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Abstract

Purpose: Tracer kinetic models are used in arterial spin labeling (ASL); however, decid-
ing which model parameters to fix or fit is not always trivial. The identifiability of the
resultant system of equations is useful to consider, since it will likely impact parame-
ter uncertainty. Here, we analyze the identifiability of two-compartment models used in
multi-echo (ME) blood-brain-barrier (BBB)-ASL and evaluate the reliability of the fitted
water-transfer rate (k,,).

Method: The identifiability of two variants of a two-compartment model (referred to
here as “series” and “parallel”) were analyzed using sensitivity matrix and Monte-Carlo
simulation methods, the latter including the effects of noise and fixed-parameter error.
ME-ASL data were collected at 3T in 25 cognitively normal participants (57-85y). In one
volunteer, additional scans were acquired to estimate noise. Fits for whole-gray-matter
k,, were performed with a theoretically identifiable version of the model.

Results: All models needed one or more fixed parameters to be structurally identifiable,
with different combinations required for each. Practical identifiability analysis yielded k,,
estimates with a median absolute error of 29% (parallel model) and 33% (series model).
Fits to data yielded median k;, values of 0 (parallel) and 96 min~! (series).

Conclusion: We used identifiability analysis to determine an appropriate BBB-ASL
model for acquired data. Through simulations we showed that parameter estimates
depend on model selection and the value of fixed parameters. We demonstrated that
fixed-parameter value and errors significantly impact the reliability of k,, values obtained

from acquired ME-ASL images, even with structurally identifiable models.
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1 | INTRODUCTION

The relationship between arterial spin labeling (ASL)
signal and physical tissue properties is described using
a tracer kinetic model, and single compartment mod-
els are commonly used to quantify cerebral blood flow
(CBF).!' A recent ASL application is the measurement
of blood-brain-barrier (BBB) permeability to water with-
out the use of exogenous contrast agents. Akin to the
tracer kinetic models used for DCE MRI, BBB-ASL
uses multi-compartment models to quantify the rate of
exchange of tagged water (k,,) across the BBB. Typically,
these are two-compartment exchange models (2CXMs)
whereby water exchanges from the intravascular to the
extravascular extracellular space (IVS-EES).%3

Estimating model parameters can be challenging when
using multi-compartment models. Usually when fitting for
parameter(s) of interest (e.g., k,, and CBF), a selection (or
all) of the other key parameters (e.g., relaxation time con-
stants) may be fixed. This selection may be made arbitrarily
or be informed by the availability of independent measure-
ments. The set of fixed parameters differs between studies,
as do the values of the fixed parameters themselves,*”’
reflecting the variation in literature values for the relax-
ation time constants. Existing estimates for the transverse
relaxation time of blood (T2;) in particular vary greatly
depending on oxygen saturation and hematocrit (HCT),3°
both of which differ in the cerebral capillaries compared to
the systemic circulation.!%!

A less-often considered risk in modeling is that of
non-identifiability, which occurs if the observed signal is
described equally well by multiple sets of model parame-
ter values. Identifiability analysis aims to determine which
of a model’s free parameters can be uniquely estimated
from an experiment’s observed output.'? Such analyses are
broadly categorized into structural and practical identifi-
ability analyses. A model is said to be structurally iden-
tifiable if all its parameters can be uniquely determined
when unlimited noise-free measurements of the model
outputs are available. Practical identifiability includes the
effect of noise and limited data on parameter identifica-
tion. To our knowledge, identifiability analyses have not
been published for common ASL models.

Here, we analyze the structural identifiability of
two commonly-used BBB-ASL 2CXMs as well as a
single-compartment perfusion model (1CM) using an
approach known as the sensitivity matrix method.!* We
also use Monte-Carlo simulation to analyze the structural
and practical identifiability of the 2CXMs for a physio-
logical range of parameter values. These results are used
to inform the choice of fixed parameters and estimate
the accuracy of k, measurements in the context of a

multi-echo (ME)-ASL experiment. Given the aforemen-
tioned variability in values used to date, we also assess the
effect of changing the fixed value for T2, on k,, estimates
acquired from real data.

2 | METHODS

2.1 | Theory
2.1.1 | Single-compartment tracer kinetic
model

The tracer kinetic model typically used for CBF quantifi-
cation consists of a single well-mixed compartment repre-
senting the brain tissue in the region of interest (ROI).!#
Labeled water arrives at the ROI after an arterial transit
time (ATT), with the arterial inflow function (AIF) Am,
describing the time-course of the bolus inflow. Assum-
ing instantaneous IVS-EES water exchange and negligible
venous outflow, the rate of change of the ASL difference
signal (AM) in the ROI is given by:
dAM

W = CBFAma - R].[AM (1)

where R1; = % is the longitudinal relaxation rate of water

in the EES. An{al depends on the labeling scheme and for
commonly used pseudo-continuous ASL (pCASL) is given
by'4:

Amg = 2.Mop.a.e R0ATT  ATT < t < ATT + BD
=0 Otherwise 2)

where M, is the longitudinal equilibrium magnetisation
of water in blood, « is the labeling efficiency, R1, = % is
b

the longitudinal relaxation rate of water in blood, and BD
is the bolus duration.

2.1.2 |
models

Two-compartment tracer kinetic

Two commonly used 2CXMs in BBB-ASL are the St.
Lawrence single-pass-approximation (SPA) model,? and
the Alsop and Detre model,®> herein the “parallel” and
“series” 2CXMs, respectively. Both models assume two
homogeneous compartments (IVS and EES) and negli-
gible venous outflow. The parallel-2CXM (Figure 1A) is
analogous to the two-compartment Tofts models used in
DCE MR imaging,'® with the two compartments arranged
such that labeled water immediately begins to exchange
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FIGURE 1 Representation of
(A) parallel-2CXM, and (B) Parallel-2CXM
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with the EES at t = ATT. In the series-2CXM (Figure 1B),
labeled water arrives at the ROI at an arterial transit time
84, after which there is a delay (the exchange time, Texcn!'”)
before the tagged water arrives in the tissue compartment
at the tissue arrival time §;.

