The Fact Selection Problem
in LLM-Based Program Repair

Nikhil Parasaram
University College London
nikhil.parasaram.19 @ucl.ac.uk

Huijie Yan®

Abriele Qudsi
University College London
abriele.qudsi.21 @ucl.ac.uk

Damian Ziaber
University College London
damian.ziaber.21 @ucl.ac.uk

Abstract—Recent research has shown that incorporating bug-
related facts, such as stack traces and GitHub issues, into prompts
enhances the bug-fixing capabilities of large language models
(LLMs). Considering the ever-increasing context window of these
models, a critical question arises: what and how many facts should
be included in prompts to maximise the chance of correctly fixing
bugs? To answer this question, we conducted a large-scale study,
employing over 19K prompts featuring various combinations of
seven diverse facts to rectify 314 bugs from open-source Python
projects within the BugsInPy benchmark. Our findings revealed
that each fact, ranging from simple syntactic details like code
context to semantic information previously unexplored in the
context of LLMs such as angelic values, is beneficial. Specifically,
each fact aids in fixing some bugs that would remain unresolved
or only be fixed with a low success rate without it. Importantly,
we discovered that the effectiveness of program repair prompts
is non-monotonic over the number of used facts; using too many
facts leads to subpar outcomes. These insights led us to define
the fact selection problem: determining the optimal set of facts
for inclusion in a prompt to maximise LLM’s performance
on a given task instance. We found that there is no one-size-
fits-all set of facts for bug repair. Therefore, we developed a
basic statistical model, named MANIPLE, which selects facts
specific to a given bug to include in the prompt. This model
significantly surpasses the performance of the best generic fact
set. To underscore the significance of the fact selection problem, we
benchmarked MANIPLE against the state-of-the-art zero-shot, non-
conversational LL.M-based bug repair methods. On our testing
dataset of 157 bugs, MANIPLE repairs 88 bugs, 17% above the
best configuration.

Index Terms—automated program repair, large language
models, prompt engineering

I. INTRODUCTION

When debugging and fixing software bugs, developers seek
bug-related information from a diverse array of sources. Such
sources include the buggy code’s context, documentation, error
messages, outputs from program analysis, etc. Individual pieces
of this information, which following recent work we refer to
as facts [1]], have been demonstrated by previous studies to
enhance LLMs’ bug-fixing efficacy when incorporated into the
prompts [2], [3], [4]]. Given the ever-increasing context window

TThese authors contributed equally to this work.
* Corresponding author.

University College London
huijie.yan.20@ucl.ac.uk

Boyu Yang! Zineb Flahy
University College London University College London
boyu.yang.21 @ucl.ac.uk zineb.flahy.21 @ucl.ac.uk

Earl T. Barr Sergey Mechtaev*

University College London
e.barr@ucl.ac.uk

Peking University
mechtaev@pku.edu.cn

of cutting-edge LLMs, a critical question emerges: “Which
specific facts, and in what quantity, should be integrated into
the prompt to optimise the chance of correctly fixing a bug?”

This work is a systematic effort to investigate how to
construct effective prompts for LLM-based automated program
repair (APR) by composing facts extracted from the buggy
program and external sources. We identified seven facts: those
individually studied in the context of APR by previous work,
such as the buggy code’s context [S], [2], [6l], GitHub issues [3],
and stack traces [7]]; Angelic values, a semantic fact previously
unexplored in the context of LLM-based APR, but that has
been successfully used for debugging [8] and repair [9]; and
those chosen based on our intution as developers. Our study
was conducted on 314 bugs in open source Python projects
from the BugsInPy [10] benchmark.

Our first experiment aims to confirm the utility of the
considered facts. Specifically, for each fact, if the potential
inclusion of this fact in APR prompts helps to repair some
additional bugs, or increases the probability of fixing some bugs.
To answer this question, we constructed over 19K prompts
tasked to repair the buggy function and containing different
subsets of the seven facts for the 314 bugs. Then, we queried
an LLM to generate patches, and evaluated the patches using
the provided test suites. confirms the utility of each
fact, that is each fact helped repair at least one bug that was
not repaired by any prompt without this fact. Moreover, all
the facts have statistically significant positive impact on the
probability of fixing a bug in a single attempt.

Given the utility of each fact, it is tempting to assume
that adding more facts always enhances LLM’s performance.
Contrary to this intuition, reveals that APR prompts
are non-monotonic over facts: adding more facts may degrade
LLM’s performance. An experiment involving 157 bugs showed
that prompts incorporating all available facts resulted in 12
fewer bug fixes and exhibited an 8.2% lower probability of
repairing a bug within a single attempt compared to the
most effective subset. This finding is non-obvious, because
each fact may contain crucial information for fixing the bug,
and although previous research showed that LLMs do not
robustly make use of information in long input contexts [11],

Please fix the buggy function provided below and output a
<~ corrected version.
<.. CoT instructions are omitted ...>

The source code of the buggy function
‘Y '‘python
this is the buggy function you need to fix
def read_json(
<... a part of code is omitted ...>
return result

Vo

A test function that the buggy function fails

‘Y 'python
def test_readjson_unicode (monkeypatch) :
<... a part of code is omitted ...>

tm.assert_frame_equal (result, expected)
Vo
The error message from the failing test
‘Y 'text
monkeypatch = <_pytest.monkeypatch.MonkeyPatch object at 0
— x7£567d325d00>
<... a part of message is omitted ...>
pandas/_libs/testing.pyx:174: AssertionError
Vo
Runtime values and types of variables inside the buggy
— function
compression, value: ‘/infer’‘, type:
<... some variables are omitted ...>
lines, value: ‘False‘, type: ‘bool?

\

‘str

Expected values and types of variables during the
< failing test execution

path_or_buf, expected value: ‘//tmp/tmphulOtx4gstest.json’?,
— type: ‘str'

<... some variables are omitted ...>

result, expected value: <...omitted...>, type: ‘DataFrame’

A GitHub issue for this bug

‘Y 'text

Code Sample, a copy-pastable example if possible

<... a part of text is omitted ...>

However, when read_json() is called without encoding
parameter, it calls built-in open() method to open a
< file and open() uses return value of locale.
<~ getpreferredencoding () to determine the encoding
— which can be something not utf-8

Vo

Fig. 1: A simplified APR prompt incorporating various facts for
fixing pandas:128. ... shows information omitted for brevity. ... shows
a part of the GitHub issue that is essential to correctly fix the bug.
Too much information in the prompt “distracts” the LLM from the
relevant part of the issue description, significantly reducing pass@1
and the correctness rate.

and their performance dramatically decreases when irrelevant
information is included in a prompt [12], the trade-off between
utility of information and the ability of LLM to process long
contexts has not investigated.

The non-monotonicity of APR prompts and, simultaneously,
the utility of each fact led us to define the fact selection problem:
determining the optimal set of facts for inclusion in prompts to
maximise LLM’s performance on given tasks. It can be viewed
as a variant of feature selection of classical machine learning
for LLM prompt engineering. We consider two instances of
fact selection: universal fact selection when the selected facts
do not depend on a specific task instance, i.e. the bug, and
bug-tailored fact selection when the fact set is bug-specific.

If there was a universal set of facts that is effective for
all bugs, it would significantly simplify the development of
LLM-based APR tools. However, our experiments showed that
universal fact selection is suboptimal compared to bug-tailored

Pass@1 Score

0.10 —e— GPT-3.5 Max Pass@1
/ -#- GPT-3.5 Avg Pass@1
0.05 llama3-70B Max Pass@1

llama3-70B Avg Pass@1

0 1 2 3 4 5 6 7
Number of Facts Used

Fig. 2: Comparison of pass@1 (the vertical axis) for around 10K
prompts incorporating subsets of the seven considered facts (the
horizontal axis) computed over 15 responses for repairing 157 Python
bugs within the BugsInPy benchmark. Zero facts corresponds to the
prompt containing only the buggy function without any additional
information about the bug. The graph plots the average pass@1 score
(dashed lines) and the maximum pass@1 score (solid lines) across
all bugs. This graph clearly shows the non-monotonic nature of APR
prompts over facts for GPT-3.5 and Llama3-70B.

fact selection. Specifically, identified that there is no
single subset of the seven considered facts that is sufficiently

effective across all bugs in the dataset. Meanwhile, enumerating
sets of facts via e.g. greedy strategies while repairing each bug
might be impractical, because of the high cost of LLM queries
and the necessity to generate multiple responses due to LLMs’
nondeterminism. As a practical compromise, we trained a
statistical model that we call MANIPLE. It is designed to select
facts contingent upon the features of a specific bug. Empirical
evidence shows that MANIPLE significantly outperforms a
universal fact selection strategy, fixing 11 more bugs than a
generic set of facts that exhibited the optimal performance on
the training data.

