BUILDING 2
SIMULATION
20

BRI

CARBON AND CLIMATE RESPONSIVE

International
Building
Performance
Simulation
Association

Assessing the impact of modelling variability on building performance simulation results

Jingxuan Yang*, Esfand Burman?, Dejan Mumovic!
! Institute for Environmental Design and Engineering, The Bartlett School of Environment, Energy
and Resources, University College London, London, UK
*Corresponding Author: j.yang.20@ucl.ac.uk

Abstract

A modelling framework that applies a design-for-
performance approach to predict the actual operational
energy consumption of buildings was presented in the
latest published CIBSE TM54 (2022) in the UK.
However, modelling uncertainty can lead to discrepancies
between predicted and actual energy consumption.
Identifying these uncertainties is crucial for enhancing the

reliability of building performance simulation approaches.

This study developed a modelling task for practitioners
based on a simplified school building . The requirement
was to simulate energy use in IES VE or DesignBuilder
software using either the template-level HYAC modelling
or detailed component-level HVAC modelling
approaches proposed in CIBSE TM54. The predicted
annual natural gas and electricity consumption from the
20 participants showed substantial variability, ranging
from -74.8% to 157.7% and -74.3% to 114.9%,
respectively. This paper contributes to further
improvement and detailing of modelling framework in the
future.

Key Innovations

e Simultaneously examines the impact of variability in
modelling approaches, modellers, and inter-model
differences on the results.

o Discusses the trade-off between modelling reliability
and the time required.

Practical Implications

The modeller's decision, the modelling software or the
modelling approach can have a significant impact on the
energy simulation results. The modelling framework and
the workflow of the software application should be further
refined to mitigate the introduction of unnecessary
uncertainties.

Introduction

Energy modelling tools are widely developed and applied
to predict building performance. To reduce the
performance gap between predicted results and actual
energy use, it is essential to explore the impact of
modelling uncertainty on the results. The literature is
reviewed below from three perspectives. First, in terms of
modeller variability, previous studies have compared the
results from different users simulating the same building
using the same modelling software and approach, which
revealed that the modeller's understanding of the building
information and modelling decisions can have a non-

negligible impact on the predicted outputs (Bloomfield,
1988; Gilles Guyon, 1997; Bradley, Kummert and
McDowell, 2004; Berkeley, Haves and Kolderup, 2014).
Next, in terms of inter-model variability, each type of
software uses different algorithmic procedures and
assumptions, which leads to different results when
modelling the same project. Poor consistency of
simulation results was found by having individual users
modelling the same building using different modelling
software (Underwood, 1997; Hopfe et al., 2007; Schwartz
and Raslan, 2013; Reeves, Olbina and Issa, 2015; Choi,
2017; Magni et al., 2021). Finally, regarding the
variability of modelling approaches, studies have mainly
focused on discussing the differences between
compliance and performance modelling, as well as
comparing the results of quasi-steady state approaches
and dynamic simulations (Murray, Rocher and
O’Sullivan, 2012; Jones, Fuertes and de Wilde, 2015;
Jradi et al., 2018; Shiel, Tarantino and Fischer, 2018;
Jradi, 2020). Few studies have explored the reliability
comparison between template HVAC modelling and
detailed component-level HYAC modelling. A study that
categorised energy use intensity (EUI) into HVAC-
related and non-HVAC-related found that the maximum
gap between predicted energy consumption and measured
data for HVAC systems was 114.7%, while the maximum
performance gap for non-HVAC systems was only -4.5%
(Wang et al., 2020). Therefore, modelling of HVAC
systems and controls needs to be given more attention.

Overall, the complexity of HVAC system inputs has led
previous studies to mainly select simplified HVAC
modelling as the research approach. This ignores the
trade-off between complexity and reliability of different
dynamic performance modelling. The aim of this study is
to investigate the effect of modeller variability, inter-
model variability and modelling approach variability on
the results by analysing the actual modelling results.
Different users were asked to model the same building in
IES VE or DesignBuilder software using either template
HVAC modelling or detailed component-level HVAC
modelling approaches to explore the impact of uncertainty
in modelling on energy predictions by comparisons of
inputs and outputs.

