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Abstract 25 

Background 26 

This study presents large-scale normative models of white matter (WM) organization across 27 

the lifespan, using diffusion MRI data from over 25,000 healthy individuals aged 0-100 28 

years. These models capture lifespan trajectories and inter-individual variation in fractional 29 

anisotropy (FA), a marker of white matter integrity.  30 

Methods 31 

By addressing non-Gaussian data distributions, self-reported race, and site effects, the 32 

models offer reference baselines across diverse ages, and scanning conditions. We applied 33 

these FA models to the HCP Early Psychosis cohort and performed a multivariate analysis 34 

to map symptoms onto deviations from multimodal normative models using multi-view 35 

sparse canonical correlation analysis (msCCA).  36 

Results 37 

Our results reveal extensive white matter heterogeneity in psychosis, which is not captured 38 

by group-level analyses, with key regions identified, including the right uncinate fasciculus 39 

and thalami.  40 

Conclusion 41 

These normative models offer valuable tools for individualized WM deviation 42 

identification, improving precision in psychiatric assessments. All models are publicly 43 

available for community use. 44 

Keywords 45 

Normative models, White matter integrity, Psychosis, Lifespan trajectories, Diffusion MRI, 46 

Precision medicine  47 
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MAIN TEXT 48 

Introduction 49 

Over the past century, normative growth charts have become integral to paediatric 50 

practice, providing essential benchmarks for comparing individual growth patterns (height, 51 

weight, head circumference) with established population standards. These charts have 52 

facilitated a better understanding of typical developmental trajectories and have been crucial 53 

in identifying deviations from expected growth patterns which are used in clinical practice 54 

to determine if additional medical workup or treatment is required (1). This concept has 55 

recently been extended to the field of neuroimaging, where it allows for detailed, individual-56 

level insights into lifespan trajectories of brain measures. By comparing individual 57 

neuroimaging data against large, normative reference datasets, researchers and clinicians 58 

can gain a deeper understanding of both typical and atypical brain development and aging 59 

(2–5). 60 

In psychiatric disorders, traditional case-control studies have been valuable for 61 

detecting abnormalities in structural, microstructural, functional and neurometabolic brain 62 

signatures in patient groups compared to control groups. However, group comparisons are 63 

not designed to capture inter-individual heterogeneity which is prominent at the phenotypic 64 

and biological levels in virtually all psychiatric disorders. This significant translational gap 65 

hampers identification of specific biological markers that explain clinical heterogeneity in 66 

these disorders such as disease risk, severity, and progression, as well as responsiveness to 67 

pharmacological and non-pharmacological treatments and overall clinical outcomes. 68 

Normative modelling provides a precision framework that has emerged as a promising tool 69 

in this endeavour (6–8). By comparing brain imaging data against large reference cohorts, 70 

this method allows us to quantify deviations from expected norms at the individual level. It 71 

is now possible to capture deviation profiles in a single patient, which offers a more nuanced 72 

understanding of biological variations in psychiatric disorders. Even more importantly, it 73 

also has promises for bridging this translational gap by providing a foundational framework 74 

for developing tailored tools that capture disease risk and progression, as well as precision 75 

treatments tailored to individual brain pathology. For instance, normative models capture 76 

inter-individual biological variations that provided important insights into heterogeneity in 77 

schizophrenia, major depressive disorder, bipolar disorder, ADHD and autism spectrum 78 

disorders (6,9,10). Moreover, we have demonstrated that normative measures frequently 79 

outperform raw measures (e.g. cortical thickness in mm) in group difference testing, disease 80 

classification (11) and treatment response prediction (12).  81 

We and others have created large-scale normative models that leveraged >50,000 82 

healthy volunteer imaging datasets for structural (4,5,13) and functional MRI (11,14). To 83 

date, no large-scale normative models for diffusion MRI exist, due to its later adoption, high 84 

processing demands, and strong sensitivity to scanner and acquisition differences. 85 