We benchmarked MANIPLE against state-of-the-art zero-
shot non-conversational LLM-based APR techniques. On our
testing set, MANIPLE repaired 17% more bugs, highlighting
the practical impact of the fact selection problem.

The contributions of this work are:

o A large scale systematic study of a diverse set of bug-
pertinent facts for APR prompts.

« An empirical evidence of the utility of each considered fact
for program repair, including angelic values, previously
unexplored in the context of LLMs.

« An empirical evidence of the non-monotonicity of APR
prompts over bug-related facts, i.e. adding more bug-
related facts into APR prompts may degrade LLM’s bug-
fixing performance.

« A motivation and introduction of the fact selection problem
for LLM-based APR.

o« MANIPLE, a bug-tailored fact selection model that, for
a given bug, chooses a set of fact to construct an effec-
tive APR prompt; This model significantly outperforms
previous related techniques.

All code, scripts, and data necessary to reproduce this work
are available at https://github.com/PyRepair/maniple.

https://github.com/PyRepair/maniple

II. MOTIVATING EXAMPLE

To illustrate the importance of the fact selection problem,
we consider the bug pandas:128 [13] in the Pandas data
analysis library within the BugsInPy benchmark. This bug
arises due to incorrectly handling the default encoding in the
Pandas’ read_json function. The developer patch for this
bug involves setting the encoding to UTF-8 when it is not
specified by adding the following lines to the buggy function:

+ if encoding is None:
+ encoding = "utf-8"

When GPT-3.5-Turbo [14] was prompted to rectify the bug
solely based on the source code of the buggy function, it did
not successfully address the issue in any of 15 responses. A
likely explanation of this failure is that the function itself does
not contain any inherently incorrect code, so fixing this bug
requires external information.

Drawing upon existing literature on LLM-based APR and
relying on our intuition as developers, we assembled a diverse
set of bug-related facts to incorporate into the prompt. These
include the buggy function’s context, the failing test case,
the error message, the runtime values of local variables, their
angelic values (values that, when taken by program variables
during test execution, result in successful passage of the test),
and the GitHub issue description. gives a simplified
representation of the resulting prompt. Adding these facts
enabled the LLM to generate a plausible patch, i.e. a patch that
passes the tests, in four out of 15 responses. However, only
two of these patches were correct. The other two hard-coded
UTF-8 as the only encoding instead of the default one. The
causes of failures to fix the bug included “forgetting” to change
the function despite correct chain-of-thought reasoning [l13],
or hard-coding the encoding inconsistently.

Interestingly, when we removed all facts but the code of the
buggy function, the runtime variable values and the GitHub
issue, it significantly raised the success rate. Specifically, the
LLM generated plausible patches in 12 out of 15 responses,
and 11 out of these 12 were correct. A similar high success rate
was demonstrated by the prompt with only the buggy function
and the GitHub issue. We posit that this is because redundant
or irrelevant information in the original prompt “distracted” the
LLM from critical details in the GitHub issue (highlighted in
Figure 1)) necessary to repair the bug [12].

We refer to this phenomenon, that adding more facts may
degrade LLM’s performance, as the non-monotonicity of
prompts over facts. To provide stronger empirical evidence,
we conducted a large-scale experiment with 19K prompts
containing various subsets of seven facts on 314 bugs in
Python projects. shows how pass@1, which estimates
the probability of generating a plausible patch in a single
trial, depends on the number of included facts. The graph
shows two types of lines: the solid line corresponds to the
scenario when we select the most effective combination of
facts for each bug. The dashed line indicates the performance
of an average fact set. It is evident that both these functions
are non-monotonic for both GPT-3.5 and Llama3-70B. This

phenomenon of non-monotonicity and its impact on prompt
performance are discussed in more detail in
Apart from the non-monotonicity of prompts, we also
discovered that each of the considered facts helps to fix
some bugs that cannot be fixed without it. These observations
motivated us to formulate the fact selection problem, the
problem of selecting facts for a given bug to maximise the
chance of repairing it and propose a model MANIPLE that
selects effective facts based on features of a given bug.

III. STUDY DESIGN

This section discusses the experimental setup, the facts
chosen for our study, and how they are represented in prompts.

A. Experimental Setup

We denote the set of bugs as B and the set of all bug-relevant
facts as IF. Since we aim to investigate how using various facts
impacts the success of APR, we define the set of all jobs as
J = B x 2F, which pairs bugs with sets of facts.

Zero-shot Prompting for APR: A advantage of large
language models, such as ChatGPT [14], is they can be
adapted to a downstream task without retraining via prompt
engineering [16]. A prompt refers to the input or instruction
given to the model to elicit a response. Prompting typically
takes either the form of zero-shot, i.e. directly providing the
model a task’s input, or few-shot [[17], where the model is
provided with a few examples. In this work, we investigate
a zero-shot APR approach. Although the few-shot approach
is promising, it requires finding high-quality examples [18],
which we leave for future work.

Function-granular Perfect Fault Localisation: APR tools
repair bugs by first localising suspicious locations. For an
objective evaluation of APR tools, Liu et al. [19] argues for
the use of perfect fault localisation (PFL), that is, when the
buggy locations are known to the tool. PFL can resolve to
difference granularity levels: notably, the line or the function.
Liu et al. argues that fault localisation tools do not offer
the same accuracy in identifying faulty locations at different
granularities, “making function-level granularity appealing for
limiting unnecessary responses on fault positive locations”.
We found that, in BugsInPy [10], the average Ochiai [20]
rank of the buggy line is 2502 and the buggy function is
22 across the entire codebase, making it much more likely
to localise the buggy function than the buggy line. Apart
from that, although 70% of the bugs in BugsInPy require
modifying only a single function, 65% of them modify multiple
lines within this function. Localising a bug to multiple lines
is harder than targeting individual lines. Meanwhile, cutting-
edge models, like GPT-3.5-Turbo, effectively fix bugs even
without specifying the exact lines, i.e. when only the buggy
function is provided. Consequently, and in contrast to some
previous studies [21], [22], [2]], this paper adopts function-
granular PFL as the standard approach for evaluating APR
tools. We implement this by providing the buggy function as
context in the prompts for the LLM, enabling it to focus on
fixing issues within the specified function.

Facts

Static (1)

Dynamic (2) External (3)

Error

Failing Test (1.3)

Used Method
Buggy Class (1.1) Signatures (1.2)

Information (2.1)

Runtime
Information (2.2)

Angelic

Forest (2.3)

Declaration (1.1.1) Class Scope (1.2.1) Test Code (1.3.1)

Error Message (2.1.1)

'Variable Values (2.2.1) Angelic Values (2.3.1) Title (3.1.1)

Test File

Docstring (1.1.2) Name (1.3.2)

File Scope (1.2.2)

Stack Trace (2.1.2)

Variable Types (2.2.2) Angelic Types (2.3.2) Description (3.1.2)

Fig. 3: This work uses seven facts (dark rectangles) across three categories for constructing program repair prompts. Each fact is composed
of related pieces of information. Each prompt contains the buggy function to be repaired; the facts can be included based on the employed

fact selection strategy.

Python Bug Benchmark: APR tools are typically com-
pared on datasets of bugs extracted from real world projects,
such as Defects4J [23]] for Java and BugsInPy [10] for Python.
In this work, we use BugsInPy because of Python’s ever-
increasing importance and popularity. BugsInPy contains 501
bugs from 17 popular Python projects such as Pandas and
Matplotlib [25]. Among them, we selected a subset of 314
bugs, which we refer to as BGP314, that require modifications
within a single function, due to our PFL approach, and that we
were able to reproduce. To investigate APR performance on
various classes of defects, we consider three parts of BGP314:

« BGP157PLY1: This dataset comprises 157 bugs, which
have been uniformly selected from BGP314 for the
purpose of training and analysis.

