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ABSTRACT 

Aging ships and offshore structures face significant risks from 

corrosion, fatigue cracking, and mechanical damage, worsened 

by harsh marine environments and remote operations. Ensuring 

their safety and sustainability requires innovative solutions, 

leveraging automated technologies, digital solutions and 

advanced communication systems. This paper introduces the 

Digital Healthcare Engineering (DHE) system, a proactive, 

real-time monitoring and artificial intelligence (AI)-driven 

framework for managing the structural health of aging vessels 

and the well-being of seafarers. The AI-enhanced DHE system 

includes five modules: (1) Module 1: On-site real-time 

monitoring and digitalization of structural health parameters, (2) 

Module 2: Transmission of collected data to a land-based 

analytics center via low Earth orbit (LEO) satellites, (3) Module 

3: Advanced analytics and simulations through digital twin 

technology, (4) Module 4: AI-driven diagnostics with automated 

maintenance recommendations, and (5) Module 5: Predictive 

health analysis for future maintenance planning. This study 

focuses on Module 5, which uses damage data to predict 

corrosion wastage and fatigue crack propagation, assess 

structural strength reduction, and optimize maintenance 

schedules. A case study on a hypothetical 25,800 TEU 

containership powered by small modular reactors (SMRs) 

demonstrates the system's practical benefits in enhancing the 

safety and operational sustainability. 
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1. INTRODUCTION 
As ships and offshore structures age, they face compounded 

challenges that threaten their structural integrity. Age-related 
degradation – manifesting as in-service damage such as 

corrosion wastage, fatigue cracking, and mechanical denting – 
progressively undermines their operational reliability. Moreover, 
continuous exposure to hostile and remote ocean environments 
amplifies the risks of hazardous conditions such as rogue waves. 

In the maritime industry, a range of strategies have been 
adopted to prevent catastrophic accidents arising from structural 

failures. These include: (ⅰ) designing hull structures with 
adequate safety margins, (ⅱ) implementing periodic inspections 
on an annual basis, (ⅲ) conducting rigorous dry-docking surveys 
every five years, (ⅳ) monitoring stress through strain gauges, (ⅴ) 
performing proactive risk assessments, and (ⅵ) leveraging 
weather hindcast data to optimize navigation routes. While such 

measures have undoubtedly reduced risk and extended the 
service life, they remain insufficient to address the multifaceted 
challenges associated with aging ships. 

The large size and complex geometry of ships, combined 
with extended inspection intervals, create significant barriers to 
effective structural health management. Additionally, the 

unpredictable and harsh conditions of the maritime environment 
— including rough waves, changing operational conditions, and 
remote locations — further complicate efforts to maintain 
structural integrity [1-3]. These realities highlight the urgent 
need for innovative approaches to overcome the limitations of 
conventional methods, ensuring the structural integrity of aging 

vessels in uncertain environments. Artificial intelligence (AI)-
enhanced Digital Healthcare Engineering (DHE) system has 
been conceptualized as an advanced framework for efficiently 
managing structural health of aging structures by leveraging the 
transformative potential of digital and communication 
technologies [4]. 
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FIGURE 1: FRAMEWORK OF AN AI-ENHANCED DHE SYSTEM FOR AGING CONTAINERSHIP HULL STRUCTURES [5]. 

 

Unlike traditional structural health monitoring systems that 

rely on periodic inspections and limited sensor data, the DHE 

system offers continuous, high-resolution insights by integrating 

advanced digital twin models, AI-driven analytics, and 

predictive health analysis. The AI-enhanced DHE system is 

composed of five key modules, as outlined below: 

 

• Module 1: On-site monitoring and digitalization of 

structural health parameters 

• Module 2: Transmission of collected data to a land-based 

analytics center via low Earth orbit (LEO) satellites 

• Module 3: Advanced analytics and simulations through 

digital twin technology 

• Module 4: AI-driven diagnostics with automated 

maintenance recommendations 

• Module 5: Predictive health analysis for future 

maintenance planning. 

