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ABSTRACT

Accurate knowledge of galaxy redshift distributions is crucial in the inference of cosmological parameters from large-scale structure data. We
explore the potential for enhanced self-calibration of photometric galaxy redshift distributions, n(z), through the joint analysis of up to six two-
point functions. Our 3 X 2 pt configuration comprises photometric shear, spectroscopic galaxy clustering, and spectroscopic-photometric galaxy-
galaxy lensing (GGL). We expand this to include spectroscopic-photometric cross-clustering, photometric GGL, and photometric auto-clustering,
using the photometric shear sample as an additional density tracer. We performed simulated likelihood forecasts of the cosmological and nuisance
parameter constraints for stage-III- and stage-IV-like surveys. For the stage-IIl-like survey, we employed realistic redshift distributions with
perturbations across the full shape of the n(z), and distinguished between ‘coherent’ shifting of the bulk distribution in one direction, versus
more internal scattering and full-shape n(z) errors. For perfectly known n(z), a 6 X 2 pt analysis gains ~40% in figure of merit (FoM) on the
Ss = 05 VQn,/0.3 and Q,, plane relative to the 3 X 2 pt analysis. If untreated, coherent and incoherent redshift errors lead to inaccurate inferences
of S and Q,,, respectively, and contaminate inferences of the amplitude of intrinsic galaxy alignments. Employing bin-wise scalar shifts, dz;, in
the tomographic mean redshifts reduces cosmological parameter biases, with a 6 X 2 pt analysis constraining the dz; parameters with 2—4 times the
precision of a photometric 3P x 2 pt analysis. For the stage-IV-like survey, a 6 X 2 pt analysis doubles the FoM (03—Q;,,) compared to the 3 x 2 pt
or 3P x 2 pt analyses, and is only 8% less constraining than if the n(z) were perfectly known. A Gaussian mixture model for the n(z) is able to
reduce mean-redshift errors whilst preserving the n(z) shape, and thereby yields the most accurate and precise cosmological constraints for any
given N X 2 pt configuration in the presence of n(z) biases.
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1. Introduction amount of matter in the Universe today, Qy,, and its degree
of clustering, parameterized by og (the root mean square of
the density contrast in spheres of radius 8/~' Mpc). Matter
inhomogeneities source lensing convergence and shear fields
that correlate with the cosmic density field. By sampling
these fields at the positions of galaxies, one can probe den-
sity fluctuations in the aggregated dark and luminous matter
distribution. The ‘3 X 2 pt’” method, which jointly analyses the
auto- and cross-correlations of lensing and density fields, aids
with the breaking of the 03—, degeneracy, and has begun to
. . . yield cosmological parameter constraints that are competitive
shapes in order to measure shear correlations at a sufficient with the ones obtained via analyses of the cosmic microwave

signal-to-noise ratio (S/N) to constrain the underlying cos- background (CMB) temperature and polarization anisotropies
mology (Joudaki et al. 2017a; Hamana et al. 2020; Asgari et al. (Bernstein 2009: Joachimi & Bridle 2010; Krause & Eifler

2021; Secco et al. 2022; Amon et al. 2022; Longley et al. 2023).  517. Joudaki et al. 2018; van Uitert et al. 2018: Abbott et al.

The next stage of experiments will expand on this endeavour by 2018, 2022; Heymans et al. 2021). It has also been suggested
observing billions of galaxies. ; ;

Constraints derived from the lensing effect alone are sub-
ject to a strong degeneracy (Jain & Seljak 1997) between the

Modern analyses of the large-scale structure (LSS) of the
Universe frequently combine different cosmological probes
to maximally leverage the available information, and break
degeneracies between key parameters of the concordance
model. One of the most powerful probes in use today is
the weak gravitational lensing of light from distant galaxies
(Bartelmann & Schneider 2001). The coherent ellipticity distor-
tions induced by weak lensing modify galaxy isophotes at the
percent level. We therefore require many millions of galaxy

that the cross-correlation of lensing and galaxy fields breaks
the degeneracy between galaxy bias and the growth rate, which
allows for stronger constraints on cosmic expansion scenarios
(Bernstein & Cai 2011; Gaztafiaga et al. 2012; Cai & Bernstein

* Corresponding authors: harrysj100@gmail . com; 2012). However, whether these gains are present for any other
n.e.chisari@uu.nl; shahab. joudaki@ciemat.es fundamental parameters or for calibrating lensing systematics
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has been unclear so far (Font-Ribera et al. 2014; de Putter et al.
2014). In principle, different tracers are sensitive to different red-
shift kernels, allowing for some of the degeneracies to be broken.

The increased precision of these constraints has revealed
a mild tension between the late- and early-Universe deter-
minations of the matter clustering parameter combination
Ss = og Vv, /0.3, for which the CMB predicts a present-day
value that is 2—30 larger than the one observed by lensing
experiments (Joudaki etal. 2017a,b, 2020; Hildebrandt et al.
2017; Leauthaud et al. 2017; Hikage et al. 2019; Hamana et al.
2020; Asgari et al. 2020; Troster et al. 2021; Secco et al. 2022;
Amon et al. 2022; Li et al. 2023; Dalal et al. 2023; More et al.
2023; Miyatake et al. 2023; Sugiyama et al. 2023). Resolving
this tension, whether by better understanding experimental
or theoretical limitations and assumptions (Longley et al.
2023; Dark Energy Survey and Kilo-Degree Survey
Collaboration 2023), or with new physics (see Di Valentino et al.
2021; Joudaki et al. 2022; Abdalla et al. 2022, and references
therein), is a primary goal of LSS cosmology. To this end,
upcoming surveys are already making significant efforts
towards implementing the 3 X 2 pt methodology within their
analysis pipelines (Chisari et al. 2019a; Blanchard et al. 2020;
Tutusaus et al. 2020; Sanchez et al. 2021; Prat et al. 2023).

In preparation for the next generation of experiments,
the control of systematic errors in weak lensing anal-
yses is more important than ever. The Euclid satellite
(Euclid Collaboration: Mellier et al. 2025), the Vera C. Rubin
Observatory (Ivezic et al. 2019), the Nancy Grace Roman Space
Telescope (Spergel et al. 2015), the Canada-France Imaging Sur-
vey (CFIS-UNIONS; Aycoberry et al. 2023), and the Chinese
Space Station Telescope (CSST; Gong et al. 2019) will have to
outperform their predecessors with regards to the effects and
mitigation of photometric redshift uncertainty, intrinsic align-
ments of galaxies, baryonic feedback, shear mis-estimation,
magnification bias, covariance mis-estimation, and various other
sources of error. Of particular concern in recent years is the
calibration of lensing source sample redshift distributions, n(z)
(Mandelbaum et al. 2018; Joudaki et al. 2020; Schmidt et al.
2020; Euclid Collaboration: Desprez et al. 2020).

External calibration of photometric redshift distributions
is an active field of research, and can be broadly cat-
egorized as using spectroscopic or high-quality photomet-
ric reference samples (e.g. Laigle etal. 2016; Padilla et al.
2019; Weaver et al. 2022; van den Busch et al. 2022) to either
infer galaxy colour-redshift space relations (Hildebrandt et al.
2012, 2020, 2021; Leistedtetal. 2016a; Hoyle et al. 2018;
Séanchez & Bernstein 2019; Hikage et al. 2019; Wright et al.
2020), or to measure positional cross-correlations (Newman
2008; Ménard et al. 2013; de Putter et al. 2014; Johnson et al.
2017; van den Busch et al. 2020; Gatti et al. 2022), or some
combination thereof (Alarconetal. 2020; Rauetal. 2021;
Myles et al. 2021). Newman & Gruen (2022) review the recent
literature on photometric redshifts and their challenges. While
spectroscopy remains too expensive to provide an accurate red-
shift for every observed object, the modelling of lensing statistics
only requires accurate knowledge of the redshift ‘distributions’
of source galaxy samples (Bernardeau et al. 1997; Huterer et al.
2006), rather than redshift point-estimates. Residual inaccura-
cies in the inferred redshift distributions are then typically mod-
elled with nuisance parameters that are internally calibrated by
the measured statistics, and marginalized over in the cosmologi-
cal parameter inference.

The now-standard 3 X2 pt formalism combines cosmic shear,
galaxy-galaxy lensing (GGL), and galaxy clustering correla-
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tions, wherein positional samples are chosen to be the ones with
spectroscopic redshift (or high-accuracy photo-z) information.
Upcoming surveys are also considering leveraging the informa-
tion in the clustering of photometric samples with low-quality
photo-z (Nicola et al. 2020; Tutusaus et al. 2020; Sanchez et al.
2021). The prospective gains would be in area coverage, red-
shift baseline, and the number of objects, where the latter two
increase greatly on approach to the survey magnitude limit. The
concern lies in having control over spatially correlated, sys-
tematic density fluctuations induced by survey inhomogeneities
(Leistedt et al. 2013, 2016b; Leistedt & Peiris 2014; Awan et al.
2016). However, new methodologies are now bringing this
control within reach (Alonso et al. 2019; Rezaie et al. 2020;
Johnston et al. 2021; Everett et al. 2022).

In either of those 3 X 2pt strategies, redshift calibration
remains a primary challenge. Collecting representative spectro-
scopic samples is currently infeasible at the depth of upcom-
ing surveys (Newman et al. 2015). Clustering-based redshift
calibration techniques are then expected to be prioritized over
calibration with deep spectroscopic data (Baxter et al. 2022).
However, this method can also suffer from some limitations
coming from systematic errors in spectroscopic clustering mea-
surements, sensitivity to an assumed cosmology, and cluster-
ing bias evolution, to name a few examples (Newman 2008).
However, the photometric data themselves can also be used to
avoid systematic biases or loss of precision. Schaan et al. (2020)
demonstrated, for example, that photometric redshift scatter
and outliers yield detectable clustering cross-correlations across
redshift bins in photometric samples. These can improve the con-
straints on redshift nuisance parameters by an order of magni-
tude. This work takes a step further by exploring the possibility
of enhancing internal redshift re-calibration through the inclu-
sion of spectroscopic-photometric cross-correlations as addi-
tional probes within a joint analysis of two-point statistics. We
propose extending the 3 X 2 pt formalism to include the cross-
clustering of spectroscopic and photometric samples (4 X 2 pt),
as well as the GGL and galaxy clustering measured within all-
photometric samples, for a maximal 6 X 2 pt analysis.

Our analysis takes the form of a full simulated likelihood
forecast for a current (stage III) weak lensing survey, and a
complementary, simpler forecast for the upcoming generation
of surveys (stage IV). We compute all unique cosmological
and systematic contributor (intrinsic alignments, magnification)
angular power spectra, C({), within and between two tomo-
graphic galaxy samples: a photometric sample tracing both the
shear and density fields, with an uncertain redshift distribution to
be modelled; and a spectroscopic sample tracing only the density
field, and with a known redshift distribution.

We explore synthetic source distributions, n(z), with vari-
ations over the full shape of the function, choosing distri-
butions for analysis that are ‘coherently’ shifted in terms of
tomographic mean redshifts (all mean-redshift differences have
the same sign), or ‘incoherently’ shifted (signs can be mixed),
where calibration errors of the former kind are expected to man-
ifest more strongly in Sg (Joudaki et al. 2020). We attempt to
recover these shifted distributions through internal recalibration
at and/or before the sampler stage, employing a selection of
nuisance models for the task: scalar shifts, dz;, to be applied
to the means of tomographic bins (e.g. Joudaki et al. 2017a;
Asgari etal. 2021; Amon et al. 2022); flexible recalibration
with the Gaussian mixture ‘comb’ model (Kuijken & Merrifield
1993; Stolzner et al. 2021), with and without additional scalar
shifts; and a ‘do nothing’ model for characterizing the cosmo-
logical parameter biases incurred by different modes of redshift



Johnston, H., et al.: A&A, 699, A127 (2025)

distribution calibration failure. A first observational demonstra-
tion of the viability of the comb marginalization procedure was
provided in Stolzner et al. (2021), applied to stage III cosmic
shear data. This work showed that an iterative calibration method
of the comb amplitudes results in a good fit to the KV-450 cos-
mic shear data vector (the y? even improves by 1%). To achieve
convergence both in the n(z) parametrization and cosmology,
one starts from an already well-calibrated n(z) distribution and
covariance.

Here, we report on the suitability of these redshift nui-
sance models for stage III and stage IV weak lensing analy-
ses, and on the gains in accuracy and precision of cosmological
inference to be derived from the inclusion of additional two-
point correlations in the 6 X 2 pt analysis. In addition, we show
how photometric redshift nuisance parameters can couple to
other astrophysical systematics; namely, intrinsic galaxy align-
ments (Wright et al. 2020; Fortuna et al. 2021; Li et al. 2021;
Secco et al. 2022; Fischbacher et al. 2023; Leonard et al. 2024).

This paper is structured as follows. Sect. 2 describes our
modelling of the harmonic space two-point functions that form
our analysis data-vector. Sect. 3 details our synthetic data prod-
ucts, and we present our forecasting methodology in Sect. 4.
Sect. 5 displays and discusses the results of our forecasts, and
we make concluding remarks in Sect. 6.