« BGP157PLY2: Consisting of 157 bugs, this dataset is
the complement of BGP157PLY1 in BGP314. Used for
evaluating fact selection strategies.

o« BGP32: A subset of 32 bugs uniformly sampled from
BGP157PLY 1, intended for preliminary studies on finding
parameters, such as determining the right response count
to reduce the variance.

LLM Nondeterminism: Nondeterminism in LLMs leads to
varying outcomes between responses, which poses a challenge
for analysing results [26]]. To alleviate it, we use the pass@k
measure, which represents the probability that at least one query
out of k succeeds at solving a problem. Previous work [27]
recommends estimating pass@k as

pass@k(LLM (Q)) £ Eq [1 - 1)

(" kc)]
(%)

where E; denotes expectation over the set of LLM responses
to the set of queries (prompts) @, n is the number of responses
obtained from the LLM, where n > k and C' is the number
of successes found in the n responses. Our task is program
repair, so we deem a response successful if the extracted
patch satisfies a correctness criterion, which we approximate
with passing a test suite. A pilot study using BGP32 reveals
that when n = 15 and k = 1, pass@k exhibits the average
standard deviation of ca. 0.04, and that further increasing n
only marginally decreases standard deviation. For more details,

refer to Appendix A in the full version of this paper on arXiv
[281).

For generate-and-validate APR [29] that iteratively generates
and tests patches until it finds one that passes, a commonly
used measure is the number of bugs for which at least one
patch passes the tests among LLM’s responses:

#fixed(LLM (J)) £ |{b | j € J,C; > 0})

where j = (b,F) is a prompt, and C; is the number of
responses that pass the tests for the prompt j.

Test-overfitting in Program Repair: APR techniques
repair bugs w.r.t. correctness criteria, such as tests or formal
specification. Since tests do not fully capture the intended
behaviour, automatically generated patches based on tests
may be incorrect [30]. Thus, the APR literature distinguishes
between plausible patches, patches that pass the tests, and
correct patches, patches that satisfy the intended requirements.
Since manually labelling a large number of patches is resource-
intensive and error-prone, most analyses of the fact selection
problem with pass@k and #fixed in this paper count plausible
patches as successes. We only label correct patches when
comparing our tool with other APR techniques in

In our experiments, we utilised the latest version of GPT-3.5-
Turbo, specifically gpt-3.5-turbo-0125, which features a 16K
context window. For our studies, GPT-3.5-Turbo was run with
n = 15 responses on BGP157PLY1, BGP157PLY2, and with
n = 30 for parameter exploration on BGP32. Additionally,
we used 1lama3-70B, which offers an 8K context window and
was run exclusively on BGP157PLY1. As of March 2024,
the cost of reproducing the experiments detailed in this paper,
using the OpenAl API for GPT-3.5 and Deeplnfra
for llama3-70B, is estimated at $479 + $269.

B. Bug-Related Facts

The considered facts were collected from previous LLM-
based APR research, previous non-LLM-based APR literature,
and our intuition as developers. We conducted a pilot study
on BGP32 to validate fact utility. In total, we collected 14
pieces of information, but since many of them are related, we
grouped them into seven facts, which we refer to as F. These
seven facts are divided into three categories: static, dynamic,
and external, as shown in |Figure 3]

Buggy Class (1.1): The declaration of a class containing

the buggy function provides a broader context and dependencies.

A class docstring offers insight into the overall purpose and
functionality of the class.

Used Method Signatures (1.2): Considering methods used
within the buggy function, as shown by Chen et al. [6], allows
for the analysis of dependencies and potential side effects that
might contribute to the incorrect behaviour.

Failing Test (1.3): The code of a failing test, as shown
by Xia et al. [4] provides useful context for repairing a buggy
function as it specifically highlights the conditions under which
the program fails.

Error Information (2.1): Previous approaches showed that
using error messages [4] and stack traces [7]] improves LLM’s
bug-fixing performance.

Runtime Information (2.2): Runtime values and types of
the function’s parameters and local variables during the failing
test execution provide an LLM with concrete data about the
program’s behaviour.

Angelic Forest (2.3): For a given program location, a
variable’s angelic value [8] is a value that, if bound to the
variable during the execution of a failing test, would enable the
program to pass the test. Angelic forest [9]], previously applied
for synthesis-based repair, is a specification for a program
fragment in the form of pairs of initial states and output angelic
values, such that if the fragment satisfies these pairs, then the
program passes the test.

Inspired by this approach, we added a variant of angelic
forest to a prompt; this variant combines variable values at
the beginning of a function’s execution coupled with the
angelic values at the end of a function’s execution, i.e. the
input/output requirements of the function. Since Python is
dynamically typed, we specify both the values and types of
variables. Angelic values can be computed using symbolic
execution [9]], [8]; however, due to the immaturity of Python
symbolic execution engines, we were unable to execute them
on bugs in BugsInPy. Thus, we extracted angelic values from
the correct versions of the programs via instrumentation.

GitHub Issue (3.1): A GitHub issue, when available,
provides important contextual information for fixing the bug,
as shown by Fakhoury et al. [3].

To denote subsets of F, we utilise seven-width bitvectors,
where the ¢-th bit indicates whether the i-th fact in our
taxonomy is included in the set. For example,
0000100 corresponds to the set containing only the runtime
information (2.2).

C. Prompt Design

We construct prompts via the prompt engineer £: B x 2F —
>>*, which builds a prompt over the alphabet X to repair an input
bug using a subset of facts from F. The prompt is constructed
with the directive “Please fix the buggy function provided
below and output a corrected version” along with the included
subset of facts. The buggy function’s code, together with its
docstring, is provided as part of the prompt for the LLM to
effectively fulfill this directive. Each fact is incorporated via

a specialised prompt template. shows an example
prompt with incorporated facts, and the fact templates are

detailed in Appendix B of the full version of this paper on
arXiv [28]).

We employed the standard chain-of-thought [[15] approach
by instructing the LLM to reason about the provided facts, as
detailed in Appendix C of the full version of this paper on
arXiv [28].

In our preliminary experiments, we discovered that LLM
often generates incorrect import statements, which makes it
hard to automatically extract patches from the responses and
apply them to the code. To address it, we explicitly added the
import statements in the current file to the prompts. A small
study showed that this consistently improves the success rate,
as detailed in Appendix D of the full version of this paper on
arXiv [28].

IV. THE FACT SELECTION PROBLEM

Let an LLLM be a function from a string, i.e. a prompt, to
a set of strings, the responses R. We consider an arbitrary
measure m : 27 x 2¢ — R that scores a set of LLM responses
w.r.t. some correctness criteria C' that maps correct patches
to a high score and incorrect patches to a low score, and a
prompt engineer E: B x 2F — ¥*.

Definition IV.1 (Fact Selection Problem). Given a set of bug-
relevant facts I, a prompt engineer E, a buggy program b,
and correctness criteria for that buggy program Cj, the fact
selection problem is to find F' C F that maximises

arg max m(LLM(E(b, F)), Cy) 3)

C}, encompasses any of the standard correctness criteria such

as a test suite or a specification, efc. F', denotes an optimal
solution of [Equation (3)| for b; We use F',(IF) to denote the
optimal F' for the buggy program b over the fact set F.
Similarly, we use F'g(F) to denote the optimal fact set F’
over all the buggy programs b € B and the fact set F. This
can be defined as the solution to the equation below.
arg max Z m(LLM(E(b, F)), Cy)

Fe2F
€ B

We aim to answer the following questions in this section:

o How does the inclusion of each fact affect the overall
effectiveness of a program repair prompt?

o Is there point beyond which adding facts to a program
repair prompt degrades its performance?

e Can a fixed subset of facts be universally optimal up to a
tolerance of € for bug resolution across various bug sets?

