Computational Models of
Learning and Representations in
the Hippocampal Formation

Tom M. George

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
of

University College London.

Sainsbury Wellcome Centre for Neural Circuits and Behaviour

University College London

June 26, 2025

...In that Empire, the Art of Cartography attained such Perfection
that the map of a single Province occupied the entirety of a City, and
the map of the Empire, the entirety of a Province. In time, those
Unconscionable Maps no longer satisfied, and the Cartographers
Guilds struck a Map of the Empire whose size was that of the
Empire, and which coincided point for point with it. The following
Generations, who were not so fond of the Study of Cartography
as their Forebears had been, saw that that vast Map was Useless,
and not without some Pitilessness was it, that they delivered it up
to the Inclemencies of Sun and Winters. In the Deserts of the
West, still today, there are Tattered Ruins of that Map, inhabited by
Animals and by Beggars; in all the Land there is no other Relic of
the Disciplines of Geography.

— On Ezactitude in Science, Jorge Luis Borges

I, Tom M. George, confirm that the work presented in this thesis is my
own. Where information has been derived from other sources, I confirm that

this has been indicated in the work.

Abstract

This thesis explores how neural systems learn and use internal representations to
support flexible behaviour, focusing on the mammalian spatial memory system
and cognitive map. It introduces new computational tools and biologically
plausible models that link neural structure and dynamics to spatial cognition.

Foundational to this work is RatInABox, an open-source toolkit now widely
used for simulating realistic navigation and hippocampal activity. This platform
enables the rapid prototyping of models that jointly capture behavioural
trajectories and neural representations, including place and grid cells.

The first model leverages this toolkit to demonstrate a biologically plausible
mechanism for learning predictive representations via spike-timing dependent
plasticity and theta phase precession. This mechanism bridges the timescale gap
between behaviour and synaptic plasticity to enable fast and flexible learning.

A second study introduces a generative model of the hippocampal-
entorhinal loop that unifies path integration and mental simulation. It shows
how local Hebbian learning, scheduled by theta oscillations, can give rise to
ring attractor dynamics within a normative Helmholtz machine framework.

The final contribution is SIMPL, an efficient algorithm for latent variable
discovery from high-dimensional neural data. By recursively fitting latent
trajectories and tuning curves, SIMPL achieves state-of-the-art performance
while enhancing the interpretability and precision of neural representations.

Collectively, these contributions advance our understanding of how
biological systems learn and represent the world, and provide new models and

tools for research at the intersection of neuroscience and artificial intelligence.

Impact Statement

The speculative benefits inside academia might be to the discipline and future
of scholarship, research methods or methodology, the curriculum; they might

be within neuroscience and potentially within other research areas.

The speculative benefits outside academia might be to commercial activity,
social enterprise, professional practice, clinical use, public health, public policy
design, public service delivery, laws, public discourse, culture, the quality of

the environment or quality of life.

There might not even be any benefits at all.

Publications Arising

This thesis details work covered in five peer-reviewed publications as follows:

Chapter 1: Tom M. George, Mehul Rastogi, William de Cothi, Claudia
Clopath, Kimberly L. Stachenfeld, and Caswell Barry (2024). “RatInABox,
a toolkit for modelling locomotion and neuronal activity in continuous

environments”. In: eLife. DOI: 10.7554/elife.85274

Chapter 2: Tom M. George (2023). “Theta sequences as eligibility traces:
A biological solution to credit assignment”. In: International Conference on
Learning Representations 2023 (TinyPapers track). DOI: 10.48550/arXiv.23
05.08124

Chapter 3: Tom M. George, William de Cothi, Kimberly L. Stachenfeld, and
Caswell Barry (Mar. 2023a). “Rapid learning of predictive maps with STDP
and theta phase precession”. In: eLife 12. DOI: 10.7554/elife.80663

Chapter 4: Tom M. George, Kimberly L. Stachenfeld, Caswell Barry, Claudia
Clopath, and Tomoki Fukai (2023b). “A generative model of the hippocampal
formation trained with theta driven local learning rules”. In: Thirty-seventh
Conference on Neural Information Processing Systems. DOI: 10.1101/2023.1

2.12.571268

Chapter 5: Tom M. George, Pierre Glaser, Kimberly L. Stachenfeld, Caswell
Barry, and Claudia Clopath (2025). “SIMPL: Scalable and hassle-free
optimisation of neural representations from behaviour”. In: The Thirteenth
International Conference on Learning Representations. DOI: 10.1101/2024.1

1.11.623030

UCL Research Paper Declaration Forms can be found in Appendix F.

https://doi.org/10.7554/elife.85274
https://doi.org/10.48550/arXiv.2305.08124
https://doi.org/10.48550/arXiv.2305.08124
https://doi.org/10.7554/elife.80663
https://doi.org/10.1101/2023.12.12.571268
https://doi.org/10.1101/2023.12.12.571268
https://doi.org/10.1101/2024.11.11.623030
https://doi.org/10.1101/2024.11.11.623030

Acknowledgements

For this thesis I would like to thank my mentors—and there have been
many—Tfor shining a light on my path through academia and giving me the
confidence to follow it.

I would like to thank my friends, in the UK and across the world, for taking
me to the pub, bar or izakaya when I needed it, and making these years so
enjoyable.

And I would like to thank my family, especially my Dad, who have always

believed in me and encouraged me from the very beginning.

More than anything, I would like to thank Lili. Her unwavering support over

the last nine years has meant more to me than she will ever know.

Contents

Abstract 5

Impact Statement 7

Publications Arising 9

Acknowledgements 11

Contents 13

List of Figures 19

List of Tables 21

0 Introduction 23

0.1 The Mammalian Spatial Memory System 23

0.1.1 Spatial Navigation and Spatial Cognition 24

0.1.2 Hippocampal Representations 25

0.1.3 Learning and Dynamics 26

0.1.4 Models of Hippocampal Function 28

0.1.5 Modelling Hippocampal Function 30

0.2 Overarching Themes and Methods 31

0.3 Key Contributions of This Thesis 31
0.3.1 A Standardised Toolkit for Reproducible Hippocampal

Modelling and Data Generation 31

14

CONTENTS

0.3.2 A Biologically Plausible Mechanism for Learning Predic-
tive Maps 32
0.3.3 A Generative Model for Path Integration and Mental
Simulation oo 33

0.3.4 A Practical Method for Discovering Latent Neural

Representations 34

0.4 Thesis Structure 35
0.5 Broader Impact and Future Directions 36
The RatInABox toolkit 39
1.1 The Need for Standardized Tools in Neuroscience 40
1.2 RatInABox: Toolkit Components and Features. 42
1.2.1 Intended Use-Cases 45

1.2.2 The Environment 45
123 TheAgent 45
1.24 Neurons 48

1.3 Validation and Use-Case Demonstrations 52
1.3.1 Case Studies 54

1.4 Discussion Lo 56
Theta Sequences as Eligibility Traces 59

2.1 The Timescale Mismatch in Biological Reinforcement Learning . 60

2.2 An Equivalence Between Theta Sequences and Eligibility Traces 61

2.3 Discussion 62
Learning Predictive Maps with STDP and Theta 63
3.1 The Hippocampus, Predictive Maps, and a Role for STDP . . . 64
3.2 STDP and Phase Precession Approximate the SR 68

3.2.1 STDP Approximates TD-learned Successor Matrices . . 69

3.2.2 Learned Place Fields Exhibit Behaviorally-Biased Skewing 74
3.2.3 Anatomical Segregation Supports Multiscale Predictive

CONTENTS 15

3.3 Discussion 81
The Hippocampal Generative Model 91
4.1 A Theta-Driven Generative Model of the Hippocampus 92
4.1.1 Related work 95
4.2 Model Architecture and Learning Rules 97
4.2.1 Basic Model Summary 97
4.2.2 Theta-Gating Information Flow 99
4.2.3 Hebbian-Style Learning Rules 99
4.2.4 Velocity Inputs oL 101

4.3 Model Validation: From Latent Inference to Path Integration . . 102
4.3.1 Artificial Latent Task Validation. 102
4.3.2 Emergence of a Ring Attractor for Path Integration . . . 103
4.3.3 Remapping and Flexible Transfer of the Path Integration

Circuit 107

4.4 Discussion 109
SIMPL: A Neural Latent Variable Model 111
5.1 The Discrepancy Between Behavior and Internal State 112
5.2 The SIMPL Algorithm: An EM-Style Approach 115
52.1 TheModelo 115
5.2.2 The SIMPL Optimisation Algorithm 116

5.3 Validating SIMPL on Synthetic and Biological Data 118
5.3.1 Synthetic Data: 2D Grid Cells 118
5.3.2 Hippocampal Place Cell Data 120
5.3.3 Somatosensory Cortex Data 124
5.3.4 The Critical Role of Behavioral Initialization 125
5.3.5 Benchmarking SIMPL 127

5.4 A Survey of Latent Variable Models for Neural Data 128

5.5 Discussion 130

16 CONTENTS

6 General Discussion 133
6.1 Summary Discussion of the Major Themes 133
6.2 Open Questions and Future Research Themes 134

6.3 Open science: Towards a more equitable global research culture 136

6.4 Conclusion 137
Bibliography 139
A Appendix to Chapter 1 177

A1 Code Availability 177

A.2 Model and Feature Specifications 177

A.2.1 Motion Model Details 177
A.2.2 Distance Measures 184
A.2.3 Cell Model Specifications 185
A.2.4 Table of Default Parameters 197
A.2.5 Tutorials and Demos 211
A.2.6 License Information 213

A.3 Demonstrations and Use Cases 213
A.3.1 Figure Details and Parameters 213
A.3.2 Supplementary Use Cases 214

B Appendix to Chapter 2 223
B.1 Code Availability 223
B.2 Task Formulation and Temporal Difference Learning 223
B.2.1 Relation to Discrete RL and TD(A) 224

B.3 The Artificial Agent 225

B.4 The Biological Agent 226

B.5 Analysis of Discontinuities in Theta Sequence Resets 228
C Appendix to Chapter 3 231

C.1 Code Availability 231

C.2 Spiking Neuron Model and STDP Learning Rule 231

CONTENTS 17

C.3 Phase Precession Details 233
C.4 Synaptic Learning via STDP 235
C.5 Temporal Difference Learning 237
C.6 Continuous Successor Features 240

C.6.1 Equivalence of the TD successor matrix to the successor

representationo 243

C.7 Relation to RatInABox 244
C.8 Simulation Details 244
C.9 A Theoretical Link Between STDP and TD 246
C.9.1 Reformulating TD learning to look like STDP 247

C.9.2 Theta phase precession compresses the temporal structure
of input features 251
C.9.3 Differences between STDP and TD learning: where my

model doesn’t work o000 253

C.10 Supplementary Analyses and Ablations 255
C.10.1 Cell Size and Agent Speed Effects 255
C.10.2 Weight Initialisation and Update Schedule 257
C.10.3 Hyperparameter Sweep 262
C.10.4 Phase Precession Hyperparameter Sweep 264

D Appendix to Chapter 4 269
D.1 Code Availability L 269
D.2 Detailed Model Implementation 269
D.2.1 Dendritic Updates 269
D.2.2 Somatic Updates 270
D.2.3 Update Ordering 270
D.2.4 Learning Rules 271
D.2.5 Synaptic Noise, 272
D.2.6 Measuring Prediction Error 272

D.3 Relationship to Online Bayesian Inference 273

D.4 Artificial Task: Implementation Details 276

18 CONTENTS

D.5 Path Integration Task: Implementation Details 277
D.5.1 Position Decodingo 280
D.5.2 Robustness Tests 280

D.6 Remapping Task: Implementation Details 281

E Appendix to Chapter 5 285

E.1 Code Availability 285

E.2 Theoretical Background: EM and State-Space Models 285
E.2.1 Expectation Maximization 285
E2.2 LGSSMs 287

E.3 SIMPL as Approximate EM 288
E.3.1 MLE-Based Approximate E-Step 288
E.3.2 Spike Smoothing: A Generalized M-Step 290

E.4 Efficient Implementation and Algorithmic Details 291
E.4.1 Maximizing Computational Efficiency 291
E.4.2 Tterative Linear Realignment 294
E.4.3 Hyperparameters Settings 294
E.4.4 Synthetic Data Generation 295
E.4.5 Test-Train Partitioning 296
E.4.6 Benchmarking Details 297

E.5 Supplementary Analyses and Robustness Tests 298
E.5.1 Discrete Latent Toy Model 298
E.5.2 Hyperparameter Sweep L. 299
E.5.3 Non-Continuous Replay Dataset 300
E.5.4 Automatic Place Field Detection 301

E.6 Summary Table of Related Methods 301

F UCL Research Paper Declaration Forms 305

List of Figures

1.1
1.2
1.3

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

5.1
5.2
2.3

5.4
2.5
5.6

Al

RatInABox Overview 43
Motion Model Validation A7
Advanced Features and Computational Efficiency 53
Theta Sequences and Learning 62
STDP and Successor Features Schematic 70
Successor Matrix Approximation 75
Behaiourally Biased Skewing 78
Multiscale Segregation 80
Model Schematic and Theta Cycles 93
Learning Temporally Varying Latents 102
Path Integration with an Emergent Ring Attractor 104
Remapping and Knowledge Transfer 107
The SIMPL Iterative Optimization Framework 116
Recovering Ground Truth from Synthetic Grid Cell Data 120

SIMPL Reveals Sharper and More Numerous Hippocampal Place

Fields 122
Inferring Motor Latents During a Reaching Task 123
Behavioral Initialization Prevents Warped Latent Spaces 126
Benchmarking SIMPL against State-of-the-Art Methods 128

RatInABox Neural Decoding Experiment 217

20

A2

C.1
C.2
C.3
C4

D.1
D.2
D.3
D4

E.1
E.2
E.3

LIST OF FIGURES

RatInABox Reinforcement Learning Setup 222
Effects of Cell Size and Movement Speed 256
Effect of Weight Initialisation 261
STDP and Phase Precession Parameter Sweep 263
Phase Precession Optimality 266
Artificial Task Extended Results 277
Path Integration Robustness 282
Plasticity and Noise Lesions 283
Remapping with Multimodal Fields 284
Discrete Latent Toy Model 299
Hyperparameter Sweep Results 300

Non-Continuous Replay Datasets 301

List of Tables

Al

B.1
B.2

E.1
E.3

RatInABox Default Parameter Table 198
Artificial Agent Parameters 226
Biological Agent Parameters 228
SIMPL Hyperparameter Settings 295

LVM Method Comparison Table 302

Chapter 0

Introduction

Intelligent agents, both biological and artificial, must learn to represent the
external world and themselves within it to support flexible behaviours, such
as navigation, planning, and decision-making. This thesis explores how neural
systems achieve these goals by learning and utilising internal representations.
My research addresses three fundamental questions: how neural systems
learn, what representations neural systems use, and how neural dynamics
and representations interact to enable flexible behaviour. By developing
computational models and a toolkit for constructing them, this work aims to
help reconcile biological observations with statistical and machine learning

frameworks for intelligent systems, providing novel interpretations for both.

0.1 The Mammalian Spatial Memory System:

A Foundational Model Domain

The mammalian spatial memory system, particularly the hippocampal forma-
tion, serves as the primary model domain for this thesis. The hippocampus,
a small c-shaped structure in the medial temporal lobe and the most studied
of all brain regions, is known to play a critical role in memory (Scoville et al.
1957) and spatial navigation (Tolman et al. 1930; O’'Keefe et al. 1978; Morris
et al. 1982). Decades of research have illuminated a rich landscape of learning
phenomena (Bi et al. 1998; Carr et al. 2011; Bittner et al. 2017), architectures
(Bush et al. 2014), representations (Moser et al. 2017), and dynamics (Carr

24 Chapter 0. Introduction

et al. 2011; Skaggs et al. 1996a; Buhry et al. 2011; Sanders et al. 2015) within
the hippocampal formation, making it an ideal testbed for understanding how
neural systems learn and represent information. The hippocampal formation
(here taken to include the entorhinal cortex, subiculum, and dentate gyrus)
is known to represent self-location through the activity of a rich diversity of
functional cell types including “place cells,” “grid cells,” and “boundary vector
cells” (Moser et al. 2008). Understanding how these neural components interact
to support sophisticated cognitive functions is a central focus of my research.

Despite extensive research, much about the hippocampal formation remains
unknown. By some measures, our high-level computational and algorithmic
understanding—for example, orthogonalising sensory inputs (Treves et al. 1994),
memory consolidation (Scoville et al. 1957), encoding self-location (O’'Keefe et
al. 1978), and path integration via the grid code (McNaughton et al. 2006; Fuhs
et al. 2006)—has outpaced our knowledge of the biological mechanisms enabling
these functions. This thesis directly tackles this problem by investigating how
successful theoretical models might actually be implemented within the brain,

bridging the gap.

0.1.1 Spatial Navigation and Spatial Cognition

Moving around the world—finding food, avoiding predators, and navigating to
ecologically relevant locations—is a fundamental task for almost all animals
and a distinguishing feature of intelligent life. For nearly a century, available
evidence has suggested that animals build internal cognitive maps: systems
of neurons which describe (or “encode”) an animal’s environment and their
location within it. This idea was first proposed by Tolman et al. (1930) who
noticed that rats with prior experience of a maze could navigate to a subsequent
goal location faster than animals without. This suggests that navigation is not
merely a simple stimulus-response behaviour but involves learning a temporally-
sustained map of the world. Support for this hypothesis was further solidified
in 1948 (Tolman 1948) with the discovery that experienced rats could navigate

to the goal through nearly-optimal routes even when the previously learned

0.1. The Mammalian Spatial Memory System 25

path was blocked.

Whereas spatial navigation refers to the process of locating and locomoting
oneself through the environment, spatial cognition refers to a broader set of
cognitive functions that involve the representation and manipulation of spatial
information. Examples include remembering past locations (Wilson et al. 1994;
Nadel et al. 1997), planning future routes (Spiers et al. 2006; Pfeiffer et al.
2013), understanding spatial relationships between objects (Hgydal et al. 2019),
integrating vestibular cues (Castillo et al. 1954), and simulating trajectories
(so-called “mind-travel” (Sanders et al. 2015)). These functions, as we will see,
place substantial constraints on how and what the mammalian spatial memory

system must learn.

0.1.2 Hippocampal representations form the basis of the
cognitive maps

The theoretical construct of the cognitive map found its first biological grounding
with the discovery of “place cells” in the hippocampus by O’Keefe et al. (1971).
These neurons exhibit location-specific firing, becoming active only when an
animal enters a particular region of its environment (the cell’s “place field”),
providing direct evidence that the hippocampus encodes an animal’s location.
Their discovery led to the influential theory that the hippocampus is the key
locus of the cognitive map.

Over three decades later, the discovery of “grid cells” in the medial
entorhinal cortex (mEC)—a primary input to the hippocampus—by Hafting
et al. (2005) added a crucial new dimension. Grid cells fire at multiple locations,
with their firing fields forming a periodic triangular lattice that tiles the entire
environment. This regular structure is thought to provide something closer to
a metric or a coordinate system for the spatial memory system—often likened
to the gridlines on a map—enabling path integration and measurement of
distances and vectors (McNaughton et al. 2006; Burak et al. 2009). Along
with place cells, their discovery kick-started a new wave of theoretical research

into what types of neural representations are optimal for spatial cognition and

26 Chapter 0. Introduction

earned their discoverers a Nobel Prize.

While place and grid cells are the foundational building blocks of the
spatial map, a map designed for flexible navigation must encode more than
just an agent’s current location. It must also capture the relationships between
places and their value for goal-directed behaviour. The successor representation
(SR), a particular focus of Chapter 3, is a powerful theoretical framework that
addresses this need by positing that the hippocampus encodes not only the
animal’s current position but an expectation over its future positions (Dayan
1993; Stachenfeld et al. 2017). By bridging the principles of reinforcement
learning with the firing properties of hippocampal neurons, the SR framework
explains how these representations support not only localisation but also flexible
planning and decision-making.

The hippocampal formation is not limited to place and grid cells. A
diverse array of other cell types have been identified, including boundary
vector cells (O’Keefe et al. 1996; Lever et al. 2009), object vector cells (Hgydal
et al. 2019), head direction cells (Taube et al. 1990), speed cells (Kropff et
al. 2015), time cells (Pastalkova et al. 2008), and more. These additional
representations contribute to a rich tapestry of spatial coding mechanisms that
support navigation and cognition. Whilst many theoretical models have been
developed to prospectively (O’Keefe et al. 1996) or retrospectively (Burgess
et al. 2007) explain the firing properties of these cells, the challenge remains to
unify these findings and understand how such diverse representations interact

to form a coherent cognitive map.

0.1.3 The role of learning and dynamics in hippocampal

function

The representations that form the cognitive map are not static; they are shaped
by experience and are constantly updated through the interplay of synaptic
plasticity and network dynamics. Learning in the hippocampus is classically
attributed to Hebbian-like mechanisms, such as long-term potentiation (LTP)

(Bliss et al. 1973), which strengthen the connections between neurons that

0.1. The Mammalian Spatial Memory System 27

fire together (Hebb 1949), as well as STDP, which adjusts synaptic weights
based on the relative timing of pre- and post-synaptic spikes (Markram et al.
1997; Bi et al. 1998). This allows for the rapid formation of place fields as an
animal explores a new environment (Bittner et al. 2017) and the association of
locations with salient events or rewards (Hollup et al. 2001).

Furthermore, hippocampal function is critically dependent on internally
generated neural dynamics, most notably theta oscillations (Green et al. 1954)
and sharp-wave ripples (SWRs) (Buzséki et al. 1992). During active exploration,
the hippocampal local field potential (LFP) exhibits a prominent 4-12 Hz theta
oscillation, which is thought to coordinate neural activity to encode ongoing
experiences in real-time and is studied extensively in Chapter 4. The associated
phenomenon of “theta phase precession” (O’Keefe et al. 1993), where place
cells fire at progressively earlier phases of the theta cycle as an animal traverses
a place field, suggests a mechanism for encoding temporal sequences of events
within a single oscillatory cycle (Skaggs et al. 1996b) and is a focal mechanism
in Chapters 2 and 3.

In contrast, during periods of rest or quiescence, the hippocampus is
dominated by SWRs—brief, high-frequency bursts of activity. During SWRs,
the hippocampus “replays” sequences of place cell activity corresponding to past
(Wilson et al. 1994) or potential future (Pfeiffer et al. 2013) trajectories, but on
a heavily compressed timescale (Nadasdy et al. 1999). This replay is thought
to be crucial for memory consolidation and the transfer of information from
the hippocampus to neocortical regions (Marr 1971; Buzsdki 1989), allowing
for the integration of new experiences into long-term memory.

Of particular importance to this thesis is the fact that neural dynamics
and neural representations are rarely independent concepts. As we will see in
Chapter 5, neural dynamics can modify spiking in such a way that, unaccounted
for, blurs or distorts observed tuning curves. This has important implications
for how we interpret neural data and understand the underlying cognitive

processes. Furthermore, in Chapters 2 to 4, we will see how neural dynamics

28 Chapter 0. Introduction

are not just critical for how spatial cognition is performed after learning, but

are also critical for learning itself.

0.1.4 Theoretical and Computational Models of Hip-

pocampal Function

To bridge the gap between biological observation and functional understanding,
the field—along with this thesis—relies heavily on theoretical and computational
models. This reliance operates under the principle, articulated by statistician
George Box, that “all models are wrong, but some are useful”. These
models serve as formal hypotheses for how the anatomical structures, neural
representations, and network dynamics of the hippocampus give rise to its
cognitive functions while also acting as engines for generating new, testable
predictions (Epstein 2008). The models exist across multiple levels of
abstraction, each offering a unique trade-off between biological realism and
explanatory power.

At one end of the spectrum are biophysically detailed models, which
aim to simulate the behaviour of individual neurons and even synapses with
a high degree of fidelity, often incorporating specific ion channels (Hodgkin
et al. 1952; Chen et al. 2022) and cellular morphologies (Ascoli et al. 2007).
While these models are invaluable for understanding how specific cellular
mechanisms contribute to network phenomena (e.g., the generation of theta
rhythms (Buzsdki 2002)), their complexity makes it difficult to extract general
computational principles, and, to date, they have never displayed truly
“intelligent” behaviours.

At a higher level of abstraction are connectionist and network-level
models. These models, such as continuous attractor networks (Zhang 1996),
simplify the behaviour of individual neurons but focus on the collective dynamics
of the network (Hopfield 1982). Attractor models have been particularly
influential (Wills et al. 2005) in the hippocampal and spatial modelling literature,
proposing that place cell activity emerges from recurrent connectivity within

the hippocampus (Rolls et al. 2006). In this view, the network can “settle” into

0.1. The Mammalian Spatial Memory System 29

a stable state or “attractor” that corresponds to a specific location, providing
a robust mechanism for self-localisation and memory completion.

Finally, normative, or functional-level, models operate at the highest
level of abstraction, often drawing inspiration from statistics (Knill et al.
2004), machine learning (Banino et al. 2018; Hassabis et al. 2017), and
reinforcement learning (Schultz et al. 1997). These models prioritise the question
of what the hippocampus computes over how it is implemented biologically.
Examples include Bayesian models that treat hippocampal activity as encoding
a probability distribution over the animal’s location (Deneve et al. 2001),
the aforementioned successor representation (SR), which frames hippocampal
function in terms of predicting future states (Stachenfeld et al. 2017), as well
as the Tolman-Eichenbaum Machine (TEM) (Whittington et al. 2020), which
posits that the hippocampus binds sensory inputs with internally generated
predictions to support flexible navigation and planning. Notably, models like
TEM are explicitly hybrid, incorporating both high-level normative ideas and
concrete network-level mechanisms, thereby representing an important step
towards reconciling these different levels of analysis.

While all these modelling approaches have yielded critical insights, a
significant challenge remains in reconciling the elegance and power of normative
theories with the messy, constrained reality of biological hardware (Marr 1982;
Barak 2017). This thesis contributes directly to this effort by developing and
analysing models that are inspired by normative principles but are explicitly
designed to respect the known anatomical and physiological constraints of the
hippocampal formation. I believe this exercise is worthwhile for two principal
reasons: Firstly, grounding abstract theories in biology provides a crucial
existence proof, demonstrating that the computations they propose are actually
achievable within the known constraints of neural hardware. Secondly, by
linking normative functions to specific biological mechanisms, our theories often
become more generalisable (Carandini et al. 2011). A principle discovered in

the hippocampus can then illuminate our understanding of other brain regions

30 Chapter 0. Introduction

that employ similar circuits or synaptic learning rules, helping to build a more

unified picture of neural computation.

0.1.5 Theoretical and Computational Modelling of Hip-

pocampal Function

The modern toolkit for computational neuroscience is largely built on the
Python programming language, benefiting from its ease of use and extensive
ecosystem of open-source libraries for scientific computing. Despite this common
foundation, a significant challenge persists in how models are developed and
shared. The prevailing culture is often one of bespoke creation, where individual
labs or researchers build unique, single-use codebases for their specific questions.
While this approach provides a great deal of flexibility, it creates a fragmented
landscape that is inefficient and possibly even detrimental to overall progress.
This fragmentation leads to a massive duplication of effort as researchers
repeatedly reinvent foundational components—for example, coding up a simple
motion model, or the receptive field of a grid cell—and more importantly, it
erects barriers to reproducibility and direct model comparison.

Fortunately, this challenge has not gone unrecognised, and in recent years
the field has made large strides towards open, collaborative science. Landmark
open-source endeavours are transforming how we analyse and share empirical
data. Toolkits for animal pose estimation like DeepLabCut (Mathis et al.
2018) and SLEAP (Pereira et al. 2022) have standardised complex behavioural
analysis, while large-scale data repositories from the Allen Institute for Brain
Science (Vries et al. 2023) and standards like Neurodata Without Borders
(NWB) (Riibel et al. 2022) have democratised access to neural recordings.
Similar movements towards standardisation have also been emerging in the
domain of in-silico experimentation, particularly for low-level spiking neural
simulators (Hines et al. 1997; Goodman 2008). Despite this, the community still
lacks widely adopted, high-level toolkits specifically for generating synthetic
data or for rapidly prototyping, training, and comparing complex hippocampal

models, a topic we directly tackle in Chapter 1.

0.2. Overarching Themes and Methods 31

While the models themselves often receive more attention, the shared
toolkits used to build them are as fundamental to scientific progress. Creating
robust, reusable software is a critical part of our responsibility as scientists
because it directly supports the core principles of reproducibility and
collaboration. This infrastructure work is a necessary investment in the long-

term health and efficiency of our field.

0.2 Overarching Themes and Methods

The preceding sections have established a central challenge in neuroscience:
reconciling high-level theories of cognition with the complex, constrained
realities of biological circuits. This thesis confronts this challenge directly
through research that is loosely organised around two key themes.

The first is the development and analysis of computational models
that are explicitly designed to be biologically plausible. My research
strategy is to use these models as a bridge between the functional principles
of machine learning and the known anatomy, physiology, and dynamics of
the hippocampal formation. The second theme is the development and
validation of computational tools to enable better computational

model building and data visualisation.

0.3 Key Contributions of This Thesis

This thesis presents four primary research contributions, each targeting a
distinct gap between high-level theory and biological mechanism and aligned

with the themes outlined above.

0.3.1 A Standardised Toolkit for Reproducible Hip-

pocampal Modelling and Data Generation
A significant practical barrier in computational neuroscience is the lack
of standardised environments for building and testing models, leading to
fragmented and difficult-to-replicate research. To address this, this thesis

introduces the open-source Python package, RatInABox, which has seen

32 Chapter 0. Introduction

significant adoption by the community—with over 55,000 downloads to date—
and provides a standardised platform for simulating rodent locomotion and the
activity of spatially modulated neurons. It is designed to facilitate the rapid
prototyping and testing of hypotheses about how behaviour, representations,
and learning interact in the context of the cognitive map. By providing a
common framework for simulation, this package aims to reduce fragmentation
and promote more efficient and reproducible research practices (Barnes 2010;
Wilson et al. 2017). This work is a direct contribution to the second theme
of this thesis: the development of computational tools to enable better model

building.
0.3.2 A Biologically Plausible Mechanism for Learning
Predictive Maps

A leading normative theory is that the hippocampus builds a “predictive map”
of the environment, formalised by the successor representation (SR) (Dayan
1993). This framework powerfully explains how animals can navigate flexibly by
representing not just their current location, but a predictive landscape of future
locations (Stachenfeld et al. 2017). A major unresolved issue, however, is how
such a predictive map could be learned by hippocampal circuits. The canonical
algorithm for learning SRs, temporal difference (TD) learning, is difficult to
map onto known hippocampal biology, particularly given the very different
timescales of spike-timing based synaptic plasticity (O(20 ms)) (Markram et al.
1997; Bi et al. 1998) and behaviour (O(10 s)).

This thesis proposes and validates a novel, biologically plausible mechanism
for learning the SR. Specifically, I show how theta phase precession allows
STDP, a learning rule sensitive to millisecond-timescale spike timing, to
rapidly integrate information over behavioural timescales of many seconds.
The resulting model learns synaptic weights that closely approximate the SR,
successfully explaining empirical observations like the goal-directed skewing
of place fields (Mehta et al. 1997). In line with the first theme of this thesis,

this work forges a deep, previously unappreciated theoretical link between the

0.3. Key Contributions of This Thesis 33

cellular mechanism of STDP and the algorithmic principle of TD learning,
providing a more concrete mechanism for how predictive maps can be learned

in the brain.

0.3.3 A Generative Model for Path Integration and

Mental Simulation

Beyond representing known locations, the cognitive map supports generative
functions, such as estimating one’s position by integrating self-motion cues
(path integration) (McNaughton et al. 2006) or simulating future trajectories
(“mind travel”) (Johnson et al. 2007; Buckner et al. 2007). A promising class of
models, including the Tolman-Eichenbaum Machine (Whittington et al. 2020),
posits that the brain accomplishes this by operating as a predictor-comparator
circuit, constantly matching internally generated predictions against incoming
sensory evidence (Rao et al. 1999). However, these models often rely on learning
algorithms like backpropagation-through-time or make unrealistic assumptions
about pre-existing neural connectivity (Lillicrap et al. 2020), leaving their
biological feasibility an open question.

To address this, this thesis introduces the “Helmholtz Hippocampus,” a
generative model of the hippocampal-entorhinal loop that performs these
functions using only local, Hebbian-like learning rules. The central hypothesis
is that theta oscillations act as a control signal, rapidly switching multi-
compartmental neurons between two distinct phases of operation—one for
encoding bottom-up sensory input and one for generating top-down internal
predictions. This mechanism, analogous to the wake-sleep algorithm of a
Helmholtz Machine (Hinton et al. 1995; Dayan et al. 1995), allows the network
to self-organise a self-sustaining continuous ring attractor structure from
unstructured sensory input (Zhang 1996). The neurons in this emergent
attractor network share numerous properties with entorhinal grid cells and
provide a robust substrate for path integration. This work, which aligns with the
first theme of this thesis, demonstrates how fundamental biophysical properties

like neural oscillations can be harnessed to implement sophisticated generative

34 Chapter 0. Introduction

computations.

0.3.4 A Practical Method for Discovering Latent Neural

Representations

A foundational challenge in neuroscience is to accurately characterise the
relationship between neural activity (spikes) and the variables it represents.
Accurately doing so tells us a lot about the function of a system and can
give clues to the underlying mechanisms or computational principles at play.
Often, however, both the variables being encoded by a neural system and how
they map to neural activity (their “tuning curves”) are, a priori, unknown.
This creates a “catch-22” scenario, well studied in both neuroscience and
machine learning, known as the latent variable problem (Paninski et al. 2007).
A majority of hippocampal research has historically bypassed this problem by
assuming the latent variable is a directly measurable behavioural correlate,
such as the animal’s physical position. This assumption was instrumental in
the development of the cognitive map theory and the discovery of functional
cell types like place cells.

This reliance on observed behaviour is, however, fundamentally limiting, as
an animal’s internal latent can diverge from its externally measured state (Low
et al. 2018)—a discrepancy made explicitly evident during dynamic phenomena
like theta sequences and memory replay (Wilson et al. 1994). Such mismatches
are a subtle but important roadblock in our goal to bridge high-level theories
of neural function with low-level biological mechanisms, since doing so requires
knowing the tuning curves of individual neurons with considerable precision.
Traditional analyses, which presuppose a direct correspondence between firing
and behaviour, can be distorted by this discrepancy, leading to an incomplete
understanding of the neural code. This often results in tuning curves that
appear noisy, weak, or spatially imprecise, masking the true fidelity of the
underlying neural representation (Pillow et al. 2008).

To overcome this limitation, this thesis presents SIMPL (Scalable Iterative

Mazimisation of Population-coded Latents), a novel and computationally

0.4. Thesis Structure 35

efficient method for latent variable discovery. SIMPL operates by recursively
optimising both the neural tuning curves and the trajectory of the underlying
latent variable, using the observed behaviour only as an initial “best guess.” It
thus synergises the interpretability and speed of traditional analysis with
the statistical power of modern approaches to latent variable modelling,
such as expectation-maximisation (Dempster et al. 1977). When applied
to hippocampal recordings, SIMPL uncovers place fields that are sharper,
more numerous, and more stable than those inferred from behaviour alone,
suggesting that the brain’s cognitive map may be significantly more precise
than previously thought. As a contribution to the second theme of this thesis,
SIMPL provides a more accurate and robust lens for investigating the link

between neural dynamics and representation across diverse brain regions.

0.4 Thesis Structure

The remainder of this thesis is organised as follows:

o Chapter 1: The RatInABox toolkit details the open-source Python
toolkit developed to facilitate realistic simulations of rodent locomotion
and associated neural activity, serving as a foundational platform for all

subsequent modelling work.

o Chapter 2: Theta Sequences as Eligibility Traces explores how
theta sequences in the hippocampus can function analogously to eligibility
traces in reinforcement learning, providing a biological solution to the
long-term credit assignment problem. It serves as a theoretical precursor
to the more plausible learning mechanisms explored in Chapter 3 and

may be skipped by readers primarily interested in the latter.

e Chapter 3: Learning Predictive Maps with STDP and Theta
presents a detailed model demonstrating that STDP, when augmented by
theta phase precession, is sufficient to rapidly learn a close approximation

of the successor representation, consistent with hippocampal data.

36 Chapter 0. Introduction

o Chapter 4: The Hippocampal Generative Model introduces a
generative model of the hippocampal-entorhinal loop that performs path
integration and mental simulation using local learning rules and oscillation-

controlled message passing.

o Chapter 5: SIMPL: A Neural Latent Variable Model presents an
efficient method for neural latent discovery that optimises tuning curves

and latent trajectories from spiking data.

o Chapter 6: General Conclusions synthesises the findings across the
thesis and discusses their broader implications as well as future directions

for research in computational neuroscience.

0.5 Broader Impact and Future Directions

The research presented in this thesis collectively advances our understanding of
learning and representation by providing concrete, biologically plausible models
for abstract cognitive functions. It also contributes a new, widely-adopted
software tool to the computational neuroscience community. A central insight
emerging from this work is the critical and dynamic interplay between synaptic
structure (the learned weights of the network) and ongoing neural dynamics
(the latent factors that shape activity in real-time) (Buonomano et al. 2009).
Understanding when and why the brain relies on modifying long-term
structure versus modulating short-term dynamics is a key question for future
research. This distinction mirrors important debates in modern artificial
intelligence, such as the difference between “in-weights” and “in-context” (Brown
et al. 2020) learning in large language models, or the trade-offs between model-
based and model-free reinforcement learning (Daw et al. 2005; Geerts et al.
2020), as well as in neuroscience, such as the distinction between episodic
and working memory (El-Gaby et al. 2024; Whittington et al. 2025). The
path forward lies in developing a more unified theory that explains how

these two modes of computation are balanced and integrated across different

0.5. Broader Impact and Future Directions 37

cognitive domains. The models and methods developed in this thesis provide a

foundational step in that direction.

Chapter 1

RatInABox, a toolkit for
modelling locomotion and
neuronal activity in continuous

environments

Summary

Generating synthetic locomotory and neural data is a useful yet cumbersome
step commonly required to study theoretical models of the brain’s role in spatial
navigation. This process can be time consuming and, without a common
framework, makes it difficult to reproduce or compare studies which each
generate test data in different ways. In response, I present RatInABox, an
open-source Python toolkit designed to model realistic rodent locomotion
and generate synthetic neural data from spatially modulated cell types. This
software provides users with (i) the ability to construct one- or two-dimensional
environments with configurable barriers and visual cues, (ii) a physically realistic
random motion model fitted to experimental data, (iii) rapid online calculation
of neural data for many of the known self-location or velocity selective cell
types in the hippocampal formation (including place cells, grid cells, boundary

vector cells, head direction cells) and (iv) a framework for constructing custom

40 Chapter 1. The RatInABox toolkit

cell types, multi-layer network models and data- or policy-controlled motion
trajectories. The motion and neural models are spatially and temporally
continuous as well as topographically sensitive to boundary conditions and
walls. It is demonstrated that out-of-the-box parameter settings replicate
many aspects of rodent foraging behaviour such as velocity statistics and
the tendency of rodents to over-explore walls. Numerous tutorial scripts are
provided, including examples where RatInABox is used for decoding position
from neural data or to solve a navigational reinforcement learning task. I hope
this tool will significantly streamline computational research into the brain’s

role in navigation.

1.1 Introduction: The Need for Standardized

Tools in Computational Neuroscience

Computational modelling provides a means to understand how neural circuits
represent the world and influence behaviour, interfacing between experiment
and theory to express and test how information is processed in the brain. Such
models have been central to understanding a range of neural mechanisms,
from action potentials (Hodgkin et al. 1952) and synaptic transmission between
neurons (Castillo et al. 1954), to how neurons represent space and guide complex
behaviour (Hartley et al. 2000; Hartley et al. 2004; Byrne et al. 2007; Banino
et al. 2018; Cothi et al. 2022a). Relative to empirical approaches, models can
offer considerable advantages, providing a means to generate large amounts
of data quickly with limited physical resources, and are a precise means to
test and communicate complex hypotheses. To fully realise these benefits,
computational modelling must be accessible and standardised, something which
has not always been the case.

Spurred on by the proposition of a “cognitive map” (Tolman et al. 1930),
and the discovery of neurons with position- (O'Keefe et al. 1971), velocity-
(Sargolini et al. 2006; Kropff et al. 2015) and head direction- (Taube et al.

1990)selective receptive fields in the hippocampal formation, understanding

1.1. The Need for Standardized Tools in Neuroscience 41

the brain’s role in navigation and spatial memory has been a key goal of the
neuroscience, cognitive science, and psychology communities. In this field it is
common for theoretical or computational models to rely on artificially generated
data sets. For example, for the direct testing of a normative model, or to feed
a learning algorithm with training data from a motion model used to generate
a time series of states, or feature-vectors. Not only is this data more cost-
effective, quicker to acquire, and less resource-intensive than conducting spatial
experiments (no rats required), but it also offers the advantage of being flexibly
hand-designed to support the validation or refutation of theoretical propositions.
Indeed, many past (Mehta et al. 2000; Burak et al. 2009; Gustafson et al. 2011)
and recent (Stachenfeld et al. 2017; Cothi et al. 2020a; Bono et al. 2021; George
et al. 2023a; Banino et al. 2018; Schaeffer et al. 2022; Benna et al. 2021) models
have relied on artificially generated movement trajectories and neural data.
Artificially generating data can still be a bottleneck in the scientific process.
I observe a number of issues: First, the lack of a universal standard for
trajectory and cell activity modelling hinders apples-to-apples comparisons
between theoretical models whose conclusions may differ depending on the
specifics of the models being used. Secondly, researchers must begin each
project reinventing the wheel, writing software capable of generating pseudo-
realistic trajectories and neural data before the more interesting theoretical
work can begin. Thirdly, inefficiently written software can significantly slow
down simulation time or, worse, push users to seek solutions which are
more complex and power-intensive (multithreading, GPUs, etc.) than the
underlying task requires, decreasing reproducibility. Finally, even the relatively
modest complexities of motion modelling in continuous environments raises the
technical entry barrier to computational research and can impel researchers
towards studying only one-dimensional environments or biologically unrealistic
“gridworlds” with tabularised state spaces. Not only can gridworld models
scale poorly in large environments but they typically disregard aspects of

motion which can be non-trivial, for example speed variability and inertia.

42 Chapter 1. The RatInABox toolkit

Whilst there are valid reasons why gridworld and/or tabularised state-space
models may be preferred — and good open source packages for modelling this
(Chevalier-Boisvert et al. 2023; Juliani et al. 2022) — it is likely that coding
simplicity, rather than theory-based justifications, remains a common reason
these are used over continuous analogs. Recognizing these challenges, other
recent efforts have sought to provide standardised frameworks for comparing
different computational models against a library of experimental datasets
(Dominé et al. 2024).

To overcome these issues, I built RatInABox (https://github.com/R
atInABox-Lab/RatInABox): an open source Python toolkit for efficient and
realistic motion modelling in complex continuous environments and concurrent
simulation of neuronal activity data for many cell types including those typically

found in the hippocampal formation (Figure 1.1).

1.2 RatInABox: Toolkit Components and

Features

RatInABox is an open source software package comprising three component

classes:

o Environment: The environment (or “box”) that the Agent exists in.
An Environment can be 1- or 2-dimensional, contain walls/barriers,
holes, & objects and they can have periodic or solid boundary conditions

(Figure 1.1a, b, d, and e).

o Agent: The agent (or “rat”) moving around the Environment (Figure 1.1a
and d). Agents are O-dimensional and Environments can contain multiple

Agents simultaneously.

o Neurons: A population of neurons whose firing rates update to encode
the “state” of the Agent in a rich variety of ways. Specific subclasses
are provided corresponding to commonly studied cell-types (including,

but not limited to, PlaceCells, GridCells, BoundaryVectorCells and

https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox

1.2. RatInABox: Toolkit Components and Features 43

a Motion model + b Neuron models = C Neural data P

'S
f

§

Environment

with walls
o @ Agent

d Motion model (1D)
19 N\ &
J A f
@ H :
g V \
El
3
0= - - 1 . ” T 1

0 Time / min 1 ¢ (additional cell types not shown) 0 Time / min 1
€ User-generated environments | 1

QOVEk

Figure 1.1: RatInABox is a flexible toolkit for simulating locomotion and neural
data in complex continuous environments. (a) One minute of motion in a 2D
Environment with a wall. By default the Agent follows a physically realistic random
motion model fitted to experimental data. (b) Premade neuron models include
the most commonly observed position/velocity selective cells types (6 of which
are displayed here). Users can also build more complex cell classes based on these
primitives. Receptive fields interact appropriately with walls and boundary conditions.
(c) As the Agent explores the Environment, Neurons generate neural data. This can
be extracted for downstream analysis or visualised using in-built plotting functions.
Solid lines show firing rates, and dots show sampled spikes. (d) One minute of
random motion in a 1D environment with solid boundary conditions. (e) Users can
easily construct complex Environments by defining boundaries and placing walls,
holes and objects. Six example Environments, some chosen to replicate classic
experimental set-ups, are shown here.

HeadDirectionCells, Figure 1.1b and c¢). Users can also write their
own Neurons subclasses or build/train complex function-approximator

Neurons based on these primitives.

A typical workflow would be as follows: Firstly, an Environment is
initialised with parameters specifying its dimensionality, size, shape and
boundary conditions. Walls (or “barriers”), holes and objects (which act as
“visual cues”) can be added to make the Environment more complex. Secondly,

an Agent is initialised with parameters specifying the characteristics of its

44 Chapter 1. The RatInABox toolkit

motion (mean/standard deviation of its speed and rotational velocity, as well
as behaviour near boundaries). Thirdly, populations of Neurons are initialised
with parameters specifying their characteristics (number of cells, receptive field
parameters, maximum firing rates etc.).

Next, a period of simulated motion occurs: on each step the Agent updates
its position and velocity within the Environment, given the duration of the
step, and Neurons update their firing rates to reflect the new state of the Agent.
After each step, data (timestamps, position, velocities, firing rates and spikes
sampled according to an inhomogeneous Poisson process) are saved into their
respective classes for later analysis; see fig. 1.1.

RatInABox is fundamentally continuous in space and time. Position and
velocity are never discretised but are instead stored as continuous values and
used to determine cell activity online, as exploration occurs. This differs from
other models which are either discrete (e.g. “gridworld” or Markov decision
processes) (Chevalier-Boisvert et al. 2023; Juliani et al. 2022) or approximate
continuous rate maps using a cached list of rates precalculated on a discretised
grid of locations (Cothi et al. 2020a). Modelling time and space continuously
more accurately reflects real-world physics, making simulations smooth and
amenable to fast or dynamic neural processes which are not well accommodated
by discretised motion simulators. Despite this, RatInABox is still fast; to
simulate 100 PlaceCells for 10 minutes of random 2D motion (dt = 0.1 s)
it takes about 2 seconds on a consumer-grade CPU laptop (or 7 seconds for
boundary vector cells).

By default the Agent follows a temporally continuous smooth random
motion model, closely matched to the statistics of rodent foraging in an open
field (Sargolini et al. 2006) (fig. 1.2); however, functionality is also provided
for non-random velocity control (via a user-provided control signal) or for the
Agent to follow an imported trajectory (fig. 1.3a). Once generated, data can be
plotted using in-built plotting functions (which cover most of the figures in this

chapter) or extracted to be used in the theoretical model being constructed by

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/list_of_plotting_fuctions.md

1.2. RatInABox: Toolkit Components and Features 45

the user.

1.2.1 Intended Use-Cases

Use cases are envisaged to fall into two broad categories. (i) Data generation:
The user is interested in generating realistic trajectories and/or neural data for
use in a downstream analysis or model training procedure (for example (Lee
et al. 2023) or the work discussed in Chapter 5. (ii) Advanced modelling: The
user is interested in building a model of the brain’s role in navigation, including
how behaviour and neural representations mutually interact (for example the
work discussed in Chapter 4).

The most important details and features of RatInABox are briefly described
below, divided into their respective classes. I leave all mathematical details
to Appendix A. Additional details (including example scripts and figures) can
also be found in Appendix A and on the GitHub repository. The codebase
itself is comprehensively documented and can be referenced for additional

understanding where necessary.

1.2.2 The Environment

Unlike discretised models, where environments are stored as sets of nodes
(‘states’) connected by edges (‘actions’) (Juliani et al. 2022), here Environments
are continuous domains containing walls (1D line segments through which
locomotion is not allowed) and objects (which are 0-dimensional and act as
visual cues). Boundaries and visual cues are thought to provide an important
source of sensory data into the hippocampus (O’Keefe et al. 1996; Hartley et al.
2000; Barry et al. 2006; Solstad et al. 2008) and play an important role in
determining cell activity during navigation (Stachenfeld et al. 2017; Cothi et al.
2020a). An Environment can have periodic or solid boundary conditions and

can be one- or two-dimensional (Figure 1.1a and d).

1.2.3 The Agent

Physically realistic random motion Smooth and temporally continuous

random motion can be difficult to model. To be smooth (and therefore physically

46 Chapter 1. The RatInABox toolkit

plausible) a trajectory must be continuous in both position and velocity. To be
temporally continuous, the statistics of the motion must be independent of the
integration timestep being used. To be random, position and velocity at one time
must not be reliable predictors of position and velocity at another time, provided
these times are separated by a sufficiently long interval. Implementations of
random motion models typically fail to satisfy one, or sometimes two, of these
principles (Raudies et al. 2012; Benna et al. 2021).

Ornstein-Uhlenbeck processes, which sit at the heart of the RatInABox
random motion model, are continuous-in-time random walks with a tendency
to return to a central drift value. The decorrelation timescale can be also be
controlled. These are used to update the velocity vector (linear and rotational
velocities updated independently) on each update step. Position is then updated
by taking a step along the velocity vector with some additional considerations
to avoid walls. This method ensures both position and velocity are continuous,
yet evolve “randomly” (fig. 1.1a and d), and the statistics of the motion is
independent of the size of the discretisation timestep being used.

Reanalysing rat locomotion data from Sargolini et al. (2006) (as has been
done before, by Raudies et al. (2012)) I found that the histograms of linear
speeds are well fit by a Rayleigh distributions whereas rotational velocities are
approximately fit by normal distributions (Figure 1.2a). Unlike Raudies et al.
(2012), I also extract the decorrelation timescale of these variables and observe
that rotational velocity in real locomotion data decorrelates nearly an order of
magnitude faster than linear velocity (0.08 s vs. 0.7 s). The default parameters
of the Ornstein-Uhlenbeck processes (including applying a transform on the
linear velocity so its long-run distribution also follows a Rayleigh distribution,
see Appendix A.2.1) are set to those measured from the Sargolini et al. (2006)
dataset (Figure 1.2b).

Motion near walls Animals rarely charge head-first into a wall, turn around,
then continue in the opposite direction. Instead, they slow down smoothly

and turn to avoid a collision. Additionally, during random foraging, rodents

1.2. RatInABox: Toolkit Components and Features 47

Velocities Velocity autocorrelations
Real data:
a Sargolini et al. (2006) Linear Rotational Linear Rotational
i === Fit
\ === Data
\ 0=0.08 ms™ 1=0.08s

‘ L_ I
0 02 04 -1000 0 1000 O 2 4 0 4
v/ms w/°st Tiag /'S Tiag / 8
Real data: Satoh et al. (2011) d Artificial data: RatinABox e Distance from wall

positive

,:..thigmotaxis

: local wall

= repulsion :

0 d/m 0.5

Positively thigmotactic rat Non-thigmotactic rat

Figure 1.2: The RatInABox random motion model closely matches features of
real rat locomotion. (a) An example 5 minute trajectory from the Sargolini et al.
(2006) dataset. Linear velocity (Rayleigh fit) and rotational velocity (Gaussian
fit) histograms and the temporal autocorrelations (exponential fit) of their time
series’. (b) A sampled 5 minute trajectory from the RatInABox motion model with
parameters matched to the Sargolini data. (c) Figure reproduced from Figure 8D
(Satoh et al. 2011) showing 10 minutes of open-field exploration. “Thigmotaxis” is
the tendency of rodents to over-explore near boundaries/walls and has been linked
to anxiety. (d) RatInABox replicates the tendency of agents to over-explore walls
and corners, flexibly controlled with a ‘thigmotaxis’ parameter. (e) Histogram
of the area-normalised time spent in annuli at increasing distances, d, from the
wall. RatInABox and real data are closely matched in their tendency to over-explore
locations near walls without getting too close.

are observed to show a bias towards following walls, a behaviour known as
thigmotaxis (Satoh et al. 2011) (Figure 1.2c¢). To replicate these observations,
walls in the Environment lightly repel the Agent when it is close. Coupled
with the finite turning speed this creates (somewhat counter-intuitively) a
thigmotactic effect where the agent over-explores walls and corners, matching
what is observed in the data (fig. 1.2e). A user-defined parameter called
"thigmotaxis" can be used to control the strength of this emergent effect

(fig. 1.2d).

48 Chapter 1. The RatInABox toolkit

Imported trajectories RatInABox supports importing trajectory data which
can be used instead of the inbuilt random motion model. Imported trajectory
data points (which may be of low temporal-resolution) are interpolated using
cubic splines and smoothly upsampled to user-define temporal precision
(Figure 1.3a). This upsampling is essential if one wishes to use low temporal
resolution trajectory data to generate high temporal resolution neural data.

Trajectory control RatInABox supports online velocity control. At each
integration step a target drift velocity can be specified, towards which the
Agent accelerates. I anticipate this feature being used to generate complex
stereotyped trajectories or to model processes underpinning complex spatial

behaviour (as I demonstrate in fig. 1.3b and e).

1.2.4 Neurons

RatInABox provides multiple premade Neurons subclasses chosen to replicate
the most popular and influential cell models and state representations across
computational neuroscience and machine learning. A selection of these are
shown in Figure 1.1b. See Appendix A.2.3 for mathematical details. These

currently include:

e PlaceCells: A set of locations is sampled uniformly at random from
across the Environment or provided manually, each defining the centre of
a place field. The place cell firing rate is determined by the some function
of the distance from the Agent to the centre of the place field. Provided

functions are

— Gaussian: A Gaussian centred on the place field centre.

— Gaussian threshold: A gaussian cropped and levelled at 1 standard

deviation.

— Difference of two Gaussians: A wide Gaussian subtracted from a

narrower Gaussian with zero total volume.

— Top hat: Fires uniformly only within a circle of specific radius

(similar to tile coding in machine learning).

1.2. RatInABox: Toolkit Components and Features 49

— One hot: Only the closest place cell to a given position will fire. This
is useful for replicating tabular state spaces but with continuous

motion.

— PhasePrecessingPlaceCells: A subclass of PlaceCells which
display phase precession (O’Keefe et al. 1993) with respect to a
background LFP theta-oscillation.

e GridCells: Grid cells are modelled using a method proposed by Burgess
et al. (2007). Receptive fields are given by the thresholded or shifted sum

of three cosine waves at 60°.

e VectorCells: Each vector cells responds to salient features in the
Environment at a preferred distance and angle according to a model
inspired by the double-Gaussian model used by Hartley et al. (2000).
Vector cells can be “allocentric” (angular preferences are relative to true-
North) or “egocentric” (Byrne et al. 2007) (angular preferences are relative

to the Agent’s heading). Types include:
— BoundaryVectorCells: Respond to walls
— ObjectVectorCells: Respond to objects
— AgentVectorCells: Respondto other Agents
— FieldOfViewBVCs/0VCs/AVCs (Egocentric vector cells arranged to

tile the Agent’s field-of-view, further described below)

o HeadDirectionCells: Each cell has a preferred direction. The firing rate

is given by a von Mises distribution centred on the preferred direction.

o VelocityCells: Like HeadDirectionCells but firing rate scales propor-

tional to speed.

e SpeedCell: A single cell fires proportional to the scalar speed of the

Agent.

50 Chapter 1. The RatIlnABox toolkit

e RandomSpatialNeurons: Each cell has a locally-smooth but random

spatial receptive field of user-defined lengthscale.

A dedicated space containing additional cell classes not described here, is made

available for community contributions to this list.

Customizable and trainable Neurons Any single toolkit cannot contain
all possible neural representations of interest. Besides, static cell types (e.g.
PlaceCells, GridCells etc.) which have fixed receptive fields are limiting
if the goal is to study how representations and/or behaviour are learned.
RatInABox provides two solutions: Firstly, being open-source, users can write
and contribute their own bespoke Neurons (instructions and examples are
provided) with arbitrarily complicated rate functions.

Secondly, two types of function-approximator Neurons are provided which
map inputs (the firing rate of other Neurons) to outputs (firing rate) through
a parameterised function which can be hand-tuned or trained to represent an
endless variety of receptive field functions including those which are mixed

selective, non-linear, dynamic and non-stationary.

o FeedForwardLayer: Calculates a weighted linear combination of the

input Neurons with optional bias and non-linear activation function.

o NeuralNetworkNeurons: Inputs are passed through a user-provided

artificial neural network.

Naturally, function-approximator Neurons can be used to model how neural
populations in the brain communicate, how neural representations are learned
or, in certain cases, neural dynamics. In an online demo I show how grid cells
and head direction cells can be easily combined using a FeedForwardLayer to
create head-direction selective grid cells (aka. conjunctive grid cells (Sargolini
et al. 2006)). In Figure 1.3d and associated demo GridCells provide input
to a NeuralNetworkNeuron which is then trained, on data generated during
exploration, to have a highly complex and non-linear receptive field. Function-

approximator Neurons can themselves be used as inputs to other function-

1.2. RatInABox: Toolkit Components and Features 51

approximator Neurons allowing multi-layer and/or recurrent networks to be

constructed and studied.

Field of view encodings Efficiently encoding what an Agent can ‘see’ in its
local vicinity (aka. its field of view) is crucial for many modelling studies. A
common approach is to use a convolutional neural network (CNN) to process
an image of the nearby environment and extract activations from the final layer.
However, this method is computationally expensive and necessitates training
the CNN on a large dataset of visual images.

RatInABox offers a more efficient alternative through the use of
VectorCells. Three variants — Field0fViewBVCs, Field0fViewOVCs, and
Field0fViewAVCs — comprise populations of egocentric Boundary-, Object-,
and AgentVectorCells with angular and distance preferences specifically set
to tile the Agent’s field of view. Being egocentric means that the cells remained
fixed in the reference frame of the Agent as it navigates the Environment.
Users define the range and resolution of this field of view. Plotting functions

for visualising the field of view cells, as shown in Figure 1.3c, are provided.

Geometry and boundary conditionsIn RatInABox, PlaceCells and
VectorCells are sensitive to walls in the Environment. Three distance
geometries are supported: ‘euclidean’ geometry calculates the Euclidean
distance to a place field centre and so cell activity will ‘bleed’ through boundaries
as if they weren’t there. ‘line_of sight’ geometry allows a place cell to fire
only if there is direct line-of-sight to the place field centre from the current
location. Finally ‘geodesic’ geometry (default) calculates distance according
to the shortest boundary-avoiding path to the cell centre (notice smooth
wrapping of the third place field around the wall in Figure 1.1b). The latter two
geometries respect the observation that place fields don’t typical pass through
walls, an observation which is thought to support efficient generalisation in
spatial reinforcement learning (Gustafson et al. 2011). Boundary conditions
can be periodic or solid. In the former case, place fields corresponding to

cells near the boundaries of the environment will wrap around.

52 Chapter 1. The RatInABox toolkit

Rate maps RatInABox simplifies the calculation and visualization of rate
maps through built-in protocols and plotting functions. Rate maps can be
derived explicitly from their known analytic firing functions or implicitly from
simulation data. The explicit method computes rate maps by querying neuron
firing rates at all positions simultaneously, utilizing ’array programming’ to
rapidly compute the rate map. In the implicit approach, rate maps are created
by plotting a smoothed histogram of positions visited by the Agent, weighted
by observed firing rates. Additionally, the tool offers the option to visualize
spikes through raster plots.

1.3 Validation and Use-Case Demonstrations

The default parameters of the random motion model in RatInABox are matched
to observed statistics of rodent locomotion, extracted by reanalysing data from
Sargolini et al. (2006). Trajectories and statistics from the real data (Figure 1.2a)
closely compare to the artificially generated trajectories from RatInABox
(Figure 1.2b). Further, data (Satoh et al. 2011) shows that rodents have a
tendency to over-explore walls and corners, a bias often called “thigmotaxis”
which is particularly pronounced when the animal is new to the environment
(Figure 1.2c). This bias is correctly replicated in the artificial trajectories
generated by RatInABox - the strength of which can be controlled by a single
parameter Agent .thigmotaxis (Figure 1.2d and e).

RatInABox can import and smoothly interpolate user-provided trajectory
data. This is demonstrated in Figure 1.3a where a low-resolution trajectory
is imported into RatInABox and smoothly upsampled using cubic spline
interpolation. The resulting trajectory is a close match to the ground truth.
Note that without upsampling, this data (2 Hz) would be far too low in
temporal-resolution to usefully simulate neural activity. For convenience, the
exact datafile (Sargolini et al. (2006)) used in Figure 1.3a and fig. 1.2a is
uploaded with permission to the GitHub repository and can be imported

using Agent.import_trajectory(dataset="sargolini"). An additional

1.3. Validation and Use-Case Demonstrations 53

a Import trajectory data b Palicy control C Egocentric [X] field of view
- — - [X] = boundary BVCs

[X] = object OVCs

[X] = agent AVCs

Ground truth ——
Imported data (2 Hz) « * *
Trajectory (50 Hz) «=
av. error = 1.0 £0.8 cm

Firing rate

Time / sec 20
f Computational efficiency

d Parameterized/trainable Neurons

=
a .o
=

artificial neural network

RatinABox numpy / pytorch

Compute time / s

£
=
5
2

Place Grid Boundary Motion Matrix DNN
cells cells vector model x vector
cells

0 30 300
training time / min

Figure 1.3: Advanced features and computational efficiency analysis. (a) Low
temporal-resolution trajectory data (2 Hz) imported into RatInABox is upsampled
(“augmented”) using cubic spline interpolation. The resulting trajectory is a close
match to the ground truth trajectory (Sargolini et al. (2006)) from which the low
resolution data was sampled. (b) Movement can be controlled by a user-provided
“drift velocity” enabling arbitrarily complex motion trajectories to be generated.
Here I demonstrate how circular motion can be achieved by setting a drift velocity
(grey arrows) which is tangential to the vector from the centre of the Environment
to the Agent’s position. (c) Egocentric VectorCells can be arranged to tile the
Agent’s field of view, providing an efficient encoding of what an Agent can ‘see’.
Here, two Agents explore an Environment containing walls and an object. Agent-1
(purple) is endowed with three populations of Boundary- (grey), Object- (red), and
Agent- (green) selective field of view VectorCells. Each circle represents a cell,
its position (in the head-centred reference frame of the Agent) corresponds to its
angular and distance preferences and its shading denotes its current firing rate.
The lower panel shows the firing rate of five example cells from each population
over time. (d) A Neurons class containing a feedforward neural network learns,
from data collect online over a period of 300 minutes, to approximate a complex
target receptive field from a set of grid cell inputs. This demonstrates how learning
processes can be incorporated and modelled into RatInABox. (e) RatInABox used in
a simple reinforcement learning example. A policy iteration technique converges onto
an optimal value function (heatmap) and policy (trajectories) for an Environment
where a reward is hidden behind a wall. State encoding, policy control and the
Environment are handled naturally by RatInABox. (f) Compute times for common
RatInABox (purple) and non-RatInABox (red) operations on a consumer-grade CPU.
Updating the random motion model and calculating boundary vector cell firing rates
is slower than place or grid cells (note log-scale) but comparable, or faster than,
size-matched non-RatInABox operations. Inset shows how the total update time
(random motion model and place cell update) scales with the number of place cells.

54 Chapter 1. The RatInABox toolkit

trajectory dataset from a much larger environment is also supplied with
permission from Tanni et al. (2022).

RatInABox is computationally efficient. I compare compute times for
typical RatInABox operations (Figure 1.3f, purple bars) to typical non-
RatInABox operations representing potential ‘bottlenecking’ operations in
a downstream analysis or model-training procedure for which RatInABox is
providing data (Figure 1.3f, red bars). These were multiplying a matrix by a
vector using the numpy (Harris et al. 2020) package and a forward and backward
pass through a small feedforward artificial neural network using the pytorch
package (Paszke et al. 2019). PlaceCells, GridCells and the random motion
model all update faster than these two operations. BoundaryVectorCells
(because they require integrating around a 360° field-of-view) are significantly
slower than the other cells but still outpace the feedforward neural network.
All vector, matrix, and cell populations were size n = 100, the feedforward
network had layer sizes n;, = (100, 1000, 1000, 1), the Environment was 2D
with no additional walls and all operations were calculated on a consumer-grade
CPU (MacBook Pro, Apple M1). These results imply that, depending on the
details of the use-case, RatInABox will likely not be a significant computational
bottleneck.