 

Each module of the AI-enhanced DHE system plays a 

critical role in facilitating the real-time healthcare of aging ships 

and addressing the challenges outlined earlier. On-site 

monitoring (Module 1) ensures the collection of accurate health 

parameters such as wave profile, in-service damage, and 

operational conditions including ship speed and engine 

vibration. The health data, transmitted via Module 2, serves as 

the foundation for digital twin simulations (Module 3), which 

leverage computational fluid dynamics (CFD) and nonlinear 

finite element analysis (NLFEA). The integration of AI 

techniques in Module 4 accelerates diagnostics and maintenance 

planning. Meanwhile, Module 5 focuses on predicting future 

health conditions, offering insights into long-term trends to 

support optimal maintenance scheduling and ensuring remedial 

actions are implemented before structural degradation results in 

catastrophic failures. The overall framework of the AI-enhanced 

DHE system, supported by these five modules, is illustrated in 

Figure 1. 

It is crucial to understand the advancements and limitations 

of existing research in the developing an AI-enhanced DHE 

system for aging engineered structures. Comprehensive 

literature reviews have explored the application of DHE systems 

for ships and offshore structures [6], offshore pipelines [7], and 

land-based liquified natural gas (LNG) tanks [8]. These reviews 

reveal significant advancements in real-time monitoring and data 

communication. However, challenges persist in areas such as 

digital twin modeling, the integration of AI-driven diagnostics, 

and the prediction of future health conditions. To address these 

gaps, Kim and Paik [5] proposed a digital twin model integrated 

with AI-driven diagnostics within the DHE system. Additionally, 

digital twin models employing various methodologies have been 

developed for ship hull structures by researchers such as 

Fujikubo et al. [9] and Lee et al. [10]. 

Building upon the foundational framework of the AI-

enhanced DHE system, this study focuses on the development of 

Module 5: predictive health analysis for future maintenance 

planning. Details about other DHE modules can be found in the 

literature [5-8]. Section 2 presents advanced mathematical 
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models for predicting age-related degradation over time, 

including corrosion wastage and fatigue crack propagation. To 

demonstrate the practical application of this approach, Section 3 

presents a case study involving a hypothetical 25,800 TEU 

(twenty-foot equivalent unit) containership powered by small 

modular reactors (SMRs), highlighting how predictive health 

analysis contributes to the structural healthcare of aging ship hull 

structures. 

 

2. MATHEMATICAL MODELS FOR PREDICTING 
TIME-DEPENDENT CORROSION WASTAGE AND 
FATIGUE CRACK PROPAGATION 
The increasing complexity of structural health management 

for aging ships necessitates the adoption of proactive and data-

driven approaches to mitigate risks arising from age-related 

deterioration and uncertain ocean environments. Module 5 of the 

DHE system is designed to address these challenges by 

incorporating predictive health analysis, enabling the accurate 

prediction of structural degradation and the timely 

implementation of maintenance strategies. 

This section presents the advanced mathematical models 

employed in the predictive health analysis module, focusing on 

corrosion wastage and fatigue crack propagation. 

 

2.1 Corrosion Wastage 
Corrosion is a significant type of in-service damage that 

progressively degrades aging ship hull structures by reducing 

their cross-sectional area over time, thereby diminishing their 

load-carrying capacity and compromising overall structural 

integrity. Prediction of corrosion rates is essential for evaluating 

corrosion damage in engineered structures. Numerous corrosion 

models for predicting corrosion rates have been proposed in the 

literature, broadly classified into two categories [11,12]: physical 

and empirical models. Physical models estimate corrosion rates 

based on the underlying physical processes of corrosion, 

incorporating various environmental and material-specific 

factors [13]. However, for the DHE system of aging ships, it is 

impractical to account for the multitude of factors required to 

determine corrosion rates for numerous locations across the 

entire ship hull. Conversely, empirical models predict corrosion 

rates using historical data of metal’s cross section loss. Since the 

corrosion data collected from Module 1 can be effectively 

utilized, empirical models are particularly well-suited for 

implementation within the DHE system. This section presents an 

advanced empirical method for formulating time-dependent 

corrosion wastage models, utilizing a statistical analysis of 

historical corrosion loss data.  

