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Abstract
Xerophilic fungi can proliferate in dry conditions and have been detected in cultural heritage sites 
and libraries. To protect the staff from fungal exposure and ensure the preservation of heritage 
collections, research must be focused on improving detection protocols for xerophilic fungi. Matrix-
assisted laser desorption/ionisation time-of-flight mass spectrometry provides a strong method 
for the identification of fungi; however, this is dependent on the reference database. The aim of 
this study was to investigate whether it is possible to develop a supplementary matrix-assisted 
laser desorption/ionisation time-of-flight mass spectrometry database of xerophilic/xerotolerant 
Aspergillus species. The database is intended to complement the current Bruker library; for this 19 
Aspergillus species grown in four different broth media were included. The database was evaluated 
on samples from domestic homes, a museum and a warehouse. It was possible to create a database 
with mass spectra from the 19 species. For some species, it was possible to generate mass 
spectra from the four tested broth media, while other species required specific media and extended 
incubation time. Isolates from environmental samples identified by the Bruker fungi library were not 
misidentified by the supplementary database while some previously unidentified isolates (Aspergillus 
conicus, Aspergillus domesticus, Aspergillus glabribes and Aspergillus pseudogracilis) could be 
identified. Using low water-activity agar media had a profound effect on detection of these xerophilic/
xerotolerant Aspergillus species. This work shows that it is possible to develop a supplementary 
matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry database for the 
identification of xerophilic/xerotolerant Aspergillus species, and that low-water activity broth media 
are recommended for the construction of a database and the following application.
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Introduction
Uncontrolled fungal growth can compromise the preservation of heritage collections [1–4], leading 
to the deterioration of cultural heritage artefacts [5–12]. Furthermore, exposure to airborne fungi 
may pose a health risk for museum staff and visitors [13–15].

Common strategies to prevent fungal growth in museum artefacts, exhibition rooms and storage 
repositories include controlling indoor climate parameters such as temperature, humidity and 
sunlight, complemented by various methods to eliminate fungal growth [5,6]. However, xerophilic/
xerotolerant species of the genus Aspergillus [16], Cladosporium [17] and Penicillium [18] have 
the ability to proliferate in extreme dry and water controlled [low water-activity (aw) or low relative 
humidity (RH)] conditions and many reports have identified xerophilic/xerotolerant fungi in 
museums, libraries, cultural heritage sites and their respective repositories [19–25] – some also 
being reported in places despite stringent climate-controlled environments [26]. These observations 
suggests that xerophilic/xerotolerant fungi growing at low RH/aw, might be overlooked when 
attempting to limit fungal growth in such environments.

Matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry (MALDI-TOF MS) 
provides an efficient method for the identification of cultivable fungal isolates. MALDI-TOF MS relies 
on measurements of the mass–charge ratio of extracted proteins as mass spectra. For microbial 
identification species-specific mass spectra of unknown isolates are compared to a reference 
spectra database. Depending on the degree of spectral similarity, this will result in identification to 
the genus or species level. The accuracy and specificity of MALDI-TOF MS identification therefore 
depend on the extent of the reference spectra database. The current Bruker database for MALDI-
TOF MS contains several xerophilic/xerotolerant Penicillium and Cladosporium species, but only a 
few xerophilic/xerotolerant Aspergillus species. The Bruker database was initially made to support 
identification of hospital-related species. However, it is possible to add spectra of other species 
to a local library, thus a recent study has constructed a library on food-related species [27]. To 
better ensure a safe indoor air and work environment for the staff and ensure the preservation of 
our heritage collection, further research is needed to broaden a rapid detection and identification 
protocols of xerophilic/xerotolerant Aspergillus fungi.

This study aimed to evaluate whether it is possible to construct a supplementary MALDI-TOF MS 
database for the identification of xerophilic/xerotolerant Aspergillus spp. For this, we selected 19 
xerophilic/xerotolerant Aspergillus spp., originating from the Institut for Bioteknologi (IBT) fungal 
culture collection (Table 1) and tested different broth media for cultivation. The supplementary 
database was evaluated on environmental samples, and different agar media were compared for 
the detection of xerophilic/xerotolerant species.