For the parallel-2CXM the equations governing the
longitudinal relaxation that occurs prior to the inflow
time!® (¢ < PLD + BD, where PLD is the post-labeling
delay) are:

dAmy  CBF
dr = TAma - (kw,in - kw,out) Amyp — R1pAmy,

dA K.in = Kw,out ) Vb
m; _ ( w,in wout) Amb _ Rl,Am,
dt v

AMora1 = VpAmp(t) + v Amy(t) (3)

Where AM;yq is the observed signal, Am;, and Am; are
the IVS and EES signal components, the partial volumes
of IVS and EES are v, and v;, and the water exchange rate
ky is given by (Kw,in — Ki.out) With ky, oy typically assumed
to be zero. Eq. 3 can be fitted to single-echo data,'®> or ME
data with modification; in ME BBB-ASL, the transverse
relaxation rates of each compartment (R2p, R2;) govern the
signal decay during the echo train (after the inflow time).
For the parallel-2CXM, for ¢t > PLD + BD, where the sub-
script “2” differentiates the post-inversion signal from the
pre-inversion signal in Eq. 3:

AMioa12 = VpAmyp () + viAmy (1)

dAmb’z
dt = _(kW,in - w,out) Amyp, — R2,Amy
dAam k in — k ) )
t,2 _ ( w,in wout) bAm&2 —RZtAmtyz
dt o
Amyp(t = PLD + BL) = Amy(t = PLD + BL)  from Eq. 3
Am;,(t = PLD + BL) = Am(t = PLD + BL)  from Eq. 3
“4)

Alternatively, the signal may be assumed to be governed
solely by the transverse relaxation rates of each compart-
ment (R2p, R2;), neglecting exchange during readout:

dAme

(t > PLD + BL) = —R2,Amy»

dAm
dt

“2(¢> PLD + BL) = —R2,4m (5)

with the same initial conditions as Eq. 4.
The series-2CXM is given by!°:

Amp =0

2M?.CBF.«a min(3, +BL-t0)
Amy = "v—(/ el "’“)Rlbdt’> S <t<6,
b 5ot
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2M¢.CBF.a
==
min(8,+BL—1,0) i min(6,+BL-0) .
/ o({=8.)RY, 4y _/ -8R ) 5, < ¢
0=t &—t
Am, =0 0<t<s
2M%.CBF.qe %Rl min(6,+BLt.0) )
o= / KUl gy ). 5 <t ©
Vi §,—t

where t' is a dummy variable. Eq. 6 can be used with
single-echo data. In literature using the series-2CXM
to-date, the ME signal after the inversion time is given by
Eq. 5.17:2021

2.1.3 | Identifiability analysis

For a model with parameters p to be structurally iden-
tifiable, the observed output y(t, p) must correspond to
a single unique point in parameter space. A range of
approaches to test this condition exist?? and an exemplar
using the Laplace transform method? applied to the 1ICM
is provided in the supplementary material. The structural
identifiability analyses that follow are based on the sen-
sitivity matrix approach,'* which can be thought of as
a hybrid between structural and practical identifiability
analysis since the number and spacing of data points (an
experimental factor) informs the analysis.

Practical identifiability analysis is an evolving field.!®
One widely used method is the profile-likelihood
method,?** used recently to analyze DCE MRI tracer
kinetic models.?® We have chosen a Monte-Carlo simula-
tion method,'? given its ease of implementation, and the
ability to interrogate an expanded parameter space.

Structural identifiability analysis by sensitivity matrix
The sensitivity matrix method!® is a numerical method
that can be used to assess the local structural identifiability
of a model under specified experimental conditions. The
sensitivity matrix, S, contains the partial derivative of each
model output with respect to each system parameter. If S
is less than full rank, then the model is not locally struc-
turally identifiable. This occurs when a column of S is null,
or when two or more columns of S are co-linear.

Singular value decomposition (SVD) of S can deter-
mine the parameters responsible for non-identifiability:

s=vuxv?T (7

where X contains the singular values of S associated with
each parameter. The entries of X can be plotted to visualize
the relative sensitivity of each parameter (an identifiability
signature) and the elements of V! map the singular values

to their corresponding parameter(s).!3 If a singular value
maps to multiple parameters, there are co-linear columns
in S and the model is non-identifiable. Because of numer-
ical rounding, entries of X and V7 will seldom be exactly
zero, necessitating practical cutoff values.

Another method to assess co-linearity is to plot the
column vectors of S. When plotted on a log-scale, the
sensitivity curves of co-linear parameters appear as y-axis
translations.

Monte-Carlo simulation

The sensitivity matrix analysis is limited to assessing local
structural identifiability about a single point in parameter
space. Monte-Carlo simulations can be used to determine
identifiability of a model over a larger region of parameter
space. In the absence of noise or uncertainty in the fixed
parameters, a model that is structurally identifiable over
the region of parameter space spanned in the simulation
should return fitted parameters with minimal error. The
practical identifiability of the model can then be tested by
introducing noise and fixed-parameter error.

2.2 | Data acquisition

The ASL protocol employed in this work was described
previously?” for k, estimation using a two-stage
approach,*??° using a multi-PLD, single-echo (SE)
sequence for ATT estimation as well as a multi-PLD,
ME sequence for estimating k,. Both SE and ME
scans used Hadamard-encoded (HE) pCASL label-
ing for time-efficient data-collection®** and were R-L
phase-encoded. The Hadamard-decoded PLDs are given
Table 1 along with sub-bolus length and TEs.

A saturation recovery sequence with 500, 1700, and
2900 ms delay times and two repeats (1 xXL-R, 1xXR-L
phase-encoding, 35s each) was used for My, estimation
and distortion correction. A T;-weighted image was also
acquired. All scans were performed on a MAGNETOM
Skyra 3T MR machine (Siemens Healthcare, Germany)
using a 32-channel head coil.

