
AutoKeyframe: Autoregressive Keyframe Generation for Human Motion
Synthesis and Editing
BOWEN ZHENG, State Key Lab of CAD&CG, Zhejiang University, China
KE CHEN, State Key Lab of CAD&CG, Zhejiang University, China
YUXIN YAO, Department of Engineering, University of Cambridge, United Kingdom
ZIJIAO ZENG, Department of Efficiency Product, Tencent Games, China
XINWEI JIANG, Department of Efficiency Product, Tencent Games, China
HE WANG, UCL Centre for Artificial Intelligence, Department of Computer Science, University College London, United
Kingdom
JOAN LASENBY, Department of Engineering, University of Cambridge, United Kingdom
XIAOGANG JIN∗, State Key Lab of CAD&CG, Zhejiang University, China and ZJU-Tencent Game and Intelligent Graphics
Innovation Technology Joint Lab, China

Fig. 1. Motion generation (left) and editing (right) results using our keyframe generation method. Given dense control signals on the root joint
(yellow spheres), flexible sparse spatial constraints on specific joints, and action label, our method generates keyframes (orange) at user-specified frames,
and completes the motion sequence with a motion infilling method (white). The right panel highlights motion editing, where specific keyframes (blue) are
regenerated with sparse spatial constraints (green spheres), effectively resolving the foot-penetration issue with the box observed in the left panel. Transition
frames are adaptively updated to ensure smooth and coherent motion adjustments, seamlessly integrating the edits into the overall sequence.

Keyframing has long been the cornerstone of standard character anima-
tion pipelines, offering precise control over detailed postures and dynamics.
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However, this approach is labor-intensive, necessitating significant manual
effort. Automating this process while balancing the trade-off between mini-
mizing manual input and maintaining full motion control has therefore been
a central research challenge. In this work, we introduce AutoKeyframe, a
novel framework that simultaneously accepts dense and sparse control sig-
nals for motion generation by generating keyframes directly. Dense signals
govern the overall motion trajectory, while sparse signals define critical key
postures at specific timings. This approach substantially reduces manual
input requirements while preserving precise control over motion. The gener-
ated keyframes can be easily edited to serve as detailed control signals. Au-
toKeyframe operates by automatically generating keyframes from dense root
positions, which can be determined through arc-length parameterization of
the trajectory curve. This process is powered by an autoregressive diffusion
model, which facilitates keyframe generation and incorporates a skeleton-
based gradient guidance technique for sparse spatial constraints and frame
editing. Extensive experiments demonstrate the efficacy of AutoKeyframe,
achieving high-quality motion synthesis with precise and intuitive control.
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1 INTRODUCTION
Creating character animations is a labor-intensive yet indispens-
able process in the animation and gaming industries. In standard
workflows, animators manually design keyframes, which act as crit-
ical control signals defining the desired motion. These keyframes
are subsequently refined and interpolated using motion synthesis
techniques to produce complete animations. To ensure that the
final output aligns with the artistic vision, animators often need
to undertake iterative manual adjustments. Therefore, improving
the efficiency of this workflow has been a focal point of research,
with efforts ranging from generating transition motions between
keyframes to reducing the reliance on manual keyframing. This
paper focuses on the latter, emphasizing the importance of provid-
ing flexible and efficient control mechanisms to ensure practical
applicability in real-world scenarios.

Early approaches to motion synthesis often rely on complex mo-
tion planning and constraint-based techniques to generate transi-
tions between motion frames or segments from motion databases
[Arikan and Forsyth 2002; Kovar et al. 2002; Lee et al. 2002] or
sparse keyframes [Chai and Hodgins 2007; Wang et al. 2015]. While
these methods significantly reduced the time required for manual
keyframing, they were limited by fixed or rigid control options,
offering little flexibility to animators. More recent advances [Dai
et al. 2024; Wan et al. 2024; Xie et al. 2024] have introduced fine-
grained spatial control. However, achieving precise control that
balances fine-grained and coarse-grained control signals remains a
significant challenge. Furthermore, current methods often lack the
support for local motion modifications, restricting animators’ ability
to adapt generated motions flexibly to complex, dynamic scenarios.
These limitations underscore the need for a more versatile approach
to motion generation, capable of handling general control signals
while supporting precise, localized edits to meet the demands of
realistic animation workflows.
Building upon these limitations, we draw inspiration from the

workflows of professional animators to propose a novel approach
that generates keyframes directly controlled by action labels, 3D
root trajectories and flexible sparse spatial constraints on specific
joints. Consistent with previous works [Karunratanakul et al. 2023;
Xie et al. 2024], we define the root trajectory as dense root positions
over time. This control paradigm enables a unique combination
of global planning and precise local adjustments, significantly re-
ducing the required manual input—particularly for long-term mo-
tions involving complex environmental interactions. By focusing
on keyframe generation, our framework also facilitates precise local
edits through adjustments to individual keyframes, refining local
motions between adjacent frames. Furthermore, this approach seam-
lessly integrates with established motion in-betweening methods
[Qin et al. 2022; Tang et al. 2022], yielding higher-quality motion
generation. To the best of our knowledge, the direct generation of