Figure 2 presents the procedure for developing an empirical 

corrosion wastage prediction model. After corrosion data is 

collected from Module 1, encompassing parameters such as 

location, depth, and degree of pitting intensity (DOP), the data 

undergoes statistical analysis to uncover underlying trends and 

patterns.  

 
FIGURE 2: PROCEDURE FOR THE DEVELOPMENT OF A 

TIME-VARIANT EMPIRICAL CORROSION PREDICTION 

MODEL IN MODULE 5 OF THE DHE SYSTEM. 

 

 
(a) MEASUREMENT DATABASE 

 

 
(b) PROBABILITY DENSITY DISTRIBUTIONS FITTED TO 

THE MEASUREMENT DATABASE 
 

FIGURE 3: PROBABILISTIC CHARACTERISTICS OF 

CORROSION WASTAGE PROGRESS [14]. 
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Corrosion wastage exhibits varying probabilistic 

characteristics over time, as shown in Figure 3. Probability 

density functions (PDFs) are instrumental in capturing and 

representing the statistical variability within the measurement 

data. The selection of bin width (i.e., the interval size for 

grouping data) significantly influences the statistical properties 

of the dataset. Therefore, it is essential to determine the best bin 

width that maximizes the mean value while minimizing the 

coefficient of variation (COV), as described by Paik [1]. Various 

PDFs are available for formulating empirical models, and 

goodness-of-fit (GOF) tests, such as the Anderson-Darling (A-

D) or Kolmogorov-Smirnov (K-S) methods, can be employed to 

determine the most suitable PDF for the given dataset. 

The Weibull distribution is widely recognized as the most 

suitable PDF for time-dependent corrosion measurement 

datasets, as demonstrated in several studies [11,15,16]. 

However, other types of PDFs may also be determined as the 

best fit, depending on the specific characteristics of the data. 

Once the best-fit PDFs are determined for each corrosion dataset, 

corresponding to the ship's age or the exposure time following 

coating breakdown, a time-variant empirical corrosion 

prediction model can be developed through regression analysis 

using the coefficients of the PDFs. Figure 4 illustrates an 

example of an empirical model formulated through regression 

analysis of the Weibull distribution's coefficients [15]. 

 
FIGURE 4: FORMULATION OF AN EMPIRICAL CORROSION 

PREDICTION MODEL BASED ON THE WEIBULL 

DISTRIBUTION’S COEFFICIENTS. 

 

Lastly, cumulative density functions (CDFs) are employed 

to estimate corrosion depth as a function of exposure time. 

Equations 1 and 2 define the CDF of the Weibull distribution and 

its application in determining corrosion depth over time [15,16]. 

It is noted that, due to variations in the characteristics of 

corrosion progress under different environmental conditions, 

specific corrosion models must be formulated to reflect the 

unique conditions at various locations on the hull structure. 
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  
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1

e e ln 1 CDF T
cd T T =  − −    (2) 

where cd   is corrosion depth,    and    are shape and scale 

parameters of the Weibull distribution, and 
eT  is exposure time 

in years. 

 

2.2 Fatigue Crack Initiation and Propagation 
Fatigue cracking is another critical type of in-service 

damage and one of the most prevalent failure mechanisms 

observed in engineered structures. Once initiated, fatigue cracks 

progressively grow under cyclic loading, potentially leading to 

catastrophic structural failure as a result of a significant 

reduction in ultimate strength. In addition, fatigue cracking often 

occurs at stress levels significantly lower than the design 

threshold, making it challenging to address. Fatigue cracking 

progresses through three distinct stages, as illustrated in Figure 

5: crack initiation, crack propagation, and failure (fracture). The 

initiation phase is influenced by various factors, including 

geometry, material properties, cyclic loading conditions, local 

stresses, and environmental effects. The initiation of macro 

cracks is usually predicted using the S-N curve approach, which 

is often combined with the Palmgren-Miner rule to assess the 

cumulative fatigue damage resulting from cyclic loading. 