Materials and methods
The study is divided into three parts. In the first part, a supplementary MALDI-TOF MS database 
was constructed using spectra generated from 19 xerophilic/xerotolerant Aspergillus spp. In the 
second part, previously stored spectra were analysed using the supplementary database to see 
whether previously identified or unidentified species were identified as some of the newly added 
species. In the third part, samples from different environments were cultivated and fungi were 
identified. The aim was to ensure that the supplementary database did not misidentify species 
which were already identified by the Bruker database, and to investigate the presence of xerophilic/
xerotolerant species in these samples. Additionally, we aimed to evaluate the ability of different agar 
media to support the growth of xerophilic and xerotolerant fungi, from collected samples.

Xerophilic/xerotolerant Aspergillus species for the supplementary database

A total of 19 xerophilic/xerotolerant identified Aspergillus species were obtained from the IBT fungal 
culture collection. These isolates were originally isolated in different countries and from different 
environments and materials such as air, house dust, mouldy paper, wallpaper and paintings 
(Table 1). These species were all the Aspergillus sect. Restricti and contained representatives of 
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the Aspergillus restrictus/Aspergillus conicus clade, the Aspergillus vitricola clade, the Aspergillus 
penicillioides clade and the Aspergillus halophilicus clade [16].

The fungi were cultivated on Dichloran Glycerol Agar (DG18, Thermo Fisher Scientific Oxoid, 
Basingstoke, UK) [29] supplemented with 100 mg/L chloramphenicol. The species A. halophilicus 
was grown on Malt Yeast 50% Glucose Agar (MY50G) [30] as it does not grow well on DG18. All 
fungi were incubated at 25 °C for 14–21 days. Of the 19 Aspergillus spp. included in this study, 
A. penicillioides was already present in the Bruker BDAL Filamentous Fungi Library version 4 
[MaldiBiotyperDBUpdate_V4_Fungi-856(RUO)] (Bruker, Bremen, Gemany), and a strain of A. 
penicillioides was included in the supplementary library as a positive control.

Samples for MALDI-TOF MS

Protein extraction was performed using a modified version of the manufacture’s ethanol-formic 
acid extraction protocol. In brief, the fungal isolates were inoculated in 1.5 mL Eppendorf 
tubes containing a broth and incubated at room temperature for 1–14 days until visible growth 
was observed. Samples were inactivated by centrifugation, discarding the supernatant and 
resuspending the pellet in 70% ethanol. The ethanol was removed, and the sample was dried at 
room temperature, after which 5–20 μL (depending on pellet size) 70% formic acid was added. 
After 2 min, the same volume (5–20 μL, depending on pellet size) of acetonitrile was added. The 
suspension were then centrifuged and 1 μL of the supernatant was spotted onto a MALDI 96 main 
spectral profile (MSP) polished steel target plate (Bruker, Bremen, Germany) along with 1 μL (α-
cyano-4-hydroxycinnamic acid (HCCA) matrix solution (#8255344, Merck, Darmstadt, Germany).

Spectra were acquired on a Microflex LT mass spectrometer (Bruker Daltonics Inc.), 
using the Bruker Biotyper software (v. 3.1) with the Filamentous Fungi Library version 4, 
MaldiBiotyperDBUpdate_V4_Fungi-856(RUO).

MSP creation for the supplementary MALDI-TOF MS database

Each species in the supplementary database was represented by a series of MSPs, constructed 
by combining raw mass spectra obtained from the species isolates inoculated in four different 
liquid broth media [Sabouraud (SAB) agar [31], filtered MY50 [32], Czapek yeast 20% sucrose broth 
(CY20) [31] or filtered Malt Yeast 70% Glucose Broth (MY70)], at room temperature until growth was 
visible (which was for 3–5 days for all species except for A. halophilicus, which had to be incubated 
for 14 days, and A. halophilicus should have a double layer of matrix in contrast to other species).