keyframes as a central focus has been largely overlooked in prior
research, despite its potential to transform animation workflows.
While recent approaches [Hong et al. 2024; Pi et al. 2023] have

made initial attempts, we argue that there are still two key but
unsolved challenges which affect the effectiveness of keyframe
generation. The first is the diversity of keyframe timing. The dis-
tribution of keyframes in time throughout the motion sequence
is highly correlated with the tempo of the motions. For example,
smooth and low-dynamic motions like walking require only sparse
keyframes, whereas complex and dynamic motions, like fighting or
dancing, necessitate dense keyframes to accurately capture rapid
movements. The variety of timing patterns greatly complicates the
task for neural networks, making it more difficult to learn the in-
terrelationships between keyframes. The second factor is keyframe
quality. Keyframes encapsulate critical moments of an entire mo-
tion sequence using a limited number of poses, serving as a sparse
control signal for the entire motion. Consequently, generating high-
quality keyframes is essential, as the overall motion heavily relies
on them—low-quality keyframes can result in motion artifacts like
irregularities in movement. Furthermore, this emphasis on qual-
ity extends beyond motion plausibility to include expressiveness;
without it, the motion may appear ‘averaged’ across the dataset.

We start by training an Autoregressive Keyframe DiffusionModel,
which generates a new keyframe at a user-specified frame, condi-
tioned on the previous keyframe, the action label, and various con-
trol signals extracted from the root trajectory. This autoregressive
design mitigates the complexity caused by varying timing patterns,
allowing the model to focus solely on learning the relationships
between two frames. To facilitate motion editing and fine-grained
control, we introduce a skeleton-based gradient guidance method
that propagates the gradient to specific joints according to the diffu-
sion timestep and skeleton structure, enabling keyframe generation
with flexible spatial constraints. Moreover, to further improve the
quality of generated keyframes, we construct a keyframe dataset
by extracting keyframes from LaFAN1 [Harvey et al. 2020] with a
reinforcement-learning-based keyframe extraction method.

We perform extensive experiments, including user studies, to val-
idate the effectiveness of our approach. By integrating our method
with various motion in-betweening techniques, we demonstrate its
capability to achieve high-quality motion synthesis and editing. Our
contributions can be summarized as:

• An autoregressive keyframe diffusion model that generates
high-quality keyframes from 3D root trajectories.

• A skeleton-based gradient guidance method that enables spa-
tial constraints on any joint with high fidelity, which further
facilitates flexible control and editing options.

• A keyframe dataset, extracted from LaFAN1, that empirically
enhances the quality of keyframe generation.

2 RELATED WORK

2.1 Human Motion Generation
Human motion generation focuses on the task of generating full
motion sequences under certain conditions. Recently, with the rapid
advancement of generative models, conditional human motion gen-
eration has improved significantly. Existing works incorporated
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various generative models [Guo et al. 2020; Zhang et al. 2023d],
where diffusion models [Tevet et al. 2023; Zhang et al. 2024] are
now receiving the most attention. The conditions for generation
also vary widely, encompassing action categories [Guo et al. 2020;
Petrovich et al. 2021], text [Chen et al. 2023; Guo et al. 2022; Jiang
et al. 2023; Petrovich et al. 2022; Tevet et al. 2023; Zhang et al. 2023d,
2024, 2023a], and even 3D scenes [Cen et al. 2024; Pi et al. 2023;
Wang et al. 2024; Yi et al. 2025]. Despite these multimodal conditions
providing ordinary users with simple methods for quick motion
generation, they are often not suitable for industrial production,
where animators typically seek accurate sparse motion control.

To introduce precise spatial control in diffusion-based motion
generation, a straightforward approach is to incorporate diffusion
inpainting techniques [Shafir et al. 2024; Tevet et al. 2023]. Although
effective for dense control signals, this type of approach faces limi-
tations when the control signals are sparse. One feasible solution
to this issue is to adopt a two-stage generation scheme by first gen-
erating a coarse result and then refining it [Karunratanakul et al.
2023; Wan et al. 2024]. To achieve better flexibility for both tempo-
ral density and control joints, recent methods [Dai et al. 2024; Xie
et al. 2024] introduced ControlNet [Zhang et al. 2023c] into motion
diffusion and incorporated analytical spatial guidance. Although
these works have made significant progress on controllability, they
do not support post-generation modification, which is an essential
need of animators to fulfill their creation vision.