2.3 | Identifiability analysis
by sensitivity matrix

Identifiability analysis was performed using the sensitivity
matrix approach for the SE and ME versions of the 1CM,
parallel-2CXM and series-2CXM, using the relevant scan
parameters. Acquisition parameters are listed in Table 1.
System parameters (¢) included CBF, ATT, R1;, and R1;
(all models), k,, or 5, (2CXMs), and R2;, and R2, (ME
versions of both 2CXMs). Parameter values were chosen
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TABLE 1  Acquisition parameters for the SE and ME scans.
Acquisition parameter SE scan ME scan
Sub-bolus duration (BD) (ms) 400 1000
Decoded PLDs (ms) 100, 500, 900, 1300, 1700, 2100, 2500 100, 1100, 2100
TE (ms) 20.5 20.8, 62.5,104.2, 145.9, 187.6, 229.2, 270.9
Repeats (n) 1 2
Scan time per repeat 1min 28s 2min 52§
TR (ms) 3500

Voxel size (mm?)

4 x4 x4 (interpolated to 2x 2 x 4)

TABLE 2 Physiological parameter values used in numerical identifiability analyses.
Fixed value OR

GT distribution initial value
(mean + SD % [fitting bounds] in

Parameter where applicable) fitting step (mean +SD%)

ATT (8), 64 (s) 1.57 +15%% Fixed at GT

CBF (mL min~! 100g~1) 48 +20% Fixed at GT

T1, (ms) 1650 + 5%3¢ Fixed at 1650

T1, (ms) 1330 + 5%°7 1330 [+665]

T2, (ms) 110*3 +10 %° Fixed at 110 ms

T2, (ms) 70 + 20%>° Fixed at 70 ms

k,, (min~1) Uniform distribution, range: 0-500 140%2 [0, oo]

6; (s) Non-normal distribution, mean: 2.00 (see Eq. 11) 2.00 [84,6T — o]

Vi 0.05 (fixed) Fixed at GT

Note: GT values followed literature-informed normal distributions except for v, (fixed), k,, (uniformly distributed), and 5, (which was calculated for each

instance by Eq. 11 and hence was non-normal). All physiological parameter values are based on literature estimates for gray matter.
T2y, calculated assuming a cerebral capillary oxygen saturation of 77% and HCT 35% following Zhao et al.”

according to previous literature estimates for older-age
adults where possible (Table 2).

To make the output function continuously differen-
tiable, the AIF (Eq. 2) was replaced with a smooth approx-
imation (Figure 1C):

1 1
_ —R1,.ATT -
Ama = 2.M0b.a.e ( 1+ o—C(—ATT) 1+ e—C(t—ATT-BL) >

ATT <t < ATT+ BL
=0 Otherwise (8)

with ¢ determining the steepness of the curve. The value
¢ = 100 s~! was chosen by visually assessing the impact of
c on the 1CM solution curve and ensuring that the rank of
S for the 1CM was independent of the specific value of ¢
(see supplementary material).

The components of S were calculated for each param-
eter ¢; as follows:

AS:: = Q = —aAM(ti’d)j)
v a¢j L a¢j
_AM(t, ¢ + Agy) — AM (1, §; — Ag;) ©
2(Ag;)

where AM(t;, ¢; + Ag;) was solved using MATLAB’s
odel13 solver,”" and the size of A¢; was the smallest value
necessary to achieve the convergence of the entries of S.
This was determined by calculating the relative change
in each entry, denoted ASj;, for progressively smaller
values of Aqb‘} =1x10"9Y% of ¢;,, ¢g=1,2, ... until
either all entries of AS < 10% (the convergence criterion)
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or until Aqu reached the same order of magnitude as
computer-zero (€) for any parameter without converging:

a9)
max<€, |SU(A¢3?‘1) |)

~|sscasi™)

Asij(mpf ) = (10)

Once the convergence criterion was met, Ad)?_l was used
to estimate the entries of S (Eq. 9). After SVD, before cal-
culating the rank of X and before analyzing V7, entries of
2 that were more than 3 decades smaller than the next
smallest entry within each respective matrix were treated
as negligibly small and rounded down to zero,'* as well as
any entries of V7 that were < 1 x 1073,

S was first computed without fixing parameters. For
those that were found to be non-identifiable, the follow-
ing strategy was used to choose which parameters to fix.
First, sets of suspected co-linear parameters were identi-
fied visually using sensitivity plots. Then, one parameter
from each pair of co-linear parameters was fixed. For all
models, when in the context of the SE scan, preference
was given first to fixing R1j,, which has a widely used lit-
erature value.! For the 2CXMs in the context of the ME
scan, preference was given first to fixing parameters that
could be independently estimated (i.e., CBF, ATT, and T2,
as described in Section 3.3). This procedure was iterated
until S was full rank, at which point the model was deemed
locally structurally identifiable.

The ME forms of the 2CXMs are discontinuous in time
between PLDs, so S was constructed separately for each
PLD in the ME scan. Since S would be zero for the 100 ms
PLD in this scan (because PLD + BD < simulated ATT),
this PLD was omitted from the ME analysis.

2.4 | Structural and practical
identifiability analysis by Monte-Carlo
simulation

Three types of Monte-Carlo simulations were performed
with noise and parameter error added at each iteration,
described below. Each simulation had 500 instances, and
each instance comprised a data-generation step and a fit-
ting step. For each instance, a set of noise-free data points
(3x PLDs, 7x TEs per PLD and 2 repeats) was generated.
The acquisition parameters (PLD, TE, BD) matched those
of the ME scan (Table 1). The physiological parameters
were randomly generated from the distributions given in
Table 2, and hence were unique for each instance. The
forms of the parameter distributions reflected literature
values. Since existing literature values for k,, are less well
established and have a wide range,*®?%32 ground-truth

(GT) values for k,, were generated from a wide uniform
distribution, whereas all others were from a normal dis-
tribution. For the series-2CXM, GT values for k, were
converted to Texch and &; values by:

1
kw, cr

Texch,GT =

5[,GT = 5a,GT + Texch,GT

0q6T = ATTgr (11)

Fitting was performed using MATLAB’s Isqnonlin with
a trust-region-reflective algorithm.3? Simulated data were
log-transformed before fitting to reduce the effect of
non-constant variance on the fit quality.

