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A B S T R A C T

Few-shot fine-grained classification aims to identify novel fine-grained classes from extremely few examples 

with ultra-high semantic similarity between classes, hence a notoriously hard task. To extract discriminative 

features from few samples for recognizing subtle differences between fine-grained classes, it is pivotal to exploit 

comprehensive interactions across all dimensions in space and channel, which, however, is unexplored yet by 

state-of-the-art methods in this challenging area. To address this issue, in this paper we show that a simple ad-

justment to the existing triplet attention module (TAM) can be highly effective for few-shot fine-grained image

classification. More specifically, building on TAM which comprises three parallel branches for pairwise inter-

actions between height, width, and channel dimensions, we introduce an additional interaction between the 

outputs of these three branches, capable of modeling the dependency across all three dimensions; the revised 

method is dubbed interactive triplet attention module (ITAM). ITAM is a plug-and-play module, which can be 

inserted into any metric-based few-shot fine-grained image classifiers for performance enhancement. Extensive 

experiments, on CUB-200-2011, Flowers, Stanford-Cars, and Stanford-Dogs, showcase the superiority of ITAM 

against state-of-the-art few-shot fine-grained image classifiers.

1. Introduction

Fine-grained image classification is a challenging task in computer 

vision. Unlike other tasks, fine-grained classification aims to identify 

sub-categories of objects with subtle differences, such as different breeds 

of birds, dogs, or flowers, hence challenging. For example, as shown 

in Fig. 1, the focus should be on subtle differences in beak, wing, or 

belly feathers as clues for distinguishing between bird breeds. In gen-

eral, a quality fine-grained classifier requires a large number of labeled 

samples for training. However, often only very few labeled samples are 

available in many fields, e.g., new species in biological research [1] and 

rare cases in medical research [2]. To tackle the problem of few train-

ing samples, in recent years many few-shot learning methods have been 

proposed [3–5]. However, in the case of few-shot fine-grained image 

classification [6], due to the dual issues of few shots and high semantic 

similarity of fine-grained classes, it is still an open question of how to 

extract discriminative features from few samples for recognizing subtle 

differences between fine-grained classes. To partly answer this question, 

we believe it is pivotal to exploit comprehensive interactions across all

dimensions in space and channel, due to the following two reasons. 

Firstly, fine-grained objects often differ in only tiny regions and certain 

properties, such as distinct color patterns in belly feathers, and therefore 

both spatial and channel attention are crucial. Secondly, when objects 

have multiple discriminative regions, the importance of these properties 

may vary across different regions, necessitating the interaction between 

spatial and channel dimensions. However, as far as we know, such inter-

action is unexplored yet by state-of-the-art methods in this challenging 

area.

To model the interactions among spatial and channel dimensions, 

this paper proposes adapting the triplet attention module (TAM) [7] for 

fine-grained few-shot image classification. The original TAM is used in 

standard image classification and consists of three branches to estab-

lish the pairwise interactions between the dimensions of height, width 

and channel. By aligning and fusing spatial attention and channel at-

tention, TAM can effectively extract discriminative features to highlight 

desired targets while reducing unwarranted interference from the back-

ground, hence we believe it can be exploited to better recognize subtle 

differences between fine-grained classes and improve their few-shot
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Fig. 1. Heatmaps of features for samples from the CUB dataset. Compared with 

FRN and FRN+TAM, the proposed FRN+ITAM focuses more on discriminative 

regions of birds.

classification. However, TAM is only capable of modeling first-order in-

teractions between two dimensions. Therefore, to further enhance TAM, 

we introduce an additional interaction between every pair of the three 

branches to capture the dependency across all three dimensions, which 

enables explicit modeling of up to third-order interactions, thereby 

capturing more complex relationships between features. The resulting 

method, termed interactive triplet attention module (ITAM), can further 

improve the feature discriminativeness, as demonstrated in Fig. 1. It is 

also worth mentioning that ITAM does not introduce additional param-

eters, which is highly desirable when dealing with scarce support data, 

and we shall show that ITAM is a plug-and-play module, which can be 

inserted into any metric-based few-shot fine-grained image classifiers 

for performance enhancement.

In sum, the novelties and contributions of this paper are:

• We investigate TAM for a new task of few-shot fine-grained image

classification and show that cross-dimensional attention enables the 

classifier to focus on the discriminative features, aiding in the recog-

nition of subtle differences between fine-grained classes from only 

few labeled samples.

• We improve TAM, which models two-dimensional interactions, to

ITAM, which models three-dimensional interactions, leading to more 

discriminative features.

• We show that ITAM can be readily inserted into various metric-based

few-shot image classifiers with different network structures.

• Extensive experiments, on the benchmark datasets of CUB-200-2011,

Flowers, Stanford-Cars and Stanford-Dogs, showcase the superior-

ity of ITAM against state-of-the-art few-shot fine-grained image 

classifiers.

2. Related work

2.1. Metric-based few-shot learning

Metric-based approach, aiming to accurately measure the similarity 

between support samples and query samples, is de-facto popular and 

state-of-the-art approach to few-shot learning [4], with various met-

rics adopted or developed to classify samples, e.g., MatchingNet [8] 

uses cosine similarity, ProtoNet [9] adopts Euclidean distance, and 

DeepBDC [10] employs the Brownian distance covariance as the 

metric, which can capture non-linear relationships between features 

and is computationally efficient. Instead of using fixed metrics, 

RelationNet [11] designs a relation module to learn the distance 

between a query sample and a support class. As an improvement, 

SLTRN [12] uses a transformer architecture to learn the relationship 

between a query and all support samples, fully exploiting the informa-

tion from the support set. NTK-FSCIL [13] introduces neural tangent 

kernel theory, combining meta-learning and regularization to improve 

generalization.

2.2. Few-shot fine-grained image classification

The discriminativeness and generalizability of feature representa-

tions are crucial to few-shot fine-grained image classification. In partic-

ular, low-level feature representations are often adopted as they contain 

local detailed information. DN4 [14] is a pioneering work in this line, 

which shifts the classification regime from image-to-image comparison 

to image-to-class comparison built on local features. It computes the 

distances between a local feature of a query image and the 𝑘 most sim-

ilar local features of support images in a class, and then aggregates the 

distances over all local features of the query. FRN [15] hypothesizes 

that a query image can be approximated by support images of its own 

class and thus uses ridge regression to reconstruct local features of a 

query image from the pool of support features and predicts the class 

of the query sample based on its distance to the reconstructed query. 

HelixFormer [16] refines support local features by considering their re-

lations to the query local features, modeled through cross-attention, and 

similarly refines query local features. AGPF [17] extracts multi-scale fea-

tures and reweights the features via the multi-level attention pyramid. 

LCCRN [18] designs a new cross-reconfiguration module, which can 

fully integrate the base feature representation and the local content-rich 

feature representation to enhance the semantic understanding of the net-

work. KLSANet [19] crops random regions of an image to extract diverse 

local features and filters out irrelevant query parts before comput-

ing image-to-class similarity. FSC [20] addresses cross-domain few-shot 

learning by improving domain invariance through frequency-spatial fu-

sion and style-based attacks. CoDF [21] employs self-supervised learning 

techniques to endow representations with richer information, thereby 

facilitating the acquisition of key information required for few-shot 

class-incremental learning tasks.