For fungal identification, the standard procedure in this laboratory was to inoculate isolates in SAB 
broth, therefore, the majority of the MSPs were created based on raw mass spectra obtained from 
isolates inoculated in SAB broth. Our previous studies and other studies show that SAB supports 
growth of many different Aspergillus species [31,33]. MSPs were later created based on mass 
spectra obtained from isolates inoculated in MY50, MY70 or CY20 broth. Protein extraction was as 
described above.

Prior to MSP creation, all the raw spectra were visually examined using the flexAnalysis software 
(Bruker Daltonics Inc.), where spectra with outlier peaks and low mass to charge ratio (m/z) 
were excluded. Then, using the MALDI Biotyper Compass Explorer module, raw mass spectra 
were ‘preprocessed’ by default settings, which includes Mass Adjustment, Smoothing, Baseline 
Subtraction, Normalisation and Peak picking. This was followed by creating a principal component 
analysis plot of the spectra, enabling further examination and removal of outlying spectra. Finally, 
the MSPs obtained for all species were presented as an MSP dendrogram using the MALDI Biotyper 
Compass Explorer module (Bruker, Bremen, Germany). This analysis enables visualisation of how 
close the MSPs representing the different species are related to one another, reflected by an arbitrary 
distance level, normalised to a maximum of 1000. In summary, for each species, up to four reference 
MSPs were created based on the broth medium used for inoculation (SAB, MY50, CY20 and MY70).

Search for xerophilic/xerotolerant Aspergillus species retrospectively

Previously obtained and stored mass spectra, originating from an unrelated study on drilling waste 
treatment plants, were used to perform a test of the supplementary database, using the Bruker 
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Biotyper 3 software and the BDAL Filamentous Fungi Library version 4 [MaldiBiotyperDBUpdate_
V4_Fungi-856(RUO)]. Exposure samples had previously been plated on DG18 and SAB agar. The 
number of mass spectra obtained from isolates grown on DG18 agar (nDG18) and SAB agar (nSAB) was 
197 and 116, respectively. Further information on the study has been published elsewhere [34].

Evaluation of the supplementary MALDI-TOF MS database on various 
environmental samples

The supplementary database was evaluated on environmental samples from three different 
environments, utilising different sampling techniques. The environments included in this study were 
domestic homes (nsamples = 27), a museum (nsamples = 15) and a warehouse (nsamples = 9). Environmental 
samples can be collected using different methods, depending on the environment and the aim 
of the research. Therefore, for each environment, a different sampling method was utilised. Air 
samples were taken in the warehouse using Gesamtstaubprobenahme (GSP, CIS by BGI Inc.) 
sampling actively at 3.5 L/min. Electrostatic dust collectors (EDC) were used in homes as passive 
samplers. In an open-air museum environmental surface swabs (eSwab collection and transport 
system designed for microbiological sampling) were taken from the surfaces of artefacts.

The warehouse was used for storage of gardening and roadwork equipment, as well as tools and 
machinery used by workers for the maintenance of public spaces. The warehouse was selected for 
this study, because fungi seemed to grow on the walls, and it is important to protect the workers 
from exposure. The warehouse is made of heat-treated pine wood (Thermowood), and fungal 
growth was suggested to be caused by fluctuations in the humidity. Personal GSPs (nsamples = 6) 
were carried by workers when they were present in the warehouse in the morning and sampled 
for 11–21 min and the stationary GSPs (nsamples = 3) sampled for 240 min at specified locations in 
the warehouse. The GSP samplers were mounted with 37 mm polycarbonate filters (pore size of 
0.8/1 μm; Merck, Damstadt Germany).

The museum is an open-air facility consisting of historical houses, buildings and indoor exhibitions 
representing various eras throughout history. Here, surface samples were collected using eSwab 
(Copan’s Liquid Amies Elution Swab, eSwab; Copan, Brescia, Italy) from artefacts in various 
locations. The museum was selected because the staff expressed concerns that the furniture 
and artefacts were colonised by fungi. Samples were collected from surfaces that appeared to be 
colonised by fungi, surfaces that appeared clean and surfaces covered in dust.

The homes were randomly selected and with no described water damage. The home environments 
utilised long-term passive sampling (11–19 days) of dust using an EDC cloth (ZEEMAN, Alphen, The 
Netherlands, surface exposure area: 209 m2).