2.4.1 | Simulation 1: Noise-free simulation
without fixed-parameter errors

Data were generated as described above, without noise.
In the fitting step, the decision to fix any given parameter
was informed by the sensitivity matrix analysis results. For
free parameters, fitting bounds of +50% of the GT mean
value were applied to limit results to physiologically plau-
sible values. Exceptions to this were k,, and §; which had
lower bounds of 0 and &, gr min~, respectively, and unlim-
ited upper bounds, because of the limited data on plausible
values for these parameters. The remaining parameters
were fixed at their GT values. Since identifiable parame-
ters are expected to have negligible absolute relative errors
(AREs) in this simulation, parameters with median AREs
above 1% were deemed non-identifiable. If k,, or §; were
non-identifiable, additional parameters were fixed (as per
the strategy described in Section 2.2) before running a
further simulation.

2.4.2 | Simulation 2: Noise-free simulation
with fixed-parameter errors

Parameters were fixed according to the results from Sim-
ulation 1. The data generation and model fitting step was
identical to Simulation 1, but with the fixed parameters set
to literature values (Table 2) rather than their GT values,
thereby introducing error into the fixed parameters.

2.4.3 | Simulation 3: Noisy simulation
with fixed-parameter errors

This simulation was the same as Simulation 2, except
that a realistic degree of noise was introduced to the
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simulated signal. An estimate of the noise (variance) of
the ME scan was obtained by extending the ME scan from
2 to 10 repeats for a single volunteer—a 64-y-old male (not
cognitively assessed, but presumed cognitively healthy)
who was recruited separately to the other participants
(ethical approval by the University of Auckland Human
Participants Ethics Committee, ref. 025350). Images were
pre-processed and smoothed as described in Section 2.5.
The variance (af) of the average gray-matter signal AM
at each time point (t;, corresponding to PLD + BD + TE)
was calculated wusing each repeat r=1,2,...,10
as follows:

R —\2
> i | AM;, — AM;

o; = R_1 (12)

where X
AM; = %ZAMM (13)

r=1

and R =10. As the variance was found to be non-uniform,
with higher AM values having greater variance, the rela-
tionship between aiz and AM; was quantified by fitting a
linear model to the log-transformed Giz and AM; values
(using MATLAB's fitlm3*).

2.5 | Participants

Participants (6 male, 19 female, mean age 69 years, range
57-85) from an ongoing study by the Dementia Prevention
Research Clinic (DPRC)," at The University of Auckland,
New Zealand were recruited to undergo an additional scan
session, with ethical approval by the University of Auck-
land Human Participants Ethics Committee (ref. 020737).
Participants undertook clinical, medical, and neuropsy-
chological assessments,*! and were classified as cogni-
tively normal by a multi-disciplinary team. Clinical radi-
ology scans were acquired in a separate DPRC scan and
assessed by a neuroradiologist to check for exclusionary
conditions.

2.6 |
data

Two-compartment model fit to real

Prior to fitting, images underwent brain-extraction (FSL
bet*?), motion correction and registration (FSL mcflirt*®)
and distortion correction (FSL topup*) followed by
Hadamard-decoding. Gray-matter segmentation of the
T, image was performed using fsl_anat (v. 6.0.3).%

A saturation recovery fit for My, was performed using
asl_calib* using white-matter as the reference tissue. An
arterial exclusion mask was made by thresholding the 5%
of voxels with the highest signal intensity in the average
of the two ME scan PLD =100ms, TE =20.5ms images
(these voxels were excluded from each participant’s GM
mask, see Figure 2).

Stage 1 (ATT and CBEF fitting) was performed using
oxford_asl (v3.9.17) with partial volume correction*®4’
and the default 1CM. All data from the SE scan were
used to estimate ATT (run 1), and CBF was estimated
separately (run 2) using the PLD=2.1s, TE=20.5ms
images from the ME scan (since a single, long PLD image
may yield more accurate CBF results than equally-spaced
non-optimized multi-PLD data*®). ATT was initial-
ized at 1.3s for both runs, and fixed at this value
for run 2.

Stage 2 (T2, fitting) involved fitting for {A, R2t, c} in the
following mono-exponential model:

Maummed(TE) = A.e"TER2 4 ¢ (14)

where Mgmmed is the sum of all HE data (equal-parts
labeled/un-labeled) at each TE.

Stage 3 (ky, fit) involved fitting both 2CXMs to all
ME scan images, which were smoothed using a 2D 8 mm
FWHM Gaussian kernel. The ATT map was used to
create ATT <(PLD+ BD) binary masks for each PLD
(Figure 2), which were multiplied with the GM masks
prior to taking the AMiy, GM-averages at each PLD
and TE and fitting the log of Egs. 5 and 6. The ATT
and CBF maps were masked in the same way—so that
the GM-average ATT and CBF values only included
voxels in which labeled bolus was actually present at
each PLD.

Additionally, to assess the effect of changing the fixed
value of T2, on k,, the fit was repeated using two alter-
native fixed values for T2, (80ms and 165ms, corre-
sponding to O,sat of 0.7 and 0.9, respectively, capillary
HCT =35%3%).

3 | RESULTS

3.1 | Identifiability analysis
by sensitivity matrix

The numerical structural identifiability result for every
combination of fixed parameters that was assessed is pre-
sented in Figure 3. All models were assessed first in con-
junction with the SE scan, and both 2CXMs were then
assessed in conjunction with the ME scan.
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ME-ASL
PLD=0.1s
TE=21 ms

ATT <TI (inclusion) masks

Masked
ME-ASL
signal

Masked
CBF map

3.1.1 | SEscan

Figure 4 shows the identifiability signatures and sensitiv-
ity plots for all three models when applied to the SE scan,
starting with the 1CM. The top plot in Figure 4A shows a
gap exceeding three decades between the third and fourth
singular values of S, so rank(S) = 3 (less than full rank),
indicating non-identifiability.

The bottom plot of Figure 4A shows the singular vec-
tor of V pertaining to the last singular value (i.e., the last
column vector of VT) for the 1ICM. There are two param-
eters (CBF, R1,) with non-zero contributions to the fourth

(exclusion)

FIGURE 2
exclusion mask, created from the

An arterial
arterial 5% of voxels with highest signal
intensity in the first PLD and TE of
the ME scan was applied prior to
the first (ATT and CBF) stage of
fitting. Inclusion masks of GM
voxels in which ATT <PLD + BD
were applied to the GM mask for

mask

each participant at each PLD prior
to the third (k) fitting stage.

vector, indicating co-linearity between these parameters
(in agreement with the analytical structural identifiabil-
ity analysis that was performed for this model by Laplace
transform—see supplementary material). The sensitivity
plot (Figure 4B) supports this, with the curves for CBF
and R1, appearing as y-axis translations of each other.
Fixing R1, resulted in the 1CM being locally structurally
identifiable (Figure 3, result row 2).