Orthogonal to the aforementioned methods, few-shot fine-grained 

image classification can be improved by advancing the distance or sim-

ilarity measures. BSNet [22] combines cosine similarity and a relation 

module to form a double similarity module. DeepEMD [23] uses the 

earth mover’s distance as a metric to calculate the structural distance 

between local features.

In this paper, a new approach is proposed to improve feature discrim-

inativeness. Compared with other methods, ITAM uses only operations 

such as rotation and matrix multiplication, which do not introduce any 

trainable parameters and are particularly well-suited for the few-shot 

learning task.

2.3. Attention mechanisms

Squeeze and excitation network (SENet) [24] computes channel at-

tention and provides incremental performance gains at a fairly low cost. 

Convolutional block attention module (CBAM) [25] provides robust 

representative attention by combining spatial attention with chan-

nel attention. Global-context network (GCNet) [26] proposes a novel 

non-local block that integrates with SE blocks to combine context repre-

sentation with channel weighting. Efficient channel attention (ECA) [27] 

proposes a local cross-channel interaction strategy. Coordinate atten-

tion (CA) [28] captures cross-channel information, as well as directional 

perception and positional perception information. Normalize attention 

module (NAM) [29] reduces the weight of less significant features by 

applying sparse weight penalties to the attention module. The triplet 

attention module (TAM) [7] uses rotation operations and residuals to 

establish inter-dimensional dependencies with negligible computational 

overhead. Efficient multi-scale attention (EMA) [30] designs a multi-

scale parallel sub-network to establish short and long dependencies. 

Some channel dimensions are reshaped into batch dimensions to avoid 

certain forms of dimensionality reduction through general convolu-

tion. In addition to constructing local cross-channel interaction in each 

sub-network, the output feature graphs of two parallel sub-networks 

are fused by cross-space learning. Efficient local attention (ELA) [31] 

improves the efficiency of computing spatial attention and avoids com-

pressing channel attention. It encodes spatial positional information by
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Table 1 

Comparison of attention mechanisms in terms of their type, purpose, and structure. ‘GAP’ and ‘GMP’ refer to global average pooling and global maximum pooling, 

respectively; ‘MLP’ refers to multi-layer perceptron; ‘Conv’ refers to convolution.

Method Attention type Purpose Structure

SENet Channel attention Explicitly model interdependencies between

channels

2D GAP followed by a self-gating mechanism based on

MLP 

ECA Channel attention Learn channel attention more efficiently 2D GAP followed by 1D Conv along the channel

dimension

CBAM Spatial + channel attention Extract meaningful information along both spatial

and channel dimensions 

1D channel attention (GAP, GMP + MLP), followed by

2D spatial attention (GAP, GMP + 2D Conv) 

NAM Spatial + channel attention Utilize the variance of the trained model weights to

adjust channel and spatial attention

Multiply features by a scaling factor based on batch

normalization

CA Spatial + channel attention Capture both channel relationships and long-range

spatial dependencies 

Two 1D GAP to aggregate features along H and W di

mensions, followed by separate 2D Conv and attention 

multiplication 

-

EMA Spatial + channel attention Capture both channel relationships and short-range

and long-range spatial dependencies 

Divide the channel dimension into groups, followed by

CA and 2D spatial dimension in parallel 

ELA Spatial + channel attention Improve CA to learn spatial attention more

efficiently without compressing channel dimension

Two 1D GAP to aggregate features along H and W di

mensions, followed by separate 1D Conv, GroupNorm, 

and attention multiplication

-

DCAFE Spatial + channel attention Improve CA to preserve the most significant features Parallel CA where one branch is CA and the other

applies GMP for feature aggregation

GCNet Spatial + channel attention Integrate global spatial attention with channel

attention

Global attention pooling via 2D Conv, feature transform

via 2D Conv, and feature aggregation via addition

AA New attention paradigm Reduce redundancy of self-attention Introduce a small set of agent token to replace the value

tokens in attention 

TAM Spatial + channel attention Model first-order interaction between spatial and

channel attention 

Rotation followed by residual transformations

ITAM Spatial + channel attention Model high-order interaction between spatial and

channel attention to extract discriminative features

Rotation followed by residual transformations and

pairwise multiplication between refined features

combining 1D convolution and group normalization without dimension-

ality reduction. Agent attention (AA) [32] introduces a small number of 

agent tokens to collect information from key and value tokens and then 

deliver it to query, which significantly reduces computational cost while 

preserving global context modeling capability. Dual coordinate atten-

tion feature extraction (DCAFE) [33] uses coordinate attention [28] that 

better captures complex features such as petal patterns and structural 

variations.

The proposed ITAM module is built on TAM [7]. However, un-

like the above attention mechanisms, ITAM captures the full inter-

action between dimensions of the input tensors through three par-

allel branches, offering full cross-dimensional attention. Our goal is 

to stress the importance of full cross-dimensional interactions to effi-

ciently and effectively capture from few samples the discriminative fea-

ture representations for recognizing subtle differences between classes, 

hence particularly fit for few-shot fine-grained image classification. A 

comparison between ITAM and other attention mechanisms is listed 

in Table 1.

3. Interactive triplet attention network 

3.1. Problem formulation

Few-shot image classification aims to use only very few labeled sam-

ples from each category to learn knowledge on data representations 

and/or classification models, and apply the learned knowledge to clas-

sify new categories. To achieve this, the datasets are usually divided into 

training set 𝐷 𝑡𝑟𝑎𝑖𝑛 

, validation set 𝐷 𝑣𝑎𝑙 

, and test set 𝐷 𝑡𝑒𝑠𝑡 

, with the class

labels being disjoint between these three datasets. To avoid overfitting 

on the training set and achieve good generalization on the test set, we 

adopt the widely used episodic training mechanism [8].

Specifically, in each set, a series of episodes (a.k.a. tasks) is generated 

as follows. Firstly, randomly sample 𝑁 classes from 𝐷 𝑡𝑟𝑎𝑖𝑛 

∕𝐷 𝑣𝑎𝑙 

∕𝐷 𝑡𝑒𝑠𝑡 

.

Then, from each class, randomly sample 𝐾 images to form the support 

set 𝑆 and 𝑀 images to form the query set 𝑄. This setting is known as an 

“𝑁 -way 𝐾-shot” classification problem. Samples in the query set 𝑄 are 

unlabeled and will be classified based on the knowledge learned from 

the labeled support samples.

3.2. Network overview

As shown in Fig. 2, the interactive triplet attention network consists 

of three main components.

The first component is the feature embedding network. Its purpose 

is to extract features from images.

The second component is the interactive triplet attention mod-

ule (ITAM). This module first establishes three pairwise interactions 

between the dimensions of height, width, and channel by using three 

parallel branches. Secondly, to comprehensively fuse spatial and chan-

nel attention, the module performs the interaction between every pair 

of the three branches. In this way, the interaction among all three di-

mensions is considered, thereby generating discriminative features that 

can facilitate subsequent classification.

The third component is the metric module, which calculates the 

similarity between support features and query features. Any similarity 

measure or similarity learning module can be used. In this paper, we 

adopt the state-of-the-art feature reconstruction network (FRN) [15] to 

reconstruct query features from support features and use the Euclidean 

distance between the original query features and the reconstructed query 

features for classification.