2. Theoretical modelling of two-point functions

The two-point functions considered as part of the data-vector
in this work include all unique cross- and auto-angular power
spectra between the positions of the spectroscopic sample
and the positions and shapes of the photometric sample. For
the spectroscopic sample, we restrict the analysis to angular
power spectra (as opposed to the redshift-space multipole treat-
ments of for example Gil-Marin et al. 2020; Bautista et al. 2021;
Beutler & McDonald 2021) due to limitations in the analytical
computation of the covariance between multipoles and angular
power spectra, which we defer to future work (however, also see
Taylor & Markovic 2022).

2.1. Angular power spectra in the general case

The angular power spectrum of the cross-correlation between
galaxy positions (n) in two tomographic galaxy samples (, ) is
given by several contributions deriving from gravitational clus-
tering (g) and lensing magnification (m),

Cal(l) = C () + CHA(0) + Ceh () + C (0). 2.1

The indices, a, 8, each run over the set of unique radial kernels
employed in the analysis of N, photometric and N, spectroscopic
redshift samples.

Throughout this analysis, we made use of the Limber
approximation (Limber 1953; Kaiser 1992; LoVerde & Afshordi
2008) in the computation of the angular power spectra. Although
the Limber approximation is known to be insufficient for the
level of accuracy required by future surveys, especially in the
context of clustering cross-correlations across tomographic bins
(Campagne et al. 2017), the computational cost of performing
non-Limber computations of angular power spectra is currently
prohibitive. In the near future, we expect our pipeline to be
extended in this direction as new, fast, validated methods become
suitable for embedding into full-likelihood analyses.

For now, we have limited our analysis to scales £ > 100
(Joachimi et al. 2021). We also neglected to include contribu-
tions derived from redshift space distortions (RSDs; Kaiser

1987), which should be small for these scales and principally
affect the tomographic cross-correlations (Loureiro et al. 2019).
Lastly, we restricted the clustering analysis to scales were the
bias can be approximated as being linear (see Sect. 2.4 for details
of other approximations made in this work).

Under the Limber approximation in Fourier space, the con-
tribution attributed to pure gravitational clustering is

XH
Can(0) = f dy
0

where yy is the co-moving distance to the horizon, bg and bg
are the linear biases of the galaxy samples, n, and ng are the
normalized redshift distributions of each sample, fx(y) is the co-
moving angular diameter distance, and Ps is the matter power
spectrum.

In addition, lensing magnification induces apparent excesses
or deficits of galaxies above the flux limit of a survey due to the
conservation of surface brightness of the lensed sources. Fur-
thermore, the observed angular separation of galaxies behind the
lenses are increased, diluting their number density. As a result,
galaxy number counts pick up an additional contribution which
is cross-correlated with the physical locations of galaxies that act
as lenses. The result is three additional terms in the nn angular
power spectra: the magnification count auto-correlation, ‘mm’,

¢ f*ﬂ 1, B30 (f+1/2, );
U S v e e

and the magnification count—number count cross-correlations,

‘mg’ and ‘gm’,
i GaOOBans(x) | (€+1/2
cf;ﬁfzqu : P( )
g() 0 Ly f]%(/\/) 5 fK(X) X

where the gm term was constructed in exact analogy to the mg
term by swapping the indices @ and 8. Magnification kernels,
Go(x), were derived from the respective lensing efficiency ker-
nels, q,(y), which are given by

bgnp,(x)bﬁnﬁcwp (t’ +1/2 ) 02

7200 o ¥

(2.3)

2.4)

3Q,H2
00 = o L[ gy I, 5)
Multiplying F,m(y) within the integrand of Eq. (2.5),
Frm() = 55:00) =2 = 2(a:(x) - D (2.6)

yields the magnification kernel g,(y). For tomographic sample,
x, $,(x) is the logarithmic slope of the magnitude distribution
(e.g. Chisari et al. 2019a), and @,(y) is that of the luminosity
function (e.g. Joachimi & Bridle 2010) — not to be confused with
the tomographic bin index, . For computations of F,n(y), we
made use of the fitting formula for @ given by Joachimi & Bridle
(2010) (their Appendix C), assuming a distinct limiting r-band
depth, rjin, for each of our synthetic samples (defined in Sect. 3).
The shape (y) auto-spectrum is similarly given by several
contributions,
ng(f) ({’) +Cy (f) +Cyt (é’) +Cyf o), 2.7)

where ‘GG’ indicates a pure gravitational lensing contribution,
given by

YH
GAGE f dy
0

9200 qp(x) P, (15 +1/2 ) 2.8)

X
£ fx00)
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The ‘I’ terms in Eq. (2.7) are well known to arise from
intrinsic (local, tidally induced, as opposed to lensing-induced)
alignments of the galaxies with the underlying matter field
(Catelan et al. 2001; Hirata & Seljak 2004). These terms are
known to cause biases in cosmological constraints if unac-
counted for (Joachimi & Bridle 2010; Krause etal. 2016;
Joudaki et al. 2017a). Moreover, they are expected to absorb
residual biases in photometric sample redshift calibration if the
nuisance model for alignments is too flexible and/or not specific
enough (Wright et al. 2020; Fortuna et al. 2021; Li et al. 2021;
Fischbacher et al. 2023).

The ‘GI’ contribution represents the lensing of background
galaxy shapes by the same matter field that is responsible for the
intrinsic alignments of foreground galaxies. This is given by

, W gm0 L1/
Car 0 :fo d f,%@j) IR )

and the case of ‘IG’ was analogously constructed by swapping
the indices @ and 8. Fia(y) represents an effective amplitude
of the alignment of galaxies with respect to the tidal field as
a function of co-moving distance. Although this formalism is
strictly linear, it is common to use the nonlinear matter power
spectrum in the computation of intrinsic alignment correlations
(Bridle & King 2007).
The ‘I’ contribution in Eq. (2.7) is given by

, W GOns00) 412
G0 :fo de f,%@f) 0 )

and represents the auto-correlation spectrum of galaxies aligned
by the same underlying tidal field; it is thus expected to con-
tribute more weakly to tomographic shear cross-correlations
than the GI term, which can operate over wide separations in
redshift.

The cross-correlation of lens positions and source shears
forms the GGL component of the 3 x 2 pt analysis. This has sev-
eral components:

Cg,’f({’) (f) + C (5) + C g0+ C (f)

Fia(x)Ps ( 2.9)

Fi (x)Ps ( (2.10)

@2.11)

where the gG’ term is the cross-correlation of galaxy positions
and the shear field and is given by

i banaQOge(x) (€4 1/2
C* ) = f dy— P ( , )
wO= | a0 fetn ¥

The ‘gl’ term in Eq. (2.11) arises through the cross-correlation of
lens positions with source intrinsic alignments, and is expected
to be non-zero only when the distributions n,,ng are overlap-
ping. This is given by

N i bgng(Y)ng(x) £+1/2
Ca(0) = f dy—=———Fia()Ps (—

felo) Sk

The lensing magnification-induced number counts contribution
in the foreground is also correlated with the background shears,
creating the ‘mG’ term which is given by

X Ge(aplx) | [+ 1/2
(¢ =f 4y 29X ( : )
L e ) e ¥

Finally, the magnification-induced number counts contribution
yields an additional, weak cross-correlation with the intrinsic
alignments’ contribution to the shapes, ‘ml’, given by

o M Go(ng(x) £+1/2
0= [ g (L2 )
m = % e Feto ¥
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(2.12)

X). 2.13)

(2.14)

FIA(X)P(}‘( (2.15)

2.2. Spectrum modelling choices

For our fiducial true Universe, we adopted the best-fit flat-A
cold dark matter (ACDM) cosmology from Asgari et al. (2021)
(their Table A.1, Col. 3; see also our Sect. 4 and Table 3),
constrained by cosmic shear band-power observations from the
public 1000 deg® fourth Data Release of the Kilo Degree Sur-
vey (‘KiDS-1000’ Kuijken et al. 2019). Following Asgari et al.
(2021), we modelled intrinsic alignments via the ‘non-linear lin-
ear alignment’ (NLA; Catelan et al. 2001; Hirata & Seljak 2004;
Bridle & King 2007; Joachimi et al. 2011) model. This specifies
the alignment kernel as

F =-A

1AY) = —A1Cipait 75— D, (X)
where C; is a fixed normalization constant (Bridle & King 2007)
and D, (y) is the linear growth function, normalized to 1 today
(Joachimi et al. 2011). A; was constrained to 0. 973+8 %gg by
Asgari et al. (2021), though they (and Loureiro et al. 2022, who
studied pseudo-C,’s) saw that the best-fit alignment amplitude
varied for different cosmic shear statistics.

In dealing with the biased photometric sample redshift
distributions described in Sect. 3, we allowed for the distri-
butions', n,(z), to be recalibrated according to widely used
(e.g. Joudaki et al. 2017a; Hikage et al. 2019; Asgari et al. 2021;
Amon et al. 2022; Secco et al. 2022) bin-wise displacements of
the mean redshifts, 0z;. These displacements were applied for
tomographic bin 7 as

0zi),

(2.16)

ni(z) = ni(z - (2.17)

and were constrained by the two-point correlation data, and by
Gaussian priors, the derivations of which are described in Sect. 3.
We refer to this approach as the ‘shift model’, to be contrasted
with a lack of nuisance modelling (the ‘do nothing’ model), and
with the Gaussian mixture ‘comb’ models described below.

For the linear, deterministic galaxy biases, bg, per-
tomographic sample, @, we assumed a single functional form
for the true bias, setting fiducial values for a magnitude-limited
sample according to Mandelbaum et al. (2018):

by =0.95/D+((2),), (2.18)

which was evaluated at the mean redshift, (z), for each sample
redshift distribution, n,(z). This bias model was used up to an
{max compatible with ky.x = 0.3 4 Mpc‘l (see Sect. 4). Although
we did not expect galaxy bias to remain linear up to this scale
(Joachimi et al. 2021), we generated the data vector and anal-
ysed it with the same bias model, which still allowed us to draw
comparisons across our different probe combinations and red-
shift error scenarios, and reduces computational expense. While
the fiducial redshift-dependent bias model is the same for lenses
and sources, in practice the bias parameters are varied per bin
within a large prior range of [0.5, 9]. Pandey et al. (2025) inves-
tigated the impact of redshift evolution of the bias in the context
of stage IV surveys and they showed that shifts induced in the
cosmological parameters from ignoring this effect can be miti-
gated by including cross-correlations between redshift bins. As
those are already included in our forecast, we would expect that
even if modelled, the redshift evolution would be properly miti-
gated.

The matter power spectrum was emulated with CosmoPower
(Spurio Mancini et al. 2022), relying on the Boltzmann code

' Notice that we work here in redshift space, while n(y) = n(z) dz/dy,
which requires a model for the expansion of the Universe.
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CAMB (Lewis et al. 2000; Howlett et al. 2012) and a correc-
tion for the effects of baryons following HMCode (Mead et al.
2015; Mead 2015). The amplitude of the matter power
spectrum was effectively parametrized by A, the primor-
dial power spectrum amplitude, although we sampled over
In(10'°A;) as it is more convenient for our implementation of
CosmoPower (and is a more commonly used sampling vari-
able; e.g. Planck Collaboration VI 2020 — for an assessment of
the impact of this choice, see Joudaki et al. 2020). In contrast
to Asgari et al. (2021), we assumed a cosmology with mass-
less neutrinos. This was mainly chosen to reduce the compu-
tational cost, but we note that it would be valuable to explore the
constraining power of (4—6) X 2 pt statistics on neutrino mass
(e.g. Mishra-Sharma et al. 2018).

To account for the suppression of the matter power spec-
trum at small scales due to baryons (van Daalen et al. 2011;
Chisari et al. 2019b), we used the HMCode2016? halo mass-
concentration relation amplitude parameter, Ap,ry, and followed
Joudaki et al. (2018) in setting the halo bloating parameter,
Moary = 0.98-0.12Ap4y. For the true Universe, we assumed
Apary = 2.8, differently to the best-fit Apyy = 3.13 from
Asgari et al. (2021) as the latter corresponds to a dark matter-
only Universe, and we prefer to include some baryonic contribu-
tions in the fiducial data-vector. We note that Ap,ry Will in prac-
tice only be weakly constrained by stage-III-like forecasts, for
which it is principally a parameter that will allow us to capture
uncertainties in the modelling of the non-linear matter power
spectrum. For stage-IV-like configurations, it is expected that
baryonic feedback models should start to see meaningful con-
straints from weak lensing and combined probe analyses such
as these — though a detailed investigation of hydrodynamic halo
model constraints is beyond the scope of this work.

All of the observable two-point functions were calculated
using the Core Cosmology Library (CCL)* (Chisari et al. 2019a)
in ‘calculator’ mode. As was previously mentioned, we did not
include RSDs in our modelling due to constraints related to non-
Limber computations. However, photometric surveys are known
to be sensitive to RSDs (Ross et al. 2011; Tanidis & Camera
2019), which should therefore be included in follow-up work.

2.3. Angular power spectra for the Gaussian comb

The Gaussian ‘comb’ model decomposes the redshift distribu-
tion of a given tomographic bin of the photometric sample into
a sum over Ng Gaussian basis functions of fixed-width and uni-
formly spaced centres. Mathematically,

No

no() = ) ATni(2),

i=1

(2.19)

for tomographic sample @, where amplitudes, A;, must sum to
unity for each sample, @, and each Gaussian basis function is
given by (Stolzner et al. 2021)

R L3 z)?
V(Zi, O comb) P 202 ’

comb

ni(z) = (2.20)

where z; and o.omp are the centre and width of basis function
n;(z), and the normalization over the interval z € [0, o] is given

2 We do not make use of the latest version, HiICode2020 (Mead et al.
2021), as it was comparatively less well tested within CosmoPower at
the start of our analysis.