Methods

In this study, a 2970 m? real sixth form school building
located in England was simplified to develop this
modelling task. Figure 1 illustrates the building model
developed in IES VE software. The model has 31 zones,
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and the main activity types are teaching, workshops and
offices. Table 2 presents an overview of the building's
HVAC system, providing an initial insight into the
composition of end-use energy consumption. In brief,
gas-fired condensing boilers are used for the main space
heating. The ICT-enhanced classrooms and IT rooms are
supplied with the variable refrigerant flow (VRF) system
for heating and cooling. Two server rooms are equipped
with the direct expansion (DX) system for cooling. The
automatic vents in three atrium spaces provide natural
ventilation by responding to the temperature and CO;
concentrations. The other spaces are mechanically
ventilated through an air handling unit (AHU) with heat
recovery and there is no dedicated cooling system.
Domestic hot water (DHW) is heated by a separate gas
water heater.

Figure 1: Building model developed in IES VE.
Table 1: an overview of the building's HVAC system.

Details

e Three gas-fired condensing boilers are used
for the space heating.

Heating e The ICT-enhanced classrooms and
Business & IT rooms are equipped with the
VRF system for heating.

e The ICT-enhanced classrooms and
Business & IT rooms are equipped with
VRF systems for cooling.

e The two server rooms are each equipped
with DX units for cooling.

Domestic | o A separate gas-fired water heater to

Categories

Cooling

hot water produce hot water.

o The first row of glazing at the top of the
curtain walls in the three atrium spaces can
be opened automatically to provide natural

Ventilation ventilation.

e The rooms excluding the three atrium
spaces are mechanically ventilated by a
central AHU with heat recovery.

Participants were asked to choose one of the two
modelling approaches (template level and detailed
component-level) proposed by CIBSE TM54 (2022),
using either IES VE or DesignBuilder software, which are
the most widely used building performance modelling
platforms in the UK, to predict the building's operational
energy consumption. The UK CIBSE TM54 (2022)
protocol was developed to facilitate the application of
performance modelling to predict operational energy
consumption at the design stage, which can avoid the
misuse of compliance models as design tools or
benchmarks to quantify performance gaps. Two levels of
dynamic modelling approaches are available for this

modelling framework: (1) Template-level modelling is
the application of a predefined template HVAC system
with input of key parameters, corresponding to the
Apache system in IES VE software and the Simple HVAC
method in DesignBuilder software; (2) Detailed
component-level modelling refers to the creation of
project-specific HVAC schematics based on each
component, which corresponds to the Apache HVAC
system in IES VE software and the Detailed HVAC
method in DesignBuilder software.

Participants were recruited through several channels, such
as DesignBuilder monthly newsletter for UK subscribers,
the CIBSE Building Simulation Group and UCL alumni
network. Participants were required to have a solid
understanding of UK building regulations and standards,
along with relevant work experience in modelling.
Therefore, 20 practitioners with at least 1 year of
experience in building performance modelling were
recruited and all had an educational background or work
experience in the UK. Each modelling approach was
tasked by 5 participants under each software. All
participants were provided with the same modelling
package, which included an overview of the modelling
task (which detailed envelope thermal performance,
building services system characteristics, and occupant
information), a gbXML file for this building, a weather
file, and technical information sheets for key HVAC
system equipment. Additionally, a questionnaire was
developed based on this modelling task to obtain feedback
from the practitioners' perspectives for a qualitative
analysis of the existing modelling challenges and drivers
of variation in the results. Also, it can be used to collect
basic information about the participants and the time
spent on their modelling. All participants completed the
modelling task and submitted their final models and
questionnaires. This paper only shows a quantitative
analysis of the simulation results, a detailed comparison
of the modelling parameters and results as well as a
qualitative analysis based on the questionnaires will be
part of future work.

Results

This part first describes the composition of the
participants. The simulation results for natural gas and
electricity use are then compared to the average of the
results. Furthermore, differences in energy consumption
projections for each end-use are investigated. Finally, the
time required by participants to apply the different
modelling approaches is examined.

