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ABSTRACT

Hot and tenuous plasmas are frequently far from local thermodynamic equilibrium, necessitating sophisticated methods for determining the
associated plasma dielectric tensor and normal mode response. The Arbitrary Linear Plasma Solver is a numerical tool for calculating such
responses of plasmas with arbitrary gyrotropic background velocity distribution functions (VDFs). To model weakly and moderately damped
plasma waves accurately, we have updated the code to use an improved analytic continuation enabled by a polynomial basis representation.
We demonstrate the continuity of solutions to the linear Vlasov-Maxwell dispersion relation between bi-Maxwellian and arbitrary VDF rep-
resentations and evaluate the influence of VDF structure on mode polarization and wave power emission and absorption.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://

creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0286477

I. INTRODUCTION

Numerical solvers to the linear Vlasov-Maxwell dispersion
relation have been extensively used to study the characteristics of
linear plasma normal modes, in particular their growth or damping
rates depending on plasma conditions. ~ However, typical linear
plasma dispersion solvers assume a particular analytical form for
the underlying background velocity distribution function (VDF)
fos(v), e.g., a bi-Maxwellian (WHAMP," PLUME,” NHDS," or BO’) or
a bi-x (DSHARK'") distribution. Such an assumption enables the
determination of the linear dispersion relation through the evalua-
tion of a closed equation in terms of known special functions that
simplify the required integrals over velocity space. However, many
space and astrophysical plasmas, and collisionless plasmas generally,
are not well represented by bi-Maxwellian, or even bi-x, distributions.
The plasma systems can be in a state far from local thermodynamic
equilibrium, cf. reviews by Marsch'' and Verscharen et al.'” These
departures require a more sophisticated treatment of the dispersion
relation.

The Arbitrary Linear Plasma Solver (ALPS) is an Message
Passing Interface (MPI) parallelized numerical code written in
FORTRANIO that solves the Vlasov-Maxwell dispersion relation for a
hot, magnetized plasma."” ALPS allows for any number of particle
species with arbitrary gyrotropic background distribution functions
supporting normal modes with any direction of propagation with

respect to the background magnetic field, and can include the effects of
special relativity in the dielectric plasma response.

Instead of using parameterized values for a collection of analytical
functions, ALPS uses as input the phase-space density on a discrete
grid of parallel and perpendicular momentum fys(p., py), which in
the non-relativistic case is directly equivalent to a velocity grid
fos(vi,v)). ALPS evaluates the dispersion relation through a direct
numerical integration of the gradients and other functions of fq ;; see
Egs. (2.9) and (2.10) of Verscharen et al'* This method has been
applied to spacecraft data from both MMS'® """ and Wind,'? showing
significant deviations of wave behavior from predictions calculated
using simple analytical functions. It has been applied to the study of a
variety of kinetic numerical simulations with significant departures
from Maxwellian VDFs.'” '

The initial ALPS implementation is described by Verscharen
et al."* Recent additions to the code include the calculation of the asso-
ciated eigenfunctions and a partitioning of the species heating rates
into the component mechanisms, e.g., Landau, Transit Time, and
Cyclotron damping, as well as the option to treat selected plasma com-
ponents as bi-Maxwellians for numerical expediency. These changes
are discussed in Sec. II. The original code struggled with the evaluation
of the Landau contour integral essential for characterizing damped
solutions for some VDFs with strong non-Maxwellian features. We
present updates that enable a more accurate representation in this
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evaluation for moderately damped solutions for such VDFs. We
explore the impact of the updated representation on weakly and mod-
erately damped modes in Sec. I1l. We demonstrate the continuity of
solutions between bi-Maxwellian fits and the ALPS direct calculation,
as well as the changes for the underlying eigenfunctions and damping
rates, in Sec. IV. Details of the underlying numerics are found in
Appendixes A, B, and C.

1. DISPERSION RELATIONS FOR ARBITRARY
DISTRIBUTIONS

ALPS allows for the inclusion of any number of particle species
or components with arbitrary gyrotropic background distributions
fos(pL,p)) as a function of momentum p, supporting normal modes
with any direction of propagation, represented by the wavevector
k =k, + k. Throughout this text, L and || are defined with respect
to the direction of the background magnetic field By.

Vlasov-Maxwell theory starts with the expression for the first-
order perturbation of the current

R . o
J—ZJS—quJdpvéﬂ(r,pvt)— nl B O

where ¢; is the charge of a particle of species s, ® is the complex wave
frequency with real and imaginary components o, and 7, E is the elec-
tric field, y is the susceptibility of species s, and Jf; is the fluctuation

—s
of the VDF from the background f; ;. Following the careful application
of identities, transformations, and substitutions outlined by
Verscharen et al.'* and covered in detail in Chap. 10 of Stix,”” we arrive
at an expression for Z in terms of integrals over functions of momen-

tum derivatives of the background VDF
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and J, is the nth order Bessel function with argument z = k v, /Q;
and J is its derivative. Characteristic timescales are defined in terms of
the plasma frequency w,s = +/4mn,q? /m; and the (signed) cyclotron
frequency Qg = g,By/msc; Qy only includes the rest-mass in the
denominator, while Q; includes the appropriate relativistic correction.
As described in Appendix A, ALPS may now use y from the

=i
bi-Maxwellian approximation as determined by NHDS® or the cold
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plasma expression for any of the species’ contribution to the dispersion
relation. This capability is useful when one of the components is well
modeled as a fluid or the velocity distribution is not constrained by
observations.

ALPS has also been updated so that the user may specify any
analytic form for fys(p.,p)), allowing the direct calculation of the
appropriate derivatives and integrals through quadrature on a specified
grid, as well as the immediate extension to complex p values without
the need for any fitting or polynomial representations during the eval-
uation of the analytic continuation. While not applicable to cases
where a simulation or model is not easily expressible in analytical
form, it can be particularly useful when a theory predicts an analytical,
but non-Maxwellian or non-x form (e.g., a bi-Moyal flattop distribu-
tion’) so that differences against standard bi-Maxwellian predictions
can be quantified.