Testing (Figure 1.3f, inset) reveals that the combined time for updating the
motion model and a population of PlaceCells scales sublinearly O(1) for small
populations n < 1000 where updating the random motion model dominates
compute time, and linearly for large populations n > 1000. PlaceCells,
BoundaryVectorCells and the Agent motion model update times will be
additionally affected by the number of walls/barriers in the Environment. 1D
simulations are significantly quicker than 2D simulations due to the reduced

computational load of the 1D geometry.

1.3.1 Case Studies

I envisage RatInABox being used to support a range of theoretical studies by

providing data and, if necessary, infrastructure for building models powered

1.3. Validation and Use-Case Demonstrations 55

by this data. This ‘Bring-Your-Own-Algorithm’ approach makes the toolkit
generally applicable, not specialised to one specific field. Two exemplar use-
cases are provided in Appendix A.3.2 and are briefly described below. The
intention is to demonstrate the capacity of RatInABox for use in varied types
of computational studies and to provide tutorials as a tool for learning how to
use the package. Many more demonstrations and accompanying notebooks are
provided on the Github repository.

In my first example I perform a simple experiment where location is
decoded from neural firing rates (summarised in Figure A.1). Data — the
location and firing rate trajectories of an Agent randomly exploring a 2D
Environment — are generated using RatInABox. Gaussian process regression
is used to predict position from firing rates on a held-out testing dataset. I
compare the accuracy of decoding using different cell types; place cells, grid
cells and boundary vector cells.

Next, I demonstrate the application of RatInABox to a simple reinforcement
learning (RL) task (summarised in Figure 1.3e). A small network capable of
model-free RL is constructed and trained using RatInABox. First a neuron
calculates and learns — using a continuous variant of temporal difference learning
~ the value function V™ (z) = Y; w; FP°(x) as a linear combination of place
cell basis features. Then a new ‘improved’ policy is defined by setting a drift
velocity — which biases the Agent’s motion — proportional to the gradient of the
value function v (z) = 7(2) o VV7|,. The Agent is therefore encouraged
to move towards regions with high value. Iterating between these stages over
many episodes (“policy iteration”) results in convergence towards near optimal
behaviour where the Agent takes the shortest route to the reward, avoiding
the wall (Figure 1.3e).

Additional tutorials, not described here but available online, demonstrate
how RatInABox can be used to model splitter cells, conjunctive grid cells,
biologically plausible path integration, successor features, deep actor-critic

RL, whisker cells and more. Despite including these examples I stress that

https://github.com/RatInABox-Lab/RatInABox/tree/main/demos
https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/

56 Chapter 1. The RatIlnABox toolkit

they are not exhaustive. RatInABox provides the framework and primitive
classes/functions from which highly advanced simulations such as these can be

built.

1.4 Discussion: Scope, Assumptions, and Fu-

ture Development

RatInABox is a lightweight, open-source toolkit for generating realistic,
standardised trajectory and neural data in continuous environments. It should
be particularly useful to those studying spatial navigation and the role of the
hippocampal formation. It remains purposefully small in scope - intended
primarily as a means for generating data. I do not provide, nor intend to
provide, a set of benchmark learning algorithms to use on the data it generates.
Its user-friendly API, inbuilt data-plotting functions and general yet modular
feature set mean it is well placed empower a wide variety of users to more
rapidly build, train and validate models of hippocampal function (Lee et al.
2023) and spatial navigation (George et al. 2023b), accelerating progress in the
field.

This package is not the first to model neural data (Stimberg et al. 2019;
Hepburn et al. 2012; Hines et al. 1997) or spatial behaviour (Todorov et al. 2012;
Merel et al. 2019) yet it distinguishes itself by integrating these two aspects
within a unified, lightweight framework. The modelling approach employed by

RatInABox involves certain assumptions:

1. Tt does not engage in the detailed exploration of biophysical (Stimberg
et al. 2019; Hines et al. 1997) or biochemical (Hepburn et al. 2012) aspects
of neural modelling, nor does it delve into the mechanical intricacies of
joint and muscle modelling (Todorov et al. 2012; Merel et al. 2019). While
these elements are crucial in specific scenarios, they demand substantial
computational resources and become less pertinent in studies focused on

higher-level questions about behaviour and neural representations.

1.4. Discussion 57

2. A focus of this package is modelling experimental paradigms commonly
used to study spatially modulated neural activity and behaviour in
rodents. Consequently, environments are currently restricted to being two-
dimensional and planar, precluding the exploration of three-dimensional
settings. However, in principle, these limitations can be relaxed in the

future.

3. RatInABox avoids the oversimplifications commonly found in discrete
modelling, predominant in reinforcement learning (Chevalier-Boisvert
et al. 2023; Juliani et al. 2022), which I believe impede its relevance to

neuroscience.

4. Currently, inputs from different sensory modalities, such as vision
or olfaction, are not explicitly considered. Instead, sensory input
is represented implicitly through efficient allocentric or egocentric
representations. If necessary, one could use the RatInABox API in
conjunction with a third-party computer graphics engine to circumvent

this limitation.

5. Finally, focus has been given to generating synthetic data from steady-
state systems. Hence, by default, agents and neurons do not explicitly
include learning, plasticity or adaptation. Nevertheless, it has been
shown that a minimal set of features such as parameterised function-
approximator neurons and policy control enable time varying behavioural
policies and cell responses (Bostock et al. 1991; Barry et al. 2007) to be

modelled within the framework.

In conclusion, while no single approach can be deemed the best, I believe
that RatInABox’s unique positioning makes it highly suitable for normative
modelling and NeuroAl. I anticipate that it will complement existing toolkits
and represent a significant contribution to the computational neuroscience

toolbox.

Chapter 2

Theta Sequences as Eligibility
Traces: A Biological Solution to
Credit Assignment

Hippocampal RL, Part 1

This chapter was submitted to a short paper workshop, hence its brevity. It
can be viewed as a theoretical distillation of the mechanisms and model more
thoroughly explored in Chapter 3, and may be skipped entirely without loss of

continuity.

Summary

Credit assignment problems, for example policy evaluation in RL, often
require bootstrapping prediction errors through preceding states or maintaining
temporally extended memory traces; solutions which are unfavourable or
implausible for biological networks of neurons. I propose theta sequences
— chains of neural activity during theta oscillations in the hippocampus, thought
to represent rapid playthroughs of awake behaviour — as a solution. By analysing
and simulating a model for theta sequences I show they compress behaviour
such that existing but short O(10) ms neuronal memory traces are effectively

extended allowing for bootstrap-free credit assignment without long memory

60 Chapter 2. Theta Sequences as Eligibility Traces

traces, equivalent to the use of eligibility traces in TD(A).

2.1 Introduction: The Timescale Mismatch in

Biological Reinforcement Learning

When one decodes position, xg, from the hippocampus (HPC) of a rodent
it sweeps from behind to in front of the true position, xp, once every theta
cycle (a strong 5-10 Hz neural oscillation). So-called “theta sequences” (Foster
et al. 2007) don’t make sense if the only goal of HPC is to accurately encode
self-location at all times, they likely serve some other objective (Drieu et al.
2019). Building off a body of literature linking fast hippocampal phenomena to
learning and RL (Mehta et al. 2000; Bono et al. 2021; George et al. 2023a), here
it is demonstrated that theta sequences accelerate learning analogous to how
eligibility traces (ETs) accelerate policy evaluation in RL. Policy evaluation with
temporal difference (TD) learning permits two kinds of solutions: prediction
errors can be bootstrapped through preceding states one-by-one (TD(0)) or
temporally extended ETs can be maintained so credit can be assigned to
states directly (Monte-Carlo, aka. TD(1)). These approaches are unified by
the TD()) algorithm (Sutton 1988) (see Appendix B.2). Learning with long
ETs, TD(A > 0), is typically faster, and therefore desirable, but biologically
implausible since individual neurons have no trivial way to maintain ETs over
timescales significantly longer than the membrane time constant O(10 — 50) ms.
Perhaps theta sequences provide a solution to this problem: starting behind
and moving in front of the animal rapidly within each cycle, the series of states
observed within a sequence is an exact temporal compression of the states
encountered on behavioural timescales (Figure 2.1a). In this regime the short
neuronal ETs are magnified by the same compression factor and long ETs
are indirectly achieved (see Appendix B.4). I derive the relationship between
TD(A) and theta sequences and empirically test it on a policy evaluation task
(Figure 2.1b) by comparing artificial agents implementing TD(\) with varying
N's (Figure 2.1c) to biological agents with short eligibility traces, TD(\ ~ 0),

2.2. An Equivalence Between Theta Sequences and Eligibility Traces 61

undergoing theta sequences of varying velocity (Figure 2.1d).

2.2 An Equivalence Between Theta Sequences

and Eligibility Traces

Temporal difference learning using bioplausibly short ETs, 7, = 10 ms, on theta
sequences is algorithmically equivalent to learning with long ETs rgff without
theta sequences (see Appendix B). The effective compression is given by the

ratio of the sequence velocity to the true agent velocity

eff |$E|

M= (2.1)

I around a 2 m track upon

Agents move at a constant velocity of vp = 10 cm s~
which a small reward is located, whilst learning the value function (Figure 2.1b).
Increasing theta sequence velocity accelerates learning for the biological agent
similar to how increasing the ET timescale accelerates learning for the artificial
agent (Figure 2.1cd, top panel). When sequence velocity is low, learning
resembles heavily bootstrapped TD(0) with the value function slowly creeping
back from the reward site over time. When sequence velocity is high, learning
resembles TD(1) with credit appropriately assigned to all states simultaneously
(Figure 2.1cd, bottom panel). Biologically realistic sequence velocities (2 - 10
ms~! (Wikenheiser et al. 2015)) match the range in the model where there is a
sharp change from TD(0)-like to TD(1)-like learning regimes. Small errors can
be observed in biological learning (Figure 2.1d doesn’t converge to 1 for slower
sequence speeds) due to, I suspect, "loop effects’ (Appendix Appendix B.5)
occuring when the sequence discontinuously resets once per theta cycle. These
loop effects are not catastrophic for learning. Despite these effects I actually
find learning on theta sequences is overall [ess noisy (compare value estimates
in Figure 2.1c and d) probably because, where the artificial agent can visit a
location once per lap, theta sequences can traverse a location multiple times,

smoothing learning. Learning with very fast sequences outpaces the artificial

62 Chapter 2. Theta Sequences as Eligibility Traces

equivalent, probably because a single sweep (the very first) can explore the
entire environment whereas the sequence-less artificial agent must wait until at
least one lap for it to have observed all states. In reality sweeps this fast are

not observed in the brain.

a Theta sweeps compress states in time b Linear policy evaluation on a 1D track ¢ Artificial agent learns with TD(A) d Biological agent learns with theta

Re(V sequences Ro(/
Position, x Features, 14 TD(1) () ()

faster theta | 40

(5-10 Hz)
- XE?’,” 05 il;%\il\ty |12 V@uences
/] 0.
8:

\
\
D
\
s,
\
o
—io o
DG
o
—“po
Do

1 T .] I 'L 8 16 i
aps aj s
Y A P! P
’ r T 1 Laps
Policy, Reward.

)
/’ ' ; 1,=025s A"/\ Vg =2.5ms!
7 Value (true) V* l/\ -
time,t T ! !
Value (estimate) ‘4/\ Ve =20 ms“/\
1 3

6 Position,‘x /' m 2 Posmon x/ m Poslllon x/ m

Figure 2.1: a Theta sequences: zp(t) (encoded position), sweeps from behind
to in front of zp(t) (true position), compressing spatial inputs, therefore indirectly
extending memory traces. b A policy evaluation task on a periodic 1D track. The
value function is approximated as a linear sum of Gaussian basis features. ¢ An
artificial agent learns with TD()). (Top) Learning curves showing R? between true
and estimated value functions for increasingly long eligibility traces (increasing \).
(Bottom) Evolution of the value estimate over learning for two opposing regimes:
short eligibility traces (lots of bootstrapping) and long eligibility traces (no/little
bootstrapping) d As in panel ¢ but a biological agent with short eligibility traces 10
ms learns with theta sequences of increasing velocity. Sequence velocities are chosen
to match eligibility timescales in panel ¢ according to the proposed theory.

2.3 Discussion: Functional Implications

Theta sequences provide a viable mechanism by which biological networks of
neurons can perform long-term credit assignment without resorting to slow
bootstrapping nor maintaining implausibly long memory traces. Increasing
sequence velocity is equivalent to increasing A — using longer ETs — in TD(\).
Interestingly, in the brain theta power correlates with environmental uncertainty
(Cavanagh et al. 2011) as well as periods of learning (Joensen et al. 2023) and
sequence velocity depends on an animal’s proximity to reward (Wikenheiser
et al. 2015); based on the results shown here, I conjecture that top-down
processes may actively control theta sequence speeds in order to accelerate or

slow down learning depending on local conditions.

Chapter 3

Rapid Learning of Predictive
Maps with STDP and Theta

Phase Precession

Hippocampal RL, Part 2

Summary

Chapter 2 showed how theta phase precession can compress the timescale
of behaviour allowing short timescale learning rules to rapidly learn long
timescale associations. Here I build a biologically plausible model applying
these ideas to learning successor features—representations encoding long
timescale behavioural associations—with STDP—a short timescale learning

rule for spiking neurons.

The predictive map hypothesis is a promising candidate principle for
hippocampal function. A favoured formalisation of this hypothesis, called the
successor representation, proposes that each place cell encodes the expected
state occupancy of its target location in the near future. This predictive
framework is supported by behavioural as well as electrophysiological evidence

and has desirable consequences for both the generalisability and efficiency of

64 Chapter 3. Learning Predictive Maps with STDP and Theta

reinforcement learning algorithms. However, it is unclear how the successor
representation might be learnt in the brain. Error-driven temporal difference
learning, commonly used to learn successor representations in artificial agents,
is not known to be implemented in hippocampal networks. Instead, it is
demonstrated that spike-timing dependent plasticity (STDP), a form of
Hebbian learning, acting on temporally compressed trajectories known as
“theta sweeps”, is sufficient to rapidly learn a close approximation to the
successor representation. The model is biologically plausible — it uses spiking
neurons modulated by theta-band oscillations, diffuse and overlapping place
cell-like state representations, and experimentally matched parameters. I show
how this model maps onto known aspects of hippocampal circuitry and explains
substantial variance in the temporal difference successor matrix, consequently
giving rise to place cells that demonstrate experimentally observed successor
representation-related phenomena including backwards expansion on a 1D
track and elongation near walls in 2D. Finally, the model provides insight into
the observed topographical ordering of place field sizes along the dorsal-ventral
axis by showing this is necessary to prevent the detrimental mixing of larger
place fields, which encode longer timescale successor representations, with

more fine-grained predictions of spatial location.

3.1 Introduction: The Hippocampus, Predic-
tive Maps, and a Role for STDP

Knowing where you are and how to navigate in your environment is an everyday
existential challenge for motile animals. In mammals, a key brain region
supporting these functions is the hippocampus (Scoville et al. 1957; Morris et al.
1982), which represents self-location through the population activity of place
cells — pyramidal neurons with spatially selective firing fields (O’Keefe et al.
1971). Place cells, in conjunction with other spatially tuned neurons (Taube
et al. 1990; Hafting et al. 2005), are widely held to constitute a “cognitive map”

encoding information about the relative location of remembered locations and

3.1. The Hippocampus, Predictive Maps, and a Role for STDP 65

providing a basis upon which to flexibly navigate (Tolman 1948; O'Keefe et al.
1978).

The hippocampal representation of space incorporates spike time and spike
rate based encodings, with both components conveying broadly similar levels of
information about self-location (Skaggs et al. 1996b; Huxter et al. 2003). Thus,
the position of an animal in space can be accurately decoded from place cell
firing rates (Wilson et al. 1993) as well as from the precise time of these spikes
relative to the background 8-10Hz theta oscillation in the hippocampal local
field potential (Huxter et al. 2003). The latter is made possible since place cells
have a tendency to spike progressively earlier in the theta cycle as the animal
traverses the place field - a phenomenon known as phase precession (O’Keefe
et al. 1993). Therefore, during a single cycle of theta the activity of the place
cell population smoothly sweeps from representing the past to representing the
future position of the animal (Maurer et al. 2006), and can simulate alternative
possible futures across multiple cycles (Johnson et al. 2007).

In order for a cognitive map to support planning and flexible goal-directed
navigation it should incorporate information about the overall structure of
space and the available routes between locations (Tolman 1948; O’Keefe et al.
1978). Theoretical work has identified the regular firing patterns of entorhinal
grid cells with the former role, providing a spatial metric sufficient to support
the calculation of navigational vectors (Bush et al. 2015; Banino et al. 2018).
In contrast, associative place cell-place cell interactions have been repeatedly
highlighted as a plausible mechanism for learning the available transitions in an
environment (Muller et al. 1991; Blum et al. 1996; Mehta et al. 2000). In the
hippocampus, such associative learning has been shown to follow a spike-timing
dependent plasticity (STDP) rule (Bi et al. 1998) — a form of Hebbian learning
where the temporal ordering of spikes between presynaptic and postsynaptic
neurons determines whether long-term potentiation or depression occurs. One
of the consequences of phase precession is that correlates of behaviour, such

as position in space, are compressed onto the timescale of a single theta cycle

66 Chapter 3. Learning Predictive Maps with STDP and Theta

and thus coincide with the time-window of STDP O(20 — 50 ms) (Skaggs et al.
1996b; Mehta et al. 2000; Mehta 2001; Mehta et al. 2002). This combination of
theta sweeps and STDP has been applied to model a wide range of sequence
learning tasks (Jensen et al. 1996; Koene et al. 2003; Reifenstein et al. 2021),
and as such, potentially provides an efficient mechanism to learn from an
animal’s experience — forming associations between cells which are separated
by behavioural timescales much larger than that of STDP.

Spatial navigation can readily be understood as a reinforcement learning
problem - a framework which seeks to define how an agent should act to
maximise future expected reward (Sutton et al. 1998). Conventionally the value
of a state is defined as the expected cumulative reward that can be obtained
from that location with some temporal discount applied. Thus, the relationship
between states and the rewards expected from those states are captured in a
single value which can be used to direct reward-seeking behaviour. However,
the computation of expected reward can be decomposed into two components —
the successor representation, a predictive map capturing the expected location
of the agent discounted into the future, and the expected reward associated
with each state (Dayan 1993). Such segregation yields several advantages since
information about available transitions can be learnt independently of rewards
and thus changes in the locations of rewards do not require the value of all
states to be re-learnt. This recapitulates a number of long-standing theories of
hippocampus which state that hippocampus provides spatial representations
that are independent of the animal’s particular goal and support goal-directed
spatial navigation (Redish et al. 1998; Burgess et al. 1997; Koene et al. 2003;
Hasselmo et al. 2005; Erdem et al. 2012).

A growing body of empirical and theoretical evidence suggests that the
hippocampal spatial code functions as a successor representation (Stachenfeld
et al. 2017). Specifically, that the activity of hippocampal place cells encodes a
predictive map over the locations the animal expects to occupy in the future.

Notably, this framework accounts for phenomena such as the skewing of place

3.1. The Hippocampus, Predictive Maps, and a Role for STDP 67

fields due to stereotyped trajectories (Mehta et al. 2000), the reorganisation of
place fields following a forced detour (Alvernhe et al. 2011), and the behaviour
of humans and rodents whilst navigating physical, virtual and conceptual
spaces (Momennejad et al. 2017; Cothi et al. 2022b). However, the successor
representation is typically conceptualised as being learnt using the temporal
difference learning rule (Russek et al. 2017; Cothi et al. 2020b), which uses
the prediction error between expected and observed experience to improve
the predictions. Whilst correlates of temporal difference learning have been
observed in the striatum during reward-based learning (Schultz et al. 1997), it is
less clear how it could be implemented in the hippocampus to learn a predictive
map. In this context, it was hypothesised that the predictive and compression
properties of theta sweeps, combined with STDP in the hippocampus, might
be sufficient to approximately learn a successor representation.

I simulated the synaptic weights learnt due to STDP between a set of
synthetic spiking place cells and show they closely resemble the weights
of a successor representation learnt with temporal difference learning. I
found that the inclusion of theta sweeps with the STDP rule increased the
efficiency and robustness of the learning, with the STDP weights being a close
approximation to the temporal difference successor matrix. Further, I find
no fine tuning of parameters is needed - biologically determined parameters
are optimal to efficiently approximate a successor representation and replicate
experimental results synonymous with the predictive map hypothesis, including
the behaviourally biased skewing of place fields (Mehta et al. 2000; Stachenfeld
et al. 2017) in realistic 1- and 2-dimensional environments. Finally, I use the
simulation of STDP with theta sweeps to generate insight into the observed
topographical ordering of place field sizes along the dorsal-ventral hippocampal
axis (Kjelstrup et al. 2008), by observing that such organisation is necessary
to prevent the detrimental mixing of larger place fields, which approximate
longer timescale successor representations (Momennejad et al. 2018), with

more fine-grained predictions of spatial location. This model, focussing on the

68 Chapter 3. Learning Predictive Maps with STDP and Theta

role of theta sweeps and STDP in learning a hippocampal predictive map, is
part of a growing body of recent work emphasising hippocampally-plausible
mechanisms of learning successor representations, such as using hippocampal
recurrence (Fang et al. 2022) or synaptic learning rules which bootstrap long-

range predictive associations (Bono et al. 2021).

3.2 STDP and Phase Precession Approximate

the Successor Representation

The goal was to investigate whether a combination of STDP and phase
precession is sufficient to generate a successor representation-like matrix of
synaptic weights between place cells in CA3 and downstream CA1. The model
comprises of an agent exploring a maze where its position x(¢) is encoded by
the instantaneous firing of a population of N CA3 basis features, each with
a spatial receptive field f7 (x) given by a thresholded Gaussian of radius 1
m and 5 Hz peak firing rate. As the agent traverses the receptive field, its
rate of spiking is subject to phase precession ff (x,t) with respect to a 10
Hz theta oscillation. This is implemented by modulating the firing rate by
an independent phase precession factor which varies according to the current
theta phase and how far through the receptive field the agent has travelled
(Chadwick et al. 2015)(see Appendix C.3 and Figure 3.1a) such that, in total,

the instantaneous firing rate of the j™ basis features is given by:

fi(x,t) = f1(x) £ (x,1). (3.1)

CA3 basis features f; then linearly drive downstream CA1 ‘STDP successor
features’ ¢; (Figure 3.1b)

@Ei (X, t) = Z Wijfj (X, t). (32)
J

3.2. STDP and Phase Precession Approximate the SR 69

Using an inhomogeneous Poisson process, the firing rates of the basis and
STDP successor features are converted into spike trains which cause learning
in the weight matrix W;; according to an STDP rule (see Appendix C.4 and
Figure 3.1c). The STDP synaptic weight matrix W;; (Figure 3.1d) can then
be directly compared to the temporal difference (TD) successor matrix M;;
(Figure 3.1e), learnt via TD learning on the CA3 basis features (the full learning
rule is derived in Appendix C.5 and shown in Equation (C.24)). Further, the TD

successor matrix M;; can also be used to generate the “TD successor features’
Pi(x) =Y My fi(x), (3.3)
J

allowing for direct comparison and analyses with the STDP successor features
¥; (Equation (3.2)), using the same underlying firing rates driving the TD
learning to sample spikes for the STDP learning. This abstraction of biological
detail avoids the challenges and complexities of implementing a fully spiking
network, although an avenue for correcting this would be the approach of Brea
et al. (2016) and Bono et al. (2021). In my model phase precession generates
theta sweeps (Figure 3.1a, grey box) as cells successively visited along the
current trajectory fire at progressively later times in each theta cycle. Theta
sweeps take the current trajectory of the agent and effectively compress it
in time. As is shown below, these compressed trajectories are important for

learning successor features.

3.2.1 STDP Approximates TD-learning

I first simulated an agent with N = 50 evenly spaced CA3 place cell basis
features on a 5 m circular track (linear track with circular boundary conditions
to form a closed loop, Figure 3.2a). The agent moved left-to-right at a constant
velocity for 30 minutes, performing ~58 complete traversals of the loop. The
STDP weights learnt between the phase precessing basis features and their
downstream STDP successor features (Figure 3.2b) were markedly similar to

the successor representation matrix generated using temporal difference learning

70 Chapter 3. Learning Predictive Maps with STDP and Theta

CAG3 basis features, fj(x)
j=1 j=10 j=20 j=30 j=50

-"~—*—> A RKRKRKI K KNI IKIII KKK KK KK KKK KKK KKK

— T T r— Theta
p=o—t 1T Ml & W1 T ——d] sweer
A
R N | S | IR TR |
j=30 [
Te=0.1s
X
rhy?hnf-\/’\//\/’\/’-\-//\/’-\/’-\/’-\/’-\.//\/
. C d Synaptic weights, @ Successor matrix,
Hippocampal model STDP rule (STDP leaming) (TD learning)
fi(x) A - max
@ Basis arre=t =10
. o . S features 3 20
Q ~
= ° -
™o'=40 ms sost pre g o
p = Successor T t —tJ §2)
“ » O features =20 ms]
faros'=-0.4 & S0 20 a0 0

& =Receptive fields Pi(x)
= Synaptic weights

presynaptic cell

Figure 3.1: STDP between phase precessing place cells produces successor
representation-like weight matrices. a Schematic of an animal running left-to-
right along a track. 50 cells phase precess, generating theta sweeps (e.g. grey
box) that compress spatial behaviour into theta timescales (10 Hz). b I simulate
a population of CA3 ‘basis feature’ place cells which linearly drive a population
of CA1 ‘STDP successor feature’ place cells through the synaptic weight matrix
W;;. ¢ STDP learning rule; pre-before-post spike pairs (t?OSt — t?re > 0) result
in synaptic potentiation whereas post-before-pre pairs (t?OSt — t;)re < 0) result in
depression. Depression is weaker than potentiation but with a longer time window,
as observed experimentally. d Simplified schematic of the resulting synaptic weight
matrix, W;;. Each postsynaptic cell (row) fires just after, and therefore binds strongly
to, presynaptic cells (columns) located to the left of it on the track. e Simplified
schematic of the successor matrix (Equation (3.3)) showing the synaptic weights
after training with a temporal difference learning rule, where each CA1 cell converges
to represent the successor feature of its upstream basis feature. Backwards skewing
(successor features “predict” upcoming activity of their basis feature) is reflected in
the asymmetry of the matrix, where more activity is in the lower triangle, similar to
panel d.

3.2. STDP and Phase Precession Approximate the SR 71

applied to the same basis features under the same conditions (Figure 3.2c,
element-wise Pearson correlation between matrices R? = 0.87). In particular,
the agent’s strong left-to-right behavioural bias led to the characteristic
asymmetry in the STDP weights predicted by successor representation models
(Stachenfeld et al. 2017), with both matrices dominated by a wide band of
positive weight shifted left of the diagonal and negative weights shifted right.

To compare the structure of the STDP weight matrix W;; and TD successor
matrix M;;, I aligned each row on the diagonal and averaged across rows (see
Appendix C.8), effectively calculating the mean distribution of learnt weights
originating from each basis feature (Figure 3.2d). Both models exhibited a
similar distribution, with values smoothly ramping up to a peak just left of
centre, before a sharp drop-off to the right caused by the left-to-right bias
in the agent’s behaviour. In the network trained by TD learning this is
because CA3 place cells to the left of (i.e. preceding) a given basis feature are
reliable predictors of that basis feature’s future activity, with those immediately
preceding it being the strongest predictors and thus conferring the strongest
weights to its successor feature. Conversely, the CA3 place cells immediately to
the right of (i.e. after) this basis feature are the furthest they could possibly be
from predicting its future activity, resulting in minimal weight contributions.
Indeed, T observed some of these weights even becoming negative (Figure 3.2d)
— necessary to approximate the sharp drop-off in predictability using the smooth
Gaussian basis features. With the STDP model, the similar distribution of
weights is caused by the asymmetry in the STDP learning rule combined with
the consistent temporal ordering of spikes in a theta sweep. Hence, the sequence
of spikes emitted by different cells within a theta cycle directly reflects the
order in which their spatial fields are encountered, resulting in commensurate
changes to the weight matrix. So, for example, if a postsynaptic neuron reliably
precedes its presynaptic cell on the track, the corresponding weight will be
reduced, potentially becoming negative. I note that weights changing their

sign is not biologically plausible, as it is a violation of Dale’s Law (Dale 1935).

72 Chapter 3. Learning Predictive Maps with STDP and Theta

This could perhaps be corrected with the addition of global excitation or by
recruiting inhibitory interneurons.

Notably, the temporal compression afforded by theta phase precession,
which brings behavioural effects into the millisecond domain of STDP, is an
essential element of this process (Lisman et al. 2005; Koene et al. 2003). When
phase precession was removed from the STDP model, the resulting weights
failed to capture the expected behavioural bias and thus did not resemble the
successor matrix - evidenced by the lack of asymmetry (Figure 3.2d, dashed
line; ratio of mass either side of y-axis 4.54 with phase precession vs. 0.99
without) and a decrease in the explained variance of the TD successor matrix
(Figure 3.2e, R? = 0.87 £0.01 vs R? = 0.63 & 0.02 without phase precession).
Similarly, without the precise ordering of spikes, the learnt weight matrix was
less regular, having increased levels of noise, and converged over 4.5x more
slowly (Figure 3.2¢; time to reach R? = 0.5: 2.5 vs. 11.5 minutes without phase
precession), still yet to fully converge over the course of 1 hour (Figure C.1—
supplement 1a). Thus, the ability to approximate TD learning appears specific
to the combination of STDP and phase precession. Indeed, there are deep
theoretical connections linking the two - see Appendix C.9.1 for a theoretical
investigation into the connections between TD learning and STDP learning
augmented with phase precession. This effect is robust to variations in running
speed (Figure C.1-supplement 1b) and field sizes (Figure C.1-supplement 1c),
as well as scenarios where target CA1 cells have multiple firing fields (Figure C.2—
supplement 2a) that are updated online during learning (Figure C.2-supplement
2b-d), or fully-driven by spikes in CA3 (Figure C.2-supplement 2e).

A hyperparameter sweep was also conducted to test if these results were
robust to changes in the phase precession and STDP learning rule parameters
(Figure C.3). The sweep range for each parameter contained and extended
beyond the “biologically plausible” values used in this chapter (Figure C.3a).
It was found that optimised parameters (those which result in the highest final

similarity between STDP and TD weight matrices, W;; and M;;) were very close

3.2. STDP and Phase Precession Approximate the SR 73

to the biological parameters already selected for my model from a literature
search (Figure C.3cd, parameter references also listed in figure) and, when they
were used, no drastic improvement was seen in the similarity between W;; and
M;;. The only exception was firing rate for which performance monotonically
improved as it increased - something the brain likely cannot achieve due to
energy constraints. In particular, the parameters controlling phase precession
in the CA3 basis features (Figure C.4a) can affect the CA1 STDP successor
features learnt, with ‘weak’ phase precession resembling learning in the absence
of theta modulation (Figure C.4bc), biologically plausible values providing the
best match to the TD successor features (Figure C.4d) and ‘exaggerated’ phase
precession actually hindering learning (Figure C.4e). Additionally, I find these
CA1 cells go on to inherit phase precession from the CA3 population even after
learning when they are driven by multiple CA3 fields (Figure C.4f), and that
this learning is robust to realistic phase offsets between the populations of CA3
and CA1 place cells (Figure C.4g).

Next, I examined the correspondence between my model and the TD-
trained successor representation in a situation without a strong behavioural
bias. Thus, I reran the simulation on the linear track without the circular
boundary conditions so the agent turned and continued in the opposite direction
whenever it reached each end of the track (Figure 3.2f). Again, the STDP
and TD successor representation weight matrices where remarkably similar
(R? = 0.88; Figure 3.2gh) both being characterised by a wide band of positive
weight centred on the diagonal (Figure 3.2i) - reflecting the directionally
unbiased behaviour of the agent. In this unbiased regime, theta sweeps were
less important though still confered a modest shape, learning speed, and
signal-strength advantage over the non-phase precessing model (Figure 3.2j) -
evidenced as an increased amount of explained variance (R? = 0.88 4 0.01 vs.
R? = 0.76 £ 0.02) and faster convergence (time to reach R?> = 0.5; 3 vs 7.5
minutes).

To test if the STDP model’s ability to capture the successor matrix would

74 Chapter 3. Learning Predictive Maps with STDP and Theta

scale up to open field spaces, I implemented a 2D model of phase precession (see
Appendix C.3) where the phase of spiking is sampled according to the distance
travelled through the place field along the chord currently being traversed
(Jeewajee et al. 2014). I then simulated the agent in an environment consisting
of two interconnected 2.5 x 2.5 m square rooms (Figure 3.2k) using an adapted
policy modelling rodent foraging behaviour that is biased towards traversing
doorways and following walls (Raudies et al. 2012) (see Appendix C.7 and 10
minute sample trajectory shown in Figure 3.2k). After training for 2 hours
of exploration, I found that the combination of STDP and phase precession
was able to successfully capture the structure in the TD successor matrix
(Figure 3.21-m, R? = 0.74, TD successor matrix calculated over the same 2

hour trajectory).

3.2.2 Learned Place Fields Exhibit Behaviorally-Biased

Skewing

The next step was to investigate how the similarities in weights between the
STDP and TD successor representation models are conveyed in the downstream
CA1 successor features. One hallmark of the successor representation is that
strong biases in behaviour (for example, travelling one way round a circular
track) induce a reliable predictability of upcoming future locations, which in
turn causes a backward skewing in the resulting successor features (Stachenfeld
et al. 2017). Such skewing, opposite to the direction of travel, has also been
observed in hippocampal place cells (Mehta et al. 2000). Under strongly biased
behaviour on the circular linear track, the biologically plausible STDP CA1
successor features (Equation (3.2)) had a very high correlation with the TD
successor features (Equation (3.3)) predicted by successor theory (Figure 3.3a;
R? = 0.9840.01). Both exhibited a pronounced backward skew, opposite
to the direction of travel (mean TD vs. STDP successor feature skewness:
= —0.39+0.01 vs. = —0.24 £0.07). Furthermore, both the STDP and TD
successor representation models predict that such biased behaviour should

induce a backwards shift in the location of place field peaks (Figure 3.3a

3.2. STDP and Phase Precession Approximate the SR 75

o=1m
a
------- > < ol PXXXXXXKKXXXKKXXX XXX XXX XXX XXX Wanunap
i Synaptic strength
b c Successor matrix, d y! l g e,
_l ek
3 —_ N
Qo) of——
F '
s " 41
|2}
7] o
8 Z o+
Q. =0 »
b T T T 0.
= 2 - x‘—xJ/m1 2 0 15 30

Learning time / min

X X XXX “N—VXXXXXXXXXXXXXXXXXXXXX__—_"’X

i l j1.

i Vos
e e———e r———
1 4
g
U)2.
=0
g — ——. — 0-*
i 2 A 12
= R2 =0.88 X=X /m 0 " %

Learning time / min

| left right farfrom near far from
room <+———+—> room doorway doorway doorway

=0

R2=0.74

j—>

Figure 3.2: Successor matrices are rapidly approximated by STDP applied to
spike trains of phase precessing place cells. a Agents traversed a 5 m circular track
in one direction (left-to-right) with 50 evenly distributed CA3 spatial basis features
(example thresholded Gaussian place field shown in blue, radius ¢ = 1 m). b&c
After 30 minutes, the synaptic weight matrix learnt between CA3 basis features and
CA1 successor features strongly resembles the equivalent successor matrix computed
by temporal difference learning. Rows correspond to CA1, columns to CA3. d To
compare the distribution of weights, matrix rows were aligned on the diagonal and
averaged over rows (mean + standard deviation shown). e Against training time,
I plot (top) the R? between the synaptic weight matrix and successor matrix and
(bottom) the signal-to-noise ratio of the synaptic matrix. Vertical lines show time
where R? reaches 0.5. f-j Same as panels a-e except the agent turns around at each
end of the track. The average policy is now unbiased with respect to left and right,
as can be seen in the diagonal symmetry of the matrices. k-m As in panels a-c
except the agent explores a two dimensional maze where two rooms are joined by a
doorway. The agent follows a random trajectory with momentum and is biased to
traverse doorways and follow walls.

76 Chapter 3. Learning Predictive Maps with STDP and Theta

left panel; TD vs. STDP successor feature shift in metres: —0.28 £ 0.00 vs
—0.38 £0.03) — this phenomenon is also observed in the hippocampal place
cells (Mehta et al. 2000), and my model accounts for the observation that more
shifting and skewing is observed in CA1 place cells than CA3 place cells (Dong
et al. 2021). As expected, when theta phase precession was removed from the
model no significant skew or shift was observed in the STDP successor features.
Similarly, the skew in field shape and shift in field peak were not present when
the behavioural bias was removed (Figure 3.3b) — in this unbiased scenario,
the advantage of the STDP model with theta phase precession was modest
relative to the same model without phase precession (R? = 0.99 £ 0.01 vs.
R? =0.964+0.01).

Examining the activity of CA1 cells in the two-room open field environment,
I found an increase in the eccentricity of fields close to the walls (Figure 3.3¢ &
d; average eccentricity of STDP successor features near vs. far from wall: 0.57 4+
0.06 vs. 0.33+0.07). In particular, this increased eccentricity is facilitated by
a shorter field width along the axis perpendicular to the wall (Figure 3.3e), an
effect observed experimentally in rodent place cells (Tanni et al. 2021). This
increased eccentricity of cells near the wall remained when the behavioural
bias to follow walls was removed (Figure 3.3d; average eccentricity with vs.
without wall bias: 0.57 +0.06 vs. 0.54 4+ 0.06), thus indicating it is primarily
caused by the inherent bias imposed on behaviour by extended walls rather
than an explicit policy bias. Note that the ellipse fitting algorithm accounts
for portions of the field that have been cut off by environmental boundaries
(see Appendix C & Figure 3.3c), and so this effect is not simply a product of
basis features being occluded by walls.

In a similar fashion, the bias in the motion model used here - which is
predisposed to move between the two rooms - resulted in a shift in STDP
successor feature peaks towards the doorway (Figure 3.3f & g; inwards shift in
metres for STDP successor features near vs. far from doorway: 0.15 + 0.06 vs.

0.04 £ 0.05; with doorway bias turned off: 0.05+ 0.08 vs. 0.04 £ 0.05). At the

3.2. STDP and Phase Precession Approximate the SR 77

level of individual cells this was visible as an increased propensity for fields to
extend into the neighbouring room after learning (Figure 3.3h). Hence, although
basis features were initialised as two approximately non-overlapping populations
— with only a small proportion of cells near the doorway extending into the
neighbouring room — after learning many cells bind to those on the other side of
the doorway, causing their place fields to diffuse through the doorway and into
to the other room (Figure 3.3f). This shift could partially explain why place cell
activity is found to cluster around doorways (Spiers et al. 2015) and rewarded
locations (Dupret et al. 2010) in electrophysiological experiments. Equally
it is plausible that a similar effect might underlie experimental observations
that neural representations in multi-compartment environments typically begin
heavily fragmented by boundaries and walls but, over time, adapt to form a
smooth global representations (e.g., as observed in grid cells by Carpenter et al.

(2015)).

3.2.3 Anatomical Segregation Supports Multiscale Pre-
dictive Maps

The final investigation concerned whether the STDP learning rule was able
to form successor representation-like connections between basis features of
different scales. Recent experimental work has highlighted that place fields
form a multiscale representation of space, which is particularly noticeable in
larger environments (Tanni et al. 2021; Eliav et al. 2021), such as the one
modelled here. Such multiscale spatial representations have been hypothesised
to act as a substrate for learning successor features with different time horizons
— large scale place fields are able to make predictions of future location across
longer time horizons, whereas place cells with smaller fields are better placed
to make temporally fine-grained predictions. Agents could use such a set of
multiscale successor features to plan actions at different levels of temporal
abstraction, or predict precisely which states they are likely to encounter soon
(Momennejad et al. 2018). Despite this, what is not known is whether different

sized place fields will form associations when subject to STDP coordinated by

78 Chapter 3. Learning Predictive Maps with STDP and Theta

a
Basis Feature, f(x) A = shift /13 = skewness
I X . x)
H A=-0.28+0.00m, H3=0.39+0.01 O x/m 5
I «— .
T F
H A =-0.38+0.03 m, H3=0.24+0.07
. <—
A =-0.05:0.07 m, F3=0.00£0.08 H(/.)=098
[A - .
"R2(1y0),..) =0.81
Basis Feature, f(x)
I x . (x)
0 x/m 5
I x -
I x - IS
Re(1,) = 0.99
- 00909000 o
R2(1,.) = 0.96
C

Basis Feature, f(x) Basis Feature, f(x)

e h
*kk ns g ns Il Near centre
0.8 =—— .
0.4 = Il Near
° 2 < doorway

2 = ~

£ Near Ec), 1
£04 centre 33 g
3 €2 kS
i 50 z
[in} g8 z
25 c

5] Near Near 8o

Near 0 Ellipse-to-wall %ert = 0.2dcentre doorway Before After

centre learning learning

angle, ¢

Figure 3.3: Place cells (aka. successor features) in my STDP model show
behaviourally biased skewing resembling experimental observations and successor
representation predictions. a In the loop maze (motion left-to-right) STDP place cells
skew and shift backwards, and strongly resemble place cells obtained via temporal
difference learning. This is not the case when theta phase precession is absent. b
In the corridor maze, where travel in either direction is equally likely, place fields
diffuse in both directions due to the unbiased movement policy. ¢ In the 2D maze,
place cells (of geodesic Gaussian basis features) near the wall elongate along the wall
axis (dashed line shows best fitting ellipse, angle construct show the ellipse-to-wall
angle). d Place cells near walls have higher elliptical eccentricity than those near the
centre of the environments. This increase remains even when the movement policy
bias to follow walls is absent. e The eccentricity for fields near the walls is facilitated
by an increase in the length of the place field along an axis parallel to the wall (¢
close to zero). (Continued on next page...)

3.2. STDP and Phase Precession Approximate the SR 79

Figure 3.3: (...continued from previous page) f Place cells near the doorway cluster
towards it and expand through the doorway relative to their parent basis features. g
The shift of place fields near the doorway towards the doorway is significant relative
to place fields near the centre and disappears when the behavioural bias to cross
doorways is absent. h The shift of place fields towards the doorway manifests as an
increase in density of cells near the doorway after exploration.

phase precession and what effect this would have on the resulting successor
features. Hypothetically, consider a small basis feature cell with a receptive
field entirely encompassed by that of a larger basis cell with no theta phase
offset between the entry points of both fields. A potential consequence of theta
phase precession is that the cell with the smaller field would phase precess
faster through the theta cycle than the other cell - initially it would fire later
in the theta cycle than the cell with a larger field, but as the animal moves
towards the end of the small basis field it would fire earlier. These periods
of potentiation and depression instigated by STDP could act against each
other, and the extent to which they cancel each other out would depend on the
relative placement of the two fields, their size difference, and the parameters of
the learning rule. To test this, I simulated an agent, learning according to my
STDP model in the circular track environment, with, simultaneously, three sets
of differently sized basis features (¢ = 0.5, 1.0 and 1.5 m, Figure 3.4a). Such
ordered variation in field size has been observed along the dorso-ventral axis
of the hippocampus (Kjelstrup et al. 2008; Strange et al. 2014); Figure 3.4b),
and has been theorised to facilitate successor representation predictions across
multiple time-scales (Stachenfeld et al. 2017; Momennejad et al. 2018).
When I trained the STDP model on a population of homogeneously-
distributed multiscale basis features, the resulting weight matrix displayed
binding across the different sizes regardless of the scale difference (Figure 3.4c
top). This in turn leads to a population of downstream successor features
with the same redundantly large scale (Figure 3.4c bottom). The negative
interaction between different sized fields was not sufficient to prevent binding

and, as such, the place fields of small features are dominated by contributions

80 Chapter 3. Learning Predictive Maps with STDP and Theta

from bindings to larger basis features. Conversely, when these multiscale
basis features were ordered along the dorso-ventral axis to prevent binding
between the different scales — cells of the three scales were processed separately,
Figure 3.4d top) — the multiscale structure is preserved in the resulting successor
features (Figure 3.4d bottom). I thus propose that place cell size can act as a
proxy for the predictive time horizon, 7 — also called the discount parameter,
v = e*%, in discrete Markov Decision Processes. However for this effect to be
meaningful, plasticity between cells of different scales must be minimised to
prevent short timescales from being overwritten by longer ones, this segregation

may plausibly be achieved by the observed size ordering along the hippocampal

dorsal-ventral axis.

-------- > 1l PXXXXXXXXXXXXXXXXXX XXX X XXX XXX Mannas s
G=05m» (not to scale) Synaptic weight matrices,
x o=1m C

o=15m

b Place cells are ordered along
the according

to receptive field size

Figure 3.4: Multiscale successor representations are stored by place cells with
multi-sized place fields but only when sizes are segregated along the dorso-ventral
axis. a An agent explores a 1D loop maze with 150 places cells of different sizes (50
small, 50 medium, and 50 large) evenly distributed along the track. b In rodent
hippocampus place cells are observed to be ordered along the dorso-ventral axis
according to their field size. ¢ When cells with different field sizes are homogeneously
distributed throughout hippocampus all postsynaptic successor features can bind to
all presynpatic basis features, regardless of their size (top). Short timescale successor
representations are overwritten, creating three equivalent sets of redundantly large
scale successor features (bottom). d Ordering cells leads to anatomical segregation;
postsynaptic successor features can only bind to basis features in the same size range
(off-diagonal block elements are zero) preventing cells with different size fields from
binding. Now, three dissimilar sets of successor features emerge with different length
scales, corresponding to successor features of different discount time horizons.

I I
Ranlln -
-_— S —

3.3. Discussion 81

3.3 Discussion: Bridging Synaptic Plasticity

and Reinforcement Learning

Successor representations store long-run transition statistics and allow for rapid
prediction of future states (Dayan 1993) - they are hypothesised to play a central
role in mammalian navigation strategies (Stachenfeld et al. 2017; Cothi et al.
2020b). It is shown that Hebbian learning between spiking neurons, resembling
the place fields found in CA3 and CA1, learns an accurate approximation to
the successor representation when these neurons undergo phase precession with
respect to the hippocampal theta rhythm. The approximation achieved by
STDP explains a large proportion of the variance in the TD successor matrix
and replicates hallmarks of successor representations (Stachenfeld et al. 2014;
Stachenfeld et al. 2017; Cothi et al. 2020b) such as behaviourally biased place
field skewing, elongation of place fields near walls, and clustering near doorways
in both one and two-dimensional environments.

That the predictive skew of place fields can be accomplished with a
STDP-type learning rule is a long-standing hypothesis; in fact, the authors that
originally reported this effect also proposed a STDP-type mechanism for learning
these fields (Mehta et al. 2000; Mehta 2001). Similarly, the possible accelerating
effect of theta phase precession on sequence learning has also been described in
a number of previous works (Jensen et al. 1996; Skaggs et al. 1996b; Koene et al.
2003; Reifenstein et al. 2021). Until recently (Fang et al. 2022; Bono et al. 2021),
SR models have largely not connected with this literature: they either remain
agnostic to the learning rule or assume temporal difference learning (which has
been well-mapped onto striatal mechanisms (Schultz et al. 1997; Seymour et al.
2004), but it is unclear how this is implemented in hippocampus) (Stachenfeld
et al. 2014; Stachenfeld et al. 2017; Cothi et al. 2020b; Geerts et al. 2020; Vértes
et al. 2019). Thus, one contribution of this chapter is to quantitatively and
qualitatively compare theta-augmented STDP to temporal difference learning,
and demonstrate where these functionally overlap. This explicit link permits

some insights about the physiology, such as the observation that the biologically

82 Chapter 3. Learning Predictive Maps with STDP and Theta

observed parameters for phase precession and STDP resemble those that are
optimal for learning the SR (Figure C.3), and that the topographic organisation
of place cell sizes is useful for learning representations over multiple discount
timescales (Figure 3.4). It also permits some insights for RL, such as that
the approximate SR learned with theta-augmented STDP, while provably
theoretically different from TD (Appendix C.9), is sufficient to capture key
qualitative phenomena.

Theta phase precession has a dual effect not only allowing learning by
compressing trajectories to within STDP timescales but also accelerating
convergence to a stable representation by arranging the spikes from cells
along the current trajectory to arrive in the order those cells are actually
encountered (Jensen et al. 1996; Koene et al. 2003). Without theta phase
precession, STDP fails to learn a successor representation reflecting the current
policy unless that policy is approximately unbiased. Further, by instantiating
a population of place cells with multiple scales I show that topographical
ordering of these place cells by size along the dorso-ventral hippocampal axis is
a necessary feature to prevent small discount timescale successor representations
from being overwritten by longer ones. Last, performing a grid search over
STDP learning parameters, I show that those values selected by evolution are
approximately optimal for learning successor representations. This finding is
compatible with the idea that the necessity to rapidly learn predictive maps
by STDP has been a primary factor driving the evolution of synaptic learning
rules in hippocampus.

While the model is biologically plausible in several respects, there remain a
number of aspects of the biology that are not interfaced with in this work, such
as different cell types, interneurons and membrane dynamics. Further, I do not
consider anything beyond the most simple model of phase precession, which
directly results in theta sweeps in lieu of them developing and synchronising
across place cells over time (Feng et al. 2015). Rather, the philosophy here is

to reconsider the most pressing issues with the standard model of predictive

3.3. Discussion 83

map learning in the context of hippocampus (e.g., the absence of dopaminergic
error signals in CA1 and the inadequacy of synaptic plasticity timescales). This
minimalism is believed to be helpful, both for interpreting the results presented
here and providing a foundation on which further work may examine these
biological intricacies, such as whether the model’s theta sweeps can alternately
represent future routes (Kay et al. 2020) e.g., by the inclusion of attractor
dynamics (Chu et al. 2022). Still, I show this simple model is robust to the
observed variation in phase offsets between phase precessing CA3 and CA1l
place cells across different stages of the theta cycle (Mizuseki et al. 2012). In
particular, this phase offset is most pronounced as animals enter a field (~ 90°)
and is almost completely reduced by the time they leave it (~ 90°) (Figure 3.2,
figure supplement 4g). Essentially the model hypothesises that the majority
of plasticity induced by STDP and theta phase precession will take place in
the latter part of place fields, equating to earlier theta phases. Notably, this is
in keeping with experimental data showing enhanced coupling between CA3
and CA1 in these early theta phases (Colgin et al. 2009; Hasselmo et al. 2002).
However, as the simulations show (Figure 3.2, figure supplement 4g), even if
these assumptions do not hold true, the model is sufficiently robust to generate
SR equivalent weight matrices for a range of possible phase offsets between
CA3 and CAL.

This model extends previous work — which required successor features to
recursively expand in order to make long range predictions (e.g. as demonstrated
in Brea et al. (2016) and Bono et al. (2021)) — by exploiting the existence of
temporally compressed theta sweeps (O’Keefe et al. 1993; Skaggs et al. 1996b),
allowing place cells with distant fields to bind directly without intermediaries
or ‘bootstrapping’ This configuration yields several advantages. First, learning
with theta sweeps converges considerably faster than without them. Biologically,
it is likely that successor feature learning via Hebbian learning alone (without
theta precession) would be too slow to account for the rapid stabilisation of

place cells in new environments at behavioural time scales (Bittner et al. 2017) —

84 Chapter 3. Learning Predictive Maps with STDP and Theta

Dong et al. observed place fields in CA1 to increase in width for approximately
the first 10 laps around a 3 m track (Dong et al. 2021). This timescale is well
matched by my model with theta sweeps in which CA1 place cells reach 75%
of their final extent after 5 minutes (or 9.6 laps) of exploration on a 5m track
but is markedly slower without theta sweeps.

Second, as well as extending previous work to large two-dimensional
environments and complex movement policies this model also uses realistic
population codes of overlapping Gaussian features. These naturally present a
hard problem for models of spiking Hebbian learning since, in the absence of
theta sweeps, the order in which features are encountered is not encoded reliably
in the relative timing or order of their spikes at synaptic timescales. Theta
sweeps address this by tending to sequence spikes according to the order in
which their originating fields are encountered. Indeed, preliminary experiments
show that when theta sweeps are absent the STDP successor features show
little similarity to the TD successor features. This work is thus particularly
relevant in light of a recent trend to focus on biologically plausible features for
reinforcement learning (Gustafson et al. 2011; Cothi et al. 2020b).

Other contemporary theoretical works have made progress on biological
mechanisms for implementing the successor representation algorithm using
somewhat different but complementary approaches. Of particular note are
the works by Fang et al. Fang et al. (2022), who show a recurrent network
with weights trained via a Hebbian-like learning rule converges to the successor
representation in steady state, and Bono et al. Bono et al. (2021) who derive a
learning rule for a spiking feed-forward network which learns the SR of one-hot
features by bootstrapping associations across time (see also Brea et al. (2016)).
Combined, the above models, as well as this work suggest there may be multiple
means of calculating successor features in biological circuits without requiring
a direct implementation of temporal difference learning.

This theory makes the prediction that theta contributes to learning

predictive representations, but is not necessary to maintain them. Thus,

3.3. Discussion 85

inhibiting theta oscillations during exposure to a novel environment should
impact the formation of successor features (e.g., asymmetric backwards skew
of place fields) and subsequent memory-guided navigation. However, inhibiting
theta in a familiar environment in which experience-dependent changes have
already occurred should have little effect on the place fields: that is, some
asymmetric backwards skew of place fields should be intact even with theta
oscillations disrupted. To my knowledge this has not been directly measured, but
there are some experiments that provide hints. Experimental work has shown
that power in the theta band increases upon exposure to novel environments
(Cavanagh et al. 2011) — this work suggests this is because theta phase precession
is critical for learning and updating stored predictive maps for spatial navigation.
Furthermore, it has been shown that place cell firing can remain broadly intact
in familiar environments even with theta oscillations disrupted by temporary
inactivation or cooling (Bolding et al. 2019; Petersen et al. 2020). It is worth
noting, however, that even with intact place fields, these theta disruptions
impair the ability of rodents to reach a hidden goal location that had already
been learned, suggesting theta oscillations play a role in navigation behaviours
even after initial learning (Bolding et al. 2019; Petersen et al. 2020). Other
work has also shown that muscimol inactivations to medial septum can disrupt
acquisition and retrieval of the memory of a hidden goal location (Chrobak
et al. 1989; Rashidy-Pour et al. 1996), although it is worth noting that these
papers use muscimol lesions, which Bolding and colleagues show also disrupt
place-related firing, not just theta precession.

The SR model has a number of connections to other models from the
computational hippocampal literature that bear on the interpretation of these
results. A long-standing property of computational models in the hippocampus
literature is a factorisation of spatial and reward representations (Redish et al.
1998; Burgess et al. 1997; Koene et al. 2003; Hasselmo et al. 2005; Erdem
et al. 2012), which permits spatial navigation to rapidly adapt to changing

goal locations. Even in RL, the SR is also not unique in factorising spatial and

86 Chapter 3. Learning Predictive Maps with STDP and Theta

reward representations, as purely model-based approaches do this too (Dayan
1993; Sutton et al. 1998; Daw 2012). The SR occupies a much more narrow
niche, which is factorising reward from spatial representations while caching
long-term occupancy predictions (Dayan 1993; Gershman 2018). Thus, it may
be possible to retain some of the flexibility of model-based approaches while
retaining the rapid computation of model-free learning.

A number of other models describe how physiological and anatomical
properties of hippocampus may produce circuits capable of goal-directed spatial
navigation (Erdem et al. 2012; Redish et al. 1998; Koene et al. 2003). These
models adopt an approach more characteristic of model-based RL, searching
iteratively over possible directions or paths to a goal Erdem et al. (2012) or
replaying sequences to build an optimal transition model from which sampled
trajectories converge toward a goal Redish et al. (1998) (this model bears some
similarities to the SR that are explored by Fang et al. (2022), which shows
dynamics converge to SR under a similar form of learning). These models
rely on dynamics to compute the optimal trajectory, while the SR realises
the statistics of these dynamics in the rate code and can therefore adapt very
efficiently. Thus, the SR retains some efficiency benefits. These models are
very well-grounded in known properties of hippocampal physiology, including
theta precession and STDP, whereas until recently, SR models have enjoyed a
much looser affiliation with exact biological mechanisms. Thus, a primary goal
of this chapter is to explore how hippocampal physiological properties relate to
SR learning as well.

More generally, in principle, any form of sufficiently ordered and
compressed trajectory would allow STDP plasticity to approximate a successor
representation. Hippocampal replay is a well documented phenomena where
previously experienced trajectories are rapidly recapitulated during sharp-wave
ripple events (Wilson et al. 1994), within which spikes show a form of phase
precession relative to the ripple band oscillation (150-250Hz) (Bush et al. 2022).

Thus, my model might explain the abundance of sharp-wave ripples during early

3.3. Discussion 87

)

exposure to novel environments (Cheng et al. 2008) — when new ‘informative
trajectories, for example those which lead to reward, are experienced it is
desirable to rapidly incorporate this information into the existing predictive
map (Mattar et al. 2018).

The distribution of place cell receptive field size in hippocampus is not
homogeneous. Instead, place field size grows smoothly along the longitudinal
axis (from very small in dorsal regions to very large in ventral regions). Why
this is the case is not clear — my model contributes by showing that, without
this ordering, large and small place cells would all bind via STDP, essentially
overwriting the short timescale successor representations learnt by small place
cells with long timescale successor representations. Topographically organising
place cells by size anatomically segregates place cells with fields of different
sizes, preserving the multiscale successor representations. Further, my results
exploring the effect of different phase offsets on STDP-successor learning
(Figure C.4g) suggest that the gradient of phase offsets observed along the
dorso-ventral axis (Lubenov et al. 2009; Patel et al. 2012) is insufficient to impair
the plasticity induced by STDP and phase precession. The premise that such
separation is needed to learn multiscale successor representations is compatible
with other theoretical accounts for this ordering. Specifically Momennejad and
Howard Momennejad et al. (2018) showed that exploiting multiscale successor
representations downstream, in order to recover information which is ‘lost’ in
the process of compiling state transitions into a single successor representation,
typically requires calculating the derivative of the successor representation with
respect to the discount parameter. This derivative calculation is significantly
easier if the cells — and therefore the successor representations — are ordered
smoothly along the hippocampal axis.

Work in control theory has shown that the difficult reinforcement learning
problem of finding an optimal policy and value function for a given environment
becomes tractable if the policy is constrained to be near a ‘default policy’

(Todorov 2009). When applied to spatial navigation, the optimal value function

88 Chapter 3. Learning Predictive Maps with STDP and Theta

resembles the value function calculated using a successor representation for
the default policy. This solution allows for rapid adaptation to changes in the
reward structure since the successor matrix is fixed to the default policy and
need not be re-learnt even if the optimal policy changes. Building on this,
recent work suggested the goal of hippocampus is not to learn the successor
representation for the current policy but rather for a default diffusive policy
(Piray et al. 2021).

Indeed, I found that in the absence of theta sweeps, the STDP rule learns
a successor representation close to that of an unbiased policy, rather than the
current policy. This is because without theta-sweeps to order spikes along the
current trajectory, cells bind according to how overlapping their receptive fields
are, that is, according to how close they are under a ‘diffusive’ policy. In this
context it is interesting to note that a substantial proportion of CA3 place
cells do not exhibit significant phase precession (O’Keefe et al. 1993; Jeewajee
et al. 2014). One possibility is that these place cells with weak or absent phase
precession might plausibly contribute to learning a policy-independent ‘default
representation’, useful for rapid policy prediction when the reward structure of
an environment is changed. Simultaneously, theta precessing place cells may
learn a successor representation for the current (potentially biased) policy, in
total giving the animal access to both an off-policy-but-near-optimal value
function and an on-policy-but-suboptimal value function.

Finally, a comment is made on the approximate nature of the successor
representations learnt by my biologically plausible model. The STDP successor
features described here are unlikely to converge analytically to the TD successor
features. Potentially this implies that a value function calculated according
to Equation (C.28) would not be accurate and may prevent an agent from
acting optimally. There are several possible resolutions to this point. First, the
successor representation is unlikely to be a self contained reinforcement learning
system. In reality it likely interacts with other model-based or model-free

systems acting in other brain regions such as nucleus accumbens in striatum

3.3. Discussion 89

(Lisman et al. 2005). Plausibly errors in the successor features are corrected
for by counteracting adjustments in the reward weights implemented by some
downstream model-free error-based learning system. Alternatively, it is likely
that value function learnt by the brain is either fundamentally approximate
or uses an different, less tractable temporal discounting scheme. Ultimately,
although in principle specialised and expensive learning rules might be developed
to exactly replicate TD successor features in the brain, this may be undesirable
if a simple learning rule (STDP) is adequate in most circumstances. Indeed,
animals - including humans - are known to act sub-optimally (Zentall 2015;
Cothi et al. 2022b), perhaps in part because of a reliance on STDP learning

rules in order to learn long-range associations.

Chapter 4

A Biologically Plausible
Generative Model of the

Hippocampal Formation

Summary

Advances in generative models have recently revolutionized machine learning.
Meanwhile, in neuroscience, generative models have long been thought
fundamental to animal intelligence. Understanding the biological mechanisms
that support these processes promises to shed light on the relationship between
biological and artificial intelligence. In animals, the hippocampal formation is
thought to learn and use a generative model to support its role in spatial and
non-spatial memory. Here, a biologically plausible model of the hippocampal
formation tantamount to a Helmholtz machine is introduced that is applied to
a temporal stream of inputs. A novel component of the model is that fast theta-
band oscillations (5-10 Hz) gate the direction of information flow throughout the
network, training it akin to a high-frequency wake-sleep algorithm. The model
accurately infers the latent state of high-dimensional sensory environments
and generates realistic sensory predictions. Furthermore, it can learn to
path integrate by developing a ring attractor connectivity structure matching

previous theoretical proposals and flexibly transfer this structure between

92 Chapter 4. The Hippocampal Generative Model

environments. Whereas many models trade-off biological plausibility with
generality, the model captures a variety of hippocampal cognitive functions

under one biologically plausible local learning rule.

4.1 Introduction: A Theta-Driven Generative

Model of the Hippocampus

Generative models seek to create new data samples which are similar to those
from the training set. To do so they must learn the probability distribution of the
training data, comprising a rich, generalisable and accurate model of the world.
Many of the recent advances in Al have involved types of generative models:
VAEs (Kingma et al. 2022), GANs (Goodfellow et al. 2014), diffusion models
(Sohl-Dickstein et al. 2015) and autoregressive models (Vaswani et al. 2017)
have seeded improvements in Al capabilities ranging from data compression
(Yang et al. 2022; George et al. 2019) to image generation (Ramesh et al. 2021)
and natural language (Bubeck et al. 2023). In neuroscience, the animal brain
has long been known to exploit generative models (Friston 2010; Gershman
2019). The ability to generate representative sensory data samples can be
used directly, for example during offline planning or memory recall. It can
also be used indirectly to aid training of inference networks with the goal
of processing rich, noisy and high dimensional streams of incoming sensory
stimuli, as discussed in the predictive coding literature (Rao et al. 1999). In a
sentence: “What I cannot create [generate], I do not understand [inference]”
(R. Feynman).

The hippocampal-entorhinal system (aka. hippocampal formation) — a
brain structure implicated in spatial (O’Keefe 1976) and non-spatial (Squire
1992) memory — provides a pertinent example. Its primary role seems to be
inference (Sanders et al. 2020): mapping sensory inputs into a robust and
decodable representation of state (grid cells (Hafting et al. 2005), place cells
(O’Keefe 1976) etc. (Moser et al. 2017)). A generative model is thought to have

a dual role in learning: supporting offline tasks such as route planning (Spiers

4.1. A Theta-Driven Generative Model of the Hippocampus 93

a Network m m ¢ Dynamics across time
Wg\ /WP/\ sleep sleep g(;[_)'
wake wake V4
Hgddg)i)OO g(t)o ’?—’OTé)_.

Wpn D= pB = gB , (vl : (vl :

POOOO0O PO Q Q

WPB B J) : :

@) J) O
OOOO \ > time

— = gated
— = fixed =% = plastic Aw,, < p — pa AWgA/B X g —BA/B ceeennd > — %Ot gated -»>GHl

Figure 4.1: A biologically plausible generative model is trained with theta frequency
wake-sleep cycles and a local learning rule. a Network schematic: high-D stimuli
from an underlying environmental latent state z arrive at the basal dendrites of the
sensory layer, p, and map to the hidden layer, g (this is the inference model, weights
in green). Simultaneously, top-down predictions from the hidden layer g arrive at
the apical dendrites of p (this is the generative model, weights in blue). b Neurons
in layers p and g have three compartments. A fast oscillation, (), gates which
dendritic compartment — basal (pg, gg) or apical (p4, ga) — drives the soma. A local
learning rule adjusts input weights to minimise the prediction error between dendritic
compartments and the soma. ¢ This equates to rapidly switching “wake” and “sleep”
cycles which train the generative and inference models. Panel (c¢) displays just two
updates per theta-cycle; in reality, there are many (5t << Tp).

et al. 2006) and memory consolidation (Carr et al. 2011), and online during
behaviour with path integration (McNaughton et al. 1996). Path integration
enables the hippocampal network to maintain an up-to-date and accurate
estimate of its position in the absence of reliable sensory data by integrating
self-motion cues. A recent flurry of computational (Cueva et al. 2018; Banino
et al. 2018; Sorscher et al. 2023) and theoretical (Dorrell et al. 2023; Sorscher
et al. 2023) work has highlighted the importance of path integration as a key
objective explaining hippocampal function and representations.