Both 2CXMs were also structurally non-identifiable
with the SE scan, with gaps between the fourth and fifth
singular values exceeding three decades (Figure 4C,E, top
plots). All parameters for the series-2CXM, and R1p, R1,
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Parameter
Locally
tructurall
Model |[Scan Iteration [CBF |ATT |[T1, |T1, T2, |T2, K., 5t S u _lflra y
identifiable
(Sfull-rank?)
1
icm |5E N/A i
2 yes
SE 1
Parallel  N/A N/A no
2CXM 2 yes
Series SE 1 N/A N/A no
2CXM 2 yes
ME 1 + no
(PLD 2 N/A |no
Parallel |1.1s) |3 yes
2CXM ME 1 + no
(PLD 2 N/A |no
2.15s) 3 yes
ME 1 + no
(PLD 2 N/A no
1.15s) 3 no
Series 4 yes
2CXM ME 1 - ‘ no
(PLD 2 /A no
21s) |8 no
4 yes
Fixed parameters [ T TJcolorrepresents grouping of free
Free parameters parameters that are likely
co-linear.
FIGURE 3 Summary of numerical structural identifiability results at one physiologically plausible point in parameter space. All cells

shaded the same color represent parameters that appeared co-linear from inspecting the sensitivity plots for that iteration. A +/—in a cell

denotes high/low sensitivity apparent from the sensitivity plots. Combinations with a full-rank sensitivity matrix S are locally structurally

identifiable.

and k,, for the parallel-2CXM were locally structurally
non-identifiable (Figure 4C and E, bottom panels). The
sensitivity plots for both models (Figure 4D,F) suggest
co-linearity between CBF and R1,. Fixing R1, resulted in
both 2CXMs being locally structurally identifiable with the
SE scan.

CBF was a high sensitivity parameter for all models
(evidenced by high values of ’ ‘)s—M in Figure 4B,D,a,n,D,F)
whereas water exchange was a low sensitivity parameter
for both 2CXMs (lower values of ‘%4‘ in Figures D and
F), especially the parallel-2CXM.

3.1.2 | MEscan
When used with the ME scan, both 2CXMs had multiple
co-linear parameters, making the identifiability signatures
harder to interpret; therefore, only the sensitivity plots
are presented in Figure 5. For completeness, identifia-
bility signatures are provided as supplementary material
(Figures S1 and S2).

The parallel-2CXM sensitivity plots (Figure 5A,B)
show that this model’s output is much more sensi-
tive to CBF than the other parameters, and the sets
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{CBF, ATT, R1p, R1;} and {R2p, R2;, k\, } appeared possibly
co-linear at both PLDs. Fixing all but R1,,R1;, and k,
resulted in S being full rank (Figure 3), meeting our crite-
ria for local structural identifiability. It is noteworthy that
{R1,R1,} appeared co-linear in the sensitivity plots for
this iteration, as this informed the subsequent fixing of
R1,—see section 3.2.1.

The series-2CXM sensitivity plots (Figure 5C,D) show
that the output is much more sensitive to CBF than
other parameters at PLD=1.1s, and much less sensi-
tive to R2, than other parameters at PLD =2.1s. The sets
{CBF, ATT, R1,R1,} and {R2;, R2,;} appeared co-linear at
PLD=1.1s, and {CBF, ATT,R1,,R1,,5;} and {R2,,R2,}
appeared co-linear at PLD=2.1s. Fixing all but R1;,
R2, and §&; resulted in local structural identifiability at
PLD =1.1s, and fixing all but R1,, R2; and §; yielded local

structural identifiability at PLD=2.1s (Figure 3, result
rows 16 and 20).

3.2 | Structural and practical
identifiability analysis by Monte-Carlo
simulation (ME scan)

Monte-Carlo simulations allowed the performance of
models that were found to be locally structurally iden-
tifiable at the chosen literature values to be assessed
over a wider region of parameter space. For brevity,
we test this only for the 2CXMs in conjunction with
the ME scan. We assume CBF and ATT can be mea-
sured independently with negligible error. We also
assume that T2, can be identified with negligible
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FIGURE 5  Sensitivity Parallel-2CXM, PLD: 1.1s Parallel-2CXM, PLD: 2.1
plots for the 2CXMs when used
in conjunction with the ME * e - %= CBF . * - %= CBF
scan. The acquisition time, < it T T HSCATT < ol TETOATT
o < 102 = x R1 < 102 e~ x R1
PLD + BD + TE, is given in y " b — % ey b
seconds. (A) Parallel-2CXM at = il LT'9S - %= R1, = ~te ; ¥ sy - == R1,
PLD =1.1. (B) Parallel-2CXM at <1400} - - x- Rz, | [ 100 o e : - %= R2,
PLD =2.1s. (C) Series-2CXM at - y R L o Ll 3 f:: % R2, = - e :-::_“; =% R2,
PLD =1.1s. (D) Series-2CXM at il I il I
PLD=21s. 21 22 23 g 31 32 33 -
(A) PLD+BD+TE (s) (B) PLD+BD+TE (s)
Series-2CXM, PLD: 1.1 s Series-2CXM, PLD: 2.1 s
K
*‘u%*~ - %= :CBF . *—':ﬁ:‘=*: ) = %= CBF
<102 1 [P*AarT [T, Fekm | |7 wooATT
o 'v'”'“'""-v, R1, o 10 :-x-,‘_x_*_.* R1,
-~ ~ ~ e gy =
= o) ] R[S 100 IR | | oRY
2 ::4-*“»%.( - %~ R2, g 102 - x-R2,
“ W = K= =N W -
LS R2, * % -x R2,
- - *= 4, - K= 0
2.1 2.2 2.3 3.1 3.2 33
(C) PLD+BD+TE (s) (D) PLD+BD+TE (s)

error by fitting a mono-exponential curve to the static
ME data.