For the non-analytical contributions, ALPS calculates dfys/0p)
and Ofy;/Jp. on the prescribed grid and performs the necessary inte-
grations, allowing the construction of the dielectric tensor

E(w,k)z%—i—Zé(w,kL (5)

which in turn allows the construction of the homogeneous linear wave
equation

2
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where n = ck/w is the complex index of refraction. The solutions of
A = det|A (w,k)| = 0 are the normal modes supported by the pre-

scribed background. ALPS identifies these solutions for fixed wavevec-
tors as minima over a user-defined region of complex frequency space
and follows identified solutions as a function of varying wavevector
Kdyef, where dpes = ¢/ p ref is the reference inertial length. In addition
to determining dispersion relations, ALPS also calculates the associ-
ated eigenfunctions of the fluctuating electromagnetic fields, densities,
and velocities. These eigenfunctions represent the polarization of the
identified plasma normal modes. ALPS also calculates the damping or
growth rates associated with each species, and further separates the
contributions to these rates from Landau, transit time, and cyclotron
mechanisms. The details of the eigenfunction and heating calculations
are included in Appendix B.

lll. IMPROVED HYBRID ANALYTIC CONTINUATION

When the solutions are damped [y < 0, where y = Im(w)] the
integration of Eq. (2) necessitates an analytic continuation of f; ; into
the complex p|| plane. This is straightforward if fo is a known analyti-
cal function which can be evaluated at a complex p|.”* For the non-
analytical case, as we only have values for fy; for p € R, we use two
complementary schemes to extend the distribution function numeri-
cally. The initial implementation of ALPS is a fit of fy s to a (typically
small) number of analytical functions, Sec. IIIA. In this work, we
describe a newly implemented polynomial basis representation using a
generalized linear least squares approach, Sec. III B. In both cases, we
follow the prescription in Landau™ for the integration of a function G
over a contour Cy, that lies below the complex poles of the integrand
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I(p1) = . dp|G(pL,p))
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= 9] deG(PJ_,pH) + Z'TEZRESA(G) ify=0, (7)
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where & indicates the principal-value integration, Res, (G) is the resi-
due of the function G at point A, and the sum is taken over all poles A.
For the integral of interest in Eq. (2), G has one simple pole with

Z Ress (G) = _ﬁQjUI ) ®)
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which has to be evaluated for the six unique terms in T.

In the non-relativistic instance of the code, ALPS evaluates the fit
or representation separately at each value of p, on the grid, so that no
assumption is made as to the structure of f; in the p, -direction.
ALPS uses these functions only if a pole is within the integration
domain—the momentum range provided in the input VDF grid—and
only if y < 0. Therefore, the method of analytic continuation does not
impact purely unstable solutions.

A. Fit function representation

In the original version of ALPS, to calculate the analytic continu-
ation, the user specifies a small number of analytical functions (usually
one or two, corresponding to core-and-beam structures inferred from
in situ solar wind observations' ) each with a handful of defining
parameters. The canonical case used is a linear combination of drifting
bi-Maxwellians,
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where I' is the Gamma function, and Jittner distributions,
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are included. Additional functions, including two other representations
of the Jiittner distribution as well as a bi-Moyal distribution,
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with A as normalization constant, have been added since the initial
code release.

At each p, value, a 1-D Levenberg-Marquardt fit is per-
formed as a function of pj|. For p; = 0, user-defined inputs are used
to initialize the fit parameters. ALPS uses the final fit results from
p1 = 0 as the initial guess for the next p, value, eventually iterating
across the entire p, range. This process works well for sufficiently
smooth functions and fit initializations sufficiently close to a minimum
for the Levenberg-Marquardt algorithm.

However, when applying the code to more complicated VDFs,
two recurrent difficulties can arise that necessitate the development of
a new representation method. First, even when a good set of fit initiali-
zations was selected, the fitting routine could fail at larger p, values,
typically due to pathological but not unphysical variations of the VDF
as a function of p,, e.g., the disappearance of a secondary population
or the appearance of an additional population at larger p . This failure
would cause the entire fitting procedure to halt. Second, even when the
fits converge for all p, the small number of functions used for the
analytical representation leads to inaccuracies in the representation of
the VDF, producing discrepancies as dispersion relations cross from
y > 0toy < 0 or vice versa.

These discrepancies arise for two reasons. First, the momentum
derivatives of fy ; and the fit function can differ when evaluated at the
resonant velocity vees = (@ — n€)/k. Second, the total velocity
moments of the fit function can differ from the velocity moments of
the actual VDF, leading to an effective net charge and current that is
different for y > 0 and y < 0. In addition to producing incorrect
mode structure for damped solutions, these discrepancies can lead to a
sharp edge at y = 0 that causes the numerical Newton-secant search
used to follow dispersion relations with varying wavevector to jump to
a different solution or lose the physical solutions entirely due to the
large unphysical gradient in A. Such a jump is illustrated in the surfa-
ces associated with low-order fits in Fig. 1, e.g., the gray line in the
lower right panel.

These issues with the fit function representation for VDFs that
are significantly different from a finite superposition of Maxwellian
functions in the p dimension have led us to the development of a new
approach to perform the hybrid analytic continuation, combining
numerical integration of the input VDF with a polynomial basis repre-
sentation when the dispersion relation requires evaluation of the VDF
at complex momentum values.

27,28

B. Polynomial basis representation

To reduce the discrepancies associated with representing f; .
using one or a handful of physically representative fitted analytical
functions, we have implemented a Generalized Linear Least Squares
(GLLS) representation of fy (p|) for fixed values of p, , following Sec.
15.4 of Press et al.”’ Specifically, we find the parameters a; for the
model

M-1
y(x) = arXe(x), (13)
k=0

where X (x) are a set of basis functions and y(x) is the data to be fit.
For this implementation, we have selected the Chebyshev polynomials
Ti(x) of the first kind as the basis functions, which are defined recur-
sively through
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FIG. 1. (Left) Comparison of input fo ,(v.. = 0, v} ) with GLLS Chebyshev representations and a fit consisting of the sum over two bi-Maxwellians. (Top) Relative percentage
difference in the density (gray) and current (black) between the GLLS and input VDFs as functions of the GLLS order. The middle and bottom panels show the reconstructed
fop at v, = 0 as well as the relative error compared to the input VDF. (Right) Isocontours of constant A (e, y) for ALPS solutions using the GLLS analytic continuation for
0(10) (gray dashed) and O(60) (red), using (k. , k)d, = (0.001, 0.0025). The above inset illustrates the transition between the extreme orders used in this work over a lim-
ited region of complex frequency space. Identified solutions with A = 0 are shown with colored dots using the same color scale as the left panels, with letters indicating Slow,

Alfvén, Fast, or Entropy mode (SAFE) solutions.