Existing computational generative models of the hippocampal formation
(Whittington et al. 2020; George et al. 2021) account for many of its cognitive
functions and internal representations but require non-trivial learning rules and
message passing protocols that don’t connect with known aspects of biology.
Computational models of path integration (Skaggs et al. 1995; Samsonovich
et al. 1997; Burak et al. 2009) have mostly focussed on continuous attractor
networks which, although experimentally supported (Khona et al. 2021), alone

lack the complexity or expressivity required of a fully general model of the

94 Chapter 4. The Hippocampal Generative Model

hippocampal memory system.

The primary contribution of this chapter is to introduce a biologically
plausible model of sequence learning in the hippocampus which unifies its
capacities as a generative model of sensory stimuli and path integration under
one schema. To do this I propose modelling the hippocampal formation as a
Helmholtz machine (Dayan et al. 1995) which learns to predict sensory stimuli
given the current hidden state and action (e.g. velocity). I propose a deep
connection between the hippocampal theta oscillation (Buzséki 2002) and the
unsupervised wake-sleep algorithm (Hinton et al. 1995) for training Helmholtz
machines. Though this class of generative models isn’t widely used, and lacks
the scalability of the latest transformer-based sequence learners, it excels in this
context since it has many natural points of contact with biology (both in terms
of architecture and neural dynamics) yet still maintains the expressiveness
afforded to models of the brain by deep neural networks.

In this chapter I:

e introduce a new model of the hippocampal formation which learns the
latent structure of an incoming stream of sensory stimuli analogous to a

Helmholtz machine.

o describe a biologically plausible learning regime: Theta-oscillations gate
information flow through multi-compartmental neurons which rapidly
switches the system between “wake” and “sleep” phases. All plasticity is

local.

 train the model on stimuli from a biologically relevant spatial exploration
task and show it learns to path integrate by developing a ring
attractor connectivity structure (comparable to theoretical predictions
and empirical results in deep recurrent neural networks trained with
gradient descent). Learning generalises: when the agent moves to a new
environment, path integration capabilities recover without needing to

relearn the path integration weights.

4.1. A Theta-Driven Generative Model of the Hippocampus 95

This model of the hippocampal formation simultaneously (i) accounts for its
role as a generative model of sensory stimuli, (ii) can learn to path integrate
and (iii) can transfer structural knowledge between environments. The model,
though here applied to the hippocampus, can be viewed as a step towards a
general solution for how biological neural networks in many brain regions (for
example visual cortex (Rao et al. 1999)) can learn generative models of the

world.

4.1.1 Related work

A recent generative model of the hippocampus, the Tolman-Eichenbaum
Machine (Whittington et al. 2020), proposed that the hippocampal formation
be thought of as a hierarchical network performing latent state inference.
Medial entorhinal cortex (MEC) sits atop the hierarchy and learns an abstract
representation of space which is mapped to the hippocampus (HPC) where it
is bound onto incoming sensory stimuli. Once trained the system can act in a
generative fashion by updating the hidden representation with idiothetic action
signals and then predicting the upcoming sensory experience. The drawback
of this model, and others which share a similar philosophical approach (Uria
et al. 2020; George et al. 2021), is that it requires training via backpropagation
through time (or equivalent end-to-end optimisation schemes, as in (George
et al. 2021)) without clear biological correlates. Related hierarchical network
architectures have also been studied in the context of reinforcement learning
(Han et al. 2020) and hippocampal associative memory (Sharma et al. 2022).
Historically, hippocampal models of path integration have focused on
continuous attractor networks (CANs) (Skaggs et al. 1995; Samsonovich et al.
1997; Burak et al. 2009; Sorscher et al. 2023) in entorhinal cortex. A bump of
activity representing location is pushed around the CAN by speed and/or head-
direction selective inputs, thus integrating self-motion. CANs have received
substantial experimental support (Khona et al. 2021) but few studies adequately
account for how this structure is learned by the brain in the first place. One

exception exists outside the hippocampal literature: Vafidis et al. (2022) built

96 Chapter 4. The Hippocampal Generative Model

a model of path integration in the fly head-direction system which uses local
learning rules. This work goes further by embedding the path integrator inside
a hierarchical generative model. Doing so additionally relaxes the assumption
(made by Vafidis et al. (2022) and others (Widloski et al. 2014)) that sensory
inputs into the path integrator are predefined and fixed. Instead, by allowing
all incoming and outgoing synapses to be learned from random initialisations,
I achieve a more generalisable model capable of transferring structure between
environments (see section 4.3.3).

Hippocampal theta oscillations have been linked to predictive sequence
learning before (Skaggs et al. 1996b; Mehta et al. 2000; George et al. 2023a;
George 2023) where research has focused on the compressive effects of theta
sequences and how these interplay with short timescale synaptic plasticity.
Instead of compression, here it is hypothesized that the role of theta is to
control the direction information flows through the hierarchical network.

Finally, a recent theoretical work by Bredenberg et al. (2021) derived,
starting from principles of Bayesian variational inference, a biologically plausible
learning algorithm for approximate Bayesian inference of a hierarchical network
model built from multi-compartmental neurons and trained with local learning
rules using wake-sleep cycles. Here I build a similar network to theirs (i)
extending it to a spatial exploration task and mapping the hidden layers
onto those in the hippocampal formation, (ii) simplifying the learning rules
and relaxing a discrete-time assumption — instead, opting for a temporally
continuous formulation more applicable to biological tasks such as navigation —
and (iii) adapting the hidden layer to allow idiothetic action signals to guide
updates (aka. path integration). Their work provides a theoretical foundation
for the present work, helping to explain why learning converges on accurate

generative models.

4.2. Model Architecture and Learning Rules 97

4.2 A Biologically Plausible Generative Model

with Theta-Driven Local Learning

In sections 4.2 and 4.3, concise, intuitive descriptions of the model and

experiments are given; expanded details can be found in Appendix D.2.

4.2.1 Basic Model Summary

I consider learning in an environment defined by a latent state, z(t), which

updates according to stochastic dynamics initially unknown to the network,

dz

at :fz(t)' (4'1)

These dynamics depend on the task; first, z(¢) is considered to be a set of
mutually independent random variables and later, the more realistic task of an
agent moving on a 1D track is considered.

The network receives sensory input which is a function of the latent
state into a sensory layer, p(t), and communicates this to a hidden layer
(aka “internal state”), g(t). The network contains both an inference (aka.
recognition) model which infers the hidden state from the sensory input (
arrows, Figure 4.1a) and a generative model which updates the hidden state
with recurrent synapses and maps this back to the sensory layer (blue arrows).
As will soon be identified, these processes correspond to Basal and Apical
dendritic compartments of pyramidal neurons, so activations sampled from the
inference model are labelled with the subscript B and those from the generative

model with the subscript A.' In summary

pi(t+0t) = p(2(1))

gp(t+0t) = 04, (Wg,p(1))

Inference model (4.2)

IThese labellings conveniently match the notion that inferences are made from layers
Below in the sensory hierarchy (bottom-up) whereas generative predictions arrive from Above
(top-down).

98 Chapter 4. The Hippocampal Generative Model

ga(t + 1) = 04, (wg,8(1))

pa(t+0t) = op, (wp,8(t))

Generative model. (4.3)

Wy, Wp,, Wy are matrices of randomly initialised and plastic synaptic weights.
p maps the environmental latent into a vector of neural inputs. ¢’s denote
activation functions applied to the dendritic pre-activations — either the identity
(o(x) = x) or rectified tanh functions (o(z) = max(0,tanh(z))). A small
amount of noise is added to the dendritic activations to simulate realistic
biological learning.

[believe that the widely adopted convention of modelling neurons as single-
compartment perceptrons is limiting. By considering, in a minimal extension,
the distributed dendritic structure of real neurons, significant potential for
explaining hippocampal learning can be tapped into. Theoretical (Kording
et al. 2001; Urbanczik et al. 2014; Sacramento et al. 2018; Richards et al.
2019) and experimental (Bittner et al. 2015; Brankack et al. 1993; Mizuseki
et al. 2009) research into credit assignment in biological neurons has identified
different roles for basal and apical dendrites: basal dendrites are thought to
receive bottom-up drive from sensory inputs whereas apical dendrites receive
top-down drive from higher layers in the sensory hierarchy (Larkum 2022).
Following this line of research — and matching an equivalent theoretical model
of latent state inference described by (Bredenberg et al. 2021) — I identify
the inference process with synaptic inputs into a basal dendritic compartment
of pyramidal neurons and the generative process with synaptic inputs into
an apical dendritic compartment. In summary, each p and g neuron in my
model has three compartments: a somatic compartment, a basal dendritic
compartment and an apical dendritic compartment (Figure 4.1b). Only the
somatic activation is used for communication between layers (right hand side
of egs. (4.2) and (4.3)) while dendritic compartment activations are variables
affecting internal neuronal dynamics and learning as described below (egs. (4.4)

and (4.6)).

4.2. Model Architecture and Learning Rules 99

4.2.2 Theta-Gating Information Flow

The dynamics of the somatic activations p(t) and g(¢) are as follows: the voltage
in each soma is either equal to the voltage in the basal compartment or the
voltage in the apical compartment depending on the phase of an underlying theta

oscillation. This is achieved by a simple theta-gating mechanism (Figure 4.1b):

p(t) = 0(t)pp(t) + (1-0())pa(t)
0(t)gp(t) + (1 —0(1))ga(t)- (4.4)

o]
~~
~~
~—
I

where 6(t) is a 5 Hz global theta oscillation variable defined by the square wave

function:

1, ift/T mod1<0.5
0(t) = (4.5)

0, ift/T mod1>0.5
for T =1/ fy and fy = 5 Hz, matching the hippocampal theta frequency (5-10
Hz) (Foster et al. 2007). According to this model theta-band oscillations in the
hippocampal local field potential gate which dendritic compartment drives the
soma. Experimental (Brankack et al. 1993; Holscher et al. 1997; Yamaguchi
et al. 2002) and modelling work (Hasselmo et al. 2002) gives provisional support
for this assumption.

These local theta-dynamics have global consequences: the early phase
(6(t) = 1) of each theta cycle can be thought of as a “wake” phase where
information flows upwards through the network from the environment to the
hidden layer, sampling the inference model. The latter phase (6(¢) = 0) of each
theta cycle is a “sleep” phase where information flows down from the hidden
layer to the sensory units, sampling the generative model. These dynamics are

displayed in Figure 4.1.

4.2.3 Hebbian-Style Learning Rules

In contrast to comparable models which are optimised end-to-end using
backpropagation through time my model learns synaptic weights according

to a local plasticity rule which is a simplified variant of a rule proposed by

100 Chapter 4. The Hippocampal Generative Model

Urbanczik et al. (2014). Incoming synaptic projections are continually adjusted
in order to minimize the discrepancy between the somatic activation and the
dendritic activation. The full learning rules are described in the Appendix D.2

but simplified versions are given here:

dV;th o (g(t) —ga(t)p(t)T
d‘;’? o (p(t) —pa(t))g(t)’
dvc\zrtgA o (g(t) —ga(t)g(t)" (46)

Notably this learning rule is equivalent for all plastic synapses in the model:
p to g, g to p and the recurrent g to g synapses (see Figure 4.1b). If a
local prediction error is detected, for example the somatic activation is larger
than the dendritic activation, then the synaptic strength of inputs into that
dendritic compartment which are positive/negative are strengthened /weakened
to reduce the error. This model can equivalently be viewed as a type of Hebbian
learning — weight change is proportional to the correlation of pre- and post-
synaptic activity (the first term) — regularised (by the second term) to prevent
unbounded growth.

During the wake phase the weights of the generative model (w,, and w,)
are trained and plasticity on the inference weights (wg,) falls to zero. This
occurs naturally because p = pp so there will be no basal prediction errors to
correct. During sleep the reverse occurs; the weights of the inference model are
trained and plasticity on the generative model falls to zero. Experimentally,
apical activity is known to guide plasticity at basal synapses in CA1 (Bittner
et al. 2015). This alternating, coordinated regime of sampling and learning
(sample-inference-train-generative, then sample-generative-train-inference) is a
hallmark of the wake-sleep algorithm. It fundamentally differs from the forward
and backward sweeps of backpropagation since neurons remain provisionally
active at all times so the process of learning minimally perturbs perception.

Also, whereas backpropagation sends error signals down through the network

4.2. Model Architecture and Learning Rules 101

to train synaptic weights, here only predictions are sent between layers and
error signals are calculated locally at each dendrite.

As discussed in section 4.1, Bredenberg et al. (2021) mathematically derive
learning rules similar to these starting from a loss function closely related to
the evidence lower bound (ELBO). As such my identification of early- and
late-theta phases as “wake” and “sleep” cycles can be considered precise: from
a Bayesian perspective, the hippocampal model is minimising a modified ELBO
loss (see Appendix D.3) thus learns to find approximately optimal inference
and generative models accounting for the temporally varying stimulus stream

it is presented.

4.2.4 Velocity Inputs

For path integration, the hidden state needs access to an idiothetic (internally
generated) velocity signal. To satisfy this, the hidden layer, g, is endowed
with conjunctive velocity inputs, henceforth “conjunctive cells”, as shown in
Figure 4.3a,b. Conjunctive cells are organised into two groups: g, is responsible
for leftward motion and g, for rightward motion. Each conjunctive cell
receives input from the hidden units and either the leftward (v, = max(0, —))
or rightward (vgp = max(0,&)) component of the velocity. For the results
shown this connectivity is one-to-one [wy, ,]ij = [Wg,5]ij = d;; but random
connectivity works too, see Appendix D.5.2. Finally, conjunctive cells send
return connections back to the apical dendritic compartment of the hidden
units via a randomly initialised plastic synaptic weight matrix. These inputs
are what drive the hidden units to path integrate.

This model takes inspiration from so-called conjunctive grid cells (Sargolini
et al. 2006) found in the medial entorhinal cortex (MEC). These cells, thought
to be an integral component of the mammalian path integration system (Burak
et al. 2009), are jointly tuned to head direction and location much like the
conjunctive cells in my model. An important and novel aspect of my model
is that synaptic weights between or into the hidden units are learned. This

deviates from other models, for example, that by Burak et al. (2009) (where all

102 Chapter 4. The Hippocampal Generative Model

connectivity is predefined and fixed) or Vafidis et al. (2022) and Widloski et al.
(2014) (where sensory inputs to the hidden units are pre-defined and fixed).
This is not only more realistic but affords the model flexibility to translate path
integration abilities between environments without having to relearn them, a

form of transfer learning which is demonstrated in section 4.3.3.

a
zi(t)
(') Time, t / min %
b ¢ Inference model d Generative model
. pl005 Tested during wake Tested during sleep
o N c
= T 5 5
(0] ~ =
c ottt tr—troon = g
5 E107 (Pa — PB) S £
— E . .
S (8a —gB) = Time, t / min o
o F1Q7 %) PB o 1
& PA = Lag/s 4
<
d Training / min 3(.) Test network in mode

Figure 4.2: Learning in an environment of temporally varying latents. a In this
artificial task the latent space comprises of N, = 5 independent random variables
with an autocorrelation decay timescale of 1 s. b Prediction errors (difference between
apical and basal activations) in sensory and hidden layers reduce over training time.
c Tested in wake mode (# = 1) after training, the ground truth stimulus matches
apical prediction for all stimulus dimensions (one shown) implying the network is
efficiently “autoencoding” the sensory inputs into and back out of the compressed
hidden layer. d Tested in sleep mode (6 = 0, no environmental inputs), generated
data from the hidden units, g, have an autocorrelation curve which matches that of
the true latents implying a statistically accurate generative model has been learned.
More extensive samples from this model, before and after training, can be found in
Figure D.1

4.3 Model Validation: From Latent Inference

to Path Integration

4.3.1 Artificial Latent Task Validation

Testing begins with the basic model (i.e. without conjunctive inputs,
Figure 4.1a) on an artificial task. N, = 5 latents, z;(¢), are independently
sampled from a smooth, random process with an autocorrelation timescale

of 1 second (Figure 4.2a). The sensory layer, N, = 50, then receives a high-

4.3. Model Validation: From Latent Inference to Path Integration 103

dimensional random linear mixture of the latents into the basal compartments:

pp(t) = Az(t), (4.7)

where A € R%%% and [A];; ~ N(0, ﬁ) The hidden layer, g(t), is matched
in size to the latent process, N, = N, = 5, and all dendritic activation functions
are linear. The model is trained for 30 minutes of simulated time and track
prediction errors, the difference between the basal and apical activations in
the sensory and hidden layers, which reliably decreased throughout training
(Figure 4.2b). Two tests are then performed designed to confirm whether the
model has learnt accurate inference and generative models.

First, the dynamics of the model are set to “wake” mode (f = 1) and
the basal and apical activations of one of the sensory neurons are measured
for 60 seconds. Close correspondence (Figure 4.2¢) confirms that the network
accurately “autoencodes” the high-dimensional sensory inputs through the
compressed hidden layer. Since all activation functions are linear this implies
that wy, and w,, are pseudoinverses. Next, the network is placed in “sleep”
mode (# = 0) and the generative model is allowed to run freely. The
autocorrelation of the generated hidden states (g(t|# = 0), displayed fully
in Figure D.1) match that of the true environmental latents (z(t)), Figure 4.2d,

implying the generative model has statistics closely matching those of the true

underlying generative process.

4.3.2 Emergence of a Ring Attractor for Path Integra-
tion

Next I turn my attention to the hippocampal formation’s role in spatial

navigation, and our central result. The environment consists of an agent

randomly moving around a 1 m 1D circular track (motion and cell data is

generated using the RatlnABox package (George et al. 2024)). The basal

compartment of each HPC neuron is spatially tuned to a single different

Gaussian input however non-Gaussian randomly spatially tuned inputs work

104 Chapter 4. The Hippocampal Generative Model

velocity I
a VL ‘ VR ‘

g.0000 80000
MEC A\\Y W74

e 20000

=

POOOO

b cy\ Wefromg N\ Wefrom gy, 7 Wen from Gyg

(0]0)

S
@
>
|
m
g
S (60600060 ©

Prediction error o

—— Error / cm :
1 (EI’I’OI’) + SEM ...

0 Training/min 30 0=
9 0 10 Time/s 20 30

Figure 4.3: The hippocampal model learns to path integrate on a 1D track using
a ring attractor. a Position selective (place cell) inputs drive basal dendrites of
the sensory layer p (HPC). b Hidden units (MEC) are connected to two sets of
“conjunctive cells” which each connect back to one of the hidden neurons (g) and either
the leftward (for g,) or rightward (for g,) velocity of the agent allowing velocity
information to enter the network. Synaptic strengths of the return connections from
the conjunctive cells to the MEC hidden units, as well as those for the MEC recurrent
connectivity (collective denoted wy,), are randomly initialised and plastic. ¢ After
training, reordering the hidden units by the position of peak activity reveals a ring
attractor in the synaptic weight matrices. Centre-surround recurrent connectivity
stabilises an activity bump which is then “pushed” around the attractor manifold
by asymmetric connections from the conjunctive cells, integrating velocity. Bands
of zero weights show MEC neurons which have become perpetually inactive (aka
“died”). The bottom panel displays the matrix row-averages, utilizing the circular
symmetry of the environment to align rows before averaging. d Learning plateaus
after 15 mins of simulated time. e Path integration ability is demonstrated in a lesion
study: after 10 seconds in the normal oscillatory mode the network is placed into
sleep mode (aka generative mode), lesioning the position-dependent sensory inputs.
Despite this HPC continues to accurately encode position, evidence that the MEC
ring attractor is path integrating the velocity inputs and sending predictions back to
HPC. Lower panel shows the accumulated decoding error as well as the mean+SEM
over 50 trials.

4.3. Model Validation: From Latent Inference to Path Integration — 105

as well (see Figure D.2b):

(2(t) — i) xi)] . (4.8)

[PB(t)]i = exp [— 553

x(t) is the position of the agent and {xz}f\fl are the centres of the Gaussian
inputs (¢ = 6 cm), intended to simulate hippocampal place fields, evenly
spaced at 1 cm intervals along the track. MEC (i.e. the hidden layer, g(t)) is
matched in size Ny = N, = 100 with rectified tanh activation functions on both
dendritic compartments (o4, (z) = 04, (z) = max(0, tanh(z))) and HPC (the
sensory layer p(t)) is linear (o}, (z) = x). Two populations of conjunctive cells
(Figure 4.3a,b) feed into the apical compartments of the MEC recurrent units.
Random initialisation of w,, means that MEC neurons start off with random
non-Gaussian spatial tunings. w,, and w,,, are also randomly initialised.

The network is trained for 30 minutes with learning plateauing after
15 (Figure 4.3d). A lesion study, designed to test path integration, is then
performed as follows: First, the network is run for 10 seconds normally (i.e.
with theta-oscillating periods of wake and sleep). Since the simulated HPC
neurons receive place-tuned inputs uniformly ordered along the track (i.e.
xj > x;Vi,j > i) an activity heatmap of HPC reveals a bump of activity
accurately tracking agent’s position (Figure 4.3e, left). The network is then
placed into a sleep phase (6 = 0) for 20 seconds. This amounts to a full
sensory lesion since top-down MEC inputs, not bottom-up place-tuned sensory
inputs, drive HPC. Despite the full sensory lesion, hippocampal activity remains
approximately unperturbed and the activity bump continues to accurately track
position, slowly accumulating errors (Figure 4.3e right). Since my HPC layer
has no recurrent connectivity it cannot support this post-lesion activity on its
own. Instead feed-forward drive from an MEC ring attractor, which I turn my
attention to now, is responsible for maintaining the HPC code.

To find the ring attractor, the MEC cells must first be reordered. This is

done according to the position of the peak of their receptive fields (defined in

106 Chapter 4. The Hippocampal Generative Model

Appendix D.5). After reordering, the recurrent connectivity matrix can be seen
to have acquired a centre-surround connectivity profile. Nearby MEC cells were,
on average, strongly and positively recurrently connected to one another. Those
far apart weakly inhibit one another (Figure 4.3c, left; band of strong positive
weights along diagonal flanked by weak negative weights). This profile matches
that of a quasi-continuous ring attractor: local excitatory and long-range
inhibitory connections stabilise a bump of activity on the attractor manifold
in the absence of sensory input (Zhang 1996). Weights from the conjunctive
cells acquired asymmetric connectivity (Figure 4.3¢, middle & right) skewed
towards the velocity direction for which they are selective. These asymmetric
connections enable conjunctive cells to “push” the activity bump around the
manifold, integrating velocity (see Figure D.2 for a visualisation of the MEC
bump attractor). Theoretical work on ring attractors has demonstrated that
for accurate path integration the asymmetric weights must be proportional to
the derivative of the symmetric weights (Zhang 1996), approximately observed
here. A noteworthy observation is that some MEC neurons become perpetually
inactive; this is a consequence of the fact that both top-down and bottom-up
synapses into the hidden layer are plastic and can fall to zero (Figure 4.3c bands
of zero-weights) satisfying a trivial g4 = gp = 0 solution for minimising the
prediction error. Despite this, not all MEC neurons die and the surviving subset
are sufficient for path integration. In Appendix D.5.2; additional results are
discussed showing the network learns robust path integration under a variety
of plasticity, initialisation and noise manipulations.

Crucially, what sets this model apart from others (Cueva et al. 2018; Banino
et al. 2018; Sorscher et al. 2023; Dorrell et al. 2023) is that the network is not
optimized using a conventional path-integration objective and backpropagation.
Instead, it has been demonstrated how path integration can naturally arise
in a biologically constrained network subject to a much simpler (yet more
broadly applicable) local objective, in cases where idiothetic velocity signals

are available to the hidden layers.

4.3. Model Validation: From Latent Inference to Path Integration 107
4.3.3 Remapping and Flexible Transfer of the Path

Integration Circuit

Spatial receptive fields...

a Remapping experiment b before just after

& 000 _8&«000
LN\ Y7
g000
Wegg & Wpa
o000
WPB
(0]0)
C
5§20
510
W 0

) bef'ore immec'jiately af'ter i
after Position, x /' m

Figure 4.4: Remapping and transfer of structural knowledge between environments.
a After training (as in Figure 4.2) place cell inputs are shuffled to simulate a
“remapping” event observed when an agent moves to a new environment. The agent
then retrains for an additional 30 minutes: during this period internal MEC weights,
and weights from the conjunctive cells to MEC are held fixed while MEC < HPC
weights remain plastic. b Receptive fields of the HPC and MEC neuronal populations
at different stages in the experiment: Initially after remapping HPC and MEC inputs
are randomised. MEC relearns rate maps as they were before remapping but with a
constant phase shift. Note: neurons are ordered by the position of their peak activity
on the track before remapping and this ordering is maintained in subsequent panels.
c The error (+ SEM over 50 trials) after 1 second of path integration is shown at
different stages of the experiment. Although path integration is initially disrupted
after remapping it recovers despite no relearning of the MEC synapses where the
ring attractor is stored.

Finally, it is demonstrated how the trained network can transfer structural
knowledge — which here means the ring attractor and thereby path integration
— between environments. The process starts by training the network as in
section 4.3.2; the only difference is that for simplicity I choose to fix w,, =
d;j giving rise to MEC representations which, like HPC, are unimodal (this
constraint can be relaxed and, in the more general case, MEC units typically
have multiple receptive fields, Figure D.4d, reminiscent of grid cells). I then
simulate a hippocampal “remapping” event by shuffling the sensory inputs

to the HPC layer (Figure 4.4a,b, top panel) and retraining the network for

108 Chapter 4. The Hippocampal Generative Model

a further 30 minutes but this time holding weights in the hidden layer, w,.
Only the HPC <+ MEC synapses (wg, & W ,) remain plastic during retraining.
Biologically this may be accounted for by the observation that cortical plasticity
is substantially slower than hippocampal plasticity (Ergorul et al. 2006).

During biological remapping events place cells remap independently
whereas grid cells remap en masse with entire modules shifting by the same
constant phase (Fyhn et al. 2007). This observation is reproduced in my
model: after retraining MEC units regroup with receptive fields as they were
before remapping but with a constant phase shift along the track. This re-
emergence of structure occurs because the ring attractor seeds a bump of
activity on the attractor manifold (during the “sleep” phases of retraining) onto
which the shuffied HPC inputs then bind. Since nothing constrains where on
the circularly symmetric attractor manifold this regrouping can initiate, only
relative correlations, modulo a phase shift, are preserved.

Decoding error one second after a sensory lesion is tested just before
remapping, just after remapping and after retraining (Figure 4.4c). After
the remapping path integration abilities temporarily disappear because the
MEC ring attractor is still tuned to the old and invalid HPC receptive fields.
After relearning — and despite no adjustments to the MEC weights, wg,, where
the ring attractor is stored — path integration recovers to almost the level
before remapping. This differs substantially from other local models of path
integration learning (Vafidis et al. 2022; Widloski et al. 2014) which don’t
consider plasticity on the ring attractor inputs. In these models, adaptation to
a new environment necessarily requires complete relearning of the ring attractor.
Instead my model exploits the basic fact that movement (path integration) in
one environment is fundamentally the same as in another, one must simply
learn a new mapping to/from the ring attractor, “translating” it to fit the new

sensory stimuli.

4.4. Discussion 109

4.4 Discussion: Theta Oscillations as a Learn-

ing Scheduler for Generative Computation

I propose that the hippocampal formation resembles a Helmholtz machine,
simultaneously learning an inference and generative model of sensory stimuli.
Like previous models (Whittington et al. 2020) medial entorhinal cortex (MEC)
sits hierarchically above the hippocampus (HPC) to which it sends generative
predictions. The model differs in the learning rules and neural dynamics:
local prediction errors are minimised between distinct dendritic compartments
receiving bottom-up and top-down signals. Theta oscillations regulate internal
neural dynamics, switching the network between wake and sleep phases. In
a navigation task, the MEC model forms a ring attractor capable of path
integration. Despite simple learning rules and dynamics, the model retains key
cognitive capabilities of the hippocampal formation including the ability to
transfer knowledge across different sensory environments.

Local learning rules are commonly recognised as essential in biologically
plausible learning algorithms (Urbanczik et al. 2014). However, the importance
of learning scheduling — how neural systems coordinate or multiplex distinct
phases of forward and backward information flow — is often overlooked
(Guerguiev et al. 2017). Neural oscillations such as theta, hypothesized to
temporally coordinate communication between neuronal populations (Fries
2015), likely play an underexplored role in this regard (neural “bursting” has
also been pointed out as a potential solution to multiplexing (Payeur et al.
2021)). One advantage of the wake-sleep algorithm, which this study suggests
neural oscillations can support, compared to forward and backward sweeps
is that, during convergence, the two phases become highly similar, allowing
learning to proceed without affecting perception.

While the discussion has primarily focused on theta oscillations as a
mechanism for learning, they have also been proposed as a mechanism for short-
range future prediction via so-called “mind-travel” (Sanders et al. 2015). During

the latter phase of each theta cycle (i.e. the sleep phase) gain amplified velocity

110 Chapter 4. The Hippocampal Generative Model

signals might rapidly drive the MEC activity bump along the manifold allowing
the agent to assess nearby upcoming locations. This complimentary proposition
could neatly integrate into the framework proposed here and emphasizes the
need for further investigation into the multifaceted functions of neural rhythms
within the hippocampal/entorhinal system.

Beyond theta oscillations, both faster gamma cycles (Li et al. 2021) and
the slower physiological states of sleep and wake (Skaggs et al. 1996a) have
been associated with learning. Based on the model I suggest a tentative
hypothesis that theta oscillations may be favored due to an optimality criterion;
whilst faster oscillations could be a mechanism to prevent extreme drift during
sleep that might disrupt learning their frequency might by upper bounded
biophysically by the neural time constants associated with the biophysical
processes supporting dendritic gating the soma. These ideas, their relevance
to other brain regions involved in generative learning, 2D spatial dynamics,
and offline memory consolidation/replay remain exciting questions for future

theoretical and experimental investigation.

Chapter 5

SIMPL: A Neural Latent
Variable Model

Summary

Neural activity in the brain is known to encode low-dimensional, time-evolving,
behaviour-related variables. A long-standing goal of neural data analysis
has been to identify these variables and their mapping to neural activity. A
productive and canonical approach has been to simply visualise neural “tuning
curves” as a function of behaviour. In reality, significant discrepancies between
behaviour and the true latent variables, such as an agent thinking of position
Y whilst located at position X, distort and blur the tuning curves, decreasing
their interpretability. To address this, latent variable models propose to learn
the latent variable from data; these are typically expensive, hard to tune, or
scale poorly, complicating their adoption. Here I propose SIMPL (Scalable
Iterative Maximization of Population-coded Latents), an EM-style algorithm
which iteratively optimises latent variables and tuning curves. SIMPL is fast,
scalable and exploits behaviour as an initial condition to further improve
convergence and identifiability. It can accurately recover latent variables in
spatial and non-spatial tasks. When applied to a large hippocampal dataset,
SIMPL converges on smaller, more numerous, and more uniformly sized place

fields than those based on behaviour, suggesting the brain may encode space

112 Chapter 5. SIMPL: A Neural Latent Variable Model

with greater resolution than previously thought.

5.1 Introduction: The Discrepancy Between

Behavior and Internal State

Large neural populations in the brain are known to encode low-dimensional,
time-evolving latent variables which are, oftentimes, closely related to behaviour
(Afshar et al. 2011; Harvey et al. 2012; Mante et al. 2013; Carnevale et al.
2015). Coupled with the advent of modern neural recording techniques (Jun
et al. 2017; Wilt et al. 2009) focus has shifted from single-cell studies to the
joint analysis of hundreds of neurons across long time windows, where the goal
is to extract latents using a variety of statistical (Yu et al. 2008a; Cunningham
et al. 2014; Kobak et al. 2016; Zhao et al. 2017; Williams et al. 2020; Bjerke
et al. 2023) and computational (Maaten et al. 2008; Pandarinath et al. 2018;
Mackevicius et al. 2019) methods.

This paradigm shift is particularly pertinent in mammalian spatial memory
and motor systems where celebrated discoveries have identified cells whose
neural activity depends on behavioural variables such as position (O’Keefe
et al. 1971; Hafting et al. 2005), heading direction (Taube et al. 1990), speed
(McNaughton et al. 1983), distance to environmental boundaries/objects (Lever
et al. 2009; Hgydal et al. 2019) and limb movement direction (Georgopoulos et
al. 1986) through complex and non-linear tuning curves. Characterising neural
activity in terms of behaviour remains a cornerstone practice in these fields
however the implicit assumption supporting it — that the latent variable
encoded by neural activity is and only is the behavioural variable — is
increasingly being called into question (Sanders et al. 2015; Whittington et al.
2020; George et al. 2023b).

The brain is not a passive observer of the world. The same neurons that
encode an animal’s current position/behavioural state are also used to plan
future routes (Spiers et al. 2006), predict upcoming states (Muller et al. 1989;
Mehta et al. 1997; Stachenfeld et al. 2017) or recall/“replay” past positions

5.1. The Discrepancy Between Behavior and Internal State 113

(Squire et al. 2010; Carr et al. 2011), necessarily causing the encoded latent
variables to deviate from behaviour. Nor is the brain a perfect observer;
uncertainty due to limited, noisy or ambiguous sensory data can lead to
similar discrepancies. Measurement inaccuracies can contribute further. These
hypotheses are supported by analyses that show that it is rarely, if ever, possible
to perfectly decode “behaviour” from neural data (Glaser et al. 2020) and the
observation that neurons show high variability under identical behavioural
conditions (Fenton et al. 1998; Low et al. 2018). All combined, these facts hint
at a richer and more complex internal neural code. When this is not accounted
for tuning curves will be blurred, distorted or mischaracterised relative to their
true form. For example, consider an animal situated at position X ‘imagining’
or ‘anticipating’ a remote position, Y, for which a place cell is tuned. This
might trigger the cell to fire leading to the mistaken conclusion that the cell
has a place field at location X.

Nonetheless, the fact that behaviour is often a close-but-imperfect proxy for
the true latent motivates searching for techniques that exploit this link. Most
existing methods for latent discovery don’t exploit behaviour (Gao et al. 2016;
Gondur et al. 2023) at the cost of complexity and interpretability. Others don’t
model temporal dynamics (Zhou et al. 2020; Schneider et al. 2023; Lawrence
2003), don’t scale to large datasets (Wang et al. 2005; Nam 2015; Wu et al.
2017), can’t model complex non-linear tuning curves (Pandarinath et al. 2018;
Hurwitz et al. 2021; Duncker et al. 2019; Linderman et al. 2016; Gondur et al.
2023), or aren’t designed for spiking datasets (Lawrence 2003; Krishnan et al.
2015). Moreover, many of these methods are conceptually complex, lack usable
code implementations, or necessitate GPUs limiting their accessibility.

Contributions Here, SIMPL (Scalable Iterative Maximisation of
Population-coded Latents) is introduced, a straightforward yet effective
enhancement to the current paradigm. This approach fits tuning curves to
observed behaviour and refines these by iterating a two-step process. First

the latent trajectory is decoded from the current tuning curves then, the

114 Chapter 5. SIMPL: A Neural Latent Variable Model

tuning curves are refitted based on this decoded latent trajectory. SIMPL
imposes minimal constraints on the tuning curve structure, scales well to large
datasets without relying on neural networks that can be expensive to train.
Theoretical analysis establishes formal connections to expectation-maximisation
(EM, Dempster et al. (1977)) for a flexible class of generative models. By
exploiting behaviour as an initialisation, SIMPL converges fast and helps
mitigate local minima and identifiability (Hyvarinen et al. 1999; Locatello et al.
2019) issues. This allows it to reliably return refined tuning curves and latents
which remain close to, but improve upon, their behavioural analogues readily
admitting direct comparison. All in all, SIMPL is able to identify temporally
smooth latents and complex tuning curves related to behaviour, while remaining
cheap and natively supporting spiking data — a distinguishing set of features
in the field of latent variable models for neural data analysis.

SIMPL is first validated on a dataset of synthetically generated 2D grid
cells. Next, I apply SIMPL to rodent electrophysiological hippocampal data
(Tanni et al. 2022) and show that it modifies the latent space in an incremental
but significant way: optimised tuning curves are better at explaining held-out
neural data and contain sharper, more numerous place fields allowing for a
reinterpretation of previous experimental results. Finally, SIMPL is applied
to a somatosensory dataset for a macaque performing a centre-out reaching
task (Chowdhury et al. 2020). SIMPL, with a 4D latent space, provides a
good account of the data with the latent variables initialised to (and remaining
correlated with) the macaque’s hand-position and hand-velocity. With only
two hyperparameters, SIMPL can be run quickly on large neural datasets!
without requiring a GPU. It outperforms popular alternative techniques based
on neural networks (Schneider et al. 2023; Zhao et al. 2017) or Gaussian
processes (Lawrence 2003; Wang et al. 2005) and is over 15x faster. This
makes it a practical alternative to existing tools particularly of interest to

navigational or motor-control communities where abundant data is explained

LOne-hour recordings of 200 neurons (108 spikes) takes 1 minute to run on a CPU laptop.

5.2. The SIMPL Algorithm: An EM-Style Approach 115

well by measurable behaviours (position, hand dynamics). An open-source
JAX-optimised (Bradbury et al. 2018) implementation of the code is provided
(see Appendix E.1).

5.2 The SIMPL Algorithm: An EM-Style

Approach

A high-level description of the SIMPL algorithm is given here. Comprehensive
details and a theoretical analysis linking SIMPL to expectation-maximisation,

are provided in Appendix E.3.

5.2.1 The Model

SIMPL models spike trains of the form s := (st,)iz}l]}[, where s;; represents

the number of spikes emitted by neuron i between time (¢ —1) - dt and ¢ - dt. 1
denote s; == (841, .., 8¢n) the vector of spike counts emitted by all neurons
in the t-th time bin. SIMPL posits that such spike trains s are modulated
by a latent, continuously-valued, low-dimensional, time-evolving variable x :=

(xt)i=1... 7 € RP through the following random process:

Xpp1 | Xe ~ N (xp,020) (Latent dynamics) (5.1)

st | x¢ ~ Poisson(f;(x¢)) (Emission model) (5.2)

where o, := v-dt and xg ~ N (0, 0(2]1). This generative model enforces a tunable
(through the velocity hyperparameter v) amount of temporal smoothness in
the trajectories. At each time step the latent variable x; determines the
instantaneous firing rate of all neurons via their intensity functions f; (hereon
called tuning curves, collectively denoted f), which are unknown a priori, and
which SIMPL will estimate. Moreover, the common assumption is made that all
neurons are conditionally independent given x¢, i.e. p(sxt) = [T, p(stilxt).
Finally, it is assumed that the latent variable x is Markovian, a common
assumption in the neuroscience literature. This model has been previously

studied in the literature (Smith et al. 2003; Macke et al. 2011), albeit using

116 Chapter 5. SIMPL: A Neural Latent Variable Model

highly restrictive tuning curve models, something that SIMPL avoids.

(a) SIMPL (b)
“M-step” fit tuning curves

M-step = spike smoothing

| tunlng curves, fi(x e é
latent trajectory, x(t) spikes, J —
s(t) ~ true dynamics d

E-step = MLE + Kalman

IIIIII 1]} xAex,, x-Asx,,
I 'II",&% ||I._k<S = Al Al
°N 2N
S.~ s e FS ~
“E-step” decode position _I i 1 X, Xy

X = argmax, log p(s | x)

(¢) behaviour (d) true dynamics

y

dim 2

)

dim 1

Figure 5.1: Schematic of SIMPL. (a) A latent variable model (LVM) for spiking
data (f;(x),x(t)) is optimised by iterating a two-step procedure closely related to
the expectation-maximisation: First, tuning curves are fitted to an initial estimate of
the latent trajectory (an “M-step”). The latent is then redecoded from these tuning
curves (an “E-step”). (b) SIMPL fits tuning curves using a kernel-smoothed estimate
(top) and decodes the latent variables by Kalman-smoothing maximum likelihood
estimates. (c) Measured behaviour is used to initialise the algorithm as it is often
closely related to the true generative LVM (d).

5.2.2 The SIMPL Optimisation Algorithm

Outline I now seek an estimate of the true, unknown latent trajectory x* and
tuning curves f* that led to an observed spike train, s. SIMPL does so by
iterating a two-step procedure closely related to the expectation-maximisation
(EM) algorithm: first, tuning curves are fitted to an initial estimate of the latent
variable (the “M-step”), which are then used to decode the latent variable (the
“E-step”). This procedure is then repeated using the new latent trajectory, and
so on until convergence.

The M-step In the M-step (or “fitting” step) of the e-th iteration SIMPL

fits tuning curves to the current latent trajectory estimate x(€) using a smooth,

5.2. The SIMPL Algorithm: An EM-Style Approach 117

kernel-based estimate

— ZtT:1 Sti k?(X, Xge)) N # spikes at x

()
fi (%) ST k(x, ngz’)) T # visits to x

(5.3)

for some kernel k. In practice, I use a Gaussian kernel with small bandwidth
o. Such a tuning curve model is conceptually simple and free from the
optimisation, misspecification or interpretability issues of most parametric
models. It constitutes a notable departure from alternatives which use a neural
network (Zhou et al. 2020; Schneider et al. 2023) to model tuning curves and is
particularly well suited to low-dimensional latent spaces.

The E-step In the E-step SIMPL seeks to infer (or “decode”) a new
estimate of the latent from the spikes and current tuning curves, x(etl) =
E, xs.£00)) [x]. Directly performing this inference from the spikes is difficult due
to the non-linearity and non-Gaussianity of the emission model in eq. (5.2).
Instead, SIMPL first calculates the mazimum likelihood estimate (MLE) of x,
denoted X. Then, by making a linear-Gaussian approximation to p(X|x;) ~
N (x¢;X¢), the variables (x,X) form a Linear Gaussian State Space Model
(LGSSM) fully characterised by oI (the transition noise covariance) and X;
(the observation noise covariance). This enables efficient inference via Kalman

smoothing of the MLEs in order to approximate x(¢+1) = E,(x[z)[x] (schematic

in fig. 5.1b).

g = arg max log p(s|x, £(¢))

(5.4)
x(et1) = E, xgle) [x] & KalmanSmooth (x(¢*1); 21, £,)

Crucially, the linear-Gaussian approximation is not made on the spiking
emissions p(s|x), which is non-linear and non-Gaussian by design, but on p(X|x),
a quantity which is provably asymptotically Gaussian in the many-neurons
regime (theoretical argument and an explicit formula for Z; in Appendix E.3.1).

Behavioural initialisation Spike trains often come alongside behavioural

recordings x? thought to relate closely to the true latent variable x? ~ x*.

118 Chapter 5. SIMPL: A Neural Latent Variable Model

SIMPL leverages this by setting the initial decoded latent trajectory, to
measured behaviour x(0) « xb. 1 posit that behavioural initialisation will
place the first iterate of SIMPL within the vicinity of the true trajectory and
tuning curves, accelerating convergence and favouring the true latent and
tuning curves (x*,f*) over alternative isomorphic pairs (¢(x*),f* o ¢~1) whose
latent space is warped by an invertible map ¢ but which would explain the
data equally well. This amounts to an inductive bias favouring tuning curves
close to those calculated from behaviour. Through ablation studies I confirm
these beneficial effects.

All in all, SIMPL is interpretable and closely matches common practice in
neuroscience (e.g. kernel-based curve fitting, MLE-based decoding); moreover,
it can be formally related to a generalised version of the EM-algorithm, for
which theoretical guarantees may be obtained. I leave to Appendix E detailed
theoretical arguments justifying the validity of SIMPL as well as its connection

to EM.

Algorithm 1 SIMPL: An algorithm for optimizing tuning curves and latents
from behaviour
1. s € NVxT > Spike count matrix
2. x(0) ¢ RP*T 1 Initial latent estimate e.g. measured position of animal

3: procedure SIMPL(s, x(?))

4: for e <~ 0 to E do > Loop for E iterations
5 £(¢) « FitTuningCurves(x(¢),s) > The “M-step”
6 x(e+1) « DecodeLatent (£(¢), s) > The “E-step”
7: end for

8 return x(© +1), £(E) > The optimised latent and tuning curves
9: end procedure

5.3 Validating SIMPL on Synthetic and Bio-

logical Data

5.3.1 Synthetic Data: 2D Grid Cells

SIMPL was first tested on a realistic navigational task by generating a large

artificial dataset of spikes from a population of N = 225 2D grid cells — a

5.3. Validating SIMPL on Synthetic and Biological Data 119

type of neuron commonly found in the medial entorhinal cortex (Hafting et al.
2005) — in a 1 m square environment. All grid cells had a maximum firing rate
of 10 Hz and were arranged into three discrete modules, 75 cells per module, of
increasing grid scale from 0.3-0.8 m (Figure 5.2¢). A latent trajectory, x*, was
then generated by simulating an agent moving around the environment for 1
hour under a smooth continuous random motion model. Data was sampled at
a rate of 10 Hz giving a total of 7' = 36,000 time bins (~ 800,000 spikes). All
data was generated using the RatInABox package (George et al. 2024).

The initial trajectory, X(O), was generated by adding smooth Gaussian
noise to the latent such that, on average, the true latent and initial condition
differed by 20 cm (fig. 5.2a, top panel). This discrepancy models the agent’s
internal position uncertainty and/or a measurement error. It sufficed to obscure
almost all structure from the initial tuning curves £(©)(x) (fig. 5.2b, top). To
assess performance I track the log-likelihood of training and test spikes (see
Appendix E.4.5 for how I partition the dataset). I also calculate the error
between the true and latent trajectory the epoch-to-epoch change in the tuning
curves and the negative entropy (hereon called “spatial info”) of the normalized
tuning curves as a measure of how spatially informative they are (fig. 5.2d).

SIMPL was then run for 10 epochs (total compute time 39.8 CPU-secs
on a consumer grade laptop). The true latent trajectory and receptive fields
were recovered almost perfectly and the log-likelihood of both train and test
spikes rapidly approached the ceiling performance with negligible overfitting.
As expected, SIMPL performs better on larger datasets, fig. 5.2e, however
performance remains good even with substantially smaller datasets (e.g. 50
cells for a duration of 5 minutes). A sweep was also performed across the
velocity and kernel bandwidth hyperparameters (v, o) and SIMPL was found to
be surprisingly robust to changes in these hyperparameters within reasonable
limits (see Appendix E.5.2).

Finally, despite having an implicit prior for temporally-smooth latent

dynamics, further synthetic analysis revealed SIMPL is still able recover

120 Chapter 5. SIMPL: A Neural Latent Variable Model

(a) latent trajectory, x©)(t) estirrt1ate XO~c

0 time [min] =
(d) log-likelinood x© error Af©)/Ae spatial info. (€) [cm]40 300 (c) true tuning curves, f*(x)

-0.05 o 19 14.2 TAYna s 35010 OO @@ CPU-
- g 30{je0000 sec
° train Ei 2 :
°test oneny =
-0.234, i 04 eseeeg0 . A T TIE

Figure 5.2: Results on a synthetic 2D grid cell dataset. (a) Estimated latent
trajectories (epochs 0, 1 and 10). Initial conditions are generated from the true
latent (black) by the addition of slow Gaussian noise. Shaded zones show the
discrepancy between the true and estimated latent. (b) Tuning curve estimates for 5
exemplar grid cells. (¢) Ground truth tuning curves. (d) Performance metrics: Left:
log-likelihood of the training and test spikes (averaged per time step, dotted line
shows ceiling performance on a model initialised with the true latent). Middle-left:
Euclidean distance between the true and estimated latent trajectories (averaged per
time step). Middle-right: Epoch-to-epoch change in the tuning curves showing they
stabilise over iteration. Right: Cell spatial information. Violin plots, where shown,
give distributions across all neurons. (e) A sweep over the number of cells and the
duration of the trajectory.

discontinuous latent trajectories (for example those containing jumpy-like
“replay” events, see Appendix E.5.3) or even discrete latents in a non-
dynamical task akin to a discrete two-alternative forced choice task (2AFC, see

Appendix E.5.1).

5.3.2 Hippocampal Place Cell Data

Having confirmed the efficacy of SIMPL on synthetic data, it was next tested
on a real dataset of hippocampal neurons recorded from a rat as it foraged
in a large environment (Tanni et al. 2022). This dataset consists of N = 226
neurons recorded over 2 hours, binned at 5 Hz giving 7" = 36, 000 data samples
and ~ 700,000 spikes. Many of these cells are place cells (O’Keefe et al. 1971)
which, in large environments, are known to have multiple place fields (Park

et al. 2011).

5.3. Validating SIMPL on Synthetic and Biological Data 121

I initialised with the animal’s position, as measured by an LED located
between its ears, and optimised for 10 epochs. The log-likelihood of test
and train spikes both increased, converging after 4 epochs (fig. 5.3b) in a
compute time of ~40 CPU-secs. I then analysed the shapes and statistics of the
tuning curves: After optimisation, tuning curves were visibly sharper, fig. 5.3a;
previously diffuse place fields contracted (e.g. the third exemplar tuning curve)
or split into multiple, smaller fields (second exemplar). Occasionally, new
place fields appeared (fourth exemplar) or multiple place fields merged into a
single larger field (fifth exemplar). Statistically, tuning curves had significantly
more individual place fields (+19%, mean 1.14—1.41 per cell, p = 0.0035
Mann Whitney U tests), substantially higher maximum firing rates (+45%,
median 4.2—6.1 Hz, p = 9.8 x 1077) and were more spatially informative
(p = 0.038). Individual place fields became smaller (-25%, median 0.59—0.44
m?) and rounder (4+8%, median 0.63—0.68, p = 0.0037).

To ensure these observed changes weren’t merely an artefact of the
optimisation procedure I generated a control dataset by resampling spikes
from the behaviour-fitted tuning curves, scop ~ p(-|X(0), f(O)). Control spikes
thus had very similar temporal statistics and identical tuning curves to those in
the hippocampal dataset but, critically, were generated from a known ground
truth model exactly equal to their initialization. Thus, any changes in the
control tuning curves post-SIMPL must be artefactual. Indeed, no significant
changes were observed besides a slight increase in field area (fig. 5.3bc, grey)
providing strong evidence the significant changes observed in the real data
(e.g. the decrease in field area) were genuine, reflecting the true nature of
hippocampal tuning curves.

The optimised latent trajectory x(10)

remained highly correlated with
behaviour (R? = 0.86, fig. 5.3d) occasionally diverging for short periods as it
“jumped” to and from a new location, as if the animal was mentally teleporting
itself (an example is visualized in fig. 5.3e). I calculated the difference between

the optimised latent and the behaviour at each time point, A; = ||x§0) — xglo) |2,

122 Chapter 5. SIMPL: A Neural Latent Variable Model

(a) tuning curves, f(©)(x) (b) log-likelihood

I | |
0 epoch 10

test
no. of place fields field area, A[m?] field ‘roundness’ max. firing rate [Hz] spatial info.
(o] (o) * o % o * [e]
after @ Co@® 1z o 1:7: otz mmom 1z o 15
: —] e Jmmgm—t]
o 60 150 . 0 15 8 -6

(d) latent trajectory, x(©)(t) y () x-difference (f) area vs dist. to wall

-0.15

after (latent) ~

3.5 -1.5
= V ‘ ‘W‘"‘ . 1.5 o,
— ‘:" . . ' & o
[~7"‘" N l ! ! Y i i E £ 0.5 o7
Q Lol WAL e . - (
06 ‘._y,u] ¢ :“,:"»." T o \\': < |53
0 ' time [min] --- 3 b 0 dyg [M] 1

Figure 5.3: Results on a hippocampal place cell dataset collected by Tanni et al.
(2022). (a) Exemplar tuning curves before and after optimization. Automatically
identified place field boundaries shown in white. (b) Log-likelihood of test and train
spikes. Control model shown in grey. (c) Statistics analysis of place fields. Violin
plots show the distributions over all place fields / cells. (d) The final latent trajectory
estimated from SIMPL (green) overlaid on top of the measured position of the animal
(used as initial conditions, yellow). (e) Behavioural discrepancy map: the average
discrepancy between the latent and behaviour as a function of the optimised latent
x(19) " Overlaid is a snippet of the behavioural vs optimised true latent trajectory.
(f) Place field area as a function of the distance to the nearest wall.

and visualized this as a heat map overlaid onto the latent space (fig. 5.3¢). I
found that the latent discrepancy was minimal near the edges of the environment
and peaked near the centre, perhaps because sensory input is scarce in the
centre of the environment due to fewer visual and tactile cues.

Tanni et al. (2022) observed that the size of a place field increases with its
distance to a wall. This observation—that the latent discrepancy is highest in
the centre of the environment—suggests one possible hypothesis: behavioural
place fields merely appear larger in the centre of the environment because they
are blurred by the correspondingly larger latent discrepancy. If true, this trend
should weaken after optimisation, once the “true” latent has been found.

To test this I plotted field size against distance-to-wall (fig. 5.3f); optimised
fields, like behavioural fields, were small very near to the walls and grew with
distance (replicating the result of Tanni et al. (2022)), but this correspondence
stopped after ~ 0.5 m beyond which the optimised place fields size grew

5.3. Validating SIMPL on Synthetic and Biological Data 123

-0.514 000000SIMPL4D (hand position
(a) (b) log- & velocity)
likelihood ooeemSIMPLG (hand position)

(test) SIMPL2D (hand velocity)

-0.528
0 epoch 10
(€) behaviour SIMPL 2D (d) behaviour SIMPL 2D
(hand position only) (hand velocity only)

orr. = 0.41

time [sec] 40
(e) behaviour 'NSIMPL 4D behaviour 'NSIMPL 4D

(hand position ...hand velocity)
S
<®
y 7 « '

T—' . —Vx
orr—074 W
V]WWWW'W Rkl 10

time [sec] time [sec] 25

.u | ..
y vy
X Vy

Figure 5.4: Somatosensory Cortex Results (Continued on next page...)

124 Chapter 5. SIMPL: A Neural Latent Variable Model

Figure 5.4: (...continued from previous page) SIMPL applied to somatosensory
cortex data. (a) A macaque performs centre-out reaches; N = 65 somatosensory
neurons are recorded. (b) Log-likelihood curves for the three SIMPL models in panels
c—e. (c) SIMPL trained with a 2D latent initialised from hand position. Top-left:
raw behaviour, averaged across trials aligned to movement onset; top-right: after
SIMPL. Middle: 40 s of behaviour (yellow) and latent (green). Bottom: exemplar
tuning curves before and after SIMPL. (d) As in ¢, but initialised with hand velocity.
(e) As in ¢, but with a 4D latent initialised to hand-position (dims 1 and 2) and
velocity (dims 3 and 4). Inset: 2D visualisation of a 4D latent embedding from
CEBRA trained on hand position, adapted from Schneider et al. (2023).

more weakly with distance-to-wall. This supports my hypothesis, suggesting
a substantial fraction of the correlation between size and distance isn’t a
fundamental feature of the neural tuning curves but an artefactual distortion

in the tuning curves, something which can be corrected for using SIMPL.

5.3.3 Somatosensory Cortex Data During a Hand-

Reaching Task

To test SIMPL beyond navigational/hippocampal datasets, it was run on a
macaque somatosensory cortex dataset Chowdhury et al. (2020). During this
recording a macaque made a series of reaches to a target in one of 8 directions,
fig. 5.4. On half of the trials the reach was “active” whereby the macaque
moved the manipulandum towards the target by itself. On the other half, the
reach was “passive”, whereby the macaque’s hand was bumped in the direction
of one of the targets by a force applied to the manipulandum, forcing the
macaque to correct and return the cursor to the centre. I binned the data
(N = 65 neurons, 37 mins, ~10° spikes) at 20 Hz and ran SIMPL models on
its entirety (i.e. active and passive reaches, as well as the inter-trial intervals)
for 10 epochs.

First SIMPL was run with a 2D latent initialised to the macaque’s measured
x- and y-hand position (fig. 5.4c). Afterwards, the latent trajectory—here
averaged across trials with the same direction, aligned to movement onset—had
diverged from, but remained correlated with, initial hand-position (correlation =

0.59). Despite an improvement in likelihood over the behavioural initialisation,

5.3. Validating SIMPL on Synthetic and Biological Data 125

latent trajectories for distinct directions substantially overlapped with one
another, indicating an insufficient dimensionality to capture the full complexity
of the data. A similar result was obtained when initialising to hand-velocity
(fig. 5.4d).

I then trained SIMPL with a 4D latent space. Two of the dimensions were
initialised with hand position and the other two with hand velocity. This model
performed better than either 2D model, converging to a higher likelihood. The
latent dimensions initialised to hand-position remained highly correlated with
hand-position (corr. = 0.74) after optimisation as did the velocity dimensions
(corr. = 0.57). The latent trajectory was also more structured, with distinct
and less overlapping motifs for each trial type. I visualised two-dimensional
slices of the four-dimensional tuning curves for each neuron and found that they
had well-defined receptive fields, similar to place fields in the hippocampus,
which were visibly sharper after optimisation. These results suggest that the
somatosensory cortex neurons encode a complex and high-dimensional latent,

closely correlated to hand position and velocity, which can be partially recovered

by SIMPL.

5.3.4 The Critical Role of Behavioral Initialization

Latent variable models trained with EM can experience two issues that usually
complicate the scientific interpretability of their results. The first concerns the
quality of the solution; does the algorithm converge on a good model of the
data which predicts the spikes well? The second issue concerns identifiability;
even if the recovered latent trajectory and tuning curves (f (e) x(e)) are of high
quality, they may differ from the true ones (f*,x*) by some invertible “warp”
¢ in a way that does not affect the overall goodness-of-fit of the model. These
warps could include innocuous rotations and symmetries or, more concerningly
if the exact structure of the tuning curve is a quantity of interest, stretches
or fragmentations. Here it is shown that behavioural initialisation drastically
minimises the severity of both of these issues for SIMPL.

To do so, I first assess the absolute goodness-of-fit of SIMPL by computing,

126 Chapter 5. SIMPL: A Neural Latent Variable Model

(a) ground truth (b) initialised: noisy ground truth (fig. 3) (c)randomly

exemplar
tuning .
curve

warp reference
maps

warp distance

Figure 5.5: Latent manifold analysis: (Top) Exemplar tuning curve in (a)
the ground truth latent space, (b) the latent space discovered by behaviourally-
initialised-SIMPL after 0, 1 and 10 epochs and (c) the latent space discovered by
SIMPL initialised with a random latent trajectory. Inset scatter plots show the true
and predicted firing rates of all neurons across all times as well as their correlation
values (“accurate” models have higher correlations). (Bottom) The warp mappings
from each latent space to the “closest” location in ground truth as measured by the
distance between the tuning curves population vectors.

for all neurons, the correlation between the estimated instantaneous firing rates
£9(x1”) (a quantity invariant to warping) and the true firing rates f#(x}).
SIMPL converges to a highly accurate model (r=0.98) under behavioural
initialization, but to a less accurate, though still quite accurate, model (r = 0.87)
when initialised with a random trajectory uncorrelated to the true latent. Next,
I estimate, quantify and visualize the warp map ¢ between SIMPL’s estimates
(£(¢), x(©)) and the ground truth (£*,x*). T obtain this by finding, for every
location in the warped space, the position in the true latent space where the
tuning curves are most similar (¢(x) = arg miny [|f*(y) — () (x)]|2). T then
quantify the “warpness” of this mapping as the average distance between x
and ¢(x) across the environment, normalized by its characteristic length scale
(1 m). This warp-distance should be 0 for totally un-warped models and O(1)
for heavy warps. In addition to perfectly fitting the data, the solution found
by SIMPL under behavioural initialization is minimally warped (warp dist

= 0.050). In contrast, the good (but imperfect) solution found by SIMPL

under random initialization is very heavily warped (warp dist. = 0.498) in

5.3. Validating SIMPL on Synthetic and Biological Data 127

a fragmented manner. These results (fig. 5.5) strongly motivate the use of
behavioural initializations in latent variable models as an effective means to
encourage convergence towards latent spaces which are both accurate and

un-warped with respect to the ground truth.

5.3.5 Performance Comparison with State-of-the-Art

Methods

I compared SIMPL to four popular methods for latent variable extraction:
pi-VAE (Zhou et al. 2020), CEBRA (Schneider et al. 2023) (that use neural
network function approximators), GPLVM (Lawrence 2003) and GPDM (Wang
et al. 2005) (that use Gaussian processes). Crucially, and like SIMPL, none of
these methods make restrictive linear assumptions about the structure of the
tuning curves.

To match SIMPL, I initialise the latent variable estimates of GPLVM and
GPDM to behaviour (pi-VAE and CEBRA handle behaviour natively by using
it to condition a prior over the latent or as a contrastive label). All models
were trained for their default number of iterations/epochs. After training I
aligned the discovered latents to behaviour and visualised them on top of the
ground truth (fig. 5.6¢). All models successfully uncovered a latent trajectory
closer to the ground truth than behaviour (fig. 5.6b). SIMPL performed better
than the other models, achieving a final error of 4.2 cm, half that of pi-VAE
(8.4 cm).

I posit that pi-VAE, CEBRA and GPLVM may suffer from the lack of an
explicit dynamical systems component in their generative models while GPDM
may suffer from the data-subsampling that was required to cap the training
time to less than two-hours. SIMPL converged in 40 seconds, over 15 times
quicker than the next fastest (pi-VAE, 10.4 minutes, fig. 5.6a). Except for
GPDM, which required a GPU, all techniques were run and timed on a CPU.
Only SIMPL was able to recover sharp and accurate grid fields close to the
ground truth.

128 Chapter 5. SIMPL: A Neural Latent Variable Model

(a) compute time (b) latent error (d)
Ground
SIMPLJ40 secs 4.2cm truth
CEBRA 9.2cm
GPLVM

GPDM

0 [CPU-mins] 70 0 [cm] 20
(©)
SIMPL

vav VSN

AT ATANS _
S
1’W .
O GPDM

time [min]

pos [m]

Figure 5.6: Comparison to pi-VAE, CEBRA, GPLVM and GPDM on the synthetic
grid cell dataset. (a) Compute time. (b) Final error in the latent. (c) Alignment of
the discovered latent to the ground truth. (d) Exemplar tuning curves constructed
using kernel-based estimation on the latent (i.e. an “M-step”).

5.4 A Survey of Latent Variable Models for
Neural Data

Probabilistic inference in neural data modulated by latent variables has been a
major topic of study for decades — see, e.g. Tipping et al. (1999), Yu et al.
(2006), Yu et al. (2008b), Yu et al. (2008a), Macke et al. (2011), Mangion et al.
(2011), Park et al. (2015), Gao et al. (2016), Hernandez et al. (2018), Dong
et al. (2020), Zhou et al. (2020), Gondur et al. (2023), and Bjerke et al. (2023)
— however not all methods were designed for the kind of data considered in this
chapter. Many methods model complex latent space dynamics but combine
these with simplistic tuning curves that restrict firing rates to (exponential-
)linear functions of the latent (Smith et al. 2003; Yu et al. 2008a; Macke et al.
2011; Duncker et al. 2019; Linderman et al. 2016; Pandarinath et al. 2018;

5.4. A Survey of Latent Variable Models for Neural Data 129

Zoltowski et al. 2020; Sani et al. 2021; Hurwitz et al. 2021; Kim et al. 2021;
Gondur et al. 2023) so cannot interpretably account for the representations
(place cells, grid cells) considered here. Other methods do not/cannot use
behaviour to aid latent discovery (Gao et al. 2016; Nam 2015; Hernandez
et al. 2018; Gondur et al. 2023; Bjerke et al. 2023) instead taking a fully
“unsupervised” approach (meaning they can be applied to spike data without an
obvious behavioural correlate) at the expense of complexity and identifiability.

Algorithms that both don’t restrict to simplistic linear tuning curves
and exploit behaviour form a small set of relevant alternatives to SIMPL.
Behaviour-informed latent discovery tools have become popular in recent years
due to the explosion of large neural datasets taken from behaving animals and
the observation that behaviour can explain substantial variance in the neural
dynamics.