2.2 Motion Editing
Motion editing focuses on modifying a motion sequence under spe-
cific constraints while preserving the original source motion. Early
methods [Gleicher 1997; Lee and Shin 1999] require dense spacetime
constraints on multiple body joints. Along with the advancement
of motion generation, motion editing based on deep learning has
drawn much attention recently. Although motion style transferring
works [Aberman et al. 2020; Song et al. 2024] exist, they do not sup-
port specific modification of motion content. More recently, under
the setting of text-driven motion generation, motion editing can
be achieved with the help of Large Language Models (LLM), either
by refining the text prompt for generation [Zhang et al. 2023b] or
executing predefined motion editing operators on keyframes [Goel
et al. 2024]. A dedicated dataset [Athanasiou et al. 2024] is also
constructed to further support language-based motion editing.

However, these methods rely on natural language instructions or
reference motion, which do not support precise control over joint
positions and can introduce ambiguity, leading to inefficient editing
processes in industrial applications.

2.3 Keyframe-based Motion Synthesis
Recent keyframe-based motion synthesis can be categorized into
two different branches. One of them is motion in-betweening [Co-
han et al. 2024; Harvey et al. 2020; Qin et al. 2022; Starke et al.
2023; Studer et al. 2024; Tang et al. 2022], which focuses on gen-
erating short motion transitions between given keyframes. These
methods can synthesize motions of impressive quality, which reach
the standard for production use [Agrawal et al. 2024]. Although
motion in-betweening greatly reduced the demand of keyframes

compared to traditional interpolation, manual keyframe crafting
is inevitable. Moreover, the deterministic models commonly used
by motion in-betweening methods limit the diversity of resulting
motions.

Another branch is to directly generate keyframes for motion syn-
thesis, which has been barely explored. A typical approach employs a
hierarchical framework to generate motions for human-object inter-
action [Pi et al. 2023]. This method produces milestones—analogous
to keyframes—that encapsulate local poses and transition points,
serving as inputs for diffusion-based motion generation. Addition-
ally, long-term motion in-betweening [Hong et al. 2024] can also be
achieved by adaptively selecting keyframes from coarse transition
results and refining the transition based on those keyframes.

While these works leverage keyframes to assist in motion gener-
ation, they overlook the importance of keyframe timing and quality.
For example, Pi et al. [2023] generate milestones with a constant
interval, neglecting the complex keyframe timing pattern in practice.
Hong et al. [2024] acquire keyframes from coarse sequences, leaving
their quality unguaranteed. Addressing these issues is crucial for
enhancing the overall fidelity and effectiveness of keyframe-based
motion synthesis in practical applications.

3 METHODS
Given a complete root trajectory T ∈ R𝐿×3 of length 𝐿, action
label a and sparse spatial constraints 𝑝 as control input, our method
generates a sequence of motion keyframes X = {x0, x1, ..., x𝑁 },
with each frame x𝑖 located on the 𝑘𝑖 -th point on the trajectory,
which is specified by users. This keyframe sequence can be further
completed into high-quality motion and serves as a solid foundation
for artists to edit. To accomplish that, we train an autoregressive
keyframe diffusion model (AKDM), which takes as input the
previous keyframe x𝑖−1, action label a, and various control signalsC𝑖
derived from the trajectory, and learns the conditional distribution
of the future keyframe x𝑖 (Sec 3.1). To facilitate accurate control
and precise editing of the motion, we propose a skeleton-based
gradient guidance approach to enable the keyframe generation to
adhere to flexible spatial constraints (Sec 3.2). To further improve the
generation quality, we construct a motion keyframe dataset using an
adaptive keyframe selection method based on deep reinforcement
learning (Sec 3.3).

3.1 Autoregressive Keyframe Diffusion Model
We first introduce an autoregressive motion keyframe diffusion
model (AKDM), which generates a new keyframe conditioned on
the last keyframe, action label and various control signals extracted
from the trajectory. The generating process can be formalized as:

x̂𝑖0 = G(x𝑖𝑡 , 𝑡 ; x𝑖−1, a,C𝑖 ), (1)

where 𝑡 is the diffusion step, x𝑖𝑡 is the noisy sample at 𝑡-th step, and
C𝑖 = {𝑐𝑖