Tl (X) =X, (15)
Tpi1(x) = 2xT,(x) — Tyo1(x). (16)

As T, are bound between [—1, 1], we perform a change of variables

from pj to x through
p” _ pmax +pmin 2
e ( I I ) / )

<pﬂnax 7P‘r|nin) /2 ’

are the maximum and minimum values of the input

max,min

where p|
VDF grid.
The bounded nature of T), is ideally suited to the limited range of
Py used as inputs for ALPS. Chebyshev polynomial representation per-
forms better than other classes of orthogonal polynomials, e.g., the
Hermite or Legendre polynomials, not shown. We model log,, [fo.s]
rather than f; ; to capture the full range of the VDF amplitude and not
solely the structure near the peak of the distribution. We emphasize
that, as with the functional fitting approach discussed in Sec. III A, this
is a purely one-dimensional method, representing fo(p|) separately
for the n; rows in the input VDF grid; we write the VDF slice that we
represent as y;, which is known at N values of x.
The solution is performed via the normal equations method,
solving
M-1
Z okjaj = Py, (18)

=
where

N-1
ay = ij(xi))sz(xi)7 (19)

i—0 i

and

N_l . ’
o= Y 1), (20)

i i
If the errors in the knowledge of y; are known, one can set ¢; to non-
unity values; in the current implementation, ¢; = 1Vx;. Equation (18)
is solved using the dgemm, dgemv, and dgesv routines from the
LAPACK library. As the GLLS solution is calculated once for an input
VDF, there is no need to implement more efficient existing schemes
for determining ay; that exploit connections between Fourier and
Chebyshev representations (e.g., Ref. 30).

The polynomial basis method produces superior results com-
pared to the functional fitting method for highly structured VDFs,
both in terms of the smoothness of A(w) across y =0 due to
improved accuracy of d,fy; for all @ and k values, as well as in cor-
rectly capturing the total density and current of the VDFs. To illustrate
this, Fig. 1 shows the representation of a slice of fo,(p|) for p; =0
using the GLLS method for orders N = (10, 20, 30, 40, 50, 60) and
the best fit to the sum of two bi-Maxwellians. Also shown are the rela-
tive differences between the fit or GLLS representation and the actual
VDF slide. We consider a distribution similar to one from Walters
et al,'® interpolated from Wind Solar Wind Experiment (SWE) obser-
vations to a fixed grid of 300 x 600 points in (p, X pj). Looking at
the p; = 0 slice, neither the bi-Maxwellian fit (purple) nor the lowest
order GLLS representation (gray) of f,(p) match the actual distribu-
tion, with the relative error approaching or exceeding order unity.
Moving to higher order representations, the relative error decreases by
several orders of magnitude; the highest order we consider, O(60), is
well below the number of resolved points in p), ensuring we are not
over-fitting the distribution.

In the right-hand panels of Fig. 1, we plot isocontours of the mag-
nitude of log,,[A(wr, )], as well as the associated solutions satisfying
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A =0, for a wavevector of (ky, kj)d, = (0.001,0.0025). The isocon-
tours for both the lowest, O(10), and highest, O(60), representations
are shown. For the O(10) case (gray dashed lines), there is a stark dis-
continuity across y = 0, indicating that the VDF representation is not
sufficiently accurate in its representation of the bulk velocity moments
and resonant momentum gradients involved in the principal-value
integration, Eq. (7), to enable a smooth transition between growing
and damping solutions. For the O(60) case (red), the isocontours are
continuous across 7 = 0; the transition between these two orders over
a limited region of complex frequency is illustrated in the upper right
inset, illustrating the convergence toward a smooth surface with higher
polynomial order.

In addition to the y = 0 discontinuity, the damping rates of the
moderately damped modes are significantly altered depending on the
order of the GLLS representation. The backward-propagating Fast
solution—with the sign of , indicating the direction of propaga-
tion—becomes significantly less damped with increasing order, while
the forward-propagating slow solution becomes more damped. We see
the complex frequencies of the moderately damped solutions begin to
converge at O(50), which defines the order that we use for the remain-
der of this work.

In considering a wider set of test VDFs, we find that the error in
the density (zeroth velocity moment of f; ;) and background current
(first velocity moment of f; ;) of the reconstructed VDF serves as a
good proxy for deciding whether the reconstruction order is suffi-
ciently high for our hybrid analytic continuation method to work. The

Forwards Alfven, k, d) = 0.001
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FIG. 2. Real and imaginary parts of the complex frequency @ = @, + iy for the
parallel propagating Alfvén/ion cyclotron wave using GLLS representations with
©0(10) through &(60). The relative error between the lower-order and &'(60) solu-
tions illustrates the order necessary for convergence for the input VDF.
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relative error between the representation and the input VDFs is shown
for both quantities as a function of order in the top panel of Fig. 1. We
see that good agreement can be achieved with relatively low order for
the density, but that higher orders are needed to reduce the error in
the current. We find that a relative percent difference’’ [X¢izs —
Xvor|/|XciLs + Xvpr| of less than 0.1 is typically sufficient for the
method to yield reliable results.

While a relative error of the current of less than 10% is generally
sufficient for the solutions to converge, for the case of more pathologi-
cal VDFs, additional convergence studies should be considered. An
example convergence study for the same VDF as used in Fig. 1 is
shown in Fig. 2 for the forward-propagating Alfvén solution varying
kyd, for fixed k; d, = 0.001. Both the real and imaginary parts of the
complex frequency w are shown, alongside the relative error compared
to the solution based on GLLS of order O(60). We see that ), is
largely unaffected until significant damping arises, at which point the
differences in the damping rates change the speed of propagation of
the modes. The growth rates y > 0 are correct for all orders as
expected due to the analytic continuation not being invoked for these
solutions according to Eq. (7). The damped modes have 5%-10% dif-
ferences for the low-order solutions compared to the converged solu-
tion. Moreover, when transitioning across y = 0, the lower order
representations can jump to unphysical solutions. The impact of repre-
sentations with unnecessarily high order on strongly damped solutions
is discussed in Appendix C.

IV. COMPARING DISPERSION RELATIONS

A. Validating against bi-Maxwellian models

We next turn to the consideration of the relation between the
ALPS solutions and those calculated based on multi-component

s
g5 2
g5 §1.5
ZE 51
o% 2
o§ 0.5
Sl 0
g8 2
<
—gg §1.5
~
AR
Q
= 0.5
- 0
[ 2
§ §1.5
EREN
§ 0.5
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FIG. 3. Input proton VDFs used for the ALPS calculations, including the best-fit
two-bi-Maxwellian gz (top), observed wind VDF fqy,. (bottom), and one intermedi-
ate model, Eq. (25) (middle).
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bi-Maxwellian fits to the background VDF. To investigate this, we con-
sider the same observed proton VDF measured by the Wind spacecraft
of the solar wind interval considered in Sec. TTT—fops(v_, v|)—as well
as a two-component bi-Maxwellian best fit of the proton VDF,
fesn(vi,v)) imposed on a discrete Veloc1ty grid. These VDFs are
shown in the top and bottom panels of Fig. 3. We use these two input
VDFs to calculate the associated linear dispersion relations, shown in
Fig. 4 for both the backwards and forwards parallel-propagating
Alfvén solutions; k, d,, is fixed at 0.001. Both VDFs have the same
velocity resolution, and the ALPS bi-Maxwellian solution agrees with
a “traditional” calculation from PLUME (not shown). As previously
noted by Walters ef al.,'” the real parts of the frequency w,/Q, for the
solutions based on fops and fegp are qualitatively the same at large
scales, deviating only when the damping is sufficiently strong to slow
the propagation of the wave. For clarity, we only plot solutions for
which |y|/|w;| < 1/e, indicating they are not too strongly damped.