3 CCL version: 2.3.1.dev7+ge9317b4f.

by

2
Wz, 0) = \/gz,'aerf(—j_—z') + 0% exp {—%},
o

where o = oomp. The concatenated vector of @ tomographic
redshift distributions is then rn¢omp(z), which we can fit to an arbi-
trary redshift distribution, N(z), with associated covariance, X,
(see Sect. 3.1.1), by varying amplitudes, d, = In A, to minimize

the )(i(z) given by

221

X}%(z) = Z (ncomb,k - Nk) E;(lz),kl (ncomb,l - Nl), (2.22)

k1l

where k, [ index the elements of the concatenated redshift distri-
bution vectors and the covariance, %,). We refer to this model
distribution as the ‘initial comb’ model, n¢omp ini(z), Which can
be used directly in theoretical computations of angular power
spectra (e.g. Eq. (2.2)).

Taylor & Kitching (2010) and Stolzner et al. (2021) detailed
the construction of analytical expressions for the two-point func-
tion likelihood, with marginalization over some nuisance param-
eters (the comb amplitudes) given a prior. They also derived
expressions for the displacement in the sub-space of nuisance
parameters from the peak of the likelihood, dependent upon
derivatives of the log-likelihood with respect to those param-
eters. Minimizing that displacement by iteratively varying the
amplitudes (and cosmological or other parameters, when the
fiducial set is unknown); recomputing angular power spectra;
and evaluating the likelihood derivatives, one obtains the ‘opti-
mized comb’ model 7comp,opt(2)-

During the initial fitting (Eq. (2.22)), comb amplitudes,
Al are often seen to be consistent with zero, leading to con-
cerns about the suitability of Gaussian priors for the param-
eters, a,. Taylor & Kitching (2010) also give expressions for
flat priors, but these too are difficult to motivate; the choice of
a lower boundary in the range [—oo,0] is somewhat arbitrary
for a 1-d likelihood that asymptotes to a constant as dy, —
—oo, and yet it is highly consequential for the marginaliza-
tion. We therefore defer a full 6 x 2 pt application of the comb
model (with optimization and marginalization as demonstrated
by Stolzner et al. 2021) to future work, for which an extension
to describe spectroscopic-photometric cross-correlations is cur-
rently under development.

Meanwhile, we obtained the optimized comb model,
Ncomb,opt(2), in this work by varying comb amplitudes, d,,, to min-
imize the fiducial two-point, )(12,, given by

= (di - ) 25 (d; - ),

ij

(2.23)

for data- and theory-vectors, d and p, respectively, and data-

vector covariance Z (Sect. 2.5), each indexed by i, j. The comb

optimization procedure is thus:

1. Begin with some data-vector, d, sourced from an unknown
redshift distribution, n(z);

2. Fit an initial comb model, rcombini(z), directly to a possibly
biased ‘estimate’ of the distribution, N(z), with its associated
covariance, X, );

3. Estimate the theory-vector, g, using ncomb ini(2);

4. Minimize Eq. (2.23) by adjusting the comb amplitudes, d,,
resulting in an optimized comb model, 7¢omb,0pt(z), Which has
been flexibly recalibrated against information from the data-
vector.
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The amplitudes, a,, of the optimized comb model, Tcomb,opt(2)
were then fixed during the sampling of cosmological and nui-
sance model parameters. This iterative procedure allows us to
reduce the computational expense of varying comb amplitudes
at the same time one samples the likelihood.

We henceforth refer to this method as the ‘comb model’,
denoted as N¢omp. In practice, however, we still seek to marginal-
ize over some uncertainty in the redshift distribution, and do so
through combination with the commonly used shift model (6z;;
described in Sect. 2.1), whereby scalar shifts are applied via
Eq. (2.17) to the optimized comb model n¢omp,opt(z) during like-
lihood sampling, and later marginalized over. We refer to this
hybrid as the ‘comb + shift’ model, denoted as Neomp + 0z;. As
we shall see in Sect. 4, the comb models reveal the insufficiency
of the shift model for application to photometric density statis-
tics, whilst also offering generally superior recoveries of the true
lensing efficiency kernel g(y).

2.4. Approximations

Over the course of this work, we found that extended-analysis
inference simulations were particularly slow to converge, with
6 x 2 pt chains potentially taking multiple weeks to reach con-
vergence, even when using fast nested sampling algorithms such
as MultiNest (Feroz & Hobson 2008; Feroz et al. 2009, 2019).
This is primarily due to rapidly decreasing acceptance fractions
that become extremely small, O (10‘2), on the approach to con-
vergence (to be discussed in Sect. 5.5), and the large number of
Limber integrations required to fully characterize the enlarged
theory-vectors.

This computational demand led us to the approximations
already discussed: one-parameter linear galaxy bias and align-
ments; emulated matter power spectra with a one-parameter
baryonic feedback model; Limber-approximate angular power
spectra without RSDs; and massless neutrinos. Many of these
choices are insufficient to describe the real Universe with the
accuracy required by future surveys, but together they greatly
increase the speed of the likelihood evaluation. Given that we
applied scale cuts to density probes, which lessen the impact
of these choices (Sect. 4; Eq. (4.1)), and given our intention
to investigate the potential gains from 6 X 2pt ‘relative’ to
(1-3) x 2 pt analyses, we made some further approximations in
our application of kernel modifiers for intrinsic alignment and
magnification contributions to enhance the computational speed.

To reduce the required number of integrations over y, we
made the following transformations:

Fia(y) = Fia = Fia(x((2)))
Fx,m()() - Fx,m = 2(ax((2)) - 1),

where Fin was evaluated at the mean of the kernel product
n(x)q(x), or n(x)n(y), and F,, took the luminosity function
slope, @,({z)), at the mean redshift of sample x (see Appendix A
in Joachimi & Bridle 2010, where the slope is evaluated at the
sample median redshift). Provided that the Limber integration
kernels (Sect. 2.1) have relatively compact support — as is the
case for narrow spectroscopic bins (Sect. 3), but less so for broad
photometric bins — these approximations will not yield unrealis-
tic spectra, at least in the context of linear models for IA and
magnification.

An illustration of these, and the linear galaxy bias approx-
imations, is given in Fig. 1, where our mock stage III photo-
metric and spectroscopic redshift distributions (to be described
in Sect. 3) are reproduced in each panel and overlaid with the

(2.24)
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functional forms for by(z), Fxm(z), and Fia(z). Circular points
atop each curve mark the mean redshifts of photometric (black)
or spectroscopic (colours) redshift samples, at which the galaxy
bias and magnification kernels are evaluated (Fa(z) is evaluated
at the means of kernel products).

We find that the Fi5 approximation results in cosmic shear
spectrum (Eq. (2.7)) deficits of <0.03c, for the uncertainty, o,
on each respective shear signal (see Sect. 2.5 for details on sig-
nal covariance estimation). Interestingly, the F, , approximation
is comparatively more consequential; through scale-dependent
modifications to mg/gm (mm is largely unaffected) contribu-
tions (Eq. (2.4)), the total clustering signals (Eq. (2.2)) are sup-
pressed by 0.050—0.80, dependent upon the tomographic bin
pairing, and most severely at high-£. Our application of scale-
cuts thus reduces the proportion of strongly suppressed points
entering the data-vector — only a slim minority of our anal-
ysed clustering C(£)’s are suppressed by more than 0.30", and
the majority of clustering S/N comes from relatively unbiased
points. We note that number counts from lensing magnification
are commonly modelled according to such averages over a,(y)
(Garcia-Fernandez et al. 2018; von Wietersheim-Kramsta et al.
2021; Mahony et al. 2022a; Liu et al. 2021). It is likely that
future analyses will need to explicitly integrate over the magni-
fication kernel in order to accurately model these contributions
(see also the recent work of Elvin-Poole et al. 2023, for a more
rigorous treatment of magnification bias in samples with com-
plex selection functions). We emphasize that the inaccuracies
induced by our approximations apply to all forecasts under con-
sideration, such that we make like-with-like comparisons when
analysing the results for different two-point probe combinations.

With linear factors extracted from the Limber integrals, we
are able to reduce the number of required Limber integrations by
about an order of magnitude by reusing the ‘raw’ angular power
spectra for each unique kernel product, n,(x)ng(x), n.(x)qs(x),
or go(x)qp(x). Each is then re-scaled by relevant factors of by,
Fia, andfor F,,, correspondingly to produce appropriate spec-
tral contributions for each probe. Thus, we give up some small
amount of realism from explicit integrations over various ker-
nels describing the different density, magnification, shear, and
alignment contributions, in exchange for large gains in com-
putational speed through the reuse of factorisable Limber inte-
grations. Sampling in parallel with 40-48 cores, the resulting
stage III chains take hours (sometimes less than one) to con-
verge for (1-3) X 2 pt, and up to a few days for 6 X 2 pt, which is
tractable for our purposes here.

We recommend that future work make use of emulators for
Boltzmann computations, and explore the possibility of extend-
ing the emulation to the level of C,’s or other observables. We
particularly recommend this in the context of extended models
with additional parameters, for example, for IA (Blazek et al.
2019; Vlahetal. 2020) and galaxy bias (Modietal. 2020;
Barreira et al. 2021; Mahony et al. 2022b), and of such theoreti-
cal developments as non-Limber integration for the utilization of
large-angle correlations (e.g. Campagne et al. 2017; Fang et al.
2020), each of which is likely to prove especially costly for joint
analyses of multiple probes (Leonard et al. 2023).

2.5. Analytic covariance estimation

We assume a Gaussian covariance throughout this analysis, since
Gaussian contributions should dominate the error budget for
the scales that we consider (Sect. 4; Eq. (4.1)). We homoge-
nize the analysis choices and approximations across our forecast
(Sect. 2.4) and make like-with-like comparisons when quoting
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Fig. 1. Top left: Photometric (black curves and thin faint curves, corresponding to different realizations of the redshift distribution; described in
Sect. 3.1.1) and spectroscopic (coloured curves) tomographic redshift distributions utilized in this work (described in Sect. 3) for a stage III survey.
Top right: Galaxy bias function (blue curve; Eq. (2.18)) used to define the true galaxy bias, bg, for each tomographic redshift sample. Bottom left:
Magnification bias functions, Fy,(z) (Eq. (2.6)), used to calculate lensing contributions to galaxy number count kernels (Sect. 2.1), shown on a log-
linear axis with transitions at +1. The faint-end slope of the luminosity function is estimated via the fitting formulae of Joachimi & Bridle (2010),
taking the r-band limiting magnitude ry, = 24.5 for the photometric (blue curve) and r, = 20.0 for the spectroscopic (dashed orange curve)
synthetic galaxy samples. Bottom right: Intrinsic alignment power spectrum prefactor function Fi,(z) (blue curve; Eq. (2.16)) used to approximate
matter-intrinsic and intrinsic-intrinsic power spectra for the computation of intrinsic alignment contributions to the shear and GGL correlations.
The galaxy bias by(z) and magnification bias Fi,(z) functions are evaluated for each tomographic sample i at the mean redshift (z); of the sample,
denoted by black (photometric) or coloured (spectroscopic) points atop each curve. The intrinsic alignment prefactor Fia(z) also displays these
points but is evaluated at the mean of the relevant kernel product n;(x)n;(x), or n;(x)q;(x), for a correlation between samples 7 and j.

results. Whilst future work should consider connected non-
Gaussian and super-sample covariance contributions to the sig-
nal covariance, especially in the 3—-6 X 2 pt case (Barreira et al.
2018a,b), we assume that these would not significantly affect our
conclusions, which come from comparing across different probe
combinations while always adopting a Gaussian covariance.
The Gaussian covariance matrix, Z = Cov[d, d'], is entirely
specified by the power spectra. Given Wick’s theorem, one finds

ij mn  pt 6?(” Aim Ajngpr Ain Ajmy pt
Cov[C(6),C™ ()] = m(c OC" () + CMOCM(WL)),
(2.25)

where fq is the sky fraction of the survey, 4nfuy = Asurvey

i, j,m, nlabel any tracer in the analysis, and Ci (£) is the observed
angular power spectrum, which includes noise. In other words,

Cit) + _—665, ifi A j € source,
n,-j

Cl) = (2.26)

. 1
Cili(y+ —o, ifi A j € lens,
I’lij

Ci), else,

where 6 is the Dirac delta function, o2 is the single-component
ellipticity dispersion, and #;; is the average number density
of sources (shear sample objects) or lenses (position sam-
ple objects) for each tracer (see Joachimi et al. 2021 for more
details). The factor, N, in Eq. (2.25) counts the number of inde-

pendent modes at multipole £,
Ne = 20+ 1)AC, (2.27)

where A( is the bandwidth of each multipole bin used in the anal-
ysis. It should be noted that the covariance was calculated from

the same n(z) as the mock-data (see Sect. 3 for the sampling of
the mock-data); therefore, it was derived from the true n(z) and
did not change during the sampling. Furthermore, if two statis-
tics were measured over a different sky area we take the maxi-
mum between the two areas in the sky fraction and similarly for
overlapping surveys (e.g. van Uitert et al. 2018).