𝑖𝑛𝑡
, 𝑐𝑖
𝑝𝑑
, 𝑐𝑖𝑣, 𝑐

𝑖
ℎ
} is the control signals derived from the root

trajectory. We will explain these control signals later in this section.
Like existing works [Chen et al. 2024; Tevet et al. 2023], we use

a transformer-based network as the backbone of our denoiser, the
structure of which is illustrated in Fig. 2(b). Instead of generat-
ing motion sequences 𝑋 ∈ R𝐿×𝐹 , where 𝐿 is the length of the
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Fig. 2. An overview of our generating method. (a) The generating pipeline of our AKDM. AKDM generates one keyframe x𝑖 at a time conditioned on the
previous keyframe x𝑖−1, action label a, and control signals C𝑖 extracted from the trajectory. (b) The structure of the denoiser of our AKDM. (c) The proposed
skeleton-based gradient guidance. We incorporate flexible constraints by shifting the predicted mean of the sample at each diffusing step. When applying the
guidance, we mask out the gradient on partial joints based on the timesteps and skeleton structure.

motion sequence and 𝐹 is the feature dimension of one pose, we
take advantage of generating one single frame at a time by in-
putting noisy keyframe samples in the form of joints sequences
x = [ 𝑗1, 𝑗2, 𝑗3, ..., 𝑗 𝐽 ]. Here, x ∈ R𝐽 ×𝑄 , 𝐽 is the number of joints in
the skeleton, and 𝑄 is the dimension of each joint’s rotation fea-
ture. We utilize local and global rotations for non-root joints and
root joints separately, adapting the 6D rotation representation (i.e.,
𝑄 = 6)[Zhou et al. 2019]. This approach enables our model to effec-
tively learn the spatial attention of human poses. Meanwhile, the
process of generating the next frame from the previous one also
drives our model to learn the temporal dynamics of human motion.
Following [Chen et al. 2024], we employ Separate Condition To-

kenization (SCT), embedding each input condition with separate
linear layers into individual tokens. We concatenate all the condi-
tion tokens, including the previous keyframe x𝑖−1, the action label
a, and multiple control signals C𝑖 , with the noisy sample x𝑖𝑡 . The
concatenated tokens are then fed into a transformer encoder as a
sequence to leverage the attention mechanism.

Control Signals. Besides the previous keyframe x𝑖−1 and the ac-
tion label a, we derive various control signals C𝑖 from the 3D root
trajectory T : the frame interval 𝑐𝑖

𝑖𝑛𝑡
, the position difference 𝑐𝑝𝑑 , the

velocity 𝑐𝑣 , and the height 𝑐ℎ . To provide a clearer explanation, we
define the corresponding frame index for keyframe x𝑖 as 𝑘𝑖 and let
T (𝑘) represent the root position in the 𝑘-th frame of the trajectory.
Thus, we can represent all control signals as follows:

𝑐𝑖int = 𝑘
𝑖 − 𝑘𝑖−1; 𝑐𝑖pd = T (𝑘𝑖 ) − T (𝑘𝑖−1),

𝑐𝑖𝑣 =
¤T (𝑘𝑖 ); 𝑐𝑖

ℎ
= T (𝑘𝑖 )𝑦 .

(2)

Here, T (𝑘𝑖 )𝑦 is the 𝑦-axis component of T (𝑘𝑖 ). The first two con-
trol signals, frame interval 𝑐𝑖

𝑖𝑛𝑡
and position difference 𝑐𝑖

𝑝𝑑
, encap-

sulate the interrelationships between consecutive frames. The latter
two signals are crucial for ensuring the quality of the generated
keyframes. Velocity 𝑐𝑖𝑣 reflects the style of keyframe pose, while
providing absolute height information 𝑐𝑖

ℎ
helps the model avoid

generating pose with ground penetration.

Losses. Following common practice in the motion diffusion field,
our AKDM predicts clean samples x̂𝑖0 instead of noise, enabling the
integration of additional geometric loss. Therefore, the diffusion
loss can be represented as:

Ldiffusion = Exi0,𝑡,𝜖
[∥x𝑖0 − x̂𝑖0∥

2
2] . (3)

We also apply MSE loss for the global positions of joints:

Lpos = ∥𝐹𝐾 (x𝑖0) − 𝐹𝐾 (x̂
𝑖
0)∥

2
2, (4)

where 𝐹𝐾 (·) is the differentiable forward kinematics function that
transforms the local rotations of joints to global positions. We en-
hanced the supervision on the global joint rotations to avoid un-
realistic body orientations by further applying a global rotation
loss:

Lrot = ∥𝑅global (x𝑖0) − 𝑅global (x̂
𝑖
0)∥

2
2 . (5)

Here, the function𝑅global (·) computes global rotations of joints from
their local rotations, following the skeleton’s kinematic chain.