3.3. Interactive triplet attention module

Fig. 3 shows the ITAM module. Given an image 𝑥, the feature embed

ding network is used to generate the corresponding embedded features 

𝑥̂  

 = 𝑓 (𝑥 ∣ 𝜃) ∈ R 

𝐶×𝐻×𝑊 , where 𝐶 denotes the number of channels, and 

𝐻 and 𝑊 denote the height and width of the feature map, respectively. 

Following TAM [7], to establish the pairwise interactions between the 

dimensions of height 𝐻 , width 𝑊 , and channel 𝐶, the feature tensor 𝑥̂ is 

passed to three parallel branches, where the first branch is responsible 

for capturing the interaction between the height dimension 𝐻 and the 

channel dimension 𝐶; the second branch is for the interaction between 

the channel dimension 𝐶 and the width dimension 𝑊 ; and the third 

branch is for the spatial attention between 𝐻 and 𝑊 . In the first and 

second  

 branches, the feature tensor 𝑥̂ is rotated 90 

◦ counterclockwise 

along the 𝐻 and 𝑊 axes, respectively, and these two rotated features 

are represented as 𝑥̌ 1 

and 𝑥̌ 2 

:

-
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Fig. 2. Architecture of the interactive triplet attention network under the 3-way 1-shot setting, which includes an embedding network to extract image features, the 

interactive triplet attention module (ITAM) to generate more discriminative features, and a metric module to calculate the similarity between support features and 

query features. Darker blocks indicate that the corresponding features are more discriminative.

Fig. 3. Architecture of the interactive triplet attention module (ITAM). ITAM 

consists of three branches, where the left, middle, and right branches compute 

the interactions between the (H, C), (C, W), and (H, W) dimensions of the fea-

ture tensor, respectively. The novelty of ITAM compared with TAM lies in the 

yellow region. Since each branch only considers two-dimensional interactions, 

ITAM further performs interactions between every pair of the refined features, 

enabling information fusion across all three dimensions.

𝑥̌ 1 

= 𝑝𝑚 1 

(𝑥̂) ∈ R 

𝑊 ×𝐻×𝐶 , (1)

𝑥̌ 2 

= 𝑝𝑚 2 

(𝑥̂) ∈ R 

𝐻×𝐶×𝑊 , (2)

where 𝑝𝑚 represents a counterclockwise rotation of 90 

◦
1

 

 

along the 𝐻 

axis and 𝑝𝑚2
 

 represents a  

 

counterclockwise rotation of 90 

◦ along the 𝑊 

axis. The rotation operation refers to axis reordering and is implemented

using PyTorch’s .permute() function, which is functionally equivalent

to a transpose extended to multiple dimensions. In the third branch, no 

rotation operation is applied in order to preserve the original feature ten

sor. For notation consistency, 𝑥̌ 3 

= 𝑥̂ is introduced. Then a 𝑍-pool layer 

is applied to aggregate the cross-dimensional features. Given a rotated 

feature tensor 𝑥̌ , the 𝑍-pool layer is calculated as:

-

𝑍-pool 

( 

𝑥̌ 𝑛 

) 

= 

[ 

𝐺𝑀𝑃 

( 

𝑥̌ 𝑛 

) 

, 𝐺𝐴𝑃 

( 

𝑥̌ 𝑛 

)] 

, 𝑛 ∈ [1, 2, 3] , (3)

where 𝐺𝑀𝑃 and 𝐺𝐴𝑃 denote the global max pooling operation and the 

global average pooling operation, respectively. Both operations are ap

plied to the first dimension of the tensor. 

× ×For example,  

  for 𝑥̌ 1 ∈ R 

𝑊 𝐻 𝐶
 

, 

the outputs of 𝐺𝑀𝑃 and 𝐺𝐴𝑃 are both of dimensional 2 × 𝐻 × 𝐶. By 

utilizing the two pooling operations, the 𝑍-pool can effectively reduce 

the first dimension to two while preserving the most prominent features 

and the overall pattern, thereby retaining the rich feature representation 

of the original image. Next, the attention weight 𝑠𝑛  

is generated through 

a standard convolution layer 𝐶𝑜𝑛𝑣 (⋅) with a kernel size of 7×7 and an 

activation layer 𝜎:

-

𝑠 𝑛 

= 𝜎 

( 

𝐶𝑜𝑛𝑣 7×7 

( 

𝑍-pool 

( 

𝑥̌ 𝑛 

))) 

, (4) 

The resulting attention weights 𝑠 𝑛 

are applied to 𝑥̌ 𝑛 

.

The final step is to generate the enhanced interactive features. To 

ensure all features have the same shape, the feature tensor in the first 

two branches is rotated 90 

◦ clockwise along the 𝐻 and 𝑊 axes, respec-

tively, returning it to the original shape. Different from TAM [7] which 

averages over the three feature tensors, we perform a multiplication be-

tween every pair of the refined feature tensors and then aggregate the 

interactive features by using a simple average:

𝑥̃ = 

1
3 

(

𝑝𝑚−1
1

( 

𝑠1 

𝑥̌ 1 

)

× 𝑝𝑚−1
2

( 

𝑠2 

𝑥̌ 2 

)

+ 𝑝𝑚−1
2

( 

𝑠 2 

𝑥̌ 2 

) 

× 𝑠 3 

𝑥̌ 3

+ 𝑝𝑚−1
1

( 

𝑠 1 

𝑥̌ 1 

) 

× 𝑠 3 

𝑥̌ 3 

) 

, (5)

−1where 𝑝𝑚1 represents a clockwise rotation of 90 

◦ along the 𝐻 axis 

and 𝑝𝑚−1 represents a clockwise rotation of 90 

◦ along the2  𝑊 axis. The 

obtained feature 𝑥̃ has the same shape as the input feature, i.e., with 

dimensions 𝐶 × 𝐻 × 𝑊 .

In this process, ITAM aligns attention in both spatial dimensions 

and channel dimensions with only rotation and residual convolution, 

which does not introduce any additional parameters. Moreover, with 

each branch already capturing first-order interactions, the multiplication 

between pairs of the three branches brings in a third-order interac-

tion among all three dimensions. This enables the modeling of more 

complex relationships between features, potentially improving their 

discriminability. As demonstrated in Section 4.5, feature embeddings 

resulting from ITAM are more discriminative than those from TAM.
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3.4. Metric module

The enhanced features generated by ITAM can be used in any metric-

based few-shot learning methods. In this section, we exemplify this 

by combining the ITAM with the state-of-the-art feature reconstruction 

network (FRN) [15].

