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Abstract 

A modelling framework that applies a design-for-

performance approach to predict the actual operational 

energy consumption of buildings was presented in the 

latest published CIBSE TM54 (2022) in the UK. 

However, modelling uncertainty can lead to discrepancies 

between predicted and actual energy consumption. 

Identifying these uncertainties is crucial for enhancing the 

reliability of building performance simulation approaches. 

This study developed a modelling task for practitioners 

based on a simplified school building . The requirement 

was to simulate energy use in IES VE or DesignBuilder 

software using either the template-level HVAC modelling 

or detailed component-level HVAC modelling 

approaches proposed in CIBSE TM54. The predicted 

annual natural gas and electricity consumption from the 

20 participants showed substantial variability, ranging 

from -74.8% to 157.7% and -74.3% to 114.9%, 

respectively. This paper contributes to further 

improvement and detailing of modelling framework in the 

future. 

Key Innovations 

• Simultaneously examines the impact of variability in 

modelling approaches, modellers, and inter-model 

differences on the results. 

• Discusses the trade-off between modelling reliability 

and the time required. 

Practical Implications 

The modeller's decision, the modelling software or the 

modelling approach can have a significant impact on the 

energy simulation results. The modelling framework and 

the workflow of the software application should be further 

refined to mitigate the introduction of unnecessary 

uncertainties. 

Introduction 

Energy modelling tools are widely developed and applied 

to predict building performance. To reduce the 

performance gap between predicted results and actual 

energy use, it is essential to explore the impact of 

modelling uncertainty on the results. The literature is 

reviewed below from three perspectives. First, in terms of 

modeller variability, previous studies have compared the 

results from different users simulating the same building 

using the same modelling software and approach, which 

revealed that the modeller's understanding of the building 

information and modelling decisions can have a non-

negligible impact on the predicted outputs (Bloomfield, 

1988; Gilles Guyon, 1997; Bradley, Kummert and 

McDowell, 2004; Berkeley, Haves and Kolderup, 2014). 

Next, in terms of inter-model variability, each type of 

software uses different algorithmic procedures and 

assumptions, which leads to different results when 

modelling the same project. Poor consistency of 

simulation results was found by having individual users 

modelling the same building using different modelling 

software (Underwood, 1997; Hopfe et al., 2007; Schwartz 

and Raslan, 2013; Reeves, Olbina and Issa, 2015; Choi, 

2017; Magni et al., 2021). Finally, regarding the 

variability of modelling approaches, studies have mainly 

focused on discussing the differences between 

compliance and performance modelling, as well as 

comparing the results of quasi-steady state approaches 

and dynamic simulations (Murray, Rocher and 

O’Sullivan, 2012; Jones, Fuertes and de Wilde, 2015; 

Jradi et al., 2018; Shiel, Tarantino and Fischer, 2018; 

Jradi, 2020). Few studies have explored the reliability 

comparison between template HVAC modelling and 

detailed component-level HVAC modelling. A study that 

categorised energy use intensity (EUI) into HVAC-

related and non-HVAC-related found that the maximum 

gap between predicted energy consumption and measured 

data for HVAC systems was 114.7%, while the maximum 

performance gap for non-HVAC systems was only -4.5% 

(Wang et al., 2020). Therefore, modelling of HVAC 

systems and controls needs to be given more attention. 

Overall, the complexity of HVAC system inputs has led 

previous studies to mainly select simplified HVAC 

modelling as the research approach. This ignores the 

trade-off between complexity and reliability of different 

dynamic performance modelling. The aim of this study is 

to investigate the effect of modeller variability, inter-

model variability and modelling approach variability on 

the results by analysing the actual modelling results. 

Different users were asked to model the same building in 

IES VE or DesignBuilder software using either template 

HVAC modelling or detailed component-level HVAC 

modelling approaches to explore the impact of uncertainty 

in modelling on energy predictions by comparisons of 

inputs and outputs. 