With the aforementioned losses, our training loss is defined as:

L = Ldiffusion + 𝜆𝑝𝑜𝑠Lpos + 𝜆𝑟𝑜𝑡Lrot . (6)

3.2 Flexible Spatial Constraints
In our keyframe-based framework, motion editing can be achieved
by modifying and regenerating the unsatisfying keyframes in the
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w/o gradient mask w/ gradient mask

Fig. 3. Our skeleton-based gradient guidance effectively improves the plau-
sibility of generated keyframes under spatial constraints.

results, or generating new keyframes between existing ones for
refinement. To achieve greater precision in editing, we propose a
skeleton-based gradient guidance method that facilitates keyframe
generation to adhere to flexible spatial constraints.
At its core, our diffusion model employs a classifier guidance

approach. During each denoising step, we adjust the predicted mean
by leveraging the scaled gradient of an L2 distance function 𝐺 :

𝐺 (𝜇, 𝑝) =
∑

𝑗 𝜎 𝑗 ∥𝑝 𝑗 − 𝐹𝐾 (𝜇 𝑗 )∥2∑
𝑗 𝜎 𝑗

, (7)

where 𝑝 𝑗 is the spatial constraint position of joint 𝑗 and 𝜎 𝑗 is a binary
value indicating whether there is a constraint on joint 𝑗 . However,
we observed that directly computing gradients and guiding the en-
tire body at every step can lead to a deterioration in the quality of the
generated results. Similar phenomena are also reported in [Xie et al.
2024]. Through thorough investigation, we identified that this issue
primarily arises from the conflict between the imposed constraint
and the prior established by the previous keyframe. A generated
keyframe with a strong prior sometimes fails to incorporate extra
spatial constraints when it leads to a pose that is too dissimilar,
resulting in unnatural poses. Based on this observation, we suggest
applying the gradient guidance to different parts of the predicted
mean on different diffusion steps according to the structure of the
skeleton. The guiding process can be formalized as:

𝜇𝑡 = 𝜇
′
𝑡 −𝑀 (𝑡)𝑤Σ𝑡∇𝜇′𝑡

𝐺 (𝜇′𝑡 , 𝑝), (8)

where 𝑤 controls the strength of the guidance, 𝜇′𝑡 is the original
predicted mean, and Σ𝑡 is the variance scheduler of the diffusion
process.𝑀 (·) is a binary mask that indicates which part of the mean
should be updated. Specifically, in the early stage of the denoising
process, we only propagate the gradient to the root joint, helping
the pose adjust to an appropriate orientation. Then we gradually
propagate the gradient to the torso as the denoising process goes on,
and finally apply the gradient to the whole body. The effectiveness
of this approach is demonstrated in Fig. 3.

3.3 Dataset Construction
The training data for AKDM should contain the user input control
signals and the final motion. While motion data is abundant, the
corresponding user input is scarce. Therefore, we do not directly use
user input data for training. Note that our model is still evaluated
on real user inputs in the user study. It is only during training
do we use synthetic user inputs. To construct a synthetic dataset,
we extract representative frames in a motion sequence to build an
effective keyframe dataset. Existing methods [Mo et al. 2021; Roberts

et al. 2018] are not ideal for our purpose because they often select
keyframes with high probabilities, retainingmany redundant frames.
Additionally, these methods typically require manually specifying
the number of keyframes. To address this, we propose an adaptive
keyframe extraction approach based on motion complexity.

Inspired by [Mo et al. 2021], we adopt a similar deep Q-learning-
based method and reconstruct motions with motion in-betweening
methods. The keyframe extraction process in our method can be
formulated as a Markov decision process (MDP), defined by a tuple
M = (S,A, 𝐸, 𝑅, 𝜋) of states, actions, environment, reward function
and policy. Here, we define the action set A as the frames that
have not been selected before, so an action 𝑎 ∈ A corresponds
to choosing a new keyframe. States 𝑠ℎ ∈ S are defined as the
composition of the original motion sequence, selected frames, and
the reconstructed motion. At each decision step, our policy model
𝜋 (𝑎ℎ |𝑠ℎ) observes the current state and selects a new keyframe
𝑎ℎ ∈ A. Please refer to the supplementary material (Sec 1.2) for
the detail of the state representations and policy model. Then, the
environment 𝐸 (𝑠ℎ+1 |𝑠ℎ, 𝑎ℎ), consisting of a pre-trained motion in-
betweening model [Qin et al. 2022], reconstructs the full motion
based on currently selected frames and gives a reconstruction error
𝛿ℎ . The reward for the policy model is determined by the reward
function:

𝑅(𝛿ℎ, 𝛿ℎ−1) = tanh−1 (1− 𝛿
ℎ

𝛿0
)−tanh−1 (1− 𝛿

ℎ−1

𝛿0
)−𝑠𝑡𝑒𝑝_𝑐𝑜𝑠𝑡 . (9)

We introduce a step cost in the reward function to incentivize the
policy model to complete the selection in as few steps as possible.
Starting from an initial state 𝑠1, where the first and last frames
are selected as keyframes by default, our policy model chooses
keyframes iteratively until the reconstruction error 𝛿ℎ falls below a
predefined threshold, at which point the selection process is done.
We adopt double deep Q-Learning [Hasselt et al. 2016] to train our
policy model, whose objective is to maximize long-term rewards.
However, there can be a gap between the keyframe timing pat-

terns selected by our method and those in user input. Learning solely
from the extracted keyframes could lead to overfitting. In practice,
we train the AKDM by using the extracted keyframes as the cur-
rent keyframes x𝑖 and randomly sampling previous frames, ranging
from 5 to 40 frames before x𝑖 , as x𝑖−1. This approach empirically
improves the quality of generation (see ablation study).