 
FIGURE 5: A SCHEMATIC OF CRACK INITIATION AND 

GROWTH FOR A STRUCTURE OVER TIME [15]. 

 

Crack growth rate is a key factor in predicting crack 

propagation using a fracture mechanics approach. A critical 

parameter in this analysis is the range of the stress intensity 

factor K  at the crack tip, which is used to model the 

relationship between loading conditions and crack growth 

behavior. As shown in Figure 6, the crack growth rate versus 

K  curve exhibits distinct characteristics across the three 
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fatigue growth stages. thK  represents the threshold value of 

K  , indicating the minimum level required for a crack to 

propagate. Donahue et al. [17] proposed a crack growth 

relationship for the threshold region, as follows. 

( )th

mda
C K K

dN
=  −  (3) 

where da/dN is the crack growth per cycle, and C and m are 

constants determined through material tests. 

 

 
FIGURE 6: A SCHEMATIC REPRESENTATION OF THE 

DISTINCT CHARACTERISTICS OF THE CRACK GROWTH RATE 

VERSUS K   CURVE ACROSS THE THREE CRACK 

GROWTH STAGES. 

 

In the crack growth stage Ⅱ, cracks typically propagate with 

a linear trend on a log-log plot (Figure 6). The crack growth rate 

in this regime is commonly estimated using the Paris-Erdogan 

law [18], as defined in Equation 4, which is derived from the 

principles of linear elastic fracture mechanics (LEFM). 

However, when plastic deformation at the crack tip dominates 

crack growth, elastic-plastic fracture mechanics (EPFM) 

becomes more applicable. EPFM approaches often utilize 

concepts such as crack tip opening displacement (CTOD) or the 

J-integral method for more accurate predictions. Further details 

on these methods can be found in Paik [14]. 

( )
mda

C K
dN

=   (4) 

where K F a  =   for stiffened steel panels [14],   is 

the stress range, a is the crack size (length), and F is a geometric 

parameter relying on the loading and configuration of the crack 

body. For steel plates with cracks under axial tension, F is 

calculated using the following equations [2,14]: 

ⅰ) for a center crack, 

1/2

sec
a

F
b

 
=  
 

 (5) 

ⅱ) for a unilateral crack, 

4 3 2
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b b b b

       
= − + − +       

       
 (6) 

ⅲ) for bilateral cracks, 

3 2

15.44 4.78 0.43 1.12
a a a

F
b b b

     
= − + +     

     
 (7) 

where a and b represent crack length and plate breadth, 

respectively. 

 

 
FIGURE 7: COMPARISON OF CRACK GROWTH 

PREDICTIONS UNDER VARYING MATERIAL CONSTANTS 

AND LOADING CONDITIONS. 
 

In the DHE system, fatigue crack data collected onboard 

through Module 1 is utilized to predict crack propagation. It is 

assumed that the detected cracks are in the stage II, as cracks 

identified during hull inspections are typically large enough to 

be categorized within this regime. The number of load cycles is 

determined using Equation 8. By combining Equations 4 and 8 

and performing integration, the crack length can be defined in 

closed form as a function of time T after the initiation of cracking 

[2]. Equations 9 and 10 provide the crack length prediction 

formulas for cases where the material constant m equals 2 and 

where it does not, respectively. Figure 7 presents a comparison 

of crack growth predictions obtained using the proposed 

formulas under varying material constants and loading 

conditions [19]. 
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365 24 60 60T
N T

t


   
= =  (8) 

where T is the time in years after the initiation of the cracking 

and t is the period of wave occurrences, usually assumed to be 

between 6 and 10 seconds. 

ⅰ) m ≠ 2 
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m
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  (9) 

ⅱ) m = 2 

2 2expoa C F T      (10) 

where ao is the initial crack size and a is the crack size at time T. 