The feature reconstruction module first converts the feature
[

 tensor
]

 

into 𝑟 (𝑟 =
  

 𝐻 × 𝑊 ) 𝐶-dimensional local descriptors 𝑥̃ = 𝑥̃ (1) 

,… , 𝑥̃ (𝑟) 

, 

and then gathers the local descriptors of the same class in a support 

feature pool to represent a class. In other words, in the 𝑁 -way 𝐾-shot 

classification task, for each class 𝑛, all the features in 𝐾 support images 

are gathered into a support feature pool 𝑆  

 .𝑛  

 

∈ R 

𝐾𝑟×𝐶
 Similarly, a query 

feature tensor can be transformed into 𝑄 ∈  

 𝑅 

𝑟×𝐶 . Next, ridge regression 

is applied to reconstruct the query feature by using the support feature

pool of class 𝑛, leading to the reconstructed query feature 𝑄̄ 

 𝑛 

:

̄ 𝑄 𝑛 = 𝜌𝑄𝑆 

⊤
𝑛
(

𝑆𝑛𝑆 

⊤
𝑛 + 𝜆𝐼 

) −1𝑆 𝑛, (6)

𝜆 = 

𝐾𝐻𝑊 

𝑑 

𝑒 

𝛼 , (7)

𝜌 = 𝑒 

𝛽 , (8)

where 𝐼 is the identity matrix. To ensure that 𝜆 and 𝜌 are always positive,

they are defined as   

 𝜆 = 𝐾𝐻𝑊 𝑒𝑑  

𝛼 and 𝜌 = 𝑒 

𝛽 , where 𝛼 and 𝛽 are learnable

hyperparameters.

Finally, we calculate the squared Euclidean distance between the 

original query feature and the reconstructed query feature:

𝑑 

( 

𝑄, 

̄ 𝑄 𝑛
) 

= 

1 

𝑟 

∥ 𝑄 − ̄ 𝑄 𝑛 

∥ 

2, (9)

( )

where the squared Euclidean distance 𝑑
 

 𝑄, 𝑄̄
 

 𝑛 can be viewed as the

mean squared error of reconstructing the query features based on the 

𝑛th 

 class support features. For a query sample, it is more likely that its 

features can be reconstructed by using the features from the support 

samples of the same class than those from different classes. Therefore, 

the query sample is assigned to the class with the smallest Euclidean 

distance.

3.5. Loss function

The final classification is obtained by applying the softmax function 

to the computed Euclidean distances:

𝑃 

( 

𝑦 𝑞 = 𝑛 ∣ 𝑥 𝑞 

)

= 

𝑒 

( 

−𝜏𝑑 

( 

𝑄, ̄ 𝑄 𝑛
))

∑ 

𝑛 

′ ∈N 

𝑒 

( 

−𝜏𝑑
(

𝑄, 𝑄̄𝑛 

′ 

)) , (10)

where 𝑥 𝑞 

denotes the query sample, 𝑦 denotes the predicted label of the𝑞       

 

query sample, N denotes the set of class labels in an episode, and 𝜏 is a 

learnable hyperparameter.

The entire network is trained by minimizing the cross-entropy (CE) 

loss:

𝐿 𝐶𝐸 

= − 1
𝑀

𝑀
∑ 

𝑖=1

( 

𝒚⊤𝑖 log 

( 

𝒑 𝑖 

)) 

, (11)

where 𝒚 𝑖         

 

represents a one-hot vector, 𝒑𝑖 

represents the classification

probability vector, and 𝑀 represents the number of query samples.

4. Experimental results and analysis 

4.1. Datasets

In order to test the effectiveness of the proposed method, we eval-

uated it on four fine-grained datasets: CUB-200-2011 (CUB), Stanford-

Dogs (Dogs), Oxford-102-Flower (Flowers), and Stanford-Cars (Cars). A 

brief description of the datasets is as follows:

CUB-200-2011 [34]: The dataset contains 11,788 bird images of 

200 classes, randomly divided into a training set of 100 classes, a val-

idation set of 50 classes, and a test set of 50 classes. In addition,each

image is cropped into a bounding box according to the preprocessing 

methods [23,35].

Stanford-Cars [36]: The dataset contains 16,185 images of 196 

types of cars, randomly divided into a training set of 98 classes, a 

validation set of 49 classes, and a test set of 49 classes.

Stanford-Dogs [37]: The dataset contains 20,580 dog images of 

120 categories, randomly divided into a training set of 60 classes, a 

validation set of 30 classes, and a test set of 30 classes.

Flowers [38]: The dataset contains 102 categories of flowers, ran-

domly divided into a training set of 51 classes, a validation set of 26 

classes, and a test set of 25 classes.

4.2. Implementation details

Two widely used feature extractor networks were adopted in the ex-

periments: ResNet-12 and ResNet-18. For ResNet-12, we used the same 

implementation as in [23,35,39,40]. The input image size is 84×84, and 

the output feature map shape is 640×5×5. For ResNet-18, which is an 

improvement on ResNet-12, there are four residual blocks like ResNet-

12, but the first two residual blocks are divided into two sub-residual 

blocks, each of which contains 3 convolutional layers with 3×3 convo-

lution kernel. For both ResNet-12 and ResNet-18, the model was trained 

under a 10-way 5-shot setting, and a total of 1,200 epochs of training 

were conducted. The SGD optimizer was used on all datasets, with the 

initial learning rate set to 0.1 and the weight decay set to 0.0005. 𝛼 and 

𝛽 are learnable hyperparameters, initialized to 0 and optimized jointly 

with the rest of the model. Following the settings in [15,41], the tem-

perature coefficient 𝜏 in the loss function is also treated as a learnable 

hyperparameter, initialized to 1. In the validation stage, the strategy of 

validating once every 20 epochs was adopted, and 1,000 episodes were 

carried out each time to obtain the average accuracy. In the test phase, 

evaluation was conducted under the 5-way 1-shot and 5-way 5-shot set-

tings. The test accuracy was obtained as the average accuracy across 

10,000 episodes, where each episode contains 16 query samples.

4.3. Comparison with state-of-the-art methods

Tables 2 and 3 list the classification performance of different few-shot 

learning methods based on the ResNet-12 backbone and the ResNet-18 

backbone, respectively. Unless explicitly marked, all comparison exper-

iments were implemented using the original authors’ source code under 

the same settings as this paper.

As shown in Table 2, the proposed ITAM performs the best in seven 

out of eight settings. On the CUB dataset, ITAM achieves the best per-

formance in the 1-shot setting at 83.72 % and in the 5-shot setting at 

93.34 %, outperforming the second-best method by 0.35 % and 0.23 %. 

On the Flowers dataset, ITAM achieves the best performance in the 

1-shot setting at 83.52 % and in the 5-shot setting at 94.36 %, outper-

forming the second-best method TDM [43] by 0.67 % and 0.76 %. On the 

Dogs dataset, ITAM achieves the best performance in the 1-shot setting at 

76.73 % and in the 5-shot setting at 88.68 %, outperforming the second-

best method by 0.24 % and 0.23 % in the 1-shot and 5-shot settings, 

respectively. Compared with the baseline method FRN [15], our method, 

including the additional component ITAM, consistently performs better.

A similar pattern can also be observed in Table 3, where ITAM 

achieves the best accuracy in five cases and the second best in the 

remaining cases. A further remark is that ITAM consistently and substan-

tially outperforms AGPF [17], a method dedicated to fine granularity. 

All of these showcase the effectiveness of ITAM for few-shot fine-grained 

classification.

In addition to the standard evaluation of few-shot fine-grained clas-

sification, we investigate the effectiveness of ITAM in cross-domain 

scenarios, where there exists a domain gap between the base and novel 

data. Table 4 lists the cross-domain performance of ITAM and some com-

parison methods, where all models were trained on the mini-ImageNet 

dataset and tested on the CUB dataset. It can be seen that ITAM performs 

the best among these methods, which further verifies its superiority.
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Table 2 

Comparison of 5-way few-shot classification accuracy with ResNet-12 as the 

backbone. † represents the results reported in the original paper (missing per-

formance is indicated by –). Average accuracy and 95 % confidence interval are 

reported. The best is in bold, and the second best is underlined.