Fractional Anisotropy (FA) is particularly well-suited for normative modelling of white 86 

matter, as it reflects directionally constrained diffusion influenced by axonal integrity, fibre 87 

coherence, and myelination—features that evolve across the lifespan and are disrupted in 88 

psychiatric disorders such as psychosis (15,16). Compared to other diffusion metrics such 89 

as mean diffusivity (MD), FA more directly captures tract-specific microstructural 90 

organization and is less sensitive to partial volume effects, making it a robust and 91 

interpretable marker for detecting spatially specific white matter deviations (17,18). To date, 92 

only two preliminary studies have fit normative models to diffusion weighted data (19),(20). 93 

In (19), the authors used approximately 1,300 single-shell DTI datasets collected at eight 94 

different sites using the same vendor to test performance of different statistical methods 95 
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within the normative framework and in (20) the authors focus principally on generating 96 

reference curves for data harmonisation.  97 

The aims of this study are to: (i) develop normative models of FA, the most widely 98 

used diffusion metric in neuroimaging (21), across major white matter tracts using a large 99 

dataset of over 25,000 healthy individuals across a broad age range. By using high-quality 100 

diffusion MRI data from the UK Biobank and the Human Connectome Project, we seek to 101 

establish robust models that capture lifespan trajectories of white matter organization; (ii) 102 

investigate white matter FA in early psychosis, a prototypical psychiatric disorder that is 103 

known to be highly heterogeneous in disease severity and course, as well as clinical 104 

symptom expression and clinical outcomes. Using the HCP Early Psychosis (HCP-EP) 105 

dataset (22), we aim to map both group level differences and individual deviations from the 106 

normative model in order to better understand individual variability in white matter 107 

integrity; (iii) we aim to illustrate the value of normative models for multi-modal data 108 

fusion, by combining FA deviations with cortical thickness and subcortical brain volume 109 

deviations with the goal to identify multi-modal biological signatures and specific white 110 

matter pathways in psychosis associated with different psychosis symptom domains. 111 

Finally, (iv) we release all models freely to the community via our existing open-source 112 

software platforms (23). 113 

Methods and materials 114 

Data acquisition and processing 115 

The construction of the lifespan dataset involved integrating data from five cohorts 116 

having high-quality multi-shell diffusion data, i.e.: the HCP Baby (24), HCP Development 117 

(25), HCP Young Adult (26), HCP Aging (27) datasets, and the UK Biobank (28). The 118 

demographic information is available in supplementary table 1 and 2 while an overview of 119 

the diffusion MRI acquisition schemes across datasets is available in supplementary table 120 

3. 121 

The processing of these datasets followed harmonized FSL-based pipelines, 122 

summarized in Figure 1A. Initially, pre-processing was performed: B0 intensity 123 

normalization, correction for EPI distortions, eddy-current-induced and movement 124 

corrections. These corrections were executed using the HCP-pipeline (29) for the HCP 125 

datasets while the UKB dataset was already processed according to the UKB documentation 126 

(30). Subsequently, we estimated the DTI model using DTIfit on the lowest shell value in 127 

order to extract the fractional anisotropy (FA) values. Following this, we ran Tract-Based 128 

Spatial Statistics (TBSS) (31) on the FA images which included registration to a standard 129 

space (FMRIB58_FA), projection of each individual's FA image to the standard space 130 

skeletonized image (threshold at 0.2) to generate skeletonized FA images for each 131 

individual in the same space. Finally, segmentation was conducted using the Johns Hopkins 132 

University (JHU) atlas  (32). This process delineated 48 white matter (WM) tracts (listed 133 

the supplementary figure 4), for which we computed the mean FA values along the skeleton 134 

of each tract. To ensure consistency with UK Biobank data, we adopted the HCP 135 

preprocessing pipeline, enabling scalable and reproducible preprocessing across datasets. 136 

Diffusion MRI quality was evaluated using tract-wise normative modelling of FA, with 137 

extreme outliers (|Z| > 4) reviewed via visual inspection. Full details are provided in the 138 

Supplementary text: Quality control. 139 
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Normative modeling 140 

To prepare for the modelling stage, we began by splitting the dataset of subjects 141 