Gaussian process latent variable models (GPLVMSs), Lawrence (2003) and
Wang et al. (2005) form a family of methods that learn smooth, non-linear tuning
curves by placing GP priors on them and performing approximate marginal log-
likelihood optimisation on the latent variable. Popular implementations leave
the initial condition of this optimisation user-defined and therefore compatible
with the behaviour-informed initialisation used here. However, most such
models were introduced outside of the neuroscience literature thus use Gaussian
(instead of Poisson) emission models (Lawrence 2003; Wang et al. 2005; Jensen
et al. 2020), or do not make smoothness assumptions on the latent trajectory
(Jensen et al. 2020; Lawrence 2003). P-GPLVM, which employs Poisson
emissions and a GP prior on the latent trajectory, is an exception, but its
cubic scaling with time points makes it impractical for hour-long datasets. In
contrast, available GPLVM implementations (Bingham et al. 2018) use inducing
point approximations to achieve linear time complexity.

CEBRA (Schneider et al. 2023) learns a deterministic neural network
mapping from spikes to latents using behaviour- or time-guided contrastive

learning. Unlike most methods, CEBRA does not natively learn a generative

130 Chapter 5. SIMPL: A Neural Latent Variable Model

model nor tuning curves, which are of primary interest in this setting. CEBRA
also treats each data point independently instead of modelling whole-trajectories
preventing it from taking advantage of the temporal smoothness inherent in
many underlying latent codes.

pi-VAE (Zhou et al. 2020) uses a variational autoencoder (Kingma et al.
2014) to infer the latent trajectories and learn tuning curves using neural
network function approximators. pi-VAE places a learnable prior, conditioned
on behaviour, to the latent variable in order to obtain a model with provable
identifiability properties. However, pi-VAE suffers from the same limitation as
CEBRA in that it treats each data point as an i.i.d observation instead of a
part of a whole trajectory.

The properties of large scale neural datasets suggest five desiderata for the
algorithms used to analyse them. These are (1) the absence of restrictive tuning
curve assumptions, (2) modelling smooth latent dynamics, (3) the presence of a
spiking component (e.g. Poisson emissions), (4) the ability to exploit behaviour
(including as an initial condition) and (5) scalability to large datasets. None
of the methods described in the literature review satisfy all five desiderata.
In Appendix E.6, a table is provided comparing all methods discussed in this

section and more with respect to these desiderata.

5.5 Discussion: A Practical Tool for Uncover-

ing the Brain’s Latent Code

SIMPL was introduced, a tool for optimizing tuning curves and latent
trajectories using a technique that refines estimates obtained from behaviour.
It hinges on two well-established sub-routines — tuning curve fitting and
decoding — that are widely used by both experimentalists and theorists for
analysing neural data. By presenting SIMPL as an iterative application of
these techniques, I aim to make latent variable modelling more accessible to
the neuroscience community.

SIMPL could be seen as an instance of a broader class of latent optimization

5.5. Discussion 131

algorithms. In principle any curve fitting procedure and any decoder (which uses
those tuning curves) could be coupled into a candidate algorithm for optimizing
latents from neural data. My specific design choices, while attractive due to
their conceptual and computational simplicity, will come with limitations. For
example, I predict SIMPL’s kernel-based estimator won’t scale well to very
high dimensional latent spaces (Gyorfi et al. 2006) where parametric models,
e.g. a neural networks, are known to perform better (Bach 2017), potentially
at the cost of compute time.

My synthetic analysis focused on settings where behaviour and the true
latent differed only in an unbiased manner. It would be interesting to determine
if SIMPL’s performance extends to more complex perturbations. Fast, non-
local and asymmetric perturbations are common in the brain; for instance
“replay” (Carr et al. 2011) where the latent jumps to another location in
the environment. Likewise, during theta sequences (Maurer et al. 2006), the
encoded latent moves away from the agent. This forward-biased discrepancy
could theoretically induce a backward-biased skew in behavioural place fields,
even if the true tuning curves remain unskewed. If this is the case, proper
latent dynamical analysis—via tools like SIMPL—could help reinterpret the
predictive nature of place field tuning curves (Stachenfeld et al. 2017; Fang
et al. 2023; Bono et al. 2023; George et al. 2023a), similar to how it reduced

the asymmetry in place field sizes further from walls (fig. 5.3f).

Chapter 6

General Discussion

This thesis has explored how neural systems learn and use internal representa-
tions to support flexible behaviour, with a primary focus on the mammalian
spatial memory system. By developing computational tools and biologically
plausible models, this work studies the learning of, and interplay between,
structure and dynamics that gives rise to cognitive maps with sophisticated
functions. The research advances both theoretical and practical understanding
within neuroscience and contributes new tools and models to the growing field

of NeuroAl (Zador et al. 2023).

6.1 Summary Discussion of the Major Themes

A central theme of this thesis has been the development and analysis of
computational models that are explicitly designed to be biologically
plausible, serving as a bridge between high-level cognitive theories and the
mechanistic details of neural circuits. The work presented in Chapters 2
and 3 confronts this challenge directly by proposing a plausible mechanism
for how the hippocampus could learn a predictive map, a concept from
reinforcement learning. Instead of relying on error-driven algorithms, these
models demonstrate that spike-timing dependent plasticity (STDP), when
combined with the temporal compression afforded by theta phase precession,
is sufficient to learn a close approximation of the successor representation.

The work in Chapter 4 introduces a generative model of the hippocampal-

134 Chapter 6. General Discussion

entorhinal loop that performs path integration and mental simulation using
only local, Hebbian-style learning rules gated by theta oscillations, avoiding
unrealistic requirements like backpropagation-through-time and other non-local
learning mechanisms. Collectively, these models provide an existence proof that
sophisticated and theoretically powerful computations are achievable within the
known anatomical and physiological constraints of the hippocampal formation.

Complementing this theoretical work, a second major theme was the
development and validation of practical, open-source tools to enable
better and more reproducible research. This is most directly addressed
in Chapter 1, which introduces the RatinABozx toolkit. This software provides
a standardised, efficient, and realistic environment for simulating rodent
locomotion and neural activity, tackling the issues of duplicated effort and a lack
of comparability between studies. Furthering this theme, Chapter 5 presents
SIMPL, a novel and computationally efficient algorithm for latent variable
discovery. By leveraging behaviour as an initial condition, SIMPL offers a
practical solution to the long-standing challenge of characterising neural tuning
curves, revealing that the brain’s internal representations may be significantly
more precise than what is observable from behaviour alone. These tools are not
merely by-products of the research but are themselves primary contributions
designed to strengthen the infrastructure of computational neuroscience as

applied to the spatial memory system.

6.2 Open Questions and Future Research

Themes

While by no means exhaustive, several key themes and open questions for

future research emerge from the work presented in this thesis:

1. The Interplay Between Structural Learning and Dynamic
Computation: The thesis explores how predictive maps can be learned
through long-term structural changes in synaptic weights (Chapter 3)

and how neural dynamics can perform computations like path integration

6.2. Open Questions and Future Research Themes 135

(Chapter 4). A significant future direction is to understand how these two
modes of computation—modifying network structure versus modulating
network dynamics—are balanced and integrated. This raises the question:
Under what circumstances does the brain, or another neural system,
favour altering long-term synaptic connections versus relying on short-
term, dynamic computations to support flexible behaviour, a question that
mirrors the distinction between “in-weights” and “in-context” learning in

modern Al (Brown et al. 2020).

. Unifying Different Forms of Experience Compression for Learn-
ing: The work highlights how theta sequences and phase precession
can compress behavioural timescales to enable learning with STDP
(Chapters 2 and 3). The hippocampus also uses sharp-wave ripple (SWR)
replay to compress past experiences, a process thought to be critical
for memory consolidation (Wilson et al. 1994). Other fast oscillatory
patterns, such as gamma oscillations, are also implicated in replay and
learning (Li et al. 2021). A key open question is how these different forms
of compressed replay are coordinated. Do theta sweeps and SWR replay
serve distinct learning functions? For instance, theta-based learning
might support online, incremental updates to a cognitive map, while
SWR replay could be reserved for prioritised consolidation of particularly
important experiences, such as trajectories leading to reward (Mattar

et al. 2018) or exposure to novel environments (Cheng et al. 2008).

. Extending Latent Variable Discovery to Abstract and Non-
Spatial Domains: The SIMPL algorithm (Chapter 5) demonstrates that
repeated decoding and refitting, using behaviour as an initial estimate, can
successfully refine the underlying latent neural representations for spatial
tasks. The hippocampus, however, is thought to encode not just physical
space but also abstract and non-spatial “cognitive maps” (Constantinescu
et al. 2016; Garvert et al. 2017; Whittington et al. 2020). A compelling
future direction is to apply or adapt tools such as SIMPL to investigate

136 Chapter 6. General Discussion

these abstract cognitive spaces. By initialising the model with non-spatial
behavioural variables (e.g., progress toward a goal, social hierarchies,
or task parameters), researchers could explore whether the underlying
neural representations conform to similar principles of organisation (e.g.,

place-like or grid-like coding) as the spatial domain.

4. Scaling Biologically Plausible Learning Rules for Complex
Generative Models: The generative model in Chapter 4 shows how
local, Hebbian-style learning rules, gated by oscillations, can give rise to
sophisticated functions like path integration through the emergence of a
ring attractor structure. While this provides a crucial proof of principle,
a major challenge still remains in scaling these biologically plausible
mechanisms to handle the complexity and high dimensionality of real-
world sensory inputs, a domain where deep learning models trained with
backpropagation currently excel (Goodfellow et al. 2014; Vaswani et al.
2017). Future research could explore how architectures inspired by the
hippocampal formation might be expanded to create more powerful and
generalisable generative models for Al, potentially offering advantages in
efficiency (Lillicrap et al. 2020) or continual learning (Kirkpatrick et al.
2017; Parisi et al. 2018).

6.3 Open science: Towards a more equitable

and transparent global research culture

The open-source toolkits developed in this thesis, RatInABox (Chapter 1) and
SIMPL (Chapter 5), are rooted in a firm commitment to open and reproducible
science. As a practical extension of this philosophy, a significant part of my
doctoral work has been dedicated to co-founding the TReND-CaMinA summer
school (Soldado-Magraner et al. 2023; Cashin-Garbutt et al. 2023). This non-
profit initiative, now in its fourth year, provides training in computational
neuroscience and machine learning for young African researchers, addressing the

issue that Africa’s scientific output remains low (Nabyonga-Orem et al. 2024;

6.4. Conclusion 137

Schneegans et al. 2021) despite the continent’s large and youthful population
(Ashford et al. 2007). Entirely free for students and funded by donations from
the global research community, the school embodies open-science principles by
training students on open-source tools and large-scale public datasets (Vries
et al. 2023), and making all teaching materials open-source.

By lowering barriers to research and education, the tools in this thesis and
community-driven initiatives like TReND-CaMinA are complementary efforts

toward fostering a more equitable and transparent global research culture.

6.4 Conclusion

The research presented in this thesis has been guided by a central goal: to
bridge the gap between powerful, normative theories of cognition and the
mechanistic realities of neural circuits. By demonstrating how fundamental
biological processes like spike-timing dependent plasticity and neural oscillations
can implement sophisticated computations, this work takes a tangible step
towards a more unified understanding of the hippocampus. It is my hope that
the models and tools developed here will not only advance our knowledge but
also inspire future research that continues to ground abstract ideas in concrete,
testable neural mechanisms, pushing our field closer to a more comprehensive

understanding of the brain and its role in all aspects of cognition.

Bibliography

Afshar, Afsheen, Gopal Santhanam, Byron M. Yu, Stephen I. Ryu, Maneesh Sahani,
and Krishna V. Shenoy (2011). “Single-trial neural correlates of arm movement
preparation”. In: Neuron. DOI: 10.1016/j .neuron.2011.05.047.

Alvernhe, Alice, Etienne Save, and Bruno Poucet (2011). “Local remapping of place
cell firing in the Tolman detour task”. In: Furopean Journal of Neuroscience 33.9,
pp- 1696-1705. 18SN: 1460-9568. DOI: 10.1111/5.1460-9568.2011.07653.x.

Ascoli, Giorgio A., Duncan E. Donohue, and Maryam Halavi (Aug. 2007).
“NeuroMorpho.Org: A Central Resource for Neuronal Morphologies”. In: The
Journal of Neuroscience 27.35, pp. 9247-9251. 18SN: 1529-2401. por: 10.1523/j
neurosci.2055-07.2007.

Ashford, Lori S., R. A. Garcia, B. S. Soares Filho, Y. Cai, R. Lakshminarayanan,
J. F. May, E. Bos, R. Hasan, E. Suzuki, and T. R. Aryal (2007). “Africas
Youthful Population: Risk or Opportunity?” In: Journal of Biosocial Science
39.5, pp. 693-706. URL: https://www . sarpn . org/documents /d0002763
/PRB_Africa_youth_Jun2007.pdf.

Bach, Francis (2017). “Breaking the curse of dimensionality with convex neural
networks”. In: Journal of Machine Learning Research 19, pp. 1-53. DOI: 10.48
550/arXiv.1412.8690.

Banino, Andrea, Caswell Barry, Benigno Uria, Charles Blundell, Timothy P. Lillicrap,
Piotr Mirowski, Alexander Pritzel, Martin J. Chadwick, Thomas Degris, Joseph
Modayil, Greg Wayne, Hubert Soyer, Fabio Viola, Brian Zhang, Ross Goroshin,
Neil Rabinowitz, Razvan Pascanu, Charlie Beattie, Stig Petersen, Amir Sadik,
Stephen Gaffney, Helen King, Koray Kavukcuoglu, Demis Hassabis, Raia Hadsell,
and Dharshan Kumaran (May 2018). “Vector-based navigation using grid-like

https://doi.org/10.1016/j.neuron.2011.05.047
https://doi.org/10.1111/j.1460-9568.2011.07653.x
https://doi.org/10.1523/jneurosci.2055-07.2007
https://doi.org/10.1523/jneurosci.2055-07.2007
https://www.sarpn.org/documents/d0002763/PRB_Africa_youth_Jun2007.pdf
https://www.sarpn.org/documents/d0002763/PRB_Africa_youth_Jun2007.pdf
https://doi.org/10.48550/arXiv.1412.8690
https://doi.org/10.48550/arXiv.1412.8690

140 BIBLIOGRAPHY

representations in artificial agents”. In: Nature 557.7705, pp. 429-433. 1SSN:
0028-0836, 1476-4687. DOI: 10.1038/s41586-018-0102-6.

Barak, Omri (Oct. 2017). “Recurrent neural networks as versatile tools of neuroscience
research”. In: Current Opinion in Neurobiology 46, pp. 1-6. 1SSN: 0959-4388.
DOI: 10.1016/j.conb.2017.06.003.

Barnes, Nick (Oct. 2010). “Publish your computer code: it is good enough”. In:
Nature 467.7317, pp. 753-753. 1SSN: 1476-4687. DOI: 10.1038/467753a.

Barry, Caswell, Robin Hayman, Neil Burgess, and Kathryn J. Jeffery (May 2007).
“Experience-dependent rescaling of entorhinal grids”. In: Nature Neuroscience
10.6, pp. 682-684. DOT: 10.1038/0n1905.

Barry, Caswell, Colin Lever, Robin Hayman, Tom Hartley, Stephen Burton, John
O’Keefe, Kathryn J. Jeffery, and Neil Burgess (2006). “The boundary vector cell
model of place cell firing and spatial memory”. In: Reviews in the Neurosciences
17.1-2, pp. 71-98. 18SN: 0334-1763. DOI: 10.1515/revneuro.2006.17.1-2.71.

Benna, Marcus K. and Stefano Fusi (2021). “Place cells may simply be memory
cells: Memory compression leads to spatial tuning and history dependence”.
In: Proceedings of the National Academy of Sciences 118.51, e2018422118. DOLI:
10.1073/pnas.2018422118.

Bi, Guo-giang and Mu-ming Poo (Dec. 1998). “Synaptic Modifications in Cultured
Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and
Postsynaptic Cell Type”. In: The Journal of Neuroscience 18.24, pp. 10464—
10472. 18SN: 0270-6474, 1529-2401. DO1: 10.1523/JNEUROSCI. 18-24-10464.19
98.

Billingsley, Patrick (1961). “Statistical methods in Markov chains”. In: The annals
of mathematical statistics. DOI: 10.1214/aoms/1177705136.

Bingham, Eli, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj
Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and
Noah D. Goodman (2018). “Pyro: Deep universal probabilistic programming”.
In: Journal of Machine Learning Research. DOIL: 10.48550/arXiv.1810.09538.

Bittner, Katie C., Christine Grienberger, Sachin P. Vaidya, Aaron D. Milstein, John J.

Macklin, Junghyup Suh, Susumu Tonegawa, and Jeffrey C. Magee (July 2015).

https://doi.org/10.1038/s41586-018-0102-6
https://doi.org/10.1016/j.conb.2017.06.003
https://doi.org/10.1038/467753a
https://doi.org/10.1038/nn1905
https://doi.org/10.1515/revneuro.2006.17.1-2.71
https://doi.org/10.1073/pnas.2018422118
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1214/aoms/1177705136
https://doi.org/10.48550/arXiv.1810.09538

BIBLIOGRAPHY 141

“Conjunctive input processing drives feature selectivity in hippocampal CA1
neurons”. In: Nature Neuroscience 18.8, pp. 1133-1142. DOI: 10.1038/nn.4062.

Bittner, Katie C., Aaron D. Milstein, Christine Grienberger, Sandro Romani, and
Jeffrey C. Magee (Sept. 2017). “Behavioral time scale synaptic plasticity underlies
CAL1 place fields”. In: Science 357.6355, pp. 1033-1036. 1SSN: 0036-8075, 1095-
9203. poI: 10.1126/science.aan3846.

Bjerke, Martin, Lukas Schott, Kristopher T. Jensen, Claudia Battistin, David A.
Klindt, and Benjamin Adric Dunn (2023). “Understanding neural coding on
latent manifolds by sharing features and dividing ensembles”. In: The Eleventh
International Conference on Learning Representations. DOI: 10.48550/arXiv
.2210.03155.

Bliss, T. V. P. and T. Lgmo (July 1973). “Long-lasting potentiation of synaptic
transmission in the dentate area of the anaesthetized rabbit following stimulation
of the perforant path”. In: The Journal of Physiology 232.2, pp. 331-356. ISSN:
1469-7793. poI: 10.1113/jphysiol.1973.sp010273.

Blum, Kenneth I. and L. F. Abbott (Jan. 1996). “A Model of Spatial Map Formation
in the Hippocampus of the Rat”. In: Neural Computation 8.1, pp. 85-93. ISSN:
0899-7667. DOI: 10.1162/neco.1996.8.1.85.

Bogacz, Rafal, Eric Brown, Jeff Moehlis, Philip Holmes, and Jonathan D. Cohen
(2006). “The physics of optimal decision making: A formal analysis of models of
performance in two-alternative forced-choice tasks”. In: Psychological review.
DOI: 10.1037/0033-295x.113.4.700.

Bolding, Kevin A., Janina Ferbinteanu, Steven E. Fox, and Robert U. Muller (July
2019). “Place cell firing cannot support navigation without intact septal circuits”.
In: Hippocampus 30.3, pp. 175-191. DOI: 10.1002/hipo.23136.

Bono, Jacopo, Sara Zannone, Victor Pedrosa, and Claudia Clopath (Aug. 2021).
“Learning predictive cognitive maps with spiking neurons during behaviour and
replays”. In: DOI: 10.1101/2021.08.16.456545.

Bono, Jacopo, Sara Zannone, Victor Pedrosa, and Claudia Clopath (2023). “Learning
predictive cognitive maps with spiking neurons during behavior and replays”.

In: eLife, e80671. DOI: 10.7554/elife.80671.

https://doi.org/10.1038/nn.4062
https://doi.org/10.1126/science.aan3846
https://doi.org/10.48550/arXiv.2210.03155
https://doi.org/10.48550/arXiv.2210.03155
https://doi.org/10.1113/jphysiol.1973.sp010273
https://doi.org/10.1162/neco.1996.8.1.85
https://doi.org/10.1037/0033-295x.113.4.700
https://doi.org/10.1002/hipo.23136
https://doi.org/10.1101/2021.08.16.456545
https://doi.org/10.7554/elife.80671

142 BIBLIOGRAPHY

Bostock, Elizabeth, Robert U. Muller, and John L. Kubie (Apr. 1991). “Experience-
dependent modifications of hippocampal place cell firing”. In: Hippocampus 1.2,
pp- 193-205. 18SN: 1098-1063. DOIL: 10.1002/hipo.450010207.

Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang (2018). JAX: Composable transformations
of Python+NumPy programs. version: 0.3.13. URL: https://github.com/jax~
ml/jax.

Bradley, Ralph A. and John J. Gart (1962). “The asymptotic properties of ML
estimators when sampling from associated populations”. In: Biometrika. DOI:
10.2307/2333482.

Brankack, Jurij, Mark Stewart, and Steven E. Fox (July 1993). “Current source density
analysis of the hippocampal theta rhythm: Associated sustained potentials and
candidate synaptic generators”. In: Brain Research 615.2, pp. 310-327. DOI:
10.1016/0006-8993(93)90043-m.

Brea, Johanni, Alexisz Tamés Gadl, Robert Urbanczik, and Walter Senn (June 2016).
“Prospective Coding by Spiking Neurons”. In: PLOS Computational Biology
12.6, €1005003. 1SSN: 1553-7358. DOIL: 10.1371/journal.pcbi.1005003.

Bredenberg, Colin, Eero P. Simoncelli, Benjamin S. H. Lyo, and Cristina Savin (2021).
“Impression learning: Online representation learning with synaptic plasticity”.
In: p. 13. URL: https://proceedings.neurips.cc/paper/2021/hash/61529
9acbbac3e21302bbc435091ad9f-Abstract .html.

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei (2020). “Language Models are
Few-Shot Learners”. In: DOI: 10.48550/ARXIV.2005.14165.

Bubeck, Sébastien, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric

Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,

https://doi.org/10.1002/hipo.450010207
https://github.com/jax-ml/jax
https://github.com/jax-ml/jax
https://doi.org/10.2307/2333482
https://doi.org/10.1016/0006-8993(93)90043-m
https://doi.org/10.1371/journal.pcbi.1005003
https://proceedings.neurips.cc/paper/2021/hash/615299acbbac3e21302bbc435091ad9f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/615299acbbac3e21302bbc435091ad9f-Abstract.html
https://doi.org/10.48550/ARXIV.2005.14165

BIBLIOGRAPHY 143

Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang (2023). Sparks
of artificial general intelligence: Farly experiments with GPT-4. DOI: 10.48550
/arXiv.2303.12712.

Buckner, Randy L. and Daniel C. Carroll (Feb. 2007). “Self-projection and the
brain”. In: Trends in Cognitive Sciences 11.2, pp. 49-57. 1SSN: 1364-6613. DOI:
10.1016/j.tics.2006.11.004.

Buhry, Laure, Amir H. Azizi, and Sen Cheng (2011). “Reactivation, Replay, and
Preplay: How It Might All Fit Together”. In: Neural Plasticity 2011, pp. 1-11.
ISSN: 1687-5443. DOI: 10.1155/2011/203462.

Buonomano, Dean V. and Wolfgang Maass (Jan. 2009). “State-dependent compu-
tations: spatiotemporal processing in cortical networks”. In: Nature Reviews
Neuroscience 10.2, pp. 113-125. 1ssN: 1471-0048. DOI: 10.1038/nrn2558.

Burak, Yoram and Ila R. Fiete (Feb. 2009). “Accurate Path Integration in Continuous
Attractor Network Models of Grid Cells”. In: PLOS Computational Biology 5.2,
€1000291. 1SSN: 1553-7358. DOI: 10.1371/journal.pcbi.1000291.

Burgess, Neil, Caswell Barry, and John O’Keefe (2007). “An oscillatory interference
model of grid cell firing”. In: Hippocampus 17.9, pp. 801-812. 18SN: 1098-1063.
DOI: 10.1002/hipo.20327.

Burgess, Neil, James G. Donnett, Kathryn J. Jeffery, and John O’Keefe (1997).
“Robotic and neuronal simulation of the hippocampus and rat navigation”. In:
Philosophical Transactions of the Royal Society of London. Series B: Biological
Sciences 352.1360, pp. 1535-1543. DOI: 10.1098/rstb.1997.0140.

Bush, Daniel, Caswell Barry, and Neil Burgess (2014). “What do grid cells contribute
to place cell firing?” In: Trends in Neurosciences 37.3, pp. 136-145. 1SSN: 0166-
2236. pDor: 10.1016/j.tins.2013.12.003.

Bush, Daniel, Caswell Barry, Daniel Manson, and Neil Burgess (2015). “Using Grid
Cells for Navigation”. In: Neuron 87, pp. 507-520. DOI: 10.1016/j .neuron. 20
15.07.006.

Bush, Daniel, H. Freyja Olafsdéttir, Caswell Barry, and Neil Burgess (2022). “Ripple
band phase precession of place cell firing during replay”. In: Current Biology

32.1, pp. 64-73. DOI: 10.1016/j.cub.2021.10.033.

https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.48550/arXiv.2303.12712
https://doi.org/10.1016/j.tics.2006.11.004
https://doi.org/10.1155/2011/203462
https://doi.org/10.1038/nrn2558
https://doi.org/10.1371/journal.pcbi.1000291
https://doi.org/10.1002/hipo.20327
https://doi.org/10.1098/rstb.1997.0140
https://doi.org/10.1016/j.tins.2013.12.003
https://doi.org/10.1016/j.neuron.2015.07.006
https://doi.org/10.1016/j.neuron.2015.07.006
https://doi.org/10.1016/j.cub.2021.10.033

144 BIBLIOGRAPHY

Bush, Daniel, Andrew Philippides, Phil Husbands, and Michael O’Shea (July 2010).
“Dual Coding with STDP in a Spiking Recurrent Neural Network Model of the
Hippocampus”. In: PLOS Computational Biology 6.7, e1000839. 1SSN: 1553-7358.
DOI: 10.1371/journal.pcbi.1000839.

Buzséki, Gyorgy (Jan. 1989). “Two-stage model of memory trace formation: A role
for “noisy” brain states”. In: Neuroscience 31.3, pp. 551-570. 1SSN: 0306-4522.
DOI: 10.1016/0306-4522(89)90423-5.

Buzsdki, Gyorgy (Jan. 2002). “Theta oscillations in the hippocampus”. In: Neuron
33.3, pp. 325-340. por: 10.1016/s0896-6273(02) 00586-x.

Buzsaki, Gyorgy, Zsolt Horvath, Ronald Urioste, Jamille Hetke, and Kensall Wise
(May 1992). “High-frequency network oscillation in the hippocampus”. In:
Science 256.5059, pp. 1025-1027. 1ssN: 1095-9203. DOI: 10 . 1126 /science
.1589772.

Byrne, Patrick, Suzanna Becker, and Neil Burgess (Apr. 2007). “Remembering the
past and imagining the future: A neural model of spatial memory and imagery”.
In: Psychological Review 114.2, pp. 340-375. DOI: 10.1037/0033-295x.114.2
. 340.

Carandini, Matteo and David J. Heeger (Nov. 2011). “Normalization as a canonical
neural computation”. In: Nature Reviews Neuroscience 13.1, pp. 51-62. ISSN:
1471-0048. po1: 10.1038/nrn3136.

Carnevale, Federico, Victor de Lafuente, Ranulfo Romo, Omri Barak, and Néstor
Parga (2015). “Dynamic control of response criterion in premotor cortex during
perceptual detection under temporal uncertainty”. In: Neuron. DOI: 10.1016/j
.neuron.2015.04.014.

Carpenter, Francis, Daniel Manson, Kathryn J. Jeffery, Neil Burgess, and Caswell
Barry (May 2015). “Grid Cells Form a Global Representation of Connected
Environments”. In: Current Biology 25.9, pp. 1176-1182. 1ssN: 09609822. DOTI:
10.1016/j.cub.2015.02.037.

Carr, Margaret F., Shantanu P. Jadhav, and Loren M. Frank (2011). “Hippocampal
replay in the awake state: A potential substrate for memory consolidation and

retrieval”. In: Nature neuroscience. DOI: 10.1038/nn.2732.

https://doi.org/10.1371/journal.pcbi.1000839
https://doi.org/10.1016/0306-4522(89)90423-5
https://doi.org/10.1016/s0896-6273(02)00586-x
https://doi.org/10.1126/science.1589772
https://doi.org/10.1126/science.1589772
https://doi.org/10.1037/0033-295x.114.2.340
https://doi.org/10.1037/0033-295x.114.2.340
https://doi.org/10.1038/nrn3136
https://doi.org/10.1016/j.neuron.2015.04.014
https://doi.org/10.1016/j.neuron.2015.04.014
https://doi.org/10.1016/j.cub.2015.02.037
https://doi.org/10.1038/nn.2732

BIBLIOGRAPHY 145

Cashin-Garbutt, April and Sainsbury Wellcome Centre (June 2023). TReND-CaMinA:
Improving access to computational neuroscience and machine learning in Africa.
https://www.sainsburywellcome.org/web/blog/trend-camina-improvin
g-access—computational-neuroscience-and-machine-learning-africa.
Accessed: 2025-06-23. URL: https://www.sainsburywellcome.org/web/blog
/trend-camina-improving-access-computational-neuroscience-and-ma
chine-learning-africa.

Castillo, Jose del and Bernard Katz (1954). “Quantal components of the end-plate
potential”. In: The Journal of physiology 124.3, p. 560. DOI: 10.1113/jphysio
1.1954.sp005129.

Cavanagh, J. F., C. M. Figueroa, M. X. Cohen, and M. J. Frank (Nov. 2011).
“Frontal theta reflects uncertainty and unexpectedness during exploration and
exploitation”. In: Cerebral Cortex 22.11, pp. 2575-2586. DOI: 10.1093/cercor
/bhr332.

Chadwick, Angus, Mark C. W. van Rossum, and Matthew F. Nolan (Feb. 2015).
“Independent theta phase coding accounts for CA1 population sequences and
enables flexible remapping”. In: eLife 4. DOI: 10.7554/elife.03542.

Chen, Weiliang, Tristan Carel, Omar Awile, Nicola Cantarutti, Giacomo Castiglioni,
Alessandro Cattabiani, Baudouin Del Marmol, Iain Hepburn, James G. King,
Christos Kotsalos, Pramod Kumbhar, Jules Lallouette, Samuel Melchior, Felix
Schiirmann, and Erik De Schutter (Oct. 2022). “STEPS 4.0: Fast and memory-
efficient molecular simulations of neurons at the nanoscale”. In: Frontiers in
Neuroinformatics 16. 1SSN: 1662-5196. DOI: 10.3389/fninf.2022.883742.

Cheng, Sen and Loren M. Frank (Jan. 2008). “New experiences enhance coordinated
neural activity in the hippocampus”. In: Neuron 57.2, pp. 303-313. po1: 10.10
16/j .neuron.2007.11.035.

Chevalier-Boisvert, Maxime, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas
Willems, Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry
(2023). “Minigrid & miniworld: Modular & customizable reinforcement learning
environments for goal-oriented tasks”. In: CoRR abs/2306.13831. DOI: 10.4855
0/arXiv.2306.13831.

https://www.sainsburywellcome.org/web/blog/trend-camina-improving-access-computational-neuroscience-and-machine-learning-africa
https://www.sainsburywellcome.org/web/blog/trend-camina-improving-access-computational-neuroscience-and-machine-learning-africa
https://www.sainsburywellcome.org/web/blog/trend-camina-improving-access-computational-neuroscience-and-machine-learning-africa
https://www.sainsburywellcome.org/web/blog/trend-camina-improving-access-computational-neuroscience-and-machine-learning-africa
https://www.sainsburywellcome.org/web/blog/trend-camina-improving-access-computational-neuroscience-and-machine-learning-africa
https://doi.org/10.1113/jphysiol.1954.sp005129
https://doi.org/10.1113/jphysiol.1954.sp005129
https://doi.org/10.1093/cercor/bhr332
https://doi.org/10.1093/cercor/bhr332
https://doi.org/10.7554/elife.03542
https://doi.org/10.3389/fninf.2022.883742
https://doi.org/10.1016/j.neuron.2007.11.035
https://doi.org/10.1016/j.neuron.2007.11.035
https://doi.org/10.48550/arXiv.2306.13831
https://doi.org/10.48550/arXiv.2306.13831

146 BIBLIOGRAPHY

Chowdhury, Raeed H., Joshua I. Glaser, and Lee E. Miller (2020). “Area 2 of primary
somatosensory cortex encodes kinematics of the whole arm”. In: eLife, e48198.
DOI: 10.7554/elife.48198.

Chrobak, James J., Robert W. Stackman, and Thomas J. Walsh (1989). Intraseptal
administration of muscimol produces dose-dependent memory impairments in
the rat. DOI: 10.1016/50163-1047(89)90472-X.

Chu, Tianhao, Zilong Ji, Junfeng Zuo, Yuanyuan Mi, Wen-Hao Zhang, Tiejun
Huang, Daniel Bush, Neil Burgess, and Si Wu (2022). “Firing rate adaptation
in continuous attractor neural networks accounts for theta phase shift of
hippocampal place cells”. In: bioRziv. DOI: 10.7554/elLife.87055.2.

Colgin, Laura Lee, Tobias Denninger, Marianne Fyhn, Torkel Hafting, Tora Bonnevie,
Ole Jensen, May-Britt Moser, and Edvard I. Moser (2009). “Frequency of gamma
oscillations routes flow of information in the hippocampus”. In: Nature 462.7271,
pp- 353-357. DOI: 10.1038/nature08573.

Constantinescu, Alexandra O., Jill X. O’Reilly, and Timothy E. J. Behrens (June
2016). “Organizing conceptual knowledge in humans with a gridlike code”. In:
Science 352.6292, pp. 1464-1468. 1ssN: 0036-8075, 1095-9203. pDoI: 10.1126/sc
ience.aaf0941.

Cothi, William de and Caswell Barry (Dec. 2020a). “Neurobiological successor features
for spatial navigation”. In: Hippocampus 30.12, pp. 1347-1355. 1sSN: 1050-9631,
1098-1063. DOI: 10.1002/hipo.23246.

Cothi, William de and Caswell Barry (2020b). “Neurobiological successor features
for spatial navigation”. In: Hippocampus 30.12, pp. 1347-1355. 1ssN: 1098-1063.
DOI: 10.1002/hipo.23246.

Cothi, William de, Nils Nyberg, Eva-Maria Griesbauer, Carole Ghanamé, Fiona Zisch,
Julie M. Lefort, Lydia Fletcher, Coco Newton, Sophie Renaudineau, Daniel
Bendor, Hugo J. Spiers, and Caswell Barry (2022a). “Predictive maps in rats
and humans for spatial navigation”. In: Current Biology 32.17, pp. 3676-3689.
DOI: 10.1016/j.cub.2022.06.090.

Cothi, William de, Nils Nyberg, Eva-Maria Griesbauer, Carole Ghanamé, Fiona Zisch,
Julie M. Lefort, Lydia Fletcher, Coco Newton, Sophie Renaudineau, Daniel
Bendor, Hugo J. Spiers, and Caswell Barry (2022b). “Predictive maps in rats

https://doi.org/10.7554/elife.48198
https://doi.org/10.1016/S0163-1047(89)90472-X
https://doi.org/10.7554/eLife.87055.2
https://doi.org/10.1038/nature08573
https://doi.org/10.1126/science.aaf0941
https://doi.org/10.1126/science.aaf0941
https://doi.org/10.1002/hipo.23246
https://doi.org/10.1002/hipo.23246
https://doi.org/10.1016/j.cub.2022.06.090

BIBLIOGRAPHY 147

and humans for spatial navigation”. In: Current Biology 32.17, pp. 3676-3689.
DOI: 10.1016/j.cub.2022.06.090.

Cueva, Christopher J. and Xue-Xin Wei (2018). Emergence of grid-like representations
by training recurrent neural networks to perform spatial localization. DOI: 10.48
550/arXiv.1803.07770.

Cunningham, John P. and Byron M. Yu (2014). “Dimensionality reduction for
large-scale neural recordings”. In: Nature neuroscience. DOI: 10.1038/nn.3776.

Dale, H. (1935). Pharmacology and nerve-endings (Walter Ernest Dixon Memorial
Lecture). DOI: 10.1136/bmj.2.3859.1161.

Daw, Nathaniel D, Yael Niv, and Peter Dayan (Nov. 2005). “Uncertainty-based
competition between prefrontal and dorsolateral striatal systems for behavioral
control”. In: Nature Neuroscience 8.12, pp. 1704-1711. 1SSN: 1546-1726. DOTI:
10.1038/nn1560.

Daw, Nathaniel D. (2012). “Model-based reinforcement learning as cognitive search:
Neurocomputational theories”. In: Cognitive search: Fvolution, algorithms and
the brain, pp. 195-208. URL: https://www.princeton.edu/~ndaw/d11a.pdf.

Dayan, Peter (July 1993). “Improving generalization for temporal difference learning:
The successor representation”. In: Neural Computation 5.4, pp. 613-624. DOI:
10.1162/neco0.1993.5.4.613.

Dayan, Peter, Geoffrey E. Hinton, Radford M. Neal, and Richard S. Zemel (Sept.
1995). “The Helmholtz machine”. In: Neural Computation 7.5, pp. 889-904. DOI:
10.1162/neco0.1995.7.5.889.

Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin (1977). “Maximum
likelihood from incomplete data via the EM algorithm”. In: Journal of the Royal
Statistical Society: Series B (Methodological). DOI: 10.1111/3.2517-6161.197
7.tb01600.x.

Deneve, S., P. E. Latham, and A. Pouget (Aug. 2001). “Efficient computation and
cue integration with noisy population codes”. In: Nature Neuroscience 4.8,
pp. 826-831. 1SSN: 1546-1726. DOI: 10.1038/90541.

Denovellis, Eric L., Anna K. Gillespie, Michael E. Coulter, Marielena Sosa, Jason E.
Chung, Uri T. Eden, and Loren M. Frank (2021). “Hippocampal replay of

https://doi.org/10.1016/j.cub.2022.06.090
https://doi.org/10.48550/arXiv.1803.07770
https://doi.org/10.48550/arXiv.1803.07770
https://doi.org/10.1038/nn.3776
https://doi.org/10.1136/bmj.2.3859.1161
https://doi.org/10.1038/nn1560
https://www.princeton.edu/~ndaw/d11a.pdf
https://doi.org/10.1162/neco.1993.5.4.613
https://doi.org/10.1162/neco.1995.7.5.889
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1038/90541

148 BIBLIOGRAPHY

experience at real-world speeds”. In: eLife, e64505. DOI: 10.7554/elife.64505
.sa2.

Dominé, Clémentine C. J., Rodrigo Carrasco-Davis, Luke Hollingsworth, Nikoloz
Sirmpilatze, Adam L. Tyson, Devon Jarvis, Caswell Barry, and Andrew M. Saxe
(Mar. 2024). “NeuralPlayground: A Standardised Environment for Evaluating
Models of Hippocampus and Entorhinal Cortex”. In: Dor: 10.1101/2024.03.0
6.583699.

Dong, Can, Antoine D. Madar, and Mark E. J. Sheffield (May 2021). “Distinct place
cell dynamics in CA1 and CA3 encode experience in new environments”. In:
Nature Communications 12.1, p. 2977. 1SSN: 2041-1723. DOI: 10.1038/s41467-
021-23260-3.

Dong, Zhe, Bryan Seybold, Kevin Murphy, and Hung Bui (2020). “Collapsed
amortized variational inference for switching nonlinear dynamical systems”.
In: International Conference on Machine Learning. PMLR, pp. 2638-2647. DOI:
10.48550/arXiv.1910.09588.

Dorrell, William, Peter E. Latham, Timothy E. J. Behrens, and James C. R.
Whittington (2023). Actionable neural representations: Grid cells from minimal
constraints. DOL: 10.48550/arXiv.2209.15563.

Doya, Kenji (Jan. 2000). “Reinforcement learning in continuous time and space”. In:
Neural Computation 12.1, pp. 219-245. DOI: 10.1162/089976600300015961.

Drieu, Céline and Michaél Zugaro (2019). “Hippocampal sequences during exploration:
Mechanisms and functions”. In: Frontiers in Cellular Neuroscience 13, p. 232.
ISSN: 1662-5102. DOI: 10.3389/fncel.2019.00232.

Duncker, Lea, Gergo Bohner, Julien Boussard, and Maneesh Sahani (2019). “Learning
interpretable continuous-time models of latent stochastic dynamical systems”.
In: International conference on machine learning. PMLR. DOI: 10.48550/arXi
v.1902.04420.

Dupret, David, Joseph O’Neill, Barty Pleydell-Bouverie, and Jozsef Csicsvari (July
2010). “The reorganization and reactivation of hippocampal maps predict spatial
memory performance”. In: Nature Neuroscience 13.8, pp. 995-1002. DoI: 10.10
38/nn.2599.

https://doi.org/10.7554/elife.64505.sa2
https://doi.org/10.7554/elife.64505.sa2
https://doi.org/10.1101/2024.03.06.583699
https://doi.org/10.1101/2024.03.06.583699
https://doi.org/10.1038/s41467-021-23260-3
https://doi.org/10.1038/s41467-021-23260-3
https://doi.org/10.48550/arXiv.1910.09588
https://doi.org/10.48550/arXiv.2209.15563
https://doi.org/10.1162/089976600300015961
https://doi.org/10.3389/fncel.2019.00232
https://doi.org/10.48550/arXiv.1902.04420
https://doi.org/10.48550/arXiv.1902.04420
https://doi.org/10.1038/nn.2599
https://doi.org/10.1038/nn.2599

BIBLIOGRAPHY 149

Eliav, Tamir, Shir R. Maimon, Johnatan Aljadeff, Misha Tsodyks, Gily Ginosar,
Liora Las, and Nachum Ulanovsky (May 2021). “Multiscale representation of
very large environments in the hippocampus of flying bats”. In: Science 372.6545,
eabg4020. 18sN: 0036-8075, 1095-9203. DOI: 10.1126/science.abg4020.

Epstein, Joshua M. (2008). “Why Model?” In: Journal of Artificial Societies and
Social Simulation 11.4, p. 12. 1SSN: 1460-7425. URL: https://www. jasss.org
/11/4/12.html.

Erdem, Ugur M. and Michael E. Hasselmo (2012). “A goal-directed spatial navigation
model using forward trajectory planning based on grid cells”. In: Furopean
Journal of Neuroscience 35.6, pp. 916-931. 1SSN: 1460-9568. DOI: 10.1111/j.1
460-9568.2012.08015.x.

Ergorul, Ceren and Howard B. Eichenbaum (Apr. 2006). “Essential role of the
hippocampal formation in rapid learning of higher-order sequential associations”.
In: The Journal of Neuroscience 26.15, pp. 4111-4117. DOI: 10.1523/ jneurosc
i.0441-06.2006.

Fang, Ching, Dmitriy Aronov, L. F. Abbott, and Emily L. Mackevicius (2022).
“Neural learning rules for generating flexible predictions and computing the
successor representation”. In: bioRxiv. DOI: 10.1101/2022.05.18.492543.

Fang, Ching, Dmitriy Aronov, L. F. Abbott, and Emily L. Mackevicius (2023).
“Neural learning rules for generating flexible predictions and computing the
successor representation”. In: eLife, e80680. DOI: 10.7554/elife.80680.

Feng, Ting, Delia Silva, and David J. Foster (2015). “Dissociation between the
experience-dependent development of hippocampal theta sequences and single-
trial phase precession”. In: The Journal of Neuroscience 35.12, pp. 4890-4902.
DOI: 10.1523/jneurosci.2614-14.2015.

Fenton, André A. and Robert U. Muller (1998). “Place cell discharge is extremely
variable during individual passes of the rat through the firing field”. In:
Proceedings of the National Academy of Sciences. DOI: 10 .1073/pnas . 95
.6.3182.

Fisher, Ronald Aylmer (1925). “Theory of statistical estimation”. In: Mathematical
proceedings of the Cambridge philosophical society. Cambridge University Press.
DOI: 10.1017/50305004100009580.

https://doi.org/10.1126/science.abg4020
https://www.jasss.org/11/4/12.html
https://www.jasss.org/11/4/12.html
https://doi.org/10.1111/j.1460-9568.2012.08015.x
https://doi.org/10.1111/j.1460-9568.2012.08015.x
https://doi.org/10.1523/jneurosci.0441-06.2006
https://doi.org/10.1523/jneurosci.0441-06.2006
https://doi.org/10.1101/2022.05.18.492543
https://doi.org/10.7554/elife.80680
https://doi.org/10.1523/jneurosci.2614-14.2015
https://doi.org/10.1073/pnas.95.6.3182
https://doi.org/10.1073/pnas.95.6.3182
https://doi.org/10.1017/S0305004100009580

150 BIBLIOGRAPHY

Foster, David J. and Matthew A. Wilson (2007). “Hippocampal theta sequences”. In:
Hippocampus 17.11, pp. 1093-1099. DOI: 10.1002/hipo.20345.

Fries, Pascal (Oct. 2015). “Rhythms for cognition: Communication through
coherence”. In: Neuron 88.1, pp. 220-235. poOI: 10. 1016/ j . neuron . 2015
.09.034.

Friston, Karl J. (Jan. 2010). “The free-energy principle: A unified brain theory?” In:
Nature Reviews Neuroscience 11.2, pp. 127-138. DOI: 10.1038/nrn2787.

Fuhs, Mark C. and David S. Touretzky (2006). “A spin glass model of path integration
in rat medial entorhinal cortex”. In: The Journal of Neuroscience 26.16, pp. 4266—
4276. 18SN: 0270-6474. por: 10.1523/jneurosci.4353-05.2006.

Fyhn, Marianne, Torkel Hafting, Alessandro Treves, May-Britt Moser, and Edvard 1.
Moser (Feb. 2007). “Hippocampal remapping and grid realignment in entorhinal
cortex”. In: Nature 446.7132, pp. 190-194. DoI: 10.1038/nature05601.

El-Gaby, Mohamady, Adam Loyd Harris, James C. R. Whittington, William Dorrell,
Arya Bhomick, Mark E. Walton, Thomas Akam, and Timothy E. J. Behrens
(Nov. 2024). “A cellular basis for mapping behavioural structure”. In: Nature
636.8043, pp. 671-680. 1SSN: 1476-4687. DOI: 10.1038/s41586-024-08145-x.

Gao, Yuanjun, Evan W. Archer, Liam Paninski, and John P. Cunningham (2016).
“Linear dynamical neural population models through nonlinear embeddings”. In:
Advances in Neural Information Processing Systems. DOI: 10.48550/arXiv.16
05.08454.

Garvert, Mona M., Raymond J. Dolan, and Timothy E. J. Behrens (Apr. 2017). “A
map of abstract relational knowledge in the human hippocampal-entorhinal
cortex”. In: eLife 6, e17086. 1sSN: 2050-084X. DOI: 10.7554/eLife.17086.

Gauthier, Jeffrey L. and David W. Tank (July 2018). “A dedicated population
for reward coding in the hippocampus”. In: Neuron 99.1, 179-193.e7. 1SSN:
0896-6273. DOI: 10.1016/j.neuron.2018.06.008.

Geerts, Jesse P., Fabian Chersi, Kimberly L. Stachenfeld, and Neil Burgess (Dec.
2020). “A general model of hippocampal and dorsal striatal learning and decision
making”. In: Proceedings of the National Academy of Sciences 117.49, pp. 31427—
31437. 18SN: 0027-8424, 1091-6490. DOT: 10.1073/pnas.2007981117.

https://doi.org/10.1002/hipo.20345
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1038/nrn2787
https://doi.org/10.1523/jneurosci.4353-05.2006
https://doi.org/10.1038/nature05601
https://doi.org/10.1038/s41586-024-08145-x
https://doi.org/10.48550/arXiv.1605.08454
https://doi.org/10.48550/arXiv.1605.08454
https://doi.org/10.7554/eLife.17086
https://doi.org/10.1016/j.neuron.2018.06.008
https://doi.org/10.1073/pnas.2007981117

BIBLIOGRAPHY 151

George, Dileep, Rajeev V. Rikhye, Nishad Gothoskar, J. Swaroop Guntupalli, Antoine
Dedieu, and Miguel Lézaro-Gredilla (Dec. 2021). “Clone-structured graph
representations enable flexible learning and vicarious evaluation of cognitive
maps”. In: Nature Communications 12.1, p. 2392. 1SSN: 2041-1723. por: 10.103
8/841467-021-22559-5.

George, Tom M. (2023). “Theta sequences as eligibility traces: A biological solution
to credit assignment”. In: International Conference on Learning Representations
2023 (TinyPapers track). DOI: 10.48550/arXiv.2305.08124.

George, Tom M., William de Cothi, Kimberly L. Stachenfeld, and Caswell Barry
(Mar. 2023a). “Rapid learning of predictive maps with STDP and theta phase
precession”. In: eLife 12. DOI: 10.7554/elife.80663.

George, Tom M., Pierre Glaser, Kimberly L. Stachenfeld, Caswell Barry, and
Claudia Clopath (2025). “SIMPL: Scalable and hassle-free optimisation of neural
representations from behaviour”. In: The Thirteenth International Conference
on Learning Representations. DOI: 10.1101/2024.11.11.623030.

George, Tom M. and Pietro Lio (Nov. 2019). “Unsupervised machine learning for data
encoding applied to ovarian cancer transcriptomes”. In: DOI1: 10.1101/855593.

George, Tom M., Mehul Rastogi, William de Cothi, Claudia Clopath, Kimberly L.
Stachenfeld, and Caswell Barry (2024). “RatInABox, a toolkit for modelling
locomotion and neuronal activity in continuous environments”. In: eLife. DOTI:
10.7554/elife.85274.

George, Tom M., Kimberly L. Stachenfeld, Caswell Barry, Claudia Clopath, and
Tomoki Fukai (2023b). “A generative model of the hippocampal formation
trained with theta driven local learning rules”. In: Thirty-seventh Conference
on Neural Information Processing Systems. DOI: 10.1101/2023.12.12.571268.

Georgopoulos, Apostolos P., Andrew B. Schwartz, and Ronald E. Kettner (1986).
“Neuronal population coding of movement direction”. In: Science 233.4771,
pp- 1416-1419. DOT: 10.1126/science.3749885.

Gershman, Samuel J. (Aug. 2018). “The Successor Representation: Its Computational
Logic and Neural Substrates”. In: The Journal of Neuroscience 38.33, pp. 7193—
7200. 18SN: 0270-6474, 1529-2401. por1: 10.1523/INEUROSCI.0151-18.2018.

https://doi.org/10.1038/s41467-021-22559-5
https://doi.org/10.1038/s41467-021-22559-5
https://doi.org/10.48550/arXiv.2305.08124
https://doi.org/10.7554/elife.80663
https://doi.org/10.1101/2024.11.11.623030
https://doi.org/10.1101/855593
https://doi.org/10.7554/elife.85274
https://doi.org/10.1101/2023.12.12.571268
https://doi.org/10.1126/science.3749885
https://doi.org/10.1523/JNEUROSCI.0151-18.2018

152 BIBLIOGRAPHY

Gershman, Samuel J. (Sept. 2019). “The generative adversarial brain”. In: Frontiers
in Artificial Intelligence 2. DOI: 10.3389/frai.2019.00018.

Glaser, Joshua I., Ari S. Benjamin, Raeed H. Chowdhury, Matthew G. Perich, Lee E.
Miller, and Konrad Paul Kording (2020). “Machine learning for neural decoding”.
In: eNeuro 4. DOI: 10.1523/ENEURO. 0506-19.2020.

Gondur, Rabia, Usama Bin Sikandar, Evan Schaffer, Mikio Christian Aoi, and Stephen
L. Keeley (2023). “Multi-modal Gaussian process variational autoencoders for
neural and behavioral data”. In: arXiv preprint arXiv:2310.03111. DOI: 10.485
50/arXiv.2310.03111.

Goodfellow, Tan J., Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio (2014). Generative
adversarial networks. DOI: 10.48550/arXiv.1406.2661.

Goodman, Dan (2008). “Brian: a simulator for spiking neural networks in Python”.
In: Frontiers in Neuroinformatics 2. 1SSN: 1662-5196. DOI: 10.3389/neuro. 11
.005.2008.

Green, John D. and Arnaldo A. Arduini (Nov. 1954). “Hippocampal electrical activity
in arousal”. In: Journal of Neurophysiology 17.6, pp. 533-557. 1SSN: 1522-1598.
DOI: 10.1152/jn.1954.17.6.533.

Guerguiev, Jordan, Timothy P. Lillicrap, and Blake A. Richards (Dec. 2017). “Towards
deep learning with segregated dendrites”. In: eLife 6. DOI: 10.7554/elife.229
01.

Gustafson, Nicholas J. and Nathaniel D. Daw (Oct. 2011). “Grid cells, place cells,
and geodesic generalization for spatial reinforcement learning”. In: PLOS
Computational Biology 7.10, €1002235. DOI: 10.1371/journal .pcbi.1002235.

Gyorfi, Laszl6, Michael Kohler, Adam Krzyzak, and Harro Walk (2006). A distribution-
free theory of nonparametric regression. Springer Science & Business Media.

Hafting, Torkel, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Edvard 1.
Moser (June 2005). “Microstructure of a spatial map in the entorhinal cortex”.
In: Nature 436.7052, pp. 801-806. DOI: 10.1038/nature03721.

Han, Dongqi, Kenji Doya, and Jun Tani (Sept. 2020). “Self-organization of action

hierarchy and compositionality by reinforcement learning with recurrent neural

https://doi.org/10.3389/frai.2019.00018
https://doi.org/10.1523/ENEURO.0506-19.2020
https://doi.org/10.48550/arXiv.2310.03111
https://doi.org/10.48550/arXiv.2310.03111
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.1152/jn.1954.17.6.533
https://doi.org/10.7554/elife.22901
https://doi.org/10.7554/elife.22901
https://doi.org/10.1371/journal.pcbi.1002235
https://doi.org/10.1038/nature03721

BIBLIOGRAPHY 153

networks”. In: Neural Networks 129, pp. 149-162. pDOI: 10.1016/j .neunet.202
0.06.002.

Harris, Charles R., K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Ferndndez del Rio, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant (Sept.
2020). “Array programming with NumPy”. In: Nature 585.7825, pp. 357-362.
DOI: 10.1038/s41586-020-2649-2.

Harris, Kenneth D. (May 2005). “Neural signatures of cell assembly organization”.
In: Nature Reviews Neuroscience 6.5, pp. 399-407. DOI: 10.1038/nrn1669.
Hartley, Tom, Neil Burgess, Colin Lever, Francesca Cacucci, and John O’Keefe (2000).
“Modeling place fields in terms of the cortical inputs to the hippocampus”. In:
Hippocampus 10.4, pp. 369-379. 1sSN: 1098-1063. DOI: 10.1002/1098-1063(20

00)10:4<369: :aid-hipo3>3.0.co0;2-0.

Hartley, Tom, Iris Trinkler, and Neil Burgess (2004). “Geometric determinants of
human spatial memory”. In: Cognition 94.1, pp. 39-75. DOI: 10.1016/j.cogni
tion.2003.12.001.

Harvey, Christopher D., Philip Coen, and David W. Tank (2012). “Choice-specific
sequences in parietal cortex during a virtual-navigation decision task”. In: Nature.
DOI: 10.1038/nature10918.

Hassabis, Demis, Dharshan Kumaran, Christopher Summerfield, and Matthew
Botvinick (July 2017). “Neuroscience-Inspired Artificial Intelligence”. In: Neuron
95.2, pp. 245-258. 18SN: 0896-6273. DOI: 10.1016/j .neuron.2017.06.011.

Hasselmo, Michael E., Clara Bodel6n, and Bradley P. Wyble (Apr. 2002). “A Proposed
Function for Hippocampal Theta Rhythm: Separate Phases of Encoding and
Retrieval Enhance Reversal of Prior Learning”. In: Neural Computation 14.4,
pp. 793-817. 1sSN: 0899-7667, 1530-888X. DOI: 10.1162/089976602317318965.

Hasselmo, Michael E. and Howard B. Eichenbaum (2005). “Hippocampal mechanisms
for the context-dependent retrieval of episodes”. In: Neural networks 18.9,

pp. 1172-1190. po1: 10.1016/j .neunet.2005.08.007.

https://doi.org/10.1016/j.neunet.2020.06.002
https://doi.org/10.1016/j.neunet.2020.06.002
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/nrn1669
https://doi.org/10.1002/1098-1063(2000)10:4<369::aid-hipo3>3.0.co;2-0
https://doi.org/10.1002/1098-1063(2000)10:4<369::aid-hipo3>3.0.co;2-0
https://doi.org/10.1016/j.cognition.2003.12.001
https://doi.org/10.1016/j.cognition.2003.12.001
https://doi.org/10.1038/nature10918
https://doi.org/10.1016/j.neuron.2017.06.011
https://doi.org/10.1162/089976602317318965
https://doi.org/10.1016/j.neunet.2005.08.007

154 BIBLIOGRAPHY

Hasselmo, Michael E. and Chantal E. Stern (Jan. 2014). “Theta rhythm and the
encoding and retrieval of space and time”. In: Neurolmage 85, pp. 656—-666. DOTI:
10.1016/j .neuroimage.2013.06.022.

Hebb, Donald Olding (1949). The Organization of Behavior: A Neuropsychological
Theory. New York: Wiley & Sons.

Hepburn, lain, Weiliang Chen, Stefan Wils, and Erik De Schutter (May 2012).
“STEPS: Efficient simulation of stochastic reaction—diffusion models in realistic
morphologies”. In: BMC' Systems Biology 6.1. 1SSN: 1752-0509. DOI: 10.1186/1
752-0509-6-36.

Hernandez, Daniel, Antonio Khalil Moretti, Zigiang Wei, Shreya Saxena, John P.
Cunningham, and Liam Paninski (2018). “Nonlinear evolution via spatially-
dependent linear dynamics for electrophysiology and calcium data”. In: arXiv
preprint arXiv:1811.02459. DOI: 10.48550/arXiv.1811.02459.

Hines, M. L. and N. T. Carnevale (Aug. 1997). “The NEURON simulation
environment”. In: Neural Computation 9.6, pp. 1179-1209. 1SSN: 1530-888X.
DOI: 10.1162/neco0.1997.9.6.1179.

Hinton, Geoffrey E., Peter Dayan, Brendan J. Frey, and Radford M. Neal (May 1995).
“The "wake-sleep" algorithm for unsupervised neural networks”. In: Science
268.5214, pp. 1158-1161. DOI: 10.1126/science.7761831.

Hodgkin, Alan L. and Andrew F. Huxley (1952). “A quantitative description of
membrane current and its application to conduction and excitation in nerve”.
In: The Journal of physiology 117.4, p. 500. DOI: 10.1113/jphysiol.1952.sp0
04764.

Hollup, Stig A., Sturla Molden, James G. Donnett, May-Britt Moser, and Edvard 1.
Moser (Mar. 2001). “Accumulation of Hippocampal Place Fields at the Goal
Location in an Annular Watermaze Task”. In: The Journal of Neuroscience 21.5,
pp. 1635-1644. 18SN: 1529-2401. DOI: 10.1523/jneurosci.21-05-01635.2001.

Holscher, Christian, Roger Anwyl, and Michael J. Rowan (Aug. 1997). “Stimulation on
the positive phase of hippocampal theta rhythm induces long-term potentiation
that can be depotentiated by stimulation on the negative phase in area CA1”.
In: The Journal of Neuroscience 17.16, pp. 6470-6477. DOI: 10.1523/jneurosc
1.17-16-06470.1997.

https://doi.org/10.1016/j.neuroimage.2013.06.022
https://doi.org/10.1186/1752-0509-6-36
https://doi.org/10.1186/1752-0509-6-36
https://doi.org/10.48550/arXiv.1811.02459
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1126/science.7761831
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1523/jneurosci.21-05-01635.2001
https://doi.org/10.1523/jneurosci.17-16-06470.1997
https://doi.org/10.1523/jneurosci.17-16-06470.1997

BIBLIOGRAPHY 155

Hopfield, John J. (Apr. 1982). “Neural networks and physical systems with emergent
collective computational abilities.” In: Proceedings of the National Academy of
Sciences 79.8, pp. 2554-2558. 1SSN: 1091-6490. DOI: 10.1073/pnas.79.8.2554.

Hgydal, @yvind Arne, Emilie Ranheim Skytgen, Sebastian Ola Andersson, May-
Britt Moser, and Edvard I. Moser (2019). “Object-vector coding in the medial
entorhinal cortex”. In: Nature. DOI: 10.1038/s41586-019-1077-7.

Hu, Amber, David Zoltowski, Aditya Nair, David Anderson, Lea Duncker, and Scott
W. Linderman (2024). “Modeling latent neural dynamics with Gaussian process
switching linear dynamical systems”. In: arXiv preprint arXiv:2408.03330. DOTI:
10.48550/arXiv.2408.03330.

Hurwitz, Cole, Akash Srivastava, Kai Xu, Justin Jude, Matthew Perich, Lee E.
Miller, and Matthias Hennig (2021). “Targeted neural dynamical modeling”. In:
Advances in Neural Information Processing Systems 34, pp. 29379-29392. DOI:
10.48550/arXiv.2110.14853.

Huxter, John R., Neil Burgess, and John O’Keefe (Oct. 2003). “Independent rate
and temporal coding in hippocampal pyramidal cells”. In: Nature 425.6960,
pp- 828-832. DOI: 10.1038/nature02058.

Hyvérinen, Aapo and Petteri Pajunen (1999). “Nonlinear independent component
analysis: Existence and uniqueness results”. In: Neural networks. DOI: 10.1016
/s0893-6080(98)00140-3.

Jeewajee, Ali, Caswell Barry, Vincent Douchamps, Daniel Manson, Colin Lever,
and Neil Burgess (Feb. 2014). “Theta phase precession of grid and place cell
firing in open environments”. In: Philosophical Transactions of the Royal Society
B: Biological Sciences 369.1635, p. 20120532. 18SN: 0962-8436, 1471-2970. DOI:
10.1098/rstb.2012.0532.

Jensen, Kristopher, Ta-Chu Kao, Marco Tripodi, and Guillaume Hennequin (2020).
“Manifold GPLVMs for discovering non-Euclidean latent structure in neural
data”. In: Advances in Neural Information Processing Systems. DOI: 10.48550
/arXiv.2006.07429.

Jensen, Ole and John E. Lisman (1996). “Hippocampal CA3 region predicts memory
sequences: Accounting for the phase precession of place cells”. In: Learning &

memory 3.2-3, pp. 279-287. pOoI: 10.1101/1m.3.2-3.279.

https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1038/s41586-019-1077-7
https://doi.org/10.48550/arXiv.2408.03330
https://doi.org/10.48550/arXiv.2110.14853
https://doi.org/10.1038/nature02058
https://doi.org/10.1016/s0893-6080(98)00140-3
https://doi.org/10.1016/s0893-6080(98)00140-3
https://doi.org/10.1098/rstb.2012.0532
https://doi.org/10.48550/arXiv.2006.07429
https://doi.org/10.48550/arXiv.2006.07429
https://doi.org/10.1101/lm.3.2-3.279

156 BIBLIOGRAPHY

Joensen, Bardhur H., Daniel Bush, Umesh Vivekananda, Aidan J. Horner, James A.
Bisby, Beate Diehl, Anna Miserocchi, Andrew W. McEvoy, Matthew C. Walker,
and Neil Burgess (May 2023). “Hippocampal theta activity during encoding
promotes subsequent associative memory in humans”. In: Cerebral Cortex. DOL:
10.1093/cercor/bhad162.

Johnson, Adam and A. David Redish (Nov. 2007). “Neural Ensembles in CA3
Transiently Encode Paths Forward of the Animal at a Decision Point”. In: The
Journal of Neuroscience 27.45, pp. 12176-12189. 1ssN: 0270-6474, 1529-2401.
DOI: 10.1523/JNEUROSCI.3761-07.2007.

Juliani, Arthur, Samuel Barnett, Brandon Davis, Margaret Sereno, and Ida
Momennejad (2022). “Neuro-Nav: A library for neurally-plausible reinforcement
learning”. In: arXiv. DOI: 10.32470/ccn.2022.1212-0.

Jun, James J., Nicholas A. Steinmetz, Joshua H. Siegle, Daniel J. Denman, Marius
Bauza, Brian Barbarits, Albert K. Lee, Costas A. Anastassiou, Alexandru
Andrei, Cagatay Aydin, Maja Barbic, Timothy J. Blanche, Vincent Bonin,
Joana Couto, Barundeb Dutta, Sergey L. Gratiy, Diego A. Gutnisky, Michael
Hé&usser, Bill Karsh, Peter Ledochowitsch, Carolina M. Lopez, Partha Mitra,
Jeroen D. Mussche, Michael Okun, Marius Pachitariu, Jan Putzeys, Peter D.
Rich, Cyrille Rossant, Wei-Lian Sun, Karel Svoboda, Adam Tring, Marleen
Welkenhuysen, and Timothy D. Harris (2017). “Fully integrated silicon probes
for high-density recording of neural activity”. In: Nature.