Methods 

In this study, a 2970 m2 real sixth form school building 

located in England was simplified to develop this 

modelling task. Figure 1 illustrates the building model 

developed in IES VE software. The model has 31 zones, 
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and the main activity types are teaching, workshops and 

offices. Table 2 presents an overview of the building's 

HVAC system, providing an initial insight into the 

composition of end-use energy consumption. In brief, 

gas-fired condensing boilers are used for the main space 

heating. The ICT-enhanced classrooms and IT rooms are 

supplied with the variable refrigerant flow (VRF) system 

for heating and cooling. Two server rooms are equipped 

with the direct expansion (DX) system for cooling. The 

automatic vents in three atrium spaces provide natural 

ventilation by responding to the temperature and CO2 

concentrations. The other spaces are mechanically 

ventilated through an air handling unit (AHU) with heat 

recovery and there is no dedicated cooling system. 

Domestic hot water (DHW) is heated by a separate gas 

water heater. 

 

Figure 1: Building model developed in IES VE. 

Table 1: an overview of the building's HVAC system. 

Categories Details 

Heating 

• Three gas-fired condensing boilers are used 

for the space heating.  

• The ICT-enhanced classrooms and 

Business & IT rooms are equipped with the 

VRF system for heating. 

Cooling 

• The ICT-enhanced classrooms and 

Business & IT rooms are equipped with 

VRF systems for cooling.  

• The two server rooms are each equipped 

with DX units for cooling. 

Domestic 

hot water 

• A separate gas-fired water heater to 

produce hot water. 

Ventilation 

• The first row of glazing at the top of the 

curtain walls in the three atrium spaces can 

be opened automatically to provide natural 

ventilation.  

• The rooms excluding the three atrium 

spaces are mechanically ventilated by a 

central AHU with heat recovery. 

Participants were asked to choose one of the two 

modelling approaches (template level and detailed 

component-level) proposed by CIBSE TM54 (2022), 

using either IES VE or DesignBuilder software, which are 

the most widely used building performance modelling 

platforms in the UK, to predict the building's operational 

energy consumption. The UK CIBSE TM54 (2022) 

protocol was developed to facilitate the application of 

performance modelling to predict operational energy 

consumption at the design stage, which can avoid the 

misuse of compliance models as design tools or 

benchmarks to quantify performance gaps. Two levels of 

dynamic modelling approaches are available for this 

modelling framework: (1) Template-level modelling is 

the application of a predefined template HVAC system 

with input of key parameters, corresponding to the 

Apache system in IES VE software and the Simple HVAC 

method in DesignBuilder software; (2) Detailed 

component-level modelling refers to the creation of 

project-specific HVAC schematics based on each 

component, which corresponds to the Apache HVAC 

system in IES VE software and the Detailed HVAC 

method in DesignBuilder software. 

Participants were recruited through several channels, such 

as DesignBuilder monthly newsletter for UK subscribers, 

the CIBSE Building Simulation Group and UCL alumni 

network. Participants were required to have a solid 

understanding of UK building regulations and standards, 

along with relevant work experience in modelling. 

Therefore, 20 practitioners with at least 1 year of 

experience in building performance modelling were 

recruited and all had an educational background or work 

experience in the UK. Each modelling approach was 

tasked by 5 participants under each software. All 

participants were provided with the same modelling 

package, which included an overview of the modelling 

task (which detailed envelope thermal performance, 

building services system characteristics, and occupant 

information), a gbXML file for this building, a weather 

file, and technical information sheets for key HVAC 

system equipment. Additionally, a questionnaire was 

developed based on this modelling task to obtain feedback 

from the practitioners' perspectives for a qualitative 

analysis of the existing modelling challenges and drivers 

of variation in the results. Also, it can be used to collect 

basic information about the participants and the time 

spent on their modelling. All participants completed the 

modelling task and submitted their final models and 

questionnaires. This paper only shows a quantitative 

analysis of the simulation results, a detailed comparison 

of the modelling parameters and results as well as a 

qualitative analysis based on the questionnaires will be 

part of future work. 

Results 

This part first describes the composition of the 

participants. The simulation results for natural gas and 

electricity use are then compared to the average of the 

results. Furthermore, differences in energy consumption 

projections for each end-use are investigated. Finally, the 

time required by participants to apply the different 

modelling approaches is examined. 

Background and experience of participants 

20 practitioners completed the modelling task and the 

associated questionnaire. Figure 2 shows the professional 

composition of the participants. There were 7 building 

physicists, 7 sustainability consultants, 2 researchers and 

4 individuals who specifically identified their roles as 

building performance modellers. The questionnaire 

included options for architects and building services 

engineers and interestingly, no participants identified 

themselves in these professional roles, which may 
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indicate that building performance modelling is often 

outsourced rather than done by the original designer. 