3. Synthetic data products

We define here several synthetic galaxy samples with which to
conduct our angular power spectrum analysis forecasts, summa-
rizing their characteristics in Table 1.

3.1. Mock stage Il samples

For our stage IIl forecasts, we based our synthetic sam-
ples on those used for the cosmic shear and combined-probe
analyses of KiDS-1000 (Asgari et al. 2021; Giblin et al. 2021;
Hildebrandt et al. 2021; Heymans et al. 2021; Joachimi et al.
2021; Troster et al. 2021). The strategy for generating the data-
vector and covariance for our stage III forecast is summarized in
Fig. 2.

3.1.1. KiDS-1000-like photometric sample

With the exception of the redshift distributions, we defined
our stage III photometric samples to directly resemble those
of the public KiDS-1000 data. We substituted the redshift dis-
tributions of KiDS-1000 calibrated via self-organizing maps
(SOMs; Hildebrandt et al. 2021; Wright et al. 2020) for the ear-
lier KiDS+VIKING-450 (KV450) direct redshift calibration of
Hildebrandt et al. (2020) and Wright et al. (2019), from which a
full covariance of the n(z) could be reliably derived owing to the
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Table 1. Synthetic stage III and stage IV galaxy samples.

Sample <Z> <Z>incoh./shifted <Z>c0herem Neff [arcmin_z] (%3 Flim area [degz]
Stage III Photometric 0.606 0.631 0.648 6.22 0.26 245 777
bin 1 0.316 0.385 0.375 0.62 0.27 - -
bin 2 0.421 0.449 0.460 1.18 0.26 - -
bin 3 0.578 0.600 0.633 1.85 0.27 - -
bin 4 0.774 0.779 0.808 1.26 0.25 - -
bin 5 0.942 0.939 0.965 1.31 0.27 - -
Stage III Spectroscopic  0.470 - - 0.0311 - 20.0 9329
bin 1 0.226 - - 0.0016 - - -
bin 2 0.282 - - 0.0020 - - -
bin 3 0.335 - - 0.0026 - - -
bin 4 0.390 - - 0.0026 - - -
bin 5 0.449 - - 0.0042 - - -
bin 6 0.497 - - 0.0053 - - -
bin 7 0.549 - - 0.0056 - - -
bin 8 0.603 - - 0.0039 - - -
bin 9 0.657 - - 0.0022 - - -
bin 10 0.711 - - 0.0010 - - -
Stage IV Photometric 0.759 0.756 - 10.00 0.26 25.8 12300
bin 1 0.233 0.249 - 1.93 0.26 - -
bin 2 0.445 0.433 - 2.05 0.26 - -
bin 3 0.650 0.635 - 1.97 0.26 - -
bin 4 0.918 0.876 - 2.03 0.26 - -
bin 5 1.547 1.590 - 2.02 0.26 - -
Stage IV Spectroscopic  0.881 - - 0.6104 - 23.4 4000
bin 1 0.186 - - 0.1621 - - -
bin 2 0.412 - - 0.0162 - - -
bin 3 0.609 - - 0.0123 - - -
bin 4 0.787 - - 0.1092 - - -
bin 5 0.986 - - 0.1076 - - -
bin 6 1.204 - - 0.0739 - - -
bin 7 1.410 - - 0.0288 - - -
bin 8 1.595 - - 0.0105 - - -
bin 9 0.631 - - 0.0415 - - -
bin 10 0.824 - - 0.0449 - - -
bin 11 1.046 - - 0.0034 - - -

Notes. Columns give the sample (described in Sect. 3); its mean redshift (z) according to the starting distribution N(z); according to the incoherently
biased ni™ or shifted 2" distribution; and according to the coherently biased distribution n¢°" (see Sect. 3.1.1); its effective galaxy number density
Neg PEr square arc minute; its intrinsic shear dispersion o; its r-band limiting magnitude ry,; and its area in square degrees. Biased redshift
distributions and shear dispersion statistics apply only to photometric samples, and the magnitude limits and areas apply for all tomographic
subsets of each stage III or stage IV sample. Sects. 3.1.1 and 3.2.1 detail our definitions of shifted redshift distributions, which we use to generate

data-vectors in this work.

spatial bootstrapping approach utilized. We used this covariance
to generate additional redshift distributions which are biased
with respect to the starting distribution, as we shall describe
below.

Whilst the KV450 and KiDS-1000 redshift distributions are
similar, we did not require the distributions to correspond closely
to the latest KiDS n(z) calibration because we are conducting a
simulated analysis, and we are free to choose the true and biased
n(z) accordingly. We did assume that the n(z) covariance is rea-
sonably realistic, and note that any future forecasting analysis
conducted along these lines would do well to utilize a covariance
derived from the latest calibration, incorporating state-of-the-art
methods as far as possible.

To define (un)biased redshift distributions, we applied the
following procedure. We began by assuming the KV450 red-
shift distribution, N(z), evaluated at 41 equally spaced redshifts
z € [0, 2], to represent the mean of a multivariate Gaussian dis-
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tribution, that is, the calibrated covariance, X,,). The correlation
matrix corresponding to X, is shown in Fig. 3, where labels
n;(z) in the figure denote the tomographic bins i € {1,2,3,4, 5}.
We then drew ~45 000 realizations of the full n(z) (>200 times
the number of calibrated data points in a single n(z), across all
five bins) from the multivariate normal distribution N(0, Z,,,))
and added these to the mean distribution, given by N(z)*, to
yield an ensemble of redshift distributions {n(z)}x. Approxi-
mately 80% of the realizations in the ensemble had one or more

4 We note here for clarity that the KV450 redshift distribution, denoted
N(2), is equal to: (i) the mean of the distribution from which samples
n(z) are drawn to simulate photometric redshift biases; (ii) the ‘esti-
mated’, or ‘starting’ distribution for simulated likelihood analyses, to
which nuisance models will be applied; and (iii) in limited forecast
cases of zero redshift bias, the actual target distribution, denoted n_"°.
Meanwhile, n(z) refers to a sample redshift distribution drawn from the
covariance, and in later sections to any arbitrary redshift distribution.
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Generation of data vector 4 and covariance Z for Stage-III
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Fig. 2. Sketch of how the data-vector and covariance are generated for our stage III forecasts.

negative n(z) values and were consequently discarded, such that
X refers to the ones remaining.

For each of the remaining realizations, we then computed
the 5-vector of mean redshifts, (z);, of each tomographic bin and
defined the quantities

Aincoherent = Z (<Z>i - <Z>i0)2

2

Acoherent = ’Z (<Z>i - <Z>i0)

3.1)

s

where (z);, denote the mean redshifts of the starting distribution
N(z). Thus, Ajnconerent describes the Euclidean distance of a sam-
pled n(z) from the mean of the multivariate normal distribution,
N(z), after compressing to the five mean redshifts, and can be
large regardless of the signs of the deviations, (z); — (z),o (=6z;;
Sect. 2.2). Conversely, Aconerent describes a post-compression
distance from N(z) that is large only if the deviations are of the
same sign; that is, if the total n(z) realization is coherently shifted
to higher or lower redshifts across all five bins.
Sorting the ensemble {n(z)}x according to these A quantities,

we then selected three realizations of redshift distributions:

1. the unbiased, or in practice least biased, redshift distribution
n"°- to minimize Aincoherent
the incoherently biased redshift distribution niz"c, to maxi-
mize Aincoherem;
the coherently biased redshift distribution n§°h, to maximize
Acoherent~
As a consequence of the fixed covariance, X, the sorting
order of {n(z)}x by (in)coherent bias in tomographic mean red-
shifts is similar. We therefore chose n§°h first and imposed that
n‘;‘c * n§°h, and that the deviations in mean redshifts (z); — (2)
should not all have the same sign for n"°. Under these condi-
tions, the Ajnconerent @0d Ajncoherent Statistics for n§°h are ~27% and
~T74% larger, respectively, than the ones seen for ni" . However,

Z
defining a third distance quantity as a simple Euclidean distance

2.

3.
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Fig. 3. Matrix of correlation coefficients corresponding to the covari-
ance, X, of the five-bin tomographic redshift distribution (see also
Figs. 1 and 4) estimated for the KiDS+VIKING-450 data release
(Hildebrandt et al. 2020; Wright et al. 2019) via direct redshift cali-
bration. The covariance is estimated through spatial bootstrapping of
spectroscopic calibration samples (see Hildebrandt et al. 2020 for more
details), and axis labels illustrate the subsections of the matrix corre-
sponding to each of the five tomographic bins 7n;(z). The covariance is
used to describe a multivariate Gaussian sampling distribution for real-
izations of photometric redshift distributions (Sect. 3.1.1).

over the full n(z) shape,

A= D () = no(z)) (3.2)
ij

where i still indexes tomographic bins and j indexes the redshift
axis, we see that Agy is ~33% larger for our chosen #}* than for

n<h. Despite being less deviant in the mean redshifts, the inco-
herently biased distribution is in totality more deviant from N(z)
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Fig. 4. Five-bin stage III photometric redshift distributions employed in our forecasts, with alternating panels showing the distribution 7;(z) of bin i
and its difference An;(z) = n;(z) — Ni(z) with respect to the ‘mean’ distribution N;(z). Black curves in each panel correspond to the mean distribution
N(z), taken as the final, public KiDS+VIKING-450 estimate (Hildebrandt et al. 2020; Wright et al. 2019). As described in Sect. 3.1.1, we assume
a multivariate Gaussian distribution described by the mean N(z) and covariance X, (Fig. 3) to generate 45 000 sample redshift distributions, a
random 50 of which are shown in n(z) panels as faint grey curves. After discarding the 80% of samples with negative n(z) values, the tomographic
mean distance metrics Aipcoherent ANd Aconerent (Eq. (3.1)) are used to select the most deviant (with respect to the mean N(z)) of the remaining
samples: the ‘incoherently’ n™ and ‘coherently’ n<" shifted distributions, shown in each panel as dash-dotted orange and dashed purple curves,
respectively. The least deviant (in terms of Ajpconerent) Sample is also selected as the ‘unbiased’ distribution, given by green curves. Inset panels
zoom in on the high-z tails of each tomographic distribution, revealing small deviations there with logarithmic y-axes.

than is ng"h. Since we are interested in the differential impacts
upon cosmological constraints of (i) coherent shifting of the bulk
redshift distribution, and (ii) more stochastic errors within the
distribution, these choices suit our purposes and we proceeded
accordingly. We note that a more detailed follow-up analysis
could explore several such choices for (in)coherently biased dis-
tributions, perhaps using the full shape distance as another met-
ric for the selection, and making use of different X, that yield
more heterogeneous ensembles {n(z)}x.
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The resulting distributions are shown in Fig. 4, where the
mean distribution N(z) is given by black curves; the unbiased
distribution by green curves; the incoherent bias by dash-dotted
orange curves; and the coherent bias by dashed purple curves.
Alternating panels show the distributions, n(z), and the differ-
ences, An(z) = n(z) — N(z), for each of the chosen redshift bias
scenarios. The n(z) are also shown in faint grey for a random 50
realizations from the initial 45000 ensemble. Inset panels dis-
play the high-z tail for each bin on a logarithmic y axis and reveal
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excesses relative to the starting N(z), particularly in the case of
the coherent bias (purple).

It is expected that a coherent bias in the redshift distribu-
tion used to model cosmic shear statistics should manifest more
strongly in the final inference of the structure growth parameter,
S's, than an incoherent redshift bias (see e.g. Joudaki et al. 2020,
and the recent work of Giannini et al. 2024). This is because the
same measured weak lensing signal, assumed to originate from
a higher redshift, would be consistent with a lower S'g value if all
else is held constant. We note too that all distributions, includ-
ing n‘zmb', feature full-shape differences with respect to the mean
distribution N(z) (e.g. second An(z) panel in Fig. 4); such local-
ized features are more likely to manifest in the density statistics,
particularly the photometric auto-clustering.

Our central proposal is that nuisance models designed to
compensate for any such errors in redshift calibration will enjoy
more accurate and precise constraints upon the inclusion of
additional two-point correlations in a joint analysis (similarly
to the proposal of Joachimi & Bridle 2010, in the context of
intrinsic alignment calibration), particularly the spectroscopic-
photometric clustering cross-correlations. It is therefore impor-
tant that the photometric shear and density samples share a
redshift distribution (Schaan et al. 2020). This implies that any
weighting of the shear sample (e.g. as derived from shape mea-
surements) that is incorporated into the redshift calibration must
also be applied to the photometric density sample’.

For each of our forecasts, the true n(z) distribution that enters
the computation of our mock data-vector is given by one of
the above-defined distributions: unbiased, incoherently biased,
or coherently biased (or the exact N(z), for limited use), as
described in Sect. 2. Meanwhile, the N(z) that enters the theory-
vector computation is an externally calibrated estimate for the
photometric sample redshift distribution, which we refer to as
the exact N(z), with or without the application of nuisance mod-
els (Sect. 2.2)°. We henceforth refer to the redshift bias con-
figurations as: ‘incoherent’, where the tomographic mean red-
shifts are systematically low at low redshift (i.e. pertaining to
the starting distribution relative to the target distribution inform-
ing the data-vector), but more accurate as the redshift increases;
‘coherent’, where the mean redshifts are systematically low at
all redshifts; and ‘unbiased’, where the mean redshifts are accu-
rate (see Fig. 4). All three configurations feature full-shape errors
in the redshift distribution. We also make limited use of the
N(z) distribution, without additional modelling, as the source of
both data- and theory-vector, referring to this as the ‘exact-true’
configuration.