Methods CUB Flowers Cars Dogs

5-way 1-shot accuracy (%)

RENet (ICCV-21) [42] 79.49 ±0.44 74.96 ±0.50 84.29 ±0.39 69.48 ±0.48
FRN (CVPR-21) [15] 83.16 ±0.19 81.07 ±0.20 86.48 ±0.18 76.49 ±0.21

HelixFormer (MM-22) [16] 81.66 ±0.30 63.30 ±0.26 79.40 ±0.43 65.92 ±0.49
TDM (CVPR-22) [43] 82.41 ±0.19 82.85 ±0.19 87.04 ±0.17 76.11 ±0.20

AGPF (PR-22) [17] 78.54 ±0.83 77.92 ±0.94 83.94 ±0.76 72.06 ±0.91
MCL (CVPR-22) [44] 83.25 ±0.25 76.55 ±0.26 85.04 ±0.36 71.49 ±0.28
BiFRN (AAAI-23) [45] 82.90 ±0.19 80.30 ±0.20 87.80 ±0.16 74.73 ±0.21

BSFA (TCSVT-23) [46] 83.11 ±0.41 75.33 ±0.54 88.78 ±0.38 73.54 ±0.50
QSFormer (TCSVT-23) [47] 75.26 ±0.17 75.24 ±0.25 80.02 ±0.28 68.87 ±0.72
C2-Net (AAAI-24) [48] 83.37 ±0.42 80.86 ±0.46 84.42 ±0.43 75.50 ±0.49

KLSANet (NN-24) [19]† 74.97 ±0.43 – 74.43 ±0.76 64.43 ±0.81
FicNet (TMM-24) [49]† 80.97 ±0.57 – 86.81 ±0.47 72.41 ±0.64
SAA (TCSVT-24) [50]† 75.57 ±0.48 74.22 ±0.49 – 70.32 ±0.50
SRML (PR-25) [51]† 83.05 ±0.43 79.82 ±0.47 87.49 ±0.36 72.97 ±0.47

ITAM 83.72 ±0.19 83.52 ±0.19 87.06 ±0.17 76.73 ±0.20

5-way 5-shot accuracy (%)

RENet (ICCV-21) [42] 91.11 ±0.24 81.95 ±0.38 91.94 ±0.23 81.75 ±0.35
FRN (CVPR-21) [15] 92.59 ±0.11 92.52 ±0.11 94.78 ±0.08 88.22 ±0.12
HelixFormer (MM-22) [16] 91.83 ±0.17 66.96 ±0.22 92.26 ±0.15 80.65 ±0.36
TDM (CVPR-22) [43] 92.37 ±0.10 93.60 ±0.10 96.11 ±0.07 88.45 ±0.11

AGPF (PR-22) [17] 89.85 ±0.44 91.96 ±0.45 94.11 ±0.36 84.83 ±0.50
MCL (CVPR-22) [44] 93.01 ±0.16 90.31 ±0.19 93.92 ±0.21 85.24 ±0.23
BiFRN (AAAI-23) [45] 93.11 ±0.10 92.30 ±0.11 96.49 ±0.06 87.76 ±0.12

BSFA (TCSVT-23) [46] 93.08 ±0.23 86.90 ±0.36 95.31 ±0.20 85.70 ±0.33
QSFormer (TCSVT-23) [47] 86.42 ±0.19 87.81 ±0.60 91.13 ±0.13 83.56 ±0.45
C2-Net (AAAI-24) [48] 92.20 ±0.23 91.54 ±0.27 92.72 ±0.23 87.65 ±0.28
KLSANet (NN-24) [19]† 88.92 ±0.41 – 87.84 ±0.45 81.07 ±0.31
FicNet (TMM-24) [49]† 93.17 ±0.32 – 95.36 ±0.22 85.11 ±0.37

SAA (TCSVT-24) [50]† 88.03 ±0.29 90.19 ±0.28 – 84.61 ±0.32
SRML (PR-25) [51]† 92.74 ±0.23 91.97 ±0.26 95.34 ±0.16 86.01 ±0.30

ITAM 93.34 ±0.10 94.36 ±0.09 96.97 ±0.06 88.68 ±0.11

4.4. Ablation studies

In this section, the effectiveness of ITAM was demonstrated by first 

comparing it with other attention modules while keeping the feature 

extraction network and metric module fixed. Then, each branch of ITAM 

was removed to assess the impact of individual dimension interactions 

on classification performance, and the design of the interaction strategy 

was also investigated. Next, ITAM was inserted into different metric-

based few-shot learning methods to showcase its flexibility as a plug-

and-play module. Finally, the influence of different shot numbers was 

evaluated to understand the universality of the method.

Comparison with other attentions. First, in order to verify the rationality 

of the attention mechanism selected in this paper, we replaced ITAM in 

the network with other attention modules and conducted comparative 

experiments on CUB and Flowers. As shown in Table 5, TAM outper-

forms the existing attention methods in most cases, which indicates 

the effectiveness of considering the interaction of different dimensions. 

On top of TAM, the proposed ITAM achieves even better performance, 

demonstrating that the full interaction across all dimensions can further 

enhance the extraction of highly discriminative features.

The importance of each dimension interaction. To demonstrate the va-

lidity of each dimension interaction, ablation studies were conducted 

on the branches of ITAM: removing all branches (which is equivalent 

to FRN); keeping a single branch for the pairwise interaction between 

(H, C), (C, W), (H, W) dimensions; keeping two branches; or keeping all 

three branches (i.e., the proposed ITAM). Note that when two branches 

are kept, the interaction between the two branches can still be computed,

Table 3 

Comparison of 5-way few-shot classification accuracy with ResNet-18 as the 

backbone. † represents the results reported in the original paper (missing 

performance is indicated by -). Other captions are as in Table 2.

Methods CUB Flowers Cars Dogs

5-way 1-shot accuracy (%)

MatchingNet (NeurIPS-16) [8] 72.88  ±0.89 76.07 ±0.82 75.03 ±0.95 65.59 ±0.95
RelationNet (CVPR-18) [11] 68.82 ±1.04 69.04 ±0.97 64.08 ±1.05 54.21 ±1.00
Baseline++ (CVPR-19) [52] 65.67 ±0.95 67.90 ±0.96 67.41 ±0.99 62.54 ±0.87
Neg-Margin (ECCV-20) [53] 72.51 ±0.82 76.34 ±0.89 76.04 ±0.81 68.86 ±0.83
FRN (CVPR-21) [15] 83.40 ±0.19 81.22 ±0.21 87.63 ±0.17 77.53 ±0.21
TDM (CVPR-22) [43] 83.25 ±0.19 82.31 ±0.20 87.69 ±0.17 76.59 ±0.21

AGPF (PR-22) [17] 79.02 ±0.83 78.69 ±0.84 84.68 ±0.78 73.61 ±0.91
DeepBDC (CVPR-22) [10] 81.85 ±0.42 81.07 ±0.50 85.48 ±0.40 78.81 ±0.43
LCCRN (TCSVT-23) [18] 82.80 ±0.19 82.86 ±0.19 86.24 ±0.18 77.29 ±0.20