Regarding the years of work experience, as shown in 

Figure 3, only one participant had more than 10 years of 

work experience. 12 participants had 4-10 years of work 

experience, while the other 7 were in the early stages of 

their careers (1-3 years). 

  

Figure 2: Professional role. 

 

Figure 3: Years of work experience. 

Fuel type breakdown of prediction deviations 

Tables 2 to 4 respectively present the comparison of each 

participant's predicted natural gas, electricity, and total 

energy consumption with the average for the entire 

sample.  

The mean simulated natural gas energy consumption was 

105.6 MWh (35.6 kWh/m2). The benchmarks for natural 

gas EUI in secondary schools in the UK are 86 kWh/m² 

for 'good practice' and 113 kWh/m² for 'typical practice' 

(CIBSE, 2021). This suggested that simulated natural gas 

usage for this building was energy efficient, even lower 

than the ‘good practice’ benchmark. By software type, the 

average simulation result for the 10 participants using 

DesignBuilder software was 63.4 MWh, compared to 

147.8 MWh for those using IES VE software. By 

modelling approach, the average simulation result for 

template HVAC modelling was 107.9 MWh, whereas 

detailed component-level HVAC modelling yielded an 

average of 103.4 MWh. 

Table 2: Comparison of individual predictions with the 

average for natural gas consumption. 

Approach User 
Results 

(MWh) 
Variation 

Variation 

range 

DB: 

Simplified 

1 28.6 -72.9% 

-72.9% ~ 

-15.3% 

2 89.5 -15.3% 

3 85.0 -19.6% 

4 29.5 -72.1% 

5 65.5 -38.0% 

DB: 

Detailed 

6 26.6 -74.8% 

-74.8% ~ 

7.8% 

7 75.2 -28.8% 

8 113.9 7.8% 

9 76.9 -27.1% 

10 43.0 -59.3% 

IES: 

Simplified 

11 87.4 -17.2% 

-33.2% ~ 

157.7% 

12 126.2 19.5% 

13 224.3 112.4% 

14 272.1 157.7% 

15 70.5 -33.2% 

IES: 

Detailed 

16 103.1 -2.3% 

-5.6% ~ 

137.3% 

17 250.6 137.3% 

18 138.6 31.2% 

19 99.7 -5.6% 

20 105.8 0.2% 

The mean simulated electricity consumption was 168.2 

MWh (56.6 kWh/m2). The benchmarks for electricity EUI 

in secondary schools in the UK are 42 kWh/m² for 'good 

practice' and 51 kWh/m² for 'typical practice' (CIBSE, 

2021). This demonstrated that the building's projected 

electricity use was higher than the ‘typical practice’ 

benchmark. When comparing software types, the average 

electricity consumption for DesignBuilder simulation was 

167.4 MWh, while IES VE simulations averaged 169.1 

MWh. In terms of modelling approaches, the average 

electricity consumption for template HVAC modelling 

was 130.2 MWh, whereas detailed component-level 

HVAC modelling resulted in an average of 206.3 MWh. 

Table 3: Comparison of individual predictions with the 

average for electricity consumption. 

Software: 

Approach 
User 

Results 

(MWh) 
Variation 

Variation 

range 

DB: 

Simplified 

1 43.3 -74.3% 

-74.3% ~ 

-10.1% 

2 73.4 -56.4% 

3 151.3 -10.1% 

4 122.7 -27.1% 

5 147.8 -12.1% 

DB: 

Detailed 

6 136.8 -18.7% 

-18.7% ~ 

114.9% 

7 163.6 -2.7% 

8 361.6 114.9% 

9 311.6 85.3% 

10 162.0 -3.7% 

IES: 

Simplified 

11 148.5 -11.7% 

-58.7% ~ 

67.1% 

12 147.5 -12.3% 

13 69.4 -58.7% 

14 281.1 67.1% 

15 116.9 -30.5% 
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IES: 

Detailed 

16 148.2 -11.9% 

-24.2% ~ 

38.1% 

17 229.3 36.3% 

18 127.5 -24.2% 

19 190.2 13.0% 

20 232.2 38.1% 

For total energy consumption, which is the sum of natural 

gas and electricity consumption, the simulation results 

show an average of 273.8 MWh. The DesignBuilder 

software simulation has an average total energy 

consumption of 230.8 MWh, while the IES VE software 

has a higher average of 316.9 MWh. Regarding modelling 

approaches, template HVAC modelling resulted in an 

average total energy consumption of 238.0 MWh, while 

detailed component-level HVAC modelling averaged 

309.7 MWh. 

Table 4: Comparison of individual predictions with the 

average for total energy consumption. 