We emphasize here that our different n(z) bias cases yield dif-
ferent data-vectors; the (in)coherently biased cases are sourced
from generally higher redshifts than the unbiased/exact-true
cases (Table 1). Consequently, the addition of nuisance model
parameters can counter-intuitively increase the overall constrain-
ing power, if the parameters act via the n(z) to push signals
into regimes of higher S/N (aided in our case by the applica-
tion of nonzero-mean Gaussian priors for dz; parameters; to be
discussed more in Sect. 5). Although this also complicates direct
comparisons with previous work on real data (e.g. Joudaki et al.
2020), where the theory-vectors are variable through n(z) esti-

3 This could lead to complications that must be considered if, for
example, per-galaxy weights are intended for the mitigation of system-
atic density fluctuations in measured positional statistics (Rezaie et al.
2020; Wagoner et al. 2021).

6 Notice that we differentiate between the estimated N(z), the initial
guess for the redshift distribution, and n(z), the true distribution inform-
ing the data-vector, that is the target distribution.

mates and nuisance modelling but the galaxy data are fixed, the
qualitative results are in agreement.

We note that our methods of defining biased redshift distribu-
tions constitute a mixture of pessimistic and optimistic choices.
Whilst we drew many thousands of realizations, and chose serious
outliers to describe the true distributions, these are all compatible
with the calibrated covariance; thus, they do not represent catas-
trophic failures of redshift calibration, but uncommon realiza-
tions. When sampling, we assumed uncorrelated Gaussian priors
(Sect. 4; Table 3) for use with the shift model (Sect. 2.2) that are
centred on the true shifts, 6z; = (z); — (z),9, and have widths cor-
responding to the true variance of dz; over the ensemble {n(z)}x;
thus, the calibration is assumed to yield a perfectly accurate prior
for 6z; in each case. Lastly, we have selected these n(z) only con-
sidering variations in the tomographic mean redshifts, dz;. It may
be that an equivalent consideration of the full n(z) shape, for exam-
ple, via metrics like Agy, would yield distributions of different
profiles, carrying distinct consequences for cosmological param-
eter inference under probe configurations variably sensitive to the
full shape of the n(z) and the tomographic mean redshifts. Each of
these choices could be revisited in future analyses of the impacts
of redshift distribution mis-estimation.

The shear dispersion and effective number density statistics
of the photometric sample are taken to be exactly those estimated
for the KiDS-1000 shear sample, given in Table 1 of Asgari et al.
(2021). Bin-wise mean redshifts, (z), were computed for niznC and
ne" while the means of n!™ are practically the same as for N(z).
These are given in Table 1, which also records the assumed r-
band depth, riy, = 24.5, and area = 777 deg2 for our stage III
photometric survey set-up.

3.1.2. BOSS-2dFLenS-like spectroscopic sample

For synthetic spectroscopic samples, we took the combined red-
shift distribution of SDSS-IIT BOSS (Eisenstein et al. 2011) and
2dFLenS (Blake et al. 2016), presented for KiDS-1000 usage by
Joachimi et al. (2021). As was mentioned in Sect. 2, an ana-
lytical consideration of the covariance between angular power
spectra and three-dimensional multipole power spectra is under
development. In the meantime, we attempted to retain the three-
dimensional density information from the mock spectroscopic
sample by finely re-binning the spectroscopic n(z), defining 10
tomographic samples in the range z ~ 0.2—0.75, each having
width Az ~ 0.05 (see Loureiro et al. 2019 for a similar treatment
of BOSS DR12). We recomputed the mean redshifts (z);, re-scale
the number density statistics from Joachimi et al. (2021) for each
newly defined redshift bin, and record these figures in Table 1
along with the assumed area of 9329 deg”. For spectroscopic-
photometric cross-correlations, we assumed an overlapping area
of 661deg® (the sum of BOSS+2dFLenS versus KiDS-1000
overlapping areas; Joachimi et al. 2021) and retained the number
densities and bin-wise redshift distributions of the full spectro-
scopic sample.

We assumed an r-band depth of ry, = 20.0 for
the stage III spectroscopic samples in order to roughly
match the luminosity function slopes, a@.(z), observed by
von Wietersheim-Kramsta et al. (2021) for BOSS data. The
@x(z, rim) that result from this magnitude limit via the fit-
ting formulae of Joachimi & Bridle (2010) are slightly low
for the lower-z spectroscopic bins, and high for the higher-z
bins, and do not allow for significantly improved agreement
through changes to rj,. This is likely due to the complex
selection function defining BOSS galaxy samples, resulting in
luminosity functions that are not well described by the fitting
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Generation of data vector d and covariance Z for Stage-1V

Fig. 6 e
' ¢ Analytic
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Fig. 5. Sketch of how the data-vector and covariance are generated for our stage IV forecasts.

formula of Joachimi & Bridle (2010), which is calibrated against
magnitude-limited galaxy data. A more principled estimation of
ax(z), perhaps using luminosity functions directly, or using sim-
ulations (Elvin-Poole et al. 2023), would be desirable for more
accurate modelling of magnification number count contributions
in future work.

3.2. Mock stage IV samples

We defined mock stage IV samples based on information from
the Science Requirements Document (SRD) of the Rubin Obser-
vatory Legacy Survey of Space and Time (LSST) Dark Energy
Science Collaboration (DESC; Mandelbaum et al. 2018). These
are supplemented by mock spectroscopic samples, modelled
after the survey specifications of the Dark Energy Spectroscopic
Instrument (DESI; DESI Collaboration 2016). The strategy for
generating the data-vector and covariance for our stage I'V fore-
cast is summarized in Fig. 5.

3.2.1. LSST Y1-like photometric sample

For our stage-IV-like photometric dataset, we assumed the LSST
Year 1 redshift distribution from the SRD, given by

n(z) = 7> exp {— (ﬁ)mg} ,

which we evaluated over the range z = 0—4. Also following the
SRD, we defined the shear sample to have five equi-populated
bins over this range and convolved each of these with a Gaussian
kernel of evolving width o, = 0.05(1 + z) in order to simulate
photometric redshift errors.

We went beyond the SRD for our forecasts, additionally
defining a biased redshift distribution. To do so, we simply drew
random shifts, 6z;, from the normal distributions, N (0, oshift),
where ogire = [0.01,0.02,0.03,0.04,0.05] for the five bins,
respectively, and applied these to the starting distributions #;(z)
as n?hif‘f’d(z) = n{™*(z - 6z;). Without any restriction on the sign
of the shifts, these more closely resemble the incoherently biased
stage III redshift distributions from Sect. 3.1.1. We assessed the
ability of the shift model to correct these redshift errors (given
Gaussian priors centred on the true ¢z;, with widths equal to

(3.3)
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Oshift), noting that redshift biases constructed in this way are
unrealistic and overly generous to the shift model; future fore-
casts should consider more complex, full-shape n(z) biases, as
we have done in our stage III set-up (Sect. 3.1.1). We accord-
ingly differentiate between the full-shape, (in)coherently biased
stage III redshift distributions, and the ‘shifted’ distributions
considered for stage I'V.

By construction, each of the tomographic bins has a simi-
lar number density, which we computed after assuming the full
sample to have 10 galaxies arcmin™> and re-binning the total
n(z). We followed the SRD in assuming an intrinsic shear dis-
persion of o = 0.26, an r-band depth of rj;, = 25.8, and an area
of 12300deg” for LSST Year 1 — these statistics, and per-bin
mean redshifts (z);, are recorded in Table 1.

We note that photometric data are already intended for usage
as density samples in the analysis of LSST (Mandelbaum et al.
2018). However, these lens samples are to be defined with uni-
form spacing in redshift, and with limits such that z € [0.2, 1.2].
Our forecasts here presume that the shear sample itself can be
used for density statistics (similarly to Joudaki & Kaplinghat
2012; Schaan et al. 2020), with redshift distribution recalibra-
tion bolstered by cross-correlations with a spectroscopic density
sample, given the overlap between LSST and DESI.

3.2.2. DESI-like spectroscopic samples

We considered 4000 deg” of DESI-like spectroscopic observa-
tions, which completely overlap with our LSST Year 1-like sam-
ples (Mandelbaum et al. 2018). For simplicity, we assumed this
as a conservative area coverage for the DESI Year 1 data, noting
that the true coverage is nearly twice as large. We took the fore-
casted redshift distributions dN/dzdQ (where Q denotes a solid
angle) for the DESI bright galaxy sample (BGS), emission line
galaxy (ELG) sample, and luminous red galaxy (LRG) sample’

7 We neglect quasar (QSO/LyaQSO) samples such as those observed
by DESI, so as to lessen the computational demands of these forecasts.
Future work could consider these additional, sparser but higher-redshift
samples, as well as other spectroscopic observations planned to over-
lap with stage IV surveys. Note also that observational results now
presentin data.desi.1lbl.gov were not available when this work was
in progress.


data.desi.lbl.gov
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LSSTY1-like samples
—— Total
— 0,=0.05(1 +2)
Shifted

DESI-like samples
—— BGS
ELG
— LRG
QSO (unused)
LyaQSO (unused)

109

n(z)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 6. Redshift distributions assumed for our stage IV synthetic
galaxy samples, with LSST year-1-like photometric tomography (top;
Sect. 3.2.1), supplemented by DESI-like spectroscopic galaxy samples
(bottom; Sect. 3.2.2). Vertical dotted lines give the redshift edges where
the full photometric redshift distribution (fop panel; black curve) is cut
into tomographic bins (hard-edged histograms). These distributions are
convolved with Gaussian kernels of width o, = 0.05(1 + z) to produce
the true redshift distributions (solid coloured curves), and then displaced
with randomly drawn shifts, 6z;, as n$"®¢(z) = n'™(z - 6z;) to define the
‘shifted” distributions (dashed coloured curves). Apparent small over-
laps of similarly coloured histograms in the bottom panel are plotting
artifacts.

from DESI Collaboration (2016), Tables 2.4 and 2.68, and re-
binned them to have uniform widths of at least Az = 0.2, result-
ing in 11 tomographic bins (BGS:2, ELG:6, LRG:3) that share
some internal overlaps in the range z ~ 0.5-1.0. We note that
these spectroscopic bins are ~4x wider (in redshift space) than
those implemented in our stage III set-up; this choice was made
only to reduce the computational demand of these forecasts, and
finer tomography is a primary avenue for improvement in future
work. Indeed, the calibration power of cross-correlations esti-
mated here for stage IV analyses could be considered as conser-
vative, though this is offset by the simplicity of the implemented
redshift errors (Sect. 3.2.1).

Given the area coverage and newly defined redshift distri-
butions, number densities per bin have simply been calculated
and recorded in Table 1 alongside mean redshifts, (z);. Targeting
surveys for DESI were estimated to yield an r-band depth of at
least 7y, = 23.4, which we assumed to be the limiting magnitude
for each of the mock DESI galaxy samples for simplicity. The
a,(z) so-estimated from the fitting formula (Joachimi & Bridle
2010) are again unlikely to describe well the luminosity func-
tions of these highly selected DESI samples. We are therefore
modelling magnification contributions for these (and to a slightly
lesser extent the stage III) samples according to rough guesses of
reasonable values for the slopes of luminosity functions — since

8 In comparison to recent DESI Collaboration results (Yu et al. 2025;
Krolewski et al. 2025), the redshift success rates we have adopted are
either lower or equal. Therefore, the number density of targets we have
used for this work is conservative.

these are minor contributions to clustering correlations, and
since we neither vary nuisance parameters to describe magni-
fication contributions (see for example Elvin-Poole et al. 2023),
nor fail to model them entirely (see Mahony et al. 2022a, for the
impact of faulty modelling), we do not expect these choices to
affect our conclusions. Our stage IV sample redshift distributions
are depicted in Fig. 6, with LSST year-1-like photometric sam-
ples in the top panel, and DESI-like spectroscopic samples in the
bottom panel (including the prospective, sparse, high-z quasar —
‘QSO’ and ‘Lyman-a QSO’ — samples that we do not consider
in this work due to computational constraints).

4. Forecasting methodology

We conducted simulated likelihood forecasts for a number of
stage III and stage IV angular power spectrum analysis con-
figurations, as is detailed in Figs. 7 and 8, respectively. Unique
configurations were determined by choosing (i) a set of probes,
(ii) the bias in the redshift distribution, and (iii) the model chosen
for mitigating the uncertainties in the estimation of the redshift
distributions. Unless otherwise stated, all modelling and other
assumptions were replicated between the stage III and stage IV
forecasts. We did not perform forecasts with nuisance models
for the cases where N(z) is both the estimate and the truth, such
that the bias is exactly zero. Instead, the unbiased case serves
to inform us of how nuisance models behave when the expected
corrections are minor. Our selection of forecast configurations is
summarized in Table 2.

Each forecast was performed as follows. First, the mock
data-vector, d, was constructed using the fiducial cosmological
and nuisance parameters, given in Table 3, and the true redshift
distribution. In our stage III set-up, this true redshift distribu-
tion was selected to be one of the mean N(z), unbiased n""(z),
incoherently biased n'"(z), or coherently biased n¢~°%(z) dis-
tributions described in Sect. 3.1.1. In our stage IV set-up, the true
redshift distribution is either the tomographically binned distri-
bution given by Eq. (3.3), or the ‘shifted’ distribution described
in Sect. 3.2.1.