Quantification and identification of fungi from environmental samples

Sampled material was extracted using an extraction solution [MilliQ water, 0.85% sodium chloride 
(NaCl) and 0.05% Tween80] while shaking (GSP and eSwab – 15 min at 500 rpm; EDC – 60 min at 
300 rpm). All samples were stored at −80 °C in 30% glycerol until plated.

The GSP samples were plated on DG18 and MY50 agar. The eSwab samples were plated on SAB, 
DG18 and MY50 agar. The EDC samples were plated on DG18, MY50 and malt extract agar (MEA). 
In the case of agar plates being overgrown, making colony counting and isolation impossible, the 
samples were plated in 10 × dilutions (MilliQ water, 0.85% NaCl, 0.001% Bac. peptone, Merck 
KGaA, Darmstadt, Germany). All agar plates were incubated at 25°C; DG18, SAB, MEA for 1 week 
and MY50 for 3 weeks.

Following incubation, fungal colonies were counted. Fungal concentrations from EDC and GSP 
samples were calculated, taking into account the number of colonies, how much samples were 
diluted, sampling time and volume extracted, and for GSP samples also the flow rate.

The fungal colonies were prepared for MALDI-TOF MS as described above and identified 
using the Bruker database as well as the extended database. Identification of isolates were 
analysed as technical duplicates, with the cut-offs: identification (ID) scores <1.75 were 
unidentified, ID scores 1.75–1.85 were identified at genus level and ID scores >1.58 identified to 
species level.
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Data analysis and visualisation

Data analysis was conducted using R v.4.2.3 [35] using the packages ‘tidyverse’ [36], ampvis2 [37] 
and ggplot2 [38] for data handling and visualisation. Data on fungal species (xerophilic/xerotolerant 
out of total) on different agar media were compared using Fisher’s Exact Test.

Results

Construction of a supplementary MALDI-TOF MS database

MSPs were successfully created from all four broth media for 15 out of the 19 xerophilic/
xerotolerant Aspergillus species. However, for Aspergillus clavatophorus, A. restrictus, A. 
penicillioides and A. halophilicus, it was not possible to obtain spectra from all media (Table 1). It 
was only possible to obtain spectra of A. halophilicus if the fungus was inoculated in broth media 
with low water activity (MY50 and MY70) for 10 to 14 days. In contrast, spectra of A. restrictus, A. 
clavatophorus and A. penicillioides were of insufficient quality when inoculated in MY50, MY70 or 
CY20 (Table 1).

Discrimination between the 19 xerophilic/xerotolerant Aspergillus species of the supplementary 
database was evaluated by an MSP dendrogram (Fig. 1). The majority of the MSPs formed 
species-specific groups, with the exception of Aspergillus destruens and Aspergillus penicilloides, 
which were indistinguishable from each other. Generally, the MSP species groups formed 
clades, with similar patterns to previously published data based on genomic data, albeit with 
some discrepancies [16]. The Aspergillus restrictus clade, consisting of Aspergillus pachycaulis, 
Aspergillus caesiellus and A. restrictus were grouped together, forming a distinct cluster. The 
A. conicus clade (A. villosus, Aspergillus gracilis, Aspergillus domesticus, Aspergillus pseudogracilis, 
A. conicus, A. destruens), instead of forming one clade, formed two clades of A. villosus, A. gracilis 
and A. domesticus, A. conicus, A. pseudogracilis, with A. destruens being indistinguishable from A. 
penicillioides from the A. penicillioides clade. The two species included from the A. vitricola clade 
(Aspergillus glabripes, A. vitricola) were grouped with species of the A. penicillioides clade and A. 
conicus clade. The species included from the A. penicillioides clade (Aspergillus magnivesiculatus, 
Aspergillus hordei, A. penicillioides, A. clavatophorus, Aspergillus infrequens, A. canadensis), were 
split into two distinct clades.

When queried against the Bruker fungi database, only A. penicillioides, which already was present 
in library, was correctly identified. The remaining MSPs were not identified, as expected. The 
MSPs of A. destruens were indistinguishable from A. penicillioides and would be identified as 
A. penicillioides by the Bruker fungi library. The MSPs were kept in the supplementary database 
regardless.