Kalman, Rudolph Emil (1960). “A new approach to linear filtering and prediction
problems”. In: DOI: 10.1115/1.3662552.

Kay, Kenneth, Jason E. Chung, Marielena Sosa, Jonathan S. Schor, Mattias P.
Karlsson, Margaret C. Larkin, Daniel F. Liu, and Loren M. Frank (Feb. 2020).
“Constant sub-second cycling between representations of possible futures in the
hippocampus”. In: Cell 180.3, 552-567.e25. DOI: 10.1016/j.cell1.2020.01.01
4.

Khona, Mikail and Ila R. Fiete (2021). “Attractor and integrator networks in the
brain”. In: arXiv. DOI: 10.48550/arxiv.2112.03978.

Kim, Timothy D., Thomas Z. Luo, Jonathan W. Pillow, and Carlos D. Brody

(2021). “Inferring latent dynamics underlying neural population activity via

https://doi.org/10.1093/cercor/bhad162
https://doi.org/10.1523/JNEUROSCI.3761-07.2007
https://doi.org/10.32470/ccn.2022.1212-0
https://doi.org/10.1115/1.3662552
https://doi.org/10.1016/j.cell.2020.01.014
https://doi.org/10.1016/j.cell.2020.01.014
https://doi.org/10.48550/arxiv.2112.03978

BIBLIOGRAPHY 157

neural differential equations”. In: International Conference on Machine Learning.
PMLR, pp. 5551-5561.

Kingma, Diederik P. and Max Welling (2014). “Auto-Encoding Variational Bayes”.
In: 2nd International Conference on Learning Representations.

Kingma, Diederik P. and Max Welling (2022). Auto-encoding variational Bayes. DOIL:
10.48550/arXiv.1312.6114.

Kirkpatrick, James, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho,
Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan
Kumaran, and Raia Hadsell (Mar. 2017). “Overcoming catastrophic forgetting
in neural networks”. In: Proceedings of the National Academy of Sciences 114.13,
pp- 3521-3526. 18SN: 1091-6490. DOI: 10.1073/pnas.1611835114.

Kjelstrup, Kirsten Brun, Trygve Solstad, Vegard Heimly Brun, Torkel Hafting, Stefan
Leutgeb, Menno P. Witter, Edvard I. Moser, and May-Britt Moser (July 2008).
“Finite scale of spatial representation in the hippocampus”. In: Science 321.5885,
pp. 140-143. 18SN: 0036-8075, 1095-9203. DOI: 10.1126/science.1157086.

Knill, David C. and Alexandre Pouget (Dec. 2004). “The Bayesian brain: the role of
uncertainty in neural coding and computation”. In: Trends in Neurosciences
27.12, pp. 712-719. 1sSN: 0166-2236. DOI: 10.1016/j.tins.2004.10.007.

Kobak, Dmitry, Wieland Brendel, Christos Constantinidis, Claudia E. Feierstein,
Adam Kepecs, Zachary F. Mainen, Xue-Lian Qi, Ranulfo Romo, Naoshige
Uchida, and Christian K. Machens (2016). “Demixed principal component
analysis of neural population data”. In: eLife. DOI: 10.7554/elife.10989.022.

Koene, Randal A., Anatoli Gorchetchnikov, Robert C. Cannon, and Michael E.
Hasselmo (2003). “Modeling goal-directed spatial navigation in the rat based
on physiological data from the hippocampal formation”. In: Neural Networks
16.5-6, pp. 577-584. DOI: 10.1016/50893-6080(03)00106-0.

Kording, Konrad Paul and Peter Konig (2001). “Supervised and unsupervised
learning with two sites of synaptic integration”. In: Journal of Computational
Neuroscience 11.3, pp. 207-215. DOT: 10.1023/a:1013776130161.

Krishnan, Rahul G., Uri Shalit, and David Sontag (2015). “Deep kalman filters”. In:
arXiv preprint arXiv:1511.05121. DOI: 10.48550/arXiv.1511.05121.

https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1126/science.1157086
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.7554/elife.10989.022
https://doi.org/10.1016/s0893-6080(03)00106-0
https://doi.org/10.1023/a:1013776130161
https://doi.org/10.48550/arXiv.1511.05121

158 BIBLIOGRAPHY

Kropff, Emilio, James E. Carmichael, May-Britt Moser, and Edvard I. Moser (2015).
“Speed cells in the medial entorhinal cortex”. In: Nature 523.7561, pp. 419-424.
1SSN: 0028-0836. DOI: 10.1038/nature14622.

Larkum, Matthew E. (May 2022). “Are dendrites conceptually useful?” In:
Neuroscience 489, pp. 4-14. DOI: 10.1016/j.neuroscience.2022.03.008.
Lawrence, Neil (2003). “Gaussian process latent variable models for visualisation of
high dimensional data”. In: Advances in neural information processing systems
16. URL: https://proceedings.neurips.cc/paper/2003/£file/9657c1fffd

38824ebab0472e022e577e-Paper.pdf.

Lee, J. Quinn, Alexandra T. Keinath, Erica Cianfarano, and Mark P. Brandon (Oct.
2023). “Identifying representational structure in CA1 to benchmark theoretical
models of cognitive mapping”. In: DOI: 10.1101/2023.10.08.561112.

Lever, Colin, Stephen Burton, Ali Jeewajee, John O’Keefe, and Neil Burgess (2009).
“Boundary vector cells in the subiculum of the hippocampal formation”. In: The
Journal of Neuroscience. DOI: 10.1523/jneurosci.1319-09.2009.

Li, Kwan Tung, Junhao Liang, and Changsong Zhou (Jan. 2021). “Gamma oscillations
facilitate effective learning in excitatory-inhibitory balanced neural circuits”. In:
Neural Plasticity 2021, pp. 1-18. DOI: 10.1155/2021/6668175.

Lieder, Itay, Vincent Adam, Or Frenkel, Sagi Jaffe-Dax, Maneesh Sahani, and
Merav Ahissar (2019). “Perceptual bias reveals slow-updating in autism and
fast-forgetting in dyslexia”. In: Nature neuroscience. DOI: 10.1038/s41593-01
8-0308-9.

Lillicrap, Timothy P., Adam Santoro, Luke Marris, Colin J. Akerman, and Geoffrey
E. Hinton (June 2020). “Backpropagation and the brain”. In: Nature Reviews
Neuroscience 21.6, pp. 335-346. 1sSN: 1471-003X, 1471-0048. por: 10.1038/s41
583-020-0277-3.

Linderman, Scott W., Andrew C. Miller, Ryan P. Adams, David M. Blei, Liam
Paninski, and Matthew J. Johnson (2016). “Recurrent switching linear dynamical
systems”. In: arXiv preprint arXiv:1610.08466. DOI1: 10.48550/arXiv.1610.08
466.

https://doi.org/10.1038/nature14622
https://doi.org/10.1016/j.neuroscience.2022.03.008
https://proceedings.neurips.cc/paper/2003/file/9657c1fffd38824e5ab0472e022e577e-Paper.pdf
https://proceedings.neurips.cc/paper/2003/file/9657c1fffd38824e5ab0472e022e577e-Paper.pdf
https://doi.org/10.1101/2023.10.08.561112
https://doi.org/10.1523/jneurosci.1319-09.2009
https://doi.org/10.1155/2021/6668175
https://doi.org/10.1038/s41593-018-0308-9
https://doi.org/10.1038/s41593-018-0308-9
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.48550/arXiv.1610.08466
https://doi.org/10.48550/arXiv.1610.08466

BIBLIOGRAPHY 159

Lisman, John E. and Anthony A. Grace (June 2005). “The hippocampal-VTA loop:
Controlling the entry of information into long-term memory”. In: Neuron 46.5,
pp. 703-713. DOI: 10.1016/j.neuron.2005.05.002.

Locatello, Francesco, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly,
Bernhard Scholkopf, and Olivier Bachem (2019). “Challenging common
assumptions in the unsupervised learning of disentangled representations”. In:
International Conference on Machine Learning. DOI: 10.48550/arXiv.1811.1
2359.

Low, Ryan J., Sam Lewallen, Dmitriy Aronov, Rhino Nevers, and David W. Tank
(2018). “Probing variability in a cognitive map using manifold inference from
neural dynamics”. In: BioRxiv. DOI: 10.1101/418939.

Lubenov, Evgueniy V. and Athanassios G. Siapas (2009). “Hippocampal theta
oscillations are travelling waves”. In: Nature 459.7246, pp. 534-539. por: 10.10
38/nature08010.

Maaten, Laurens van der and Geoffrey E. Hinton (2008). “Visualizing data using
t-SNE”. In: Journal of Machine Learning Research. URL: http://jmlr.org/pa
pers/v9/vandermaaten08a.html.

MacKay, David J. C. (2003). Information theory, inference, and learning algorithms.
Cambridge University Press. DOI: 10.1109/tit.2004.834752.

Macke, Jakob H., Lars Buesing, John P. Cunningham, Byron M. Yu, Krishna V.
Shenoy, and Maneesh Sahani (2011). “Empirical models of spiking in neural
populations”. In: Advances in Neural Information Processing Systems. URL:
https://papers.nips.cc/paper_files/paper/2011/hash/7143d7fbadfad6
93b9eecb507d9d37443-Abstract .html.

Mackevicius, Emily L., Andrew H. Bahle, Alex H. Williams, Shijie Gu, Natalia I.
Denisenko, Mark S. Goldman, and Michale S. Fee (Feb. 2019). “Unsupervised
discovery of temporal sequences in high-dimensional datasets, with applications
to neuroscience”. In: eLife 8, €38471. 1SSN: 2050-084X. DOI: 10.7554/eLife.38
471.

Mangion, Andrew Zammit, Ke Yuan, Visakan Kadirkamanathan, Mahesan Niranjan,

and Guido Sanguinetti (2011). “Online variational inference for state-space

https://doi.org/10.1016/j.neuron.2005.05.002
https://doi.org/10.48550/arXiv.1811.12359
https://doi.org/10.48550/arXiv.1811.12359
https://doi.org/10.1101/418939
https://doi.org/10.1038/nature08010
https://doi.org/10.1038/nature08010
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1109/tit.2004.834752
https://papers.nips.cc/paper_files/paper/2011/hash/7143d7fbadfa4693b9eec507d9d37443-Abstract.html
https://papers.nips.cc/paper_files/paper/2011/hash/7143d7fbadfa4693b9eec507d9d37443-Abstract.html
https://doi.org/10.7554/eLife.38471
https://doi.org/10.7554/eLife.38471

160 BIBLIOGRAPHY

models with point-process observations”. In: Neural Computation. DOI: 10.116
2/neco_a_00156.

Mante, Valerio, David Sussillo, Krishna V. Shenoy, and William T. Newsome (2013).
“Context-dependent computation by recurrent dynamics in prefrontal cortex”.
In: Nature 503.7474, pp. 78-84. 1sSN: 0028-0836. DOI: 10.1038/naturel12742.

Markram, Henry, Joachim Liibke, Michael Frotscher, and Bert Sakmann (Jan. 1997).
“Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs”.
In: Science 275.5297, pp. 213-215. 1ssN: 1095-9203. DOI: 10.1126/science.27
5.5297.213.

Marr, David (1971). “Simple memory: A theory for archicortex”. In: Philosophical
Transactions of the Royal Society of London. B, Biological Sciences 262.841,
pp- 23-81. DOIL: 10.1098/rstb.1971.0012.

Marr, David (1982). Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information. USA: Henry Holt and Co.,
Inc. 1SBN: 0716715678. DOI: 10.7551/mitpress/9780262514620.001.0001.

Mathis, Alexander, Pranav Mamidanna, Kevin M. Cury, Taiga Abe, Venkatesh N.
Murthy, Mackenzie W. Mathis, and Matthias Bethge (2018). “DeepLabCut:
Markerless pose estimation of user-defined body parts with deep learning”. In:
Nature Neuroscience. DOI: 10.1038/s41593-018-0209-y.

Mattar, Marcelo G. and Nathaniel D. Daw (Oct. 2018). “Prioritized memory access
explains planning and hippocampal replay”. In: Nature Neuroscience 21.11,
pp- 1609-1617. DOI: 10.1038/s41593-018-0232-z.

Maurer, Andrew P., Stephen L. Cowen, Sara N. Burke, Carol A. Barnes, and Bruce L.
McNaughton (2006). “Organization of hippocampal cell assemblies based on
theta phase precession”. In: Hippocampus 16.9, pp. 785-794. 1ssN: 1050-9631.
DOI: 10.1002/hipo.20202.

MclInnes, Leland, John Healy, and James Melville (2018). “Umap: Uniform manifold
approximation and projection for dimension reduction”. In: arXiv preprint
arXiv:1802.03426. DOI: 10.21105/joss.00861.

McNaughton, Bruce L., Carol A. Barnes, J. L. Gerrard, K. Gothard, M. W. Jung, J. J.
Knierim, H. Kudrimoti, Y. Qin, William E. Skaggs, M. Suster, and K. L. Weaver

(Jan. 1996). “Deciphering the hippocampal polyglot: The hippocampus as a path

https://doi.org/10.1162/neco_a_00156
https://doi.org/10.1162/neco_a_00156
https://doi.org/10.1038/nature12742
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1098/rstb.1971.0012
https://doi.org/10.7551/mitpress/9780262514620.001.0001
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41593-018-0232-z
https://doi.org/10.1002/hipo.20202
https://doi.org/10.21105/joss.00861

BIBLIOGRAPHY 161

integration system”. In: Journal of Exzperimental Biology 199.1, pp. 173—-185.
DOI: 10.1242/jeb.199.1.173.

McNaughton, Bruce L., Carol A. Barnes, and John O’Keefe (1983). “The contributions
of position, direction, and velocity to single unit activity in the hippocampus of
freely-moving rats”. In: Experimental brain research. DOI: 10.1007/b£00237147.

McNaughton, Bruce L., Francesco P. Battaglia, Ole Jensen, Edvard I. Moser, and
May-Britt Moser (2006). “Path integration and the neural basis of the ’cognitive
map’”. In: Nature Reviews Neuroscience 7.8, pp. 663-678. 1SSN: 1471-003X. DOI:
10.1038/nrn1932.

Mehta, Mayank R. (Dec. 2001). “Neuronal dynamics of predictive coding”. In: The
Neuroscientist 7.6, pp. 490-495. DOI: 10.1177/107385840100700605.

Mehta, Mayank R., Carol A. Barnes, and Bruce L. McNaughton (1997). “Experience-
dependent, asymmetric expansion of hippocampal place fields”. In: Proceedings
of the National Academy of Sciences. DOI: 10.1073/pnas.94.16.8918.

Mehta, Mayank R., Albert K. Lee, and Matthew A. Wilson (June 2002). “Role of
experience and oscillations in transforming a rate code into a temporal code”.
In: Nature 417.6890, pp. 741-746. DOI: 10.1038/nature00807.

Mehta, Mayank R., Michael C. Quirk, and Matthew A. Wilson (2000). “Experience-
dependent asymmetric shape of hippocampal receptive fields”. In: Neuron 25,
pp. 707-715. DOI: 10.1016/50896-6273(00)81072-7.

Merel, Josh, Diego Aldarondo, Jesse Marshall, Yuval Tassa, Greg Wayne, and Bence
P. Olveczky (2019). Deep neuroethology of a virtual rodent. DOI: 10 . 48550
/ARXIV.1911.09451.

Mizuseki, Kenji, Sebastien Royer, Kamran Diba, and Gyorgy Buzsaki (Feb. 2012).
“Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal
pyramidal neurons”. In: Hippocampus 22.8, pp. 1659-1680. DOI: 10.1002/hipo
.22002.

Mizuseki, Kenji, Anton Sirota, Eva Pastalkova, and Gyorgy Buzsaki (Oct. 2009).
“Theta oscillations provide temporal windows for local circuit computation in
the entorhinal-hippocampal loop”. In: Neuron 64.2, pp. 267-280. DOI: 10.1016
/j .neuron.2009.08.037.

https://doi.org/10.1242/jeb.199.1.173
https://doi.org/10.1007/bf00237147
https://doi.org/10.1038/nrn1932
https://doi.org/10.1177/107385840100700605
https://doi.org/10.1073/pnas.94.16.8918
https://doi.org/10.1038/nature00807
https://doi.org/10.1016/s0896-6273(00)81072-7
https://doi.org/10.48550/ARXIV.1911.09451
https://doi.org/10.48550/ARXIV.1911.09451
https://doi.org/10.1002/hipo.22002
https://doi.org/10.1002/hipo.22002
https://doi.org/10.1016/j.neuron.2009.08.037
https://doi.org/10.1016/j.neuron.2009.08.037

162 BIBLIOGRAPHY

Momennejad, Ida and Marc W. Howard (2018). “Predicting the future with multi-
scale successor representations”. In: bioRxziv. DOI: 10.1101/449470.

Momennejad, Ida, Evan M. Russek, J. H. Cheong, Matthew M. Botvinick, Nathaniel
D. Daw, and Samuel J. Gershman (Sept. 2017). “The successor representation in
human reinforcement learning”. In: Nature Human Behaviour 1.9, pp. 680—692.
ISSN: 2397-3374. DOI: 10.1038/s41562-017-0180-8.

Morris, Richard G. M., P. Garrud, J. N. P. Rawlins, and John O’Keefe (June
1982). “Place navigation impaired in rats with hippocampal lesions”. In: Nature
297.5868, pp. 681-683. 1SSN: 1476-4687. DOI: 10.1038/297681a0.

Moser, Edvard 1., Emilio Kropff, and May-Britt Moser (July 2008). “Place Cells,
Grid Cells, and the Brain’s Spatial Representation System”. In: Annual Review
of Neuroscience 31.1, pp. 69-89. 1SSN: 1545-4126. DOI: 10.1146/annurev.neur
0.31.061307.090723.

Moser, Edvard I., May-Britt Moser, and Bruce L. McNaughton (Nov. 2017).
“Spatial representation in the hippocampal formation: A history”. In: Nature
Neuroscience 20.11, pp. 1448-1464. DOI: 10.1038/nn.4653.

Muller, Robert U. and John L. Kubie (1989). “The firing of hippocampal place
cells predicts the future position of freely moving rats”. In: The Journal of
Neuroscience. DOI: 10.1523/ jneurosci.09-12-04101.1989.

Muller, Robert U., John L. Kubie, and Russ Saypoff (July 1991). “The hippocampus
as a cognitive graph (abridged version)”. In: Hippocampus 1.3, pp. 243-246. DOI:
10.1002/hipo.450010306.

Nabyonga-Orem, Juliet, James Avoka Asamani, and Olu Olushayo (Mar. 2024).
“Why Are African Researchers Left Behind in Global Scientific Publications?
— A Viewpoint”. In: International Journal of Health Policy and Management.
ISSN: 2322-5939. DOI: 10.34172/1ijhpm.2024.8149.

Néadasdy, Zoltan, Hajime Hirase, Andras Czurkd, Jozsef Csicsvari, and Gyorgy Buzsaki
(Nov. 1999). “Replay and Time Compression of Recurring Spike Sequences in
the Hippocampus”. In: The Journal of Neuroscience 19.21, pp. 9497-9507. 1SSN:
1529-2401. poI: 10.1523/jneurosci.19-21-09497.1999.

https://doi.org/10.1101/449470
https://doi.org/10.1038/s41562-017-0180-8
https://doi.org/10.1038/297681a0
https://doi.org/10.1146/annurev.neuro.31.061307.090723
https://doi.org/10.1146/annurev.neuro.31.061307.090723
https://doi.org/10.1038/nn.4653
https://doi.org/10.1523/jneurosci.09-12-04101.1989
https://doi.org/10.1002/hipo.450010306
https://doi.org/10.34172/ijhpm.2024.8149
https://doi.org/10.1523/jneurosci.19-21-09497.1999

BIBLIOGRAPHY 163

Nadel, Lynn and Morris Moscovitch (Apr. 1997). “Memory consolidation, retrograde
amnesia and the hippocampal complex”. In: Current Opinion in Neurobiology
7.2, pp. 217-227. 1sSN: 0959-4388. DOI: 10.1016/s0959-4388(97)80010-4.

Nam, Hooram (2015). “Poisson extension of gaussian process factor analysis for
modeling spiking neural populations”. In: Master’s thesis, Department of Neural
Computation and Behaviour, Max Planck Institute for Biological Cybernetics,
Tiibingen.

O’Keefe, John (Jan. 1976). “Place units in the hippocampus of the freely moving
rat”. In: Ezperimental Neurology 51.1, pp. 78-109. DOI: 10.1016/0014-4886 (7
6)90055-8.

O’Keefe, John and Neil Burgess (1996). “Geometric determinants of the place fields
of hippocampal neurons”. In: Nature 381.6581, pp. 425-428. 1ssN: 0028-0836.
DOI: 10.1038/381425a0.

O’Keefe, John and Jonathan Dostrovsky (1971). “The hippocampus as a spatial map:
Preliminary evidence from unit activity in the freely-moving rat”. In: Brain
research. DOI: 10.1016/0006-8993(71)90358-1.

O’Keefe, John and Lynn Nadel (1978). The hippocampus as a cognitive map.
Clarendon Press. 1SBN: 0-19-857206-9. URL: https://discovery . ucl. ac
.uk/id/eprint/10103569/.

O’Keefe, John and Michael L. Recce (1993). “Phase relationship between hippocampal
place units and the EEG theta rhythm”. In: Hippocampus 3.3, pp. 317-330. ISSN:
1098-1063. por: 10.1002/hipo.450030307.

Pandarinath, Chethan, Daniel J. O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D.
Stavisky, Jonathan C. Kao, Eric M. Trautmann, Matthew T. Kaufman, Stephen
I. Ryu, Leigh R. Hochberg, J. A. Henderson, Krishna V. Shenoy, L. F. Abbott,
and David Sussillo (2018). “Inferring single-trial neural population dynamics
using sequential auto-encoders”. In: Nature methods. DOI: 10.1038/s41592-01
8-0109-9.

Paninski, Liam, Jonathan Pillow, and Jeremy Lewi (2007). “Statistical models for
neural encoding, decoding, and optimal stimulus design”. In: Computational
Neuroscience: Theoretical Insights into Brain Function. Elsevier, pp. 493-507.

ISBN: 9780444528230. poI1: 10.1016/s0079-6123(06)65031-0.

https://doi.org/10.1016/s0959-4388(97)80010-4
https://doi.org/10.1016/0014-4886(76)90055-8
https://doi.org/10.1016/0014-4886(76)90055-8
https://doi.org/10.1038/381425a0
https://doi.org/10.1016/0006-8993(71)90358-1
https://discovery.ucl.ac.uk/id/eprint/10103569/
https://discovery.ucl.ac.uk/id/eprint/10103569/
https://doi.org/10.1002/hipo.450030307
https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1016/s0079-6123(06)65031-0

164 BIBLIOGRAPHY

Parisi, German I., Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan
Wermter (2018). “Continual Lifelong Learning with Neural Networks: A Review”.
In: DOI: 10.48550/ARXIV.1802.07569.

Park, EunHye, Dino Dvorak, and André A. Fenton (2011). “Ensemble place codes in
hippocampus: CA1l, CA3, and dentate gyrus place cells have multiple place fields
in large environments”. In: PLoS one. DOI: 10.1371/journal.pone.0022349

Park, Mijung, Gergo Bohner, and Jakob H. Macke (2015). “Unlocking neural
population non-stationarities using hierarchical dynamics models”. In: Advances
in Neural Information Processing Systems. URL: https://papers.nips.cc/pa
per_files/paper/2015/hash/28dd2c7955ce926456240b2f£0100bde-Abstra
ct.html.

Pastalkova, Eva, Vladimir Itskov, Asohan Amarasingham, and Gyorgy Buzsaki (Sept.
2008). “Internally Generated Cell Assembly Sequences in the Rat Hippocampus”.
In: Science 321.5894, pp. 1322-1327. 1ssN: 1095-9203. DOI: 10.1126/science.1
159775.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala (2019). “PyTorch: An imperative style, high-performance
deep learning library”. In: Advances in Neural Information Processing Systems
32. Curran Associates, Inc., pp. 8024-8035. DOI: 10.48550/arXiv.1912.01703.

Patel, Jagdish, Shigeyoshi Fujisawa, Antal Berényi, Sébastien Royer, and Gyorgy
Buzsaki (2012). “Traveling theta waves along the entire septotemporal axis of
the hippocampus”. In: Neuron 75.3, pp. 410-417. DOI: 10.1016/j.neuron.201
2.07.015.

Payeur, Alexandre, Jordan Guerguiev, Friedemann Zenke, Blake A. Richards, and
Richard Naud (May 2021). “Burst-dependent synaptic plasticity can coordinate
learning in hierarchical circuits”. In: Nature Neuroscience 24.7, pp. 1010-1019.

DOI: 10.1038/s41593-021-00857-x.

https://doi.org/10.48550/ARXIV.1802.07569
https://doi.org/10.1371/journal.pone.0022349
https://papers.nips.cc/paper_files/paper/2015/hash/28dd2c7955ce926456240b2ff0100bde-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/28dd2c7955ce926456240b2ff0100bde-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/28dd2c7955ce926456240b2ff0100bde-Abstract.html
https://doi.org/10.1126/science.1159775
https://doi.org/10.1126/science.1159775
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1016/j.neuron.2012.07.015
https://doi.org/10.1016/j.neuron.2012.07.015
https://doi.org/10.1038/s41593-021-00857-x

BIBLIOGRAPHY 165

Pearson, Karl (1901). “LIII. On lines and planes of closest fit to systems of points
in space”. In: The London, Edinburgh, and Dublin philosophical magazine and
journal of science 2.11, pp. 559-572. DOI: 10.1080/14786440109462720.

Pereira, Talmo D., Nathaniel Tabris, Arie Matsliah, David M. Turner, Junyu Li,
Shruthi Ravindranath, Eleni S. Papadoyannis, Edna Normand, David S. Deutsch,
Z. Yan Wang, Grace C. McKenzie-Smith, Catalin C. Mitelut, Marielisa Diez
Castro, John D’Uva, Mikhail Kislin, Dan H. Sanes, Sarah D. Kocher, Samuel
S.-H. Wang, Annegret L. Falkner, Joshua W. Shaevitz, and Mala Murthy (Apr.
2022). “SLEAP: A deep learning system for multi-animal pose tracking”. In:
Nature Methods 19.4, pp. 486—495. 1SSN: 1548-7105. DOI: 10.1038/s41592-022-
01426-1.

Petersen, Peter Christian and Gyorgy Buzsaki (2020). “Cooling of medial septum
reveals theta phase lag coordination of hippocampal cell assemblies”. In: Neuron
107.4, pp. 731-744. po1: 10.1016/j .neuron.2020.05.023.

Pfeiffer, Brad E. and David J. Foster (Apr. 2013). “Hippocampal place-cell sequences
depict future paths to remembered goals”. In: Nature 497.7447, pp. 74-79. ISSN:
1476-4687. DOT: 10.1038/naturel12112.

Pillow, Jonathan W., Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M.
Litke, E. J. Chichilnisky, and Eero P. Simoncelli (July 2008). “Spatio-temporal
correlations and visual signalling in a complete neuronal population”. In: Nature
454.7207, pp. 995-999. 1SSN: 1476-4687. DOI: 10.1038/nature07140.

Piray, Payam and Nathaniel D. Daw (Dec. 2021). “Linear reinforcement learning in
planning, grid fields, and cognitive control”. In: Nature Communications 12.1,
p. 4942. 1ssN: 2041-1723. DOI: 10.1038/s41467-021-25123-3.

Platt, Michael L. and Paul W. Glimcher (1999). “Neural correlates of decision
variables in parietal cortex”. In: Nature. DOI: 10.1038/22268.

Ramesh, Aditya, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever (2021). “Zero-shot text-to-image
generation”. In: CoRR abs/2102.12092. arXiv: 2102.12092. URL: https://arx
iv.org/abs/2102.12092.

https://doi.org/10.1080/14786440109462720
https://doi.org/10.1038/s41592-022-01426-1
https://doi.org/10.1038/s41592-022-01426-1
https://doi.org/10.1016/j.neuron.2020.05.023
https://doi.org/10.1038/nature12112
https://doi.org/10.1038/nature07140
https://doi.org/10.1038/s41467-021-25123-3
https://doi.org/10.1038/22268
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092

166 BIBLIOGRAPHY

Rao, Rajesh P. N. and Dana H. Ballard (Jan. 1999). “Predictive coding in the visual
cortex: A functional interpretation of some extra-classical receptive-field effects”.
In: Nature Neuroscience 2.1, pp. 79-87. DOI: 10.1038/4580.

Rashidy-Pour, A., F. Motamedi, and Z. Motahed-Larijani (1996). “Effects of reversible
inactivations of the medial septal area on reference and working memory versions
of the Morris water maze”. In: Brain research 709.1, pp. 131-140. pOI: 10.1016
/0006-8993(95)01323-7.

Rauch, Herbert E., F. Tung, and Charlotte T. Striebel (1965). “Maximum likelihood
estimates of linear dynamic systems”. In: AIAA journal. DOI: 10.2514/3.3166.

Raudies, Florian and Michael E. Hasselmo (June 2012). “Modeling boundary vector
cell firing given optic flow as a cue”. In: PLOS Computational Biology 8.6,
€1002553. 1SSN: 1553-7358. DOI: 10.1371/journal.pcbi.1002553.

Redish, A. David and David S. Touretzky (1998). “The role of the hippocampus in
solving the Morris water maze”. In: Neural computation 10.1, pp. 73-111. DOT:
10.1162/089976698300017908.

Reifenstein, Eric Torsten, Ikhwan Bin Khalid, and Richard Kempter (2021). “Synaptic
learning rules for sequence learning”. In: eLife 10, e67171. DOI: 10.7554/elife
.67171.sa2.

Richards, Blake A. and Timothy P. Lillicrap (Feb. 2019). “Dendritic solutions to the
credit assignment problem”. In: Current Opinion in Neurobiology 54, pp. 28-36.
DOI: 10.1016/j.conb.2018.08.003.

Rolls, Edmund T. and Raymond P. Kesner (May 2006). “A computational theory
of hippocampal function, and empirical tests of the theory”. In: Progress in
Neurobiology 79.1, pp. 1-48. 18SN: 0301-0082. DOI: 10.1016/j.pneurobio.200
6.04.005.

Riibel, Oliver, Andrew Tritt, Ryan Ly, Benjamin K Dichter, Satrajit Ghosh, Lawrence
Niu, Pamela Baker, Ivan Soltesz, Lydia Ng, Karel Svoboda, Loren Frank, and
Kristofer E Bouchard (Oct. 2022). “The Neurodata Without Borders ecosystem
for neurophysiological data science”. In: eLife 11. 1SSN: 2050-084X. DOI: 10.755
4/elife.78362.

Russek, Evan M., Ida Momennejad, Matthew M. Botvinick, Samuel J. Gershman,

and Nathaniel D. Daw (2017). “Predictive representations can link model-based

https://doi.org/10.1038/4580
https://doi.org/10.1016/0006-8993(95)01323-7
https://doi.org/10.1016/0006-8993(95)01323-7
https://doi.org/10.2514/3.3166
https://doi.org/10.1371/journal.pcbi.1002553
https://doi.org/10.1162/089976698300017908
https://doi.org/10.7554/elife.67171.sa2
https://doi.org/10.7554/elife.67171.sa2
https://doi.org/10.1016/j.conb.2018.08.003
https://doi.org/10.1016/j.pneurobio.2006.04.005
https://doi.org/10.1016/j.pneurobio.2006.04.005
https://doi.org/10.7554/elife.78362
https://doi.org/10.7554/elife.78362

BIBLIOGRAPHY 167

reinforcement learning to model-free mechanisms”. In: PLOS Computational
Biology 13.9. 1sSN: 15537358. DOIL: 10.1371/journal.pcbi.1005768.

Sacramento, Joao, Rui Ponte Costa, Yoshua Bengio, and Walter Senn (2018).
“Dendritic cortical microcircuits approximate the backpropagation algorithm”.
In: Advances in Neural Information Processing Systems, pp. 8721-8732. DOI:
10.48550/arXiv.1810.11393.

Samsonovich, Alexei and Bruce L. McNaughton (1997). “Path integration and
cognitive mapping in a continuous attractor neural network model”. In: The
Journal of Neuroscience 17.15, pp. 5900-5920. 1SSN: 0270-6474. DOI: 10.1523
/JNEUROSCI.17-15-05900.1997.

Sanders, Honi, César Renné-Costa, Marco Idiart, and John E. Lisman (2015). “Grid
cells and place cells: An integrated view of their navigational and memory
function”. In: Trends in Neurosciences 38.12, pp. 763-775. 1SSN: 0166-2236. DOI:
10.1016/j.tins.2015.10.004.

Sanders, Honi, Matthew A. Wilson, and Samuel J. Gershman (June 2020).
“Hippocampal remapping as hidden state inference”. In: eLife 9. DOI: 10.7
554/elife.51140.

Sani, Omid G., Hamidreza Abbaspourazad, Yan T. Wong, Bijan Pesaran, and
Maryam M. Shanechi (2021). “Modeling behaviorally relevant neural dynamics
enabled by preferential subspace identification”. In: Nature Neuroscience 24.1,
pp. 140-149. pot: 10.1038/s41593-020-00733-0.

Sargolini, Francesca, Marianne Fyhn, Torkel Hafting, Bruce L. McNaughton, Menno
P. Witter, May-Britt Moser, and Edvard I. Moser (May 2006). “Conjunctive
representation of position, direction, and velocity in entorhinal cortex”. In:
Science 312.5774, pp. 758-762. DOI: 10.1126/science.1125572.

Satoh, Y., S. Endo, T. Nakata, Y. Kobayashi, K. Yamada, T. Ikeda, A. Takeuchi,
T. Hiramoto, Y. Watanabe, and T. Kazama (Aug. 2011). “ERK2 contributes to
the control of social behaviors in mice”. In: The Journal of Neuroscience 31.33,
pp- 11953-11967. potr: 10.1523/ jneurosci.2349-11.2011.

Schaeffer, Rylan, Mikail Khona, and Ila Rani Fiete (2022). “No free lunch from

deep learning in neuroscience: A case study through models of the entorhinal-

https://doi.org/10.1371/journal.pcbi.1005768
https://doi.org/10.48550/arXiv.1810.11393
https://doi.org/10.1523/JNEUROSCI.17-15-05900.1997
https://doi.org/10.1523/JNEUROSCI.17-15-05900.1997
https://doi.org/10.1016/j.tins.2015.10.004
https://doi.org/10.7554/elife.51140
https://doi.org/10.7554/elife.51140
https://doi.org/10.1038/s41593-020-00733-0
https://doi.org/10.1126/science.1125572
https://doi.org/10.1523/jneurosci.2349-11.2011

168 BIBLIOGRAPHY

hippocampal circuit”. In: ICML 2022 2nd Al for Science Workshop. URL: http
s://openreview.net/forum?id=mxilxKzNFrb.

Schneegans, Susan, Tiffany Straza, Jake Lewis, Peter Gluckman, Binyam Mendisu,
Eric D’Ortenzio, Evelyne Marche, Oriane Puéchal, Immaculada Perez, Yazdan
Yazdanpanah, Ana Persic, Ferndanda Beigel, Simon Hodson, Peggy Oti-
Boateng, Shamila Nair-Bedouelle, Peter McGrath, Edward Lempinen, April
Tash, Alessandro Bello, and Ranasinghe Amaradasa (June 2021). UNESCO
Science Report: the Race Against Time for Smarter Development (2021). 1SBN:
978-92-3-100450-6. DOI: 10.18356/9789210058575c010.

Schneider, Steffen, Jin Hwa Lee, and Mackenzie Weygandt Mathis (2023). “Learnable
latent embeddings for joint behavioural and neural analysis”. In: Nature. DOTI:
10.1038/s41586-023-06031-6.

Schultz, Wolfram, Peter Dayan, and P. Read Montague (1997). “A neural substrate
of prediction and reward”. In: Science 275.5306, p. 6. DOI: 10.1126/science.2
75.5306.1593.

Scoville, W. B. and B. Milner (Feb. 1957). “Loss of recent memory after bilateral
hippocampal lesions”. In: Journal of Neurology, Neurosurgery, and Psychiatry
20.1, pp. 11-21. 18sN: 0022-3050. DOI: 10.1136/jnnp.20.1.11.

Seymour, Ben, John P. O’Doherty, Peter Dayan, Martin Koltzenburg, Anthony K.
Jones, Raymond J. Dolan, Karl J. Friston, and Richard S. Frackowiak (2004).
“Temporal difference models describe higher-order learning in humans”. In:
Nature 429.6992, pp. 664—667. DOI: 10.1038/nature02581.

Sharma, Sugandha, Sarthak Chandra, and Ila Rani Fiete (July 2022). “Content
addressable memory without catastrophic forgetting by heteroassociation with a
fixed scaffold”. In: Proceedings of the 39th International Conference on Machine
Learning. Vol. 162. PMLR, pp. 19658-19682. DO1: 10.48550/arXiv.2202.0015
9.

Skaggs, William E., J. J. Knierim, H. S. Kudrimoti, and Bruce L. McNaughton
(1995). “A model of the neural basis of the rat’s sense of direction”. In: Advances
in neural information processing systems 7, pp. 173-180. URL: https://procee
dings.neurips.cc/paper/1994/file/024d7£84ff£f11dd7e8d9c510137a2381

—Paper.pdf.

https://openreview.net/forum?id=mxi1xKzNFrb
https://openreview.net/forum?id=mxi1xKzNFrb
https://doi.org/10.18356/9789210058575c010
https://doi.org/10.1038/s41586-023-06031-6
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1136/jnnp.20.1.11
https://doi.org/10.1038/nature02581
https://doi.org/10.48550/arXiv.2202.00159
https://doi.org/10.48550/arXiv.2202.00159
https://proceedings.neurips.cc/paper/1994/file/024d7f84fff11dd7e8d9c510137a2381-Paper.pdf
https://proceedings.neurips.cc/paper/1994/file/024d7f84fff11dd7e8d9c510137a2381-Paper.pdf
https://proceedings.neurips.cc/paper/1994/file/024d7f84fff11dd7e8d9c510137a2381-Paper.pdf

BIBLIOGRAPHY 169

Skaggs, William E. and Bruce L. McNaughton (Mar. 1996a). “Replay of neuronal
firing sequences in rat hippocampus during sleep following spatial experience”.
In: Science 271.5257, pp. 1870-1873. DOI: 10.1126/science.271.5257.1870.

Skaggs, William E., Bruce L. McNaughton, Matthew A. Wilson, and Carol A. Barnes
(1996b). “Theta phase precession in hippocampal neuronal populations and the
compression of temporal sequences”. In: Hippocampus 6.2, pp. 149-172. DOTI:
10.1002/(sici)1098-1063(1996)6:2<149::aid-hipo6>3.0.co;2-k.

Smith, Anne C. and Emery N. Brown (2003). “Estimating a state-space model from
point process observations”. In: Neural Computation. DOI: 10.1162/089976603
765202622.

Sohl-Dickstein, Jascha, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli (July
2015). “Deep unsupervised learning using nonequilibrium thermodynamics”. In:
Proceedings of the 32nd International Conference on Machine Learning. Vol. 37.
PMLR, pp. 2256-2265. DOL: 10.48550/arXiv.1503.03585.

Soldado-Magraner, Saray, Joana Soldado-Magraner, Gabriela Michel, Emmanuel
Marquez-Legorreta, and Artemis Koumoundourou (2023). TReND-CaMinA:
Computational Neuroscience and Machine Learning in Africa. https://trendi
nafrica.org/trend-camina/. Accessed: 2025-06-23.

Solstad, Trygve, Charlotte N. Boccara, Emilio Kropff, May-Britt Moser, and Edvard I.
Moser (2008). “Representation of geometric borders in the entorhinal cortex”.
In: Science 322.5909, pp. 1865-1868. 1SSN: 0036-8075. DOI: 10.1126/science.1
166466.

Sorscher, Ben, Gabriel C. Mel, Samuel A. Ocko, Lisa M. Giocomo, and Surya Ganguli
(2023). “A unified theory for the computational and mechanistic origins of grid
cells”. In: Neuron 111.1, 121-137.e13. 1SSN: 0896-6273. DOI: 10.1016/j .neuron
.2022.10.003.

Spiers, Hugo J., Robin Hayman, Aleksandar Jovalekic, Elizabeth Marozzi, and
Kathryn J. Jeffery (2015). “Place field repetition and purely local remapping in
a multicompartment environment”. In: Cerebral Cortex 25.1. ISBN: 1047-3211,
pp- 10-25. 18SN: 14602199. DOI: 10.1093/cercor/bht198.

https://doi.org/10.1126/science.271.5257.1870
https://doi.org/10.1002/(sici)1098-1063(1996)6:2<149::aid-hipo6>3.0.co;2-k
https://doi.org/10.1162/089976603765202622
https://doi.org/10.1162/089976603765202622
https://doi.org/10.48550/arXiv.1503.03585
https://trendinafrica.org/trend-camina/
https://trendinafrica.org/trend-camina/
https://doi.org/10.1126/science.1166466
https://doi.org/10.1126/science.1166466
https://doi.org/10.1016/j.neuron.2022.10.003
https://doi.org/10.1016/j.neuron.2022.10.003
https://doi.org/10.1093/cercor/bht198

170 BIBLIOGRAPHY

Spiers, Hugo J. and Eleanor A. Maguire (July 2006). “Thoughts, behaviour, and
brain dynamics during navigation in the real world”. In: Neurolmage 31.4,
pp. 1826-1840. DOI: 10.1016/j.neuroimage.2006.01.037.

Squire, Larry R. (July 1992). “"Memory and the hippocampus: A synthesis from
findings with rats, monkeys, and humans": Correction”. In: Psychological Review
99.3, pp. 582-582. DOI: 10.1037/0033-295x.99.3.582.

Squire, Larry R., Anna S. van der Horst, Susan G. R. McDuff, Jennifer C. Frascino,
Ramona O. Hopkins, and Kristin N. Mauldin (2010). “Role of the hippocampus
in remembering the past and imagining the future”. In: Proceedings of the
National Academy of Sciences. DOI: 10.1073/pnas.1014391107.

Stachenfeld, Kimberly L., Matthew M. Botvinick, and Samuel J. Gershman (2014).
“Design principles of the hippocampal cognitive map”. In: Advances in neural
information processing systems 27. URL: https://papers.nips.cc/paper_£fil
es/paper/2014/£ile/6083b607d0b81940c0280e465c79f5d5-Paper . pdf.

Stachenfeld, Kimberly L., Matthew M. Botvinick, and Samuel J. Gershman (Nov.
2017). “The hippocampus as a predictive map”. In: Nature Neuroscience 20.11,
pp. 1643-1653. 1SSN: 1097-6256, 1546-1726. DOI: 10.1038/nn.4650.

Stimberg, Marcel, Romain Brette, and Dan F. M. Goodman (Aug. 2019). “Brian 2,
an intuitive and efficient neural simulator”. In: eLife 8, e47314. 1SSN: 2050-084X.
DOI: 10.7554/eLife.47314.

Strange, Bryan A., Menno P. Witter, Ed S. Lein, and Edvard I. Moser (Sept. 2014).
“Functional organization of the hippocampal longitudinal axis”. In: Nature
Reviews Neuroscience 15.10, pp. 655—669. DOI: 10.1038/nrn3785.

Sutton, Richard S. (Aug. 1988). “Learning to predict by the methods of temporal
differences”. In: Machine Learning 3.1, pp. 9-44. DOI: 10.1007/b£00115009.

Sutton, Richard S. and Andrew G. Barto (1998). Introduction to reinforcement
learning. MIT Press. 1SBN: 0262193981. URL: http://incompleteideas.net/b
ook/the-book-2nd.html.

Tanni, Sander, William de Cothi, and Caswell Barry (June 2021). “State transitions in
the statistically stable place cell population are determined by rate of perceptual

change”. In: bioRxiv. DOI: 10.1101/2021.06.16.448638.

https://doi.org/10.1016/j.neuroimage.2006.01.037
https://doi.org/10.1037/0033-295x.99.3.582
https://doi.org/10.1073/pnas.1014391107
https://papers.nips.cc/paper_files/paper/2014/file/6083b607d0b81940c0280e465c79f5d5-Paper.pdf
https://papers.nips.cc/paper_files/paper/2014/file/6083b607d0b81940c0280e465c79f5d5-Paper.pdf
https://doi.org/10.1038/nn.4650
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1038/nrn3785
https://doi.org/10.1007/bf00115009
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1101/2021.06.16.448638

BIBLIOGRAPHY 171

Tanni, Sander, William de Cothi, and Caswell Barry (2022). “State transitions in the
statistically stable place cell population correspond to rate of perceptual change”.
In: Current Biology. 1ssN: 0960-9822. DOI: 10.1016/j.cub.2022.06.046.

Taube, J. S., Robert U. Muller, and J. B. Ranck (1990). “Head-direction cells recorded
from the postsubiculum in freely moving rats. I. Description and quantitative
analysis”. In: The Journal of Neuroscience 10.2, pp. 420-435. 1SSN: 0270-6474.
DOI: 10.1523/jneurosci.10-02-00420.1990.

Tipping, Michael E. and Christopher M. Bishop (1999). “Probabilistic principal
component analysis”. In: Journal of the Royal Statistical Society Series B:
Statistical Methodology 61.3, pp. 611-622. URL: https://www.cs.columbia.ed
u/~blei/seminar/2020-representation/readings/TippingBishop1999.pd
f.

Todorov, Emanuel (July 2009). “Efficient computation of optimal actions”. In:
Proceedings of the National Academy of Sciences 106.28, pp. 11478-11483.
DOI: 10.1073/pnas.0710743106.

Todorov, Emanuel, Tom Erez, and Yuval Tassa (Oct. 2012). “MuJoCo: A physics
engine for model-based control”. In: 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE. DOI: 10.1109/iros.2012.6386109.

Tolman, Edward C. (1948). “Cognitive maps in rats and men”. In: Psychological
review. DOI: 10.1037/h0061626.

Tolman, Edward C. and C. H. Honzik (1930). “Introduction and removal of reward,
and maze performance in rats”. In: University of California Publications in
Psychology 4, pp. 257-275.

Treves, Alessandro and Edmund T. Rolls (June 1994). “Computational analysis of
the role of the hippocampus in memory”. In: Hippocampus 4.3, pp. 374-391.
1SsN: 1098-1063. DOI1: 10.1002/hipo.450040319.

Urbanczik, Robert and Walter Senn (Feb. 2014). “Learning by the dendritic prediction
of somatic spiking”. In: Neuron 81.3, pp. 521-528. 1SSN: 08966273. DOI: 10.101
6/j.neuron.2013.11.030.

Uria, Benigno, Borja Ibarz, Andrea Banino, Vinicius Zambaldi, Dharshan Kumaran,

Demis Hassabis, Caswell Barry, and Charles Blundell (Nov. 2020). “A model of

https://doi.org/10.1016/j.cub.2022.06.046
https://doi.org/10.1523/jneurosci.10-02-00420.1990
https://www.cs.columbia.edu/~blei/seminar/2020-representation/readings/TippingBishop1999.pdf
https://www.cs.columbia.edu/~blei/seminar/2020-representation/readings/TippingBishop1999.pdf
https://www.cs.columbia.edu/~blei/seminar/2020-representation/readings/TippingBishop1999.pdf
https://doi.org/10.1073/pnas.0710743106
https://doi.org/10.1109/iros.2012.6386109
https://doi.org/10.1037/h0061626
https://doi.org/10.1002/hipo.450040319
https://doi.org/10.1016/j.neuron.2013.11.030
https://doi.org/10.1016/j.neuron.2013.11.030

172 BIBLIOGRAPHY

egocentric to allocentric understanding in mammalian brains”. In: pOI: 10.110
1/2020.11.11.378141.

Vaart, Aad W. van der (2000). Asymptotic statistics. Vol. 3. Cambridge university
press.

Vafidis, Pantelis, David Owald, Tiziano D’Albis, and Richard Kempter (June 2022).
“Learning accurate path integration in ring attractor models of the head direction
system”. In: eLife 11, e69841. 1sSN: 2050-084X. DOI: 10.7554/eLife.69841.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin (2017). “Attention is all you need”.
In: CoRR abs/1706.03762. DOI: 10.48550/arXiv.1706.03762.

Vértes, Eszter and Maneesh Sahani (2019). “A neurally plausible model learns
successor representations in partially observable environments”. In: Advances in
Neural Information Processing Systems 32. DOI: 10.48550/arXiv.1906.09480.

Vries, Saskia EJ de, Joshua H Siegle, and Christof Koch (July 2023). “Sharing
neurophysiology data from the Allen Brain Observatory”. In: eLife 12. 1SSN:
2050-084X. DOI: 10.7554/elife.85550.

Wang, Jack, Aaron Hertzmann, and David J. Fleet (2005). “Gaussian process
dynamical models”. In: Advances in neural information processing systems
18. URL: https://papers.nips.cc/paper_files/paper/2005/hash/ccd450
07d£44dd0£12098f486e7e8a0f-Abstract.html.

Whittington, James C. R., Timothy H. Muller, Shirley Mark, Guifen Chen,
Caswell Barry, Neil Burgess, and Timothy E. J. Behrens (Nov. 2020). “The
Tolman-Eichenbaum Machine: Unifying space and relational memory through
generalization in the hippocampal formation”. In: Cell 183.5, 1249-1263.e23.
ISSN: 00928674. DOI: 10.1016/j.cell.2020.10.024.

Whittington, James C.R., William Dorrell, Timothy E.J. Behrens, Surya Ganguli,
and Mohamady El-Gaby (Jan. 2025). “A tale of two algorithms: Structured
slots explain prefrontal sequence memory and are unified with hippocampal
cognitive maps”. In: Neuron 113.2, 321-333.€6. 1SSN: 0896-6273. DOI: 10.1016
/j.neuron.2024.10.017.

https://doi.org/10.1101/2020.11.11.378141
https://doi.org/10.1101/2020.11.11.378141
https://doi.org/10.7554/eLife.69841
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1906.09480
https://doi.org/10.7554/elife.85550
https://papers.nips.cc/paper_files/paper/2005/hash/ccd45007df44dd0f12098f486e7e8a0f-Abstract.html
https://papers.nips.cc/paper_files/paper/2005/hash/ccd45007df44dd0f12098f486e7e8a0f-Abstract.html
https://doi.org/10.1016/j.cell.2020.10.024
https://doi.org/10.1016/j.neuron.2024.10.017
https://doi.org/10.1016/j.neuron.2024.10.017

BIBLIOGRAPHY 173

Widloski, John and Ila Rani Fiete (2014). “A model of grid cell development
through spatial exploration and spike time-dependent plasticity”. In: Neuron
83.2, pp. 481-495. 18SN: 0896-6273. DOI: 10.1016/j .neuron.2014.06.018.

Wikenheiser, Andrew M. and A. David Redish (Jan. 2015). “Hippocampal theta
sequences reflect current goals”. In: Nature Neuroscience 18.2, pp. 289-294. DOTI:
10.1038/nn.3909.

Williams, Alex, Anthony Degleris, Yixin Wang, and Scott W. Linderman (2020).
“Point process models for sequence detection in high-dimensional neural spike
trains”. In: Advances in Neural Information Processing Systems. DOIL: 10.48550
/arXiv.2010.04875.

Wills, Tom J., Colin Lever, Francesca Cacucci, Neil Burgess, and John O’Keefe
(May 2005). “Attractor Dynamics in the Hippocampal Representation of the
Local Environment”. In: Science 308.5723, pp. 873-876. 1ssN: 1095-9203. DOI:
10.1126/science.1108905.

Wilson, Greg, Jennifer Bryan, Karen Cranston, Justin Kitzes, Lex Nederbragt, and
Tracy K. Teal (June 2017). “Good enough practices in scientific computing”. In:
PLOS Computational Biology 13.6. Ed. by Francis Ouellette, e1005510. ISSN:
1553-7358. DOI: 10.1371/journal.pcbi.1005510.

Wilson, Matthew A. and Bruce L. McNaughton (1993). “Dynamics of the hippocampal
ensemble code for space”. In: Science. DOI: 10.1126/science.8351520.

Wilson, Matthew A. and Bruce L. McNaughton (July 1994). “Reactivation of
hippocampal ensemble memories during sleep”. In: Science 265.5172, pp. 676—679.
DOI: 10.1126/science.8036517.

Wilt, Brian A., Laurie D. Burns, Eric Tatt Wei Ho, Kunal K. Ghosh, Eran A.
Mukamel, and Mark J. Schnitzer (2009). “Advances in light microscopy for
neuroscience”. In: Annual review of neuroscience. DOI: 10.1146/annurev.neur
0.051508.135540.

Wu, Angi, Nicholas A. Roy, Stephen Keeley, and Jonathan W. Pillow (2017).
“Gaussian process based nonlinear latent structure discovery in multivariate
spike train data”. In: Advances in Neural Information Processing Systems. URL:
https://papers.nips.cc/paper_files/paper/2017/hash/b3b4d2dbedc99f
e€843fd3dedb02f086f-Abstract.html.

https://doi.org/10.1016/j.neuron.2014.06.018
https://doi.org/10.1038/nn.3909
https://doi.org/10.48550/arXiv.2010.04875
https://doi.org/10.48550/arXiv.2010.04875
https://doi.org/10.1126/science.1108905
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1126/science.8351520
https://doi.org/10.1126/science.8036517
https://doi.org/10.1146/annurev.neuro.051508.135540
https://doi.org/10.1146/annurev.neuro.051508.135540
https://papers.nips.cc/paper_files/paper/2017/hash/b3b4d2dbedc99fe843fd3dedb02f086f-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/b3b4d2dbedc99fe843fd3dedb02f086f-Abstract.html

174 BIBLIOGRAPHY

Yamaguchi, Yoko, Yoshito Aota, Bruce L. McNaughton, and Peter Lipa (June
2002). “Bimodality of theta phase precession in hippocampal place cells in
freely running rats”. In: Journal of Neurophysiology 87.6, pp. 2629-2642. DOTI:
10.1152/jn.2002.87.6.2629.

Yang, Yibo, Stephan Mandt, and Lucas Theis (2022). An Introduction to Neural
Data Compression. DOI: 10.48550/ARXIV.2202.06533.

Yu, Byron M., John P. Cunningham, Gopal Santhanam, Stephen Ryu, Krishna V.
Shenoy, and Maneesh Sahani (2008a). “Gaussian-process factor analysis for
low-dimensional single-trial analysis of neural population activity”. In: Advances
in Neural Information Processing Systems.

Yu, Byron M., John P. Cunningham, Krishna V. Shenoy, and Maneesh Sahani
(2008b). “Neural decoding of movements: From linear to nonlinear trajectory
models”. In: Neural Information Processing: 14th International Conference,
ICONIP 2007, Kitakyushu, Japan, November 13-16, 2007, Revised Selected
Papers, Part I 14. Springer.

Yu, Byron M., Krishna V. Shenoy, and Maneesh Sahani (2006). “Expectation
propagation for inference in non-linear dynamical models with Poisson
observations”. In: 2006 IEEE Nonlinear Statistical Signal Processing Workshop.
IEEE. por1: 10.1109/nsspw.2006.4378825.

Zador, Anthony, Sean Escola, Blake Richards, Bence Olveczky, Yoshua Bengio,
Kwabena Boahen, Matthew Botvinick, Dmitri Chklovskii, Anne Churchland,
Claudia Clopath, James DiCarlo, Surya Ganguli, Jeff Hawkins, Konrad
Kording, Alexei Koulakov, Yann LeCun, Timothy Lillicrap, Adam Marblestone,
Bruno Olshausen, Alexandre Pouget, Cristina Savin, Terrence Sejnowski, Eero
Simoncelli, Sara Solla, David Sussillo, Andreas S. Tolias, and Doris Tsao (Mar.
2023). “Catalyzing next-generation Artificial Intelligence through NeuroAI”. In:
Nature Communications 14.1. 1SSN: 2041-1723. DOI: 10.1038/s41467-023-371
80-x.

Zentall, Thomas R. (Mar. 2015). “When animals misbehave: Analogs of human
biases and suboptimal choice”. In: Behavioural Processes 112, pp. 3—13. DOI

10.1016/j .beproc.2014.08.001.

https://doi.org/10.1152/jn.2002.87.6.2629
https://doi.org/10.48550/ARXIV.2202.06533
https://doi.org/10.1109/nsspw.2006.4378825
https://doi.org/10.1038/s41467-023-37180-x
https://doi.org/10.1038/s41467-023-37180-x
https://doi.org/10.1016/j.beproc.2014.08.001

BIBLIOGRAPHY 175

Zhang, K. (Mar. 1996). “Representation of spatial orientation by the intrinsic
dynamics of the head-direction cell ensemble: A theory”. In: The Journal of
Neuroscience 16.6, pp. 2112-2126. DOI: 10.1523/ jneurosci.16-06-02112.19
96.

Zhao, Yuan and Il Memming Park (2017). “Variational latent gaussian process
for recovering single-trial dynamics from population spike trains”. In: Neural
Computation. DOI: 10.1162/neco_a_00953.

Zhou, Ding and Xue-Xin Wei (2020). “Learning identifiable and interpretable latent
models of high-dimensional neural activity using pi-VAE”. In: Advances in
Neural Information Processing Systems. URL: https://papers.nips.cc/pape
r/2020/hash/510£2318f324cf07fce24c3a4b89c771-Abstract.html.

Znamenskiy, Petr and Anthony M. Zador (2013). “Corticostriatal neurons in auditory
cortex drive decisions during auditory discrimination”. In: Nature. DOI: 10.103
8/naturel2077.

Zoltowski, David, Jonathan Pillow, and Scott W. Linderman (2020). “A general
recurrent state space framework for modeling neural dynamics during decision-
making”. In: International Conference on Machine Learning. PMLR, pp. 11680-

11691. URL: https://proceedings.mlr.press/v119/zoltowski20a.html.

https://doi.org/10.1523/jneurosci.16-06-02112.1996
https://doi.org/10.1523/jneurosci.16-06-02112.1996
https://doi.org/10.1162/neco_a_00953
https://papers.nips.cc/paper/2020/hash/510f2318f324cf07fce24c3a4b89c771-Abstract.html
https://papers.nips.cc/paper/2020/hash/510f2318f324cf07fce24c3a4b89c771-Abstract.html
https://doi.org/10.1038/nature12077
https://doi.org/10.1038/nature12077
https://proceedings.mlr.press/v119/zoltowski20a.html

Appendix A

Appendix to Chapter 1

A.1 Code Availability

Code used to generate the results in Chapter 1, as well as the RatInABox
package itself, is available at https://github.com/RatInABox-Lab/RatInAB

OX.

A.2 Model and Feature Specifications

The following section describes in mathematical detail the models used within

RatInABox.
A.2.1 DMotion Model Details

Temporally continuous random motion

The random motion model is based on the Ornstein Uhlenbeck (OU) process,

Xo.au(t), a stochastic process satisfying the Langevin differential equation

Xoau(t+dt) = Xoxu(t) + dXo (1),
dXgxpu(t) = 0(1—Xgppu(1))dt + An(t)Vat (A.1)

where 7(t) ~ N(0,1) is Gaussian white noise and 6, A and p are constants.
The first term in the update equation drives decay of Xg) ,(t) towards the
mean p. The second term is a stochastic forcing term, driving randomness.

These stochastic processes are well studied; their unconditioned covariance

https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox

178 Appendix A. Appendix to Chapter 1

across time is

N2y
Koau(O)Xoru(t)) = S5e Ble=t1, (A.2)

Thus Xg,» ,,(t) decorrelates smoothly over a timescale of 7 = 1/6. Over
long periods Xp»,(t) is stochastic and therefore unpredictable. Its long-
run stationary probability distribution is a Gaussian with mean p and
standard deviation ¢ = v/A2/260. The Ornstein Uhlenbeck process can be
re-parameterised in terms of these more intuitive parameters (the decorrelation

timescale 7 and the long-run standard deviation) using the transformations

1 202
=2, A==, (A.3)
T T

to give

Xrou(t+dt) =Xs o u(t) + dXr g u(t),

Koolt) = 0= XVt PV, (A

Ornstein Uhlenbeck processes have the appealing property that they are
temporally continuous (their statistics are independent of dt) and allow for
easy control of the long-run standard deviation and the decorrelation timescale
of the stochastic variable. For these reasons they are used to model rotational

and linear velocities within RatInABox.

2D motion For 2D locomotion, the Agent’s rotational velocity w(t) = 6, (t)
and linear speed, vop(t) = ||v(¢)]|, are sampled from independent OU processes.
This is because, as shown in section 1.3, they have decorrelation timescales
differing by an order of magnitude. Rotational velocity is sampled from a
standard Ornstein Uhlenbeck process with zero mean. Linear speed is also
sampled from an Ornstein Uhlenbeck process with one additional transform

applied in order to match the observation that linear speeds have a Rayleigh,

A.2. Model and Feature Specifications 179

not normal, distribution.

w(t) ~ Xr, o0.0(t), (A.5)
vap(t) = Ry, (2(t)) where z(t) ~ Xx, 10(t), (A.6)

where Ry (z) is a monotonic transformation which maps a normally
distributed random variable z ~ N'(0,1) to one with a Rayleigh distribution
of scale parameter o. o corresponds to the mode, or &~ 0.8 times the mean, of

the Rayleigh distribution.

Ro(x) = U\/—an <1 - ;[1 + erf(jiﬂ). (A7)

The parameters {7,,04,,7,0y} are fitted from real open field 2D

locomotion data in Figure 1.2 or can be set by the user.

Full trajectories are then sampled as follows: First the rotational and
linear velocities are updated according to egs. (A.5) and (A.6) (and additional
considerations for walls, see next section). Next the velocity direction, 6, (%)
— defined as the angle of the velocity vector measured anticlockwise from the

x-direction — is updated according to the rotational velocity, w(t).
O,(t) = (6u(t— dt) + w(t)dt) mod 2r. (A8)

This is combined with the linear speed, vop(t) to calculate new total velocity

vector, v(t).

v(t) =ty | (A9)
sin 6, (t)

Finally position, x(t), is updated by integrating along the total velocity vector

to give a continuous and smooth, but over long time periods random, motion

180 Appendix A. Appendix to Chapter 1

trajectory.
x(t) = x(t — dt) + v(t)dt. (A.10)

1D motion Motion in 1D is more simple than motion in 2D. Velocity is also
modelled as an Ornstein Uhlenbeck process without the Rayleigh transform.
In this case a non-zero mean, u,, corresponding to a directional bias in the

motion, can be provided by the user. In summary:

VlD(t) ~ XTvagv,l/zv (t)’ (All)

z(t) = x(t — dt) +vip(t)dt. (A.12)

External velocity control

It is possible to provide an external velocity signal controlling the Agent’s
motion. After the random motion update (as described above) is applied, if an
external velocity vqyig (¢) is provided by the user, an additional update to the

velocity vector is performed

dv(t+dt) = (Vaite (t) — v(t))dt. (A.13)

Tdrift

In cases where 74,55 >> 7y the net update to the velocity (random update and
drift update) is dominated by the random component. When 74,3 << 7, the
update is dominated by the drift component. I define 74,55 := 7, /k where k
is an argument also provided by the user. To good approximation for large
k >> 1 the Agent velocity closely tracks the drift velocity at all times and is
not random whilst for £ << 1 the drift velocity is ignored and the motion is

entirely random.

Motion near walls in 2D

An important feature is the ability to generate Environments with arbitrary

arrangements of walls (aka ‘barriers’ or ‘boundaries’). Walls are meaningful

A.2. Model and Feature Specifications 181

only if they appropriately constrain the motion of the Agent. For biological

agents this means three things:
1. The Agent cannot travel through a wall.

2. The Agent slows down upon approaching a wall to avoid a full-speed

collision.

3. There may be a bias called “thigmotaxis” for the Agent to stay near

walls.

The motion model replicates these three effects as follows:

Collision detection To avoid travelling through walls, if a collision is detected
the velocity is elastically reflected off the wall (normal component is flipped).

The speed is then scaled to one half the average motion speed, vop(t) = 0.50y.

Wall repulsion Spring-deceleration model In order to slow down before
colliding with a wall the Agent feels an acceleration, perpendicular to the wall,

whenever it is within a small distance, dy,), of the wall.

(S'UV)2 (d d (t) i
o0 (= dy () I iy (0) < dan,
V(t) =k Y myq B ' ’ ’) (A.14)
walls, j 0 if d; j(t) > dywan.

d, ;(t) is the perpendicular distance from the Agent to the j' wall, n; is the
perpendicular norm of the j* wall (the norm pointing towards the Agent) and
k1 & s are constants (explained later). dyay is the distance from the wall at
which the Agent starts to feel the deceleration, defaulting to dyay = 0.1 m.
Note that this acceleration is identical to that of an oscillating spring-mass
where the base of the spring is attached a distance dy, from the wall on a
perpendicular passing through the Agent. The spring constant is tuned such
that a mass starting with initial velocity towards the wall of —soyn; would
stop just before the wall. In summary, for k; = 1, if the Agent approaches the
wall head-on at speed of soy (s times its mean speed) this deceleration will just

be enough to avoid a collision.