The wavevector regions of instability are significantly different
when using fops or fess. The forward Alfvén mode is stable for the
core-and-beam VDF, but supports two regions of instability, with the
smaller scale region having a moderate growth rate. Both backwards
Alfvén modes support instabilities, but the observed VDF is more
unstable, with a broad range of unstable wavevectors.

The perpendicular electric field polarization of the solutions™

Er| — |E E,*FiE
Py = [Ex] = |Er] SErp=—=2, (21)
|Er| + |E¢| V2
as well as the resonant velocities
 — ngd
yres — P , (22)
I k|

where the left-handed waves (forward Alfvén and backward fast) have
n =1 and the right-handed waves (backwards Alfvén and forward
fast) have n = —1, are effectively identical between the solutions from
the two models.

What drives these differences can be identified using quasilinear
theory.”””* The resonant coupling of the wave to the VDF can be rep-
resented in terms of the operator

_ kuvn) 9
g:(l—Tr %"‘

applied to f, (v, v) ). To illustrate the structures of the VDF responsi-
ble for growth and damping, we construct a k|-dependent function,
applying & to f, at v, and the resonant parallel velocity associated
with each wavevector,

ki) v \] L i) o/, -
g[f( hib) )| )ty on

Velocities are normalized to the Alfvén velocity v4 = B/ /4mn,my.
This function is illustrated in the bottom two rows of Fig. 4. As this cal-
culation is only valid in the weak damping or growth limit™*
[7l/]e| < 1/e, and only useful when the resonant velocity samples
the input VDF, we restrict ourselves to the limited range of wavevec-
tors satisfying both these conditions. The sign of this function at each
velocity value indicates whether that point in phase space emits or
absorbs power in interaction with the given wave. As illustrated by

kjve 0

2
o T (23)
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FIG. 4. Dispersion relations for parallel-propagating Alfvén waves supported by
the observed (green lines) and core-and-beam (purple) VDFs: (top row) real part
of the frequency /€, (second) growth (solid) and damping (dashed) rates per
wave period y/c; (third) polarization Py, and (fourth) resonant velocity vies /va.
The bottom two rows show the quasilinear operator applied to the resonant veloc-

ity associated with wavevector, G{ [ ’es(kHdp)}} from Eq. (24). The structure in

this space illustrates the velocity regions responsible for wave emission (red) and
absorption (blue).

Walters et al.,' the sign of the function integrated over v, indicates
whether the species has a net absorption or emission at that parallel
scale.

For the forward Alfvén solution, there is no portion of the core-
and-beam VDF that drives an instability. For the observed VDF, struc-
tures at v ~ —v4 and v, € [0.5,1]v, are responsible for the range of
strongly unstable modes; isocontours of the VDFs are shown in the
left-hand column of Fig. 7. For the backwards Alfvén waves, the struc-
ture responsible for emission is starkly different between the two VDF
representations, with all v, values coherently contributing to the core-
and-beam emission over a narrow band of v values. The observed
VDF has a striated structure in v, with different velocity regions com-
peting to enhance or reduce the wave emission at each k.

We can further characterize differences in the damping or emis-
sion as a function of scale, shown in Fig. 5. While qualitatively having
similar structure, namely, increased resonant coupling as scales reach
|k|dy ~ 1, the details of the VDF lead to significant differences in the

predicted wave emission and absorption, quantified as m—;“‘*‘ The
bs T/ C&B

differences in the parallel ion cyclotron branch agree with the parallel
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FIG. 5. Damping and growth rates for fop (top) and fggs (middle) for the backwards
propagating Alfvén wave solution. The percent difference between the two models
is shown in the bottom panel, highlighting significant reductions in the kinetic Alfvén
wave damping rates and increase in the ion cyclotron wave emission rates for the
observed VDF compared to the bi-Maxwellian representation.

cut illustrated in Fig. 4. For k Ldpsl, the Alfvén wave transitions to a
kinetic Alfvén wave, becoming strongly damped for both cases.
However, the observed VDF has a significantly reduced damping rate
compared to the core-and-beam response; a similar result is found for
the forward solution. Such changes in the damping rates may impact
the overall heating rates used in a variety of models for hot, weakly col-
lisional systems,‘”’?’g that use bi-Maxwellian models for the determina-
tion of y to inform the bifurcation of energy between ions and
electrons.

V. CONTINUITY OF SOLUTIONS

To characterize the continuity between the observed and core-
and-beam solutions, we determine dispersion relations associated with
an ensemble of intermediate VDFs between the two models. At each
point of the velocity grid, we calculate Af = fops. — f x> and then
construct N VDFs that continuously vary between the models as

iAfﬁl,wO
N-1 "~
for i € [1, N]. We then evaluate the ALPS solutions for all f; and show
the transition of the solutions between models based on fop,s. and fegs.
For this work, N = 10 elements are sufficient to smoothly track the
change in the mode characteristics.
The normal mode structure in complex frequency space for the
solutions associated with the full ensemble of VDFs at a fixed
(k1 k))d, = (0.001,0.0025) is illustrated in Fig. 6. The solutions

fitve,v)) = foes.(vi,v)) + (25)
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FIG. 6. Isocontours for constant values of the dispersion surface A(ewy,y) for
ALPS solutions using fops. (green lines) and fogg (purple) at constant wavevector
(k.. kj)d, = (0.001,0.0025). Identified Slow, Alfvén, Fast and Entropy solutions
satisfying A = 0 are shown with dots. The continuity between the fo,,. and fess
solutions are shown with the intermediate f; solutions, indicated by color.

from the intermediate VDFs produce a continuous path between the
solutions based on the core-and-beam fit (purple) and the observed
representation (green), indicating that ALPS produces solutions that
smoothly vary between the models. At the selected wavevector, w,
remains relatively unchanged for all f;. For the damping rates, some of
the solutions are qualitatively unaffected at this wavevector, e.g,, both
Alfvén solutions and the forward fast mode, by the variation in the
underlying VDF. The compressive slow and entropy modes, as well as
the backwards fast mode, undergo significant changes in their damp-
ing rates when transitioning from fops. to fcgs. There is not a universal
increase or decrease in the damping rates when transitioning between
the two models, but rather each mode responds uniquely to the varia-
tion, e.g., the backwards fast mode becomes more damped and the for-
wards slow mode becomes less damped for the observed VDF.