Figure 1

AN MSP dendrogram based on 
MSPs of the 19 species of xerophilic/
xerotolerant Aspergillus, using the 
MALDI Biotyper Compass Explorer 
module. The distance level [arbitrary 
unit (a.u.), normalised to a max of 1000], 
reflects the differences between species 
and how related the MSPs are to one 
another. Clade designation based on 
genomic data is indicated by clade-
specific colours and marked on the 
right-hand side of the image [16].
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Search for xerophilic/xerotolerant Aspergillus species retrospectively in stored 
mass spectra

The supplementary database was used to identify mass spectra previously obtained from a study 
on drilling waste treatment plants [34]. Xerophilic/xerotolerant fungi had been reported in this 
environment, therefore, a total of 313 mass spectra originating from isolates grown on DG18 and/or 
SAB agar plates (nDG18 = 197; nSAB = 116), respectively, were attempted to be re-identified, using the 
supplementary database. Of these, two previously unidentified isolates (originating from the same 
DG18 agar plate) were now identified as A. caesiellus, with ID scores >2.00 (Fig. A1).

The two agar media used in this study appeared to affect the total number of xerophilic/xerotolerant 
species detected (Fig. A1). We observed that the samples inoculated on DG18 agar plates, 
contained a higher fraction of xerophilic/xerotolerant species (n = 7/21) of the genera Penicillium, 
Cladosporium and Aspergillus when compared to the samples detected on SAB agar plates (n = 
3/14) – although the differences were not significant (p = 0.70).

Xerophilic Aspergillus species in environmental samples

The supplementary database was further evaluated using environmental samples collected from 
domestic homes (n = 27, via EDC), a museum (n = 15, via eSwab) and a warehouse (n = 9, via GSP) 
(Fig. 2). Across all environments, isolates identified to species level by the Bruker fungi library were 
not misidentified by the new supplementary database.

The fungal concentration of the air exposure samplers (GSP) was between 268 and 1.15 × 104 
colony forming units (CFU)/m3. The fungal concentration of the sedimented dust (EDC) was 
between 205 and 4.45 × 104 CFU/m2/day. The fungal surface concentrations (eSwab) were between 
50 and 9.2 × 106 CFU/location range (Fig. A2).

Xerophilic Aspergillus species, not present in the Bruker library, were detected in the home and the 
warehouse samples when using the supplementary database. The xerophilic Aspergillus species 
identified using the supplementary database were A. pseudogracilis (nine isolates), A. glabripes 
(one isolate), A. domesticus (three isolates) and A. conicus (one isolate). Aspergillus domesticus 
and A. pseudogracilis were identified in two of the environments tested (Figs 3–5). Other xerophilic/
xerotolerant fungi were identified from these environments using the Bruker library, including A. 
glaucus (six isolates), Penicillium brevicompactum/olsonii (64 isolates), Penicillium chrysogenum (15 
isolates), Penicillium corylophilium (14 isolates) and Cladosporium herbarum (27 isolates) identified 
in several samples (Figs 3–5).

The home environments were dominated by the genus Cladosporium, with Cladosporium 
cladosporioides and C. herbarum being present in high concentrations of 7.0 × 103 CFU/m2/day and 
4.4 × 103 CFU/m2/day, respectively. Species of Penicillium were also present in high concentrations. 
The three xerophilic Aspergillus species identified from these environments, A. domesticus, A. 
glabripes and A. pseudogracilis, using the supplementary database were reported in concentrations 
of 520 CFU/day, 410 CFU/day and 210 CFU/day, respectively (Fig. 3).

The most abundant fungi detected in the museum were Penicillium aurantiogriseum (6.5 × 104 CFU/
location), P. chrysogenum (1.1 × 104 CFU/location) and isolates belonging to the Cladosporium 
genus (2.2 × 104 CFU/location). No additional xerophilic Aspergillus species were identified from the 
museum samples using the supplementary database (Fig. 4).