(N=24,915) into two equal groups: a test set (N=12,457) and a training set (N=12,457), 142 

stratified to ensure an even distribution of sex, self-reported race, dataset and site. A 143 

normative model was then fit to the training set for each white matter tract. The model 144 

incorporated several covariates, including sex, age, and dummy coded race, and site. To 145 

address potential non-linear effects and non-Gaussian distributions, we employed a warped 146 

Bayesian linear regression (BLR) model and used in previous research (4,33). This approach 147 

involved applying a third-order polynomial B-spline basis expansion over age, with five 148 

evenly spaced knots, combined with a SinhArcsinh warping function. We chose to model 149 

site effects using a fixed effects framework, in line with prior work (4,11,33). We 150 

acknowledge that harmonisation techniques have also been employed for this purpose (34) 151 

and could have been applied here. However, we prefer to model the site effects explicitly 152 

within the normative model, which enables quantification and visualisation of the site 153 

effects and can be beneficial because harmonisation techniques can remove biological 154 

variation or induce bias if not employed correctly (35–37). 155 

Next, we estimated deviation scores for each subject and white matter tract. In line 156 

with our prior work (38) we refit the models after excluding gross outliers having deviations 157 

larger than 4 standard deviations from the mean (Figure 1C). Once the models were refit 158 

with the cleaned data, we calculated the fit statistics, including explained variance, skew, 159 

and kurtosis. The extent of deviation for each subject was visualized by plotting individual 160 

z-scores against the mean and centiles of variation predicted by the model. All statistical 161 

analyses were conducted using Python version 3.8, with the Predictive Clinical 162 

Neuroscience PCN toolkit (GitHub, PCNtoolkit). 163 

Application to a clinical dataset 164 

Next, we applied the model to the Human Connectome Project Early Psychosis 165 

(HCP-EP) dataset (22), which includes multi-shell diffusion data and T1-weighted 166 

structural MRI derived from participants diagnosed with early psychosis (n=118) and 167 

control participants (n=55). The dataset's demographic distribution comprises 37% females 168 

and 63% males, with a racial composition of 58% White, 28% Black, 9% Asian, 1% Mixed, 169 

and 3% Other. Participants with early psychosis were diagnosed using the Structured 170 

Clinical Interview for DSM-5 (SCID-5) (39) and symptoms assessed with the Positive and 171 

Negative Syndrome Scale (PANSS) (40), including negative symptoms (e.g., social 172 

withdrawal), positive symptoms (e.g., hallucinations), disorganisation, and general 173 

psychopathology. The item-level data were subsequently summarized by the HCP-EP 174 

consortium using a standard factor model (41) and the positive, negative and cognitive 175 

symptom domain scores were used in in addition to the PANSS total score to quantify 176 

symptomatology across multiple domains (41). Medication status was also documented, 177 

including antipsychotic type and dosage converted to chlorpromazine equivalents.  178 

The diffusion data were processed with the same pipeline as described above (Figure 179 

1A), and structural data were processed using Freesurfer version 6.0 following similar 180 

procedures as we have described previously (4). Next, we divided this dataset into a training 181 

set, consisting of half of the control participants, and combined it with the larger training 182 

set described above to retrain the normative models for each white matter tract. Using 183 

transfer learning, as in our previous work, we can efficiently adapt the models with only a 184 

small amount of calibration data to account for site-specific effect. We then computed z-185 

scores for the patients and remaining controls for the FA data and computed the deviations 186 

for cortical thickness and subcortical volumes derived from models we have previously 187 
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brought online (4). Note that the splits for this analysis were matched so that the same 188 

participants were in the training and test sets for diffusion and structural measures at each 189 

iteration.  190 

We next assessed the mean difference of the deviations between patients and 191 

controls for each tract using a t-test with false discovery rate (FDR) correction for multiple 192 

testing (42). We then tested whether the proportion of extreme deviations differ between 193 

groups for each tract. To achieve this, we calculated the percentage of participants falling 194 

below and above the threshold in each of the 48 tracts. To achieve this, we set a z-score 195 

threshold between -2.6 and 2.6, which correspond to a p-=value of 0.01 as in prior work to 196 

identify extreme deviations then employed a non-parametric Mann-Whitney U test (43), 197 

again followed by FDR correction for multiple comparisons. This stringent threshold 198 

enhances the detection of significant deviations while controlling for false positives 199 