3.4 Inference
Given the input root trajectory, the action label, and the specified
keyframe timings, keyframes are generated through our autore-
gressive scheme. However, generating the first frame of the entire
sequence remains a problem. To address this, we employ classifier-
free guidance on the previous keyframe. Specifically, we randomly
set the previous keyframe x𝑖−1 token to nil with a probability of
0.1 during training. At runtime, the keyframe is sampled with a
guidance scale of 𝑠:

G𝑠 (x𝑖𝑡 , 𝑡 ; x𝑖−1, a,C𝑖 ) = G(x𝑖𝑡 , 𝑡 ; ∅, a,C𝑖 )
+ 𝑠 (G(x𝑖𝑡 , 𝑡 ; x𝑖−1, a,C𝑖 ) − G(x𝑖𝑡 , 𝑡 ; ∅, a,C𝑖 )) . (10)
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Table 1. Quantitative results of motion generation.We combine our method with different motion completion techniques to generate full motions. We
train OmniControl to control only the root joint for motion generation evaluation. Notice that the trajectory error of MDM and PriorMDM is 0 because of the
properties of the diffusion inpainting method. Therefore, we don’t take them into account for the comparison of trajectory error.

Methods FID↓ Accuracy↑ Penetration↓ Foot Skate↓ Traj. error↓
Real Motion - 0.765 0.085 0.110 -

MDM 1.775 0.618 10.992 3.753 0.000†
PriorMDM 1.109 0.761 2.762 3.916 0.000†
HGHOI 3.816 0.564 2.848 2.953 18.823

OmniControl (on root) 0.730 0.756 3.277 3.380 8.313

Ours + [Qin et al. 2022] 0.573 0.762 1.171 1.800 5.976
Ours + [Tang et al. 2022] 0.517 0.747 1.394 1.537 7.884

ObstaclesAiming

OursOmniControl OursOmniControl

Aiming Obstacles

Fig. 4. Qualitative comparisons of motion generation under mixed dense and sparse control signals by our method and OmniControl.

By randomly masking out previous frames during training, we
can generate keyframes unconditionally, thus addressing the issue
of generating the first frame.

4 EVALUATION
We construct our keyframe dataset from LaFAN1 [Harvey et al.
2020] for both training and evaluation. The LaFAN1 dataset is a
motion capture dataset with various action types, containing 496,672
frames performed by 5 subjects. Compared to other commonly
used estimation-based action-to-motion datasets [Guo et al. 2020;
Ji et al. 2018; Shahroudy et al. 2016], LaFAN1 demonstrates higher
quality and greater complexity. Typically, users are expected to
specify the timing of keyframes within the root trajectory. However,
manually defining keyframe timings is both time-consuming and
impractical for large-scale evaluations. To address this, we employ a
heuristic method to identify positions where significant movement
changes occur for quantitative evaluation. Further details regarding
the dataset, the heuristic method, and the training of AKDM can be
found in the supplementary materials (Sec 1.1 and 2).
To validate our keyframe generation method, we conduct both

quantitative and qualitative evaluations for motion synthesis and
editing, along with a user study involving both tasks. We will also
showcase examples from the user study for visual comparison.

4.1 Motion Generation
To quantitatively evaluate our method for motion synthesis, we
provide a 7-second 3D root trajectory and generate a sequence

of keyframes. We then use different motion in-betweening meth-
ods [Qin et al. 2022; Tang et al. 2022] to produce full motion se-
quences. We compare our results with 4 baselines: MDM [Tevet
et al. 2023], PriorMDM [Shafir et al. 2024], OmniControl [Xie et al.
2024], and HGHOI [Pi et al. 2023]. We utilize diffusion inpainting
to provide trajectory control for MDM. HGHOI was originally de-
signed for human-object interaction generation using a hierarchical
scheme similar to ours, in which milestone poses are generated
first and subsequently infilled. We made an adaptation for it by
setting the environment condition to nil and providing ground truth
milestone positions. We report 5 metrics in quantitative evaluation:
Frechet Inception Distance (FID), recognition accuracy, penetration,
foot skate, and trajectory error. FID is the distance between the
feature distribution of generated motion and real motion, which
measures the overall quality of the generated motion. We train a
transformer action recognition classifier to classify the generated
result and calculate the overall recognition accuracy, which indi-
cates the correlation between the motion and its action type. We
calculate penetration and foot skate to measure physical plausibility
and trajectory error to measure the control accuracy.
As shown in Tab. 1, our method consistently performs the best

across all metrics. The superiority in FID and recognition accuracy
reflects the overall quality of our results, while the lowest penetra-
tion and foot skate highlight the detailed quality achieved.
A visual comparison of motion generation under mixed dense

and sparse control signals between our method and OmniControl is
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Ours OmniControl Ours Edited
Fall and Get up Fall and Get up Fall and Get up