The warehouse samples were dominated by Penicillium camemberti commune cyclopium 
(Penicillium CCC) (5.5 × 103 CFU/m3), Cladosporium langeronii (2.2 × 103 CFU/m3) and the yeast 
Filibasidium magnum (2.8 × 103 CFU/m3). In this environment, A. pseudogracilis, A. domesticus and 
A. conicus were found in concentrations of 270 CFU/m3, 39 CFU/m3 and 100 CFU/m3, respectively 
(Fig. 5).

Effect of media on detection of xerophilic Aspergillus species in environmental 
samples

The various agar media used for fungal growth tended to affect the detection of xerophilic fungi 
(Figs 3–5). In the home environment, a larger fraction of the detected fungi tended to be xerophilic 
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species when using MY50 (10/21 = 48% of species) and DG18 (8/29 = 27% of species), contra 
MEA (5/26 = 19% of species); (for MY50 vs MEA, p = 0.059). None of the xerophilic Aspergillus 
species included in the supplementary database were detected on DG18 or MEA. A similar 
trend was observed in the warehouse environment with 7/10 (70%) of species on MY50 being 
xerophilic species compared to 1/5 (20%) of species on DG18 (p = 0.12). This trend, however, was 
not observed in the museum environment (MY50, 6/22 = 27% of species; DG18, 5/25 = 20% of 
species; SAB, 7/25 = 28% of species) (p = 0.77).

Figure 2

Heatmap of fungal species identified 
(y-axis) across three environments 
(x-axis). Numbers represent the 
number of isolates found. The colour 
gradient represents the log10-
transformed geometric mean (GM) 
concentration (CFU/m2/day, CFU/
location and CFU/m3). Penicillium CCC 
is an abbreviation for P. camemberti, 
P. commune or P. cyclopium, which 
cannot be distinguished by MALDI-
TOF MS. Species marked with * 
are identified by the supplementary 
database.
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Discussion
In this study, a MALDI-TOF MS supplementary database consisting of 19 xerophilic Aspergillus 
species was constructed for the purpose of complementing the current Bruker fungi library for 
identification of these species in environmental samples.

Construction of a supplementary MALDI-TOF MS database of selected 
xerophilic Aspergillus species

Culture condition and sample preparation methods can influence the mass spectrum obtained 
[39,40]. Therefore, the database was constructed using MSPs based on raw mass spectra 
originating from isolates inoculated in four different broth media. Raw mass spectra of the highly 
xerophilic fungus, A. halophilicus, were only obtained when the fungus was inoculated in broth 
media of low water activity for at least 14 days. The inability to obtain raw mass spectra from A. 
halophilicus might be partly explained by it being obligately xerophilic and not readily cultured 
in high water-activity media [41–44]. This suggests that, when working with environments where 
extreme/obligate xerophilic fungi thrive, it is relevant to re-evaluate the protocols (i.e., inoculation 
media and incubation time) used to inoculate unknown fungal isolates, to obtain mass spectra and 
hence ensure species identification.

Importantly, none of the MSPs of the supplementary database matched entries in the Bruker fungi 
library except for the species A. destruens identified as A. penicillioides. The MSP dendrogram 
showed that the MSPs formed species-specific clusters of the various xerophilic Aspergillus 
species. An exception of the species-specific clusters was A. penicillioides and A. destruens, for 
which MSPs were indistinguishable. By the time of submission, we observed that the species 
designation was updated for A. destruens (strain IBT no. 34818), which is now designated 

Figure 3

Fungal species in homes (EDC 
samples) on DG18, MEA and MY50 
agar. Numbers represent the number of 
isolates in samples. The concentration 
is represented as GM of samples. 
Xerophilic/xerotolerant fungi from the 
supplementary database are highlighted 
in red, xerophilic/xerotolerant species 
present in the Bruker fungi library in 
green and other fungal species in blue. 
Penicillium CCC is an abbreviation 
for P. camemberti, P. commune 
or P. cyclopium, which cannot be 
distinguished by MALDI-TOF MS.
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Aspergillus salinarum. This species is a halophilic fungus isolated from a hypersaline environment 
(Table 1). However, this does not explain why MSPs of these two species are indistinguishable.