We conducted a multimodal analysis to link psychiatric symptoms with brain 200 

deviations by combining diffusion and structural imaging data using multi-view sparse 201 

canonical correlation analysis (msCCA) [48]. This method identifies shared patterns 202 

between symptom scores and brain features while keeping structural and diffusion data 203 

separate, enhancing interpretability. Rather than tuning model parameters, we used fixed 204 

sparsity settings to prioritise reproducibility and reduce variability across runs. To ensure 205 

robustness, we applied stability selection across many random data splits, retaining only 206 

features that consistently contributed to the model. Generalisability was further tested 207 

through extensive permutation testing, where the symptom data were randomly shuffled to 208 

create a null distribution of associations. This allowed us to determine whether the observed 209 

brain–symptom relationships were stronger than expected by chance. For full 210 

methodological details see Supplementary text: Multimodal Analysis. 211 

Results  212 

Normative modelling 213 

First, we assembled high-quality multi-shell diffusion data from five cohorts having 214 

closely matched acquisition and processing pipelines. A summary of the sample and 215 

processing is provided in Figure 1 with further details in the methods. We then fit lifespan 216 

normative models to these data on the basis of age, sex, site and self-reported race using 217 

warped Bayesian linear regression (BLR) and a non-linear basis expansion over age, in line 218 

with our prior work (4,33). We assessed the quality of the normative modeling fit using 219 

three key out-of-sample metrics, namely explained variance (EV), evaluating the fit of the 220 

median regression line, in addition to skewness and kurtosis, which evaluate the shape of 221 

the distribution used to model the centiles. These metrics offer insight into how well the 222 

models capture the underlying distribution of the data across 48 white matter tracts. The 223 

mean (standard deviation) EV was 0.37 (0.10), indicating good fit across different models. 224 

Skewness, and kurtosis were respectively -0.09 ( 0.12) and 0.42 (0.27), which together 225 

indicate that the shape was also appropriate for the data. Supplementary figure 1 shows a 226 

histogram of the EV, skew and kurtosis of the models.  227 

We illustrate the trajectory and fit centiles for a selection of white matter tracts 228 

across the lifespan in Figure 2. The complete set can be found in the supplementary figure 229 

2. In addition, we also show the results of models that do not include race in the 230 

supplementary figure 3. 231 

 232 
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Application to a clinical dataset 234 

Next, we used these models to understand heterogeneity in white matter FA in 235 

psychosis. To achieve this, we applied these reference models to the HCP early psychosis 236 

(HCP-EP) dataset (N=173 with diffusion data - see supplementary table 2 for demographic 237 

information) in order to derive z-scores for each individual and tract. We evaluated the mean 238 

differences in normative deviations between patients and controls for each tract using a t-239 

test, applying false discovery rate (FDR) correction (42) to account for multiple 240 

comparisons. There were no significant differences in the mean deviations between 241 

individuals with psychosis and healthy controls that survived false discovery rate (FDR) 242 

multiple comparison correction, although we did find nominally significant effects in the 243 

fornix (column and body and the stria terminalis bilaterally). However, we did find evidence 244 

for significantly more heterogeneity in individuals with psychosis relative to controls in 245 

terms of the proportion of extreme deviations (Z-scores exceeding ±2.6, corresponding to p 246 

< 0.005). More specifically, individuals with early psychosis had a greater proportion of 247 

extreme positive (Mann-Whitney U=1403.0, p=0.0036) and extreme negative (U=1517.0, 248 

p=0.0016) Z-scores relative to controls, indicating substantial differences between groups 249 

that were highly variable across individuals. Notably, while both positive and negative 250 

deviations were present, the frequency of negative outliers (participants with Z-scores < -251 

2.6) was particularly notable in patients relative to controls, highlighting a consistent trend 252 

where patients exhibited a greater number of extreme Z-scores across white matter tracts. 253 