We next turn to a consideration of the variations of these solu-
tions with wavevector, in particular, determining the impacts of the
observed distribution on the wave’s eigenfunction characteristics. In
Fig. 7, we plot the real and imaginary parts of  for the backwards and
forwards Alfvén waves. The strong damping due to the proton cyclo-
tron resonance acts to slow, and eventually reverse, the propagation
direction of the forwards Alfvén solutions near kjd, ~ 1. For the back-
wards solution, o is qualitatively the same across k for all VDFs f;
from the ensemble. The perpendicular electric field polarization &2,
of the waves is constant across all evaluations, but the correlation
between the density and the parallel magnetic field fluctuations

C(n,,0B)) = R ompOB}

is altered, with the amplitude of C(0#,, 0B )| increasing at large scales
for the more observation-like VDFs (i.e., for low i). Given that such
eigenfunction relations are frequently invoked as a means of identify-
ing wave modes in space plasmas,”” "' these changes in the eigenfunc-
tions impact some interpretations of what waves are present in
magnetospheric and solar wind plasmas.

The behavior of the fast and slow magnetosonic modes is also
impacted by the velocity space structure. In Fig. 8, we plot the
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(solid) rates /ey, the density-B, correlation, electric field polarization Pyy, and Vres
as a function of k;d, for fixed k. d, for the forward and backward Alfvén solutions
using the continuous set of VDFs.

dispersion relations for the forward parallel-propagating fast and slow
solutions for the observed, core-and-beam, and intermediate VDFs.
The forward fast and slow modes undergo a mode conversion, transi-
tioning between the observed and fit distributions, similar to those
seen near exceptional points.”” The solution that is more weakly
damped at MHD scales has a greater phase speed and a positive corre-
lation between 61, and 6B| when using the core-and-beam VDF. It
remains the fastest, most weakly damped, and positive-C solution at
smaller parallel wavevectors. The slower mode at MHD scales similarly
remains more strongly damped and negatively correlated in C as the
solution approaches kjdj, ~ 1.

However, when using the observed VDF, the faster and
slower solutions at large scales exchange their phase speeds and
senses of correlation between 5np and 5BH at smaller scales, with
the “slow” MHD mode becoming faster than the “fast” MHD
mode. This change in the mode behavior is driven by a change in
the correlation between the density and magnetic field fluctuations,
shown in the right panel of Fig. 8. When using the core-and-beam
model, the fast mode phase speed is enhanced by the in-phase
response of 6n, and 0B, while the slow mode phase speed is less-
ened by its out-of-phase response. When using the observed VDF,
these phase changes occur for the two modes around kjd, ~ 0.1.
By investigating the phases for the models using the intermediate
VDF representations, we see that this exchange is not a numerical
artifact, but is a smooth transition between the calculations with
fors. and fegp. Such variations in the correlation in plasmas with
non-bi-Maxwellian background VDFs may impact the characteri-
zation of mode composition,'10 1 as well as the nonlinear coupling
and participation in the turbulence cascade of compressible solu-
tions** and warrant further study.
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FIG. 8. Dispersion relations for the forward propagating fast and slow magnetoa-
coustic modes for the core-and-beam VDF fcgp, the observed VDF fo, and inter-
mediate VDF representations f. (Left panel) Parametric curves of [ar, y] (K, dp)
show distinct connections between the MHD-scale and ion-scale solutions for the
observed and core-and-beam models. (Right) Variation in C(onp, 9B) of the fast
and slow solutions as a function of parallel wavevector.

VI. CONCLUSIONS

We have extended the Arbitrary Linear Plasma Solver (ALPS) by
introducing a robust hybrid analytic continuation framework using
high-order polynomial (Chebyshev) representations of arbitrary veloc-
ity distribution functions (VDFs) to determine the associated dielectric
plasma response. The new Chebyshev generalized linear least squares
(GLLS) approach delivers smooth and accurate continuations of the
dispersion relation solutions to the linear Vlasov-Maxwell equations
across y = 0, eliminating discontinuities associated with low-order
analytical fits and enabling reliable tracking of normal modes from
unstable to damped regimes.

Through systematic comparisons between spacecraft-observed
solar-wind proton VDFs and their best-fit two-component bi-
Maxwellian representations, we demonstrate that the updated ALPS
produces continuous solutions to the plasma dispersion relation
between bi-Maxwellian and arbitrary VDF inputs. We find that mode
polarizations and heating rates can vary significantly when accounting
for non-(bi-)Maxwellian structure in the VDF, impacting interpreta-
tions of Alfvén, fast, and slow modes.

These advancements extend ALPS’s applicability to a broad
range of plasma environments such as the solar wind, magnetosheath,
and astrophysical systems, where deviations from Maxwellian equilib-
ria govern wave behavior and heating processes. By coupling numeri-
cal integration for arbitrary components with efficient bi-Maxwellian
and cold-plasma models for fluid-like species, the updated hybrid
solver offers improvements in computational speed. We anticipate that
the improved analytic continuation and eigenfunction outputs will
enable improved theoretical predictions and guide the interpretation
of in situ spacecraft measurements in future studies.
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APPENDIX A: USING BI-MAXWELLIAN AND COLD
PLASMA MODELS FOR SELECT SPECIES

For numerical expediency, ALPS has been updated to allow
users to declare the susceptibility for any given component y to be
=s

calculated using the numerical integration or using a bi-Maxwellian
or cold plasma model. In all cases, ALPS solves Eq. (6), but with dif-

ferent representations of y . For the bi-Maxwellian case, we use the
=s

susceptibility as evaluated from NHDS,® which follows the notation
by Stix.”* The bi-Maxwellian susceptibility is given by

2wU w2

- pss 2
L =epe 'Y (A1)
=s a)kHw nZOC
where
n?l ) ki nl
A”An —in(l,—I)A, 557” »
. / n / ik, /
Y, = | in(u=1)As (514241, -221, ) A ES(I,,—IW)B,[ ,
k nl, ik | 2(w—nLl)
——B ——(I, -r B, —I,B
Qj A " QS( ) k”Wis nen
(A2)

I, is the modified Bessel function of order n with argument
L=kw 208

71TLS_TH5+ 1 (o— kHU—nQ)TLs‘i'nQTHsZ

"Tw THs kHWHS UJTHs v
(A3)
=—(0—k U)+w_7anA (A4)
C()k” s kH "
Zy(0) = ﬁgx J de 7 ivasgn(ky)e™ (A5)
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and C = (w — k” Us — an)/kHW”S.
For the cold plasma case, we use the cold plasma susceptibility
accounting for field-aligned relative drifts between the species:”
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where S§; = (R + Ly)/2, Dy = (Ry — Ly) /2,
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Using the much more numerically efficient bi-Maxwellian or
cold-plasma expressions, rather than direct integration of the
momentum derivatives, this “hybrid approach” significantly
decreases the computational costs, and is appropriate for cases in
which some of the components are accurately treated as cold or a
simple Maxwellian, e.g., in evaluating VDFs from hybrid plasma
simulations or when some species are only known through their
velocity moments rather than their full VDFs.