Background and experience of participants

20 practitioners completed the modelling task and the
associated questionnaire. Figure 2 shows the professional
composition of the participants. There were 7 building
physicists, 7 sustainability consultants, 2 researchers and
4 individuals who specifically identified their roles as
building performance modellers. The questionnaire
included options for architects and building services
engineers and interestingly, no participants identified
themselves in these professional roles, which may
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indicate that building performance modelling is often
outsourced rather than done by the original designer.
Regarding the years of work experience, as shown in
Figure 3, only one participant had more than 10 years of
work experience. 12 participants had 4-10 years of work
experience, while the other 7 were in the early stages of
their careers (1-3 years).

Building
performance
modellers

20%

Building physicists
35%

Researchers
10%

Figure 2: Professional role.

8

Number of participants
o

1
1 1
0

4-7 years

1-3 years 8-10 years Over 10 years

Figure 3: Years of work experience.
Fuel type breakdown of prediction deviations

Tables 2 to 4 respectively present the comparison of each
participant's predicted natural gas, electricity, and total
energy consumption with the average for the entire
sample.

The mean simulated natural gas energy consumption was
105.6 MWh (35.6 kWh/m?). The benchmarks for natural
gas EUI in secondary schools in the UK are 86 kWh/m?
for 'good practice' and 113 kWh/m? for 'typical practice'
(CIBSE, 2021). This suggested that simulated natural gas
usage for this building was energy efficient, even lower
than the ‘good practice’ benchmark. By software type, the
average simulation result for the 10 participants using
DesignBuilder software was 63.4 MWh, compared to
147.8 MWh for those using IES VE software. By
modelling approach, the average simulation result for
template HVAC modelling was 107.9 MWh, whereas

detailed component-level HVAC modelling yielded an
average of 103.4 MWh.

Table 2: Comparison of individual predictions with the
average for natural gas consumption.

Results . Variation

Approach User (MWh) Variation range
1 28.6 -72.9%
- 0,

DB: 2 89.5 15.3% 72.9% -
Simplified 3 850 -19.6% -15.3%
P 4 205 | -72.1% '

5 65.5 -38.0%
6 26.6 -74.8%
- 0,
DEB: 7 75.2 28.&2@ 74.8% -
Detailed 8 113.9 7.8% 7.8%
9 76.9 -27.1% '
10 43.0 -59.3%
11 87.4 -17.2%
0,
IES: 12 126.2 19.5? 3309 ~
simplified |—=2 2243 | 1124% | o790,
14 272.1 157.7% :
15 70.5 -33.2%
16 103.1 -2.3%
17 250.6 137.3%
. - 0/ ~
et |18 | 1386 | 3tz | Pt
19 99.7 -5.6% :
20 105.8 0.2%

The mean simulated electricity consumption was 168.2
MWh (56.6 kWh/m?). The benchmarks for electricity EUI
in secondary schools in the UK are 42 kWh/m2 for 'good
practice' and 51 kWh/mz2 for 'typical practice' (CIBSE,
2021). This demonstrated that the building's projected
electricity use was higher than the ‘typical practice’
benchmark. When comparing software types, the average
electricity consumption for DesignBuilder simulation was
167.4 MWh, while IES VE simulations averaged 169.1
MWh. In terms of modelling approaches, the average
electricity consumption for template HVAC modelling
was 130.2 MWh, whereas detailed component-level
HVAC modelling resulted in an average of 206.3 MWh.

Table 3: Comparison of individual predictions with the
average for electricity consumption.
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Software: User Results Variation Variation
Approach (MWh) range
1 43.3 -74.3%
DB 2 734 -56.4% 7439 ~
Simplified 3 113 | A0I% 11019
4 122.7 -27.1%
5 147.8 -12.1%
6 136.8 -18.7%

DB: ! 163.6 2006116 705 -
Detailed 8 361.6 114.9% 114.9%
9 311.6 85.3%

10 162.0 -3.7%

11 148.5 -11.7%

IES: 12 147.5 -12.3% 58,706 ~
Simplified 13 69.4 -58.7% 67.1%
14 281.1 67.1%

15 116.9 -30.5%
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16 148.2 -11.9%
0,
IES: 17 229.3 36.30/0 2499 ~
Detailed 18 127.5 -24.2% 38.1%
19 190.2 13.0% '
20 232.2 38.1%

