). Red and blue colours represent negative associations,
while grey depicts positive correlations. Outline in white represents pspin < 0.05. L, left; R, right;
TLE-HS, temporal‘lobe epilepsy with hippocampal sclerosis. (B) Spatial correlations between
epilepsy-related (zop: ENIGMA-Epilepsy; bottom: MICsand NKG)and imaging-genetic epicentre
maps (ABCD) are compared against permutation-based null correlations. Points represent the
empirical correlation (with significance defined as pspin <0.05). In the boxplots, the ends of boxes
represent the first (25%) and third (75%) quartiles, the centre line (median) represents the second
quartile of the null distribution (n = 5,000 permutations), the whiskers represent the non-outlier

endpoints of the distribution.
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Case-control effects (ENIGMA)

Imaging genetic assaciations {ABCD}

Downloaded from https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awaf259/8234529 by Eastman Dental Institute user on 26 September 2025
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A Brain-wide effects of PRS-TLE
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A Structural alterations in temporal lobe epilepsy with hippocampal sclerosis B Relation to imaging-genetic effects
Case-control atrophy Spatial correlation

Leoft
TLEHS °

2 o
onpusep

ENIGMA-Epilepsy ———

10 3
< Rn;Jﬁr
u T TLEHS 3
3

.ﬁupnirﬂ H Nul

MICs and NKG — [—-ENGVA Epilepsy —/

5': Left
3 ‘!' TLE#HS oy | —O
5 3 @ ~

=

z

D

=

-

-

¥
S =
B~ .
5 WS

or Prarson's cocreatian {1} a7

Figure 4
364x184 mm (x DPI)

37

G20z Jequieldeg 9z uo Jasn ajnpsu| [eluaq uewses Aq 62G1E28/6G2IemMe/uelq/c60 L 0L /10p/8|o1lue-adueApe/uelq/woo dno-olwapese//:sdny wolj papeojumoq



A WON -

A Notwork camelates of comical atrophy In temporal ‘obe apleasy with hippacampal sclarosis

Funztional wpicantimy Strusture! npkcentres
LTLE ‘
i é @ g
: §
P 3
RTLE WS N
I TERS ¢ 8
i i
g 1
3 a
€ ero :
HL s :

B Spatial sssodatans with imaging-genetic epcentres

Functional epicwmtms Suuctural upicantim
r S Bl
z | @ InEsE { ~ g
2 - ——— =
b 4 >
3 — —y— g
g (T i
8 | &—F @ NNnEws e !
[ S e - — -
![ ® (Nt | L ] l
3 .L__S . ;
: :
a oF— 153 o z
3 ~—— l r BILE b l ! e ¢
l—. Preceal (1] ML | ® Trpkien e alid —j
10 EulPun's cormalenn (/) 9 1o Poare s comalanee | 10
Figure 5

467x457 mm (x DPI)

38

G20z Jequieldeg 9z uo Jasn ajnsu| [elua uewises Aq 62G1EZ8/652IemMe/ulelq/s60 L 0L /10p/8|o1e-a0ueApe/UIRlg/Woo dno-olWwapese//:sdiy wol) papeojumoq



1

Table | Spatial correlation between effects of PRS-HS and different conditions

Analysis

Correlation (r)

P-value (pyin)

Comparison to TLE-HS

(Pur)
Idiopathic generalized epilepsy (IGE)
Regional 042 0.004 0.306 / 0.449
Functional epicentre 0.76 <0.001 0.004 /0.005
Structural epicentre 0.70 <0.001 0.39/0.002
Attention deficit/hyperactivity disorder (ADHD)
Regional -0.29 0.071 <0.001'/ <0001
Functional epicentre —0.80 <0.001 <0.001/<0.001
Structural epicentre —0.67 <0.001 <0.001 /<0.001
Autism spectrum disorder (ASD)
Regional 0.14 0.322 0.0751/0.133
Functional epicentre 0.84 <0.001 0.015/0.06
Structural epicentre 0.71 <0.001 0.36 /0.002
Bipolar disorder (BD)
Regional 0.08 0.328 0.014/0.039
Functional epicentre —0.15 0.076 <0.001 /<0.001
Structural epicentre -0.33 0.0l <0.001 /<0.001
Major depressive disorder (MDD)
Regional -041 0.005 <0.001 /<0.001
Functional epicentre —0.72 <0.001 <0.001 /<0.001
Structural epicentre —-0.86 <0.001 <0.001 /<0.001
Obsessive compulsive disorder (OCD)
Regional —0.13 0.171 <0.001 /<0.001
Functional epicentre —0.38 <0.001 <0.001 /<0.001
Structural epicentre —0.69 <0.001 <0.001 /<0.001
Schizophrenia (SCZ)
Regional 0.17 0.184 0.044/0.092
Functional epicentre 0.4l 0.002 0.001 /<0.001
Structural epicentre 0.60 <0.001 0.218/<0.001
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TYSABRI SC injection with the potential to
administer AT HOME for eligible patients®

CLICK HERE TO DISCOVER MORE ABOUT
TYSABRI SC AND THE DIFFERENCE IT MAY
MAKE TO YOUR ELIGIBLE PATIENTS

Supported b
pRortec®y A Biogen developed and funded JCV

antibody index PML risk stratification
service, validated and available exclusively

for patients on or considering TYSABRI.

*As of April 2024, TYSABRI SC can be administered outside a clinical setting (e.g. at home) by a HCP for patients who have tolerated at least 6 doses of TYSABRI well
in a clinical setting. Please refer to section 4.2 of the SmPC.'

TYSABRI is indicated as single DMT in adults with highly active RRMS for the following patient groups:*?

o Patients with highly active disease despite a full and adequate course of treatment with at least one DMT
o Patients with rapidly evolving severe RRMS defined by 2 or more disabling relapses in one year, and with 1 or more Gd+ lesions on brain
MRI or a significant increase in T2 lesion load as compared to a previous recent MRI

Very common AEs include nasopharyngitis and urinary tract infection. Please refer to the SmPC for further safety information, including the

risk of the uncommon but serious AE, PML.'?

Abbreviations: AE: Adverse Event; DMT: Disease-Modifying Therapy; Gd+: Gadolinium-Enhancing; HCP: Healthcare Professional; IV: Intravenous;
JCV: John Cunningham Virus; MRI: Magnetic Resonance Imaging; PD: Pharmacodynamic; PK: Pharmacokinetic; PML: Progressive Multifocal
Leukoencephalopathy; RRMS: Relapsing-Remitting Multiple Sclerosis; SC: Subcutaneous.

References: 1. TYSABRI SC (natalizumab) Summary of Product Characteristics. 2. TYSABRI IV (natalizumab) Summary of Product Characteristics.

Adverse events should be reported. For Ireland, reporting forms and information can be found at www.hpra.ie.
For the UK, reporting forms and information can be found at https://yellowcard.mhra.gov.uk/ or via the Yellow
Card app available from the Apple App Store or Google Play Store. Adverse events should also be reported to
Biogen Idec on MedInfoUKI@biogen.com 1800 812 719 in Ireland and 0800 008 7401 in the UK.

Biogen-261128. DOP: April 2025



https://www.biogenlinc.co.uk/en/products/ms-portfolio/tysabri/sc-formulation/?utm_source=Oxford_University_Press&utm_medium=display&utm_campaign=2505_tysabri_key_messages_e-pdf_gbr_ms_tys_com&utm_content=e-pdf
https://biogenlinc-assets-bucket.s3.eu-central-1.amazonaws.com/MS-Prescribing-Information.pdf