APPENDIX B: EIGENFUNCTIONS AND HEATING RATES

With the complex frequency o determined, the eigenfunctions
for the perturbed densities dn;, velocities 60Uy, and electromagnetic
fields E and B can be calculated through evaluation of the linearized
Maxwell’s equations, the continuity equation, and the wave equa-
tion Eq. (6), using the routines implemented in PLUME.” Time
scales are normalized to the reference cyclotron frequency Qs and
spatial scales to the reference inertial length dy.

We choose the complex Fourier coefficient for E, = E, /E, ;
=1, where E, ; is an arbitrary real constant used to specify the
overall amplitude of the linear eigenfunction, and solve for the other
components using Eq. (6) in terms of E | ;, yielding

B _Aphy — AyAu

E=—= , (B1)
H Ei‘l AyyAzz - AyzAzy
and
Ej_z = 2 _ Azx + AZZ(EH/EL,I) _ AzxAyz - Azszx (BZ)
' Ei,l Azy AyyAzz - AyzAzy 7

where A;; are the elements of the 3 x 3 tensor A in Eq. (6).

Combining these solutions for the complex Fourier coefficients of
the components of E with the solutions for the complex frequency
and wavevector k = k| x + kHE, we find the complex Fourier coeffi-
cients of the magnetic field eigenfunctions using Faraday’s Law, Fourier
transformed in time and space, wB = ck X E, giving
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We use the linearized continuity equation,
0on, 0ong
ot + SW = —noV - 60U, (B6)

including the normalized equilibrium parallel flow U;, which we
can express in terms of the momentum drift for species s,

T.= Y P me

(B7)

- b
VA ref Myef VA ref Ms

to solve for the complex Fourier coefficient of the normalized num-
ber density fluctuation, dn;/ngs, given by

% - ki oU, + kuéUzs c kldref(éﬁxs) + kHdref(éUzs)k

Nos w — k” Us - VA ref C’)/Qref - kHdrers By '
(B8)

where we normalize the velocity fluctuations as dU, = U,/
(CE 1.1 / BO)

We can then determine the perturbed velocity fluctuations for
each component dU; by recognizing that the total current density
(including any parallel flow) due is j, = q(nos OUs + on,Usz).
Using the susceptibility tensor to calculate j, through Eq. (1) yields

)
oU; = — 7 (k,w) - E — - Uz, (B9)

or

. 2
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(B10)

We compute the power emitted or absorbed by each compo-
nent in the weak damping limit, following the routines implemented
in PLUME,” which follow Stix,””

20 g 20 B

(B11)

where ys%(k) represents the anti-Hermitian component of the sus-

ceptibility for species s evaluated at y = 0, E* represents the com-
plex conjugate of the fluctuating electric field, and

pubs.aip.org/aip/pop

K % 6
Wen = B'(k) - B(k) + E*(k) - o~ [wen(k)] - E(k),  (B12)
is the electromagnetic wave energy, where ¢, is the Hermitian part
of the dielectric tensor.

ALPS additionally decomposes the damping governed by the
resonance condition @ — kjvj — n€d; = 0 into Landau Damping
(LD), Transit Time Damping (TTD), and Cyclotron Damping
(CD), following the prescription by Huang et al*” The n =0
Landau resonance includes both LD, coupling E| to a particle’s
charge,

iw — —=0)* sk = % =0)*
PP = e (A = BB VB E G EE)|
(B13)

and TTD, coupling the magnetic field magnitude gradient 6B to

the magnetic moment via

PTTD:iﬂ [( (n1=0) _,/(
Lyys X

*0)* *
s T e Vo JE/E,+1

= =0 sk =0)% 1
y;,s }(/Zs >EJ’EZ_X< ) EyEZ)}

n=
Z,S :
VZ W=,

(B14)

In this context, X;ZO is the ijth susceptibility component evalu-
ated for only n = 0.

CD occurs via n # 0 resonances due to forces by E; on the
charged particles. The power absorption due to CD of the #" har-
monic is

n @ 2/, M 2 LM%
PsCD = g |:|Ex| (/CZx,s - KZx,s) + |E}’| <X)r/ly,s - /nys)

(B~ B E) (s — 1) |- (B15)
As currently implemented, ALPS only outputs the CD power
absorption/emission associated with the n = =1 resonance.

APPENDIX C: THE LIMITS OF ANALYTIC
CONTINUATION

Given the novel GLLS representation for the analytic continuation,
it is important to quantify how far into imaginary parallel momentum
space the representation can be accurately and reliably extended.
Toward this end, we consider the continuations of three VDFs: a single
Maxwellian, the best-fit core-and-beam bi-Maxwellian fegp(py = 0)
used in Sec. [V A, and the observed VDEF fops (p1 = 0) is also described
in Sec. IV A. We evaluate the amplitude of the complex-valued repre-
sentation of the VDF [f,[Re(p)), Im(p)); p1. = 0] for all three models.
For the GLLS representation, we apply orders 5, 10, 30, and 50. These
comparisons are shown in Fig. 9, and the coefficients for the GLLS fits
are shown in Fig. 10.

All orders of the GLLS method yield the quantitatively iden-
tical continuation behavior as the single Maxwellian representa-
tion when the underlying VDF is a single Maxwellian. This can be
understood by noting that only two of the coefficients, ay and a,,
are effectively non-zero for all orders, blue lines in Fig. 10, regard-
less of the order of the GLLS representation. This matches our
intuitive expectations, as the log of a Maxwellian is a second-
order polynomial. This simple quadratic expression matches
the single Maxwellian well, and the lack of additional terms in the
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representation produces the same complex structure at larger
values of |Im(py)|.

For the core-and-beam VDF, a broader range of orders has
non-negligible power. These additional terms lead to oscillations in
the complex GLLS representation of f,, and thus increased ampli-
tudes of |f,|, at larger |[m(p))| values compared to the relatively
shallower increase in |[f,| when evaluating the sum of two
Maxwellians in fegp. This trend is further exacerbated for the
observed distribution fops., where the non-Maxwellian structure in
the VDF leads to more power in the lower-order coefficients ay
compared to either of the simpler VDFs.