For total energy consumption, which is the sum of natural
gas and electricity consumption, the simulation results
show an average of 273.8 MWh. The DesignBuilder
software simulation has an average total energy
consumption of 230.8 MWHh, while the IES VE software
has a higher average of 316.9 MWHh. Regarding modelling
approaches, template HVAC modelling resulted in an
average total energy consumption of 238.0 MWh, while
detailed component-level HVAC modelling averaged
309.7 MWh.

Table 4: Comparison of individual predictions with the
average for total energy consumption.

Software: User Results Variation Variation
Approach (MWh) range
1 71.9 -73.7%

] 2 162.8 -40.5% o
e 3w 3 e
4 152.2 -44.4%

5 213.3 -22.1%

6 163.4 -40.3%

. 7 238.8 -12.8% o
Dgal?lled 8 a5 | 73.6% L;Oé?e&
9 388.6 41.9%

10 205.0 -25.1%

11 236.0 -13.8%

IES: 12 2738 0% 1 316%-
Simplified 13 293.8 7.3% 102.0%
14 553.2 102.0%

15 187.4 -31.6%

16 251.3 -8.2%

IES: 17 480.0 75.3% -8.206 ~
Detailed 18 266.0 -2.9% 75.3%
19 289.9 5.9%

20 338.0 23.4%

End-use breakdown of prediction deviations

Natural gas was consumed for space heating and domestic
hot water (DHW), and individual results and comparisons
against average projections for each end use shown in
figures 4 and 5, respectively. The red dotted lines and
numbers in the figures represent the average of all the
simulated results. To enable effective comparison, the y-
axis range in the following two figures is set to the same
scale, allowing for a clear visualization of the proportion
of these two end-uses in the total natural gas consumption.
Notably, all figures show the results in the same order as
the participants listed in the previous three tables.
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Figure 4: Predicted space heating energy use:
Individual variations and mean value.
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Figure 5: Predicted domestic hot water energy use:
Individual variations and mean value.

The simulated mean value of natural gas consumption for
space heating was 88.0 MWh, with a standard deviation
of 64.8 MWh. The results for the 10 participants using the
DesignBuilder software were all below this mean, with an
average of 46.2 MWh. In contrast, the simulated mean for
the IES VE users was 129.7 MWh, with only three
participants simulating results below the overall average.
For DHW, the average of all modelling results was 18.3
MWh with a standard deviation of 16.8 MWh, in which
one participant did not have a DHW system set up. The
investigation of the groups, based on different modelling
software and approaches, revealed that the mean values of
each group were within £1.2 MWh of the overall mean.

Electricity consumption included space heating and
cooling provided by the VRF system and the DX system,
auxiliary energy use, lighting and equipment operation.
Figures 6 to 9 illustrate individual variations in simulation
results for each category. Similarly, the y-axis range in
these four figures is also standardized.
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Figure 6: Predicted Space heating + cooling energy use:

Individual variations and mean value.
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Figure 7: Predicted auxiliary energy use: Individual
variations and mean value.

For electricity use for space heating and cooling, the mean
value of the simulation output for the 20 participants was
8.6 MWh, with a standard deviation of 11.1 MWh.
Generally, the mean value of the simulation results from
the DesignBuilder software (11.2 MWh) was higher than
that from the IES VE software (6.0 MWh). By modelling
approach, the mean value of simulation results using the
detailed component-level HVAC modelling approach
(12.1 MWh) was higher than that using the template
HVAC modelling approach (5.1 MWh). The predicted
consumption of auxiliary energy had an average value of
39.4 MWh and a standard deviation of 36.3 MWh. The
mean results from different modelling approaches showed
a significant difference, with the predicted mean under the
template HVAC modelling being 22.4 MWh and the
detailed component-level HYAC modelling being 56.3
MWh.
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Figure 8: Predicted lighting energy use: Individual
variations and mean value.
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Figure 9: Predicted equipment energy use: Individual
variations and mean value.