ARE values are provided as medians rather than means
for each simulation to minimize the effect of outliers. All
simulation results are presented in Table 3.

3.2.1 | Simulation 1: Noise-free simulation
without fixed-parameter error

For the parallel-2CXM, initially T1p, T1, and k,, were left
free, and the remaining parameters were fixed (informed
by the sensitivity matrix results—see Figure 3, rows 9 and
12). The simulation resulted in the ARE for k,, being 9.8%,
which is structurally non-identifiable by our criteria of
ARE >1%, however fixing T1, at its GT value in a sub-
sequent simulation yielded error-free estimates of both
remaining free parameters (T1; and k,,). The series-2CXM
was also non-identifiable in the first simulation (6; ARE
7.4%). Fixing T2, at its GT value in a subsequent simula-
tion brought the ARE for the remaining free parameters (6,
and T1,) under 1%.

3.2.2 | Simulation 2: Noise-free simulation
with fixed-parameter error

This simulation was performed for the locally struc-
turally identifiable versions of each model identified

in Simulation 1 (i.e.,, T1;, and k, / &; free for the
parallel/series-2CXM). When fixed parameters were held
at their nominal (rather than GT) values, k, ARE
increased to 29% (parallel-2CXM), §; ARE increased to 5%
(series-2CXM). The ARE for T_, was 33%.

3.2.3 | Simulation 3: Noisy simulation
with fixed-parameter error

This simulation was a practical identifiability analysis,
with error in the fixed parameters (other than CBF and
ATT) as well as including noise. The log-log relationship
between noise (average GM signal variance, ¢%) and sig-
nal intensity, observed in a volunteer who underwent the
10-repeat variant of the ME scan, was found to be: ln(oz) =
1.31n (4AM) — 3.4 (R* =0.57).

This simulation was repeated for the locally struc-
turally identifiable version of the model from Simula-
tion 1. The mean and median fitted values for each
parameter (which can be compared to the nominal val-
ues in Table 2) are provided, along with the median
ARE. Both models had upwardly biased mean exchange
rates (ky, =926min~' and T}, =3.6x10"min™" com-
pared to the true mean of 250min~'), but the medi-
ans (k, =253min~' and T_! =225min~') were close
to the true means. The AREs for each exchange time
were similar to Simulation 2 (32% for k, and 33%
for T 1 ).

exc
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TABLE 3

Monte-Carlo simulation results.

MANSON ET AL.

Simulation 1: Noise-free simulation without fixed parameter error

Parameter median absolute relative error (%)

Model Iteration T1; (s) T1, (s) T2, (s) k,, (min—1) 8 (s) TB‘XIch (min1)
Parallel 2CXM 1 1.48 5.57 - 9.81 N/A N/A
2 — 0.00 — 0.00
Series 2CXM 1 = 3.66 5.00 N/A 7.40 37.84
2 - 0.33 - 0.06 0.38
Simulation 2: Noise-free simulation with fixed parameter error
Parameter median absolute relative error (%)
Parallel 2CXM 1 3.76 8.28 5.98 28.7 N/A N/A
2% 3.56 3.58 6.39 36.3
Series 2CXM 1 3.38 8.5 6.61 N/A 4.85 32.60
2% 3.38 10.22 6.66 4.9 32.13
Simulation 3: Noisy simulation with fixed parameter error
Model T1, (s) T1,(s) T2, (s) k, (min™1) 8 (s) Te‘xlch (min1)
Parallel 2CXM  Mean (SD) 1.65 1.38 (0.35) 0.11 925.7 (761.8) N/A N/A
Median (LQ, UQ) 1.65 1.33(1.19,1.48) 0.11 252.8 (127.2, 423.6)
Median ARE (%) 3.56 10.4 6.39 32.13
Series 2CXM Mean (SD) 1.65 1.43 (0.42) 0.11 N/A 1.99 (0.68) 3.63x10'° (7.90 x 101)
Median (LQ, UQ) 1.65 1.32(1.19,1.50) 0.11 1.90 (1.67,2.12) 224.7 (112.6, 434.19)
Median ARE (%) 3.38 10.2 6.66 4.9 33.1

Note: Simulation 1: [~ | Parameter fixed at GT value (ARE = 0). Simulation 2 and 3:[____| Parameter fixed at literature value. Simulations were iterated,
fixing different parameters with each iteration based on the previous result. Results for simulations 1 and 2 show the ARE in each parameter for each iteration
(parameters fixed at literature or GT values are grayed-out). Simulation 2, iteration 2* was performed after the first fit to real data, to check the k,, ARE when all

other parameters were fixed—see Section 3.3. For the final simulation (simulation 3), median and mean values for each parameter are given in addition to

the ARE.

3.3 |
data

Two-compartment model fit to real

Fitted parameter values extracted from the 25 participants
are provided in Table 4. Two participants with outlying
CBF values (by Tukey’s criterion) were excluded. Ini-
tially, this fit was performed with both T1, and k,, (or
6;) free, informed by the simulation results (Section 3.2).
However, this resulted in 22 (of 23) participants’ k,, and
T1; values hitting the lower bounds when using the
parallel-2CXM, and §; landing on its initial value in 21
participants when using the series-2CXM. This may sug-
gest non-identifiability for both models when applied to
the real data. To improve the identifiability of k,, (and §,),
both models were re-fitted with T1, fixed at 1.33 s. An addi-
tional simulation performed with all parameters but k,, (or
6;) fixed (Table 3, Iteration 2*) showed that k,, and &; can

be expected to have AREs of 36% and 32% when fitted in
this way.

With this fit, both models yielded slower water
exchange rates than the literature average. Median
k, (parallel-2CXM) was almost zero, whereas the
series-2CXM predicted exchange rates of 96.4min~!.
The parallel-2CXM fit the data best with median abso-
lute relative residuals (ARR) of 12.4% (vs. 19.1% for
the series-2CXM). Figure 6 (A-C) shows the fitted
parameter distributions—despite being the only fitted
parameters in the final fitting step, k,, and &6; mostly
hit their lower bound (zero) and initial value (2.0s),
respectively.