This increase in |f,| impacts the resolution of strongly damped
waves, as the associated values of |Im(p))| for such modes are large
enough for the numerical evaluation of the analytic continuation of
Jp to be inaccurate. As seen in the right-hand panels of Fig. 9, there
is a larger increase in |f,| with higher order representations for more
strongly damped solutions. For this reason, users should select the
lowest order representation sufficient to capture the VDF structure.
This approach not only optimizes the numerical efficiency of this
scheme, but it also avoids using unnecessarily high orders, which
may introduce numerical artifacts for strongly damped solutions.

Overall, given the superior behavior of the GLLS method for weakly
damped solutions, we find that using the Chebyshev polynomials
rather than a low-order Maxwellian fit is the optimal choice for
non-Maxwellian VDFs.

REFERENCES

'S. P. Gary, Theory of Space Plasma Microinstabilities (Cambridge University
Press, Cambridge, UK, 1993).

2D. Verscharen, S. Bourouaine, B. D. G. Chandran, and B. A. Maruca, “A
parallel-propagating Alfvénic ion-beam instability in the high-beta solar wind,”
Astrophys. J. 773, 8 (2013).

3K. G. Klein, B. L. Alterman, M. L. Stevens, D. Vech, and J. C. Kasper, “Majority of
solar wind intervals support ion-driven instabilities,” Phys. Rev. Lett. 120, 205102
(2018).

“K. G. Klein, J. L. Verniero, B. Alterman, S. Bale, A. Case, J. C. Kasper, K.
Korreck, D. Larson, E. Lichko, R. Livi, M. McManus, M. Martinovi¢, A.
Rahmati, M. Stevens, and P. Whittlesey, “Inferred linear stability of parker
solar probe observations using one- and two-component proton distributions,”
Astrophys. J. 909, 7 (2021).

SM. D. McManus, K. G. Klein, S. D. Bale, T. A. Bowen, J. Huang, D. Larson, R. Livi,
A. Rahmati, O. Romeo, J. Verniero, and P. Whittlesey, “Proton- and alpha-driven
instabilities in an ion cyclotron wave event,” Astrophys. . 961, 142 (2024).

K. Roennmark, “Waves in homogeneous, anisotropic multicomponent plasmas
(WHAMP),” Technical Report (1982).

7K. G. Klein, G. G. Howes, and C. R. Brown, “PLUME: Plasma in a linear uni-
form magnetized environment,” Res. Notes AAS 9, 102 (2025).

8D. Verscharen and B. D. G. Chandran, “NHDS: The new Hampshire disper-
sion relation solver,” Res. Notes AAS 2,13 (2018).

9H.-S. Xie, “BO: A unified tool for plasma waves and instabilities analysis,”
Comput. Phys. Commun. 244, 343-371 (2019).

10p, Astfalk, T. Gérler, and F. Jenko, “DSHARK: A dispersion relation solver for
obliquely propagating waves in bi-kappa-distributed plasmas,” ]. Geophys. Res.
120, 7107-7120, https://doi.org/10.1002/2015JA021507 (2015).

TE. Marsch, “Helios: Evolution of distribution functions 0.3-1 AU,” Space Sci.

Rev. 172, 23-39 (2012).

12D, Verscharen, K. G. Klein, and B. A. Maruca, “The multi-scale nature of the
solar wind,” Living Rev. Sol. Phys. 16, 5 (2019).

13K, G. Klein, D. Verscharen, T. Koskela, and D. Stansby, see https://danielver02.-
github.io/ALPS/ “danielver02/alps: Zenodo Release” (ALPS, 2023).

™D, Verscharen, K. G. Klein, B. D. G. Chandran, M. L. Stevens, C. S. Salem, and

S. D. Bale, “ALPS: The arbitrary linear plasma solver,” J. Plasma Phys. 84,
905840403 (2018), arXiv:1803.04697 [physics.space-ph].

5W. Jiang, D. Verscharen, H. Li, C. Wang, and K. G. Klein, “Whistler waves as a

signature of converging magnetic holes in space plasmas,” Astrophys. J. 935,

169 (2022).

Phys. Plasmas 32, 092104 (2025); doi: 10.1063/5.0286477
© Author(s) 2025

32, 092104-11

12:G€:60 G20Z Joquiajdes 90


https://doi.org/10.1088/0004-637X/773/1/8
https://doi.org/10.1103/PhysRevLett.120.205102
https://doi.org/10.3847/1538-4357/abd7a0
https://doi.org/10.3847/1538-4357/ad05ba
https://doi.org/10.3847/2515-5172/add1c2
https://doi.org/10.3847/2515-5172/aabfe3
https://doi.org/10.1016/j.cpc.2019.06.014
https://doi.org/10.1002/2015JA021507
https://doi.org/10.1007/s11214-010-9734-z
https://doi.org/10.1007/s11214-010-9734-z
https://doi.org/10.1007/s41116-019-0021-0
https://danielver02.github.io/ALPS/
https://danielver02.github.io/ALPS/
https://doi.org/10.1017/S0022377818000739
http://arxiv.org/abs/1803.04697
https://doi.org/10.3847/1538-4357/ac7ce2
pubs.aip.org/aip/php

Physics of Plasmas

ow. Jiang, D. Verscharen, S.-Y. Jeong, H. Li, K. G. Klein, C. J. Owen, and C.
Wang, “Velocity-space signatures of resonant energy transfer between whistler
waves and electrons in the Earth’s magnetosheath,” Astrophys. J. 960, 30
(2024).

'7A. S. Afshari, G. G. Howes, J. R. Shuster, K. G. Klein, D. McGinnis, M. M.
Martinovi¢, S. A. Boardsen, C. R. Brown, R. Huang, D. P. Hartley, and C. A.
Kletzing, “Direct observation of ion cyclotron damping of turbulence in Earth’s
magnetosheath plasma,” Nat. Commun. 15, 7870 (2024).

18]. Walters, K. G. Klein, E. Lichko, M. L. Stevens, D. Verscharen, and B. D. G.
Chandran, “The effects of nonequilibrium velocity distributions on Alfvén ion-
cyclotron waves in the solar wind,” Astrophys. J. 955, 97 (2023).

"M. F. Zhang, M. W. Kunz, J. Squire, and K. G. Klein, “Extreme heating of minor
ions in imbalanced solar-wind turbulence,” Astrophys. J. 979, 121 (2025).

20, Fitzmaurice, J. F. Drake, and M. Swisdak, “Ion beam instabilities during
solar flare energy release,” Phys. Plasmas 32, 042114 (2025).

2D, L. Schréder, H. Fichtner, M. Lazar, D. Verscharen, and K. G. Klein,
“Temperature anisotropy instabilities of solar wind electrons with regularized
kappa-halos resolved with alps,” Phys. Plasmas 32, 032109 (2025).

22T, H. Stix, Waves in Plasmas, by Stix, Thomas Howard; Stix, Thomas Howard
(American Institute of Physics, New York, 1992).