The simulated electricity usage for lighting resulted in a
mean value of 39.1 MWh with a standard deviation of
22.9 MWh. For equipment, the simulated results had a
mean value of 80.6 MWh, with a standard deviation of
31.7 MWh. Both types of end-use energy predictions
showed similar average values across the different
modelling software. However, when classified according
to the different modelling approaches, the simulation
results averages for the template HVAC modelling (33.8
MWh for lights and 67.7 MWh for equipment) were both
lower than the detailed component level HVAC
modelling (44.4 MWh for lights and 93.6 MWh for
equipment).

Variation in modelling time among participants

In the questionnaire participants were asked to self-report
the time spent on the modelling task. The question was set
with five options including less than two hours, 2-5 hours,
5-10 hours, 10-15 hours and more than 15 hours. Figure
10 illustrates the proportion of time spent on the
modelling task. Almost half of the participants (9) spent
5-10 hours modelling. Six participants used 2-5 hours to
complete the task. Two used 10-15 hours to model. The
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other three modellers reported more than 15 hours. No
one was able to complete the energy modelling of the
building in less than two hours.

More than
15 hours
15%

2-5 hours
30%

10-15 hours
10%

Figure 10: Proportion of time spent on the task
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Figure 11: Self-reported time required for the task

Figure 11 displays the distribution of time taken by each
participant to complete the modelling task, categorised by
modelling software and approach. The median value was
used as a proxy for the time range. Hence, the five options
are replaced with 2 hours, 3.5 hours, 7.5 hours, 12.5 hours
and 15 hours in the figure. It was observed that modellers
who reported spending more than 15 hours on modelling
used the same modelling approach and software, which
was the Apache HVAC system in the IES VE software.
The average modelling time for this group of participants
amounted to 11.2 hours. In comparison, the average time
required to complete the task using the template HVAC
modelling approach in the IES VE software was only 6.9
hours. For the DesignBuilder software, the five
participants using the template HVAC modelling
approach took an average of 5.9 hours and 7.7 hours for
detailed component-level HVAC modelling.

Discussion

The predicted annual energy consumption for natural gas
by the 20 participants varied from -74.8% to 157.7% of
the average, while the electricity predictions ranged from

-74.3% to 114.9%. For total energy consumption, the
range of differences narrows slightly to -73.7% to
102.0%. This smaller variation compared to natural gas
and electricity individually is due to the cancelling out
effects of the simulation results for each fuel type. Thus,
it is necessary to investigate the consumed energy for each
end-use, which prevents misinterpretation of the
simulation due to mutual cancellation.

Comparing the simulation outputs of the different
software, it was found that the average value of natural
gas usage simulated by the IES VE software was 2.3 times
higher than that of DesignBuilder. The average value of
electricity use simulated by both software is almost the
same. The simulation results for total energy consumption
were 1.4 times higher for IES VE than for DesignBuilder.
The simulated averages for natural gas consumption were
shown to be nearly identical when compared according to
the modelling approach. However, the detailed
component level HVAC modelling approach predicted
about 58.5 % higher mean values for electricity
consumption than the simple HVAC modelling approach,
and about 30.1 % higher predictions for total energy
consumption. In summary, for natural gas consumption,
the simulations using the DesignBuilder software resulted
in lower predictions. For electricity consumption, the
simulations performed under the simplified HVAC
modelling approach had lower energy use.

To further understand the factors determining the
simulation results for natural gas and electricity, the
energy use of each end-use was then compared. It was
found that the simulated energy consumption for each
type of end-use had high variability. By comparing the
standard deviation of each group, results for natural gas
required for space heating were predicted to have the most
dispersion. Relatively less variability was demonstrated in
the simulated results for natural gas required for DHW
and for space heating and cooling using electricity.

In detail, for natural gas consumed for space heating, the
energy projections varied from the average value by a
range of -72.4% to 209.4%. The average value of the IES
VE software simulation results was 2.8 times higher than
DesignBuilder. However, for domestic hot water, the
mean value for each group did not fluctuate by more than
6% from the mean value of the total simulation results,
whether categorised according to different software or
modelling approaches. This demonstrated that space
heating accounted for the largest share of natural gas
consumption, indicating that it was the main driver of
natural gas demand in the modelling.