Regarding the overall clade structure of the MSP dendrogram, some disagreements in the 
phylogeny between proteomic-based data and published phylogenetic data based on genomic 
data were observed [16]. It should be noted that the supplementary database was based on a 
single strain per fungal species, which is insufficient for taxonomic characterisation of fungal 
species. Future studies, improving the supplementary database, by including biological replicates, 
will be relevant to provide better characterisation and clarify discrepancies.

Testing the supplementary MALDI-TOF MS database

The supplementary database was first tested on previously acquired spectra from a study on 
drilling waste treatment facilities. Two unidentified isolates were now identified as A. caesiellus, 

Figure 4

Fungal species in surface eSwab from 
a museum on DG18, MY50 and SAB 
agar. Numbers represent the no. of 
isolates in samples. The concentration 
is represented as GM of samples. 
Xerophilic/xerotolerant species 
present in the Bruker fungi library are 
highlighted in green, and other fungal 
species in blue. Penicillium CCC is 
an abbreviation for P. camemberti, 
P. commune or P. cyclopium, which 
cannot be distinguished by MALDI-TOF 
MS.

Figure 5

Fungal species in personal GSP 
samples from a warehouse on DG18 
and MY50 agar media. Numbers 
represent the no. of isolates in samples. 
The concentration is represented as 
GM of samples. Xerophilic/xerotolerant 
fungi from the supplementary database 
are highlighted in red, xerophilic/
xerotolerant species present in the 
Bruker fungi library in green, and other 
fungal species in blue. Penicillium CCC 
is an abbreviation for P. camemberti, 
P. commune or P. cyclopium, which 
cannot be distinguished by MALDI-TOF 
MS.
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demonstrating how already performed studies can easily be revised with supplementary fungal 
databases. Isolates identified to species level by the Bruker fungi library were not identified by the 
supplementary database, and thus it did not lead to misidentification.

Testing the supplementary MALDI-TOF MS database on environmental 
samples

The supplementary database was used to complement the Bruker database from three different 
environments. Isolates of xerophilic Aspergillus species were identified in two of these environments 
(homes and warehouse).

The museum samples did not reveal any xerophilic Aspergillus species using the supplementary 
database, despite other xerophilic/xerotolerant species being identified by the Bruker database 
from this environment. It should be mentioned that the museum environment from which these 
samples originate was not a closed, confined or climate-controlled site, and may not have favoured 
the growth of the specific xerophilic Aspergillus species included in this study.

The warehouse was selected for this study because the walls were described as being dry and 
yet had fungal growth on the walls, and therefore the presence of airborne xerophilic fungi could 
be expected to be present. In line with this, the supplementary database detected two species, 
A. glabripes and A. pseudogracilis. Other xerophilic/xerotolerant were also identified from 
this environment by the Bruker database, including A. glaucus, Aspergillus pseudoglaucus, P. 
brevicompactum and Penicillium corylophilum. The low number of fungal species detected in this 
environment could be explained by the relatively short sampling time for the GSP samplers [11–21 
min for the personal samplers (n = 6) and 240 min for the stationary samplers (n = 3)], resulting in 
a small sampled volume. The sampling for personal samplers covered the period the workers had 
tasks in the warehouse in the morning.

We analysed samples from 27 randomly selected homes. The xerophilic Aspergillus species 
identified by the supplementary database (A. domesticus, A. glabripes and A. pseudogracilis) 
constituted only a small part of the potential exposure to fungi in the homes. This is in 
accordance with what could be expected, as fungi in home environments may have several 
sources and not only sources supporting growth of xerophilic fungi. The relatively low 
concentration of xerophilic Aspergillus species, on the one hand, suggests that these species 
do not pose a problem in these homes. On the other hand, their presence, combined with the 
fact that methods selecting for these xerophilic fungi have not been widely used in previous 
studies in homes, highlights the need for further studies on their prevalence in homes. Previous 
studies in homes also using EDCs for sampling have typically used DG18 agar [45] and SAB 
agar [46]. The most common species observed are in accordance with what has previously been 
found in homes, such as certain Cladosporium (Cladosporium sphaerospermum, C. herbarum, 
Cladosporium cladosporides), Penicillium (P. brevicompactum, P. camemberti, P. chrysogenum, 
Penicillium citrinum, Penicillium commume, Penicillium glabrum, P. olsonii) and Aspergillus (A. 
glaucus) species [17,47,48].