Given the cosmological model, the distribution of galaxies
in redshift, n(z), were converted into a distribution of galaxies
in co-moving distance, n(y) = n(z)dz/dy, and lensing efficien-
cies g(y) via Eq. (2.5). The emulated matter power spectrum,
Ps(k, x), was integrated over auto-/cross-products of n(y) and
q(y) (multiplied by f,;z(,\()) to produce the full set of ‘raw’ spec-
tra, C%(¢), required by the configuration. These were initially
evaluated at eight logarithmically spaced angular wavenumbers,
¢ € [100, 1500], each rounded to the nearest integer. Linear scal-
ing factors, by, Fn, F1a (Fig. 1; described in Sects. 2.1 and 2.4),
were applied to produce the spectral contributions, GG, GI, IG,
II, gg, mg, gm, mm, gG, gl, mG, and ml (Sect. 2.1), which were
then appropriately summed to produce the ‘observed’ (single)
cosmic shear C,, (), (up to two) GGL C,,(¢), and (up to three)
galaxy clustering C,,({) angular power spectra.

Next, to mimic real analyses that avoid describing non-linear
structure growth with insufficiently complex models, we applied
further scale cuts to the clustering and GGL spectra to exclude
small physical scales. For each tomographic density sample,
ny(z), the maximum angular wavenumber, {,x, was calculated
as (Mandelbaum et al. 2018)
Cmax = kmax Y((2)) — 0.5, 4.1
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Fig. 7. Sketch of the forecasting steps and choices for the stage III configuration.
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Fig. 8. Sketch of the forecasting steps and choices for the stage IV configuration. We explored fewer redshift nuisance models here than for the
stage III configurations, since the n(z) biases described in Sect. 3.2.1 are comparatively simple, only featuring shifts in the tomographic mean
redshifts that ought to be well compensated for by the dz; model. In addition, results from stage IV forecasts are always considered on the o5—Q,
plane given that cosmic shear alone has sufficient constraining power to alleviate the non-linear degeneracy seen for stage I11.

where kpax = 0.3AMpc™!, and y({z)) is the co-moving distance
to the mean of the distribution 7n,(z). For clustering correlations
that have two different density kernels, €,x was taken as the
minimum of the two. In the case of cosmic shear, we applied
no further scale cuts beyond the initial restricted range in ¢,
following KiDS-1000 (Joachimi et al. 2021; Asgari et al. 2021;
Heymans et al. 2021). For cosmic shear, this implies {x =
1500.

The final data-vectors are thus formed of <6 unique angu-
lar power spectra, C({), defined within and between photo-
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metric (shear + density) and spectroscopic (density) samples,
including all tomographic auto- and cross-correlations that sat-
isfy the scale cuts described above. Analytic Gaussian covari-
ances are computed for the data-vectors as described in Sect. 2.5,
and the data-vector d and inverse data covariance Z are then fixed
for the remainder of each forecast.

Some example tomographic power spectra (except the spec-
troscopic auto-clustering) from a stage III 6 x 2 pt data-vector
are given in Fig. 9, which shows the C(£)’s computed for the
‘estimated’ N(z) in black, with error-bars corresponding to the
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Table 2. Large-scale structure analysis forecast configurations.

Configuration choice Label Performed for stage IIl  Performed for stage IV
Probe set

Shear-only vy v v
Spectroscopic 3 X 2 pt 3x2pt v v
Photometric 3 x 2 pt 3P0 % 2 pt v v
Full 6 x 2 pt 6 x 2pt v v
Redshift bias

Exactly zero ne(z) v v
Unbiased n""(z) v

Incoherently biased n"°(z) Vv

Coherently biased 1 (z) v

Shifted pohifted () v
Redshift nuisance model

Do nothing X v v
Shift model 0z v v
Comb+shift Neomb + 0z v

Comb Neomb v

Notes. Columns give: the choice of probe combinations, redshift biases (Sects. 3.1.1 and 3.2.1), and redshift nuisance models (Sects. 2.1 and 2.3);

corresponding labels (for figure legends to follow).

root-diagonal of the Gaussian covariance (for which the cor-
responding correlation matrix is shown in Fig. 10). Additional
curves in Fig. 9 illustrate the thesis of this work: correlations that
use the photometric (i.e. the shear) sample as a density tracer
(middle top, top right, and bottom left panels) are highly sen-
sitive to changes in the redshift distribution and this informa-
tion could be used to aid with recalibration of the distribution.
This is particularly true of the spectroscopic-photometric cross-
clustering, where the spectroscopic n(z) (taken to be exactly
known) can act as an anchor for the parameters of any nuisance
model — though only if the data are capable of constraining spec-
troscopic and photometric galaxy biases simultaneously with
n(z) model parameters. The cross-clustering is thus only use-
ful in conjunction with both auto-clustering correlations, each
quadratically dependent upon its respective galaxy bias (indeed,
an all-clustering 3 x 2 pt analysis could be an interesting avenue
for exploration). Upon including cosmic shear correlations, both
types of GGL correlation then become useful to constrain galaxy
intrinsic alignment model contributions (Joachimi et al. 2011),
and we arrive at the full 6 X 2 pt analysis.

We turn now to the theory-vectors, u, which were computed
in identical fashion to the data-vectors, d, but for different cos-
mological and nuisance parameters as part of the inference pro-
cedure. For each stage III forecast, the initial redshift distribution
for computations of y is the ‘estimated’ N(z) (Sect. 3.1.1), whilst
stage IV forecasts start from the distribution given by Eq. (3.3)
(and tomographically binned; Sect. 3.2.1).

For stage I1I forecast configurations making use of the Ngomp
or Neomp + 6z; models (Sect. 2.3)°, we performed an additional
set of steps prior to Monte Carlo sampling. First, the comb model
was fitted to the initial distribution N(z) by minimization of
Eq. (2.22) via the Gaussian-component amplitudes, d,, = In(A%,)
(see Eqgs. (2.19) and (2.20)). The resulting initial 72¢omp,ini(z) Was

® We note that whilst the comb model is considered for the stage III
forecasts, its use would be excessive for our simple stage IV redshift
bias implementation; hence we do not apply it to the stage IV forecasts
in this work.

then used to compute a theory-vector at the fiducial cosmology'’
and calculate the goodness of fit, /\/5, with respect to the data-
vector given the inverse of the signal covariance, Z (Eq. (2.23)).
We now varied the comb amplitudes, a,, again to minimize thl’
leveraging information from the ‘observed’ two-point functions
(which correspond to the true redshift distributions) to find the
optimized comb model, nmmb,opl(z)1 I

The results of this procedure for the forecast configuration
3x2pt : n" can be seen in Fig. 11. This figure shows the

errors in the redshift distributions, n(z) — n§°h, and the lensing
efficiencies, g(z) — q§°h (see Eq. (2.5)), for bins 1 and 3 of the
stage III photometric sample after the application of no nuisance
model (N(z); dashed purple), of the shift model dz; (dotted red),
and of the comb model optimization (solid green). Whilst the
correct shift model can provide a reasonably effective correction
to the lensing efficiency at higher redshifts, it is clearly seen to
add little to the low-redshift bin. It is moreover seen to be gener-
ally detrimental to the shape of the n(z), particularly at low red-
shifts where the z = 0 boundary can cause a large diversion of
power towards the tails upon renormalization of the distribution.
This is to say that a full-shape bias in the redshift distribution is
smoothed out at the level of the lensing efficiency, and perhaps
amenable to correction with a scalar shift; however, the same
shift is likely to exacerbate the bias at the level of the density
distribution. Meanwhile, the optimized comb model is seen to
outperform the shift model both in recovering the true lensing
efficiency, and in dealing minimal damage to the density distri-
bution, irrespective of the redshift.

10 Real analyses will not have access to the fiducial cosmologi-
cal/nuisance parameter set. As described by Stolzner et al. (2021), this
point must be found via an iterative maximum likelihood search, alter-
nating between the spaces of cosmological and nuisance parameters.

' We note that the results of optimization of the comb model are sen-
sitive to the choice of minimization algorithm and its hyper-parameters.
We homogenize these choices across all forecasts, using the Nelder-
Mead (Nelder & Mead 1965) algorithm with a maximum of 30000
function evaluations, and suggest a more detailed exploration regard-
ing flexible n(z) model parametrization in future work.
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Table 3. Fiducial model parameters.

Parameter  Fiducial centre =~ Forecast prior
Q.2 0.107 [0.051,0.255]
Qph? 0.026 [0.019,0.026]
In(10'04,) 3.042 [1.609,3.912]
h 0.64 [0.64,0.82]
ng 1.001 [0.84,1.1]
A 0.973 [-6,6]
Abpary 2.8 [2.0,3.13]
by 0.95/D,({2)q) [0.5,9]
0z Hi N, o)
Ss 0.7718 -

Notes. Intrinsic galaxy alignment contributions are given by the one-
parameter (A;) non-linear alignment model, non-linear structure growth
is described by the one-parameter (Ap,y) halo model HMCode with bary-
onic contributions (Mead et al. 2015, 2021), galaxy biases b, are linear
and deterministic, and scalar shifts in the mean redshift dz; are employed
for recalibration of photometric redshift distributions. Priors are flat
except for dz;, where Gaussian priors are estimated as described in
Sect. 3.1.1. Central values (for non-dz; parameters) are taken as the best-
fit values from Asgari et al. (2021) (their Table A.2, Col. 3) except in the
case of Apqry, which we reduce slightly in order to introduce some bary-
onic contributions into the fiducial data-vectors. Whilst Asgari et al.
(2021) sampled directly over the Sg parameter, it is more convenient
for our implementation of CosmoPower (Spurio Mancini et al. 2022) to
sample over A;. We convert the (derived) best-fit A, from Asgari et al.

(2021) into a fiducial centre for 1n(1010AS), and assume a flat prior

on ln(IOIOAS) corresponding to 0.5 < 10°A; < 5.0 (Seccoetal.
2022). Other flat priors are taken from Asgari et al. (2021), or from
Mandelbaum et al. (2018) in the case of the galaxy bias, where the lat-
ter also provides the functional form for the galaxy bias (Eq. (2.18)).
The derived, fiducial Sg value is given in the last row, and is slightly
larger than that found by Asgari et al. (2021) due to our modification
of the fiducial Ay,y. Notice that we also adopt the best-fit for 4 as in
Asgari et al. (2021), and while this is at the boundary of our prior, it
does not affect our conclusions given that /4 is unconstrained.

For comb model configurations, the optimized comb
Ncomb,opt(z) Now takes the place of the initial redshift distribu-
tion N(z). In the case of the N.omp + 0z; model, which applies
scalar shifts t0 ncomb,opt(z) during sampling, we apply Gaussian
priors to the shifts with the same widths as inferred from the
ensemble {n(z)}x, but now centred on zero. This choice to re-
centre the priors is made because the ‘correct’ shift will have
changed after optimization of the comb model. Whilst we are
able to simply recompute the correct shift here (and we do, for
plotting purposes), this information is inaccessible to a real anal-
ysis where the true redshift distribution is unknown. Moreover,
the Neomb + 0z; model uses shifts more to marginalize over n(z)
uncertainty than as a corrective measure. Hence, we limited the
freedom of shifts during sampling to preserve a fair compar-
ison with the shift model, and we explored the sensitivity of
Ncomb + 0z; constraints to this re-centring by doubling, trebling,
and flattening the shift priors, finding some variability in the
resultant maxima a posteriori (MAPs) for shift and cosmological
parameters (to be discussed in more detail in Sect. 5.3). We note
that more complex marginalization schemes (e.g. Stolzner et al.
2021; Cordero et al. 2022) will be explored in future work. In
parallel, other promising marginalization techniques for sys-
tematics (of and beyond photometric redshifts) are emerging
which can significantly speed up the sampling of the likelihood
(Ruiz-Zapatero et al. 2023; Hadzhiyska et al. 2023).
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We were now ready to sample the posterior probability dis-
tribution of cosmological and nuisance parameters under our
various probe sets, redshift bias, and redshift nuisance model
configurations, as we sought to quantify the advantages of using
spectroscopic-photometric cross-correlations to aid with red-
shift recalibration and reduce cosmological parameter biases.
We made use of the nested sampling algorithm, MultiNest
(Feroz & Hobson 2008; Feroz et al. 2009, 2019), with the priors
given in Table 3, and the following settings:

— Maximum iterations: le5 (S-III), 2e5 (S-IV);

— N live points: le3;
efficiency: 0.3;
constant efficiency: False;
tolerance: 0.01.
For the shift and N.omp + 0z; models, the redshift distribution
was shifted at each sampling step according to Eq. (2.17), prior
to computation of C(¢) and evaluation of the log-likelihood, £ =
—Xﬁ /2 (Eq. (2.23)), whilst it remained fixed for the N omp and
‘do nothing’ models (Table 2). All other modelling choices were
held constant across all forecasts; the differences we explore here
are purely due to the interaction of the probes under analysis, and
the biases and modelling of redshift distributions.