To assess heterogeneity, we examined the percentage of individuals within each group with 254 

such deviations in each tract. Figure 3 visualizes each affected tract, where the colour 255 

intensity reflects the percentage of outlier individuals in the group. While both patients and 256 

controls exhibit some deviations, patients show a broader spatial distribution across more 257 

tracts, whereas controls tend to show deviations in fewer, more circumscribed regions, as 258 

illustrated in the bar plots in the supplementary figure 4, with an alternative representation 259 

highlighting overlap in individual tracts. These extreme deviations can be interpreted in 260 

relation to the underlying microstructural properties of white matter: positive FA deviations 261 

(Z > 2.6) may reflect greater fibre coherence, increased myelination, or axonal density, 262 

whereas negative deviations (Z < -2.6) may indicate reduced coherence or disrupted fibre 263 

organisation relative to the normative model (44). 264 

We applied msCCA to link FA, cortical thickness, and subcortical volume deviations with 265 

PANSS symptom domains (positive, negative, cognitive/disorganised, and total; see 266 

Methods and Supplementary text: Multimodal Analysis). The first canonical component 267 

showed a significant test correlation (r = 0.25, p = 0.003; Figure 4A), driven primarily by 268 

cognitive and total symptom scores (Figure 4B). Stability selection identified FA in the right 269 

uncinate fasciculus and volume loss in the bilateral thalamus as the most informative 270 

features (selection probability > 0.8; Figure 4C–D). These deviations were associated with 271 

greater symptom severity: higher-than-expected FA in the uncinate and lower-than-272 

expected thalamic volume (Figure 4E–F), suggesting altered fronto-temporal connectivity 273 

and subcortical atrophy. Subsequent components showed weaker and less reliable 274 

associations (r = 0.04, p = 0.11; r = 0.02, p = 0.03), so we focused on the first mode. For 275 

details regarding the methodology, results and interpretation please consult the 276 

Supplementary text: Multimodal Analysis. 277 

 278 
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Discussion  280 

This study presents a set of large-scale normative models for FA across major white 281 

matter tracts, estimated from a dataset of over 25,000 individuals spanning infancy to old 282 

age. Leveraging high-quality multi-shell diffusion MRI data, these models map the 283 

trajectory of white matter development and degeneration over the lifespan whilst also 284 

quantifying variance across the population. We showcase the clinical utility of these models 285 

by mapping inter-individual variation in cohorts of individuals with early psychosis. We 286 

show a high degree of inter-individual heterogeneity in these individuals, evidenced by 287 

relative increases in both positive- and negative deviations from the normative model in 288 

individuals with psychosis relative to controls. These differences were evident despite an 289 

absence of case control effects, indicating that the differences were highly individualized.  290 

Finally, we show that normative deviations of FA, cortical thickness and subcortical brain 291 

volume were accurate multi-modal predictors of symptomatology. Taken together, our 292 

findings provide a step toward advancing the understanding of the heterogeneity of white 293 

matter alterations in early psychosis. 294 

Our normative models show region-specific developmental trajectories in white 295 

matter organization that align well with foundational findings on lifespan changes in FA  296 

(15,45). However, we also show that inter-individual variability is considerably higher than 297 

the magnitude of lifespan-related changes in FA, underscoring the importance of using 298 

approaches such as this to characterize this at the individual level.  Studies suggest that 299 

increased FA during development relates to synaptic pruning and myelination, while 300 

declines in old age are linked to axonal degradation and reduced fiber coherence (46,47). 301 

Our models robustly capture these patterns, underscoring their relevance as a normative 302 

reference sample and utility for studies examining brain aging and clinical conditions. 303 

In the HCP-EP cohort, we observed high inter-individual variability in white matter 304 

organisation in psychosis, consistent with prior findings of structural heterogeneity in both 305 

psychosis and other psychiatric conditions (6,7,9,10,48). This variability, seen in the 306 

absence of group-level effects, supports the use of normative models for stratifying clinical 307 

cohorts (3). Our multivariate results linked symptom severity to decreased thalamic volume 308 

and increased FA in the right uncinate fasciculus. These findings align with previous reports 309 

implicating the uncinate in psychosis, including reduced FA in recent-onset schizophrenia 310 