Investigating the effect of changing the fixed T2, value
on k, and T;(lch, for the parallel-2CXM, k,, increased
when T2, increased to 165 ms (Figure 6D) however the
series-2CXM was relatively insensitive to this (Figure 6E).
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TABLE 4  Results (fitted parameter values) from fitting each model to real data.
Model T2, value Parameter
Single-compartment N/A CBF (mlmin~! 100g71)

ATT (s)
Mono-exponential T2, (ms)
T2,-fit ARR (%)
Parallel-2CXM 110 ms k,, (min™1)
k,-fit ARR (%)
80ms k, (min~1)
k,-fit ARR (%)
165 ms k,, (min~1)
k,-fit ARR (%)
Series-2CXM 110 ms 8 (s)
T;! (min™')
5,-fit ARR (%)
80 ms AO)
T;clch (min™!)
5-fit ARR (%)
165 ms AO)
T-! (min™)

exch

5,-fit ARR (%)

. . .« . 13
Magnetic Resonance in MedlcmeJ—

Median (LQ, UQ)

68.3 (59.1, 78.0)
1.37(1.27,1.43)

77.3 (74.6, 79.8)
4.34x107*(3.20x 1074, 7.23 x 107%)
2.69x1073 (2.62 x107°, 0.424)
12.4(10.515.7)

0.0190 (1.40 x 1073, 0.188)
28.5(26.2, 32.5)

30.5 (12.2, 43.0)

8.98 (7.79, 11.2)

2.00 (2.002.01)

96.4 (81.4, 104)

19.1 (16.5, 23.1)

2.00 (2.00, 2.01)

96.4 (80.6, 104)

30.7 (27.7, 33.4)

2.00 (2.00, 2.00)

97.3 (82.4105)

18.2 (16.6, 19.3)

Note: ARR is the mean absolute relative fit residual between the model prediction and the data. Results are shown for the nominal literature-based fixed value

of T2, (110 ms) as well as two other fixed values (80 ms, 165 ms) that were tested to assess the effect of changing T2, on k..

4 | DISCUSSION

Here a method for assessing model identifiability was
presented and applied to BBB-ASL water exchange mod-
els. Using simulations, we found that practically identi-
fiable versions of the parallel- and series-2CXMs could
be attained by fixing all parameters except k, (or &)
and R1,. However, introducing a realistic degree of error
into the fixed parameters resulted in low precision water
exchange estimates. Model fits to data from 25 older par-
ticipants yielded unexpectedly low k,, (or Te‘chh) estimates,
and demonstrated bound- and initial-value-hitting behav-
ior. These results highlight issues in model fitting which
will be discussed.

This work demonstrated the utility of the sensitivity
matrix approach for identifiability analysis, however, the
result is specific to a single point in parameter space. The
noise-free (and fixed-parameter-error-free) Monte-Carlo
simulation addressed this limitation by drawing samples
from a larger region of physiologically plausible parame-
ter values. The simulation showed additional parameters
needed to be fixed in both 2CXM versions to achieve struc-
tural identifiability over a larger region of parameter space,

with the final locally structurally identifiable version of
both 2CXMs having only R1, and k,, free.

The second Monte-Carlo simulation introduced error
into fixed parameters R1, and R2;,. We found large median
water exchange AREs for both 2CXMs using this approach
(29% for k,, and 33% for T;(lch). Introducing noise in the
third simulation increased the ARE for k,, only slightly,
and there was no increase to the ARE of Te‘xlch. This sug-
gests that, if improvements to the scan were to be made,
then obtaining accurate, individual-specific estimates for
any fixed parameters may be more useful than improv-
ing SNR (e.g., by taking more repeats). For example,
individual-specific R1, and R2;, could be estimated by mea-
suring hematocrit near the time of scanning and making
assumptions about blood oxygenation and the degree of
erythrocyte skimming in microvessels.”*>° Additionally,
R1; could be estimated from other MRI scans.’! Such
improvements are likely necessary if the ME-ASL methods
used here are to achieve clinical utility.

Although the practical identifiability analysis showed
large ARE:s for k,, and T;(lch, their median values approx-
imated the true median of the uniform distribution from
which the GT values were drawn. However, when both
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FIGURE 6

Distributions of fitted parameters for 25 cognitively normal older participants. (A) Results from the first two stages of the fit

for CBF, ATT and T2,. (B) Results from the third stage of the fit, k,, with parallel-2CXM). (C) Te‘xlCh and §, with the series-2CXM. The bottom
row shows the effect of changing the fixed values for T2, on ky, with the parallel-2CXM. (D) The effect on T, and &, using the series-2CXM,

exch

(E). Outliers are plotted as circles. An outlier on panel D is not shown (T2, =80 ms, k,, =885 min™!).

2CXMs were fitted to real data, the fitted parameters
(kw or &;, and R1;) tended to hit either the lower fit-
ting bound (k, and R1;) or the initial value (6;). Fix-
ing R1; did not resolve this. The series-2CXM predicted
6 =2.0s (the initial point) for almost all participants;
this could be due to objective function flatness at the
initial point (insensitivity to &) when applied to the
real data. For the parallel-2CXM, the tendency of k,, to
hit the lower bound (zero) could reflect a physiological

reality (no BBB water permeability), but this would con-
tradict other BBB water permeability studies to-date. Per-
forming practical identifiability by the profile-likelihood
method may shed light on the behavior of the objective
function when fitting to real data.?>? This would be a
good next step for future work, along with analyzing the
identifiability of recently-developed three-compartment
exchange models.*% Optimizing the acquisition timing for
ki, or &; sensitivity using simulations*® could improve their
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precision but the utility hinges on the validity of the gen-
erative model. Overall, the contrast between the simu-
lated and real fitting results indicates that further model
validation work is needed to investigate possible model
mis-specification.