The first question examines the impact of each fact on the
repair effectiveness, questioning whether every fact contributes
positively to the resolution process. answers this
question affirmatively, showing the inherent value of each fact.
The second question delves into the potential for diminishing
returns or even detrimental effects from overloading a prompt
with too many facts, suggesting an optimal threshold for fact

GPT-3.5 Llama3-70B

Fact

Gain Shapley Gain Shapley
Error Info. 0.48 054 041 0.32
GitHub Issue 0.44 0.51 0.20 0.17
Angelic Forest 0.08 0.11 0.36 0.28
Failing Test 0.06 0.08 0.17 0.15
Runtime Info. 0.03 0.05 0.08 0.07
Buggy Class -0.03 -0.05 0.03 0.03
Used Method S. -0.12 -0.18 0.01 0.00

TABLE I: We report Gain (Equation (5)) and Shapley values (scaled
by 16) for uniform fact selection on BGP157PLY 1. Gain quantifies

the average percentage increase in prompt repair performance from
the fact.

inclusion that maximises prompt efficacy. If there is no such

point, then the optimal strategy will be to include all the facts.

shows that, on our dataset, adding facts to a
prompt is non-monotonic. Formally, the final question asks
whether, Vb € B, the following equation holds:

m (LLM(E(b, J?B)),Cb) = m(LLM(E(b,;“b)),Cb) +e 4

This equation asks whether one can select a fact set for a
set of bugs that is as effective as a fact set tailored to each
bug. answers this question by showing that
this statement does not hold. The above answers, combined,
establish the importance of the fact selection problem.

A. Fact Utility

A fact should only be considered for inclusion in a prompt
if it has a potential to improve the outcome. To confirm the
utility of the considered facts I, we simplify the premise by
assuming that facts are independent and pose two questions:
“What is the utility of each individual fact in improving repair
performance on our dataset if we select the most effective fact
set for each bug?” and “What is the utility of each individual
fact in improving repair performance on our dataset if we select
a random fact set for each bug?” The first question addresses
the potential effectiveness when we precisely know which facts
to choose for a specific bug. This notion of utility, which we
refer to as utility under optimal fact selection, is relevant when
we have a_method to closely approximate an optimal solution

F,(FF) to [Equation (3)} i.e. choose the most effective facts for
each bug b € B. The second question explores the expected

outcomes when we lack specific knowledge about which facts to
select, and hence make a random choice. This notion of utility,
which we call utility under uniform fact selection, is relevant
when solving is either difficult or infeasible.

To estimate the utility of each fact, we generated prompts
containing all subsets of the considered 7 facts (the remaining
one, the buggy function, is always present in the prompt), which
resulted in a total of 19228 prompts for BGP314, which is less

than 314 x 27 since some facts are not available for some bugs.

For each prompt, we computed 15 responses to estimate the
measures pass@1 and #fixed. This enabled us to both evaluate

*

an optimal selection strategy by explicitly considering F'; for
each bug, and a uniform selection strategy.

We evaluate the utility of individual facts under uniform
selection using two complementary measures: Shapley [33]
and a new measure we introduce and call fact gain, defined
in We report fact gain along with Shapley for
two reasons: (1) Shapley’s results are hard to interpret and (2)
we have the luxury of exhaustive enumeration, since our fact
set is small. Fact gain computes the net increase in pass@ 1
scores due to the addition of a specific fact f; we defined it
by adapting relative change [34] to our problem domain by
setting the reference value to fact subsets that do not contain
the measured fact f. Let J; = {(b,F) € J | f € F} be the
subset of prompts whose fact set F' includes the fact f, and
J7={(b;F) € J | f ¢ F} be those prompts that do not. Let
fo = LLM(Jy) and Ry = LLM (J%). Then the gain of each

act 1s:

pass@k([y) — pass@k(Ry)
N pass@k(J7)

A(f) &)
A(f) computes the change in the likelihood of generating a
successful repair when the fact f can be used in a prompt.

Table I| showcases the significance of each fact in APR
prompts, leveraging both aggregate gain (A(f)) and Shapley
values, as defined in Another interesting observa-
tion from the experimental results is that the facts “Buggy Class”
and “Used Method” Signatures” exhibit a negative aggregate
gain for GPT-3.5, indicating that their inclusion might adversely
affect the repair outcome on average. For Llama3-70B, these
facts have an aggregate gain close to zero, still making them
the least beneficial among the considered facts. Nonetheless,
each of these facts allows GPT-3.5 to fix 4 additional bugs
that were not fixed without them. For Llama3-70B, “Buggy
Class” enables fixing 1 additional bug, while “Used Method
Signatures” contributes to fixing 5 additional bugs. This shows
the importance of fact selection.

To demonstrate the utility of facts F under optimal fact
selection, we compute the number of bugs that were fixed
exclusively when each fact was available. These exclusive fixes
are reported in the column “# Excl.” for both GPT-3.5 and
Llama3-70B in This table highlights the unique bug-
fixing contribution of each fact, showing the distinct set of
bugs resolved by each fact across the two models. It further
shows that all facts improve performance. These improvements
are statistically significant for both models, with no p-value
exceeding 0.004.

Second, we analysed each fact’s utility under optimal
selection by how its inclusion in or its exclusion affects pass @k.
We do so by simulating the scenario where specific facts are
missing: If a fact f were missing, we would be forced to

compute F, over F — {f} for each bug b € B. The baseline
for this scenario is when all the facts are available.

Each row in the table in details the pass@1 attainable
by the best prompts, with and without a specific fact (denoted by
f). For each bug b € B, prompts are constructed using optimal

Fact £ GPT-3.5 Llama3-70B
#Exd. Fy(F—{f)) A #Exd F,F-{f}) A

Error Info. 9 0.331 0.071 8 0.257 0.0493
Failing Test 7 0375 0027 7 0.281 0.0251
Angelic Forest 7 0371 0032 5 0.245 0.0607
Buggy Class 4 0392 0.010 1 0.290 0.0166
Used Method S. 4 0393 0009 5 0.285 0.0208
GitHub Tssue 3 0.341 0062 6 0.263 0.0429
Runtime Info. 2 0.384 0.019 8 0.288 0.0183

TABLE II: # Excl. shows the bugs that could only be fixed
by including the specific fact under optimal fact selection for

BGP157PLY1 . Fy(F — {f}) shows performance of the best facts
when f cannot be selected. A represents the drop in performance due
to excluding the fact from the bug’s best performing fact set.

fact sets F,(TF) over all facts and F,(F — {f}), excluding the
fact f. The consistent reduction in pass@1 (denoted as A)
emphasises the value of each fact in bug fixing.

To determine the statistical significance of the impact of each
individual fact under optimal selection, we calculated pass@ 1
scores for all bugs, both with and without a particular fact.
These scores were then compared. the Wilcoxon signed-rank
test shows that the inclusion of each fact has a statistically
significant effect on each bug’s optimal fact set.

Finding 1. Under the assumption that we select the most
effective fact set for repairing each bug, each of the
considered facts demonstrates its utility on our dataset.

When selecting an optimal fact set for repairing each bug,
each of the seven considered facts proves useful on our dataset:
including any of these facts in the prompt helps repair at least
one bug exclusively and has a statistically significant positive
impact on pass@1.

B. Impact of Fact Set Size on Prompt Performance

In this section, we investigate the concept of prompt
monotonicity by examining how the incremental addition of
facts affects prompt performance. Monotonicity, in this context,
refers to a consistent improvement in performance with each
additional fact. This implies that more information invariably
leads to better outcomes. Conversely, non-monotonicity indi-
cates that there exists a threshold beyond which adding more
facts does not enhance, and may even degrade, performance.

Similarly to we evaluate the non-monotonicity
of prompts in two settings: under an optimal fact selection
and under a random selection. For each of them, we ag-
gregate pass@1 scores for all bugs over sets containing a
varying number of facts. Figure [2] presents the performance of
pass@1 for the prompts across different fact set cardinalities,
ranging from O to 7. The maximum pass@1 corresponds
to an optimal fact selection for each bug, and the average
pass@1 corresponds to a random fact selection. To ensure
a fair comparison across different fact set cardinalities, we
sampled 128 elements with replacement for each cardinality.
This accounts for the difference in the cardinality of the
fact sets we are sampling. Specifically, given two sets of

., Yg4 drawn from the same
o) %4)]

samples X1,..., X3 and Y7, ..
distribution, E[maz(Xy,...X32)] < E[maz(Y1,..
due to the properties of the function max

From the plot, we observe that for both GPT-3.5 and Llama3-
70B, the “Max Pass@1” scores (solid lines) generally increase
with the number of facts, reaching a peak at 3 facts for GPT-
3.5 (solid blue) and 4 facts for Llama3-70B (solid orange)
before declining. The “Avg Pass@1” scores (dotted blue line)
for GPT-3.5 show improvement with more facts, reaching a
plateau between 2 and 5 facts, followed by a decrease. For
Llama3-70B, the “Avg Pass@1” scores (dotted orange line)
increase up to 4 facts and then decrease. This pattern confirms
the non-monotonicity in prompt performance as the number
of facts increases.