(14,49,50) and associations with early adversity and emotion recognition deficits (51). The 311 

direction of effect in our study differs, potentially reflecting compensatory processes or 312 

confounding factors like crossing fibres. 313 

Broader structural studies (15,45,52,53) highlight developmental influences in 314 

psychosis, reinforcing the value of normative models for exploring illness trajectories. 315 

Longitudinal data will be essential to clarify these effects. See ‘Supplementary text: 316 

Interpretation of the results’ for a more detailed interpretation of the results and comparison 317 

to existing literature. 318 

One of the benefits of this study is that we focus on acquiring a high-quality diffusion 319 

sample with closely harmonized protocols. This maximizes the ability to attribute detected 320 

variations to biological differences, rather than artefacts such as data quality or residual site 321 

effects. In this study, we focused on FA due to its robustness and directional specificity. 322 

While MD is also informative, it is more susceptible to bias from CSF partial volume and 323 

partial grey-white mixing. Recent work has shown that such biases can meaningfully alter 324 

group differences in ROI-level metrics (54). However, this is only the first step, we intend 325 

to augment these models with further models, including other tensor-based metrics, such as 326 

mean diffusivity MD and non-tensor models (e.g. neurite orientation dispersion and density 327 
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imaging; NODDI (55,56), to take full advantage of the multi-shell diffusion data and 328 

provide an even more comprehensive resource for white matter analysis. Finally, we provide 329 

these models to the field via our established no-code software platform (23) and via open-330 

source software tools (https://github.com/ramonacirstian/fa_normative_modeling), so that 331 

others in the field can easily apply these models to their own data.  332 

We acknowledge some limitations to the current study. our dataset includes fewer 333 

participants at the youngest (5–8 years) and oldest (85+ years) age ranges, limiting 334 

generalisability at these extremes. While steps were taken to minimise bias, future work 335 

should expand coverage as new data become available. Additionally, site effects were 336 

addressed, but demographic factors such as socioeconomic background warrant further 337 

investigation. We used multiset canonical correlation analysis (msCCA) to link brain 338 

deviations to clinical symptoms in a reproducible and interpretable way. Given our 339 

moderate sample size, we fixed sparsity parameters to avoid instability from nested cross-340 

validation (57,58). To enhance generalisability and identify robust features, we used 341 

permutation testing and stability selection (59). Future work could explore adaptive sparsity 342 

tuning in larger samples to improve flexibility. 343 

While harmonisation techniques are commonly used to align datasets across 344 

scanners and acquisition protocols, they may suppress variance that is informative in 345 

normative modelling. Here, we modelled site effects directly within the statistical 346 

framework, enabling site-specific estimation of both means and variances while preserving 347 

biologically meaningful variation. This supports generalisable normative modelling, but we 348 

acknowledge that some residual scanner effects may remain. Future work may explore 349 

combining harmonisation and modelling strategies depending on the intended application. 350 

It is important to note that raw FA values were not used in the multivariate analyses due to 351 

substantial site-related variability, which we visualised in Figure 1C and Supplementary 352 

Figure 6. Normative modelling enabled consistent cross-site comparison by accounting for 353 

site scaling differences, thereby offering a more robust basis for linking white matter 354 

alterations to symptom severity. These models represent research-ready tools that can 355 

support individual-level characterisation of brain deviations and stratification of clinical 356 

populations. Their use in everyday clinical practice is still limited by several factors, 357 

including the need for calibration data to account for site-related variability, questions about 358 

how well current norms apply to more diverse or non-European populations, and the 359 

practical challenges of incorporating complex modelling tools into clinical routines. 360 

Imaging costs may also be a consideration. Future work is needed to address these 361 

challenges and explore how normative models can be made useful in real-world clinical 362 

decision-making. 363 

We included self-reported race as a covariate to account for population-level 364 

demographic variation, following our prior work (60). We consider this important to reduce 365 

the risk of racial bias, but it should be remembered that the datasets on which these models 366 

were trained on are not representative of the wider population and are themselves biased 367 

towards ‘Western Educated, Industrialised, Rich and Democratic’ (WEIRD) populations 368 

(60). Self-reported race is also an imperfect measure, and it is likely that using more flexible 369 

modelling approaches may be needed to properly account for these effects (61). For these 370 

reasons we also release the models that do not include race so that each researcher using 371 

these models can decide for themselves which model is more appropriate for their needs. 372 