182 Appendix A. Appendix to Chapter 1

s is the unitless wall repel strength parameter (default s = 1). When it is
high, walls repel the agent strongly (only fast initial speeds will result in the
agent reaching the wall) and when it is low, walls repel weakly (even very slow
initial speeds will not be slowed done by the spring dynamics). When s = 0
wall repulsion is turned off entirely.

Conveyor-belt modelA second (similar, but not exactly equivalent) way
to slow down motion near a wall is to consider a hypothetical conveyor belt
near the wall. This conveyor belt has a non-uniform velocity pointing away

from the wall of

SOy (1 — \/1 — W) if dJ_’j(t) < dwall,
X(t) =k2 3 my b
walls,j 0 if dJ_’]' (t) > dwall'
(A.15)

When the Agent is close to the wall the hypothetical conveyor-belt moves
it backwards on each time step, effectively slowing it down. Note that this
velocity is identical to that of a spring-mass attached to the wall with initial
velocity soyn; away from the wall and spring constant tuned to stop the mass
just before it reaches a distance dy,y. In summary, for ky = 1, if the Agent
approaches the wall head-on at speed of soy, the conveyor belt will just be fast

enough to bring it to a halt at the location of the wall.

Wall attraction (thigmotaxis) Although similar, there is an exploitable
difference between the ‘spring-deceleration’ and ‘conveyor-belt” models: the
‘conveyor-belt’ changes the Agent’s position, x(¢), on each step but not its
internal velocity variable v(¢). As as result (and as the conveyor-belt intuition
suggests) it will slow down the Agent’s approach towards the wall without
causing it to turn around. This creates a “lingering” or “thigmotactic” effect
whereby whenever the Agent heads towards a wall it may carry on doing so,
without collision, for some time until the stochastic processes governing its
motion (Appendix A.2.1) cause it to turn. Conversely the ‘spring-deceleration’

model has no “thigmotactic” effect since it actively changes the internal velocity

A.2. Model and Feature Specifications 183

variable causing the Agent to turn around or “bounce” off the walls.
The relative strengths of these two effects, k1 and ko, are controlled by a
single thigmotaxis parameter, Agpig € [0, 1] which governs the trade-off between

these two models.
k1 = 3(1 — Anig)?, ko = 6\ (A.16)

When A¢pig = 1 only the conveyor belt model is active giving a strong
thigmotactic effects. When A = 0 only the spring-deceleration model is
active giving no thigmotactic effect. By default A¢je = 0.5. The constants 3
and 6 are tuning parameters chosen by hand in order that direct collisions with
the walls are rare but not impossible.

Although this procedure, intended to smoothly slow the Agent near a
wall, may seem complex, it has two advantages: Firstly, deceleration near
walls is smooth, becoming stronger as the Agent gets nearer and so induces
no physically implausible discontinuities in the velocity. Secondly, it provides
a tunable way by which to control the amount of thigmotaxis (evidenced in
Figure 1.2c,d). Recall that these equations only apply to motion very near the
wall (< dwan) and they can be turned off entirely (s = 0)).

Importing trajectories
Users can override the random motion model by importing their own
trajectory with Agent.import_trajectory(times,positions) where times
is an array of times (not necessarily evenly spaced) and positions is
an array of positions at each time. The trajectory is then interpolated
using scipy.interpolate’s interpld function following which the standard
RatInABox Agent.update(dt) API is called to move the Agent to a new
position a time dt along the imported trajectory.

When moving along imported trajectories the Agent will not be subject

to the wall repel nor wall collision effects described above.

184 Appendix A. Appendix to Chapter 1

Head direction

As well as position and velocity Agents have a head direction, h(t). Head
direction is used by various cell types to determine firing rate including
HeadDirectionCells and (egocentric) VectorCells. By default, head
direction is just the smoothed-then-normalised velocity vector, updated on each

timestep as follows:

(A4 dt v(t)
h(t+dt) = (1 Th) h(t) + TN (A.17)
A _ h(t+adt)

By default the amount of smoothing is very small (in 2D 75, = 0.15, in
1D there is no smoothing at all) meaning that, to a good approximation,
head direction is simply the normalised velocity vector at time ¢, h(t) ~ ¥(t).
However by storing head direction as an independent variable, this makes
available the possibility for users to craft their own, potentially more complex,
head direction dynamics if desired.

I also define the head direction angle ¢y (t) aka. the angle of head direction

vector measured clockwise from the x-axis.

A.2.2 Distance Measures

In many of the cell models it is necessary to calculate the "distance" between
two locations in the Environment (for example to calculate the firing rate of a
Gaussian PlaceCell). This might depend on the type of geometry being used
and the arrangement of walls in the Environment. There are three types of

geometry currently supported:

A.2. Model and Feature Specifications 185

euclidean: d(x1,x2) = ||x1 — X2 (A.19)

geodesic: d(x1,x2) = length of shortest wall-avoiding path between

x1 and X9

(A.20)

llx1 — x2|| if no obstructing wall
line_of_sight: d(x1,x2) = (A.21)

%) otherwise

By default RatInABox typically uses geodesic distance, except in
Environments with more than one additional wall where calculating the shortest
path becomes computationally expensive. In these cases line_of_sight
distance is typically used instead. Furthermore, in Environments with periodic
boundary conditions these distance measures will respect the periodicity by
always using the shortest path between two points, wrapping around boundaries
if necessary. These geometry considerations are what allow RatInABox cell
classes to interact sensibly with walls (e.g. by default place cells won’t bleed
through walls, as observed in the brain). This is hereon referred to as the

“environmental-distance”.

A.2.3 Cell Model Specifications

In the following section, mathematical models are listed for most of the default
provided Neurons subclasses, including all those covered in this chapter. More
cell types and documentation can be found on the codebase. Readers will note
that, oftentimes, parameters are set randomly at the point of initialisation
(e.g. where the place cells are located, the orientation of grid cells, the angular
preference of boundary vector cells etc.). Many of these random parameters are
all set as class attributes and so can be redefined after initialisation if necessary.

For simplicity here I describe default behaviour only.

Maximum and minimum firing rates For most cell classes it is also possible

to set their maximum and minimum firing rates (fmax, fmin). For simplicity

186 Appendix A. Appendix to Chapter 1

the formulae provided below are written such that they have a maximum firing
rate of 1.0 Hz and minimum firing rate of 0.0 Hz but readers should be aware

that after evaluation these firing rates are linearly scaled according to
F(t) A (fmax - fmin)F(t) + fimin. (A.QZ)

Noise By default all Neurons are noiseless with their firing rates entirely
determined by the deterministic mathematical models given below. Smooth
Ornstein Uhlenbeck sampled random noise of coherence timescale 7, and

magnitude o, can be added:

n(t) ~ Xeyom,0(t) (A.23)
F(t) « F(t) +n(t) (A.24)

Rates vs. Spikes RatInABox Neurons are fundamentally rate-based. This
means that their firing rate is a continuous function of time. Simultaneously,
at every time-step, spikes are sampled from this firing rate and saved into the

history dataframe in case spiking data is required:

P(Neuron 7 spikes in [t,t + dt]) = F;(t)dt. (A.25)

PlaceCells

A set of locations (the centre of the place fields), {x¢}, is randomly sampled
from the Environment. By default these locations sit on a grid uniformly
spanning the Environment to which a small amount of random jitter, half
the scale of the sampled grid, is added. Thus place cell locations appear
‘random’ but initialising in this way ensures all parts of the Environment are
approximately evenly covered with the same density of place fields.

The environmental-distance from the Agent to the place field centres is

calculated (d;(t) = d(xF'©,x(t)). The firing rate is then determined by one of

A.2. Model and Feature Specifications 187

the following functions (defaulting to F&aussian).

Fl-gauSSian(t) = e_d?mwi2 (A.26)
—d?/2w? _ —1/2
gaussian_threshold . e t—€
F; (t) = max (O, =V) (A.27)
2 2 2
Fdlff of gau551ans . - _d /2w - (1/7’) di/Q(rwz) (A28)
L 1—1/r2
top hat if d; <w; (A.20)
0 otherwise
FRe-2ot(¢) = §(i == argmin;(d;)). (A.30)

Where used, w; is the user-provided radius (aka. width) of the place cells

(defaulting to 0.2 m).

GridCells
Each grid cell is assigned a random wave direction 6; ~ Z/[[O,Qw]v gridscale
Ai ~ Uy 5 m,1.0 m] and phase offset ¢; ~ Ujg o). The firing rate of each grid cell

is given by the thresholded sum of three cosines

1 t)-ep, t) - ep.
Fi(t) = ghmax <0> cos (27TX(1\% + ¢i> + cos (27TX()§W)’ + @,)
¢ 7

+ cos (27rx(t) -ie_ﬁ%/g + ¢z>) (A.31)

ey is the unit vector pointing in the direction 6. A shifted (as opposed to

rectified) sum of three cosines grid cell is also provided resulting in softer grid

fields

Fi(t) = ; (; <cos (%M + obi) + cos <27rx(t)'§fi+7f/3 + @-)

(A.32)

188 Appendix A. Appendix to Chapter 1

ey is the unit vector pointing in the direction 6.

VectorCells (parent class only)

VectorCells subclasses include BoundaryVectorCells, ObjectVectorCells
and AgentVectorCells as well as FieldOfView versions of these three classes.
The common trait amongst all types of VectorCell is that each cell is responsive
to a feature of the environment (boundary segments, objects, other agents) at a
preferred distance and angle. The firing rate of each vector cell is given by the
product of two functions; a Gaussian radial function and a von Mises angular
function. When the agent is a euclidean distance d(t) from the feature, at an

angle ¢(t) the contribution of that feature to the total firing rate is given by

(d;i —d(t))’
2Uc2l,z'

0i(r (1), 0()) = exp (—) Sen(olénr) (A33)

where fyr is the radial von Mises distribution (a generalisation of a Gaussian

for periodic variables)

S (9(t)|di, ki) = exp(ri cos(d(t) — ¢i)). (A.34)

Total firing rate is calculated by summing/integrating these contributions over
all features in the Environment as described in the following sections. Distance

and angular tuning parameters and defined /sampled as follows:
* d; is the distance tuning of the vector cell. By default di ~ Uy 05 1,0.3 m]

e 04, is the distance tuning width. By default this increases linearly as
a function of d;: o4; = d;/B + & for constants 3 and & but can be set
otherwise. Values are chosen to match those used by Cothi et al. (2020Db).

e ¢; is the angular tuning of the vector cell. By default ¢; ~ Ujoe 360°]-

» 04, (which defines the von Mises concentration measure x; := 1/, /54;)

is the angular tuning width of the vector cell. By default o¢; ~ Upjgo 300)-

A.2. Model and Feature Specifications 189

The asymptotic equivalence between a Gaussian and a von Mises
distribution (true for small angular tunings whereby von Mises distributions
of concentration parameter x approach Gaussian distributions of variance
0? = 1/k) means this model is effectively identical to the original boundary
vector cell model proposed by Hartley et al. (2000) but with the difference that
my vector cells (BVCs included) will not show discontinuities if they have wide
angular tunings of order 360°.

All vector cells can be either

o allocentric (default): ¢(t) is the angle subtended between the x-
direction vector e, = [1,0], and the line between the Agent and the

feature.

o egocentric: ¢(t) is the angle subtended between the heading direction

of the agent h(t), and the line between the Agent and the feature.

BoundaryVectorCells The environmental features which BoundaryVectorCe
11s (BVCs) respond to are the boundary segments (walls) of the Environment.
The total firing rate of of each cell is given by integrating (computationally I
use a default value of df = 2° to numerically approximate this integral) the
contributions from the nearest line-of-sight boundary segments (walls occluded

by other walls are not considered) around the full 27 field-of-view;
27
F(t) =K [~ gi(r,0)ao, (A.35)

(computationally I use a default value of df = 2° to numerically approximate
this integral). K; = 1/maxx F;(x) is a normalisation constant calculated
empirically at initialisation such that each BVC has a maximum firing rate
(before scaling) of 1.0 Hz.

ObjectVectorCells ObjectVectorCells (OVCs) respond to objects in the
Environment. Objects are zero-dimensional and can be added anywhere within
the Environment, each object, j, comes with a “type” attribute, ¢;. Each object

vector cell has a tuning type, t;, and is only responsive to objects of this type.

BoundaryVectorCells
BoundaryVectorCells

190 Appendix A. Appendix to Chapter 1

The total firing rate of of each cell is given by the sum of the contributions

from all objects of the correct type in the Environment;

Fi(t) = Y. gilri(1),0;(1)). (A.36)
objects,j if t;=t;
Since eq. (A.33) has a maximum value of 1 by definition the maximum firing
rate of an object vector cell is also 1 Hz (unless multiple objects are closeby)
and no normalisation is required.
AgentVectorCells AgentVectorCells respond to other Agents in the
Environment. All cells in a given class are selective to the same Agent, index

j. The firing rate of each cell is then given by;
Fi(t) = gi(r;(t),0;(t)). (A.37)

Field0fViewBVCs, Field0fViewOVCs & FieldOfViewAVCsare a special
case of the above vector cells where the tuning parameters (d;, 0q, ¢i, 04,;)
for a set of VectorCells are carefully set so that cells tile a predefined “field
of view”. By default these cells are egocentric and so the field of view (as the
name implies) is defined relative to the heading direction of the Agent; if the
Agent turns the field of view turns with it.

Users define the angular and radial extent of the field of view as well as
the resolution of the cells which tile it. There is some flexiblity for users to
construct complex fields of view but baic API simplifies this process, exposing

a few key parameters:

o Thoy = [rP rR8X] (default [0.02 m, 0.2 m]): the radial extent of the field

fov

of view.

o Oty (default [0°, 75°]): the angular extend of the field of view (measured

from the forward heading direction, symmetric left and right).

o 0p (default 0.02 m): FieldOfView VectorCells all have approximately

circular receptive fields (i.e. the radial Gaussian and angular von Mises in

A.2. Model and Feature Specifications 191

eq. (A.33) have matched variances which depend on their tuning distance;
Odi = d;i- 04 = Otoy(d;)). 0L, sets the resolution of the inner-most row

of cells in the field of view, 8% = oy (d; = ri2in).

o Manifold type: For “diverging” manifolds (default) cells further away from
the Agent have larger receptive fields d¢,y (d;) = & + d; /3 for user-defined
B (default B = 5) and & := &) — rilin /3. For “uniform” manifold all

fov

cells have the same sized receptive fields, oy (d;) = Of,. .

More complex field of views can be constructed and a tutorial is provided to

show how.

HeadDirectionCells
In 2D Environments each head direction cell has an angular tuning mean 6;
and width o; := 1/+/kK;. The response function is then a von Mises in the head

direction of the Agent:
F;(t) = exp(k; cos(Oy(t) — 6;)). (A.38)

By default all cells have the same angular tuning width of 30° and tuning
means even spaced from 0° to 360°.
In 1D Environments there is always and only exactly n = 2

HeadDirectionCells; one for leftward motion and one for rightward motion.

Fi(t) = max(0,sgn(vip(t)))

F5(t) = max(0,sgn(—vip(t))) (A.39)

VelocityCells

VelocityCells are a subclass of HeadDirectionCells which encode the full
velocity vector rather than the (normalised) head direction. In this sense they
are similar to HeadDirectionCells but their firing rate will increase with the

speed of the Agent.

192 Appendix A. Appendix to Chapter 1

In 2D their firing rate is given by:

Fi(t) = 2D exp(r; cos(by(t) — 6;)) (A.40)

Oy

where 6,(t) is the angle of the velocity vector v(t) anticlockwise from the
x-direction and oy is the likely speed scale of the Agent moving under random
motion (this is chosen so the firing rate of the velocity cell before scaling is
approximately O(1) Hz).

In 1D environments:

Fi(t) = max (o vin (1))

’O'v‘i’,uv

Fy(t) = max (0, _vin(®))) (A.41)

Oy + [y

where the addition of u, accounts for any bias in the motion.

SpeedCell

A single cell encodes the scaled speed of the Agent

t
Fy = YOI (A.42)

Oy
where, same as with the VelocityCells, o, (or oy + puy in 1D) is the typical
speed scale of the Agent moving under random motion giving these cells ad

pre-scaled maximum firing rate of O(1) Hz.

PhasePrecessingPlaceCells

PhasePrecessingPlaceCells (asubclass of PlaceCells) display a phenomena
known as phase precession with respect to an underlying theta oscillation; within
each theta cycle the firing rate of a place cell peaks at a phase dependent on
how far through the place field the Agent has travelled. Specifically, as the
Agent enters the receptive field the firing rate peaks at a late phase in the
cycle and as the Agent leaves the receptive field the firing rate peaks at an

early phase in the cycle, hence the name phase precession. Phase precession is

A.2. Model and Feature Specifications 193

implemented by modulating the spatial firing rate of PlaceCells with a phase

precession factor, FY(t),
Fi(t) « Fy(t) - F2(b), (A.43)
which rises and falls each theta cycle, according to:

PO = 21 e 00(0) 3 (x(0). x(0) o) (A.44)

This is a von Mises factor where ¢g(t) = 2mvgt mod 27 is the current phase
of the vy Hz theta-rhythm and ¢} (X(t),)Ac(t)) is the current ‘preferred’ theta
phase of a cell which is a function of it’s position x(¢) and direction of motion
%(t). This preferred phase is calculated by first establishing how far through a
cells spatial receptive field the Agent has travelled along its current direction

of motion;

di(x(t),%(t)) = (x(t) —x;) - %(t), (A.45)
and then mapping this to a uniform fraction Sy of the range [0, 27];

d;(t)

o

¢; (t) = m — By (A.46)

o is the width of the cell at its boundary, typically defined as o; = wj;, except for
gaussian place cells where the boundary is arbitrarily drawn at two standard
deviations o; = 2w;.

The intuition for this formula can be found by considering an Agent
travelling straight through the midline of a circular 2D place field. As the Agent
enters into the receptive field (at which point (x(t) — x;) - %X(t) = —o;) the
firing rate will peak at a theta phase of m 4 7. This then precesses backwards
as it passes through the field until the moment it leaves ((x(t) —x;) - x(t) = ;)
when the firing rate peaks at a phase of m — . This generalises to arbitrary

curved paths through 2D receptive fields. This model has been used and
validated before by Jeewajee et al. (2014). kg determines the spread of the von

194 Appendix A. Appendix to Chapter 1

Mises, i.e. how far from the preferred phase the cell is likely to fire.

RandomSpatialNeurons

RandomSpatialNeurons provide spatially “tuned” inputs for use in instances
where PlaceCells, GridCells, BoundaryVectorCells etc. These neurons
have smooth but, over long distances, random receptive fields (approximately)
generated by sampling from a Gaussian process with a radial basis function

kernel of lengthscale [(default [= 0.1 m). The kernel is given by:

d(x,xl)2

k(x,x") =exp 22 (AA4T)

where d(x,x’) is the environmental-distance between two points in the
environment. This distance measure (same as used for PlaceCells, and
VectorCells etc.) accounts for walls in the environment and so the receptive
fields of these neurons are smooth everywhere except across walls (see
Appendix A.2.2).

Firing rates are calculated as follows: At initialisation an array of target
locations, at least as dense as the lengthscale, is sampled across the environment
{x;}. For each neuron, 4, j target values, [Fi];7 is sampled from the multivariate
Normal distribution

[Fi]: ~ N(0,K) (A.48)

where K is the covariance matrix with elements Kj,,, = k(x;, X,). This creates
a sparse set of locations, {x;}, and targets, [};, across the Environment:
locations close to each other are likely to have similar targets (and hence similar
firing rates) whereas locations far apart will be uncorrelated.

At inference time the firing rate at an arbitrary position in the
Environment, x(¢) (which will not neccesarily be one of the pre-sampled
targets) is estimated by taking the mean of the targets weighted by the kernel

function between the position and the target location:

X k(x(t), x5) Fy
: (A.49)

Fi(x(t)) = zljk(x(;),x

A.2. Model and Feature Specifications 195

This weighted average is a cheap and fast approximation to the true
Bayesian Gaussian process which would require the inversion of the covariance
matrix K at each time-step and which I find to be numerically unstable around

exposed walls.

FeedForwardLayer

FeedForwardLayer and NeuralNetworkNeurons are different from other
RatInABox classes; their firing rates are not explicitly determined by properties
(position, velocity, head direction etc.) of their Agent but by the firing rates of
a set of input layers (other ratinabox.Neurons). They allow users to create
arbitrary and trainable “function approximator” Neurons with receptive fields
depending non-trivially on the states of one or many Agent(s).

Each FeedForwardLayer has a list of inputs {L; }é\;l which must be other
ratinabox.Neurons subclasses (e.g. PlaceCells, BoundaryVectorCells,
FeedForwardLayer). For input layer j with n; neurons of firing rates F,i'j (t)
for k£ € [1,n;], a weight matrix is initialised by drawing weights randomly
WZL,j ~ N(0,g9//mj) (for default weight initialisation scale g = 1). The firing
rate of the i*" FeedForwardLayer neuron is given by weighted summation of

the inputs from all layers plus a bias term:

N 71y

r(t) = S0 S wil i (t) + by (A.50)
7=1k=1
Fi(t) = ¢(ri(t)) (A.51)

where ¢(z) is a potentially non-linear activation function defaulting to a linear
identity function of unit gain. b; is a constant bias (default zero). A full
list of available activations and their defining parameters can be found in the
utils.py file; these include ReLU, sigmoid, tanh, Retanh, softmax and linear
(the default) functions or users can pass their own bespoke activation function.

Alongside ¢(r;(t)) this layer also calculates and saves ¢'(r;(t)) where ¢’ is
the derivative of the activation function, a necessary quantity for many learning

rules and training algorithms.

https://github.com/RatInABox-Lab/RatInABox/blob/main/ratinabox/utils.py

196 Appendix A. Appendix to Chapter 1

NeuralNetworkNeurons

NeuralNetworkNeurons are a generalisation of FeedForwardLayer. Like
FeedForwardLayer they are initialised with a list of inputs {l—j}éy:r This
class also receives, at the point of initialisation, a neural network, NN. This
can be any pytorch.nn.module. To calculate the firing rate this class takes
the firing rates of all input layers, concatenates them, and passes them through
the neural network. The firing rate of the i*" NeuralNetworkNeurons neuron

is given by the activity of the i*" neuron in the output layer of neural network:

Fi(t) = NNy (FY1 (1), Ff2 (), ... v) (A.52)
inputs weights

If no neural network is provided by the user a default network with two hidden
ReLU layers of size 20 is used.

In order to be compatible with the rest of the RatInABox API the firing
rate returned by this class is a numpy array, however, on each update the output
of the pytorch neural network is additionally saved as a torch tensor. By
accessing this tensor, users can take gradients back through the embedded
neural network and train is as I demonstrate in Figure 1.3e.

In Figure 1.3e and an associated demo script a NeuralNetworkNeurons
layer is initialised with N = 1 neuron/output. The inputs to the network come
from a layer of 200 GridCells, ranging in grid scale from 0.2 m to 0.5 m. These
are passed through a neural network with three hidden ReLU layers of size 100
and a linear readout. As the Agent randomly explores its Environment the
network is trained with gradient descent to reduce the L2 error between the
firing rate of the network and that of a “target” rate map (a vector image of the
letters “RIAB”). I use gradient descent with momentum and a learning rate of
n = 0.002 - dt? (which makes the total rate of learning time-step independent).
Momentum is set to p = (1 — %) where T is the eligibility trace timescale of
10 seconds which smoothes the gradient descent, improving convergence. I find

learning converges after approximately 2 hours and a good approximation of

A.2. Model and Feature Specifications 197

the target function is achieved.

A.2.4 Table of Default Parameters

This table lists the RatInABox parameters and their default values. The
‘Key’ column gives the key in a parameters dictionary which can be passed
to each class upon initialisation. Any variables not present in the parameters
dictionary at initialisation will be taken as default. For example, initialising an
Environment of size 2 m (which is not the default size) and adding an Agent
with a mean speed of 0.3 ms™! (which is not the default size) would be done

as follows:

import ratinabox
from ratinabox.Environment import Environment

from ratinabox.Agent import Agent

Env = Environment (params = {"scale":2.0}) # initialise non-
default Environment
Ag = Agent (Env, params = {"speed_mean":0.3}) # initialise non-

default Agent

Table A.1: Default values, keys, and allowed ranges for ratinabox parameters.

* Passed as a kwarg to Agent.update().
** Passed as a kwarg to FeedForwardLayer.add_input ().

861

Parameter Key Description (unit) Default Acceptable range
Environment ()
=5
D dimensionality Dimensionality —of the "2D" ["1D", "2D"] ED
Environment. %
Boundary conditions boundary_conditions Determines agent behavior "solid" ["solid", "periodic"] =
at boundaries. g
Scale, s scale Size of the environment 1.0 R* CSDN
(m). &l
Aspect ratio, a aspect Aspect ratio for 2D environ- 1.0 R* (;
ments; width = sa, height §
. g
dx dx Discretization for plotting 0.01 R*

rate maps (m).

Continued on next page...

Parameter Key Description (unit) Default Acceptable range

Walls walls List of internal walls [] Nyalls X 2 x 2 array/list
(m). Typically added via
Env.add_wall().

Boundary boundary List of coordinates for non- None Neorners X 2 array/list
rectangular environment
perimeters (m).

Holes holes List of coordinate lists, each None Nholes X >3 X 2
bounding a hole (m). array /list

Objects objects List of objects (m). Typi- [] Nobjects X 2 array /list
cally added via Env.add_-
object ().

Agent ()

dt dt Time discretisation step 0.01 R*

size (8).

Continued on next page...

suoreoyroadg a1njeay pue [PPOoN TV

661

Parameter Key Description (unit) Default Acceptable range
To speed_coherence_time Timescale for speed deco- 0.7 R*
herence in random motion
(s).
oy (2D) py (1D) speed_mean 2D: Rayleigh scale for ran- 0.08 2D: R
dom motion. 1D: R
1D: Normal mean for ran-
dom motion (ms™!).
Oy speed_std Normal std dev for random 0.08 R*
motion in 1D (ms™1).
Tw rotational_velocity_- Rotational velocity decoher- 0.08 R*
coherence_time ence timescale (s).
0w rotational_velocity_- Rotational velocity Normal 27/3 R*
std std dev (rad s71).
Athig thigmotaxis Thigmotaxis parameter. 0.5 0 < Athig < 1
dwall wall_repel_distance Wall range of influence (m). 0.1 R*
s walls_repel_strength Strength of wall repulsion. 1.0 Ry

Continued on next page...

00¢

[To3dey) o3 xipuoddy -y xipuoddy

Parameter Key Description (unit) Default Acceptable range

k drift_to_random_- Ratio of drift velocity to 1.0 lRar
strength_ratio* random motion.
Neurons ()
n n Number of neurons. 10 zZ"
Smax max_fr Maximum firing rate (Hz). 1.0 R
fmin min_fr Minimum firing rate (Hz). 0.0 Sfmin < fmax
oy noise_std Std dev of OU noise added 0.0 R*
to firing rates (Hz).
T noise_coherence_time Timescale of OU noise (s). 0.5 R*
Name name A name to identify the "Neurons" Any string

Neurons instance.

PlaceCells()

Continued on next page...

suoreoyroadg a1njeay pue [PPOoN TV

Ioc

Parameter Key Description (unit) Default Acceptable range
Type description Place cell firing function. "gaussian" ["gaussian",
"gaussian_-
threshold",
"diff_of_gaussians",
"top_hat", "one_hot"]
w; widths Place cell width (m). Can 0.2 R*
be a single number or an
array.
{xPC} place_cell_centres Place cell locations (m). If None None or array of
None, cells are randomly positions
scattered.
Wall geometry wall_geometry How place cells interact "geodesic" ["geodesic",

with walls.

"line_of_sight",

"euclidean"|

GridCells()

Continued on next page...

¢c0c

[To3dey) o3 xipuoddy -y xipuoddy

Parameter Key Description (unit) Default Acceptable range
i gridscale Grid scales (m), or param- (0.5,1) array-like or tuple
eters for sampling distribu-
tion.
Ai-dist gridscale_- Distribution for sampling "uniform" See utils.distributi
distribution grid scales if not provided on_sampler ()
manually.
0; orientation Orientations (rad), or pa- (0,2m) array-like or tuple
rameters for sampling dis-
tribution.
0;-dist orientation_- Distribution for sampling "uniform" See utils.distributi
distribution orientations if not provided on_sampler ()
manually.
Oi phase_offset Phase offsets (rad), or pa- (0,2m) array-like or tuple

rameters for sampling dis-

tribution.

Continued on next page...

suoreoyroadg a1njeay pue [PPOoN TV

€0¢

utils.distribution_sampler()
utils.distribution_sampler()
utils.distribution_sampler()
utils.distribution_sampler()

roc

Parameter Key Description (unit) Default Acceptable range
¢i-dist phase_offset_- Distribution for sampling "uniform" See utils.distributi
distribution phase offsets if not provided on_sampler ()
manually.

Type description Grid cell firing function. "three_rectified_cosines" ["three_rectified_-
cosines",
"three_shifted_-
cosines"]

VectorCells()

Reference frame

Arrangement protocol

reference_frame

cell_arrangement

Allo- or egocentric coor-
dinate frame for receptive
fields.

How receptive fields are ar-

ranged in the environment.

"allocentric"

"random"

["allocentric",

"egocentric"]

["random",

[To3dey) o3 xipuoddy -y xipuoddy

"uniform_manifold",

"diverging_-

manifold", function()]

Continued on next page...

utils.distribution_sampler()
utils.distribution_sampler()

Parameter Key Description (unit) Default Acceptable range
d; tuning_distance Tuning distances (m), or (0.0,0.3) array-like or tuple
params for sampling dist.
d;-dist tuning distance_- Dist. for sampling tuning "uniform" See utils.distributi
distribution distances if not provided on_sampler ()
manually.
04, sigma_distance Distance tuning widths (m), (0.08,12) array-like or tuple
or params for dist.
04,4-dist sigma_distance_- Dist. for sampling "diverging" See utils.distributi
distribution distance tuning widths. on_sampler ()
"diverging" is a special
case.
i tuning_angle Tuning angles (°), or (0.0,360.0) array-like or tuple
params for sampling dist.
¢;-dist tuning_angle_- Dist. for sampling tuning "uniform" See utils.distributi

distribution

angles if not provided man-

ually.

on_sampler ()

Continued on next page...

suoreoyroadg a1njeay pue [PPOoN TV

G0¢c

utils.distribution_sampler()
utils.distribution_sampler()
utils.distribution_sampler()
utils.distribution_sampler()
utils.distribution_sampler()
utils.distribution_sampler()

Parameter Key Description (unit) Default Acceptable range

T sigma_angle Angular tuning widths (°), (10,30) array-like or tuple
or params for dist.

044-dist sigma_angle_- Dist. for sampling angular "uniform" See utils.distributi

distribution tuning widths if not pro- on_sampler ()

vided manually.

BoundaryVectorCells()

do dtheta Size of angular integration 2.0 0 < df < 360
step (°).

ObjectVectorCells()

t; object_tuning_type Tuning type for object vec- "random" "random", int, or
tors. array-like

wall-behaviour walls_occlude Whether walls occlude ob- True bool

jects behind them.

AgentVectorCells()

Continued on next page...

90¢

[To3dey) o3 xipuoddy -y xipuoddy

utils.distribution_sampler()
utils.distribution_sampler()

Parameter Key Description (unit) Default Acceptable range

Other agent, j Other_Agent The Agent these cells are None ratinabox.Agent
selective for.

wall-behaviour walls_occlude Whether walls occlude True bool
other Agents.

FieldOfView[X]s() for [X] in [BVC,0VC,AVC]

Tioy distance_range Radial extent of the field-of- [0.02,0.4] List of two distances
view (m).

Orov angle_range Angular range of the field- [0,75] List of two angles
of-view (°).

&9 spatial_resolution Resolution of the inner- 0.02 R*
most row of vector cells (m).

I} beta Inverse gradient for recep- 5 R*

tive field size increase with

distance.

Continued on next page...

suoreoyroadg a1njeay pue [PPOoN TV

20¢

Parameter

Key

Description (unit)

Default

Acceptable range

Arrangement protocol

cell_arrangement

How the field-of-view recep-

tive fields are constructed.

"diverging manifold"

["diverging -
manifold",

"uniform_manifold"]

FeedForwardLayer ()

{Lj}é‘vzl

Activation function

input_layers

activation_function

w_init_scale**

biases

A list of upstream Neurons
classes.

Defines the activation func-
tion, either by name or as a
custom function.

Scale of random weight ini-
tialisation.

Biases, one per neuron (op-

tional).

"activation": "linear"}

1.0

N-list of Neurons

See utils.activate()

1R+

IRTL

NeuralNetworkNeurons ()

Continued on next page...

80¢

[To3dey) o3 xipuoddy -y xipuoddy

Parameter Key Description (unit) Default Acceptable range
{LiY input_layers A list of upstream Neurons] A list of Neurons
classes.
NN NeuralNetworkModule Internal neural network None Any torch.nn.Module
mapping inputs to outputs.
A default is used if None.
RandomSpatialNeurons ()
l lengthscale Lengthscale of the Gaussian 0.1 R*
process kernel (m).
Wall geometry wall_geometry How distances are calcu- "geodesic" ["geodesic",
lated (and thus how cells "line_of_sight",
interact with walls). "euclidean"|
PhasePrecessingPlaceCells ()
Ve theta_freq The theta frequency (Hz). 10.0 R*
Kg kappa The phase precession 1.0 R*

breadth parameter.

Continued on next page...

suoreoyroadg a1njeay pue [PPOoN TV

60¢

Parameter

Description (unit)

Default

Acceptable range

Bo

beta

The phase precession frac-

tion.

0.5

0.0<B<1.0

4

[To3dey) o3 xipuoddy -y xipuoddy

A.2. Model and Feature Specifications 211

A.2.5 Tutorials and Demos

Numerous resources are provided, some of which are listed here, to streamline
the process of learning RatInABox. Next to each, the key features — which you

may be interested in learning — covered by the resource are described.

¢ Github readme: Installing and importing RatInABox. Descriptions

and diagrams of key features.

o Simple script: A minimal example of using RatInABox to generate and

display data. Code duplicated below for convenience.

« Extensive script: A more detailed tutorial showing advanced data

generation, and advanced plotting.

e Decoding position example: Data collection. Firing rate to position

decoding. Data plotting.

o Conjunctive cells example: GridCells and HeadDirectionCells are
combined with the function approximator FeedForwardLayer class to

make head direction-selective grid cells (aka. conjunctive grid cells)

o Splitter cells example: Bespoke Environment, Agent and Neurons

subclasses are written to make simple model of splitter cells.

e Successor features example: Loop-shaped Environment is con-

structed. Implementation of TD learning.

¢ Reinforcement Learning Example: A bespoke ValueNeuron subclass
is defined. Implementation of TD learning. External ‘non-random’ control

of Agent velocity.

e« Deep learning example: Deep NeuralNetworkNeurons trained to
approximate a target function. Bespoke Neurons subclass encoding a

.png is written.

https://github.com/RatInABox-Lab/RatInABox
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/simple_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/extensive_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/decoding_position_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/conjunctive_gridcells_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/splitter_cells_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/successor_features_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/deep_learning_example.ipynb

212 Appendix A. Appendix to Chapter 1

o Actor-critic example: Deep NeuralNetworkNeurons are used to
implement the actor-critic algorithm in egocentric and allocentric

action/representation spaces.

o Path Integration Example: Extensive use of FeedForwardLayer to
build a deep multilayer network. Implementation of a local Hebbian

learning rule.

» List of plotting functions: Lists and describes all available plotting

functions.

In addition, scripts reproducing all figures in the GitHub readme and this
chapter are provided too. The code comments are nearly comprehensive and

can be referenced for additional understanding where needed.

A simple script
See the GitHub repository for instructions on how to install RatInABox. The
following is a Python script demonstrating a very basic use-case.

Import RatInABox and necessary classes. Initialise a 2D Environment.
Initialise an Agent in the Environment. Initialise some PlaceCells. Simulate
for 20 seconds. Print table of times, position and firing rates. Plot the motion
trajectory, the firing rate timeseries’ and place cell rate maps.

Import RatInABox

import ratinabox

from ratinabox.Environment import Environment
from ratinabox.Agent import Agent

from ratinabox.Neurons import PlaceCells

import pandas as pd

Run a very simple simulation

Env = Environment ()

Ag = Agent (Env)

PCs = PlaceCells(Ag)

for i in range(int (20/Ag.dt)):
Ag.update O

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/actor_critic_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/path_integration_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/list_of_plotting_functions.md
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/readme_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/tree/main/ratinabox

A.3. Demonstrations and Use Cases 213

PCs.update ()

Export data into a dataframe

pd.DataFrame (Ag.history)

Plot data
Ag.plot_trajectory ()
PCs.plot_rate_timeseries ()

PCs.plot_rate_map ()

A.2.6 License Information

RatInABox is currently distributed under an MIT License, meaning users are
permitted to use, copy, modify, merge, publish, distribute, sublicense and sell

copies of the software.

A.3 Demonstrations and Use Cases

A.3.1 Figure Details and Parameters

A Jupyter script replicating figs. 1.1 to 1.3 can be found at
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_ -
figures.ipynb.

Figure 1.1:Panel (b): Place cells are of type gaussian_threshold with
widths w; = 0.4 m. Panel (e) p, = 0.1 and o, = 0.2.

Figure 1.2: Panel (a): Curve fitting is done using scipy.optimize.curve_fit.
Panel (d): dt = 100 ms. Panel (e) Agent.wall_repel_strength = 2. Panel (e)
uses all available datasets from Sargolini et al. (2006) to create the histograms,

as opposed to panel (a) which only uses one of the recordings.

Figure 1.3: Panel (a): 25 seconds of trajectory data from Sargolini et al. (2006)
is imported, converted into metres, mean centred and then downsampled by
30x (from 50 Hz to 1.66 Hz) before being imported into a RatInABox Agent.
Panel (c): All populations of vector cells had "distance_range" = [0.05,

0.30], "angle_range" = [0,75] and "spatial_resolution" = 0.015. Panel (e):

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb

214 Appendix A. Appendix to Chapter 1

RatInABox for reinforcement learning experiment is described below. Panel
(f): The average and standard deviation over 1000 repeats is plotted. For the
motion model this is taken for motion updates of a default Agent in a default
Environment (i.e. 2D with solid boundary conditions and no additional walls).
For the numpy matrix calculations the time taken does not include the time

taken to initialise the matrices.

A.3.2 Supplementary Use Cases

In this section it is demonstrated how RatInABox could be used in two simple
experiments: neural decoding and reinforcement learning. The intention is
not to present novel scientific results but rather to demonstrate the capability
of RatInABox to facilitate original scientific research in a variety of fields.
Additional demos beyond these two are given in the online repository and,
as with all figures in this chapter, executable Jupyter scripts are provided to

replicate all figures shown.

Neural Decoding Example
Jupyter script: https://github.com/RatInABox-Lab/RatInABox/blob/ma
in/demos/paper_figures.ipynb.

This demonstration studies, using RatInABox, which type of spatially
modulated cell type is best for decoding position.

Training and testing datasets are first generated. A set of Neurons (n =
Neels = 20) is initialised in a 1 m square Environment containing a small
barrier (Figure A.1, top). A six minute trajectory is simulated using the

RatInABox random motion model to produce a dataset of inputs {XZ}ZJ\LT1 and

targets {yl}f\fl

x; = F(x(t;)) ~ & C RNeels (A.53)

yi =x(t;) ~Y CR? (A.54)

where x(¢;) is the position of the Agent at time ¢; and F is the firing rate of

the neuronal population. These data are split into training (0 < ¢; < 5 mins,

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/paper_figures.ipynb

A.3. Demonstrations and Use Cases 215

fig. A.la purple) and testing (5 < t; < 6 mins, fig. A.1la black) fractions. The
goal of the decoder is to learn a mapping G : X — Y, from firing rates to
positions.

To do this I use Gaussian Process Regression (GPR). GPR is a form of
non-parameteric regression where a prior is placed over the infinite-dimensional
function space P(G(x)) in the form of its covariance kernel C'(x,x") and mean
p(x) (typically zero). This defines a prior on the targets in the training set
Y = (y1,y2,¥3)"

’

P(Y) = N(Y;0,0C), (A.55)

where Cj; = C(x;, Xj) + 0,05 is a covariance matrix established over the data
points. The second term accounts for additive noise in the data function.
This can be used to make an inference on the posterior of the target for an
unseen testing data point, P(yiest|{X; 780, {y; JP0 xest) — itself a Gaussian
— the mean of which is taken as the “prediction”. A more comprehensive
reference /tutorial on Gaussian Process Regression is given by MacKay (2003).

I use a radial basis function (aka “squared exponential”) kernel with width

I = lov/Neens which scales with the expected size of the population vector

(~ V/Neelis, I set lp = m>

Ix —x'||?
C(X7X/) = exXp <_2l2 (A56>

and a small amount of target noise o;, = le —10. Note that the closest
‘parameterised’ analog to GPR with an RBF kernel is linear regression against
Gaussian basis features of length scale [. Since the Gaussian is a non-linear
function this means my regression prior is also a non-linear function of firing
rate (and therefore potential non-biologically plausible). T choose to optimise
with the sklearn.gaussian_process.GaussianProcessRegressor package.
Note I do not attempt to optimise the hyperparameters [y or oy which one would
probably do in a more rigorous experiment. RatInABox parameters are all

default with the exception that the place cells are of type gaussian_threshold

216 Appendix A. Appendix to Chapter 1

and width w; = 0.4 m and the timestep is set to dt = 50 ms.

Figure A.1, panel b (lower) shows the results over comparable sets of
PlaceCells, GridCells and BoundaryVectorCells. Coloured dots show the
prediction — mean of the posterior — of the GPR model “trained” on all points
in the training dataset for that particular cell type. This is plotted on top
of the true trajectory, shown in black. PlaceCells perform best achieving
under 1 cm average decoding error, followed by BoundaryVectorCells then
GridCells where the decoded position is visibly noisy.

Place cells outperform grid cells which outperform BVCs irrespective of
how many cells are used in the basis feature set. More cells gives lower decoding
error. Decoding errors in Figure A.lc are smaller than would be expected if one
decoded from equivalently sized populations of real hippocampal neurons. There
are likely many reasons for this. Real neurons are noisy, communicate sparsely
through spikes rather than rates and, most likely, jointly encode position and
many other behaviourally relevant (or irrelevant) variables simultaneously. All
of these factors could be straightforwardly incorporated into this analysis using

existing RatInABox functionality.

Reinforcement Learning Example
Jupyter script: https://github.com/RatInABox-Lab/RatInABox/blob/ma
in/demos/reinforcement _learning example.ipynb.

In this example it is demonstrated how RatInABox can be used in a
reinforcement learning (RL) study. The goal is as follows: train an artificial
Agent to explore a 2D Environment where a reward is hidden behind a wall.
The Agent should become proficient at navigating around the wall and towards
the reward from all locations within the Environment.

The core of the approach will rest on model-free RL where an Agent first
learns a value function for a policy (a process known as “policy evaluation”)
and then uses this value function to define a new, improved policy (“policy
improvement”). Iterating between these two procedures (“policy iteration”)

can result in convergence towards an optimal or near-optimal policy.

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb
https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb

A.3. Demonstrations and Use Cases 217

(@) (b) Place cells Grid cells

Training (5 min) «Testing (1 min)

(%]
w
=
= I i
.
2}
(]
<<
@ (
<o X Nogis <o X Neeis - X Nogig
(c) :
. 2 W
-) } \
S 39 = Place cells 35 ? \, Z)
= = Grid cells [} k) - 7\
g i A A
& 20 o MW
2 =)
= [m] 4
8 (L
[=} o ” 7
«* Decoded position ** Decoded position
5 10 20 40 80 160 « True position « True position « True position
Number of cells, Nggs
(log scale)

Figure A.1: RatInABox used for a simple neural decoding experiment. (a) Training
(5 min) and testing (1 min) trajectories are sampled in a 1 m square environment
containing a small barrier. (b) The firing rates of a population of Neeps = 20 cells,
taken over the training trajectory, are used to fit a Gaussian Process regressor model
estimating position. This decoder is then used to decode position from firing rates
on the the unseen testing dataset. Top row shows receptive field for 4 of the 20 cells,
bottom row shows decoding estimate (coloured dots) against ground truth (black
dots). The process is carried out independently for populations of place cells (left),
grid cells (middle) and boundary vector cells (right). (c) Average decoding error
against number of cells, note log scale. Error region shows the standard error in the
mean over 15 random seeds. A Jupyter script demonstrating this experiment is given
in the codebase GitHub repository.

A core pillar of RatInABox is its continuous approach to modelling time
and space. This continuity will require revising typical approaches to how the
value function is defined, approximated and then learned, as well as how motion
control (aka action selection, in discrete space) is performed. This is not a
weakness, in fact I would argue it is one of the strengths. Once complete, the
result is a formulation of model-free RL which bears much higher resemblance
to biological navigation. Furthermore, since most of the complexities of feature
encoding and motion control in continuous time and space are handled by

RatInABox innately this “upgrade” comes almost for free.

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/decoding_position_example.ipynb

218 Appendix A. Appendix to Chapter 1

Policy evaluation The value of a motion policy, 7, is defined as the decaying
sum (or integral in continuous time) of expected future rewards

V() ~V™(t) =E E /too —— R(t’)dt’] (A.57)
where the expectation is taken over any stochasticity present in the current
policy (i.e. how the Agent moves) and Environment/reward (although in
this case both will be deterministic). This definition of value is temporally
continuous. The key differences compared to the more common form — where
value is written as a discrete sum of rewards over future timesteps — is that
it is now a continuous integral over a reward density function and temporal
discounting is done by exponentially decaying future reward over a time period
7. The prefactor of 1/7 is an optional constant of normalisation.

In order to learn the value function, a new ValueNeuron class is
defined. The ValueNeuron, which is a subclass of FeedForwardLayer, receives
feedforward input from a set of features corresponding to PlaceCells scattered
across the Environment with firing rates {gbi}i\gl:looo where ¢;(x) = F;(x) is
the firing rate of the i*® place cell at location x. This linear approximation to

the value function can be written as
R N
V(I(t);w) = > wigi(t). (A.58)
i=1

I can take the temporal derivative of eq. (A.57) and derive a consistency
equation (analogous to the Bellman equation) satisfied by this value function.
This naturally gives a temporal difference-style update rule which relies on
“bootstrapping” (the current estimate of the value function is used in lieu of the
true value function) to optimize the weights of the value function approximation.
A good reference for continuous RL is Doya (2000) if readers wish to know

more about deriving this learning rule.

owi(t) = n(R(t) + 7 — V(t))ei(t). (A.59)

A.3. Demonstrations and Use Cases 219

For now it suffices to observe that this learning rule is very similar to the
temporally discrete TD-update rule. The first term in brackets represents the
continuous analog of the temporal difference error (in fact, if you rediscretise
using the Euler formula V(t) = w to replace the derivative, and set
dt = 1, you will see they are identical). The second term is the ‘eligibility trace’
determining to which state — or basis feature — credit for the TD error should
be assigned. Using an eligibility trace is optional, and it could just be replaced

with (E;(t), however doing so aids stability of the learning. It is defined as:

t !
e;(t) = 1/ e_%CEi(t’)dt’. (A.60)

Te

In total the newly defined ValueNeuron does three things, schematically laid

out in Figure A.2a:
1. It linearly summates its PlaceCell inputs, eq. (A.58).
2. It stores and updates the eligibility traces, eq. (A.60).

3. It implements the learning rule, eq. (A.59), which requires access to the
reward density function R(¢), the eligibility traces e;(t), its firing rate

N .) . dv(t)
V(t) and the temporal derivative of its firing rate —;~.

I use a temporal discount horizon of 7 = 10 s and an eligibility trace
timescale of 7o = 5 s. Input features are a set of Ny = 1000 PlaceCells of
random widths uniformly sampled from 0.04 m to 0.4 m (Figure A.2b). The
reward density function is taken to be the firing rate of a single PlaceCell
positioned behind the wall of type top_hat and width 0.2 m (Figure A.2c¢).

The learning rate is set to n = le — 4.

Policy improvement The model now has a neuron capable of learning the
value function under its current policy (“policy evaluation”). This is then used
to improve the policy (“policy improvement”) towards an optimal one. To do
this, the “drift velocity” feature is exploited (see Appendix A.2.1). I set the

drift velocity to be 3 times the mean velocity in the direction of steepest ascent

220 Appendix A. Appendix to Chapter 1

of the value function.

A

Varife (1) = 30,V V(x(t)). (A.61)

This way the Agent is encouraged to move towards regions of higher and
higher value. Note that calculating this gradient is a local calculation and
can be done on-the-fly by the Agent, as it locomotes. This method of value
ascent is essentially a continuous analog of a similar algorithm, “greedy policy
optimization”, used in discrete action spaces.
Policy iteration Learning is done in batches of 8 episodes each. An episode
consists of the Agent being reset to a random location in the Environment and
left to explore. The episode ends when the Agent gets close to the reward or
times out (60 seconds). At the start of each batch the current value function is
copied and cached - this cached version is used, but not updated, to determine
the drift velocity in eq. (A.61) for the duration of the next batch. Varying the
strength of the drift bias relative to the random motion allows for control of
the trade of between exploration and exploitation. Scheduling goes as follows:
initially the drift_to_random_strength_ratio is set to k = 0.1 (i.e. mostly
random exploration). On each successful episode which did not end in a timeout,
this is increased by 10% up to a maximum of £ = 1 (approximately equal
contributions of random and drift motions).
Results Initially the input weights to the ValueNeuron are drawn randomly
w; ~ N (0, ﬁ) and therefore the value map (and Agent motion) is random
(Figure A.2d, left). After 10 batches (80 episodes) the Agent has successfully
learnt a near-optimal value function showing high-value in and near to the
corridor, and low values elsewhere. This allows it to rapidly navigate towards
the reward, avoiding the obstructing wall, from all locations in the Environment
(Figure A.2d, middle, and Figure 1.3b).

By virtue of using continuous action control in continuous space, the
trajectories of the trained Agent look highly realistic compared to typical
gridworld RL. Since PlaceCells in RatInABox interact adaptively with the

A.3. Demonstrations and Use Cases 221

Environment, when a small gap is created at the base of the obstructing wall
the receptive fields of PlaceCells near this gap “spill” through. This causes
an instantaneous update to the perceived value function and therefore policy
allowing the Agent to immediately find a short cut to the reward with no

additional training, a form of zero-shot learning (Figure A.2d, right).

222 Appendix A. Appendix to Chapter 1

(@)

Features |
riab.PlaceCells() ¢i(x)

) N W R 4 riab.Agent()
. L sTD = @
IWi Wi 11070 Varite X VxV

p
— @

Reward
riab.PlaceCells() R(X)

Value neuron, v ZW o,
riab. FeedForwardLayer()

Features, ¢;(x Reward, R(x)

After environmental change

Before learning After learning No further learning (zero-shot)

Figure A.2: RatInABox used in a simple reinforcement learning project. (a) A
schematic of the 1 layer linear network. Using a simple model-free policy iteration
algorithm the Agent, initially moving under a random motion policy, learns to
approach an optimal policy for finding a reward behind a wall. The policy iteration
algorithm alternates between (left) calculating the value function using temporally
continuous TD learning and (right) using this to define an improved policy by setting
the drift velocity of the Agent to be proportional to the gradient of the value function
(a roughly continuous analog for the e-greedy algorithm). (b) 1000 PlaceCells act
as a continuous feature basis for learning the value function. (c) The reward is also
a (top-hat) PlaceCell, hidden behind the obstructing wall. (d) A ValueNeuron (a
bespoke Neurons subclass defined for this demonstration) estimates the policy value
function as a linear combination of the basis features (heatmap) and improves this
using TD learning. After learning the Agent is able to accurately navigate around the
wall towards the reward (middle). Because PlaceCells in RatInABox are continuous
and interact adaptively with the Environment when a small gap is opened in the wall
place fields corresponding to place cells near this gap automatically bleed through it,
and therefore so does the value function. This allows the Agent to find a shortcut to
the reward with zero additional training. A Jupyter script replicating this project is
given in the demos folder GitHub repository.

Value neuron, V(x)

https://github.com/RatInABox-Lab/RatInABox/blob/main/demos/reinforcement_learning_example.ipynb

Appendix B

Appendix to Chapter 2

B.1 Code Availability

Code to generate the results in Chapter 2 is available at https://github.com

/TomGeorge1234/ThetaSequencesAreEligibilityTraces.

B.2 Task Formulation and Temporal Differ-

ence Learning

In my model an agent at position zp(t) moves at a constant speed, ip(t) =
vp = 10 cm s™! from left to right around a periodic 1D track of circumference
2 m. A small reward density, R(x), is centred at the far end of the track
(Figure 2.1b). The goal of the agent is to learn the value function for the

current policy, defined as the discounted integral of future reward

VT(z) = /too e*tlf_tR(x(t'))dt' | z(t) == (B.1)

over a discount time horizon 7 = 4 s. This is done using a linear approximation,

a weighted sum of independent features

V™ (z) = szgbz(x) ~ V(). (B.2)

https://github.com/TomGeorge1234/ThetaSequencesAreEligibilityTraces
https://github.com/TomGeorge1234/ThetaSequencesAreEligibilityTraces

224 Appendix B. Appendix to Chapter 2

Famously, this problem can be solved with a temporal difference learning rule

wi(t) = no(t)zi(t) (B-3)

where §(t) is the (temporally continuous) TD error

dvT(t) V()
dt T

and z;(t) is the eligibility trace of the i*! feature

A = [ettt (B5)

where 7, € [0, 7] is the decay time scale of the eligibility trace. The basis features
are a set of 200 small Gaussian receptive fields (o = 2 cm, 95.45% firing field
therefore measures 40 = 8 cm), roughly analogous to place cells (O’Keefe et al.
1971) in the hippocampal formation, evenly spaced at 1 cm intervals along the
track. Their small size means each feature overlaps with approximately only
its nearest neighbours. The reward density is another equally sized Gaussian
at 1.95 m along the track. I choose this policy evaluation task because it
admits an analytical solution for V™ (z). Since the policy is non-stochastic
one can evaluate the integral in eq. (B.1) accounting for the circular boundary
conditions and compare this to the value estimate learnt by agents using
temporal difference learning. All simulations (agent trajectory, theta sweeps,
neural activities and policy evaluation) were produced using the RatInABox

simulation package (George et al. 2024).

B.2.1 Relation to Discrete RL and TD())

It is more common to see the temporally-discrete formulation of policy

evaluation with TD learning (nb. for a full discussion/derivation of continuous

B.3. The Artificial Agent 225

RL see Doya (2000)), summarised by

V(s = 34" R(sy) (B.6)
t'=t
t
=Y (M) R(sp), (B.7)
t'=—00

where t is now a discrete integer state index. -, the 'discount factor’ determines
over how many future states the agent cares about reward and can be compared
to 7, the temporally continuous ’discount time horizon’, determining how long
(as a unit of time) into the future the agent cares about reward. A controls the
decay-rate of the eligibility trace from A\ = 0 (heavily bootstrapped regime)
to A = 1 (direct credit assignment, aka. online Monte Carlo). This discrete
formulation is equivalent to the continuous one used here in the integral limit

of short timesteps where the following relationships become apparent

dt

y=e T (B.8)

_dt

YA=¢ T=. (B.9)
This enables a link to be made between the two extremes of TD(A) as

TD(0) < 7. =0 (B.10)

TD(1l) e =T (B.11)

TD(0) (full-bootstrapping regime) occurs when the eligibility trace timescale
falls to zero and TD(1) (Monte Carlo style learning) equates to when the

eligibilty trace timescale matches the discount time horizon.

B.3 The Artificial Agent

The artificial agent learns according to the above TD learning rules and policy
described in Appendix B.2 for a variety of eligibility trace timescales summarised

in Table B.1: Note the inclusion of two extremes: TD(1) (7, = 7 = 4) and

226 Appendix B. Appendix to Chapter 2

/s | 4 2 1 05 025 0.125
T/s 4 4 4 4 4 4
Nopt || 0.4 0.5 0.6 0.8 1.1 1.3

Table B.1: Learning parameters for the artificial agents.

TD(~0) (7. = 0.125 ~ 0). In order to be sure that small learning rates
were not bottlenecking learning I optimised n for each experiment by way of
hyperparameter sweep (optimal value shown in table). When comparing the
value estimate V7 (z) to the analytic value function V™ (z) I use the coefficient

of determination

o R(PT(@) — VT(a))?
BV = 1=) — Vo)) (B.12)

where the value estimate is first normalised to have the same maximum as
V™ (x) so, strictly, I am only comparing the shapes of the curves in Figure 2.1cd
(bottom panels). The agent is allowed to explore and learn for a total of 640
s, exactly 32 laps, or until such a point that R?(V™ V™) has been above 0.99
for the entire previous lap, whichever comes first. Agents start from a random
initial position 27 (0) ~ U(0 m,2 m). Plots/error bars show the average/std
over 50 such experiments in the case of the artificial agent and 10 in the case

of the biological agent.

B.4 The Biological Agent

The biological agent differs from the artificial agent in two ways:

« Short eligibility traces: 7, is fixed to a 0.01 s to emulate the biological

constraint that neuronal memory times are short O(10) ms.

o Theta sequences: The firing rate of the features and the reward density
are determined by the encoded position of the agent xp(t), not the true
position xp(t). zg(t) sweeps from behind to in front of zp(t) in each

theta cycle as described below.

B.4. The Biological Agent 227

Theta is modelled as a background oscillation of frequency vy = 1/Ty =5 Hz

with a phase (used later) defined as

bo(t) = jf mod 1 (B.13)
0

During the middle fraction, § = 0.75 of each theta cycle xp(t) traverses
symmetrically from behind to in front of the agent’s true position at a speed
of vp = vr + vg where vg is the speed of xg(t) in the reference frame of the
true position. Outside this window there is no registered position and all firing

rates are zero. This can be stated formally as

en(t) = or(t) + (g — 0.5)Tpus, if 52 < gg(t) < 132 (B.14)
None, otherwise

which determines the neural firing rates used for learning ¢;(zg(t)) and
R(zp(t)) where ¢;(None) = R(None) := 0. This leads to the core hypothesis
of this chapter: Since theta sequences traverse space faster than the
real agent, the neural trajectory traverses the features faster than
the real agent, compressing them. This compression means short
eligibility traces, though remaining short, have more bang for their

buck, effectively extending them. The compression factor is

ki B 8 = g1, (B.15)

vr

Additionally, the same compression effect applies to the discount time horizon,

7, such that, in uncompressed time coordinates it will have effectively increased,
7 = k7. (B.16)

so in order to learn a value function with (effective) discount time horizon of
T =4 s, 7 must be decreased accordingly. Table B.2 show the sweep velocities

for six agents tested. These are carefully selected to match — according to

228 Appendix B. Appendix to Chapter 2

vp/ms~ 1| 40 20 10 5 25 1.25
K 400 200 100 50 25 125
T./s 0.0l 0.01 0.01 0.01 0.01 0.01
/s 0.0l 0.02 0.04 0.08 0.16 0.32

Topt 8 8 2 2 2 0.75
reft 4 4 4 4 4 4
/s 4 2 1 05 025 0.125

Table B.2: Learning parameters for the biological agents, Figure 2.1d and their
artificial equivalents.

my theory — the eligibility trace timescales of the six artificial agents. Hence
the final two rows show the ’effective’ behaviour, i.e., if the theory is correct,
which artificial agent (no theta sequences and any choice of 7,) would this be
equivalent to. Learning only occurs within sequences (% < Pp(t) < #)
Outside this range (when there is no relevant data to learn from) learning is
turned off (n = 0) reminiscent of the observation that hippocampal plasticity

(LTP) oscillates significantly within each theta cycle (Hasselmo et al. 2014).

B.5 Analysis of Discontinuities in Theta Se-

quence Resets

The results shown in Figure 2.1d for the biological agent don’t precisely converge
to the value function for the slower sequences. I propose this may be due to "loop-
effects’. At the end of each theta cycle the sequence resets by discontinuously
jumping back to a location behind the agent, Figure 2.1a. This discontinuity
could induce errors to grow within the value estimate: whereas the neural
activity during the sequence can be seen as a sped-up replica of the true state
trajectory, this discontinuity does not reflect any real transition statistics. It
is notable, therefore, that performance decay isn’t catastrophic (all biological
agents learn reasonable estimates of the value function) and is less pronounced
for faster sequences, perhaps because the states at either end are further apart
and interfere less. It is possible (but not tested) that the fraction of the cycle

where there is no sweep (1 —) allows existing short ETs to decay to zero

B.5. Analysis of Discontinuities in Theta Sequence Resets 229

essentially “forgetting” the jump transition and ameliorating the problem.

Appendix C

Appendix to Chapter 3

C.1 Code Availability

Code to generate the results in Chapter 3 is available at https://github.com
/TomGeorge1234/STDP-SR.

C.2 Spiking Neuron Model and STDP Learn-

ing Rule
The model comprises an agent exploring a maze where its position x at time ¢
is encoded by the instantaneous firing of a population of N CA3 basis features,
fi(x,t) for j € {1,...,N}. Each has a spatial receptive field given by a
thresholded Gaussian of peak firing rate 5 Hz:

f(x(t)) _ Gaussian(xj,a) —c if ||x(t) —x4|| < Im o

0 otherwise

where x; is the location of the field peak, o = 1m is the standard deviation
and c is a positive constant that keeps f]‘?7 continuous at the threshold.

The theta phase of the hippocampal local field potential oscillates at 10
Hz and is denoted by ¢g(¢) € [0,27]. Phase precession suppresses the firing
rate of a basis feature for all but a short period within each theta cycle. This

period (and subsequently the time when spikes are produced, described in

https://github.com/TomGeorge1234/STDP-SR
https://github.com/TomGeorge1234/STDP-SR

232 Appendix C. Appendix to Chapter 3

more detail below) precesses earlier in each theta cycle as the agent crosses the
spatial receptive field. Specifically, this is implemented by simply multiplying
the spatial firing rate fj by a theta modulation factor which rises and falls
according to a von Mises distribution in each theta cycle, peaking at a ‘preferred
phase’, ¢7, which depends on how far through the receptive field the agent has

travelled (hence the spike timings implicitly encode location);

ff <¢9(t)) = VonMises(gb;‘, m) (C.2)

where k = 1 is the concentration parameter of the von Mises distribution. These
basis features in turn drive a population of N downstream ‘STDP successor
features’ (Equation (3.2)).

Firing rates of both populations (f;(x, ¢g) and 9;(x, ¢g)) are converted to
spike trains according to an inhomogeneous Poisson process. These spikes drive
learning in the synaptic weight matrix, W;;, according to an STDP learning
rule (details below). In summary, if a presynaptic CA3 basis feature fires
immediately before a postsynaptic CA1 successor feature the binding strength
between these cells is strengthened. Conversely, if they fire in the opposite
order, their binding strength is weakened.

For comparison, successor feature learning is also implemented using a
temporal difference (TD) learning rule, referred to as ‘TD successor features’,
i (x), to provide a ground truth against which the STDP successor features
are compared. Like STDP successor features, these are constructed as a linear
combination of basis features (Equation (3.3)).

Temporal difference learning updates M;; as follows
Mij — Mij -+ ’I](Sg-D (03)

is the temporal difference error, which I derive below. In

where 6;5]3

reinforcement learning the temporal difference error is used to learn discounted

value functions (successor features can be considered a special type of value

C.3. Phase Precession Details 233

function). It works by comparing an unbiased sample of the true value function
to the currently held estimate. The difference between these is known as
the temporal difference error and is used to update the value estimate until,

eventually, it converges on (or close to) the true value function.