Fight Fight Fight

Fig. 5. Qualitative results of motion editing and examples from the user study. We compare our methods qualitatively with OmniControl for motion
editing. In the first row, we control the root trajectory and the head position when the character falls on the ground. Then we generate an extra keyframe and
also control the head position to make the character get up earlier. In the second row, we control the root trajectory to make the character perform a jump
kick. Then we control its foot joint to kick higher.

Table 2. Quantitative results ofmotion editing.Without specific declara-
tion, we complete our generated keyframes using the motion in-betweening
model from [Tang et al. 2022].

FID↓ Pos. error↓ G-MPJPE↓
OmniControl 1.533 36.585 35.858

Ours 0.433 3.018 4.709

presented in Fig. 4. In mixed control scenarios, our method gener-
ates high-fidelity results that precisely adhere to both dense (root
trajectory) and sparse (joint positions) control signals simultane-
ously, while OmniControl prioritizes dense control but fails to satisfy
sparse positional constraints.
We also apply motion in-betweening to baseline methods for

comparison.We found that this post-processing reduces foot skating
but negatively impacts the overall quality of these baselines, as
they are not specifically designed for keyframe generation, which
highlights the importance and value of our method. More details
are presented in the supplementary materials (Sec 3.1).

4.2 Motion Editing
The qualitative result of motion editing is showcased in the first row
of Fig. 5. For quantitative evaluation of motion editing, we compare
our method to OmniControl. Given the same ground truth motion,
we input its trajectory into both methods for the first generation
and take the result as source motion. Then we randomly sample a
frame from the real motion and select the positions of 1 to 4 joints in
this frame as the editing control for the regeneration. We calculate
the FID between regenerated results and real motion to evaluate the
quality of edited results, global position error of controlled joints to
measure the control accuracy, and Global Mean Per Joint Position
Error (G-MPJPE) between the source and edited motion to assess the
similarity between the edited results and the original motion. We

Table 3. The result of user study. 11 subjects rated the results from quality,
precision, and preservation on a scale from 1 to 5.

Qual. Prec Pres.

OmniControl 2.855 2.145 3.636
Ours 4.581 4.691 4.964

fix the random seed in OmniControl to ensure that the generated
results align with the source motion.
The results in Tab. 2 show that our method achieves excellent

control precision, while faithfully preserving the source motion.
Notice that the FID here is even lower than our results in Tab. 1.
This is mainly because we sample spatial constraints from ground
truth data, making the edited results more similar to real motion.

4.3 User Study
We further conduct a user study to validate the applicability of
our proposed method in real scenarios. We asked 3 professional
animators to keyframe the hip position and velocity of 9 different
sequences as inputs. Additionally, 2 amateur users were asked to
create 3 trajectories and keyframe them in relation to reference
motions using a Blender add-on we provided. We then generated
motion sequences using both our method and OmniControl. These
sequences were further edited by manually imposing sparse spatial
constraints. One example is shown in the 2nd row of Fig. 5. A total
of 11 subjects were invited to rate the results on a scale from 1 to 5
based on three criteria: the quality of the generated motion (Qual.),
the precision of the results to the spatial control (Prec.), and the
preservation of the source motions in the edited sequences (Pres.).

The results in Tab. 3 demonstrate that ourmethodworkswell with
real user inputs, and outperforms the baseline across all evaluated
criteria. Notably, we observed that OmniControl sometimes neglects

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



8 • Bowen Zheng, Ke Chen, Yuxin Yao, Zijiao Zeng, Xinwei Jiang, He Wang, Joan Lasenby, and Xiaogang Jin

Table 4. Quantitative evaluation for keyframes. For comparison, we
select keyframes from the full generated motion of baseline methods.

Methods FID↓ Accuracy↑ Penetration↓
Real Data - 0.753 0.080

MDM 1.092 0.589 11.576
PriorMDM 0.885 0.676 3.411
HGHOI 8.180 0.675 1.338

OmniControl 1.158 0.576 4.044

Ours 0.831 0.665 1.307

sparse constraints when provided alongside dense control, whereas
our method successfully accommodates both.