For electricity use predictions, the average of simulation
results for each end-use under the detailed component-
level HVAC modelling approach was higher than for the
template HVAC modelling. One potential reason for this
was that the detailed component-level HYAC modelling
approach had more comprehensive and advanced data
input requirements when modelling HVAC systems and
auxiliary energy. However, for the simulation of lighting
and equipment operation, the data inputs for the two
modelling approaches are essentially identical, and they
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depend on the activity type template assigned to each
space. Therefore, further investigation of modelling input
parameters is required in the future for understanding the
underlying causes of the discrepancies in modelling.

This study did not set a time limit for completing the task.
The average time taken by the 20 practitioners to
complete the modelling was 7.9 hours. Under the same
modelling approach, the average time required by
participants using DesignBuilder was lower overall than
that of IES VE users. With the same modelling software,
the average time to complete detailed component level
HVAC modelling was longer. However, the time required
for modelling did not correspond to the magnitude of
result variations. For example, for the simulation of total
energy consumption, the largest range of variation in
results was among the five participants who used the
template HVAC modelling approach in the IES VE
software (-31.6% ~ 102.0%), while the minimum range of
variation was among those who used the template HVAC

modelling approach in the DesignBuilder software (-73.7%

~ -13.7%). This demonstrated that increased modelling
detail requires more time and effort from the modeller,
while at the same time the increase in input parameters
may introduce additional uncertainty leading to greater
variation in results.

Conclusion

This paper presented the first part of a study, focusing
solely on the analysis and discussion of simulation results
provided by the participants. The results indicated that the
modeller's decision, the modelling software or the
modelling approach can have a significant impact on the
energy simulation results. The distance and lack of
communication between building designers, modellers
and software developers may be a major reason for the
various discrepancies. Thus, the modelling framework
and the workflow of the software application should be
further refined to mitigate the introduction of unnecessary
uncertainties. For example, adding the process of
reviewing the models by the original designers and
benchmarking based on measured performance of similar
projects in the past. Moreover, to explore the optimisation
of data-driven modelling and machine learning
algorithms for complex building design and energy
prediction (Manfren, James and Tronchin, 2022;
Golafshani et al., 2024). The next step in this work will
be to investigate the modeller's key input parameters,
especially for the HVAC system, and to conduct a
qualitative analysis based on the questionnaire to further
identify the reasons for the introduction of uncertainty.

As with other similar studies, a limitation of this study is
the lack of comparison with actual energy consumption
data (Gilles Guyon, 1997; Berkeley, Haves and Kolderup,
2014). To make the time required for the modelling task
manageable for practitioners, and considering the
difficulty of recruitment and budget constraints, this study
simplified the modelling of a real school building and
participants were asked to apply a typical occupancy
pattern for simulation that was in accordance with the

National Calculation Methodology (NCM) in England.
Not only did this result in an inability to use actual energy
consumption data from the original building for
comparison, it also ignored the impact of occupancy
uncertainty on the modelling results. In practice
occupancy variability makes the model less reliable.
Therefore, comparing modelling results with measured
performance can help to identify extra-curricular
activities and other non-standard occupancy patterns to
optimise modelling inputs. In the future, the same
simplification can be applied to the calibrated original
model and simulated to represent the best practice model.

Furthermore, this study focused on the uncertainty in the
input of modelling information. As a result, gbXML files,
one of the most common building information transfer
formats, were only used to ensure the consistency of
building geometries, and their potential and reliability for
other information transfers were not investigated in depth.
Future work could explore the uncertainties that different
users or software might introduce when applying BIM-
based modelling, in line with the six components (1.
Geometry; 2. Constructions and materials; 3. Spaces type;
4. Thermal zones; 5. Space loads; 6. HVAC system and
components) proposed by Maile, Fischer and Bazjanac
(2007) for the ideal transfer of information between BIM
and BEM.
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