Assessments of the recovery of point estimates for cos-
mological parameters are complicated by projection effects
(Troster et al. 2021), and by the variability of estimation by dif-
ferent methods; for example, global MAPs, marginal posterior
means, or marginal posterior peaks (Dark Energy Survey and
Kilo-Degree Survey Collaboration 2023). Here, we quote pos-
terior means, and compare the results of each forecast with the
equivalent results for the respective idealized case; exactly zero
redshift bias (n{°), and no applied nuisance model (‘do noth-
ing’). We also make estimates of the global MAP parameters for
each forecast, starting the Nelder-Mead (Nelder & Mead 1965)
algorithm from the fiducial parameter set in order to avoid local
minima in the parameter space. We thus verify that the MAP
remains at the fiducial parameter set for idealized cases, and
observe varying degrees of bias in the best-fit model for all other
cases.

We present our findings in the following section, focusing
for stage III on the accuracy and precision of recovery of the Sg
parameter by cosmic shear alone, and the S g—Q, plane for other
probe combinations. This is done to reflect the fact that stage I1I
cosmic shear constraints on Q, are typically prior-dominated
(e.g. Joudaki et al. 2017a, 2020). For Sg alone, we quote the
mean parameter, and the interval o¢g; the difference between the
weighted 0.16 and 0.84 quantiles of the posterior distribution.
One-dimensional biases on S g (relative to the idealized case) are
then given in ratio to 20g. For S§—Q.,, we quote the figure of
merit (FoM), and the two-dimensional parameter bias was cal-
culated according to

— T —

2 Ss—Ss -1 Sg—Sg
— 28 c o3 i

XSs-0n (Qm—Qm S50 (G - O

where hats indicate the estimated statistic; unmarked parameters
represent the target parameter values (those found by the ideal-
ized case); Cg,, q, denotes the covariance matrix of Sg and Qp,
as computed from the weighted chains; and we converted the
deviance criterion, ng—ﬂm’ first into a p value, assuming a y?
distribution with two degrees of freedom, and then into a signifi-

cance given in units of . The FoM is computed as /det Cg;’ Q,-

4.2)
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Fig. 9. Illustration of tomographic two-point correlations that form a subset of the 6 X 2 pt data/theory-vectors employed in this work. Annotations
in the top right of each panel give the spectrum type and tomographic sample pairing, for cosmic shear (yy), photometric auto-clustering (n*n"),
photometric GGL (1n"7), spectroscopic-photometric cross-galaxy-galaxy lensing (n5y), and spectroscopic-photometric cross-clustering (n51") cor-
relations. No spectroscopic auto-clustering correlations are shown, as they are independent of the photometric redshift distribution. Black points
and errors give the correlations (Sect. 2.1) and root-diagonal of the Gaussian covariance (Sect. 2.5) computed for the ‘mean’ redshift distribution
N(z) (taken as the public estimate from KiDS+VIKING-450; Hildebrandt et al. 2020; Wright et al. 2019 — see Sect. 3.1.1). Coloured curves then
show the same correlations, now computed for different redshift distributions: ‘unbiased’ (green, with shading indicating a +1¢ shift in the S
parameter, holding all else constant); ‘incoherently biased’ (dash-dotted orange); and ‘coherently biased’ (dashed purple). The differences between
these curves reflect the sensitivity — to the n(z) and to Sg — of the additional observables that we propose to employ for enhanced internal recali-
bration of photometric redshift distributions via nuisance models. We note that the positions of coloured curves relative to black points change as

a function of redshift pairings across each angular power spectrum, and we are only showing a subset here.

For our stage I'V-like forecasts, we found that the typical non-
linear ‘banana’ degeneracy on the og—, plane is no longer
present, even for cosmic shear alone. We therefore switch to
og—Q, statistics when discussing all stage IV results, which
were computed simply by swapping o in for S in the above
parameter bias (Eq. (4.2)) and FoM formulae.

5. Results

We summarise the results of our stage III forecasts in Table 4,
which gives for each {probes : n(z) bias : n(z) model} configura-
tion; the S/N of the data-vector, calculated as a /\{2 against a null
signal hypothesis; the best-fit y* at the global MAP (Eq. (2.23));
and either the Sg parameter bias and the inverse uncertainty
1/0eg on Sg (for yy), or the parameter bias (Eq. (4.2)) and the
FoM on the §'g—Q, plane (for all other probe combinations).

We first consider the stage III scenario in which the n(z) bias
is exactly zero, and no redshift nuisance model is marginalized
over (bold rows in Table 4). The 1o confidence contours are
shown in Fig. 12 for the primary cosmological parameters con-
strained by weak lensing: S'g, Qu,, 03, where Sg = 0g VQ,/0.3
and o is derived from the z = 0 linear power spectrum, emu-
lated by CosmoPower using the primordial amplitude In (10'0AS)
(also shown).

While the fiducial centres (Table 3) are recovered by all con-
figurations, the majority of the marginalized posterior volume

for In (IOIOAS) extends away from the MAP towards lower val-

ues. Meanwhile, the posterior PDFs of late-time structure growth
parameters og and Sg are more centred upon the fiducial val-
ues. These are projection effects, where marginalization over the
constrained variables results in a preference for low A, which is
not constrained by late-time LSS probes (see Troster et al. 2021,
who showed that fixing A during sampling of Sg does not result
in significantly different inferences for S in the case of KiDS-
1000, and also Joudaki et al. 2017a, 2020; Joachimi et al. 2021;
Longley et al. 2023 for a discussion of A priors). We moved for-
wards considering only the constrained cosmological parame-
ters.

The figure legend reports the inverse error on Sg (for yy only;
solid red) or the FoM on the Sg—Q, plane for all other sets
of stage III probe combinations: spectroscopic 3 x 2 pt (dash-
dotted blue); photometric 3 x 2 pt (3P" x 2 pt; dashed green); and
6 x 2pt (solid orange). In this set-up, our shear-only FoM is
~30% larger than that found by Asgarietal. (2021) because
we do not marginalize over redshift nuisance parameters. We
have verified that our pipeline is able to reproduce the best-fit
parameters and posterior distribution of Asgari et al. (2021) to
sub-percent accuracy when analysis choices (including the data-
vector and covariance) are homogenized.

In ratio to the idealized 3 X 2 pt configuration, the FoM for
the 3P" x 2 pt configuration is ~5% smaller. While the photomet-
ric density tracer is deeper and has fewer galaxy biases to con-
strain than the spectroscopic sample, it covers only ~1/12 of the
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Fig. 10. Matrix of correlation coefficients corresponding to an analytical Gaussian covariance, Z (Sect. 2.5), estimated for a (scale-cut; see Sect. 4)
stage III 6 X 2 pt data-vector employed in this work. Axis labels denote sections of the covariance corresponding to cosmic shear (yy), photometric
auto-clustering (n*n?), photometric GGL (n’y), spectroscopic-photometric cross-galaxy-galaxy lensing (n5y), spectroscopic-photometric cross-
clustering (nn"), and spectroscopic auto-clustering (n°n%) correlations. The sample statistics used for data-vector covariance estimations are those

given in Table 1.

area. For the 6 X 2 pt configuration, the FoM is ~1.4 times larger
(see Table 4).

For the unbiased redshift distribution "™ without any nui-
sance model, we begin to see slight biases on the §g—Q, plane
relative to the idealized cases. These increase in size for the
3P" % 2 pt and 6 x 2 pt configurations — those which use the pho-
tometric sample as a density tracer — by up to ~0.50" depend-
ing on the probes/nuisance model (Table 4). The FoMs are
almost unchanged with respect to the idealized scenarios given
in Fig. 12. For both the 3P" x 2 pt and 6 X 2 pt configurations, we
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find weak correlations between the amplitude of intrinsic align-
ments A; and the primary cosmological parameters Q,, S g, 0.

Not shown are the dimensionless Hubble parameter, A,
primordial spectral tilt, ng, and HMCode2016 halo mass-
concentration relation amplitude, Ap,ry, as these are only weakly
constrained in most configurations. The 6 X 2 pt configuration is
the exception, where i approaches a 1o error of ~0.02 and ng
begins to avoid the boundaries of the prior volume. For next-
generation experiments, the 6 X 2 pt configuration could offer
more competitive constraints on these variables.
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Fig. 11. Illustration of the application of redshift nuisance models to
the first and third bins of the n2" biased stage III photometric redshift
distribution (Fig. 4). Alternatmg panels give the target distribution n¢",
or its corresponding lensing efficiency kernel qc"h subtracted from the
equivalent n(z) or g(z) seen under the various recalibration models: the
‘do nothing’ model, denoted as N(z) (dashed purple), the comb model
Neomb (solid green), and the shift model dz; (dotted red). The latter two
are calibrated here against the 3 x 2 pt data-vector. Vertical lines give the
mean of each n(z) or g(z). The optimized comb model corresponds to
a flexible recalibration of the n(z), which minimizes the difference (via
Eq. (2.23)) between the theory- and data-vector (e.g. Fig. 9) by varying
the amplitudes of a Gaussian mixture model. One sees that the comb
model outperforms the shift model in reducing errors in g(z) whilst min-
imally increasing errors in n(z).

5.1. No nuisance model

We first consider forecasts where we attempt no recalibration
of the biased redshift distribution of the photometric sample
(the ‘do nothing’ model; Table 2). In Fig. 13, we display lo
confidence contours for both the incoherently biased case (n‘“‘
dashed contours) and the coherently biased case (n§°h, solid con-
tours). Colours denote the same probe sets as in Fig. 12. We
recall that our biased redshift distributions (Fig. 4; coloured
curves) modify the target data-vector, and that the starting dis-
tribution informing the theory-vector is N(z) (black curves in
Fig. 4). In Fig. 13 (and subsequent contour figures) we isolate
errors in cosmological inference arising from redshift biases, as
opposed to projection effects, by quoting parameter biases rela-
tive to those observed for the corresponding idealized case; the
n™ . do nothing case given in Fig. 12, for which the target dis-
tr1but10n ni™ is identical to the starting distribution N(z).

For several of these forecasts, we see significant biases on
the Ss—Qp, plane when failing to recalibrate the biased redshift
distributions. The coherent redshift bias manifests more strongly
on the Sg—Q,, plane than the incoherent bias — with the excep-
tion of 3PP x 2 pt, where the biases are similar. This is due to
an increased dependence upon the full shape of the redshift dis-
tribution for 3P" x 2 pt and 6 x 2 pt, where the former derives
a large proportion of its constraining power from photometric
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auto-clustering. The incoherently biased distribution ni™ fea-
tures the largest overall deviation in the full shape (as reckoned
by Asu; Eq. (3.2)), and results in a more significant bias on the
S §—Qu plane for the 3P" x 2 pt configuration.

The amplitude of intrinsic alignments, A;, is significantly
under-estimated by all probe configurations, for each of the two
redshift biases. The IA model thus compensates for the redshift
errors (van Uitert et al. 2018; Li et al. 2021; Fischbacher et al.
2023). The under-estimation of A; has the net effect of limit-
ing the GI suppression of the shear signal. The inferred shear
signal is therefore asymmetrically boosted, mimicking the shift
of lower-z distributions to higher redshifts seen in the upper pan-
els of Fig. 4. For consistency, we have separately verified that in
a shear-only case where the redshift distributions are coherently
biased towards lower redshifts, the A; amplitude is correspond-
ingly biased high.

The shear-only (Fig. 13; red contours) and spectroscopic
3 x 2 pt (blue contours) configurations are the most robust to red-
shift errors, as might be expected given their reliance upon the
photometric redshift distribution only at the level of the lensing
efficiency g(y). The shear-only configuration remains biased at
just {incoherent : —0.290, coherent : 0.320°} in Sg. Extend-
ing to 3 X 2 pt, the unaffected spectroscopic clustering anchors
the o (and thus Q.,) constraints (left panels), yielding biases at
{incoherent : 0.070, coherent : 0.350°} on the §g—Q, plane.

Both the 3P" x 2pt (green contours) and 6 x 2pt (orange
contours) configurations show substantial biases on the Sg—Qp,
plane. These derive from over-estimations of both Sg and
Q,, in the coherent cases (3P x 2pt 2210, 6 X2pt
2.050). In the incoherent cases, they derive from (over-) under-
estimation of (Q,) Sg for the 3P x 2pt (2.360) configura-
tion, and over-estimation of Q,, for the 6 X 2 pt configuration
(1.010). These results demonstrate the sensitivity of photomet-
ric density probes to unmitigated full-shape errors in the redshift
distribution.

The inability of the 3P" x 2 pt to constrain Qy,, and hints of
bimodality in the posterior (Fig. 13; top left panel, green curves),
conspire to degrade the FoM by ~20—-30% relative to the 3 X 2 pt
configuration, whilst the 6 X 2 pt configurations gain more than
40% in each of the (in)coherent bias cases.

Fig. 14 displays the one-dimensional posterior means and
o s intervals for various cosmological and nuisance parameters
(rows), relative to the idealized (n“”e : donothing) case for each
probe set. Columns give the three redshift bias scenarios (titles),
with the four groups of points in each panel corresponding to the
applied redshift nuisance models (x axis labels), and colours and
line-styles denoting the same probe configurations as in Fig. 12
(also given in legend).

Under the ‘do nothing’ model (left-most points in the col-
umn), the incoherently biased redshift distribution (middle col-
umn), without recalibration, causes the 3P" x 2pt and 6 X 2 pt
configurations to under-estimate og and over-estimate €,,. This
is a consequence of the biased correlations, a subset of which
are shown in Fig. 9. For the lower redshift bins, where n° is
most deviant from N(z) (Fig. 4), photometric clustering statistics
typically demand a lower amplitude of correlation to match ni™
(orange curves in Fig. 9), such that either og or the galaxy bias,

BP™' must decrease.