Finding 2. Prompt performance is non-monotonic with
respect to the number of included facts. While adding facts
generally improves performance, there exists a threshold
beyond which additional facts hinder performance.

C. Non-Existence of a Universally Optimal Fact Set

A universally optimal fact set” in the context of automated
program repair is a collection of facts that, when applied,
yields the highest effectiveness in terms of bug fixes and
pass@1 scores across a wide range of projects. For defining
an universally optimal fact set, we first define the quality of a
fact set in terms of the following properties:

« Efficiency: A fact set is efficient when it outperforms

alternative fact sets.

o Universality: A fact set is universal when it is efficient

up to e-tolerance, as defined in

o Coverage: The set of bugs a fact set can resolve.

We define the function Coverage : 2F — 28 where F C
is a fact set and B is the set of all bugs in the dataset being
considered, such that Coverage(F') returns the set of bugs
fixed by the fact set F'.

The Coverage Ratio for a given fact set F' is defined as:

| Coverage(F)|

CR(F) = | UVFigF Coverage(F;)|

(6)

We prefer sets that maximise universality and coverage ratio.

presents the best-performing fact sets for each
project, along with their project-specific and overall pass@1
scores for both GPT-3.5 and Llama3-70B. Notably, no single
fact set achieves top performance across all projects. For
instance, the fact set 0010101 achieves a pass@1 of 0.21
on GPT-3.5 for the Sanic project, which is below the highest
pass@1 score of 0.26. Similarly, in the FastAPI project, the
best fact set 0000101 attains a project-specific pass@1 of
0.19 on GPT-3.5, slightly exceeding its overall score of 0.18,
yet still lower than the highest score of 0.26 on the same
model. A similar variability is observed with Llama3-70B,
where no common fact set appears across different repositories,
highlighting the unique nature of each project’s optimal fact

. GPT-3.5 Llama3-70B

Project

Best Fact Set Project All Best Fact Set Project All
luigi 0011111 0.53 0.26 1010111 0.42 0.16
black 0010111 0.38 0.22 1101011 0.35 0.17
fastapi 0000101 0.19 0.18 0011001 0.11 0.11
httpie 0001111 0.50 0.25 0001000 0.50 0.12
pandas 0011001 0.25 0.25 0101011 0.13 0.17
tornado 0011000 0.37 0.20 1001001 0.22 0.13
ansible 0010100 0.10 0.12 0011011 0.15 0.14
matplotlib 0001001 0.36 0.25 0101010 0.26 0.16
cookiecutter 0001101 0.93 0.20 0001010 0.67 0.14
tqdm 0001111 0.00 0.24 1011001 0.00 0.13
youtube-dl 0011001 0.08 0.25 0001110 0.06 0.14
keras 0101111 0.32 0.23 1011110 0.17 0.15
scrapy 0011111 0.45 0.26 1101110 0.36 0.15
sanic 0010101 0.64 0.21 0110011 0.51 0.15
thefuck 0001001 0.16 0.21 0001001 0.29 0.12

TABLE III: Comparison of project-specific best fact sets and their
project’s average Pass@1 scores and the total average Pass@1 scores
across all projects in BGP157PLY1 . The fact sets are represented
using their bitvector encodings. The table highlights that different
repositories have different best fact sets, indicating the importance of
tailored fact selection for effective bug fixing.

Fact Aggregations #fixed
Best Fact Set in BGP157PLY]1 77
Best Fact Set in BGP157PLY2 84
All Facts 72
Bugs Fixed by the Top 5 Fact Subsets 99

Bugs Fixed by Any Fact Subset 119

TABLE IV: The number of bugs plausibly fixed by fact subset in
BGP157PLY2 using GPT-3.5.

set. Additionally, the highest occurrence count for any fact set
is just 2, with five fact sets appearing twice. This distribution
emphasizes the inconsistency in fact set effectiveness across
projects and suggests that a universally optimal fact set is
unlikely, given the diverse nature of repositories and bugs.
assesses the effectiveness of various approaches
of fact selection in producing plausible fixes on GPT-3.5. The
analysis underscores the Best Fact Set, identified as 1111001,
which was selected for its highest coverage in terms of the
number of bugs it could fix according to the training data,
compared against broader approaches such as the Top 5 Union
and Total Union. The Top 5 Union, which aggregates the
bugs fixed by the top five best performing fact sets, generates
fixes that pass tests for 99 bugs, while the Total Union,
encompassing bugs fixed by all fact subsets, resolves 119
bugs. These unions significantly surpass the Best Fact Set in
bug resolution capability, fixing many additional bugs (22 and
42 respectively). This shows that the highest coverage ratio of
the fact set is CR(1111001) = 0.65 that it fixes 65% of the
bugs while missing 35% of the bugs fixable by other sets.
These results highlight that the Best Fact Set does not have
a high coverage ratio, especially compared to the theoretical
maximum of an optimal fact selection which has a coverage
ratio of 1. The coverage ratio’s delineation as monotonic —
in that the fact set with the highest number of bugs fixed is
deemed the best — indicates that within this dataset, no fact
set achieves a high coverage ratio. further shows
the limitations inherent in static fact selection strategies, as
demonstrated by the performance of the Best Fact Sets w.r.z.

BGP157PLY2. These sets fix 84 bugs, and set the upper limit
for universal fact selection in BGP157PLY2. These sets were
not ranked high in the training data, as they were positioned
at ranks 16 and 34, respectively out of 128 candidates.

The UpSet diagram [33] in shows the overlap
among the top 5 fact sets from BGP157PLY1, as well as a
fact-free baseline, encoded as 0000000. The diagram reveals
the number of bugs addressed by various intersections of these
fact sets, with the largest subset intersection resolving 41 bugs.
The diagram shows that each fact set individuallys contribute
to the resolution of up to 7 bugs. Cumulatively, these 6 fact
sets fix a total of 107 bugs, surpassing the efficacy of the single
best fact set, which fixes 89 bugs. This UpSet plot helps us
answer the question of the existence of a universal fact set. If
one existed, we would expect to see a row with dots in most,
if not all, columns, signifying that fact set’s presence in the
majority of intersections. No such pattern exist in this UpSet
plot, indicating that no single fact set fixes all bugs. Instead,
different fact sets are effective for different bugs.

Finding 3. The diversity in the best fact sets across differ-

ent repositories ([lable Ill), and the significant difference
in the bugs fixed by the top five fact sets (Figure 4)), both

point to the absence of a universal fact set in our dataset.

D. Effect of Fact Order on Performance

The experiments conducted to this point assume a fixed fact
order. We now investigate the effect of permuting the facts. Our
prompt template constrains the permutations we consider. We
add the facts "Buggy class” (1.1) and ”Used method signatures”
(1.2) to our prompt next to each other in the order that they
appear in source code, so we do not separately permute them.
Similarly, the ”Failing Tests” (1.3) fact immediately precedes
the “Error Information” (2.1) fact it generates in the template.
Thus, we only permute 5 facts.

This experiment was conducted on BGP32, comprising 32
bugs. For each of the 120 permutations, we created prompts
for each bug, resulting in a total of 120 x 32 prompts. We
computed the pass@1 for each prompt, and then averaged
these scores across the 32 bugs for each permutation. The
resulting violet histogram in represents the mean
pass@1 performance across these permutations.

We conducted a similar analysis for different fact subsets,
also shown in[Figure 5| With 7 facts, there are 128 x 32 prompts.
For each subset, we calculated the mean pass@1 across the 32
bugs. The yellow histogram represents the distribution of the
mean performance over these fact subsets. Comparing the two
histograms reveals that the variability due to fact order (violet)
is relatively narrow, ranging from 0.24 to 0.31. In contrast,
the impact of different fact subsets (yellow) is significantly
broader, ranging from 0.07 to 0.34. This demonstrates that the
selection of which facts to include (fact subsets) has a much
greater influence on prompt performance than the specific order
in which these facts are presented.

41

IS
S

25

0000000
1011111
0011011
0101001
1111111
1111001

Intersection size
N
S

4 3 3 3
- o e

o

s
I
o/
s
ss[
I

50 0

!
o -3

Fig. 4: This upset diagram compares the 5 fact sets that fix the most bugs in BGP157PLY1 with using no facts (encoded as 0000000)
including the buggy function and chain-of-thought instructions. The fact sets shown on the left collectively fix 107 bugs, 18 more than the
single best fact set, which fixes 89 bugs. The diagram is constructed by generating prompts from each fact set, sending them to GPT-3.5 for
n = 15 responses, and identifying the set of bugs with at least one passing response.

