\$ SUPER

Contents lists available at ScienceDirect

Acta Biomaterialia

journal homepage: www.elsevier.com/locate/actbio

Corrigendum to "Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants" [Acta Biomaterialia, 80, 2018, 188-202]

Linxiao Wu^a, Jatinder Virdee^a, Elizabeth Maughan^b, Arnold Darbyshire^a, Gavin Jell^a, Marilena Loizidou^a, Mark Emberton^a, Peter Butler^{b,c}, Ashley Howkins^d, Alan Reynolds^d, Ian W. Boyd^d, Martin Birchall^b, Wenhui Song^{a,*}

The authors regret to report that errors were published in Figures 6 and 8.

Figure 6B1: This figure was intended to be an enlarged image of Figure 6B, showing the live-dead staining confocal microscopy of

cellular proliferation of human dermal fibroblasts on 50CC PUU-POSS scaffolds at low resolution. Unfortunately, it was erroneously replaced with an incorrect image enlarged from Figure 6C. The correct image of Figure 6 with the original figure caption has now been included.

DOI of original article: https://doi.org/10.1016/j.actbio.2018.09.016.

E-mail address: w.song@ucl.ac.uk (W. Song).

a UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK

^b UCL Ear Institute, Royal National Throat Nose and Ear Hospital and University College London, London, UK

^c Department of Plastic and Reconstructive Surgery, Royal Free London NHS Foundation Trust, London NW3 2PF, UK

d Experimental Technique Centre, Brunel University London, UB8 3PH, UK

^{*} Corresponding author.

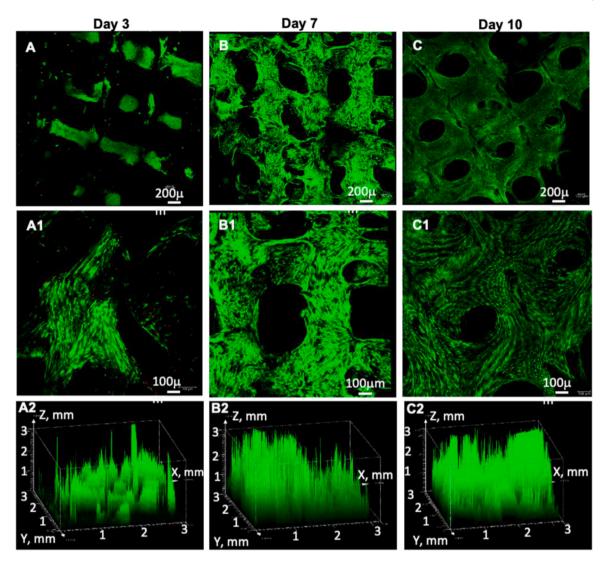
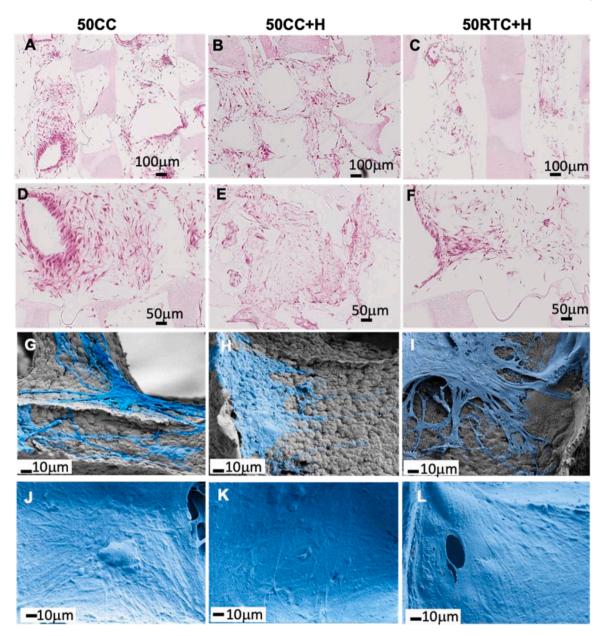



Fig. 6. Live-dead staining confocal microscopy of cellular proliferation of human dermal fibroblasts on PUU-POSS scaffolds, 50CC by live-dead staining confocal microscopy. (A-C) (\times 10 objective lens) and (A1-C1) (\times 20 objective lens) HDF proliferation on 50CC scaffolds at day 3, day 7 and day10. (A2-C2) 3D reconstructions of fluorescent light intensity by confocal microscopy (\times 10 objective lens).

Figure 8B and 8E: The H&E-stained images of the 50CC+H scaffold in vitro (Figures 8B and 8E) were inadvertently duplicated from Figure 8A and D. The correct images are now included in the revised Figure 8, with the original figure caption.

Fig. 8. Histological and scanning electron microscopic analysis of HDF cells on PUU-POSS scaffolds at different stage of stiffness relaxation. (A-C) Fixed sections showing HDF cell proliferation around the scaffold pores in plane at day 10, stained with H&E (\times 10 objective lens). (D-F) are close-up images from (A-C) (\sim \times 20 objective lens). (G-L) SEM images showing HDF cell attachment and morphology at day 3 (G-I) and day 7 (J-L). (A, D, G, J) 50CC; (B, E, H, K) 50CC+H; (C, F, I, L)

50RTC+H.

The authors apologize for these errors. We confirm that the corrected images continue to provide supporting evidence for the proliferation of human dermal fibroblast cells within PUU-POSS scaffolds fabricated via the 3D-TIPS process under different temperature and thermal treatment conditions. These corrections do not alter the findings or conclusions presented in the paper.