 

 

3. PREDICTIVE HEALTH ANALYSIS WITHIN THE 
DHE SYSTEM – APPLIED EXAMPLE WITH A 
25,800 TEU CONTAINERSHIP POWERED BY 
SMRS 

 

3.1 Module Framework and Data Processing 
The predictive health analysis module (Module 5) within the 

DHE system integrates real-time monitoring data, predictions of 

time-variant in-service damage, advanced computational 

simulations, and maintenance scheduling algorithms. This 

module builds upon foundational inputs from earlier modules, 

including on-site monitoring (Module 1) and data transmission 

(Module 2). The collected data serves as the basis for 

formulating empirical models to predict time-dependent 

corrosion wastage and fatigue crack propagation, as detailed in 

Section 2. These predictions are then utilized in the module’s 

health analysis framework to optimize maintenance planning and 

extend the lifespan of aging vessels. 

 Considering the predicted in-service damage, CFD (or 

hydrodynamic analysis) and NLFEA are employed to compute 

the loads and load effects on aging hull structures. Kim and Paik 

[5] developed a digital twin model for aging containerships using 

MAESTRO software [20], which provides powerful tools for 

hydrodynamic analysis and NLFEA. This study employs the 

same software for the development of Module 5, focusing on 

predictive health analysis. Based on the loads calculated through 

hydrodynamic analysis, the residual ultimate strength of both 

local components (plates and stiffened panels) and global 

components (hull girders) is evaluated using NLFEA. 

ALPS/ULSAP [21] and ALPS/HULL [22] codes are specifically 

designed for the ultimate strength analysis of stiffened panels 

and hull girder structures, respectively. These tools are integral 

to the MAESTRO’s NLFEA process, providing precise ultimate 

strength and the failure modes of the structures. The 

hydrodynamic analysis and NLFEA modules within MAESTRO 

have been extensively validated in the literature [1,2,5,20-25]. 

Predictive health analysis offers valuable insights for 

structural health management, including trends in residual 

ultimate strength and key performance indicators (KPIs) such as 

remaining service life (RSL) and the safety factor η, which is 

defined in Equation 11. By integrating structural health data with 

considerations for maintenance costs and operational downtime, 

this module enables the recommendation of optimized 

maintenance schedules that enhance both efficiency and cost-

effectiveness. The overall process for predictive health analysis 

and future maintenance planning within Module 5 is illustrated 

in Figure 8.  

cr

C

D
 =   (11) 

where C  is the maximum load-carrying capacity (i.e., ultimate 

strength), D  is the applied loads,   is the safety factor, and 

cr   is the critical safety factor predefined by classification 

societies or operators for ensuring the structural safety.   

should always be greater than cr  to ensure the safety of the 

target structures. 

 

 
FIGURE 8: PROCESS FOR PREDICTIVE HEALTH ANALYSIS 

AND MAINTENANCE PLANNING IN MODULE 5 OF THE DHE 

SYSTEM. 

 

3.2 Applied Example: 25,800 TEU Containership 
Powered by SMRs 
The DHE system is expected to be highly effective for the 

lifetime healthcare of ship hull structures and will particularly 

prove its worth in the application to autonomous and/or 

advanced vessels. In this paper, a 25,800 TEU SMR-powered 

containership was selected as the target ship due to its significant 

capital expenditure (CAPEX) and the potentially catastrophic 

outcomes of accidents resulting from inadequate healthcare. This 

selection also reflects the growing demand for advanced 

healthcare systems capable of managing structural integrity in 

next-generation vessels, where extended service lives of up to 50 

years are considered to offset the increased CAPEX associated 

with green energy system, while enabling operation with 

minimal human intervention. 
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TABLE 1: PRINCIPAL DIMENSIONS OF THE 25,800 TEU SMR-

POWERED CONTAINERSHIP MODEL. 
Parameter Dimension 

Length between perpendiculars (LBP) 413.0 m 

Breadth (B) 61.4 m 

Depth (D) 33.1 m 

Draught (d) 18.5 m 

Block coefficient (Cb) 0.66 

Full load displacement ( ) 334,662 tonnes 

 

A three-dimensional model of the target vessel was 

developed as a case study to demonstrate the predictive health 

analysis capabilities within the proposed DHE system, as 

illustrated in Figure 9. Further details on the ship’s design can be 

found in Kim et al. [26]. The principal dimensions of the ship are 

provided in Table 1, and the ship was assumed to be fully loaded. 