Identifiability analysis is only one step in the iterative
model development process.”>> Gaps remain in our under-
standing of BBB water transport,>* and a better under-
standing would help inform the structure of BBB-ASL
models. Insights in this area may be gained through
multi-disciplinary efforts, e.g., through other imaging
modalities, histology and in-vitro modeling. The use of
BBB-ASL in conjunction with orthogonal water perme-
ability measurements, such as by H,°O PET, could serve
as a useful validation experiment and has not yet been
performed to the best of our knowledge.>

Although the work presented here cannot be used
to validate one model or another, we observe that the
two 2CXMs had different average residuals when fitted
to real data. At the nominal T2, value of 110 ms, the
parallel-2CXM had lower median ARRs (12.4% vs. 19.1%
for the series-2CXM). The parallel-2CXM also had lower
ARRs compared to the series-2CXM for the two alterna-
tive T2, values. The main conceptual differences between
the two models are the inclusion of a time delay before
labeled water can reach the EES in the series-2CXM, and
the inclusion of a water exchange term during the read-
out period in the parallel-2CXM. Designing experiments
to test these model features may be a good next step in
model validation; smaller fitting residuals do not neces-
sarily indicate that the parallel-2CXM is a “better” model,
since small residuals can also be achieved by a model that
is a good signal representation but does not actually reflect
the underlying physiology accurately.>

Fitting to real data demonstrated that, when using the
parallel-2CXM, the fitted value of k,, was sensitive to the
fixed value of T2;. Although the sensitivity plots suggested
that the sensitivity of the parallel-2CXM to T2, was low
(Figure 5A,B), Figure 6D shows that the fixed value of k,,
increased significantly at the higher value of T2, (165 ms),
indicating that the sensitivity of the model output to T2,
may increase at values >110ms (at least when fitting to
real data). Again, a profile-likelihood analysis may provide
more insight into the behavior of the objective function for
different T2, values. Regardless of the underlying cause,
this shows that the fixed value of T2, should be considered
when comparing k,, values across studies. Finally, fixing
T2, at an assumed literature value may cause changes
in blood oxygenation due to oxygen extraction down the
capillary tree® to be conflated with water exchange.?’

Overall, the water exchange rates reported here are
lower than those reported by other ASL studies.3? Even
with T2, =165ms (the same fixed value as in other

in-human ME-ASL BBB permeability studies,**”-2%>7
which also utilize the parallel-2CXM), the median k,,
value reported here for the parallel-2CXM (31 min~!) was
still much lower than previous ME-ASL estimates,*?8
including a previous report which included some of the
same data (participants from “Cohort A” from?’), but
a different fitting method. This discrepancy could be
due to differences in the image analysis and model fit-
ting methods, such as the use of voxel-wise fitting for
k, estimation,*?”?® and the use of individual-specific
estimates for T2, in this work. Whereas the Ta‘xih val-
ues estimated by the series-2CXM were more in-line
with previous literature estimates, this is likely an arti-
fact of the fitting algorithm returning the initial guess
for most participants—a reminder that physiologically
plausible results are sometimes merely the outcome of
researcher-selected fitting bounds or initial values. It is
also worth noting that ASL estimates in general disagree
with previous estimates by H,3O PET>%>?; the reasons for
the disagreement are still unclear and further work in this
area may assist with BBB model validation.

There are limitations with this work that we would
like to note. Firstly, the Monte Carlo simulations assumed
that the fixed values for CBF, ATT, and T2, (which were
able to be independently estimated from our data) were
error-free. In reality, these parameters would have error
associated with them, likely resulting in larger k,, ARE
values. Second, only the effect of changing the fixed
value of T2, on the value of k, was explored when fit-
ting to real data—future analyses could assess how other
commonly fixed parameters affect the fitted value of k),
especially T1, which depends on hematocrit and blood
oxygenation.®® Thirdly, the fidelity of the gray-matter
mask (derived from a T;-weighted structural image) is
limited by the relative coarseness of the ASL image it
is applied to, and white-matter and CSF partial-volume
effects may be a contributing factor to the poor fit qual-
ity observed. Finally, this work focused on ME-ASL,
in future the identifiability analysis methods used here
could be applied to other BBB-imaging techniques such
as diffusion-prepared-ASL,°"%? phase-contrast-ASL,* and
filter-exchange imaging.%*

5 | CONCLUSIONS

Structural and practical identifiability analyses are
useful tools to determine the accuracy and precision
of model-fitted parameters. In this work we per-
formed identifiability analyses on variants of BBB-ASL
two-compartment models. Simulations suggested a min-
imum water exchange error of 32% was achievable for
our ME-ASL protocol. However, the use of theoretically
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practically identifiable models with real data yielded unex-
pectedly small water exchange values, which may indicate
the need for further model validation studies, and/or the
use of profile-likelihood analyses with real data. Future
work could extend these analyses to different BBB-ASL
models and acquisition techniques and further model
validation work may help to clarify our interpretation of
ME-ASL data and improve the accuracy and reliability
of k, estimates. Ultimately our work shows that water
exchange estimates depend on the model used and the
values of fixed parameters, notably the T, of blood.
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online version of the article at the publisher’s website.

Figure S1. Identifiability signatures for the ME scan
(parallel- 2CXM) (A: PLD =1100 ms, B: PLD =2100 ms).
The singular values of S are shown in descending order,
with a gap of more than three decades between sin-
gular values indicating non-identifiability. The absolute
values of the column vectors of V! show how the
non-identifiable parameters relate to the small singu-
lar value(s) of S. Only |V7| >0.001 values are shown.
Sensitivity plots are shown in C (PLD=1100ms) and
D (2100 ms).

Figure S2. Identifiability signatures for the ME scan
(series-2CXM) (A: PLD = 1100 ms, B: PLD = 2100 ms). The
singular values of § are shown in descending order,
with a gap of more than three decades between sin-
gular values indicating non-identifiability. The absolute
values of the column vectors of V! show how the
non-identifiable parameters relate to the small singu-
lar value(s) of S. Only |VT| >0.001 values are shown.
Sensitivity plots are shown in C (PLD=1100ms) and
D (2100 ms).

Figure S3. 1CM signal curve—magnetization in arbitrary
units (AU) vs. time since the beginning of labelling, for
the nominal physiological parameters given in Table 2.
The analytical solution is overlaid (and obscured) by four
numerical solutions, solved using the standard Heaviside
AIF (Equation 2) (cyan), and the smooth approximate
AIF (Equation 8) with ¢ =100 (red), 50 (green), and 25s7!
(blue).
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