Mean Pass@1 over BGP32

Fig. 5: Distribution of mean pass@k evaluated on BGP32. The
violet histogram reports the mean performance under permutation;
the yellow histogram reports mean by subset. The wider range in the
yellow distribution suggests that fact subsets have a stronger impact
on performance than fact order.

Finding 4. Selecting facts has more impact on perfor-
mance than ordering them.

V. SELECTING FACTS WITH MANIPLE

Universal fact selection, as demonstrated in |[Section IV-C|

does not achieve consistent performance across all the bugs in
our dataset. Thus, to automate creating bug-tailored prompts,
we introduce MANIPLE, a random forest trained to select
relevant facts for inclusion in the prompts.

We focus on the task of predicting the success or failure of
test executions based on vectors representing features extracted
from both the prompt and the code.

Our training dataset D is constructed from the BGP157PLY 1.

It consists of pairs (j,y), where:

e j= (b, F) € J represents a job, which is a tuple consisting
of a bug b along with and a fact set FF C F

e y € [0,1] represents the probability of successfully fixing
the bug b in a single trial, given the fact set F' C F. This
probability is computed using pass@]1.

D consists of 157 bugs, each with 128 fact combinations,
totaling 20,096 samples. However, since not all facts are

available for every bug, missing facts are labeled as “None”.
This reduces the number of unique prompts to 9496.

We manually craft a set of features f(j) based on domain
knowledge and the characteristics of the facts. The feature
function f : J — R™ maps the input job 57 € J to an m-
dimensional feature space.

The goal is to train a machine learning model M capable
of using the feature vector f(j) to accurately predict the
probability of the success (pass@k) for each fact set. Using
M, we can select the optimal fact set by choosing the one that
yields the highest predicted probability of success according
to the model’s output.

A. Feature Selection

To train a machine learning model to meet these objectives,
we define the feature vector, f(x) = [b, rep_id, ¢,c|”, where
« Bitvector (b): encodes the fact set F', where b € {0,1}".

o Repository ID (rep_id): uniquely identifies the source
repository of the bug b.

o Prompt Length (¢): the length of the prompt in either
characters or tokens, where ¢ € NY. Cross-validation
determines whether characters or tokens are chosen.

o Cyclomatic Complexity (c): a measure of code complexity
that quantifies the number of linearly independent paths
through a program’s source code.

This choice of features was guided by the investigation
conducted on BGP157PLY 1. Specifically, the including Repos-
itory ID (rep_id) is supported by the findings in
which illustrate significant variability in the optimal bitvectors
for fact selection across different projects. This variability
underscores the influence of the repository context on successful
repair. Additionally, Prompt Length (¢) was identified as a
crucial factor, displaying a Spearman correlation of —0.18
with the pass@1 for repair success, accompanied by a highly
significant p-value of p < 10712%. This correlation holds for
both token and character lengths of prompts, indicating that
an increase in prompt length is associated with a decrease in
LLM performance — a conclusion that is further supported
by the non-monotonicity of adding facts to prompts, as noted

in as more facts increase prompt length.

Cyclomatic Complexity emerged as another pivotal feature,
showing a negative Spearman correlation of —0.1 with the
pass@1, p-value of 1042, Unlike prompt length, Cyclomatic
complexity does not depend on the fact set chosen (recall
that the buggy code itself is necessarily always included) but
remains instrumental in predicting the pass@1 for a bug, mainly
for scenarios where no prompt generates a successful fix.

B. MANIPLE: A Random Forest for Fact Set Selection

Leveraging these observations, we present MANIPLE, a
random forest model for the fact selection task and evaluate it
in both regression and classification settings. As a regressor,
the model directly predicts the pass@1 for each job. In the
classification task, we categorise the scale (i.e., [0, 1]) based on
the number of fact sets considered by the model. Our analysis
reveals that classification performs better. This finding can be
attributed to the noise and significant variance present in our
data, as detailed in Appendix A of the full version of this paper
on arXiv [28]. The classification method proved more robust
to variance in pass@1 compared to regression. Additionally,
ordering and ranking the fact sets did not yield comparable
performance. This is likely due to the variance in ranks, which
directly stems from the variance in pass@]1.

Additionally, we trained MANIPLE only on the top five
highest-performing fact sets. These sets were identified using
bootstrap aggregation, where we evaluated the performance of
each fact set across multiple bootstrap samples drawn from
our dataset. By aggregating the outcomes, we identified the
best performing fact sets. We optimised the model’s hyperpa-
rameters through a comprehensive grid search, evaluating the
performance of each combination of parameters. To ensure the
model’s generalisability and to prevent overfitting, we employed
k-fold cross-validation with k = 5.

VI. COMPARING MANIPLE WITH SOTA LLM-BASED APR

We compared MANIPLE with existing zero-shot non-
conversational LLM-based APR methods that incorporate
various types of information into prompts. Our baselines include
approaches whose prompts include the following facts:

o Buggy Function only, denoted as Ty

o Buggy Function, Buggy Class and Used Method Signa-
tures, denoted as 77, an approach similar to the technique
by Chen et al. [6].

o Buggy Function combined with GitHub Issue, denoted as
T5, an approach similar to the technique by Fakhoury [3].

o Buggy Function alongside Error Information, denoted
as T3, an approach similar to the technique by
Keller et al. [7].

For a fair comparison, we supply the same prompts,
built from these facts, to MANIPLE and all the baselines.
Unsurprisingly, these prompts differ structurally from the
prompts on which the baselines were run. For example, our
prompt incorporates our chain-of-thought instructions defined
in Appendix C of the full version of this paper on arXiv [28§].
Our focus here is on comparing MANIPLE’s performance to

Tool #fixed Correct % Correct
To 44 7 16%
T 37 5 14%
Ts 63 18 29%
Ts 66 31 47%
MANIPLE 88 37 42%

TABLE V: Comparison of tool performance on the BGP157PLY2
test set, focusing on bugs fixed with GPT-3.5. #fixed represents the
number of bugs with test-passing patches, and Correct indicates
bugs fixed with patches identical to the developer’s. We observe that
MANIPLE outperforms all the fact set combinations used. This shows
that bug-tailored fact selection can improve the repair success.

the baselines’ w.r.t. facts, not their performance given approach-
specific optimal prompts, whose construction would require
close cooperation with the authors of each baseline.

We evaluated tool efficacy according to two criteria, based
on n = 15 responses (Section ITI): (1) number of plausible fixes
(i.e.[eq. (2)), and (2) the number of correct fixes, determined by
the first plausible patch generated by the LLM and subsequently
subjected to manual evaluation.

For assessing patch correctness, we employ an interrater
agreement scale, where “3” indicates patches syntactically
equivalent to the developer’s patch, allowing for minor refac-
toring or restructuring, “2” — patches that achieve the intended
outcome through an alternate method, “1” — diverging from
the developer’s patch, rendering correctness indeterminable,
and “0” — incorrect patches (irrelevant, incomplete, intro-
ducing regressions). Each patch undergoes evaluation by two
independent raters. In cases of scoring discrepancies, the raters
discuss them. If the discrepancy is not resolved, the more
conservative (lower) score is recorded, ensuring a rigorous
standard of correctness. Following this scoring system, patches
with the scores of 2 and 3 are labelled as “correct”, and with
the scores of 1 and O are labelled as “incorrect.”

The analysis in underscores the potential of bug-
tailored prompt selection for boosting automated program repair
efficacy. Previous LLM-based zero-shot non-conversational
approaches, represented by 737, 715 and T3, that always use
the same set of facts achieve a maximum of 66 plausibly
fixed patches on BGP157PLY2. In contrast, MANIPLE, which
leverages bug-tailored fact selection, identifies a significantly
higher number of plausible patches (88). Furthermore, MA-
NIPLE boasts 6 additional correct fixes compared to the best
of these approaches. These findings suggest that tailoring the
fact set to the specific context of each bug has the potential to
improve the upper bound for repair success.

Surprisingly, 77, which utilises function code alongside
scope information (including class information and invoked
functions), fixes fewer bugs compared to using function code
alone. However, this does not imply that scope and class
information are useless. 7} still identifies 5 plausible patches,
2 of which are correct, that would not be found using just the
function code as the only fact.