Future studies should consider incorporating more nuanced demographic information, 373 

where available. 374 
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In summary, this study provides comprehensive normative reference models for FA 375 

across the lifespan, using an extensive dataset that spans infancy to old age. By integrating 376 

high-quality diffusion MRI data and using robust modeling techniques, we captured the 377 

typical trajectory of white matter development and decline, aligning with prior research and 378 

enhancing the field’s understanding of brain aging. Our application of these models to a 379 

clinical early psychosis cohort underscores their potential utility in identifying atypical 380 

white matter patterns in psychiatric conditions. These models not only serve as a benchmark 381 

for individual-level assessments but also offer valuable insights for precision medicine, 382 

facilitating more personalized interventions. This study highlights the relevance of 383 

normative modeling in neuroimaging, paving the way for its integration into clinical and 384 

research settings focused on individual variability in brain structure and pathology.  385 
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Figure legends 535 

Figure 1. A) Flow chart of the main diffusion image processing steps B) Histogram plot of 536 

the data used for normative modeling, showing the population density at each age and 537 

highlighting the different datasets used C) Scatterplot exemplifying the quality control 538 

process using normative modeling and outlier exclusion based on Z-score thresholding. In 539 

this plot, site effects are clearly evident, which are accommodated by the normative models 540 

(see Figure 2).  541 

Figure 2. A selection of six white matter tracts and their corresponding normative modelling 542 

centile plots highlighting the similarity in white matter formation and degeneration along 543 

the lifespan as well as tract specific differences in terms of shapes and variance of the FA 544 

values. For visualization purposes, data from different sites are aligned to a common 545 

reference (e.g. the mean centiles or the centiles for an arbitrary chosen site) by computing 546 

the z-scores separately for each site using the site-specific means and standard deviations, 547 

then inverting the z-scores using the mean and standard deviation derived from the common 548 

reference. Diffusion imaging derived phenotypes were extracted as mean FA values along 549 

the white matter skeleton within each JHU tract. This method, adopted from the UK 550 

Biobank processing pipeline, reduces susceptibility to partial volume and misalignment 551 

errors.  The visual overlays in depict full tract ROIs for spatial reference; analysis was 552 

performed using skeletonised values only. 553 

Figure 3: Percentage of individuals with extreme FA deviations (|Z| > 2.6) across 48 white 554 

matter tracts, shown separately for patients (top) and controls (bottom), and for positive 555 

(red) vs. negative (blue) deviations. Each bar represents the percentage of individuals within 556 

a group who show an extreme deviation in a given tract. These plots reflect the distribution 557 

of deviations across tracts (i.e., the spatial pattern of which tracts are affected and how 558 

commonly, within each group). We observe that patients exhibit extreme deviations in a 559 

broader range of tracts, whereas controls show a more restricted distribution. This supports 560 

the interpretation of increased spatial heterogeneity of white matter alterations in early 561 

psychosis. Diffusion imaging derived phenotypes refer to mean FA values extracted from 562 

the TBSS skeleton within each tract. The visual overlays depict full tract ROIs for spatial 563 

reference; analysis was performed using skeletonised values only. 564 

Figure 4: (A) Density plot of the multiple sparse Canonical Correlation Analysis (msCCA) 565 

main components, highlighting the distribution of test canonical correlations separately for 566 

each pair of views. (B) Violin plots representing the weights of PANSS symptom scores 567 

across the four symptom categories, namely negative symptoms, positive symptoms, 568 

cognitive symptoms, and total symptoms. (C) and (D) Selection probabilities for diffusion 569 

white matter tracts and Cortical Thickness white matter tracts, respectively, with a red 570 

threshold line indicating the chosen selection threshold of 80%. (E) and (F) Glass brain 571 

representations of the significantly selected white matter tracts and subcortical regions of 572 

interest, respectively. Note that no cortical thickness ROIs survived the selection threshold. 573 

The highlighted regions include the uncinate fasciculus (right) for diffusion and the cortical 574 

thickness regions: Left-Thalamus and Right-Thalamus 575 
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