For this analysis, the MAESTRO software was utilized to create 

the model and conduct hydrodynamic analysis as well as NLFEA 

for assessing structural health, as discussed in the previous 

section. 

 
(a) OVERALL VIEW 

 

 
(b) PROFILE VIEW 

 

 
(c) PLAN VIEW 

 

 
(d) BODY PLAN VIEW 

 

FIGURE 9: THREE-DIMENSIONAL MODEL OF THE 25,800 

TEU CONTAINERSHIP POWERED BY SMRS FOR 

HYDRODYNAMIC ANALYSIS AND NLFEA. 
 

The AI-enhanced DHE system is designed to provide 

comprehensive structural healthcare, addressing both local 

components and the global structure. Accordingly, predictive 

health analysis must be performed for all structural members. 

However, due to page limitations, a representative example was 

selected, focusing on 5 hull girder sections and 5 stiffened panels 

at the midship section to demonstrate the predictive health 

analysis, as shown in Figure 10. 

In the DHE system, wave profiles and in-service damage are 

measured on-site in real-time or at regular intervals – daily, 

weekly, or monthly – and transmitted to a land-based analytics 

center for further analysis. In this study, however, it is assumed 

that the data is already transmitted, as the focus is on illustrating 

the predictive health analysis within Module 5. The time-variant 

corrosion prediction models were developed for each structural 

component using the measurement data from Paik et al. [27], 

while crack propagation models were based on random initial 

crack sizes and material constants provided in ABS [19]. Ideally, 

however, both datasets should have been collected directly from 

the target ship for integration into the DHE system. For this 

analysis, it is also assumed that the ship is 5 years old and has no 

corrosion protection applied. 

 

 
(a) HULL GIRDER SECTIONS 

 

 
(b) STIFFENED PANELS AT MIDSHIP 

 

FIGURE 10: SELECTED HULL GIRDER SECTIONS AND 

STIFFENED PANELS FOR THE DEMONSTRATION OF THE 

PREDICTIVE HEALTH ANALYSIS WITHIN THE DHE SYSTEM. 
 

Figure 11 compares the predicted corrosion progress and 

crack propagation of the selected stiffened panels over time, as 

determined using the methods described in Section 2. The results 

indicate that both corrosion progress and crack propagation vary 

significantly based on the location of the stiffened panels, 

influenced by different environmental and loading conditions. 

Notably, crack propagation was found to be particularly rapid, 

often leading to failure within 5 years. Figure 12 shows examples 

of reduction trends in the ultimate strength of stiffened panels. 

The residual ultimate strength of the stiffened panels was 

calculated using ALPS/ULSAP, incorporating the effects of 

predicted corrosion wastage and fatigue crack propagation. In 

Figure 12, σu and σuo represent the residual ultimate strength and 

the intact ultimate strength, respectively. The results in Figures 

11 and 12 underscore that future structural safety issues can be 

effectively managed through the predictive health analysis in 

Module 5. 
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Figure 13 shows the ultimate strength reduction trends of the 

selected hull girder structures, derived from the predicted 

corrosion wastage progression. For this analysis, ALPS/HULL 

was employed to perform a progressive collapse analysis of the 

hull girder structures. Fatigue cracks were excluded from this 

analysis due to the lack of reliable measurement data. 

Consequently, the residual hull girder strength (Mu) in a real ship 

may be significantly lower than the results presented in Figure 

13, as evidenced by the pronounced impact of crack propagation 

on residual strength shown in Figure 12. 