Software: 

Approach 
User 

Results 

(MWh) 
Variation 

Variation 

range 

DB: 

Simplified 

1 71.9 -73.7% 

-73.7% ~ 

-13.7%  

2 162.8 -40.5% 

3 236.2 -13.7% 

4 152.2 -44.4% 

5 213.3 -22.1% 

DB: 

Detailed 

6 163.4 -40.3% 

-40.3% ~ 

73.6% 

7 238.8 -12.8% 

8 475.5 73.6% 

9 388.6 41.9% 

10 205.0 -25.1% 

IES: 

Simplified 

11 236.0 -13.8% 

-31.6% ~ 

102.0% 

12 273.6 -0.1% 

13 293.8 7.3% 

14 553.2 102.0% 

15 187.4 -31.6% 

IES: 

Detailed 

16 251.3 -8.2% 

-8.2% ~ 

75.3% 

17 480.0 75.3% 

18 266.0 -2.9% 

19 289.9 5.9% 

20 338.0 23.4% 

End-use breakdown of prediction deviations 

Natural gas was consumed for space heating and domestic 

hot water (DHW), and individual results and comparisons 

against average projections for each end use shown in 

figures 4 and 5, respectively. The red dotted lines and 

numbers in the figures represent the average of all the 

simulated results. To enable effective comparison, the y-

axis range in the following two figures is set to the same 

scale, allowing for a clear visualization of the proportion 

of these two end-uses in the total natural gas consumption. 

Notably, all figures show the results in the same order as 

the participants listed in the previous three tables. 

 

Figure 4: Predicted space heating energy use: 

Individual variations and mean value. 

 

Figure 5: Predicted domestic hot water energy use: 

Individual variations and mean value. 

The simulated mean value of natural gas consumption for 

space heating was 88.0 MWh, with a standard deviation 

of 64.8 MWh. The results for the 10 participants using the 

DesignBuilder software were all below this mean, with an 

average of 46.2 MWh. In contrast, the simulated mean for 

the IES VE users was 129.7 MWh, with only three 

participants simulating results below the overall average. 

For DHW, the average of all modelling results was 18.3 

MWh with a standard deviation of 16.8 MWh, in which 

one participant did not have a DHW system set up. The 

investigation of the groups, based on different modelling 

software and approaches, revealed that the mean values of 

each group were within ±1.2 MWh of the overall mean. 

Electricity consumption included space heating and 

cooling provided by the VRF system and the DX system, 

auxiliary energy use, lighting and equipment operation. 

Figures 6 to 9 illustrate individual variations in simulation 

results for each category. Similarly, the y-axis range in 

these four figures is also standardized. 
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Figure 6: Predicted Space heating + cooling energy use: 

Individual variations and mean value. 

 

Figure 7: Predicted auxiliary energy use: Individual 

variations and mean value. 

For electricity use for space heating and cooling, the mean 

value of the simulation output for the 20 participants was 

8.6 MWh, with a standard deviation of 11.1 MWh. 

Generally, the mean value of the simulation results from 

the DesignBuilder software (11.2 MWh) was higher than 

that from the IES VE software (6.0 MWh). By modelling 

approach, the mean value of simulation results using the 

detailed component-level HVAC modelling approach 

(12.1 MWh) was higher than that using the template 

HVAC modelling approach (5.1 MWh). The predicted 

consumption of auxiliary energy had an average value of 

39.4 MWh and a standard deviation of 36.3 MWh. The 

mean results from different modelling approaches showed 

a significant difference, with the predicted mean under the 

template HVAC modelling being 22.4 MWh and the 

detailed component-level HVAC modelling being 56.3 

MWh. 

 

Figure 8: Predicted lighting energy use: Individual 

variations and mean value. 