2*K. G. Klein and B. D. G. Chandran, “Evolution of the proton velocity distribution
due to stochastic heating in the near-Sun solar wind,” Astrophys. J. 820, 47 (2016).
24The relativistic case is more complex, given the non-trivial momentum depen-
dence of the resonant denominator in that limit; see §3.3 by Verscharen:2018"*
for details, where we use the method suggested by Lerche:1967" to transform

from (p|,p1) to (I', p|) and make the solution tractable.

251, Landau, “On the vibrations of the electronic plasma,” J. Phys. 10, 25-34 (1946).

26B. L. Alterman, J. C. Kasper, M. L. Stevens, and A. Koval, “A comparison of
alpha particle and proton beam differential flows in collisionally young solar
wind,” Astrophys. J. 864, 112 (2018).

27K. Levenberg, “A method for the solution of certain non-linear problems in
least squares,” Q. Appl. Math. 2, 164-168 (1944).

28D, W. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” J. Soc. Ind. Appl. Math. 11, 431-441 (1963).

29W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in C, 2nd ed. (Cambridge University Press, 1992).

30]. Mason and D. Handscomb, Chebyshev Polynomials (CRC Press, 2002).

3'We use relative percent difference rather than relative error as we are frequently
evaluating the dispersion relation in the frame where the parallel velocity
moment of the VDF under consideration is effectively zero.

3275 we are focused on modeling thermal populations in the solar wind, for the
remainder of the manuscript we consider fy as a function of velocity rather
than momentum.

ARTICLE

pubs.aip.org/aip/pop

33D, Verscharen and B. D. G. Chandran, “The dispersion relations and instability
thresholds of oblique plasma modes in the presence of an ion beam,”
Astrophys. J. 764, 88 (2013).

3%C. F. Kennel and F. Engelmann, “Velocity space diffusion from weak plasma
turbulence in a magnetic field,” Phys. Fluids 9, 2377-2388 (1966).

35G. G. Howes, “A prescription for the turbulent heating of astrophysical plas-
mas,” Mon. Not. R. Astron. Soc. 409, L104-L108 (2010).

36A. Chael, M. Rowan, R. Narayan, M. Johnson, and L. Sironi, “The role of elec-
tron heating physics in images and variability of the Galactic Centre black hole
Sagittarius A,” Mon. Not. R. Astron. Soc. 478, 5209-5229 (2018).

37W. Gorman and K. G. Klein, “Mind the gap: Non-local cascades and preferen-
tial heating in high-f Alfvénic turbulence,” Mon. Not. R. Astron. Soc. 531,
L1-L7 (2024).

38N. Shankarappa, K. G. Klein, M. M. Martinovié, and T. A. Bowen, “Estimated
heating rates due to cyclotron damping of ion-scale waves observed by the par-
ker solar probe,” Astrophys. J. 973, 20 (2024).

39D. Krauss-Varban, N. Omidi, and K. B. Quest, “Mode properties of low-
frequency waves: Kinetic theory versus Hall-MHD,” ]. Geophys. Res. 99, 5987—
6009, https://doi.org/10.1029/93JA03202 (1994).

“OK. G. Klein, G. G. Howes, ]. M. TenBarge, S. D. Bale, C. H. K. Chen, and C. S.
Salem, “Using synthetic spacecraft data to interpret compressible fluctuations
in solar wind turbulence,” Astrophys. J. 755, 159 (2012).

“ID, Verscharen, C. H. K. Chen, and R. T. Wicks, “On kinetic slow modes, fluid
slow modes, and pressure-balanced structures in the solar wind,” Astrophys. J.
840, 106 (2017).

“ZExceptional points satisfy A(w) = 0 and d,,A(®) = 0 and act as branch points
that allow continuous variations in the inputs to the dispersion relation to
smoothly vary between different normal mode solutions; c.f. the Appendix of
Klein:2015a."

“3A. A. Schekochihin, S. C. Cowley, W. Dorland, G. W. Hammett, G. G. Howes,
E. Quataert, and T. Tatsuno, “Astrophysical gyrokinetics: Kinetic and fluid tur-
bulent cascades in magnetized weakly collisional plasmas,” Astrophys. J. Suppl.
Ser. 182, 310-377 (2009).

4%y, Kawazura, A. A. Schekochihin, M. Barnes, J. M. TenBarge, Y. Tong, K. G.
Klein, and W. Dorland, “Ton versus electron heating in compressively driven
astrophysical gyrokinetic turbulence,” Phys. Rev. X 10, 041050 (2020).

“5R. Huang, G. G. Howes, and A. J. McCubbin, “The velocity-space signature of
transit-time damping,” J. Plasma Phys. 90, 535900401 (2024).

“B1. Lerche, “Unstable magnetosonic waves in a relativistic plasma,” Astrophys. J.
147, 689 (1967).

“7K. G. Klein and G. G. Howes, “Predicted impacts of proton temperature anisot-
ropy on solar wind turbulence,” Phys. Plasmas 22, 032903 (2015).

“8See https://github.com/danielver02/ALPS for the repository for “ALPS.”

Phys. Plasmas 32, 092104 (2025); doi: 10.1063/5.0286477
© Author(s) 2025

32, 092104-12

12:G€:60 G20Z Joquiajdes 90


https://doi.org/10.3847/1538-4357/ad0df8
https://doi.org/10.1038/s41467-024-52125-8
https://doi.org/10.3847/1538-4357/acf1fa
https://doi.org/10.3847/1538-4357/ad95fc
https://doi.org/10.1063/5.0260878
https://doi.org/10.1063/5.0254526
https://doi.org/10.3847/0004-637X/820/1/47
https://doi.org/10.3847/1538-4357/aad23f
https://doi.org/10.1090/qam/10666
https://doi.org/10.1137/0111030
https://doi.org/10.1088/0004-637X/764/1/88
https://doi.org/10.1063/1.1761629
https://doi.org/10.1111/j.1745-3933.2010.00958.x
https://doi.org/10.1093/mnras/sty1261
https://doi.org/10.1093/mnrasl/slae018
https://doi.org/10.3847/1538-4357/ad5f2a
https://doi.org/10.1029/93JA03202
https://doi.org/10.1088/0004-637X/755/2/159
https://doi.org/10.3847/1538-4357/aa6a56
https://doi.org/10.1088/0067-0049/182/1/310
https://doi.org/10.1088/0067-0049/182/1/310
https://doi.org/10.1103/PhysRevX.10.041050
https://doi.org/10.1017/S0022377824000667
https://doi.org/10.1086/149045
https://doi.org/10.1063/1.4914933
https://github.com/danielver02/ALPS
pubs.aip.org/aip/php