4.4 Direct Evaluation for Keyframes
To further validate the effectiveness of our approach for keyframe
generation, we conduct an experiment that directly evaluates the
quality of the generated keyframes from ourmethod, without involv-
ing any additional modules, and compares them with the baselines.
For MDM, PriorMDM, and OmniControl, we use the same heuristic
method described earlier to select keyframes from the generated
full motions. For HGHOI, we use milestones as the keyframes. We
train a classifier for keyframe sequences in the same manner as for
full motions to calculate FID and accuracy.

As shown in Tab. 4, our method achieves the best FID and pene-
tration values, demonstrating the high quality and spatial coherence
of the generated results. The recognition accuracy of our method is
also comparable to that of the baseline methods.

4.5 Ablation Study
To validate the effectiveness of both our model design and control
signals derived from the input trajectory, we conducted ablation
studies involving several variants of our model. The visual results
are shown in Fig. 6. Quantitative results shown in Tab. 5 indicate that
our design choices significantly enhance performance. Particular
attention should be given to the non-autoregressive version of our
model. While we provide the same control signals for each frame
as the base model, it fails to capture the interrelationships among
keyframes due to varying keyframe timing patterns, resulting in a
significant decline across all four metrics, especially in penetration
and foot skate. This underscores the importance of our autoregres-
sive scheme, which emphasizes adjacent keyframes. The results in
the 3rd to 6th rows demonstrate that the control signals derived
from the root trajectory further enhance the generation quality, as
evidenced by improvements across all metrics in the other variants.
The 7th row presents results from our model trained on randomly
sampled frames, which exhibits declines in FID and recognition
accuracy compared to our base model. This can be attributed to the
fact that while both models generate high-fidelity keyframes, the
base model benefits from the keyframe dataset and generates more
expressive and distinct results instead of ‘averaged’ ones.

Table 5. Ablation on different model design. Flatten x𝑡 means we flatten
the noise sample as input, instead of inputting it as a sequence of joints.

Model Variants FID↓ Accuracy↑ Pen.↓ Foot Skate↓
flatten x𝑡 0.652 0.668 1.592 1.986

w/o autoregressive 0.952 0.665 4.640 2.722
w/o interval 0.648 0.741 3.336 2.456
w/o pos. diff. 0.642 0.739 1.303 1.688
w/o velocity 1.232 0.721 1.621 2.146
w/o height 0.900 0.681 8.044 2.949

w/o keyframe dataset 0.677 0.734 1.309 1.346
Ours 0.517 0.747 1.394 1.537

5 CONCLUSIONS, LIMITATIONS AND FUTURE WORKS
In this work, we introduced AutoKeyframe, a framework for motion
generation and editing that minimizes manual input while maintain-
ing precise control. Leveraging an autoregressive diffusion model,
AutoKeyframe generates keyframes from 3D root trajectories with
sparse user-defined postures, significantly reducing manual effort
and enabling intuitive control. Flexible sparse spatial constraints are
supported via a skeleton-based gradient guidance technique, which
further facilitates easy keyframe editing. Experiments validate Au-
toKeyframe’s ability to achieve high-quality motion synthesis with
flexible control, advancing user-friendly animation pipelines. The
capabilities of AutoKeyframe can be applied to various downstream
applications, like integrating with industry-standard software (e.g.
Maya and Blender) for interactive animation authoring.
Our autoregressive generation assumes human motion follows

a continuous Markov process, where a character’s pose depends
only on recent motion. While effective for short-term dynamics, this
assumption may falter in capturing long-term semantics, as global
planning relies solely on input trajectories and keyframe timings,
which can sometimes be insufficient. Incorporating global informa-
tion into the autoregressive process may enhance the generation.
Additionally, we expect users to specify keyframe timings and our
model is able to generalize to diverse timing patterns. However, the
automatic generation of keyframe timings that suit different motion
styles remains a significant challenge, leaving considerable room
for future work. Another promising direction for improvement is
integrating motion phase manifolds [Starke et al. 2022], which could
enhance the coordination between keyframes, particularly in subtle
details like foot placement.
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Fig. 6. Visual comparison of the ablation study. The action label of this example is fight. We make some of the transition frames transparent for clearer
demonstration. Our full model generates a keyframe sequence with a dynamic and expressive punch. We present qualitative results comparing the non-
autoregressive version of our model, our model without the height control signal, our model without the velocity control signal, and our model trained without
our keyframe dataset against our full model.
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Fig. 7. More results of motion generation and editing of our method. We make some of the transition frames transparent to better demonstrate the edited
keyframe.
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Aiming

OursOmniControlMDMHGHOI

Fig. 8. More comparison of motion generation results under 3D trajectory control by different methods. For better illustration, we omit the transition frames
of our results and show parts of the generated keyframes only.
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