VII. THREATS TO VALIDITY

In assessing LLMs, we recognise the challenge of potential
data leakage, as some training datasets are not publicly avail-

able. This limits our ability to know exactly what information
the model has encountered. However, our primary focus is
on the impact of different facts on repair performance, rather
than the performance itself. For instance, if a prompt with an
“angelic forest” leads to a bug fix while a prompt without it does
not, this highlights the significant role of “angelic forest” in
enhancing bug-fixing performance. This remains true regardless
of the bug’s presence in the training data. Thus, our findings
are robust even with possible data leakage, and using the same
model across our baselines partially mitigates this issue.

We extracted our fact set from the APR literature. We
acknowledge that it is provisional and likely to change as
research into LLM-assisted APR continues.

Our dataset is a subset of BugsInPy, a benchmark published
at FSE’20 [[10]. BugsInPy is a curated dataset built to best
practice from GitHub repos with more than 10k stars that have
at least one test case in the fixed commit that distinguishes
the buggy version from its fix. Its representativeness has not
been challenged and, from first principles, we can think of

no reason that our filtering (Section III-A)) would introduce

systematic bias.

VIII. RELATED WORK

Traditional APR uses search, e.g. GenProg [36]], or program
synthesis such as SemFix [37], Angelix [9], SE-ESOC [38]],
and Trident [39]. This study includes Angelic forests [9] in its
fact set, demonstrating their utility in LLM-based APR.

CoCoNut [21]] utilizes surrounding contextual information
to train an ensemble of neural machine translation models.
Rete [40] employs Conditional Def-Use chains as context for
CodeBert [41]. CapGen [42] utilises AST node information
to estimate the likelihood of patches. DLFix [43]] treats the
program repair task as a code transformation task, learning to
transform by additionally incorporating the surrounding context
of the bug. The context used in this work includes the class and
scope information of the buggy program, which is broader than
the contexts used above. FitRepair [2] constructs prompts using
identifier extracted from lines that look similar to the buggy
line. Although, our work does not directly provide identifiers
statically, as python is dynamic, we provide dynamic values
of the variables during the test run.

LLM-based Program Repair: APR leveraging LLMs
is making strides. InferFix [44] uses few-shot prompting
to repair issues from Infer. ChatRepair [4] uses interactive
prompting constructed from failing test names and their
failing assertions. Our approach focuses on the zero-shot,
non-conversational setting, but can be potentially integrated
with InferFix and ChatRepair. Various approaches focused on
program engineering for APR, e.g. incorporating bug-related
information within the prompts [44]], [45]], [46], as the quality of
fixes could be enhanced by integrating contextual information,
such as the bug’s local context [S]] and details about relevant
identifiers [2], into the prompt. Xia et al. [2] utilize relevant
identifiers to augment the fix rate of prompts. Keller et al. [7]
reveals that, for debugging tasks, focusing on the specific line
indicated by a stack trace is more effective than providing

the entire trace. Similarly, Fakhoury ef al. [3] investigates
how combining issue descriptions with bug report titles and
descriptions enhances program repair efforts. Following recent
research [1]], we refer to such pieces of information as facts.
Our work uses individual facts from previous work to formulate
and motivate the fact selection problem.

Program Repair for Python: QuixBugs [47] is a bench-
mark consisting of small programs in Java, and Python. They
are not reflective of real software projects. Bugswarm [48],
was constructed by automatically mining failing CI builds, and
thus contains issues outside of the scope of our study, such
as configuration issues. BugsInPy [10] manually curates 501
bugs from 17 popular Python Projects. We selected 314 bugs
from this benchmark that require modifications within a single
function, and which we managed to reproduce. Rete [40]], a
program repair tool that leverages contextual information, was
evaluated on both Python and C, using BugsInPy as its Python
benchmark. We did not compare MANIPLE with Rete, because
it relied on the line-granular perfect fault localisation (PFL),
while this study uses function granular PFL. PyTER [49] is a
program repair technique that focuses on Python TypeErrors;
it was evaluated on a custom benchmark for type errors.

Prompt Engineering: Recent advancements in prompt
engineering have significantly influenced the effectiveness
of models like ChatGPT. Notably, the tree-of-thoughts ap-
proach [50] and the zero-shot-CoT approach [51]] have emerged
as pivotal strategies. Frameworks like ReACT [352] use LLMs
to generate interleave reasoning and task-specific actions. Self
Consistency [53]] traverses multiple diverse reasoning paths
through few shot CoT and uses the generations to select
the most consistent answer. Automatic Prompt Engineer [54]]
frames prompt constructs as a natural language synthesis task. It
is orthogonal to our approach, as our task is to select ideal facts
while Automatic Prompt Engineer seeks to refine the prompt
into which the selected facts can be plugged. Repository Level
Prompt Generation (RLPG) [55] is a general framework for
retrieving relevant repository context and constructing prompts,
instantiated for code completion. RLPG uses a classifier to
choose the best one. In contrast, our fact selection problem
aims to find an optimal combination of facts to repair a given
bug. In addition to repository context, our work incorporates
dynamic and information external to the code repository.

IX. CONCLUSION

In this paper, we explore the construction of effective prompts
for LLM-based APR, leveraging facts extracted from the
buggy program and external sources. Through a systematic
investigation, we incorporate seven bug-relevant facts into the
prompts, notably including angelic values, a factor previously
not considered in this domain. Furthermore, we define the fact
selection problem and demonstrate that a universally optimal
set of facts for addressing various bugs does not exist. Building
on this insight, we devise a bug-tailored fact selection strategy
enhancing the effectiveness of APR.

[1]

[3]

[4]

[5]

[6]

[8

[t}

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

T. Ahmed, K. S. Pai, P. Devanbu, and E. T. Barr, “Improving few-
shot prompts with relevant static analysis products,” arXiv preprint
arXiv:2304.06815, 2023.

C. S. Xia, Y. Ding, and L. Zhang, “Revisiting the plastic surgery
hypothesis via large language models,” arXiv preprint arXiv:2303.10494,
2023.

S. Fakhoury, S. Chakraborty, M. Musuvathi, and S. K. Lahiri, “Towards
generating functionally correct code edits from natural language issue
descriptions,” arXiv preprint arXiv:2304.03816, 2023.

C. S. Xia and L. Zhang, “Keep the conversation going: Fixing 162 out of
337 bugs for $0.42 each using chatgpt,” arXiv preprint arXiv:2304.00385,
2023.

J. A. Prenner and R. Robbes, “Out of context: How important is local
context in neural program repair?” in 2024 IEEE/ACM 46th International
Conference on Software Engineering (ICSE). 1EEE, 2024.

Y. Chen, J. Wu, X. Ling, C. Li, Z. Rui, T. Luo, and Y. Wu, “When large
language models confront repository-level automatic program repair:
How well they done?” arXiv preprint arXiv:2403.00448, 2024.

J. Keller and J. Nowakowski, “Ai-powered patching: the future of
automated vulnerability fixes,” Tech. Rep., 2024.

S. Chandra, E. Torlak, S. Barman, and R. Bodik, “Angelic debugging,”
in Proceedings of the 33rd International Conference on Software
Engineering, 2011, pp. 121-130.

S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th international conference on software engineering, 2016, pp. 691—
701.

R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan, F. Wee,
J. E. Tan, Y. Yieh et al., “Bugsinpy: a database of existing bugs in
python programs to enable controlled testing and debugging studies,”
in Proceedings of the 28th ACM joint meeting on european software
engineering conference and symposium on the foundations of software
engineering, 2020, pp. 1556—1560.

N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and
P. Liang, “Lost in the middle: How language models use long contexts,”
arXiv preprint arXiv:2307.03172, 2023.

F. Shi, X. Chen, K. Misra, N. Scales, D. Dohan, E. H. Chi, N. Schiérli, and
D. Zhou, “Large language models can be easily distracted by irrelevant
context,” in International Conference on Machine Learning. PMLR,
2023, pp. 31210-31227.

“The pandas:128 bug from bugsinpy,” https://github.com/pandas-
dev/pandas/commit/112e6b8d054f9adc1303138533ed650697594db,
2023, accessed: 2024-03-21.