QGN (PR-23) [54]† 83.82 – – –

ITAM 84.09 ±0.18 82.88 ±0.19 87.97 ±0.17 78.36 ±0.20

5-way 5-shot accuracy (%)

MatchingNet (NeurlPS-16) [8] 85.25 ±0.57 87.46 ±0.51 87.02 ±0.56 80.94 ±0.60
RelationNet (CVPR-18) [11] 82.68 ±0.58 85.46 ±0.58 91.45 ±0.44 80.42 ±0.62
Baseline++ (CVPR-19) [52] 81.53 ±0.58 84.34 ±0.62 85.50 ±0.58 79.04 ±0.61
Neg-Margin (ECCV-20) [53] 89.25 ±0.43 90.83 ±0.47 93.06 ±0.38 85.75 ±0.52
FRN (CVPR-21) [15] 92.69 ±0.10 92.33 ±0.11 95.35 ±0.08 89.05 ±0.11
TDM (CVPR-22) [43] 92.98 ±0.10 93.46 ±0.11 96.06 ±0.17 88.87 ±0.11
AGPF (PR-22) [17] 89.92 ±0.42 92.78 ±0.40 94.87 ±0.33 85.68 ±0.52
DeepBDC (CVPR-22) [10] 93.00 ±0.24 93.19 ±0.24 95.84 ±0.16 91.33 ±0.22
LCCRN (TCSVT-23) [18] 93.60 ±0.10 93.87 ±0.10 96.34 ±0.07 89.54 ±0.10

QGN (PR-23) [54]† 91.22 89.9 91.3 –

ITAM 93.41 ±0.10 94.12 ±0.09 97.18 ±0.06 89.15 ±0.11

Table 4

The 5-way few-shot classification accuracy in the cross-domain setting: mini

ImageNet → CUB. The accuracy of the methods labeled ♢ is quoted from Ref.

[

-

55], and those labeled △ are quoted from Ref. [15]. ResNet-12 was used as the 

backbone for all methods.

Methods 1-shot 5-shot

ProtoNet (NeurIPS-17) [9]♢ 47.51 ± 0.38 67.96 ± 0.70

MetaOptNet (CVPR-19) [39]△ 44.79 ± 0.75 64.98 ± 0.68

FEAT (CVPR-20) [35]♢ 50.67 ± 0.78 71.08 ± 0.73

SCL (ECCV-20) [40]♢ 49.58 ± 0.70 68.81 ± 0.60

FRN (CVPR-21) [15]△ 54.11 ± 0.19 77.09 ± 0.15

BSFA (TCSVT-23) [46] 55.72 ± 0.56 67.49 ± 0.48

SRCPT (ICMLC-24) [55]♢ 54.73 ± 0.22 75.97 ± 0.18

ITAM 62.81 ± 0.20 79.17 ± 0.14

although for only one pair. Table 6 lists the experimental results of 5-

way 1-shot and 5-way 5-shot on CUB and Flowers, under the ResNet-12 

backbone.

The table presents the following observations. Firstly, using a single 

pairwise interaction generally improves performance over the baseline 

(a), although the effect varies across datasets and tasks. The pairwise 

interaction between (H, W) yields the best performance in most cases, 

highlighting the importance of spatial information. Secondly, distinct 

performances can be noticed when considering two pairwise interac-

tions. Some combinations, such as (e) and (g), lead to lower accuracy 

on CUB, particularly in the 1-shot setting. In contrast, the interaction 

between the second and third branches (i.e., (f)) consistently improves 

performance. Constructing a third-order interaction using only two 

branches is likely to overemphasize one dimension, such as the chan-

nel dimension in the case of (H, C) and (C, W), which we hypothesize 

contributes to the poorer results. The best performance is achieved 

with the proposed strategy, which jointly integrates all three interac-

tion branches. This indicates that the third-order attention mechanism 

is more than just a sum of its individual components; it benefits from 

coordinated learning across spatial and channel dimensions, enabling 

richer feature representations. Moreover, Table 4 shows that ITAM
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Table 5 

Comparison of 5-way few-shot classification performance under different at-

tention mechanisms. Both ResNet-12 and ResNet-18 were considered as the 

backbone.

Methods CUB

1-shot

Flowers

1-shot5-shot 5-shot

ResNet-12

FRN 83.16 ±0.19 92.59 ±0.11 81.07 ±0.20 92.52 ±0.11
+SeNet (CVPR-18) [56] 83.21 ±0.19 92.61 ±0.10 80.22 ±0.21 91.46 ±0.12
+CBAM (ECCV-18) [25] 83.31 ±0.19 92.52 ±0.11 81.27 ±0.21 92.16 ±0.12

+GCNet (ICCV-19) [26] 82.77 ±0.19 92.25 ±0.10 80.93 ±0.21 91.94 ±0.12
+ECA (CVPR-20) [27] 83.07 ±0.19 92.37 ±0.11 80.71 ±0.21 91.92 ±0.12
+CA (ICCV-21) [28] 80.78 ±0.20 91.23 ±0.11 81.65 ±0.21 92.40 ±0.11
+NAM (CVPR-21) [29] 80.83 ±0.20 91.28 ±0.11 78.28 ±0.22 90.83 ±0.13
+TAM (WACV-21) [7] 83.22 ±0.19 92.94 ±0.10 82.18 ±0.20 93.03 ±0.11

+EMA (ICASSP-23) [30] 83.27 ±0.19 92.64 ±0.10 81.04 ±0.21 92.07 ±0.12
+SRU (CVPR-23) [57] 83.15 ±0.19 92.02 ±0.11 76.59 ±0.22 90.02 ±0.13
+ELA (arXiv-24) [31] 83.70 ±0.19 92.53 ±0.10 81.30 ±0.20 92.50 ±0.11
+AA (ECCV-24) [32] 82.90 ±0.19 93.02 ±0.19 82.92 ±0.20 92.96 ±0.20
+CA (CEA-25) [33] 83.06 ±0.19 93.08 ±0.19 83.12 ±0.19 93.24 ±0.19
+ITAM 83.72 ±0.19 93.34 ±0.10 83.52 ±0.19 94.36 ±0.09

ResNet-18

FRN 83.40 ±0.19 92.69 ±0.10 81.22 ±0.21 92.33 ±0.11
+SeNet (CVPR-18) [56] 83.61 ±0.19 92.75 ±0.10 80.90 ±0.21 92.30 ±0.11
+CBAM (ECCV-18) [25] 82.98 ±0.19 92.29 ±0.10 81.02 ±0.21 91.93 ±0.12
+GCNet (ICCV-19) [26] 82.85 ±0.19 92.26 ±0.11 80.89 ±0.21 92.09 ±0.11
+ECA (CVPR-20) [27] 83.07 ±0.19 92.37 ±0.11 80.71 ±0.21 91.92 ±0.12
+CA (ICCV-21) [28] 83.55 ±0.19 92.67 ±0.10 82.00 ±0.20 92.91 ±0.11
+NAM (CVPR-21) [29] 81.15 ±0.20 91.10 ±0.11 79.19 ±0.21 91.18 ±0.13
+TAM (WACV-21) [7] 84.00 ±0.18 93.01 ±0.10 82.19 ±0.20 93.18 ±0.11

+EMA (ICASSP-23) [30] 83.30 ±0.19 92.49 ±0.10 81.04 ±0.21 92.13 ±0.12
+SRU (CVPR-23) [57] 80.66 ±0.20 90.80 ±0.12 75.21 ±0.21 89.40 ±0.19
+ELA (arXiv-24) [31] 82.69 ±0.19 92.36 ±0.10 81.52 ±0.19 92.64 ±0.11
+AA (ECCV-24) [32] 83.22 ±0.19 92.61 ±0.10 82.71 ±0.19 93.69 ±0.11
+CA (CEA-25) [33] 83.46 ±0.19 93.06 ±0.10 82.55 ±0.19 94.09 ±0.11
+ITAM 84.09 ±0.18 93.41 ±0.10 82.88 ±0.19 94.12 ±0.09

Table 6

Ablation studies on each dimension interaction. ResNet-12 is the backbone.