 

Figure 9: Predicted equipment energy use: Individual 

variations and mean value. 

The simulated electricity usage for lighting resulted in a 

mean value of 39.1 MWh with a standard deviation of 

22.9 MWh. For equipment, the simulated results had a 

mean value of 80.6 MWh, with a standard deviation of 

31.7 MWh. Both types of end-use energy predictions 

showed similar average values across the different 

modelling software. However, when classified according 

to the different modelling approaches, the simulation 

results averages for the template HVAC modelling (33.8 

MWh for lights and 67.7 MWh for equipment) were both 

lower than the detailed component level HVAC 

modelling (44.4 MWh for lights and 93.6 MWh for 

equipment). 

Variation in modelling time among participants 

In the questionnaire participants were asked to self-report 

the time spent on the modelling task. The question was set 

with five options including less than two hours, 2-5 hours, 

5-10 hours, 10-15 hours and more than 15 hours. Figure 

10 illustrates the proportion of time spent on the 

modelling task. Almost half of the participants (9) spent 

5-10 hours modelling. Six participants used 2-5 hours to 

complete the task. Two used 10-15 hours to model. The 
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other three modellers reported more than 15 hours. No 

one was able to complete the energy modelling of the 

building in less than two hours. 

 

Figure 10: Proportion of time spent on the task 

 

Figure 11: Self-reported time required for the task 

Figure 11 displays the distribution of time taken by each 

participant to complete the modelling task, categorised by 

modelling software and approach. The median value was 

used as a proxy for the time range. Hence, the five options 

are replaced with 2 hours, 3.5 hours, 7.5 hours, 12.5 hours 

and 15 hours in the figure. It was observed that modellers 

who reported spending more than 15 hours on modelling 

used the same modelling approach and software, which 

was the Apache HVAC system in the IES VE software. 

The average modelling time for this group of participants 

amounted to 11.2 hours. In comparison, the average time 

required to complete the task using the template HVAC 

modelling approach in the IES VE software was only 6.9 

hours. For the DesignBuilder software, the five 

participants using the template HVAC modelling 

approach took an average of 5.9 hours and 7.7 hours for 

detailed component-level HVAC modelling. 

Discussion 

The predicted annual energy consumption for natural gas 

by the 20 participants varied from -74.8% to 157.7% of 

the average, while the electricity predictions ranged from 

-74.3% to 114.9%. For total energy consumption, the 

range of differences narrows slightly to -73.7% to 

102.0%. This smaller variation compared to natural gas 

and electricity individually is due to the cancelling out 

effects of the simulation results for each fuel type. Thus, 

it is necessary to investigate the consumed energy for each 

end-use, which prevents misinterpretation of the 

simulation due to mutual cancellation.  

Comparing the simulation outputs of the different 

software, it was found that the average value of natural 

gas usage simulated by the IES VE software was 2.3 times 

higher than that of DesignBuilder. The average value of 

electricity use simulated by both software is almost the 

same. The simulation results for total energy consumption 

were 1.4 times higher for IES VE than for DesignBuilder. 

The simulated averages for natural gas consumption were 

shown to be nearly identical when compared according to 

the modelling approach. However, the detailed 

component level HVAC modelling approach predicted 

about 58.5 % higher mean values for electricity 

consumption than the simple HVAC modelling approach, 

and about 30.1 % higher predictions for total energy 

consumption. In summary, for natural gas consumption, 

the simulations using the DesignBuilder software resulted 

in lower predictions. For electricity consumption, the 

simulations performed under the simplified HVAC 

modelling approach had lower energy use. 

To further understand the factors determining the 

simulation results for natural gas and electricity, the 

energy use of each end-use was then compared. It was 

found that the simulated energy consumption for each 

type of end-use had high variability. By comparing the 

standard deviation of each group, results for natural gas 

required for space heating were predicted to have the most 

dispersion. Relatively less variability was demonstrated in 

the simulated results for natural gas required for DHW 

and for space heating and cooling using electricity.  

In detail, for natural gas consumed for space heating, the 

energy projections varied from the average value by a 

range of -72.4% to 209.4%. The average value of the IES 

VE software simulation results was 2.8 times higher than 

DesignBuilder. However, for domestic hot water, the 

mean value for each group did not fluctuate by more than 

6% from the mean value of the total simulation results, 

whether categorised according to different software or 

modelling approaches. This demonstrated that space 

heating accounted for the largest share of natural gas 

consumption, indicating that it was the main driver of 

natural gas demand in the modelling.  