Effect of media on isolation and identification of xerophilic fungi

The type of agar media tended to have an effect on detection of xerophilic/xerotolerant 
species. With the exception of A. caesiellus (Fig. A1), all xerophilic Aspergillus species from the 
supplementary database were only detected on MY50. Some xerophilic/tolerant species, such as P. 
brevicompactum/olsonii, P. chrysogenum, C. cladosporioides, C. herbarum, A. pseudoglaucus and 
A. glaucus, were detected regardless of the media used. It should be noted that the MY50 plates 
were incubated longer than DG18, MEA and SAB agar plates as it takes more time for fungi to grow 
on this water-restricted medium. One explanation as to why the xerophilic Aspergillus species in 
the supplementary database were not detected on DG18 (with exception of A. caesiellus, Fig. A1), 
and that fewer xerophilic/xerotolerant fungi were observed on other media, might be that they were 
outcompeted by faster growing species on less restrictive media.

As described previously in this discussion, the broth medium also has an impact on the creation 
of MSPs for the new database, and raw mass spectra of A. halophilicus could only be obtained if 
it was inoculated in MY50 or MY70 while A. clavatophorus only formed raw mass spectra on SAB 
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agar. These results, along with other studies [49], underline the importance of appropriate media 
(i.e., low aw media) and incubation time, both for constructing and for using the database.

Implications and future directions

Xerophilic/xerotolerant Aspergillus species were detected across multiple environments and sample 
types though they constituted only a small fraction of all fungi. For future studies, we recommend 
incorporating low activity media (e.g., MY50) into both initial plating and broth cultivation protocols 
to obtain more knowledge on the presence of xerophilic/xerotolerant fungi in indoor environments. 
While this may not be necessary for routine surveys, it could be warranted in cases where 
environmental conditions, such as dry, climate-controlled buildings, suggest a potential niche for 
xerophilic species. The data from the warehouse, along with prior reports from museum settings 
[26,50], indicates that xerophilic fungi may persist even under stringent environmental controls. As 
such, targeted methods may be crucial for accurate assessment of fungal exposure in vulnerable 
settings.

Conclusion
It was possible to construct a supplementary MALDI-TOF MS database successfully which 
complemented the Bruker database, with the combined databases identifying additional 
xerophilic/xerotolerant Aspergillus species in different environmental samples, previously going 
undetected, and therefore provided a more in-depth characterisation of various environments. The 
supplementary database has the strength that spectra are obtained from fungi grown in different 
broth media.

For future constructions of MSPs of xerophilic/xerotolerant Aspergillus species and the subsequent 
use of the MSPs for species identification we recommend using broth and agar media agar with 
low water activity and using an extended incubation time of 3 to 5 days in broth media. For A. 
halophilicus an even longer incubation time and double the matrix are needed. Future studies 
expanding the MALDI-TOF MS database by including more strains of each species may improve 
the quality of the database and clear observed discrepancies.
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Appendix

Figure A1

Retrospective search in previous 
obtained mass spectra for xerophilic/
xerotolerant fungi. The mass spectra 
are from fungi in drilling waste plants. 
Fungi from the supplementary database 
are highlighted in red, xerophilic/
xerotolerant species present in the 
Bruker library in green, non-xerophilic/
xerotolerant fungi in blue. (a) Total 
species identified. (b) Species identified 
based on agar media (nDG18 = 197; 
nSAB = 116). Penicillium CCC is an 
abbreviation for P. camemberti, P. 
commune or P. cyclopium, which 
cannot be distinguished by the MALDI-
TOF MS library.
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Figure A2

Concentrations of fungi across three 
environments, each using different 
sampling techniques: (a) EDC, homes; 
(b) surface eSwab, museum; C GSP air 
samplers, warehouse. The x-axis shows 
log10-transformed concentrations 
(CFU/m2/day, CFU/location and CFU/
m3). The black dots represent GM 
values of the sample, while the smaller 
dots represent outliers.