(H,C) (C,W) (H,W) CUB Flowers

1-shot 5-shot 1-shot 5-shot

(a) × × × 83.16 92.59 81.07 92.52

(b) ✓ × × 82.92 92.62 81.53 92.43

(c) × ✓ × 83.13 92.53 81.97 92.94

(d) × × ✓ 83.09 92.86 82.31 92.98

(e) ✓ ✓ × 72.45 86.39 82.72 93.73

(f) × ✓ ✓ 83.30 93.08 82.79 93.91

(g) ✓ × ✓ 77.25 88.94 78.43 91.16

ITAM ✓ ✓ ✓ 83.72 93.34 83.52 94.36

consistently outperforms TAM, supporting the view that the full third-

order interaction is more effective than a combination of first-order 

interactions.

To model third-order interactions, we adopt a simple parameter-

free strategy based on multiplication and averaging operations. Table 7 

compares this approach with more advanced interaction and fusion 

techniques – cascade operations [58], adaptive weighting [59], and non-

linear fusion [60]. The experimental results show that the proposed 

ITAM achieves superior performance across multiple configurations, 

with particularly notable results on the Flowers dataset – reaching 

83.52 % and 94.36 % in the 1-shot and 5-shot settings, respectively, 

outperforming other methods by approximately 2 %. In addition, it also 

achieves the highest accuracy of 93.34 % on the 5-shot task of the 

CUB dataset. These results suggest that the multiplication and averaging 

design, though simple, is highly effective.

Flexibility as a plug-and-play component. To verify the flexibility of

the proposed method as a plug-and-play component, TAM and ITAM

Table 7 

The comparison of 5-way 1-shot and 5-way 5-shot accuracies under different 

interaction fusion methods on the CUB and Flowers datasets.

Methods CUB Flowers

1-shot 5-shot 1-shot 5-shot

Cascade Operations 80.91 ±0.20 91.37 ±0.11 81.30 ±0.20 92.45 ±0.11
Adaptive Weighting 83.69 ±0.19 93.01 ±0.10 81.38 ±0.21 92.28 ±0.11
Non-linear Fusion 83.88 ±0.18 93.33 ±0.10 80.96 ±0.21 92.28 ±0.11
ITAM 83.72 ±0.19 93.34 ±0.10 83.52 ±0.19 94.36 ±0.09

Table 8

Flexibility as a plug-and-play component for metric-based classifiers. ResNet-12

is the backbone.

Methods CUB Flowers Cars

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet [9] 79.64 91.15 75.41 89.46 82.29 93.11

+TAM 80.97 90.41 76.59 88.47 82.33 91.32

+ITAM 81.52 91.26 77.13 89.52 87.89 94.98

TDM [43] 82.41 92.37 82.85 93.60 87.04 96.11

+TAM 82.98 93.01 83.27 94.00 88.62 96.83

+ITAM 83.58 93.11 83.13 93.99 89.19 97.35

FRN [15] 83.16 92.59 81.07 92.52 86.48 94.78

+TAM 83.22 92.94 82.18 93.03 86.56 95.51

+ITAM 83.72 93.34 83.52 94.36 87.06 96.97

Table 9

Classification accuracy under different numbers of shots on the CUB and Flowers

datasets. ResNet-12 is the backbone.

Methods CUB

1-shot 3-shot 5-shot 7-shot 9-shot

FRN [15] 83.15 90.86 92.45 93.12 93.54

FRN+ITAM 83.31 91.29 92.93 93.69 94.14

Methods Flowers

1-shot 3-shot 5-shot 7-shot 9-shot

FRN [15] 81.86 90.44 92.66 93.78 94.39

FRN+ITAM 82.96 91.61 93.88 95.02 95.69

were added to three different metric-based few-shot learning methods: 

ProtoNet [9], TDM [43], and FRN [15]. As shown in Table 8, TAM, de-

spite not being applied to fine-grained image classification, is effective 

in enhancing the classification performance in most cases. This suggests 

that the cross-dimension interaction is effective in capturing discrimi-

native representations at fine details. The proposed ITAM consistently 

leads to (mostly the best) performance gains over the baseline method, 

highlighting its suitability for fine-grained image classification and its 

potential to be integrated with other metric-based few-shot learning 

methods.

The impact of the number of shots. Table 9 reports the classification 

accuracy under different numbers of shots on the CUB and Flowers 

datasets, while fixing the training settings as described in Section 4.2. It 

is evident that on the CUB and Flowers datasets, the accuracy of ITAM 

compared with FRN on 1/3/5/7/9-shot tasks continues to improve.

4.5. Visualization analysis

The previous sections quantitatively demonstrated that the pro-

posed FRN+ITAM outperforms the baseline FRN. This section illustrates 

how attention influences feature learning and its impact on feature 

reconstruction, and consequently, classification.

Visualization of feature maps. Since the goal of FRN is to minimize the 

reconstruction error, the magnitude of local features in a feature map
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Fig. 4. Investigation into feature map used for feature reconstruction, i.e., the 

features extracted by the ResNet-18 backbone (shown in the column of FRN) and 

the features enhanced by TAM and ITAM (FRN+TAM and FRN+ITAM, resp.). 

Top: Heatmaps of 𝐿 2 

-norm computed over the channel dimension of the feature 

map. Warmer color indicates larger value. Bottom: Saliency maps for the top 

5 % spatial positions with the highest 𝐿 2 

-norm, overlaid on the raw image.

influences the focus of reconstruction: if local features of a query im-

age all have similar magnitudes, then each local feature will be equally 

recovered; conversely, if some local features have much higher magni-

tudes compared to others, then these features will have larger influence 

on the reconstruction error and thus will be paid more attention. The 

top row of Fig. 4 presents heatmaps that visualize the 𝐿2  

-norm of lo

cal features. More specifically, for FRN, 𝐿 2 

-norm is computed for the 

feature vector at each spatial position in the embedded features 𝑥̂ , 

resulting in a 2D 𝐿 2  

 

-norm map. For FRN+TAM and FRN+ITAM, 𝐿 2 

-

norm is computed over the enhanced features 𝑥̃. By comparing these 

three heatmaps, we see that in FRN+ITAM, the 𝐿 2 

-norm values ex

hibit greater contrast, with fewer spatial positions having high 𝐿2  

-norm 

values. This indicates that feature reconstruction in FRN+ITAM is 

more focused, prioritizing a smaller subset of local features with high 

importance.