J. Schulman, B. Zoph, C. Kim, J. Hilton, J. Menick, J. Weng, a. Felipe
Juan Uribe, L. Fedus, L. Metz, M. Pokorny, R. G. Lopes, S. Zhao,
A. Vijayvergiya, E. Sigler, A. Perelman, C. Voss, M. Heaton, J. Parish,
D. Cummings, R. Nayak, V. Balcom, D. Schnurr, T. Kaftan, C. Hallacy,
N. Turley, N. Deutsch, V. Goel, J. Ward, A. Konstantinidis, W. Zaremba,
L. Ouyang, L. Bogdonoff, J. Gross, D. Medina, S. Yoo, T. Lee,
R. Lowe, D. Mossing, J. Huizinga, R. Jiang, C. Wainwright, D. Almeida,
S. Lin, M. Zhang, K. Xiao, K. Slama, S. Bills, A. Gray, J. Leike,
J. Pachocki, P. Tillet, S. Jain, G. Brockman, N. Ryder, A. Paino,
Q. Yuan, C. Winter, B. Wang, M. Bavarian, 1. Babuschkin, S. Sidor,
I. Kanitscheider, M. Pavlov, M. Plappert, N. Tezak, H. Jun, W. Zhuk,
V. Pong, L. Kaiser, J. Tworek, A. Carr, L. Weng, S. Agarwal, K. Cobbe,
V. Kosaraju, A. Power, S. Polu, J. Han, R. Puri, S. Jain, B. Chess,
C. Gibson, O. Boiko, E. Parparita, A. Tootoonchian, K. Kosic, and
C. Hesse, “Introducing chatgpt,” OpenAl blog, Nov 2022. [Online].
Available: https://openai.com/blog/chatgpt

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 24 824-24 837, 2022.

L. Weng, “Prompt engineering,” lilianweng.github.io, ~Mar
2023. [Online]. Available: https://lilianweng.github.io/posts/
2023-03- 15-prompt-engineering/

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” Advances in neural information processing systems,
vol. 33, pp. 1877-1901, 2020.

(18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[39]

[40]

J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen, “What makes
good in-context examples for gpt-3?” arXiv preprint arXiv:2101.06804,
2021.

K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. Le Traon,
“You cannot fix what you cannot find! an investigation of fault localization
bias in benchmarking automated program repair systems,” in 2019 12th
IEEE conference on software testing, validation and verification (ICST).
IEEE, 2019, pp. 102-113.

R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Testing: Academic and industrial
conference practice and research techniques-MUTATION (TAICPART-
MUTATION 2007). IEEE, 2007, pp. 89-98.

T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
combining context-aware neural translation models using ensemble for
program repair,” in Proceedings of the 29th ACM SIGSOFT international
symposium on software testing and analysis, 2020, pp. 101-114.

Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk,
and M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-
to-end program repair,” IEEE Transactions on Software Engineering,
vol. 47, no. 9, pp. 1943-1959, 2019.

R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 international symposium on software testing
and analysis, 2014, pp. 437-440.

“Pandas, python data analysis library,” https://pandas.pydata.org/, 2023,
accessed: 2024-03-21.

“Matplotlib: Visualization with python,” https://matplotlib.org/, 2023,
accessed: 2024-03-21.

S. Ouyang, J. M. Zhang, M. Harman, and M. Wang, “Llm is like a box
of chocolates: the non-determinism of chatgpt in code generation,” arXiv
preprint arXiv:2308.02828, 2023.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

N. Parasaram, H. Yan, B. Yang, Z. Flahy, A. Qudsi, D. Ziaber, E. Barr,
and S. Mechtaev, “The fact selection problem in llm-based program
repair,” arXiv preprint arXiv:2404.05520, 2024.

Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, 2015, pp. 24-36.

E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure worse
than the disease? overfitting in automated program repair,” in Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering,
2015, pp. 532-543.

“Openai api,” https://openai.com/blog/openai-api, 2024, accessed: 2024-
03-21.

“Deepinfra api,” https://deepinfra.com/, 2024, accessed: 2024-07-21.

E. Winter, “The shapley value,” Handbook of game theory with economic
applications, vol. 3, pp. 2025-2054, 2002.

“Relative change,” https://en.wikipedia.org/wiki/Relative_change, 2023,
accessed: 2024-03-21.

A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister, “Upset:
visualization of intersecting sets,” IEEE transactions on visualization
and computer graphics, vol. 20, no. 12, pp. 1983-1992, 2014.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic
method for automatic software repair,” leee transactions on software
engineering, vol. 38, no. 1, pp. 54-72, 2011.

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in 2013 35th International
Conference on Software Engineering (ICSE). 1EEE, 2013, pp. 772-781.
S. Mechtaev, A. Griggio, A. Cimatti, and A. Roychoudhury, “Symbolic
execution with existential second-order constraints,” in Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2018, pp. 389-399.

N. Parasaram, E. T. Barr, and S. Mechtaev, “Trident: Controlling side
effects in automated program repair,” IEEE Transactions on Software
Engineering, vol. 48, no. 12, pp. 4717-4732, 2021.

——, “Rete: Learning namespace representation for program repair,” in
2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). 1IEEE, 2023, pp. 1264-1276.

https://openai.com/blog/chatgpt
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang, and M. Zhou, “CodeBERT:
A pre-trained model for programming and natural languages,” in
Findings of the Association for Computational Linguistics: EMNLP
2020, T. Cohn, Y. He, and Y. Liu, Eds. Online: Association
for Computational Linguistics, Nov. 2020, pp. 1536-1547. [Online].
Available: https://aclanthology.org/2020.findings-emnlp.139

M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in Proceedings
of the 40th international conference on software engineering, 2018, pp.
1-11.

Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code
transformation learning for automated program repair,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 602-614.

M. Jin, S. Shahriar, M. Tufano, X. Shi, S. Lu, N. Sundaresan, and
A. Svyatkovskiy, “Inferfix: End-to-end program repair with llms,” arXiv
preprint arXiv:2303.07263, 2023.

C. S. Xia, Y. Wei, and L. Zhang, “Practical program repair in the era
of large pre-trained language models,” arXiv preprint arXiv:2210.14179,
2022.

N. Jiang, K. Liu, T. Lutellier, and L. Tan, “Impact of code language
models on automated program repair,” arXiv preprint arXiv:2302.05020,
2023.

D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “Quixbugs: A multi-
lingual program repair benchmark set based on the quixey challenge,”
in Proceedings Companion of the 2017 ACM SIGPLAN international
conference on systems, programming, languages, and applications:
software for humanity, 2017, pp. 55-56.

D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y.-C. Liu, P. T.
Devanbu, B. Vasilescu, and C. Rubio-Gonzdlez, “Bugswarm: Mining and
continuously growing a dataset of reproducible failures and fixes,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 1EEE, 2019, pp. 339-349.

W. Oh and H. Oh, “Pyter: effective program repair for python type errors,”
in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2022, pp. 922-934.

S. Yao, D. Yu, J. Zhao, 1. Shafran, T. L. Griffiths, Y. Cao, and
K. Narasimhan, “Tree of thoughts: Deliberate problem solving with
large language models,” arXiv preprint arXiv:2305.10601, 2023.

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large
language models are zero-shot reasoners,” Advances in neural information
processing systems, vol. 35, pp. 22199-22213, 2022.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
“React: Synergizing reasoning and acting in language models,” arXiv
preprint arXiv:2210.03629, 2022.

X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery,
and D. Zhou, “Self-consistency improves chain of thought reasoning in
language models,” arXiv preprint arXiv:2203.11171, 2022.

Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and
J. Ba, “Large language models are human-level prompt engineers,” arXiv
preprint arXiv:2211.01910, 2022.

D. Shrivastava, H. Larochelle, and D. Tarlow, “Repository-level prompt
generation for large language models of code,” in International Confer-
ence on Machine Learning. PMLR, 2023, pp. 31693-31715.

https://aclanthology.org/2020.findings-emnlp.139

	Introduction
	Motivating example
	Study Design
	Experimental Setup
	Bug-Related Facts
	Prompt Design

	The Fact Selection Problem
	Fact Utility
	Impact of Fact Set Size on Prompt Performance
	Non-Existence of a Universally Optimal Fact Set
	Effect of Fact Order on Performance

	Selecting Facts with Maniple
	Feature Selection
	Maniple: A Random Forest for Fact Set Selection

	Comparing Maniple with SOTA LLM-Based APR
	Threats to validity
	Related Work
	Conclusion
	References