For electricity use predictions, the average of simulation 

results for each end-use under the detailed component-

level HVAC modelling approach was higher than for the 

template HVAC modelling. One potential reason for this 

was that the detailed component-level HVAC modelling 

approach had more comprehensive and advanced data 

input requirements when modelling HVAC systems and 

auxiliary energy. However, for the simulation of lighting 

and equipment operation, the data inputs for the two 

modelling approaches are essentially identical, and they 
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depend on the activity type template assigned to each 

space. Therefore, further investigation of modelling input 

parameters is required in the future for understanding the 

underlying causes of the discrepancies in modelling. 

This study did not set a time limit for completing the task. 

The average time taken by the 20 practitioners to 

complete the modelling was 7.9 hours. Under the same 

modelling approach, the average time required by 

participants using DesignBuilder was lower overall than 

that of IES VE users. With the same modelling software, 

the average time to complete detailed component level 

HVAC modelling was longer. However, the time required 

for modelling did not correspond to the magnitude of 

result variations. For example, for the simulation of total 

energy consumption, the largest range of variation in 

results was among the five participants who used the 

template HVAC modelling approach in the IES VE 

software (-31.6% ~ 102.0%), while the minimum range of 

variation was among those who used the template HVAC 

modelling approach in the DesignBuilder software (-73.7% 

~ -13.7%). This demonstrated that increased modelling 

detail requires more time and effort from the modeller, 

while at the same time the increase in input parameters 

may introduce additional uncertainty leading to greater 

variation in results. 

Conclusion 

This paper presented the first part of a study, focusing 

solely on the analysis and discussion of simulation results 

provided by the participants. The results indicated that the 

modeller's decision, the modelling software or the 

modelling approach can have a significant impact on the 

energy simulation results. The distance and lack of 

communication between building designers, modellers 

and software developers may be a major reason for the 

various discrepancies. Thus, the modelling framework 

and the workflow of the software application should be 

further refined to mitigate the introduction of unnecessary 

uncertainties. For example, adding the process of 

reviewing the models by the original designers and 

benchmarking based on measured performance of similar 

projects in the past. Moreover, to explore the optimisation 

of data-driven modelling and machine learning 

algorithms for complex building design and energy 

prediction (Manfren, James and Tronchin, 2022; 

Golafshani et al., 2024). The next step in this work will 

be to investigate the modeller's key input parameters, 

especially for the HVAC system, and to conduct a 

qualitative analysis based on the questionnaire to further 

identify the reasons for the introduction of uncertainty. 

As with other similar studies, a limitation of this study is 

the lack of comparison with actual energy consumption 

data (Gilles Guyon, 1997; Berkeley, Haves and Kolderup, 

2014). To make the time required for the modelling task 

manageable for practitioners, and considering the 

difficulty of recruitment and budget constraints, this study 

simplified the modelling of a real school building and 

participants were asked to apply a typical occupancy 

pattern for simulation that was in accordance with the 

National Calculation Methodology (NCM) in England. 

Not only did this result in an inability to use actual energy 

consumption data from the original building for 

comparison, it also ignored the impact of occupancy 

uncertainty on the modelling results. In practice 

occupancy variability makes the model less reliable. 

Therefore, comparing modelling results with measured 

performance can help to identify extra-curricular 

activities and other non-standard occupancy patterns to 

optimise modelling inputs. In the future, the same 

simplification can be applied to the calibrated original 

model and simulated to represent the best practice model. 

Furthermore, this study focused on the uncertainty in the 

input of modelling information. As a result, gbXML files, 

one of the most common building information transfer 

formats, were only used to ensure the consistency of 

building geometries, and their potential and reliability for 

other information transfers were not investigated in depth. 
Future work could explore the uncertainties that different 

users or software might introduce when applying BIM-

based modelling, in line with the six components (1. 

Geometry; 2. Constructions and materials; 3. Spaces type; 

4. Thermal zones; 5. Space loads; 6. HVAC system and 

components) proposed by Maile, Fischer and Bazjanac 

(2007) for the ideal transfer of information between BIM 

and BEM. 
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