C.3 Phase Precession Detalils

In this hippocampal model CA3 place cells, referred to as basis features and
indexed by j, have thresholded Gaussian receptive fields. The threshold radius

is 0 = 1 m and peak firing rate is F' = 5 Hz. Mathematically, this is written as

FEx(t) = —- lew'

2 —et| (C.4)
1—e"

[

where [f(2)]+ = max (0, f(x)), x; is the centre of the receptive field and x(t)
is the current location of the agent.
Phase precession is implemented by multiplying the spatial firing rate,

f{(x), by a phase precession factor

£1(60(8)) = 2 fora (01

(),). (C.5)

where fym(z|u, k) denotes the circular von Mises distribution on z € (0, 27|
with mean py = (b}‘f (x) and spread parameter x = 1. This factor is large only

when the current theta phase,

dg(t) = 2wt (mod 27), (C.6)
which oscillates at 1y = 10 Hz, is close to the cell’s ‘preferred’ theta phase,

o5 (x(t)) = 7 + Brd;(x(t)). (C.7)

dj(x(t)) € [-1,1] tracks how far through the cell’s spatial receptive field, as

234 Appendix C. Appendix to Chapter 3

measured in units of o, the agent has travelled:

x(t) — x;) - X
dj(X(t))Z() oL (C.8)

g

In instances where the agent travels directly across the centre of a cell (as is
the case in 1D environments) then (x(¢) —x;) and its normalised velocity (a
vector of length 1, pointing in the direction of travel) Higigl\ are parallel such
that d;(x) progresses smoothly in time from its minimum, -1, to its maximum,
1. In general, however, this extends to any arbitrary curved path an agent
might take across the cell and matches the model used in Jeewajee et al. (2014).
I fit B8 and k to biological data in Fig. 5a of Jeewajee et al. (2014) Jeewajee
et al. (2014) (8 = 0.5, kK = 1). The factor of 27 normalises this term, although
the instantaneous firing may briefly rise above the spatial firing rate fj”(x), the
average firing rate over the entire theta cycle is still given by the spatial factor
f;’(x) In total, the instantaneous firing rate of the basis feature is given by
the product of the spatial and phase precession factors (Equation (3.1)).
Note that the firing rate of a cell depends explicitly on its location through
the spatial receptive field (its “rate code”) and implicitly on location through
the phase precession factor (its “spike-time code”) where location dependence
is hidden inside the calculation of the preferred theta phase. Notably, the effect
of phase precession is only visible on rapid “sub-theta” timescales. Its effect

disappears when averaging over any timescale, T,, substantially longer than

theta timescale of Ty = 0.1 s:

1
Tav

1
Tav

t+Taw t+Taw
/t fi(x(t), p(t'))dt’ ~ /t fix@))dt" for Tu >> Ty

(C.9)

This is important since it implies that the effect of phase precession is only
important for synaptic processes with very short integration timescales, for
example, STDP.

My phase precession model is “independent” (essentially identical to

C.4. Synaptic Learning via STDP 235

Chadwick et al. (2015) Chadwick et al. (2015)) in the sense that each place
cell phase precesses independently from what the other place cells are doing.
In this model, phase precession directly leads to theta sweeps as shown in
Figure 3.1. Another class of models referred to as “coordinated assembly”
models Harris (2005) hypothesise that internal dynamics drive theta sweeps
within each cycle because assemblies (aka place cells) dynamically excite one
another in a temporal chain. In these models theta sweeps directly lead to phase
precession. Feng and colleagues draw a distinction between theta precession and
theta sequence, observing that while independent theta precession is evident
right away in novel environments, longer and more stereotyped theta sequences
develop over time Feng et al. (2015). Since I am considering the effect of theta
precession on the formation of place field shape, the independent model is
appropriate for this setting. I believe that considering how this model might

relate to the formation of theta sequences or what implications theta sequences

have for this model is an exciting direction for future work.

C.4 Synaptic Learning via STDP

STDP is a discrete learning rule: if a presynaptic neuron j fires before a
postsynaptic neuron 4 their binding strength W;;) is potentiated, conversely if
the postsynaptic neuron fires before the presynaptic then weight is depressed.
This is implemented as follows.

First, I convert the firing rates to spike trains. I sample, for each neuron,
from an inhomogeneous spike train with rate parameter f;(x,¢) (for presynaptic
basis features) or (x,t) for postsynaptic successor features. This is done over

the period [0, T] across which the animal is exploring.
(fi(et), [0,7]) TE" Y (il t), [0, 7)) TEEET () (C.10)

Asymmetric Hebbian STDP is implemented online using a trace learning
rule. Each presynaptic spike from CA3 cell, indexed j, increments an

otherwise decaying memory trace, T]Pre(t), and likewise an analogous trace

236 Appendix C. Appendix to Chapter 3

for postsynaptic spikes from CA1, TP ost (t). T matched the STDP plasticity
window decay times to experimental data: 7P" = 20 ms and 7P%' = 40 ms

Bush et al. (2010).

dTP™(t
7_pre]dt() — _T]pre(t) —+ Z (5(t — t/) (C.ll)
t,N{t?re}
post dTpOSt (t) post /
T T:_Ti &)+ > st—t). (C.12)
t’w{t§05t}

The model is simplified by fixing weights during learning;:

ZW fi(x,t) During learning (C.13)

where WA will be referred to as the “anchoring” weights which, up until now,
have been set to the identity Wij = 0;;. Since f;(x,t) is the phase precessing
features, ii(x, t) also inherits phase precession from these features mapped
through Wf}-. Fixing the weights means that during learning the effect of
changes in W;; are not propagated to the successor features (CAl), their
influence is only considered during post-learning recall broadly analogous to
the distinct encoding and retrieval phases that have been hypothesised to
underpin hippocampal function Hasselmo et al. (2002). I relax this assumption
in Figure C.2 and allow W;; to be updated online, showing this isn’t essential.

After a period, [0,T] of exploration the synaptic weights are updated on
aggregate to account for STDP.

Wi (T) = Wiy (0) +n @™ 3 d(t—t) TP (1)
tiN{tE)OSt}

“pre-before-post potentiations”

Fat Y ()T
s

“post-before-pre depressions”

(C.14)

where the second terms accounts for the cumulative potentiation and depression

C.5. Temporal Difterence Learning 237

due to STDP from spikes in the CA3 and CA1 populations. 7 is the learning
rate (here set to 0.01) and aP™ and aP°" give the relative amounts of pre-before-
post potentiation and post-before-pre depression, set to match experimental
data from Bi et al. (1998) as 1 and —0.4 respectively. The weights are initialised
to the identity: W;;(0) = d;;.

Finally, when analysing the successor features after learning I use the
updated weight matrix, not the anchoring weights, (and turn off phase precession

since I am only interested in rate maps)

Di(x) =Y W, (T) £ (x). After learning (C.15)
J

C.5 Temporal Difference Learning

To test the hypothesis that STDP is a good approximation to TD learning,
the TD successor features were simultaneously computed, defined as the total

expected future firing of a basis feature:

bi(x) = E M’O Te—”rtff (x(#))dt' | x(t) = x]. (C.16)

7 is the temporal discounting time-horizon (related to 7, the discount factor
dt

used in reinforcement learning on temporally discretised MDPs, v = e~ 7)
and the expectation is over trajectories initiated at position x. This formula
explains the one-to-one correspondence between CA3 cells and CA1 cells in
my hippocampal model (Figure 3.1b): each CA1 cell, indexed i, learns to
approximate the TD successor feature for its target basis feature, also indexed 1.
I set the discount timescale to 7 = 4 s to match relevant behavioural timescales
for an animal exploring a small maze environment where behavioural decisions,
such as whether to turn left or right, need to be made with respect to optimising
future rewards occurring on the order of seconds.

I learn these successor features by tuning the weights of a linear

238 Appendix C. Appendix to Chapter 3

decomposition over the basis feature set:
Yi(x) = > My ff(x), (C.17)
J

this way M;; can be directly compared to the STDP weight matrix W;;.

My TD successor matrix, M;;, should not be confused with the successor
representation as defined in Stachenfeld et al. Stachenfeld et al. (2017) and
denoted M(s;,s;), though they are analogous. M;; can be thought of as an
analogue to M (s;,s;) for spatially continuous (i.e. not one-hot) basis features,
I show in Appendix C.6.1 that they are equal (strictly, M(s,s’) = M;';) in the

limit of a discrete one-hot place cells.

Temporal difference learning The temporal difference (TD) update rule is
used to learn the TD successor matrix (Equation (C.17)). The standard TD(0)
learning rule for a linear value function, v;(x), which basis feature weights M;;

is Sutton et al. (1998):
Mij < Myj +ndi £ (x) (C.18)

where d; is the observed TD-error for the it successor feature and 7 is the
learning rate. Note that I am only considering the spatial component of
the firing rate, f(x), not the phase modulation component, fj?o (x), which
(as shown) would average away over any timescale significantly longer than
the theta timescale (100 ms). For now I will drop the superscript and write
1) = (%)

To find the TD-error I must derive a temporally continuous analogue
of the Bellman equation. Following Doya (2000) I take the derivative of

Equation (C.16) which gives a consistency equation on the successor feature as

C.5. Temporal Difterence Learning 239
follows:

!

0 (<0) = g [e T al)ar ©19
- i(w (x(t)) - fi(x(t))> (C.20)

This gives a continuous TD-error of the form

5;(t) = C;thi (x(1)) + i(fi(x(t)) = i (x(t))) (C.21)

which can be rediscretised and rewritten by Taylor expanding the derivative

(wi(t) = =) o give

5(t) = ;t(cff (x(1) + (1- ‘f)m (x(8)) — i (x(t — dt))). (C.22)

This looks like a conventional TD-error term (typically something like ¢; =
Rt + Vi — Vi_1) except that we can choose dt (the timestep between learning
updates) freely. Finally expanding v;(x(¢)) using (Equation (3.3)) and
substituting this back into Equation (C.18) gives the update rule:

M;; < M;; + % [:l_tfz (X(t))

+ZMik[<

dt
i
. T

)14(x(0)) = 7 xtt -)] | (x(0)

(C.23)

This rule doesn’t stipulate a fixed time step between updates. Unlike
traditional TD updates rules on discrete MDPs, dt can take any positive value.
The ability to adaptively vary dt has potentially underexplored applications for
efficient learning: when information density is high (e.g. when exploring new
or complex environments, or during a compressed replay event Skaggs et al.
(1996a)) it may be desirable to learn regularly by setting dt small. Conversely
when the information density is low (for example in well known or simple

environments) or learning is undesirable (for example the agent is aware that

240 Appendix C. Appendix to Chapter 3

a change to the environment is transient and should not be committed to
memory), dt can be increased to slow learning and save energy. In practice,
the agent is set to perform a learning update approximately every 1 cm along
its trajectory (dt ~ 0.1 s).

[add a small amount of L2 regularisation by adding the term —2nAM to
the right hand side of Equation (C.24). This breaks the degeneracy in M;;
caused by having a set of basis features which is overly rich to construct the
successor features and can be interpreted, roughly, as a mild energy constraint
favouring smaller synaptic connectomes. In total the full update rule from our

TD successor matrix in matrix form is given by

T T

M M+% [dtf(x(t)) +M {(1 - @)f(x(t)) — (x(t — dt)HfT(x(t))

— 2AM. (C.24)

C.6 Continuous Successor Features

Typically, as in Stachenfeld et al. Stachenfeld et al. (2017), the successor
representation is calculated in discretised time and space. M (s;,s;) encodes the
expected discounted future occupancy of state s; along a trajectory initiated in

state s;:

M(si,s;j)

ZV st =s;)

S — Si] (C.25)

There are two forms of discretisation here. Firstly, time is discretised: it
increases by a fixed increment, +1, to transition the state from s; — s¢41.
Secondly, assuming this is a spatial exploration task, space is discretised: the
agent can be in exactly one state on any given time.

Both these constraints are loosened, reinstating time and space as
continuous quantities. Since, for space, I cannot hope to enumerate an infinite
number of locations, I represent the state by a population vector of diffuse,

overlapping spatially localised place cells. Thus it is no longer meaningful to

C.6. Continuous Successor Features 241

ask what the expected future occupancy of a single location will be. The closest
analogue, since the place cells are spatially localised, is to ask how much I
expect place cell, i, centred at x;, to fire in the near (discounted) future. This
continuous time constraint alters the sum over time into an integral over time.
Further, the role of v which discounts state occupancy many time steps into
the future, is replaced by 7 which discounts firing a long time into the future.
Thus the extension of the successor representation, M (s;, sj), to continuous
time and space is given by the successor feature,

vitx) =E| [~ L= fix(t))at

T

x(t) = x} : (C.26)

Why have I chosen to do this? Temporally it makes little sense to discretise
time in a continuous exploration task: 7, the reinforcement learning discount
factor, describes how many timesteps into the future the predictive encoding
accounts for and so undesirably ties the predictive encoding to the otherwise
arbitrary size of the simulation timestep, dt. In the continuous definition, 7
intuitively describes how long into the future the predictive encoding discounts
over and is independent of dt. This definition allows for online flexibility in the
size of dt, as shown in Equation (C.24). This relieves the agent of a burden
imposed by discretisation; namely that it must learn with a fixed time step, +1,
all the time. Now the agent potentially has the ability to choose the fidelity over
which to learn and this may come with significant benefits in terms of energy
efficiency, as described above. Further, using the discretised form implicitly ties
the definition of the successor representation (or any similarly defined value
function) to the time step used in their simulation.

When space is discretised, the successor representation is a matrix encoding
predictive relationships between these discrete locations. TD successor features,
defined above, are the natural extension of the successor representation in a
continuous space where location is encoded by a population of overlapping basis

features, rather than exclusive one-hot states. The TD successor matrix, M;;,

242 Appendix C. Appendix to Chapter 3

can most easily be viewed as set of driving weights: M;; is large if basis feature
f;(x) contributes strongly to successor feature 1;(x). They are closely related
(for example, in the effectively discrete case of non-overlapping basis features,
it can be shown that the TD successor matrix then corresponds directly to the
transpose of the successor representation, MZ-Tj = M(s;,s;), see below for proof)
but I believe the continuous case has more applications in terms of biological
plausibility; electrophysiological studies show hippocampus encodes position
using a population vector of overlapping place cells, rather than one-hot states.
Furthermore the continuous case maps neatly onto known neural circuitry, as
in my case with CA3 place cells as basis features, CA1 place cells as successor
features, and the successor matrix as the synaptic weights between them. In this
case, the choice not to discretise space and use a more biologically compatible
basis set of large overlapping place cells is necessary - were the basis features to
not overlap they would not be able to reliably form associations using STDP
since often only one cell would ever fire in a given theta cycle.

For completeness (though this is not something studied in this report) this
continuous successor feature form also allows for rapid estimation of the value
function in a neurally plausible way. Whereas for the discrete case value can

be calculated as:
V(si) =Y M(si,sj)R(s)) (C.27)
J
where R(s;) is the per-time-step reward to be found at state s;, for continuous

successor feature setting:
V(x) =2 ¢ (xX)R; (C.28)
J

where R; is a vector of weights satisfying 3°; R;f;j(x) = R(x) where R(x)
is the reward-rate found at location x. Equation (C.28) can be confirmed
by substituting into it Equation (C.26). R; (like R(s;)) must be learned

independent to, and as well as, the successor features, a process that is not the

C.6. Continuous Successor Features 243

focus of this study although correlates have been observed in the hippocampus
Gauthier et al. (2018). V(x) is the temporally continuous value associated with

trajectories initialised at x:

/too le_t/;tR(x(t/))dt/

x(t) = X] . (C.29)

C.6.1 Equivalence of the TD successor matrix to the

successor representation

Here I show the equivalence between M(s;,s;) and M;;. First I can rediscretise
time by setting dt’ to be constant and defining v = 1 — d%/ and x, = x(n-dt").

The integral in Equation (C.26) becomes a sum,

di(x) = (1=7)E

i 7 fi(x:) ‘ Xp = x] . (C.30)
t=0

Next I rediscretise space by supposing that CA3 place cells in my model have
strictly non-overlapping receptive fields which tile the environment. For each
place cell, i, there is continuous area, A;, such that for any location within
this area place cell 7 fires at a constant rate whilst all others are silent. When
x € A; we denote this state s(x) = s; (since all locations in this area have

identical population vectors).
fi(x) = d(x € A) = 5(s(x) =s:) (C.31)

Let the initial state be s(x) = s; (i.e. x € A;). Putting this into Equation (C.30)

and equating to Equation (3.3), the definition of our TD successor matrix, gives

so =sj|, (C.32)

Pi(x) =Y Mipd(sj =sp) = (1 —7)E
k

> A6 (st = si)
=0

244 Appendix C. Appendix to Chapter 3

confirming that

M{; o< M (si,s;). (C.33)

C.7 Relation to RatInABox

Note to reader: this work chronologically predates the work presented in
Chapter 1 and so does not officially use the RatInABox toolkit. However, the
motion and cell models developed in this work became an early prototype for

the toolkit and many of the simulation details are similar.

C.8 Simulation Details

Maze detailsIn the 1D open loop maze (Figure 3.2a-e) the policy was to
always move around the maze in one direction (left to right, as shown) at a
constant velocity of 16 cm s~! along the centre of the track. Although figures
display this maze as a long corridor it is topologically identical to a loop; place
cells close to the left or right sides have receptive fields extending into the right
or left of the corridor respectively. 50 Gaussian basis features of radius 1 m,
as described above, are placed with their centres uniformly spread along the
track. Agents explored for a total time of 30 minutes.

In the 1D corridor maze, Figure 3.2f-j, the situation is only changed in one
way: the left and right hand edges of the maze are closed by walls. When the
agent reaches the wall it turns around and starts walking the other way until it
collides with the other wall. Agents explored for a total time of 30 minutes.

In the 2D two room maze, 200 basis feature are positioned in a grid across
the two rooms (100 per room) then their location jittered slightly (Figure 3.2k).
The cells are geodesic Gaussians. This means that the ||x(¢) — x;||? term in
Equation (C.4) measures the distance from the agent location the centre of cell ¢
along the shortest walk that complies with the wall geometry. This explains the
bleeding of the basis feature through the door in Figure 3.3f. Agents explored

for a total time of 120 minutes.

C.8. Simulation Details 245

The movement policy of the agent is a random walk with momentum.
The agent moves forward with the speed at each discrete time step drawn
from a Rayleigh distribution centred at 16 cm s~!'. At each time step the
agent rotates a small amount; the rotational speed is drawn from a normal
distribution centred at zero with standard deviation 37 rad s=! (7 rad s~!
for the 1D mazes). Whenever the agent gets close to a wall (within 10 cm)
the direction of motion is changed parallel to the wall, thus biasing towards
trajectories that “follow” the boundaries, as observed in real rats. This model
was designed to match closely the behaviour of freely exploring rats and was
adapted from the model initially presented in Raudies and Hasselmo, 2012
Raudies et al. (2012). I add one additional behavioural bias: in the 2D two
room maze, whenever the agent passes within 1 metre of the centre point of
the doorway connecting the two rooms its rotational velocity is biased to turn
it towards the door centre. This has the effect of encouraging room-to-room

transitions, as is observed in freely moving rats Carpenter et al. (2015).
Analyses of the STDP and TD successor matrices For the 1D mazes
there exists a translational symmetry relating the N = 50 uniformly distributed
basis features and their corresponding rows in the STDP/TD weight matrices.
This symmetry is exact for the 1D loop maze (all cells around a circle are
rotated versions of one another) and approximate for the corridor maze (broken
only for cells near to the left or right bounding wall). The result is that much
of the information in the linear track weight matrices Figure 3.2b,c,g,h can
be viewed more easily by collapsing this matrix over the rows centred on the
diagonal entry (plotted in Figure 3.2d and i). This is done using a circular
permutation of each matrix row by a count, n;, equal to how many times we
must shift cell 7 to the right in order for its centre to lie at the middle of the
track, ; = 2.5m,

ligned
W?jgne =W, (j4n; (mod 50))- (C.34)

246 Appendix C. Appendix to Chapter 3

This is the ‘row aligned matrix’. Averaging over its rows removes little
information thanks to the symmetry of the circular track. I therefore define
the 1D quantity

1 X ligned
W)= Ziw?fg“e : (C.35)
1=

which is a convenient way to plot, in 1D, only the non-redundant information

in the weight matrices.

C.9 A Theoretical Connection Between STDP

and TD Learning

Why does STDP between phase precessing place cells approximate TD learning?
This section attempts to shed some light on this question by analytically
studying the equations of TD learning. Ultimately, comparisons between these
learning rules are difficult since the former is inherently a discrete learning rule
acting on pairs of spikes whereas the latter is a continuous learning rule acting

on firing rates. Nonetheless, in the end the following conclusions are drawn:

1. In the first part it will be shown that, under a small set of biologically
feasible assumptions, temporal difference learning “looks like” a spike-
time dependent temporally-asymmetric Hebbian learning rule (that is,
roughly, STDP) where the temporal discount time horizon, 7 is equal to

the synaptic plasticity timescale O(20 ms).

2. In the second part it will be seen that this limitation that the temporal
discount time horizon is restricted to the timescale of synaptic plasticity
(i.e. very short) can be overcome by compressing the inputs. Phase
precession, or more formally, theta sweeps, perform exactly the required

compression.

In sum, there is a deep connection between TD learning and STDP

and the role of phase precession is to compress the inputs such that a very

C.9. A Theoretical Link Between STDP and TD 247

short predictive time horizon amounts to a long predictive time horizon in
decompressed time coordinates. This section will finish by discussing where
these learning rules diverge and the consequences of their differences on the
learned representations. The goal here is not to derive a mathematically
rigorous link between STDP and TD learning but to show that a connection
exists between them and to point the reader to further resources if they wish

to learn more.

C.9.1 Reformulating TD learning to look like STDP

First, recall that the temporal difference (TD) rule for learning the successor
features 1;(x) defined in Equation (C.16) takes the form:

dM;

T = (D) 1) (€:30)

where M;; are the weights of the linear function approximator, Equation (3.3)1
and 0;(¢) is the continuous temporal difference error defined in Equation (C.21).

e;(t) is the eligibility trace for feature j defined according to

ot) = [1 fx(t)ar (.37

or, equivalently, by its dynamics (which I will make use of)

€ (t) = fj (t) - Teéj (t) (C38)

where 7. € [0, 7] is a ‘free’ parameter, the eligibility trace timescale, analogous
to A in discrete TD(A). When 7, = 0, the learning rule used to learn successor
features, “TD(0)”, is recovered, as in Equation (C.18).

Subbing Equation (C.21) and Equation (C.38) into this update rule,

INote, firstly, it is a coincidence specific to this study that the basis features of the linear
function approximator, Equation (3.3), happen to be the same features of which we are
computing the successor features, Equation (C.16). In general this needn’t be the case.
Secondly, this analysis applies to any value function, not just successor features which are a
specific example. If f;(x) in Equation (C.16) was a reward density then ;(x) would become
a true value function (discounted sum of future rewards) in the more conventional sense.

248 Appendix C. Appendix to Chapter 3

Equation (C.36), rearranges to give

dM;;
dt

= n(fiej — ifj +Tiiej — Tewiéj) (C.39)

where 7 is redefined as n <+ ' = /7. Now let the predictive time horizon
be equal to the eligibility trace timescale. This setting is also called TD(1) or

Monte Carlo learning,

T="Te (C.40)
Now

dMij
dt

d
= n(fiej —vif; + Te%(wiej))- (C.41)

The final term in this update rule, the total derivative, can be ignored with
respect to the stationary point of the learning process. To see why, consider
the simple case of a periodic environment which repeats over a time period 1" —
this is true for the 1D experiments studied here. Learning is at a stationary

point when the integrated changes in the weights vanish over one whole period:

t+T e , t+7T , t+T ,d / ’
O:/t dt'Mg; (') Zn/t dt (fiej—wifj)Jr??Te/t dt’ — (Pi(t)e; (1))

at’
(C.42)
= U/ttJrT dt'(fiej — if;)
e i(t 4+ T)ej(t +T) — vi(t)e; (1)) (C.43)
t+T
= 77/t dt'(fiej — Zblf]) (644)

where the last term vanishes due to the periodicity. This shows that the learning
rule converges to the same fixed point (i.e. the successor feature) irrespective
of whether this term is present and it can therefore be removed. The dynamics
of this updated learning rule won’t strictly follow the same trajectory as TD
learning but they will converge to the same point. Although strictly I only

showed this to be true in the artificially simple setting of a periodic environment

C.9. A Theoretical Link Between STDP and TD 249

it is more generally true in a stochastic environment where the feature inputs
depend on a stationary latent Markov chain Brea et al. (2016).
Thus a valid learning rule which converges onto the successor feature can

be written as
dM;;
dt

= n(fi(t)e;(t) = vi(t) £3(1)) (C.45)

Claim: this looks like a continuous analog of STDP acting on the weights
between a set of input features, indexed j, and a set of downstream “successor
features” indexed 7. Each term in the above learning rule can be non-rigorously
identified as follows, a key change is that the successor features neurons have

two-compartments; a somatic compartment and a dendritic compartment:

o fi(t) :=V5™Ma(¢) is the somatic membrane voltage which is primarily set
by a “target signal”. In general this target signal could be any reward

density function, here it is the firing rate of the i** input feature.

o () := Vderd(¢) is the voltage inside a dendritic compartment which
is a weighted linear sum of the input currents, Equation (3.3). This
compartment is responsible for learning the successor feature by adjusting

its input weights, M;;, according to equation (Equation (C.45)).

o fj(t) :=1;(¢) are the synaptic currents into the dendritic compartment

from the upstream features.

o g(t) == Tj (t) are the low-pass filtered eligibility traces of the synaptic

input currents.

dMi; (

dt V?Oma(t)T]- (t) — V?end(t)lj (t)) (C.46)

pre-before-post potentiation post-before-pre depression
This learning rule, mapped onto the synaptic inputs and voltages of a two-
compartment neuron, is Hebbian. The first term potentiates the synapse M;;
if there is a correlation between the low-pass filtered presynaptic current and
the somatic voltage (which drives postsynaptic activity). More specifically this

potentiation is is temporally asymmetric due to the second term which sets a

250 Appendix C. Appendix to Chapter 3

threshold. A postsynaptic spike (e.g. when V™2 (¢) reaches threshold) will

cause potentiation if
ViR ()T () > Vi ()1(t) (C.47)

but since the eligibility trace decays uniformly after a presynaptic input this
will only be true if the postsynaptic spike arrives very soon after. This is
pre-before-post potentiation. Conversely an unpaired presynaptic input (e.g.
when ;(t) spikes) will likely cause depression since this bolsters the second
depressive term of the learning rule but not the first (note this is true if
its synaptic weight is positive such that V44 (¢) will be high too). This is
analogous to post-before-pre depression. Whilst not identical, it is clear this
rule bears the key hallmarks of the STDP learning rule used in this study,
specifically: pre-before-post synaptic activity potentiates a synapse if post
synaptic activity arrive within a short time of the presynaptic activity and,
secondly, post-before-pre synaptic activity will typically result in depression of
the synapse.

Intuitively it now makes sense why asymmetric STDP learns successor
features. If a postsynaptic spike from the i*" neuron arrives just after a
presynaptic spike from the j'! feature it means, in all probability, that the
presynaptic input features is “predictive” of whatever caused the postsynaptic
spike which in this case is the i? feature. Thus if we want to learn a function
which is predictive of the i!" features future activity (its successor feature)
we should increase the synaptic weight M;;. Finally, identifying that this
learning rule looks similar to STDP fixes the timescale of the eligibility trace
to be the timescale of STDP plasticity i.e. O(20 — 50 ms). And to derive this
learning rule we required that the temporal discount time horizon must equal

the eligibility trace timescale, altogether:

T = Te = 7sTDP ~ 20 — 50 ms (C.48)

C.9. A Theoretical Link Between STDP and TD 251

This limits the predictive time horizon of the learnt successor feature to a rather
useless — but importantly non-zero — 20-50 ms. In the next section I will show

how phase precession presents a novel solution to this problem.

C.9.2 Theta phase precession compresses the temporal

structure of input features

It was shown in Figure 3.1 how phase precession leads to theta sweeps. These
phenomena are two sides of the same coin. This section will start by positing
the existence of theta sweeps and showing that this leads to a potentially large
amount of compression of the feature basis set in time.

First, consider two different definitions of position. xp(t) is the “True”
position of the agent representing where it is in the environment at time t.
xp(t) is the “Encoded” position of the agent which determines the firing rate of
place cells which have spatial receptive fields f;(xg(t)). During a theta sweep
the encoded position xp(¢) moves with respect to the true position xp(¢) at a
relative speed of vg(t) where the subscript S distinguishes the “Sweep” speed
from the absolute speed of the agent xp(t) = v4(¢). In total, accounting for

the motion of the agent:
xp(t) = va(t) +vs(t) (C.49)

Now consider how the population activity vector changes in time

d

g (xm() = Vufi (%) % (t) = Vufi (%) - (va(t) + vs(t) (C50)

and compare the time how it would varying in time if there was no theta sweep
(i.e xp(t) =xp(t))

df (xz(t))
dt

= 700 PO _ T va). (1)

They are proportional. Specifically in 1D, where the sweep is observed to move

in the same direction as the agent (from behind it to in front of it) this amounts

252 Appendix C. Appendix to Chapter 3

to compression of the temporal dynamics by a factor of

VA + Vg
vg

ko = (C.52)
This “compression” is also true in 2D where sweeps are also observed to move
largely in the same direction as the agent.

If this compression is large it would solve the timescale problem described
above. This is because learning a successor feature with a very small time
horizon, 7, where the input trajectory is heavily compressed in time by a factor
of kg amounts to the same thing as learning a successor feature with a long
time horizon 7/ = Tky where the inputs are not compressed in time.

What is vg, and is it fast enough to provide enough compression to learn
temporally extended SRs? I can make a very rough ballpark estimate. Data is
hard to come by but studies suggest the intrinsic speed of theta sweeps can
be quite fast. Figures in Feng et al. (2015), Wang et al. (2020) and Bush et

1

al. (2022) show sweeps moving at up to, respectively, 9.4 ms !, 8.5 ms~! and

2.3 ms~!. A conservative range estimate of vg ~ 5+ 5 ms !

accounts for very
fast and very slow sweeps. The timescale of STDP is debated but a reasonable
conservative estimate would be around 7grpp & 35 % 15 x 1073 s which would
cover the range of STDP timescales I use here. The typical speed of a rat,
though highly variable, is somewhere in the range v4 ~ 0.15 £ 0.15 ms™ .

Combining these (with correct error analysis, assuming Gaussian uncertainties)

gives an effective timescale increase of

' =1ky = TSTDPM ~1.1+1.7s (C.53)

VA
Therefore I conclude theta sweeps can provide enough compression to lift the
timescale of the SR being learn by STDP from short synaptic timescales to
relevant behavioural timescales on the order of seconds. Note this ballpark
estimate is not intended to be precise, and doesn’t account for many unknowns

for example the covariability of sweep speed with running speed, variability of

C.9. A Theoretical Link Between STDP and TD 253

sweep speed with track length or cell size which could potentially extend this

range further.

C.9.3 Differences between STDP and TD learning:

where my model doesn’t work

I only drew a hand-waving connection between the TD-derived Hebbian learning
rule in Equation (C.45) and STDP. There are numerous difference between

STDP and TD learning, these include the fact that

1. Depression in Equation (C.45) is dependent on the dendritic voltage
which is not true for my STDP rule.

2. Depression in Equation (C.45) is not explicitly dependent on the time
between post and presynaptic activity, unlike STDP.

3. Equation (C.45) is a continuous learning rule for continuous firing rates,

STDP is a discrete learning rule applicable only to spike trains.

Analytic comparison is difficult due to this final difference which is why
in this chapter I instead opted for empirical comparison. My goal was never
to derive a spike-time dependent synaptic learning rule which replicates TD
learning, other papers have done work in this direction (see Brea et al. (2016)
and Bono et al. (2021)), rather I wanted to (i) see whether unmodified learning
rules measured to be used by hippocampal neurons perform and (ii) study
whether phase precession aids learning. Under regimes tested here, STDP
seems to hold up well.

These differences aside, the learning rule does share other similarities to
my model set-up. A special feature of this learning rule is that it postulates
that somatic voltage driving postsynaptic activity during learning isn’t affected
by the neurons own dendritic voltage. Rather, dendritic voltages affect the
plasticity by setting the potentiation threshold. These learning rules have been
studies under the collective name of “voltage dependent” Hebbian learning

rules|CITE]. This matches the learning setting I use here where, during learning,

254 Appendix C. Appendix to Chapter 3

CA1 neurons are driven by one and only one CA3 feature (the “target feature”)
whilst the weights being trained W;; don’t immediately effect somatic activity
during learning. The lack of online updating matches the electrophysiological
observation that plasticity between CA3 and CA1 is highest during the phase
of theta when CA1 is driven by Entorhinal cortex and lowest at the phase when
CA3 actually drives CA1 Hasselmo et al. (2002).

Finally, there is one clear failure for my STDP model — learning very long
timescale successor features. Unlike TD learning which can ‘bootstrap’ long
timescale associations through intermediate connections, this is not possible
with my STDP rule in its current form. Brea et al. (2016) Brea et al. (2016)
and Bono et al. (2021) Bono et al. (2021) show how Equation (C.45) can
be modified to allow long timescale SRs whilst still enforcing the timescale
constraint I imposed in Equation (C.40) thus still maintaining the biological
plausibility of the learning rule, this requires allowing the dendritic voltage
to modify the somatic voltage during learning in a manner highly similar
to bootstrapping in RL. Specifically in the former study this is done by a
direct extension to the two-compartment model, in the latter it is recast in a
one-compartment model although the underlying mathematics shares many
similarities. Ultimately both mechanisms could be at play; even in neurons
endowed with the ability to bootstrap long timescale association with short
timescale plasticity kernels phase precession would still increase learning speed
significantly by reducing the amount of bootstrapping required by a factor of
kg, something I intend to study more in future work. Finally it isn’t clear
what timescales predictive encoding in the hippocampus reach, there is likely
to be an upper limit on the utility of such predictive representations beyond
which the animal use model-based methods to find optimal solution which

guide behaviour.

C.10. Supplementary Analyses and Ablations 255

C.10 Swupplementary Analyses and Ablations

C.10.1 Cell Size and Agent Speed Effects

For convenience, panel a of Figure C.1 duplicates the experiment shown in
Figure 3.2a-e. The only change is learning time was extended from 30 minutes

to 1 hour.

Movement speed variability Panel b shows an experiment where I reran the
simulation shown in Figure 3.2a-e except, instead of a constant motion speed,
the agent moves with a variable speed drawn from a continuous stochastic
process (an Ornstein Uhlenbeck process). The parameters of the process were
selected so the mean velocity remained the same (16 cm s~! left-to-right) but
now with significant variability (standard deviation of 16 cm s™! thresholded
so the speed can’t go negative). Essentially, the velocity takes a constrained
random walk. This detail is important: the velocity is not drawn randomly on
each time step since these changes would rapidly average out with small dt,
rather the change in the velocity (the acceleration) is random - this drives slow
stochasticity in the velocity where there are extended periods of fast motion
and extended periods of slow motion. After learning there is no substantial
difference in the learned weight matrices. This is because both TD and STDP
learning rules are able to average-over the stochasticity in the velocity and

converge on representations representative of the mean statistics of the motion.

Smaller place cells and faster movement Nothing fundamental prevents
learning from working in the case of smaller place fields or faster movement
speeds. I explore this in Figure C.1, panel c, as follows: the agent speed is
doubled from 16 cm s~! to 32 cm s~! and the place field size is shrunk by a
factor of 5 from 2 m diameter to 40 cm diameter. To facilitate learning I also
increase the cell density along the track from 10 cells m™" to 50 cells m~!. I
also shrink the track size from 5 m to 2 m (any additional track is redundant
due to the circular symmetry of the set-up and small size of the place cells). 1
then train for 12 minutes. This time was chosen since 12 minutes moving at 32

1

cm s~ on a 2 m track means the same number of laps as 60 mins moving at

256 Appendix C. Appendix to Chapter 3

16 cm s~ 1

on a 5 m track (96 laps in total). Despite these changes the weight
matrix converged with high similarity to the successor matrix with a shorter
time horizon (0.5 s). Convergence time measured in minutes was faster than
in the original case but this is mostly due to the shortened track length and
increased speed. Measured in laps it now takes longer to converge due to the
decreased number of spikes (smaller place fields and faster movement through

the place fields). This can be seen in the shallower convergence curve, panel ¢

(right) relative to panel a.

a o=1m
—>

XK KKK X TP tstsitPX XXX XXX XX XXX XXXXXXXXKXXK XK X X XXX

Synaptic weights, Successor matrix, M; Synaptic strength 17
l iy additional
— simulation
— time
8 — L\ o L
Lo
‘% — (M) 64
S, o«
2 Z 3+
3 7]
Q. -
° 0.0 30 60
i i 2 1 2
— presynaptic cell, j R? = 0.87 X — X/ m Learning time / min
5 1
£ & Y21
E /
= () efp——
[72]
g
x :‘ 6
% .
o o
: WAL
0 / 0 T 1
) _ 2 0 30 60
Time / min Learning time / min
0=02m
C
Mg —p X smaller (+ 5) place cells (only one is shown x)
faster movement (x 2)
1
o Ve
T 1 0 T 1
| ;
T 2
[75]
=0
——
-1 X=X/ m 1 0 6 12

R2=0.75 Learning time / min

C.10. Supplementary Analyses and Ablations 257

Figure C.1: STDP and phase precession combine to make a good approximation
of the SR independent of place cell size and running speed statistics. a Figure 3.2
panels a-e have been repeated (additional 30 minutes simulation carried out) for
ease of comparison. b I repeat the experiment with non-uniform running speed.
Here, running seed is sampled according to a continuous stochastic process (Ornstein
Uhlenbeck) with mean of 16 cm s™! and standard deviation 16 cm s~! thresholded
to prevent negative speeds. As can be seen in the trajectory figure speed varies
smoothly but significantly, including regions where the agent is almost stationary.
Despite this there is no observable difference to the synaptic weights after learning.
c I reduce the place cell diameter from 2 m to 0.4 m (5x decrease) and increase the
motion speed from 16 cm s~ to 32 em s™! (2x increase). I increase the cell density
along the track from 10 cells m™" to 50 cells m™! to preserve cell overlap density.
To reduce the computational load of training I shrink the track length from 5 m
to 2 m (any additional track is symmetric and redundant when place cells are this
small anyway). Note the adjusted training time: 12 minutes on a 2 m track at 32 cm
s~! corresponds to the same number of laps as 60 min on a 5 m track at 16 cm s~!
as shown for comparison in panel (a). Under these conditions the STDP + phase
precession learning rule well approximates the successor features with a shorter time
horizon of 7 = 0.5.

C.10.2 Weight Initialisation and Update Schedule

Random initialisation: In Figure C.2, panel a, I explore what happens if
weights are initialised randomly. Rather than the identity, the weight matrix
during learning is fixed (“anchored”) to a sparse random matrix Wf}-; this is
defined such that each CA1 neuron receives positive connections from 3, 4 or
5 randomly chosen CA3 neurons with weights summing to one. In all other
respects learning remains unchanged. CA1 neurons now have multi-modal
receptive fields since they receive connections from multiple, potentially far
apart, CA3 cells. This shouldn’t cause a problem since each sub-field now acts
as its own place field phase precessing according to whichever place cells in
CA3 is driving it. Indeed it doesn’t: after learning with this fixed but random
CA3-CA1 drive, the synaptic weights are updated on aggregate and compares
favourably to the successor matrix (panel a, middle and right). Specifically this
is the successor matrix which maps the unmixed uni-modal place cells in CA3
to the successor features of the new multi-modal “mixed” features found in
CA1 before learning. I note in passing that this is easy to calculate due to the

linearity of the successor feature (SF): a SF of a linear sum of features is equal

to a linear sum of SF, therefore I can calculate the new successor matrix using

258 Appendix C. Appendix to Chapter 3

the same algorithm as discussed above then rotating it by the sparse random
matrix, Mi; = 3 Wf}CMkj.

In order that some structure is visible matrix rows (which index the CAl
postsynaptic cells) have been ordered according to the location of the CAl
peak activity. This explains why the random sparse matrix (panel a, middle)
looks ordered even though it isn’t. After learning the STDP successor feature
looks close in form to the TD successor feature and both show a shift and skew

backwards along the track (panel a, rights, one example CA1 field shown).

Online weight updating: In Figure C.2, panels b, ¢ and d, I explore what
happens if the weights are updated online during learning. It is not possible
to build a stable fully online model (as I suspect the review realised) and it
is easy to understand why: if the weight matrix doing the learning is also the
matrix doing the driving of the downstream features then there is nothing
to prevent instabilities where, for example, the downstream feature keeps
shifting backwards (no convergence) or the weight matrix for some/all features
disappears or blows up (incorrect convergence). However it is possible to get
most of the way there by splitting the driving weights into two components.
The first and most significant component is the STDP weight matrix being
learned online, this creates a “closed loop” where changes to the weights affects
the downstream features which in turn affect learning on the weights. The
second smaller component is what I call the “anchoring” weights, which I set
to a fraction of the identity matrix (here %) and are not learned. In summary,

Equation (C.13) becomes

; (X, Zf) = Z (Wij (t) + W%) fj (X, t) (C.54)
J
for W;Aj = %513
These anchoring weights provide structure, analogous to a target signal or
“scaffold” onto which the successor features will learn without risk of infinite

backwards expansion or weight decay. After learning when analysing the

C.10. Supplementary Analyses and Ablations 259

weight /successor features the anchoring component is not considered.

Every other model of TD learning implicitly or explicitly has a form of
anchoring. For example in classical TD learning each successor feature receives
a fixed “reward” signal from the feature it is learning to predict (this is the
second term in Equation (C.23)). Even other “synaptically plausible” models
include a non-learnable constant drive (see Bono et al. (2021) CA3-CA1 model,
more specifically the bias term in their Eqn. (12)). This is the approach taken
here. I add the additional constraint that the sum of each row of the weight
matrix must be smaller than or equal to 1, enforced by renormalisation on each
time step. This constraint encodes the notion that there may be an energetic
cost to large synaptic weight matrices and prevents infinite growth of the weight

matrix.
Wi;(t)

Wi (1) 4 —— e W) (C.55)

The resulting evolution of the learnable weight component, W;;(t), is shown
in panel b (middle shows row aligned averages of W;;(t) from t=0 minutes
to t = 64 minutes, on the full matrices are shown) and panel f (full matrix)
from being initialised to the identity. The weight matrix evolves to look like
a successor matrix (long skew left of diagonal, negative right of diagonal).
One risk, when weights are updated online, is that the asymmetric expansion
continues indefinitely. This doesn’t happen and the matrix stabilises after 15
minutes (panel e, color progression). It is important to note that the anchoring
component is smaller than the online weight component and I believe it could
be made very small in the limit of less noisy learning (e.g. more cells or higher
firing rates).

In panel ¢ I explore the combination: random weight initialisation and
online weight updating. As can be seen, even with rather strong random initial
weights learning eventually “forgets” these and settles to the same successor
matrix form as when identity initialisation was used.

In panel d I show that anchoring is essential. Without it (WA;; = 0) the

weight matrix initially shows some structure shifting and skewing to the left

260 Appendix C. Appendix to Chapter 3

but this quickly disintegrates and no observable structure remains at the end

of learning.

Many-to-few spiking model In Figure C.2, panel e, I simulate the more
biologically realistic scenario where each CA1 neuron integrates spikes (rather
than rates) from a large (rather than equal) number of upstream CA3 neurons.
This is done with two changes:

Firstly I increased the number of CA3 neurons from 50 to 500 while
keeping the number of CA1 neurons fixed. Each CA1l neuron now receives
fixed anchoring drive from a Gaussian-weighted sum of the 10 (as opposed to
1) closest CA3 neurons.

Secondly, since in my standard model spikes are used for learning but
neurons communicate via their rates, I change this so that CA3 spikes directly
drive CA1 spikes in the form of a reduced spiking model. Let thAl be the spike
count of the ¢*® CA1 neuron at timestep t and XﬁtA‘:‘ the equivalent for the j*®

CA3 neuron then, under the reduced spiking model,

Pr(XiC’tAl = k) = Poisson(k, A ¢) (C.56)

1 A CA3
J

As can be expected, this model is very similar to the original model since CA3

spikes are noisy sample of their rates. This noise should average out over time

and the simulations indeed confirm this.

C.10. Supplementary Analyses and Ablations 261

frozen during learning and updated afterwards, on aggregate: ~ Wj(t) = W4;

Anchoring, WA : Identity [See results of main paper]

a Anchoring WAU : Sparse & random WA, during learning after learning V', successor matrix
parse & _
random Successor feature
*(rows ordered by CA1 activity peak) R2=0.77
updated online, during learning: W(t) = + WA,
b Initialisation, : Identity » Synaptic strength t =64 min
Anchoring, WA;: Identity
@
000 0:;
(8]
-
000 0:
(8]
C Initialisation, : Random
Anchoring, WA;: Identity
(]
000 0:
(8]
-
000 0:
(5]
d Initialisation, . Identity

Anchoring, WA;: None

CA3

€ Anchoring, WA;: Many-to-one, local averaging ~ + Reduced spiking model: Pr(XCA1 k) = Poisson(k; Ait), Ait = g Z WAXCA3dt
t

i

i

CA1

T
=i X=X/ m

Many CA3 to few CA1, with a reduced spiking model

CA3;
N=500

| n

XM =(0,1,....1)7
(v
[N N

M T

XM = (1,0,...,0)"

=
0000;
(8]

N=50

262 Appendix C. Appendix to Chapter 3

Figure C.2: The STDP and phase precession model learns predictive maps
irrespective of the weight initialisation and the weight updating schedule. In the
original model weights are set to the identity before learning and kept (“anchored”)
there, only updated on aggregate after learning. In these panels I explore variations
to this set-up. a (Left) Weights are anchored to a sparse random matrix, not the
identity. (Middle) Three weight matrices show the random weights before/during
learning, the weights once they have been updated on aggregate after learning and
the successor matrix corresponding to the successor features of the mixed features.
Matrix rows are ordered by peak CA1 activity location in order that some structure
is visible. (Right) An example CA1 feature (top) before learning and (middle) after
learning alongside (bottom) the corresponding successor feature. b (Left) The weight
matrix is no longer fixed during learning, instead it is initialised to the identity and
updated online during learning. A fixed component (0.5 x d;;) is added to “anchor”
the downstream representations. (Middle and right) After learning the STDP weights
show an asymmetric shift and skew against the direction of motion and a negative
band ahead of the diagonal just as was observed for successor matrices and the fixed
weight model. This backwards expansion does not carry on extending indefinitely (a
risk when the weights are updated online) but stabilises. ¢ Like panel b but weights
are randomly initialised. After learning the weights have “forgotten” their initial
structure and are essentially identical to in the case of identity initialisation. d Like
panel b except no anchoring weights are added. Now there is no fixed component
anchoring CA1 representations, structure in the synaptic weights rapidly disintegrates.
e 500 CA3 neurons drive 50 CA neurons where each CA1 neuron is anchored to a
Gaussian-weighted sum of 10 closest CA3 cells. CA3 spikes now directly drive CA1
spikes according to a reduced spiking model. The inset shows the row-averages and
a comparison to the result for an equivalent simulation with the rate-model used in
the rest of this chapter.

C.10.3 Hyperparameter Sweep

I perform a hyperparameter sweep over STDP and phase precession parameters
to see which are optimal for learning successor matrices. Remarkably the
optimal parameters (those giving highest R? between the weight matrix and
the successor matrix) are found to be those — or vary close to those — used by
biological neurons (Figure C.3). Specifically, to avoid excess computational costs
two independent sweeps were run: the first was run over the four relevant STDP
parameters (the two synaptic plasticity timescales, the ratio of potentiation
to depression and the firing rate) and the second was run over the phase
precession parameters (phase precession spread parameter and the phase
precession fraction).

On all cases the optimal parameter sits close to the biological parameter I

used in this chapter (panel ¢, d). One exception is the firing rate where higher

C.10. Supplementary Analyses and Ablations 263

firing rates always give better scores, likely due to the decreased effect of noise,
however it is reasonable biology can’t achieve arbitrarily high firing rates for

energetic reasons.

a Sweep Best parameters*: Biological b Biological
range #1 #2 #3 parameters! parameters
Simulation STPD|t"™® / ms [10—100] 20 10 40 20
parameters TPost/ ms [10—100] 45 40 100 40%
aPost [-0.1—-1.0] -0.3 -0.2 -0.3 -0.4%
iring rate / Hz [1—50] 50 50 50 58
6 |precess fraction, B [0.1-0.9] 0.5' T T T T
K [0.1-10] L
6-frequency, v / Hz no sweep 101
Learning rate, Nsrpp no sweep 0.05
TD |tp/s no sweep 4
Learning rate, Np no sweep 0.01
L2 regularisation, A no sweep 0.01
Performance R2 (M,W) - 0.97 (0.76) 0.97(0.77) 0.97 (0.82) 0.86 (0.65)
metrics ISNR(W) - 66.7 (53.0) 47.7(26.3) 61.8(54.6) 7.3(3.7) r r r r
8 (No-8) max (W) V8. Xy M) =-0.15 - -0.25 (-0.05) -0.15 (-0.05) -0.25(-0.05) -0.25 (-0.05)
¢ 1
" " = biologically h
(] [PY Y [) ~ plausible range L] []
[]
[] = parameter used
in paper T T L T
o - o ° -
e o d T gposygpe
PY .
. .
I_ ' _|
°% 50 100 0 50 100 1 % 0 :
eqrpp / MS Tpp / MS apost :
1 - - = -08 0 2
® © ® PY Top 50 model parameters
. [] Experimental data [Bi and Poo, (1998)]
e B o
o - . . *as determined by R2 (M,W,)
L] t as used in paper, determined from literature...
Y +Bush et al. (2010)
§ Skaggs et al. (1996)
! Fitted to Fig. 5a from Jeewajee et al. (2014)
1 Jeewajee et al. (2014)
C L) 1J U L) T L)
0 50 100 0 0.5 1 0 5 10
Firing rate / Hz B K /rad?

Figure C.3: A hyperparameter sweep over STDP and phase precession parameters
shows that biological parameters are suffice, and are near-optimal for approximating
the successor features a A table showing all parameters used in this chapter and the
ranges over which the hyperparameter sweep was performed. For each parameter
setting I estimate performance metrics to judge whether the STDP parameters do well
at learning the successor features. b Visually inspecting the row aligned STDP weight
matrices I see the optimal parameters do not significantly outperform the biologically
chosen ones. Although the optimal parameter setting results in a slightly higher R2,
they fail to capture the right-of-centre negative weights present in the TD successor
matrix, unlike the biological ones. ¢ Slices through the parameter sweep hypercube.
For each plot, parameter values of the other five variables are fixed to the green
values (i.e. are the ones used in this chapter). d The top 50 performing parameter
combination are stored and box plots for the conjugate parameter T = %, the
ratio of time windows for potentiation and depression, and —aP®t - T, effectively the
ratio of the areas under the curve left and right of the y-axis on the STDP plot
Figure 3.1c. In both cases the ‘best parameters’ include the true parameter values,
measured experimentally by Bi and Poo (1998) Bi et al. (1998)

264 Appendix C. Appendix to Chapter 3

C.10.4 Phase Precession Hyperparameter Sweep

The optimality of biological phase precession parameters In Figure C.3
I ran a hyperparameter sweep over the two parameters associated with phase
precession: x, the von Mises parameter describing how noisy phase precession is
and 3, the fraction of the full 27 theta cycle phase precession crosses. The results
show that for both of these parameters there is a clear “goldilocks” zone around
the biologically fitted parameters I chose originally. When there is too much
(large k, large () or too little (small x, small) phase precession performance
is worse than at intermediate biological amounts of phase precession. Whilst —
according to the central hypothesis of the chapter — it makes sense that weak or
non-existence phase precession hinders learning, it is initially counter intuitive
that strong phase precession also hinders learning.

I speculate the reason is as follows, when [is too big phase precession
spans the full range from 0 to 27, this means it is possible for a cell firing very
late in its receptive field to fire just before a cell a long distance behind it on
the track firing very early in the cycle because 27 comes just before 0 on the
unit circle. When & is too big, phase precession is too clean and cells firing at
opposite ends of the theta cycle will never be able to bind since their spikes
will never fall within a 20 ms window of each other. I illustrate these ideas
in Figure C.4 by first describing the phase precession model (panel a) then
simulating spikes from 4 overlapping place cells (panel b) when phase precession
is weak (panel c), intermediate/biological (panel d) and strong (panel e). I
confirm these intuitions about why there exists a phase precession “goldilocks”
zone by showing the weight matrix compared to the successor matrix (right
hand side of panels ¢, d and e). Only in the intermediate case is there good
similarity.

Phase precession of CA1 In most results shown in this chapter the weights
are anchored to the identity during learning. This means each CA1 cells inherits
phase precession from the one and only one CA3 cell it is driven by. It is

important to establish whether CA1 still shows phase precession after learning

C.10. Supplementary Analyses and Ablations 265

when driven by multiple CA3 cells or, equivalently, during learning when the
weights aren’t anchored and it is therefore driven by multiple CA3 neurons.
Analysing the spiking data from CA1 cells after learning (phase precession
turned on) shows it does phase precession. This phase precession is noisier than
the phase precession of a cell in CA3 but only slightly and compares favourably
to real phase precession data for CA1 neurons (panel f, right, adapted from
Jeewajee et al. (2014) Jeewajee et al. (2014)).

The reason for this is that CA1 cells are still localised and therefore driven
mostly by cells in CA3 which are close and which peak in activity together at a
similar phase each theta cycle. As the agent moves through the CA1 cell it also
moves through all the CA3 cells and their peak firing phase precesses driving
an earlier peak in the CA1 firing. Phase precession is CA1 after learning is
noisier/broader than CA3 but far from non-existent and looks similar to real

phase precession data from cells in CAl.

Phase shift between CA3 and CA1 In Figure C.4g I simulate the effect
of a decreasing phase shift between CA3 and CA1. As observed by Mizuseki
et al. (2012) Mizuseki et al. (2012) there is a phase shift between CA3 and
CA1 neurons starting around 90 degrees at the end of each theta cycle (where
cells fire as their receptive field is first entered) and decreasing to 0 at the
start. I simulate this by adding a temporal delay to all downstream CA1 spikes
equivalent to the phase shifts of 0°, 45° and 90°. The average of the weight

matrices learned over all three examples still displays clear SR-like structure.

266 Appendix C. Appendix to Chapter 3
gn b Receptive fields and trajectory
— vl - - >

& A .

S Cell activity time series’

<
< il

o i

o] ; A
2 AWM A -
c AN
F H

O .

Time/s 6

C WEAK PHASE Synaptic strength

PRECESSION

d BIOLOGICAL PHASE
PRECESSION

4> At<20ms

@ EXAGGERATED PHASE /’\ At>20 ms i

PRECESSION) o -

3 3+T, Time/s

CAT1 (after learning)

-

0 Distance through field 1 0 Distance through field 1

nN
3=

Theta phase, ¢4

g CA3->CA1 phase lag: AD = O° 45°

Theta phase

60
0

0 20 40 60 80 100
Position in Field (%)
CA3->CAT1 phase lag, Mizuseki et al. (2012)

2 -1 x-x/m1 2

Real CAT1 (Jeewajee et al. 2014)

Distance through field 1

90° Average

C.10. Supplementary Analyses and Ablations 267

Figure C.4: Biological phase precession parameters are optimal for learning the SR.
a I model phase precession as a von Mises centred at a preferred theta phase which
precesses in time. This factor modulates the spatial firing field. It is parameterised
by k (von Mises width parameter, aka noise) and g (fraction of full 27 phase being
swept, diagonal line). I showed in a previous figure that biological phase precession
parameters are optimal. Any more or less phase precession degrades performance.
It is easy to understand why: b Consider four place cells on a track (purple, blue,
green, yellow) where the first and last just overlap. ¢ In the weak phase precession
regime there is no ordering to the spikes and STDP can’t learn the asymmetry in
the successor matrix (right) d In the medium phase precession regime spikes are
broadly ordered in time (purple then blue then green...) so the symmetry is broken
and STDP learns a close approximation the successor matrix e) In the “exaggerated”
phase precession regime there exist two problems for learning SRs: “causal” bindings
(e.g. from presynaptic purple to postsynaptic yellow, which sits in front of purple)
are inhibited for anything except the most closely situated cell pairs due to the sharp
tuning curves. Secondly, though this is a less important effect, when 3 is too large it
is possible for incorrect “acausal” bindings to be formed due to one cell (e.g. yellow)
firing late in theta cycle N just before another cell located far behind it on the track
fires (e.g. purple) in theta cycle N4+1. f CA1 cells will phase precess when driven
by multiple CA3 place cells. Here I show phase precession (spike probability for
different theta phases against distance travelled through field) for CA3 basis features
and CA1 STDP successor features after learning. Although noisier there is still
a clear tendency for CA1 cells to phase precess. Real CAl cell phase precession
can be ‘noisy’; I show for comparison a phase precession plot for CA1 place field
taken from Jeewajee et al. (2014), the same data to which the parameters were
fitted. The schematic simulation figures showing spiking phase precession data in
panels b, ¢, d and e were made using an open source hippocampal data generation
toolkit George et al. (2024). Figure 2 —figure supplement 4 panel f, right has been
adapted from Figure 5a from Jeewajee et al. 2014. g (Left) A decreasing phase shift
is measured between CA3 and CA1, starting from 90° late in the cycle — the phase
cells initially spike at as animals enter a field — and ending at 0° early in the cycle,
panel is adapted from Mizuseki et al. 2012. (Middle) Three phase shifts (0°, 45° and
90°) are simulated and the average of the resulting synaptic weight matrices is taken
(right)

Appendix D

Appendix to Chapter 4

D.1 Code Availability

Code to generate the results in Chapter 4 is available at https://github.com

/TomGeorge1234/HelmholtzHippocampus.

D.2 Detailed Model Implementation

A general description of the model is given here. Specifics for each experiment

(i.e. learning rates, layer sizes, time constants etc.) are given in later sections.

D.2.1 Dendritic Updates

Complete versions of the dendritic update rules (summarised in egs. (4.2)
and (4.3)) are given below. It is assumed that dendrites receive and integrate

synaptic inputs according to the following dynamics:

pogt(t) = —p5(t) +p(=(1)) Inference model (D.1)

nggt(t) = —88(t) + 095 (Wyp(1))
9840 — g (1) + 0y, (Wy,8(1))

Generative model. (D.2)

d t
T pcfllt(} = —Pa(t) + op, (Wp,8(1))
These dynamics are discretised in order to be implemented computationally
by making the common assumption that neural dynamics are fast (7 ~ 0 ms)

relative to the timescale of the synaptic inputs and so the compartments are

https://github.com/TomGeorge1234/HelmholtzHippocampus
https://github.com/TomGeorge1234/HelmholtzHippocampus

270 Appendix D. Appendix to Chapter 4

always at equilibrium, recovering egs. (4.2) and (4.3). This is valid in the regime
where the environmental latent updates slowly compared to neural timescales.
The notation used here admits the possible presence of biases as well as the
weights (though biases typically aren’t used) by assuming a row of constant 1’s
could be added to the synaptic inputs effectively absorbing a bias into the weight

matrix without loss of generality, for example w,p(t) <= Wg,DP(t) + bgy.

D.2.2 Somatic Updates

Somatic updates rules (egs. (4.4) and (4.5)) are repeated here for completeness:

p(t) = 0(t)pp(t) + (1 —-0(t))pa(t)
g(t) = 0(t)gp(t) + (1 —0(t))ga(t). (D.3)

where 0(t) is a 5 Hz global theta oscillation variable defined by the square wave

function:

1, ift/T mod1<0.5
o(t) = (D.4)

0, ift/T mod1l>0.5

D.2.3 Update Ordering

For this hierarchical network of multicompartmental neurons, the order in
which these discrete updates are performed to the different layers and the
different compartments within these layers must be specified. Strictly speaking,
when the discretisation timestep dt is small this ordering is arbitrary, but I
include it here for completeness.

I update the layers from bottom to top: first, I update the latent or
“environment” and increment the global clock (z(t 4 dt) « z(t) & t + dt + t).
Next I update both dendritic compartments of the sensory layer (pg(t + dt) <
pa(t) & pa(t+dt) + pa(t) noting that it makes no difference in which order
these updates are done as they are independent. Then I update the somatic
compartment of the sensory layer (p(¢+ dt) < p(t)). Next I work upwards
to the hidden layer (gp(t+ dt) < gp(t) & ga(t + dt) « ga(t) followed by
g(t+dt) + g(t)) then, if present, the topmost “conjunctive cells” are updated.

D.2. Detailed Model Implementation 271

This gives the following dendritic update rules which are only slightly — and in
the limit dt — 0, irrelevantly — different from the simplified update rules given

in the main text:

pp(t+dt) = p(z(t +dt))

pa(t +dt) = op, (Wp,8(1))
gp(t+dt) = ogp(wypp(t +dt))
ga(t +dt) = 04, (wy,8(t)) (D.5)

D.2.4 Learning Rules

Learning rules are conceptually summarised by the equations given in the
main text, eq. (4.6). The full equations are given here, which include some
adjustments to account for the presence of non-linear activation functions
and temporal smoothing of the local prediction error learning signals. In the
multilayer network, all sets of learnable weights follow an equivalent learning
rule. For this reason, it is given here in its most general form: Consider the
synaptic weight w;; connecting from the soma of presynaptic neuron j with
activation pr " to one of the dendritic compartments of a postsynaptic neuron i
with activation fcpv?ft = U(Vé)zSt) (this could be the basal or apical compartment,

C € {A, B}). Weights are updated on each timestep by an amount:
dwq;(t) = nPLi;(t) (D.6)

where Pl;; is (following terminology used in Urbanczik et al. (2014)) the
“plasticity induction” variable which is a low-pass filtered measure of the
coincidence between the local prediction error and the synaptic input. The
prediction error measures how far the activation of the dendritic compartment,

f22 is from the somatic activation fP*'. In total, PI;; is defined by the

272 Appendix D. Appendix to Chapter 4

following dynamics:

dP1;;
it = <Pl PO -] - SO ®) - 0
postsynaptic prediction error presynaptic input
(D.7)

If the prediction error and one of the presynaptic inputs are both consistently
large (i.e. over a time period O(7py)) then the plasticity induction variable will
therefore also be large and the weight connecting the pre- and postsynaptic
neurons will be strengthened (thus decreasing future prediction errors). 7py
is taken to be the same as used in Urbanczik et al. (2014), 100 ms. Note for
fast filtering (7pr — 0 ms) and linear activation functions this reduces to the

simplified formulae given in the main text, eq. (4.6).

D.2.5 Synaptic Noise

I add synaptic noise to the dendritic activations. Each dendritic compartment
maintains its own independent noise variable, n(t¢), which is modelled as
an Ornstein-Uhlenbeck process. The benefit of modelling neural noise with
an Ornstein-Uhlenbeck process is that it is timestep size independent. The
dynamics of the noise variable are given by:

dt 202dt
n(t+dt) = n(t) + —n(t) + 7

§(t) (D.8)

where £(t) ~ N(0,1) is a white noise process. These dynamics lead to a
stationary distribution of n(t) which is Gaussian with zero mean and variance
o?. The decorrelation timescale of the noise is 7. I fix 7 = 300 ms and ¢ = 0.01
Hz in order that noise is relatively slow and weak. Noise is added at each

timestep to the activation of the dendrites, e.g. pp(t) — pp(t) + np(t) where
npg (t)
D.2.6 Measuring Prediction Error

Figure 4.2b and fig. 4.3d show the prediction errors of the network layers

decreasing throughout training. Here, the method for calculating these errors

D.3. Relationship to Online Bayesian Inference 273

is defined. A consequence of the learning rule is that during wake, the apical
dendrites adjust to try minimise the discrepancy between the apical activation
and the soma (which, during wake, is equal to the basal activation). During the
sleep phase a short time later the basal dendrites adjust to try minimise the
discrepancy between the basal activation and the soma (which, during sleep, is
equal to apical activation). If learning is successful I would expect the apical
and basal activations to converge, thus I use the following measures of the

prediction error to track training performance in both layers of the network:

£(1) = 5 X s (0]~ (),

£,(1) = 5 T lles(0)) - [gaCt)l (D.9)

These are then smoothed with a decaying exponential kernel of timescale 60

seconds to remove some of the noise and better display the learning signal.

D.3 Relationship to Online Bayesian Inference

Bredenberg et al. (2021) derived local synaptic learning rules for a similar
hierarchical network performing online latent inference starting from a loss
function closely related to the evidence lower bound (ELBO) of variational
inference. Here I will not repeat their derivation, instead I intend to highlight
their starting point, the most important assumptions they made and the
learning rules they derived, finally pointing out how theirs differ from the ones
used here. The point is to demonstrate that the learning rules proposed are
not arbitrary but can actually be derived from a more principled approach to
online inference.

Bredenberg et al. (2021) consider a network receiving input from a latent
variable z. The network has two layers, p; and g;.! The network is trained to

perform online inference over a sequence of observations from the environment,

IFor convenience, their variables have been translated into the notation of this work
(g rpers,” <7, we) soit is easier to compare.