 

 
(a) CORROSION WASTAGE PROGRESS 

 

 
(b) FATIGUE CRACK PROPAGATION 

 

FIGURE 11: PREDICTED CORROSION PROGRESS AND 

CRACK PROPAGATION IN THE SELECTED STIFFENED 

PANELS. 

 
FIGURE 12: REDUCTION TRENDS IN THE ULTIMATE 

STRENGTH OF STIFFENED PANELS. 

 

 
FIGURE 13: REDUCTION TRENDS IN THE ULTIMATE 

STRENGTH OF HULL GIRDER STRUCRURES. 
 

The prediction of the safety factor, as defined in Equation 

11, plays a crucial role in preventing catastrophic accidents 

caused by age-related degradation and harsh weather conditions. 

Both weather hindcast data and the results of residual ultimate 

strength analysis are utilized to estimate the safety factor of hull 

structures. Figure 14 presents a schematic example of the 

predictive health analysis conducted within Module 5, which is 

based on the safety factor derived from the predicted health data. 
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Module 5 of the DHE system is designed to provide early 

warnings about structural safety and deliver essential data for 

optimizing maintenance planning. In addition to the presented 

structural health data, the remaining service life (RSL) proves 

invaluable for proactive maintenance planning. The concept of 

RSL is applicable to various structural health parameters, as 

defined in Equation 12. By integrating these structural health 

insights with the maintenance cost optimization framework 

illustrated in Figure 15, Module 5 delivers a robust tool for 

ensuring structural safety and cost-effective maintenance 

strategies. 

crRSL
x x

x

−
=  (12) 

where x   is the structural health parameter (e.g., corrosion 

depth, crack length, and safety factor), crx   is the critical 

threshold of x , and x  is the degradation rate of x . 

 

 
FIGURE 14: A SCHEMATIC EXAMPLE OF THE PREDICTIVE 

HEALTH ANALYSIS CONDUCTED WITHIN MODULE 5. 

 
FIGURE 15: SCHEMATIC OF MAINTENANCE COST 

OPTIMIZATION.
 

 

4. CONCLUSION 
Aging ships and offshore structures face increasing risks due 

to age-related degradation, compounded by harsh ocean 

environments and extended inspection intervals, which 

challenge conventional structural health management strategies. 

The DHE system addresses these challenges by leveraging on-

site monitoring, data transmission, advanced digital twin models, 

AI-driven analytics, and predictive health analysis to provide 

continuous, high-resolution insights into structural health. 

This study introduced a predictive health analysis 

framework within Module 5 of the DHE system to provide early 

warnings on structural safety and critical data for optimizing 

maintenance planning. This framework incorporates time-

variant models for corrosion and fatigue crack propagation to 

predict structural degradation accurately. To demonstrate its 

applicability, the framework was tested using a hypothetical 

25,800 TEU SMR-powered containership model. The case study 

highlighted the effectiveness of the predictive health analysis in 

evaluating residual ultimate strength and safety factors, offering 

valuable insights for proactive maintenance and extending the 

service life of aging ships. However, as the AI-enhanced DHE 

system fundamentally relies on the measurement data obtained 

from Module 1, the reliability of Module 5’s predictive results 

may be reduced during the early operational stages before a 

sufficient dataset has been accumulated. Future studies should 

address practical approaches, such as incorporating historical 

data from similar vessels, to mitigate this limitation.  

The primary concern in nuclear shipping is the risk of 

radioactive contamination resulting from environmental 

extremes and accidents. Real-time monitoring and AI-enhanced 

DHE systems are essential to improve the safety and operational 

sustainability of SMR-powered aging ships—including hull 

structures, machinery, and seafarer well-being [28]. Future work 

will focus on completing the development of each DHE module 

and integrating them into a unified prototype. This prototype will 

be applied to an operating vessel to verify the system’s 

functionality and assess its accuracy under realistic conditions. 
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