-

-

The bottom row of Fig. 4 displays saliency maps for the top 5 % 

spatial positions with the highest 𝐿 2 

-norm, overlaid on the original im-

age. Red pixels in these maps indicate areas of the image corresponding 

to local features with the largest 𝐿 2 

-norm values. The saliency maps

Fig. 5. Visualization of feature reconstruction. Panel (a) shows 4 original support images and 4 recovered support images generated by using the features after 

feature extraction. Panel (b) shows 4 original and recovered query images. Panel (c) shows images generated by using the reconstructed query features under FRN, 

FRN+TAM, and FRN+ITAM, respectively. It can be seen that the reconstructed images by using the proposed method (FRN+ITAM) contain fewer artifacts and 

more fine-grained details than those from FRN and FRN+TAM.

validate that FRN+ITAM focuses on the correct regions of the input 

image, i.e., the dog’s nose in this example.

Visualization of feature reconstruction. According to the classification 

mechanism of FRN, it assigns a query image to the class with the small-

est reconstruction error, so FRN+ITAM of higher accuracy implies a 

smaller reconstruction error. However, it is unclear what drives the 

decrease in the reconstruction error. To answer this question, we ran-

domly select one sample from each dataset for feature reconstruction 

visualization. An inverted ResNet-12 is trained as a decoder to map 

features to the original image. In Fig. 5, the leftmost column shows 

the original images of four datasets, where each row shows one sup-

port image. The second leftmost column shows the images generated by 

the inverted ResNet-12 from the corresponding support features, where 

the features were extracted by using the ResNet-12 backbone. It can 

be seen that the inverted ResNet-12 can recover the original images 

from features to a good extent. The third and fourth leftmost columns 

show the original query images and the corresponding query features. 

The rightmost three columns show the query features reconstructed 

from support features, with features learned by using FRN, FRN+TAM 

and FRN+ITAM.

From the three columns of reconstructed query features, it can be ob-

served that all three methods effectively reconstruct the coarse details 

of the target of interest. However, due to the interference of back-

ground information and other noise, FRN pays limited attention to the 

locally important region of the sample, resulting in some fine details 

being missed, such as the tire of the car and the face of the dog. It 

also generates some artifacts, such as those observed around the out-

line of the bird. When incorporating TAM into FRN, some fine details 

are recovered, but the artifact issue still persists. The proposed method, 

FRN+ITAM, recovers the finest details and generates the fewest arti-

facts, indicating that by considering the full interaction across three 

dimensions, it can effectively extract discriminative features, facilitating 

feature reconstruction.

Visualization of feature discriminability. To supplement Fig. 1, Fig. 6 

shows the heatmaps of the Flowers, Dogs and Cars datasets, generated 

by using Grad-CAM [61]. The figures show that regions correspond-

ing to the target object receive high attention in all methods. However, 

FRN also focuses on some background regions, such as the grass in the 

Dogs case and trees in the Cars case. By allowing interaction between
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Fig. 6. Heatmaps of the Flowers, Dogs and Cars datasets, generated by using 

Grad-CAM [61]. Warmer color indicates more important regions. Compared 

with FRN and FRM+TAM, FRN+ITAM places more focused and compact 

attention on key feature regions.

Fig. 7. t-SNE visualizations of feature embeddings learned by FRN, FRN+TAM, 

and FRN+ITAM on the CUB dataset. The intra-class and inter-class Euclidean 

distances are displayed in the top-right corner of each subfigure. ResNet-12 was 

used as backbone.

the three dimensions, the influence from the background is reduced, 

as demonstrated by FRN+TAM. Further increasing the interaction, i.e., 

FRM+ITAM, leads the method to place more focused and compact at-

tention on key feature areas, highlighting fewer but more discriminative 

regions.

Fig. 7 presents the visualization of feature embeddings learned by 

FRN, FRN+TAM, and FRN+ITAM on the CUB dataset, where t-SNE [62] 

was employed to reduce the dimensionality of high-dimensional fea-

tures. Each point in the figure represents a query sample from a ran-

domly selected episode, and different colors indicate different classes. 

As shown in the figure, in FRN, samples from the same class fail to stay 

close together (such as those represented by green, pink, and black), 

indicating low intra-class compactness; samples from different classes 

locate closely (such as those represented by red and purple), indicating 

small inter-class separability. FRN+TAM improves the feature repre-

sentations to a certain extent, with some classes (such as red and pink) 

well separated from others. However, samples of the same class are 

still rather scattered. In contrast, FRN+ITAM substantially improves 

the embedding space: samples from the same class are positioned more 

closely together (such as the green and black classes), while samples 

from different classes are more clearly separated. This demonstrates 

the enhancement of intra-class compactness and inter-class separabil-

ity, which plays a crucial role in improving the performance of few-shot 

fine-grained classification tasks.

To quantitatively evaluate the quality of feature embeddings, intra-

class and inter-class Euclidean distances were calculated, with the results 

displayed in the top-right corner of each subfigure. The intra-class 

distance is calculated as the average Euclidean distance among fea-

ture embeddings within the same class, further averaged across all

Table 10 

Comparison of computational complexity. A smaller number of parameters and 

fewer FLOPs indicate better efficiency.

Methods Backbone Model complexity

Params. (M) FLOPs (G)

FRN ResNet-12 12.42 704.60

FRN+TAM ResNet-12 12.42 704.73

FRN+ITAM ResNet-12 12.42 704.73

five classes. A smaller intra-class distance indicates that samples from 

the same class locate more closely in the feature space. The inter-

class distance is calculated as the average Euclidean distance between 

each sample and all samples from different classes. A larger inter-

class distance suggests that samples from different classes are more 

widely separated in the feature space. From FRN to FRN+TAM and 

FRN+ITAM, the intra-class distance continuously decreases (from 0.82 

to 0.69), and the inter-class distance steadily increases (from 1.26 to 

1.32). These results suggest that considering feature interaction can help 

learn more discriminative feature embeddings.

4.6. Comparison of computational complexity

Besides classification accuracy, the computational cost is also crucial 

from a practical perspective. Table 10 reports the number of parameters 

in the model and floating-point operation (FLOPs) for FRN, FRN+TAM, 

and FRN+ITAM. The FLOPs are measured during the training phase in 

10-way 5-shot tasks with 15 query samples per class using the CUB-200-

2011 dataset. The results clearly suggest that ITAM incurs little extra 

computational complexity.

5. Conclusion

This paper extends the application of triplet attention to the domain 

of fine-grained few-shot image classification, which encodes spatial and 

channel information and captures the interactions between spatial and 

channel dimensions when computing attention weights. It further en-

hances the attention mechanism, referred to as ITAM, to establish the 

full interactions between all three dimensions. ITAM incurs negligible 

computational overhead and can be readily integrated into metric-based 

few-shot learning methods. Experiments on four fine-grained image 

datasets demonstrate that the proposed approach achieves state-of-the-

art performance and exhibits high flexibility.

This work focuses solely on few-shot fine-grained image classifica-

tion. However, considering the efficacy, efficiency, and ease of integra-

tion with other methods, the proposed method has potential for other 

few-shot image classification tasks, particularly those involving subtle 

differences between images, such as medical image classification. In the 

future, we will also explore extending ITAM to capture the complex re-

lationships between different modalities, such as image and text, and 

improving cross-modal fusion.
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