274 Appendix D. Appendix to Chapter 4

zo-7. To do this they start from the loss function

L =Eg,|[Dicr (G || Pu)] (D.10)

where G, and p,, are the following probability distributions over the layer

variables py and gy:

T
Guw = H <([(g/ ‘pﬁ ”'in[')[’(pl f:/>)9t])7)1 (gf,- pT‘pT*l? O “"gon)l_gt7 (Dll)
t=0
Pw = H (\[)(gf‘pf: “'inf)pu)f :7‘,))17 t])m,(gf,- pf’pf—1¢ Ht:, '—Ugon) K (D12)
t=0

inference model generative model

and 6; € {0,1} is a binary variable (in their analysis they fix this to
oscillate in fixed symmetric phases, e.g. 000111000111...). The two probability
distributions, §,, & Py, which this loss function attempts to make similar to
one another, can be interpreted as the probabilities over the layer variables
p: and g; in two noisy neural networks? connected as I drew in Figure 4.1a:
the first network alternates between phases of inference, where information
flows bottom up from the latents z to the hidden layer g, and generation,
the opposite (inference-generation-inference-generation...), the second network
alternates in exact counterphase (generation-inference-generation-inference...).
This loss is a generalisation of the widely used evidence lower bound (ELBO)
which corresponds to the case where 6; = 1 for all ¢. ELBO loss functions seek
to make the inference and generative distributions over sensory and hidden
variables similar. I will not delve further into the justifications for these types
of loss functions other than to state that they are widely used (Kingma et al.
2022).

One of the key conceptual steps taken by Bredenberg et al. (2021) (and

now myself) is to note that processes of performing inference and generation can

2Note there isn’t actually two networks being trained. Instead they use a mathematical
trick, deriving from the symmetry in the alternating phase of the theta cycle, to do away
with the need to sample from both networks meaning they can derive local learning rules
which can train a single network, e.g. G, on its own. This single network, like mine, contains
both inference and generative models, represented by the two terms in eq. (D.11)

D.3. Relationship to Online Bayesian Inference 275

locally occur simultaneously as long as they are received into distinct dendritic
compartments. The choice of which dendrite gates the soma (i.e. eq. (4.4))
then dictates the global state (wake or sleep) of the network. It also means, as
they show, that the loss can be approximately optimized using local learning
rules by comparing the dendritic compartment activation to that of the soma.
The learning rules they derive, again translated into my notation, are as follows
(note for simplicity I assume all activations are linear since non-linearities
add only one additional multiplicative term into their update equations, see

equations (14), (15) and (16) in (Bredenberg et al. 2021)):

dw

de o (1—0;)(gt —gp1)P;
dw

de x O (pt — PA,t)g;er (D.13)
dw

de x O (1 — ke) (gt — gA,t—1)gtT—1 (D.14)

where k; = (1 — (0 — 6;-1))0; is a term which is 1 if and only if §; = 1 and
0:—1 = 0 therefore it briefly turns off learning upon switching from sleep to
wake.

Readers may like to compare these learning rules to the ones used here, as
given in the main text eq. (4.6). The learning rules used here differ from theirs

in the following way:

e I relax their discrete time assumption, opting for a continuous time

formulation (p; — p(¢) etc.).

e I note that the terms in the equations proportional to 6; or 1 — 6; which
actively turn on or off learning depending on whether 8; = 0 or 1 are
unnecessary since the prediction error term naturally falls to zero anyway.
For example, in eq. (D.13) when §; = 0 the network is in sleep and so
Pt = Pay- In this case the prediction error is zero by definition and

learning ceases even without the preceding 6; term.

o [disregard the 1 — k; term. Empirically this does not seem to damage the

276 Appendix D. Appendix to Chapter 4

model and theoretically its impact should only be small in my continuous
time formulation where the network is only switching from sleep to wake

for a negligible proportion of the time.

o Upon provisional theoretical and experimental justification, € is likened
to the theta component of the hippocampal local field potential and set
to 5 Hz.

Ultimately these changes are surface level. The learning rules used here can
— and should — be understood as a close approximation to those derived by
Bredenberg et al. (2021). Consequently it is appropriate to consider my
hippocampal model as learning to perform approximately optimal online

Bayesian inference.

D.4 Artificial Task: Implementation Details

N, = 5 independent, autocorrelated, random latent variables are sampled from
a Gaussian process with a squared exponential covariance function of width 1
second, samples of these are shown in Figure 4.2a and Figure D.2. The sensory
layer is large (N, = 50) relative to the compressed hidden layer (Ny = N, = 5)
and receives a random mixture of the latents into the basal compartments as
described in the text. All activation functions are linear, no layers have biases, all
learning rates are set to n = 0.01, and the discretisation timestep was dt = 25
ms. Weights are initialised randomly [wg,]ij ~ N(0,1/ \/ﬁp), [Wpalij ~
N(0, 1/\/ﬁg), [wg ,]i; ~ N(0, 0.1/@) where the smaller initialisation on
the recurrent weights, wg,, was chosen to prevent unstable dynamics.

Before learning — since weights are initialised randomly — basal and apical
voltages in the sensory layer are unmatched when tested for a period in wake
mode (Figure D.la). When tested for a period in sleep mode, the small
initialisation of the recurrent weights means the hidden layer cannot sustain
activity (Figure D.1b, top) which decays and decorrelates rapidly in contrast
to the true latents (Figure D.1c). Compare this to after learning where, during

wake, basal and apical voltages in the sensory layer are closely matched implying

D.5. Path Integration Task: Implementation Details 277

accurate autoencoding through the compressed hidden layer. During sleep,
the hidden layer generates sustained activity statistically similar to the true
latents (they do not match because during sleep the true latents are not driving
the network; even during wake it would only be expected that the network
represent the true latents in its latent space up to a linear rotation), i.e. it is
functioning as a generative model. Note the only source of randomness driving

stochasticity and activity in the network is the noise in the dendritic updates

themselves.
Test in wake (8(t)=1) Test in sleep (6(t)=0)
Auto-correlations
a b c
(@)
£
£
S T L | 1
o
s P,
O T 1T 1 4
D9 10 1
d e f
(o))
£
£
g L | B | 1
@
= f——
<, : 1T : 1 Lag/s 4
0 Time, t/ 10 Time, t/ 1
min min

Figure D.1: Extended results from the artificial latent learning task. a Basal and
apical voltages in the sensory layer before learning during a one minute sample in
wake mode. b Samples of activity in the hidden layer and true latents before training
during a one minute sample in sleep mode. ¢ Autocorrelations, averaged over the
units, for activity in panel b. d,e & f As in a, b & ¢ but after training.

D.5 Path Integration Task: Implementation

Details

An agent randomly moves around a 1 m 1D circular track. The trajectory,
x(t), is sampled using the RatInABox (George et al. 2024) simulation package.
This means that velocity is modelled as an Ornstein-Uhlenbeck process (see
eq. (D.8)) with a decorrelation timescale of 7 = 0.7 seconds and a standard

deviation of ¢ = 0.5 ms~!. There are N, = N4 = 100 neurons in both

278 Appendix D. Appendix to Chapter 4

layers. The HPC dendritic activation function is linear (o}, (z) =) whilst
both MEC dendritic compartments have rectified tanh activation functions
(0gp(z) = 04, (z) = max(0, tanh(x))). Note the choice of activation function
means MEC neurons have firing rate O(1 Hz). All learning rates are set to
n = 0.01, the discretisation timestep was dt = 25 ms and only p4 & gp have
learnable biases.

I model N; = N, = 100 inputs which are tuned to the position of the
agent according to the following Gaussian tuning curves (these roughly model
place cells):

[E(t)]; = exp [— W] (D.15)
where x; are centres of the Gaussians evenly spaced along the track. These

then linearly drive the basal dendritic compartments of the sensory neurons:

p5(t) = Bo(x(t)) (D.16)

where, in the results shown in the main text, B;; = d;; is the identity matrix
such that each sensory neuron inherits a unimodal-tuning curve from one and
only one of the inputs, i.e. what was stated in eq. (4.8). I show in Figure D.2
that this choice is not particularly critical and the network can learn to perform
path integration with random sensory drive ([B];; ~ N (0,1/ \/ﬁp))

Velocity inputs are connected as follows: two neurons encode the rectified
leftward and rightward velocity of the agent, normalised by the standard
deviation o. Note, this means they have firing rates O(1 Hz).

vr(t) = max (0, —i(t) /o)
vr(t) = max(0,4(t) /o) (D.17)

Two sets of conjunctive cells (Ny = 100 in each set) sum inputs from the left

D.5. Path Integration Task: Implementation Details 279

and right velocity neurons and the hidden units as follows:

[0, (D] = oo (vL.() = vr(t) + 2w]is[g(1));)

[Bor ()]s = ogo(vr(t) —vr(t) + X [wom]i;[g(1)];) (D.18)

where 04, (2) = max(0,z — 1) is a ReLU function thresholded at z = 1. In the
main text I set [wL];; = [w9R];; = 0;; so each conjunctive cell is connected
to one and only one hidden unit (something I relax in Figure D.2c). The
consequence of this connectivity is that a g,, neuron is above threshold (and
therefore active) if and only if the agent is moving to the leftand the hidden unit
it is connected to is active. Rightward motion silences g,, neurons. Similarly,
a gy neurons is active if and only if the agent is moving to the right and the
hidden unit it is connected to is active. This conjunctive, logic-AND-gate-like
tuning to both MEC and velocity is why these neurons are called “conjunctive”
cells.

To order the MEC neurons after learning, and thus reveal the ring attractor,
I calculate their receptive fields as a function of agent position, g(x), as though
the network is in inference mode (so top-down recurrent connections and
drive from the conjunctive cells do not play a role). Then I permute the

ordering ¢ < ¢ such that the maxima of the receptive fields move from left

>

to right along the track as the neuron count increases, arg max,[g(z)];

arg max,|[g(x)]Vi', 5’ > /. The effect of this ordering procedure is shown in
Figure D.2a (left hand side, top two panels).

Figure D.2a repeats the same path integration test as was shown in the
main text Figure 4.3 except now I additionally visualise the receptive fields of
HPC and MEC (after learning) and show timeseries of both HPC and MEC
neurons during the test. Once MEC neurons are reordered by their maxima
the ring attractor activity bump can be seen moving up at down the manifold
of neurons, even after the sensory lesion. Note again how some MEC neurons

have “died” and do not engage in the ring attractor dynamics, forcing the ring

280 Appendix D. Appendix to Chapter 4

attractor manifold to live on the remaining subset of MEC neurons.

D.5.1 Position Decoding

To quantify the performance of path integration I train a decoder to estimate
agent position directly from the HPC population vector. The decoder is trained
on position and activity data from the final 10 minutes of training, after learning
had plateaued. The decoder I use is a Gaussian process regressor with a squared
exponential kernel, the length scale of which is optimised during fitting. The
decoder works well as can be seen in the path integration plots where, before
the sensory lesion, the decoded position correctly and accurately tracks the

true position.

D.5.2 Robustness to Weight Initialisations, Plasticity

Lesions and Noise

Since a central claim of this chapter is that the network can learn, from random
initialisations, the correct connectivity required to perform path integration, it
is important to question where and why weights in the model are not randomly

initialised and plastic.

Sensory weights The weights from the Gaussian tuned inputs to the HPC
sensory neurons, B in eq. (D.16), must be non-plastic to prevent the network
from rapidly converging on a trivial solution where all input weights fall to zero
killing all activity in the network and trivially minimising the local prediction
errors. They do not, however, need to be the identity function as I chose.
Figure D.2b repeats the standard path integration experiment but with a
network where [B];; ~ N (0,1/ \/ﬁp), path integration is still learned without
any problem. Ultimately this is not particularly surprising since the mapping
from the spatially-tuned sensory inputs, ¢, to the ring attractor in the original
formulation was already mixed once by the randomly initialised weights from

HPC to MEC (wg,;). This just adds one additional layer of mixing.

MEC to conjunctive cells I show in Figure D.2¢, that path integration is still

learned even when the MEC to conjunctive cell weights are initialised randomly,

D.6. Remapping Task: Implementation Details 281

(wg,,lij ~ N(O, l/m), (W, rlii ~ N(O, 1/@). I leave it to future work
to investigate this result more thoroughly, and it is a notable relaxation on
assumptions made in previous models (Vafidis et al. 2022; Burak et al. 2009)
that fine-tuned connectivity from MEC to the conjunctive cells is assumed a
priori for path integration (connectivity which would presumably have to be
genetically encoded, which seems unlikely). I suspect part of the reason the
path integration is robust with respect to the setting of these weights is down
to the ability for MEC to construct its own inputs from HPC. This might mean
the exact form of the activity bump inside the ring attractor can be tailored to
fit the specific connectivity to the conjunctive cells — which is perhaps randomly

determined during development — in a particular network.

Plasticity lesions Path integration, as explored in section 4.3.2, requires fine
tuning the recurrent weights in the hidden layer (wgy,) and consequently fails
when this plasticity is turned off (Figure D.3a). Intriguingly however, I find that
path integration does not strictly require plasticity between HPC and MEC
(as shown in Figure D.3b, echoing results in (Vafidis et al. 2022)). However,
when such plasticity is removed, the apical input to HPC coming from MEC is
unmatched to the sensory input HPC receives from the environment. As such,
any downstream system reading out position from the HPC code would only be
able to do so during sleep or wake and not both. This is somewhat restrictive
for a system hoping to use the hippocampal formation for online inference and
planning. Hence, a primary role of interlayer plasticity between HPC and MEC
in the model is to "translate" the environment-agnostic MEC code into the the

environment-specific HPC code. This idea is discussed further in section 4.3.3.

D.6 Remapping Task: Implementation Details
To investigate remapping, the network is first trained to path integrate as
described in the main text. The only difference is that I fix the weights from
HPC to MEC to the identity matrix ([wg,]i; = d;; and n = 0 on these weights)

during this phase of training, this results in MEC neurons with receptive fields

282 Appendix D. Appendix to Chapter 4

a Ratemaps Time series

0 Position / m 1I

Position:
True
Decoded

Position / m

HPC receives a random mixture of Gaussian inputs

- 14

%
Position / m

T 1 0

c 11

\
Position / m

0 Position / m 1' 0 Time /s Sb

Figure D.2: Path integration is performed by a ring attractor in MEC revealed
once the neurons are reordered by receptive field peak position. The network learns
to path integrate robustly, regardless of the choice of random initialisations. a The
same path integration test as in the main text is performed here: The top three rows
show receptive fields (left) and timeseries activity (right) for the MEC (top two) and
HPC layers (third) layers. MEC receptive fields and activity at first appears random.
It is only after reordering the neurons by the peak position of their receptive fields
that I see the ring attractor manifold. The bottom row shows the decoded position
(red) and the true position (purple), demonstrating accurate path integration. b
Like panel a except, instead of unimodal Gaussian inputs, the HPC neurons receive
a random-sum-of-Gaussian inputs. Nonetheless the network still learns to path
integrate (right). c Like panel a — with HPC neurons returned to their original
Gaussian receptive fields — except in this experiment the hidden units (MEC, g) are
connected to the conjunctive cells randomly, not one-to-one. The network still learns
to path integrate.

D.6. Remapping Task: Implementation Details 283

Position on track / m
Position on track / m

o
o

30 i 30

Position on track / m
Position on track / m

2 tl L A A v - S M
0 Time /s 30 0 Time /s 30

Figure D.3: Network response to removal of plasticity and additional noise. The
standard path integration experiment is performed and hippocampal activity (as
well as true and decoded position) is shown in four modified conditions. a Plasticity
on the recurrent synapses (wg,) is turned off and the network no longer learns to
path integrate. b Plasticity on all weights between HPC and MEC (wy, & wp,) is
turned off. The network still learns to path integrate but inputs to HPC from MEC
are not matched to those from the sensory input. ¢ Synaptic noise on all synapses is
increased by a factor of 10. The bump attractor is now noisier than Figure 4.3e but
path integration is still accurate. d Synaptic noise on all synapses is increased by a
factor of 100 at which point learning fails.

equal to those of the HPC neurons (except also passed through a rectified-tanh
activation function), Figure 4.4b left column.

In the second phase I begin by randomly permuting the centres of the
Gaussian sensory inputs in eq. (D.15). This “sensory shuffle” simulates the sort
of hippocampal remapping event which typically occurs when an agent enters
into a new environment. The activations of all neuronal layers are reset to zero.
A second phase of learning then begins, this time only the weights from HPC
to MEC (wy,) and from MEC to HPC (wy,) are plastic (n = 0.01) while the
recurrent weights within MEC and the weights from the conjunctive cells to
MEC (collectively, wg,) are frozen (n = 0).

I found that MEC neurons regroup after the shuffle, reestablishing the
pairwise correlational structure they had before remapping with, perhaps, a

phase shift (Figure 4.4b). Once the ring attractor manifold has reappeared in

284 Appendix D. Appendix to Chapter 4

this way the ability to path integrate returns (Figure 4.4c). I find these results
are clearest when w,, was fixed to the identity during the initial learning phase
as described above. Although I don’t investigate this finding thoroughly I
suspect it is because the network has an easier time learning the ring attractor
since the MEC inputs are already unimodal. With the identity mapping, a tidy
activity bump already on the MEC cells before the rest of the ring attractor
connectivity is learned, providing a good starting point. This matches the
standard set up for studies of path integration in, for example, Vafidis et al.
(2022)). This, perhaps, leads to a ring attractor which is more deeply embedded
into the MEC recurrent connectivity structure and which can therefore more
easily reestablish itself after a remapping. Nonetheless I discover that MEC is
able to relearn a significant portion of the bump attractor structure during the
second phase of learning even when this was not the case and w,, was randomly
initialised (wy, ~ N (0,1/N,)) and plastic during the initial learning, this
is shown in Figure D.4. Note how, in contrast to the receptive field shown
in Figure 4.4b, the MEC neurons are now multimodal and additional bands
of correlational structure (in addition to a global phase shift) appear after

relearning. I leave it to future work to investigate this further.

100

Position, x / m

Figure D.4: Regrouping of the MEC neurons after sensory remapping but relaxing
the constraint that HPC to MEC weights are fixed to the identity matrix during
initial learning. This results in MEC neurons with multimodal receptive fields and
more complex regrouping dynamics after remapping.

Appendix E

Appendix to Chapter 5

E.1 Code Availability

Code and demos for the SIMPL method are available at https://github.com
/TomGeorge1234/simpl.

E.2 Theoretical Background: EM and State-

Space Models

E.2.1 Expectation Maximization

Expectation Maximization (EM, Dempster et al. (1977)) is a widely used
paradigm to perform statistical estimation in latent variable models. The goal
of EM is to maximise the Free Energy, a lower bound on the log-likelihood

log p(s;) of the data, given by (following the notations of section 5.2.1):

F(f,q) = Eyxllogp(x,s;f)] — Eyx)[log g(x)] < logp(s;f), (E.1)

where ¢ is some probability distribution on the latent variable x. Importantly
F is maximised, and the lower bound becomes “tight”; at ¢* := p(x|s;), i.e.
the posterior distribution of the latent variable given s and f. Moreover, for a
fixed ¢, the only f-dependent term in F is [E () [log p(x,s;f)]. To maximise
F(f,q) — and thus also increase the log-likelihood — EM produces a sequence

(f(e))ezo of parameters £le) by invoking, at each step (or “epoch”) e, two well

https://github.com/TomGeorge1234/simpl
https://github.com/TomGeorge1234/simpl

286 Appendix E. Appendix to Chapter 5

known subroutines:
« E-step: Define ¢(¢) := p(x|s;f(¢=1); compute F — E (¢ [log p(x,s;f)]

« M-step: Compute £ := arg max F(f, q(e))
= argmax E [logp(x,s;f)]

with the property that log p(s; £(¢)) > log p(s; £(¢=1) for all e, grounding the
use of EM to maximise the likelihood of the data. In this context it is important
to note that, due to a Gaussianity assumption, calculating the expectation
in the E-step requires estimating the mean (and variance) of the posterior
p(x|s;f (6_1)) which can be treated as a point estimate of the latent trajectory,
i.e. a “decoding” of the latent from the spikes. Thus, in the context of neural
data, EM offers a framework to both estimate intensity functions via maximum
likelihood, and also to decode the variable encoded by the neurons.
Impossibility of Exact EM for Gaussian-Modulated Poisson
Processes The E-step of the EM algorithm requires computing a function
defined as an expectation with respect to p(x|s; f(efl)). In the case of Hidden
Markov Models, such expectations are intractable to compute in closed form,
unless the latent variable x is discrete (i.e. numerical estimation), or both
the transition and the emission probabilities are Gaussian (with mean and
variance depending linearly on x, (Rauch et al. 1965)). In this particular case,
exact inference in the model described in section 5.2.1 is impossible because
the emission probabilities are Poisson with mean given by a non-linear function
of x via each neurons tuning curve. In order to perform statistical inference
for this spike train model — and avoid resorting to numerical estimation
which is computationally expensive — SIMPL makes a set of approximations
that are detailed below. At a high level the goal is to convert the non-linear,
non-Gaussian spiking observations, into a variable that is linear and Gaussian
with respect to the latent, thus EM can be performed exactly using a Kalman

smoother.

E.2. Theoretical Background: EM and State-Space Models 287
E.2.2 Linear Gaussian State Space Models and Kalman
Smoothing

Linear Gaussian State Space Models (LGSSM) are dynamical systems of the

form:

zi41 = Fyze + e, e ~N(0g, Q1) (£2)

xt = Hyze + 61, 0t ~ N (O, Ry).

where z € R%, x € R™, F}, Q; € R¥™™? H, € RP*? and R; € R™ ™. LGSSMs
can be used as latent variable models given some observed data x, where
z is treated as a latent variable. While these models are limited in their
expressiveness, their benefits are that inference (here, the “E-steps”) can be done
very efficiently: not only is the posterior p(z1,...,zp|x1,...,Xr) a Gaussian
distribution (of dimension 7'd), but all of its marginals and pairwise marginals
p(ze|x1, ..., x7), p(2¢, Ze41|X1, . . ., x7) (crucially, the only distributions needed
for learning the parameters of LGSSM via EM) can be computed jointly in
O(T) time using an efficient technique known as Kalman Smoothing (Kalman
1960; Rauch et al. 1965).

Such a scaling contrasts with naive numerical binning-based alternatives
for inference in continuous, non-Gaussian State Space Models, which require
maintaining an estimate of each bin — a vector of size n (no. bins) where
n grows exponentially with the dimension of the latent space, as used in e.g.
Denovellis et al. (2021). Instead, for LGSSMs, the Gaussianity means only the
mean and covariance of the marginal posterior distributions — of size d and d?
respectively — need to be stored. This is not memory intensive and, perhaps
more importantly, the Kalman Filter proceeds to compute them in a combined
O(T) time. In the experiments performed here, it was found that the cost of
the Kalman Filter was negligible relative to the kernel evaluations that are the
main computational bottleneck of SIMPL.

From here onwards, x will be used to denote the latent variable in the

LGSSM, and X or s for observations.

288 Appendix E. Appendix to Chapter 5

E.3 SIMPL as Approximate EM

E.3.1 MLE-Based Approximate E-Step

Instead of q(e) = p(x]s; f(e_l)), SIMPL computes an approximation to q(e) ~
§'®) = p(x|x; £¢=1)) where % is the Maximum Likelihood Estimate (MLE) of

x given the observations s and the current tuning curves f (e=1) defined as:

T N
X = arg max log p(s|x; f(e_l)) = arg max > log p(stilxe; f(e_l))
t=1i=1
N
= X; = arg H%XZ log p(stilxt ; f(e_l))-
i=1

(E.3)
As defined, computing the MLE returns a point estimate of the true trajectory
that led to the observed spike train s, however a posterior is sought. In
particular, MLE does not use the prior knowledge encoded by p(x).

To find the approximate posterior it is noted that, as a function of s,
X is itself a random variable. In the many neurons limit, and under certain
regularity assumptions, the distribution of this random variable converges to
a Gaussian, a fact known as asymptotic normality. In other words; though
s (conditioned on x) is a non-Gaussian random variable, X (a deterministic
function of s) is approximately Gaussian in the many neurons limit and thus
satisfied the conditions of the LGSSM.

I restate a formal statement of this asymptotic normality result in the
case of independent, but non-identically distributed observations' originally
established in (Bradley et al. 1962), and reformulated using the notations of
the model at hand. For simplicity, the case where only P distinct intensity
functions fi, ..., fp exist will be considered, although versions of this result

exist without this assumption.

Theorem E.3.1 (Asymptotic Normality of the MLE). Let x; € R?. Let
s = (s1¢,...,8N¢) be independent random variables with probability densities

p(stilx7; fii)), where t(i) € {1,..., P} is the index of the intensity function

!The i.i.d case was established in (Fisher 1925)

E.3. SIMPL as Approximate EM 289

ft(i) that generated the spike train s;. Forp € 1,..., P, denote n, the number
of times the intensity function f, appeared in the sequence f;;). Assume that
the MLE Xy exists and it is unique. Then, under mild reqularity conditions, we

have:

VN (% —x7) 1o N(0,7(x)7")

P
where Z(xy) = 3 ppEps,.¢, Hess(log p(se|x7: £,)) is the Fisher Information
p=1 ’

matriz of the model at x;, — means convergence in distribution, and it is

defined that i, == limy_00 2.

The asymptotic Gaussianity of the MLE in the many neurons limit suggests
performing approximate inference in a surrogate Hidden Markov Model, with
the same transition probabilities p(x¢+1|x;) as the original ones, but where
the observations s are replaced by X. Leveraging Theorem E.3.1, SIMPL
approximates the emission probabilities p(X;|x;) by the Gaussian distribution
N(x¢,), where Iy := (NZ(%;)) ' ~ (NZ(x;)) !, the Fisher information of
the spikes.

Temporarily ignoring the x;-dependence of the covariance matrices £; and
treating them as deterministic (discussed below), the variables (x;,X;) then
form the following latent variable system with hidden variables x; and observed
variables X; given by:

Xt+1 | Xt ~ N(Xt,O’%I), (E 4)

Xe | x¢ ~ N(x¢, L)

This model is precisely an instance of Linear Gaussian State Space Models

defined in eq. (E.2) and the four matrices set to:

F,=1 (constant)
H =1 (constant)

(E.5)
Qi =021 (constant)

R=1X; (time-varying).

290 Appendix E. Appendix to Chapter 5

This correspondence allows SIMPL to compute an approximation of the
marginal posterior distributions p(x¢|s) & p(x¢|X) using Kalman Smoothing
(Kalman 1960; Rauch et al. 1965). Importantly, the MLE estimates X; can be
obtained in parallel for all ¢; the only sequential procedure remaining being the
Kalman Smoothing step. The trajectory X(¢) of SIMPL’s E-step is then set to
the mean of cf(e).

E.3.2 Spike Smoothing: A Generalized M-Step

SIMPL’s M-step is computationally cheap and interpretable. However, it differs
from the M step of the EM algorithm, which is recalled to be given by:

£l EM — arg max F(£,q\9) = arg max E (o [logp(x,s;f)] (E.6)
Below, I reconcile the two approaches by showing that SIMPL M-step can
be seen as instances of a more general “model fitting” M-step. To see why,
note the objective function of a standard M-step equals (up to a constant in
f) the negative KL divergence between the joint distribution? §(¢)(x|s)p(s)
(observable through samples) and the model p(s,x;f). Thus, a standard M-
step can be understood as minimizing this KL divergence approximately, by
replacing the expectation over p(s) by an empirical average over the true data
s, an approximation which is asymptotically consistent in the large number of
time steps limit under suitable ergodicity conditions (Billingsley 1961).

Similarly, SIMPL’s M-Step also fits the model p(s,x,f) to the “data”
distribution §(¢) (x|s)p(s). However, instead of doing so by minimizing the KL
divergence between the data and the model, it does so using a kernel-based
estimate 3. Thus, Both M-steps can be understood as having the same goal,
simply differing in their solution to solve it. In that sense, SIMPL’s M-step is
indeed a generalized M-step.

21 denote ¢*(x) by ¢*(z|s) to highlight the dependence between = and s.
3Additionally, it replaces the expectation over gte) (x|s) by a one-sample estimate of it
through %

E.4. Efficient Implementation and Algorithmic Details 291

E.4 Efficient Implementation and Algorithmic
Details

Some implementation details that were important to maximise the computa-

tional efficiency of the method are provided below.

E.4.1 Maximizing Computational Efficiency

Computational Bottlenecks

A single evaluation of the log-likelihood log p(s¢|x;) requires evaluating the
kernel-based rate map estimates given in eq. (E.6). This takes O(T) time
since it involves a sum across all timesteps. Moreover, this calculation will be
repeated itself T-times for each step of the Kalman smoother in order to (1)
compute the MLEs X; (that naively require gradient ascent on log p(s¢|x¢)) and
(2) evaluate the MLE variance £; := (NZ(%;)) ! = (NH,(log p(s|%:)) (X)) L.
All in all, an exact implementation of SIMPL’s E-step would have quadratic
O(T?) time complexity, which would be prohibitively slow for long datasets.
Moreover, the second-order differentiation needed to compute Z(X;) is also
computationally expensive (formally, it introduces a large constant factor in
front of the O(T?) term). In the next sections, additional approximations are
described that allow SIMPL to estimate the MLE and its variance in O(T)

time and without differentiating the rate maps.

Linear-Time MLE estimation

Naive gradient-based solution The naive way to calculate the MLE X; is
to evaluate all N tuning curves (recall each evaluation costs O(T')) for some
location x, use these to establish the log-likelihood log p(s¢|x), calculate the
gradient of this log-likelihood with respect to x, and then take, for example,
k gradient descent steps to find the MLE. This process is repeated for each

timestep t in the Kalman smoother, leading to a quadratic time complexity of

O(kNT?).

292 Appendix E. Appendix to Chapter 5

SIMPL’s approach To compute the MLE in linear time SIMPL bypasses the
need to recalculate the tuning curves at each time step by, instead, binning
them onto a discretized grid of points once at the start of each iteration.
Formally SIMPL computes n evaluations the tuning curves f := (f,...,f,) =
(f(g1),...,f(gn)) on a grid of n points G = (g1,...,8,). This has time
complexity O(NnT). I use a uniform rectangular grid of points (the smallest
rectangle containing the full observed behavioural variable) with a spacing dz.
For example, in a 1 m X 1 m environment with dz = 0.02 m, this would yield
a grid of 50x50 points (n = 2500). Then, given £, SIMPL then discretizes the
log-likelihood functions log p(s;|x) over that same grid:

- N e fo
lit = logp(selgi) = D logp(sijlgi) = Z log ———

jle (E.7)
= — Z fij + Stj IOg fij — log Stj!
7=1

where it is noted that f;; :== [f(g;)];. Finally, given such evaluations, SIMPL
sets its approximation of the MLE to be

X == arg max log p(s¢|g) = arg max lit (E.8)
geg
This way of calculating the MLE has linear time complexity yielding an

improvement for n < kT

Linear-Time Derivative-Free MLE Variance Estimation

A similar strategy could be employed to also compute

T(%) = —H,(log p(si|%:)) (%), (E.9)

which appears in X;. Here H is the Hessian operator defined as H,(f)(x) :=
V2f(z). To do so, one could compute the Hessian of the rate maps and
their logarithm on that grid, from which any H,(log p(s|X¢))(X;) at the grid-
point-based MLE obtained above can be evaluated as H, (log p(s¢|gi))(gi) =

E.4. Efficient Implementation and Algorithmic Details 293

— Zév:l H,(f;)(g:i) + stjHz(log f;)(gi). This would be linear in time however,
it was found that differentiating f could be very slow.

Instead SIMPL takes an entirely different approach and produces an
estimation of X; by instead estimating the variance of the posterior distribution
p(x¢|st) o< p(x¢)p(se|x¢) = p(se,xt). The posterior variance and the MLE
variance are expected to closely match, as discussed in our theoretical
justification above. Moreover, as this posterior is available analytically up
to the normalizing constant p(s;), its variance can be approximately computed
by binning p(x¢|s;) onto the same grid G introduced above, yielding the following

fast estimator for X;.

5. — - T -y
£, ~ Covp(xilsy) ~ =P8 —m)gi—p) . Sigibu (g

i Dit >_i Dit
where f; = exp(liy) = p(s¢|g:). Intuitively, this is equivalent to fitting a
multivariate Gaussian to the binned likelihood map. The covariance matrix

of this Gaussian is then used as an approximation of the MLE variance. A

theoretical argument justifying the validity of this formula is provided below.

Theoretical Justification Equation (E.10) is justified by the Bernstein
Von Mises theorem, which states that the difference between the posterior
distribution and the distribution of the MLE vanishes in the many neurons limit.
I restate this theorem using the notations of this chapter, assuming a unique
rate map, and without stating some of the required regularity assumptions for
simplicity. I refer the reader to (Vaart 2000, Theorem 10.1, p.141-144) for the

full version.

Theorem E.4.1 (Bernstein-von Mises). Let x5 € R?. Let sy = (s14, ..., 5n¢)
be i.i.d random variables with probability density p(si|x};f). Assume that the
MLE X; exists and it is unique. Then, under mild reqularity conditions, for

any prior p on X¢, we have:

Ip(olse) = A (e, (NZ(xi) ey /%) 0

294 Appendix E. Appendix to Chapter 5

where 28 denotes convergence in probability, and || -||py denotes the Total

Variation norm on bounded measures.

From this theorem, I thus have that the (random) posterior distribution
behaves (in total variation) as a Gaussian whose covariance matrix is precisely
the asymptotic variance of the MLE. Note however that convergence in total
variation does not a priori imply convergence of variances. Further work could
examine under which assumptions such a convergence of variances may hold. In
practice, I found that this approximation yielded a satisfying trade-off between

performance and accuracy.

E.4.2 Iterative Linear Realignment of the Trajectories

To improve the identifiability properties and the numerical stability of SIMPL,
I also transform the decoded latent trajectory at each iteration using a linear
mapping which maximally aligns it with behaviour defined as X§6) — nge) +c
where M, c = argmin}_, ngﬂ) - (nge) + c¢)||. This approach ensures the
scale, orientation and centre of the optimised latent trajectory are tied to
behaviour, preventing accumulation of linear shifts/rotations across iterations
and allowing the latent to be interpreted relative to, and in the same units
as, behaviour. I suspect that performing this alignment on all iterates after
the optimisation would yield similar results. Because the transformed latent
necessarily has similar scale to the behaviour — which was used to set the size
of the discretised environment — I can reuse the same discrete grid for the

latent avoiding the need to rediscretize the environment at each iteration.

E.4.3 Hyperparameters Settings
SIMPL has two model hyperparameters:

o v: the diffusion rate for Kalman smoothing, which sets a prior over

expected velocity of the latent variable. Units are in ms™!.

e 0: the bandwidth of the kernel used in the M-step to smooth spikes.

Units are in m.

E.4. Efficient Implementation and Algorithmic Details 295

Additionally there are some implementation-specific parameters:
e dx: the bin size for the variance estimation of the MLE. Units are in m.

o dt: the time step of the discretization of the latent variable. Units are in

S.
e E: the number of iterations of the EM algorithm.

Finally, in all simulations I used a test fraction of 10% and held out ‘speckled’
data segments of length 1 second to evaluate the performance of the model.
The value of these hyperparameters for the Artificial Grid Cell Dataset and
the Real Hippocampal Dataset are provided in table E.1.

Table E.1: Hyperparameters settings for the SIMPL experiments

Dataset v o dx dt E
Artificial Grid Cell Dataset 04ms™!' 0.02m 002m 0.1s 10
(fig. 5.2)

Real Hippocampal Dataset 10ms™" 01m 004m 02s 10
(fig. 5.3)

Motor task dataset (2D)? 1.0 0.1 0.02 0.05s 10
(fig. 5.4c,d)

Motor task dataset (4D) 1.5 0.09 0.1 0.05s 10
(fig. 5.4e)

& All behavioural variables (hand position and velocity) are normalised to lie
between 0 and 1, so units here are arbitrary.

E.4.4 Synthetic Data Generation with the RatInABox

Package
All synthetic grid cell data were generated using the RatInABox package
(George et al. 2024). In this model, an agent moves through a 1 m by 1 m
environment following a smooth, continuous random motion policy (details can

be found in the original paper)under default parameters whereby the agent’s

296 Appendix E. Appendix to Chapter 5

mean speed is 0.08 m/s. Specifically, the RatInABox model was used to generate
the true latent trajectory, denoted as x*. This trajectory was then “noised” to
produce the trajectory used as the initial condition for SIMPL, denoted as x(0),
which represents the animal’s measured position. The noise, or “discrepancy”
vector Ax = x(0) — x*, was generated by sampling a velocity trajectory from a
2D Ornstein-Uhlenbeck process with zero mean and a coherence time scale of 3
seconds. This velocity trajectory was then integrated to obtain the discrepancy.

) was additionally influenced by the same

Finally, the agent’s behaviour x!
environmental forces implemented in the standard RatInABox model, i.e. the
agent smoothly drifts away from walls to avoid crashing. The scale of the
Ornstein-Uhlenbeck process was adjusted so that the mean discrepancy between
the latent and observed trajectories was 20 cm in pen-space (i.e. away from
walls).

Grid cells were modelled as the thresholded sum of three cosine plane
waves (see Appendix A.2.3) with a width ratio—ratio of field width to inter-field
distance—of 0.55. Each grid cell is assigned a wave direction 6;, gridscale \;
and 2D phase offset ¢; = [¢1, ¢2]T. Specifically, N=225 grid cells were divided
into 3 modules of N=75 grid cells. Within each module all cells had the same
grid scale (0.3, 0.5 and 0.8 m) and wave direction (0, 0.1 and 0.2 rad) but
random phase offsets, approximately matching grid cells in the brain. Grid cell
firing rates are all scaled to a maximum of 10 Hz.

Grid cells firing rates are determined by the latent position at time ¢, i.e.
fi(t) = fEC(xF), from which spikes are sampled according to an inhomogeneous

Poisson process Npies(t,t + dt) ~ Poi(f;(t) - dt).

E.4.5 Test-Train Partitioning

To assess performance I partition the spike data matrix, s, into testing and
training sets, Stest, Strain. Inference is performed solely on the training set
and I then track the log-likelihood of data in both sets (fig. 5.2d, left),
e.g. 019 = |Siet|iokt 2 (3,) S test logp(sti|xt(e),fi(e)). This partitioning requires

careful consideration: entire time intervals cannot be withheld for testing

E.4. Efficient Implementation and Algorithmic Details 297

without impairing the model’s ability to infer the latent over this period.
Likewise, entire neurons cannot be withheld without impairing the model’s
capacity to estimate their tuning curves. Instead, I adopt a speckled train-
test mask previously used in latent variable modelling set-ups (Williams et al.
2020) which withholds for testing extended chunks of time bins arranged in an

irregular “speckled” pattern across the data matrix (totalling 10% of the data).

E.4.6 Benchmarking Details

In section 5.3.5, I benchmarked SIMPL against four comparable methods on the
synthetic grid cell datasets. For all techniques, tuning curves were visualised
in the same way as for SIMPL: by extracting the latent trajectories after
optimisation and using kernel smoothing to construct the rate maps, i.e., a single
“M-step.” Default parameters were used for all methods. CEBRA constrains
its N-dimensional latent space to lie on an (N-1)-dimensional hypersphere. I
disabled this constraint for the 2D grid cell dataset. For GPLVM, I used a
variant that exploits induction points to improve scalability with the amount
of data, performed a grid-search across the number induction points, and
reported the best result. For GPDM, which does not feature induction points
and thus has a cubic complexity with respect to T', training was restricted
for this technique to 5 minutes of data (compared to 60 minutes for the other
methods) to keep computation times under 1 hour,. For pi-VAE, I set the “task
variable” u; to the behaviour :cgo), and the latent z; to be the true position x;.
Additionally, I set the distribution p(z¢|us) (e.g. the position given behavior
mapping) to be a Gaussian distribution centered at w; = x§0)7 and a fixed

variance.

298 Appendix E. Appendix to Chapter 5

E.5 Supplementary Analyses and Robustness
Tests

E.5.1 Discrete Latent Toy Model

Before testing SIMPL on a large temporally continuous dataset, a smaller
dataset was constructed akin to a discrete two-alternative forced choice task
(2AFC) (Figure E.1) — a widely studied decision-making paradigm (Platt
et al. 1999; Bogacz et al. 2006; Znamenskiy et al. 2013; Lieder et al. 2019).
The true latent states x; € {0, 1} are binary and have no temporal structure
(here subscript ¢ indexes trials not time), analogous to a series of random “left”
or “right” choices (fig. E.1b). This latent state is stochastically encoded by a
population of neurons with random tuning curves giving the Bernoulli emission

probabilities under each latent state:

+(x) = fio ~U(0,1) x=0, E)

fit ~U0,1) x=1,

x; ~ Bernoulli(0.5) and s4|x¢ ~ Bernoulli(f;(x})). (E.12)

Data is then sampled for 7" = 50 trials and N = 15 neurons as shown in
fig. E.1. Initial conditions, x§°), are generated from the true latent by randomly
resampling a fraction of trials p = 0.5 (fig. E.1b). This partial resample
represents an initial discrepancy between the behavioural measurement and
the true internal state of the agent.

I perform inference on this dataset using a reduced version of the model
(SIMPL-R). In the M-step, tuning curves were fitted by calculating the
average activity of a neuron across each latent condition (e.g. fi(e) (x) =
>t Sti0 (xge),x) />0 (xlge),x), conceptually similar to kernel smoothing). For
the E-step, each latent was the decoded according to the maximum likelihood
estimate under the observed spikes and tuning curve estimates from the previous

(e+1)

epoch: x; = arg maxx y_; 1og p(sti|x, fi(e)) (there is no time dependence

E.5. Supplementary Analyses and Robustness Tests 299

between latents, thus no Kalman smoothing). This process was repeated
for 5 epochs and, with high reliability, converged on the true latents after
approximately two (fig. E.1lc,d, distributions show repeat for 1000 randomly
seeded datasets, dotted lines show ceiling performance on a model perfectly
initialised with noiseless x(0) = x*). I repeated this experiment for various
values of p: latent recovery was almost perfect when p was small (i.e. when the
initial conditions were close to the true latent), dropping off as p approached
1. At p = 1 when the conditions were completely random, the model was
biased to recover a latent space that is either perfectly correlated or perfectly
anti-correlated (“left” <> “right”) with the true latent (fig. E.1lc, right), an

isomorphic solution.

(@) gdata, s ~ p(eIx*, f*) (c) correlation log-likelihood final corr. (d) tuning curves
15 1 - S
“ wwee =290 1 seeay f(5) f*
c -
O Il o “pgpg B gl ™] e -
= 1
(0]
< 2
r " 1'1 r 1 -460 r v -1 r 1 9
0 trials 50 O epoch,e 5 0 epoch,e 5 0 p 13
z
(b) O true latent x* “measured behaviour” x© > @ xO “optimised” latent
,..JL] o 0_ ..0 000 _ _ _© ©_..0 000 ' 1 %
R‘O0 OO00O O O O 00 0000 O ©@ ®© © LRLRL
r - 1T X 1 o] 1
0 trials 50 0 trials 50 P(spike)

Figure E.1: A two-alternative forced choice task (2AFC) toy-model. (a) Data
generation: Spikes are sampled from a simple generative model. For each of T=50
independent trials a random binary latent — analogous to a “left” or “right” choice —
is encoded by a population of N=15 neurons with randomly initialised tuning curves.
(b) Model performance: Starting from a noisy estimate (yellow) of the true latent
(black) where a fraction p = 0.5 of trials are resampled, SIMPL-R recovers the true
latent variables (green) with high accuracy. (c) Left: Correlation between x(¢) and
x*. Middle: Log-likelihood, logp(s|x(e),f(e)). Right: Final correlation between x (%)
and x* as a function of initialization noise p. Violin plots show distributions over
1000 randomly seeded datasets, dotted lines show ceiling performance of a perfectly
initialised model (x(?) = x*) (d) Tuning curves.

E.5.2 Hyperparameter Sweep
I swept over the two hyperparameters v (the velocity prior) and o (the kernel
bandwidth) to assess how sensitive SIMPL is to these hyperparameters, as

shown in Figure E.2. For this, the same synthetic grid cell dataset used in

300 Appendix E. Appendix to Chapter 5

fig. 5.2 was used. Notably, SIMPL’s performance (measured in terms of the final
error, see panel b) is relatively stable across a wide range of hyperparameters;
kernel bandwidths between 0.1 cm and 5 ¢cm and velocity priors between 0.2 m/s
and 1 m/s all yield similar performance. Inspecting the tuning curves confirmed
that kernel bandwidth has a significant effect on their appearance. Broader
kernels give smoother tuning curves, eventually blurring the individual grid
fields together, while narrower kernels give sharper tuning curves, eventually

leading to overfitting where individual spikes are resolved.
G ™

h
. [cm]40 20 O
15) CPU-
-1 sec
o, [ms]. 0.4 ®60
speed priory » °10
0.05 1

o, [ms]

coNnon
S =1

o [cm]
kernel bandwidth

20

05
A A M O

o [cm]
kernel bandwidth

Figure E.2: Performance of SIMPL on the synthetic grid cell dataset as a function
of the hyperparameters v (speed prior) and o (kernel bandwidth). (a) Tuning curves.
(b) Final error between the latent and ground truth (colour) and total compute time
(size).

E.5.3 Non-Continuous Replay Dataset

Since SIMPL places an explicit prior on latent trajectories that are smooth
and continuous I tested whether it could be used to model a dataset where
the latent variable is non-continuous. For this I simulated a synthetic “replay”
dataset from N = 225 small Gaussian place cells. In this dataset the latent
variable and behaviour perfectly match except for regular, brief periods of
“replay” where the latent variable jumps to a new location. Using the same

hyperparameters as in the main text I found that SIMPL was able to recover the

latent variable, capturing (or “decoding”) the replay events with high accuracy

E.6. Summary Table of Related Methods 301

(fig. E.3), despite its smoothness prior.

(3)1 T ;‘,,’-\;: Ground truth g e (b)
a S
o
0-
'_1|' ‘
E
3
Q
ol |-
0 time [mins] 1

Figure E.3: A synthetic hippocampal “replay” dataset. (a) One minute of trajectory,
x-coordinate in solid line, y-coordinate in dashed. The behaviour (light-green, top
panel) is smooth, actually matching the latent most of the time except when the
latent takes regular, brief discontinuous jumps reminiscent of hippocampal replay
events. After optimisation SIMPL is able to recover the latent (dark-green, bottom
panel) and capture the replay events with high accuracy. (b) Spike raster plots;
spikes plotted against the behaviour, optimised latent and ground truth latent.

E.5.4 Automatic Place Field Detection

In Figure 5.3, it was shown that the tuning curves of place cells in the
hippocampus undergo statistically significant changes when optimised using
SIMPL. For this analysis, individual place fields were automatically identified
from the binned rate maps as isolated regions of elevated activity within a cell’s
tuning curve. This was done by thresholding the activity of each neuron at 1
Hz and identifying contiguous regions of activity with a peak firing rate above
2 Hz and a total area less than half that of the full environment, similar to

approaches taken in previous work (Tanni et al. 2022).

E.6 Summary Table of Related Methods

Some of the most relevant LVM and dimensionality reduction techniques are
summarized here in the context of our five key desiderata as described in the

related work section. These are:

1. Complex tuning curves: Does the model learn/infer non-linear tuning

curves as opposed to linear/exponential-linear/etc. tuning curves.

302 Appendix E. Appendix to Chapter 5

2. Smooth latent dynamics: Does the model impose smooth temporal
dynamics on the latent space (e.g. by assuming a linear dynamical
system, Gaussian process or using an RNN), as opposed to treating each

time point independently.

3. Spike-friendly: Was the method designed for spiking data. For
probabilistic models, this refers to whether the generative noise model is

Poisson as opposed to, say, Gaussian.

4. Exploit behaviour: Does/can the model use behaviour (as an observation,
contrastive loss-target, initialisation, or otherwise) to guide latent

discovery.

5. Scalable: Can the model scale to datasets of long duration. Specifically,
in available open-source implementations of the method does training/in-
ference have near-linear time complexity. Note this does not mean that
compute time is necessarily fast in an absolute sense, just that scaling is

linear.

Table E.3: A table of comparable models and their properties. N/A means the
criterion is not applicable to the model. N/S means the criterion is not specified or
may be dependent on implementation specifics. Techniques in bold are compared to
on my benchmark dataset in fig. 5.6

Model Complex Smooth Spike- Exploit Scalable
tuning latent friendly behaviour
curves dynamics
SIMPL (My method) Yes Yes Yes Yes Yes
GPLVM (Lawrence 2003) Yes N/S No Yes$ Yes#
P-GPLVM (Wu et al. 2017) Yes Yes Yes Yes$ No
M-GPLVM (Jensen et al. | Yes No No No Yes#
2020)
faeLVM (Bjerke et al. 2023) Yes! Yes Yes No Yes
PfLDS (Gao et al. 2016) Yes Yes Yes No Yes

Continued on next page

E.6. Summary Table of Related Methods 303
Table E.3 — continued from previous page
Model Complex Smooth Spike- Exploit Scalable
tuning latent friendly behaviour
curves dynamics
VIND (Hernandez et al. 2018) | Yes Yes Yes No Yes
pi-VAE (Zhou et al. 2020) Yes No Yes Yes Yes
CEBRA (Schneider et al. | N/A No Yes Yes Yes
2023)
MIND (Low et al. 2018) Yes No No No Yes
LFADS (Pandarinath et al. | No Yes Yes Yes Yes
2018)
TNDM (Hurwitz et al. 2021) | No Yes Yes Yes Yes
GP-SDEs (Duncker et al. | No Yes N/S N/S Yes
2019)
rSLDS (Linderman et al. | No Yes No Yes$ Yes
2016)
gpSLDS (Hu et al. 2024) No Yes No Yes$ Yes
GPDM (Wang et al. 2005) Yes Yes No Yes$ No
MM-GPVAE (Gondur et al. | No Yes Yes No Yes
2023)
PSID (Sani et al. 2021) No Yes No Yes Yes
GPFA (Yu et al. 2008a) No Yes No No Yes#
P-GPFA (Nam 2015) No Yes Yes No No
SSMDM (Zoltowski et al. | No Yes Yes Yes Yes
2020)
PLNDE (Kim et al. 2021) No Yes Yes Yes Yes
GLDS (Kalman 1960) No Yes No No Yes
DKF (Krishnan et al. 2015) Yes Yes No No Yes
PLDS (Macke et al. 2011) No Yes Yes No Yes
UMAP (McInnes et al. 2018) | N/A No No No No
TSNE (Maaten et al. 2008) N/A No No No No
pPCA (Pearson 1901; Tipping | No No No No Yes
et al. 1999)

Continued on next page

304 Appendix E. Appendix to Chapter 5

Table E.3 — continued from previous page

Model Complex Smooth Spike- Exploit Scalable
tuning latent friendly behaviour
curves dynamics

dPCA (Kobak et al. 2016) No No No Yes Yes

#: Scalable if using an implementation making induction point approximations.
§: Algorithm could be initialised at behaviour.
f: Assumes neurons in a given ensemble have a shared tuning curve structure (e.g. Gaussian) with neuron-

specific transformations (e.g. shift and scale)

Appendix F

UCL Research Paper

Declaration Forms

Paper 1

1. For a research manuscript that has already been published (if

not yet published, please skip to section 2):

2)

b)

—-
o e /2 &

What is the title of the manuscript? RatInABoz, a toolkit for
modelling locomotion and neuronal activity in continuous environments
Please include a link to or doi for the work:
https://doi.org/10.7554/eLife.85274

Where was the work published? eLife

Who published the work? eLife Sciences Publications, Ltd.

When was the work published? February 9, 2024

List the manuscript’s authors in the order they appear on the
publication: Tom M. George, Mehul Rastogi, William de Cothi, Kimberly
L. Stachenfeld, Claudia Clopath, Caswell Barry

Was the work peer reviewed? Yes

Have you retained the copyright? Yes, it was published under a
Creative Commons Attribution 4.0 International License (CC BY 4.0)
Was an earlier form of the manuscript uploaded to a preprint

server (e.g. medRxiv)? Yes, https:

https://doi.org/10.7554/eLife.85274
https://www.biorxiv.org/content/10.1101/2022.08.10.503541

306 Appendix F. UCL Research Paper Declaration Forms

//www. btorziv. org/content/10.1101/2022.08. 10.503541
If ‘No’, please seek permission from the relevant publisher and check the

box next to the below statement:

O] 1 acknowledge permission of the publisher named under 1d
to include in this thesis portions of the publication named as

included in 1c.

2. For a research manuscript prepared for publication but that
has not yet been published (if already published, please skip to section 3):
N/A

3. For multi-authored work, please give a statement of
contribution covering all authors (if single-author, please skip to section
4): TMG conceived the project, designed the toolkit, implemented the code, and
wrote the manuscript. MR contributed to code development. WDC, KS, CC,
and CB advised.

4. In which chapter(s) of your thesis can this material be found?

Chapter 1

Paper 2

1. For a research manuscript that has already been published (if

not yet published, please skip to section 2):
a) What is the title of the manuscript? Theta Sequences as Eligibility
Traces: A Biological Solution to Credit Assignment

b) Please include a link to or doi for the work: https://openreview

.net/forum?id=vd16AYbem3Z
¢) Where was the work published? ICLR 2023 TinyPapers

d) Who published the work? International Conference on Learning

Representations (ICLR)

e) When was the work published? March 2023

https://www.biorxiv.org/content/10.1101/2022.08.10.503541
https://www.biorxiv.org/content/10.1101/2022.08.10.503541
https://openreview.net/forum?id=vd16AYbem3Z
https://openreview.net/forum?id=vd16AYbem3Z

has

N/A

307
List the manuscript’s authors in the order they appear on the
publication: Tom M. George
Was the work peer reviewed? Yes
Have you retained the copyright? Yes

Was an earlier form of the manuscript uploaded to a preprint
server (e.g. medRxiv)? No, ICLR distributed but does not own the
work. Ownership remains with me.

If ‘No’, please seek permission from the relevant publisher and check the

box next to the below statement:

(] 1 acknowledge permission of the publisher named under 1d
to include in this thesis portions of the publication named as

included in lc.

2. For a research manuscript prepared for publication but that

not yet been published (if already published, please skip to section 3):

3. For multi-authored work, please give a statement of contri-

bution covering all authors (if single-author, please skip to section 4):

Single-author.

4. In which chapter(s) of your thesis can this material be found?

Chapter 2

Paper 3

1. For a research manuscript that has already been published (if

not yet published, please skip to section 2):

a)

b)

What is the title of the manuscript? Rapid learning of predictive
maps with STDP and theta phase precession

Please include a link to or doi for the work: https://doi.org/10
.7554/eLife.80663

https://doi.org/10.7554/eLife.80663
https://doi.org/10.7554/eLife.80663

308 Appendix F. UCL Research Paper Declaration Forms

¢) Where was the work published? eLife

d) Who published the work? eLife Sciences Publications, Ltd.
e) When was the work published? March 16, 2023
)

f) List the manuscript’s authors in the order they appear on the
publication: Tom M. George, William de Cothi, Kimberly L. Stachenfeld,

Caswell Barry
g) Was the work peer reviewed? Yes

h) Have you retained the copyright? Yes, it was published under a
Creative Commons Attribution 4.0 International License (CC BY 4.0)

i) Was an earlier form of the manuscript uploaded to a preprint
server (e.g. medRxiv)? Yes, ht tps: //www. bt orziv. org/cont
ent/10.1101/2022.04.20.488882v2
If ‘No’, please seek permission from the relevant publisher and check the

box next to the below statement:

[1 acknowledge permission of the publisher named under 1d
to include in this thesis portions of the publication named as

included in lc.

2. For a research manuscript prepared for publication but that
has not yet been published (if already published, please skip to section 3):
N/A

3. For multi-authored work, please give a statement of contribu-
tion covering all authors (if single-author, please skip to section 4): TMG
and WDC conceived the project and designed the model. TMG implemented the
code and performed the simulations. WDC and TMG wrote the manuscript. KS
and CB advised on the project and manuscript. WDC and TMG contributed

equally to this work.

4. In which chapter(s) of your thesis can this material be found?

Chapter 3

https://www.biorxiv.org/content/10.1101/2022.04.20.488882v2
https://www.biorxiv.org/content/10.1101/2022.04.20.488882v2

309

Paper 4

1. For a research manuscript that has already been published (if

not yet published, please skip to section 2):

a) What is the title of the manuscript? A generative model of the

hippocampal formation trained with theta-driven local learning rules

b) Please include a link to or doi for the work: https://openreview

.net/forum?id=yft4J1xsRf¬eId=0zb895hT6L
c) Where was the work published? NeurIPS 2023

d) Who published the work? Conference on Neural Information
Processing Systems (NeurIPS)

e) When was the work published? September 2023

f) List the manuscript’s authors in the order they appear on the
publication: Tom M. George, Kimberly L. Stachenfeld, Caswell Barry,
Claudia Clopath, Tomoki Fukai

g) Was the work peer reviewed? Yes
h) Have you retained the copyright? Yes

i) Was an earlier form of the manuscript uploaded to a preprint
server (e.g. medRxiv)? No, NeurlPS distributed but does not own the
work. Ouwnership remains with me.

If ‘No’, please seek permission from the relevant publisher and check the

box next to the below statement:

O] 1 acknowledge permission of the publisher named under 1d
to include in this thesis portions of the publication named as

included in 1c.

2. For a research manuscript prepared for publication but that

has not yet been published (if already published, please skip to section 3):
N/A

https://openreview.net/forum?id=yft4JlxsRf¬eId=Ozb895hT6L
https://openreview.net/forum?id=yft4JlxsRf¬eId=Ozb895hT6L

310 Appendix F. UCL Research Paper Declaration Forms

3. For multi-authored work, please give a statement of contribu-
tion covering all authors (if single-author, please skip to section 4): TMG
and TF conceived the project. TMG designed the model, implemented the code,
and wrote the manuscript. KS, CB, CC, and TF advised.

4. In which chapter(s) of your thesis can this material be found?

Chapter /

Paper 5

1. For a research manuscript that has already been published (if

not yet published, please skip to section 2):
a) What is the title of the manuscript? SIMPL: Scalable and hassle-free
optimization of neural representations from behaviour

b) Please include a link to or doi for the work: https://openreview

.net/forum?id=9kFaNwX6rv
c¢) Where was the work published? ICLR 2025

d) Who published the work? International Conference on Learning

Representations (ICLR)
e) When was the work published? January 2025

f) List the manuscript’s authors in the order they appear on the
publication: Tom M. George, Pierre Glaser, Kimberly L. Stachenfeld,
Caswell Barry, Claudia Clopath

g) Was the work peer reviewed? Yes
h) Have you retained the copyright? Yes

i) Was an earlier form of the manuscript uploaded to a preprint
server (e.g. medRxiv)? Yes, https: //www. biorziv. org/cont
ent/10.1101/2024.11. 11.623030v 1
If ‘No’, please seek permission from the relevant publisher and check the

box next to the below statement:

https://openreview.net/forum?id=9kFaNwX6rv
https://openreview.net/forum?id=9kFaNwX6rv
https://www.biorxiv.org/content/10.1101/2024.11.11.623030v1
https://www.biorxiv.org/content/10.1101/2024.11.11.623030v1

311

(] 1 acknowledge permission of the publisher named under 1d
to include in this thesis portions of the publication named as

included in 1c.

2. For a research manuscript prepared for publication but that
has not yet been published (if already published, please skip to section 3):
N/A

3. For multi-authored work, please give a statement of contribu-
tion covering all authors (if single-author, please skip to section 4): TMG
conceived the project, designed the method, and implemented the code. PG
contributed to code development. TMG and PG wrote the manuscript. KS, CB,
and CC advised.

4. In which chapter(s) of your thesis can this material be found?

Chapter 5

Signatures

e-Signatures confirming that the information above is accurate (this
form should be co-signed by the supervisor/ senior author unless this is not

appropriate, e.g. if the paper was a single-author work):

Candidate: Tom George Date: June 26, 2025

Supervisor: Prof. Caswell Barry -Date: June 26, 2025

	Abstract
	Impact Statement
	Publications Arising
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	The Mammalian Spatial Memory System
	Spatial Navigation and Spatial Cognition
	Hippocampal Representations
	Learning and Dynamics
	Models of Hippocampal Function
	Modelling Hippocampal Function

	Overarching Themes and Methods
	Key Contributions of This Thesis
	A Standardised Toolkit for Reproducible Hippocampal Modelling and Data Generation
	A Biologically Plausible Mechanism for Learning Predictive Maps
	A Generative Model for Path Integration and Mental Simulation
	A Practical Method for Discovering Latent Neural Representations

	Thesis Structure
	Broader Impact and Future Directions

	The RatInABox toolkit
	The Need for Standardized Tools in Neuroscience
	RatInABox: Toolkit Components and Features
	Intended Use-Cases
	The Environment
	The Agent
	Neurons

	Validation and Use-Case Demonstrations
	Case Studies

	Discussion

	Theta Sequences as Eligibility Traces
	The Timescale Mismatch in Biological Reinforcement Learning
	An Equivalence Between Theta Sequences and Eligibility Traces
	Discussion

	Learning Predictive Maps with STDP and Theta
	The Hippocampus, Predictive Maps, and a Role for STDP
	STDP and Phase Precession Approximate the SR
	STDP Approximates TD-learned Successor Matrices
	Learned Place Fields Exhibit Behaviorally-Biased Skewing
	Anatomical Segregation Supports Multiscale Predictive Maps

	Discussion

	The Hippocampal Generative Model
	A Theta-Driven Generative Model of the Hippocampus
	Related work

	Model Architecture and Learning Rules
	Basic Model Summary
	Theta-Gating Information Flow
	Hebbian-Style Learning Rules
	Velocity Inputs

	Model Validation: From Latent Inference to Path Integration
	Artificial Latent Task Validation
	Emergence of a Ring Attractor for Path Integration
	Remapping and Flexible Transfer of the Path Integration Circuit

	Discussion

	SIMPL: A Neural Latent Variable Model
	The Discrepancy Between Behavior and Internal State
	The SIMPL Algorithm: An EM-Style Approach
	The Model
	The SIMPL Optimisation Algorithm

	Validating SIMPL on Synthetic and Biological Data
	Synthetic Data: 2D Grid Cells
	Hippocampal Place Cell Data
	Somatosensory Cortex Data
	The Critical Role of Behavioral Initialization
	Benchmarking SIMPL

	A Survey of Latent Variable Models for Neural Data
	Discussion

	General Discussion
	Summary Discussion of the Major Themes
	Open Questions and Future Research Themes
	Open science: Towards a more equitable global research culture
	Conclusion

	Bibliography
	Appendix to Chapter 1
	Code Availability
	Model and Feature Specifications
	Motion Model Details
	Distance Measures
	Cell Model Specifications
	Table of Default Parameters
	Tutorials and Demos
	License Information

	Demonstrations and Use Cases
	Figure Details and Parameters
	Supplementary Use Cases

	Appendix to Chapter 2
	Code Availability
	Task Formulation and Temporal Difference Learning
	Relation to Discrete RL and TD-lambda

	The Artificial Agent
	The Biological Agent
	Analysis of Discontinuities in Theta Sequence Resets

	Appendix to Chapter 3
	Code Availability
	Spiking Neuron Model and STDP Learning Rule
	Phase Precession Details
	Synaptic Learning via STDP
	Temporal Difference Learning
	Continuous Successor Features
	Equivalence of the TD successor matrix to the successor representation

	Relation to RatInABox
	Simulation Details
	A Theoretical Link Between STDP and TD
	Reformulating TD learning to look like STDP
	Theta phase precession compresses the temporal structure of input features
	Differences between STDP and TD learning: where my model doesn't work

	Supplementary Analyses and Ablations
	Cell Size and Agent Speed Effects
	Weight Initialisation and Update Schedule
	Hyperparameter Sweep
	Phase Precession Hyperparameter Sweep

	Appendix to Chapter 4
	Code Availability
	Detailed Model Implementation
	Dendritic Updates
	Somatic Updates
	Update Ordering
	Learning Rules
	Synaptic Noise
	Measuring Prediction Error

	Relationship to Online Bayesian Inference
	Artificial Task: Implementation Details
	Path Integration Task: Implementation Details
	Position Decoding
	Robustness Tests

	Remapping Task: Implementation Details

	Appendix to Chapter 5
	Code Availability
	Theoretical Background: EM and State-Space Models
	Expectation Maximization
	LGSSMs

	SIMPL as Approximate EM
	MLE-Based Approximate E-Step
	Spike Smoothing: A Generalized M-Step

	Efficient Implementation and Algorithmic Details
	Maximizing Computational Efficiency
	Iterative Linear Realignment
	Hyperparameters Settings
	Synthetic Data Generation
	Test-Train Partitioning
	Benchmarking Details

	Supplementary Analyses and Robustness Tests
	Discrete Latent Toy Model
	Hyperparameter Sweep
	Non-Continuous Replay Dataset
	Automatic Place Field Detection

	Summary Table of Related Methods

	UCL Research Paper Declaration Forms