Because the shear sample is pushed to higher redshift, this is
compensated for in the GGL statistics by an increase in bghm.
must decrease to satisfy the clustering, whilst bghm must increase
to satisfy the GGL, and Q,, is forced high (and A; low) in order

to maintain the shear correlation amplitude. This results in a
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Table 4. Summary statistics for stage III forecasts.

Probes n(z) bias n(z) model 0Sg o] 1/063(Sg) )(12\,1 AP S/N
vy true do nothing 0.00 20.71 0.00 592
unbiased -0.01 20.59 0.00 590
incoherent -0.29 20.73 0.40 625
coherent 0.32 20.00 0.59 676
unbiased 0z -0.09 20.50 0.00 590
incoherent -0.10 20.35 0.61 625
coherent -0.10 22.03 0.55 676
unbiased Neomb + 0Zi -0.09 20.25 0.00 590
incoherent -0.05 20.40 0.00 625
coherent -0.03 21.14 0.00 676
unbiased Ncomb 0.00 20.20 0.00 590
incoherent -0.01 20.44 0.00 625
coherent 0.04 21.47 0.00 676
Probes n(z) bias n(z) model 6538, Qm [0] FoM )(%,, AP S/N
3x2pt true do nothing 0.00 2130 0.00 9854
unbiased 0.00 2136 0.03 9851
incoherent 0.07 2044 1.27 9885
coherent 0.35 2170 1.32 9933
unbiased 0z 0.01 2041 0.02 9851
incoherent 0.04 2091 1.43 9885
coherent 0.15 2189 1.97 9933
unbiased Neomb + 0Zi 0.00 2098 0.05 9851
incoherent 0.00 2144 0.09 9885
coherent 0.00 2196 0.14 9933
unbiased Neomb 0.00 2131 0.05 9851
incoherent 0.01 2121 0.09 9885
coherent 0.00 2181 0.14 9933
3PP 2 pt true do nothing 0.00 2027 0.00 7146
unbiased 0.23 2055 4.47 7094
incoherent 2.36 1480 46.97 7099
coherent 2.21 1783 76.52 7888
unbiased 0z 0.00 1809 2.06 7094
incoherent 0.55 1721 19.41 7099
coherent 0.56 2325 29.96 7888
unbiased Neomb + 0Zi 0.09 1825 0.41 7094
incoherent 0.23 1956 0.83 7099
coherent 0.35 2097 0.87 7888
unbiased Necomb 0.22 2041 0.50 7094
incoherent 0.02 1980 0.98 7099
coherent 0.17 2220 1.10 7888
6x2pt true donothing 0.00 2972 0.00 16134
unbiased 0.21 3046 8.60 16087
incoherent 1.01 2942 79.42 16 107
coherent 2.05 3080 10436 16102
unbiased 0z 0.01 2787 6.34 16087
incoherent 0.33 2598 43.12 16 107
coherent 0.33 2658 67.90 16102
unbiased Neomb + 0Zi 0.37 2997 14.21 16087
incoherent 0.01 2851 24.38 16 107
coherent 0.02 2658 39.18 16102
unbiased Neomb 0.49 3300 14.31 16087
incoherent 0.02 3008 24.53 16 107
coherent 0.14 2899 39.54 16102

Notes. Stage III survey forecasts were conducted with various sets of cosmological probes, redshift biases, and redshift recalibration nuisance
models (left-most columns; see also Table 2). The remaining columns give: the posterior mean parameter bias (in units of o, see the end of Sect. 4)

on Sg, or on the Sg—Q,, plane (Eq. (4 2)), relative to the idealized case (probes :

n™e : do nothing; boldface rows); the inverse error 1/0¢g on

S, or the Sg—Q,, FoM; the best-fit y> ; at the MAP parameter set (Eq. (2.23)); and the S/N of the data-vector (hence the numbers for different
nuisance models are the same when sharing the same data-vector). Numbers for forecasts conducted with exactly zero redshift bias (n{) are given
in boldface. As expected, we see a perfect recovery of the fiducial parameters by the MAP when the bias is exactly zero, signified by zero y? (some

biased shear-only cases show zero y? due to rounding).

bias on the Sg—Q, plane, and over-estimations of the galaxy
bias, both photometric and spectroscopic, to compensate for the
reduced o7g. In the case of the 3P" X 2 pt configuration, the pho-
tometric galaxy bias is not anchored by cross-correlations with
spectroscopic samples; larger increases in bghm force og even
lower, and result in an under-estimation of Sg. For the 6 X 2 pt
configuration, the cross-correlations forbid such large values for
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the photometric galaxy bias; decreases in o7g are limited, and S'g
remains unbiased.

In the coherent bias scenario, the redshift distributions are
similar to those of the incoherent bias for the first two tomo-
graphic bins but are then shifted more significantly for the
last three bins (Fig. 4). As a result, the coherently biased
data-vector requires higher shear correlation amplitudes at
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Fig. 12. 10 confidence contours for cosmological structure parameters Q,,, 0g, S, and ln(lO“’As), constrained by the forecast configurations
having no redshift bias (Table 2; ‘exactly zero’) and applying no nuisance model to the redshift distributions (Table 2; ‘do nothing’). Red contours
and curves give the shear-only constraints (yy); dash-dotted blue the spectroscopic 3 x 2 pt; dashed green the photometric 3P" x 2 pt; and orange
the full 6 x 2 pt. Dashed black lines indicate the fiducial parameter centres (Table 3). marginalized posterior probability distributions are seen to
extend away from the fiducial centres due to projection effects (discussed in Sect. 5), particularly in the case of In (101°As).

intermediate-to-high redshifts, due to the significant offsets in
the tomographic means. In this scenario, a severely under-
estimated alignment amplitude A; is unable to provide a suf-
ficient boost to the higher-z correlations (which dominate the
cosmic shear S/N). Sg must assume a higher value in order to
describe the high-z shear correlations and the Sg—€, bias is
increased relative to the incoherent case.

These forecasts demonstrate that, when left untreated, dif-
ferent types of errors in redshift calibration can cause the infer-
ence of cosmological parameters to be variably biased according

to different combinations of weak lensing and density probes.
Parameter constraints from configurations using the biased n(z)
only for shear statistics (cosmic shear and spectroscopic 3 X 2 pt)
are less sensitive to incoherent shifting of redshift distributions,
whilst those making use of the same n(z) for density statis-
tics can suffer large errors in the inference of o, Q,, and
bg.
: In the shear-only, 3 X 2pt, and 6 X 2 pt incoherently biased
cases, we find that Sg remains relatively unbiased, but that
this results from the IA model compensating for the redshift
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Fig. 13. 1o confidence contours for cosmological structure parameters Qy,,0g, S, and the intrinsic alignment amplitude A,, constrained by the
¥y, 3x2pt, 3P x 2 pt, and 6 x 2 pt forecast configurations with ‘incoherently’ (dashed contours and curves) and ‘coherently’ (solid contours
and curves) biased redshift distributions, and no nuisance model (‘do nothing’) for redshift recalibration (see Table 2 for a summary of forecast
configurations). Colours here denote probe configurations as in Fig. 12 (also given by the legend), whilst line styles denote the type of redshift
bias (as described in Sect. 3.1.1). Dashed black cross-hairs display the fiducial, true parameter values. The legend gives for each contour set: the
probe combination; the true redshift distribution (i.e. the type of redshift bias); the n(z) nuisance model (given as ‘x’ here, for the ‘do nothing’
model); the FoM on the Ss—,, plane (Sect. 4); and the parameter bias in the same plane (comparing posterior means to their equivalents for the
n*¢ : donothing cases, Sect. 4; Eq. (4.2)). Significant mis-estimations are seen in almost all cases, with variable errors according to the type of

redshift bias.

uncertainties. While this may be specific to our choice of a
biased redshift distribution, Leonard et al. (2024) have found
similar results for the 3 X 2 pt in their analysis. If the mean red-
shift offsets (Fig. 4; vertical orange lines) were not decreas-
ing with redshift (i.e. were not primarily manifested in the first
two tomographic bins, in contrast to the coherent bias case,
which shifts the mean in every bin), then the resulting errors
in shear two-point functions would possibly be less amenable
to correction by a modified IA contribution. We now turn to the
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application of nuisance models that attempt to correct for mis-
estimation of galaxy redshift distributions.

5.2. Shift model

We assessed whether or not the shift dz; model — the cur-
rently preferred method of redshift distribution recalibration in
weak lensing analyses (Hikage et al. 2019; Hamana et al. 2020;
Asgari et al. 2021; Amon et al. 2022; Secco et al. 2022) — is
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Fig. 14. Marginalized one-dimensional constraints for cosmological and (a selection of) nuisance parameters, found by each of our stage III forecast
configurations: yy, 3 x 2 pt, 3P" x 2 pt, and 6 X 2 pt, with colours and line-styles as in Fig. 12 (also given in the legend). The three columns give
the unbiased, incoherently biased, and coherently biased forecasts, respectively, and points are grouped on the x axis according to the nuisance
model employed by each forecast (see Table 2 for a summary of forecast configurations). Error bars illustrate the o¢g interval, within which
the posterior means are given as horizontal markers. y-axes then give the difference 6p = p — pigea for parameter p relative to the idealized
(n™ : donothing) case for each probe set (except for shift model parameters 6z;, where the difference is given relative to the fiducial truth, that is,
the actual differences in the tomographic means, as we did not conduct shift model forecasts for n").

sufficient to correct redshift biases in our stage III forecasts
(stage IV ¢z; forecasts are discussed in Sect. 5.4). The parameter
contours are displayed in Fig. 15 for both biased redshift scenar-
ios. This includes Q,,, Sg, and A, as previously, along with a
subset of the shift parameters 0z;.

There is a reduction in bias on the Sg—Q, plane (and in
S'g alone) in all of the dz; forecasts relative to the ‘do nothing’
model. Despite the concerns highlighted in Sect. 4 & Fig. 11,
the shift model is unlikely to significantly worsen the accuracy
of the Sg and S§—Q,, inference — though we also note that our
applied Gaussian priors for dz; parameters are optimistic (see
Sect. 3.1.1).

As in Sect. 5.1, the coherent redshift bias tends to mani-
fest more strongly in the parameter inference than the incoherent
bias. Several non-6 X 2 pt configurations are able to gain in FoM
with respect to their ‘do nothing’ model counterparts (Fig. 13
and Table 4), despite marginalizing over five additional parame-
ters. This is due to an interplay between (i) degradation of con-
straints due to the addition of parameters, and (ii) increased S/N
in the shear-sensitive parts of the theory-vector, owing to the
application of positive shift parameters (aided by Gaussian pri-

ors; Sect. 3.1.1) that increase the mean tomographic redshifts of
the photometric sample. For some forecasts (notably the coher-
ently biased yy and 3P" x 2 pt configurations), this results in sig-
nificantly increased constraining power. This is reflected in the
data-vector S/N (Table 4), which reveals the n§°h data-vector to
be far more constraining than corresponding "¢ and ng“b' data-
vectors for yy and 3P" X 2 pt. Conversely, for n*™ configura-
tions, the shifts dz; are close to zero; the application of the shift
model only results in reduced constraining power relative to the
do nothing cases.

In the case of the shift model, with optimistic priors for
parameters 6z; (Table 3; Sect. 3.1.1), the resulting theory-vectors
are translated to higher redshifts where possible. This releases
the pressure on A}, and Figs. 14 & 15 consequently reveal much-
improved recoveries of the true alignment amplitude by the yy
and 3 X 2 pt shift model configurations.

However, 3P" x 2 pt (green) and 6 X 2 pt (orange) contours in
Fig. 15 begin to reveal the deficiencies of the shift model for
configurations depending on photometric density tracers. Where
shift parameters dz; are able to effectively mitigate the bias in the
tomographic mean redshifts for yy and 3 X 2 pt configurations
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Fig. 15. 10 confidence contours for cosmological and nuisance parameters, as in Fig. 13, now for forecasts employing the shift model for inter-
nal redshift recalibration (Sect. 2.1) — we thus include contours for the first, third, and fifth scalar shifts, 6z;, and exclude the power spectrum
normalization, o7, in the figure for increased visibility. We show here the difference dp = p — pigea for parameter p relative to the idealized

true .
(nM

do nothing) case for each probe set (or the fiducial truth, i.e. the actual difference in the tomographic means, in the case of ¢z; parameters),

since the correct shifts 6z; depend upon the (in)coherent form of the redshift bias. Most ¢z; forecasts see a reduction in bias and a loss of FoM on
the Ss—Q,, plane (given by the legend) relative to the ‘do nothing” model (Fig. 13).

(red and blue contours, respectively, in the lower right panels),
resulting in Sg and S'g—Qy, biases at <0.150, they are less able
to do so for the 3P" x 2 pt and 6 x 2 pt configurations, yielding
biases at ~0.50" and ~0.30, respectively.

Figs. 14 & 15 show that, whilst the ‘true shifts’ — the actual
differences in tomographic mean redshifts between N(z) and
n§°h or n“1C are accurately recovered in the yy and 3 X 2pt
conﬁguratlons, they are significantly under-estimated in many
cases by the 3P" x 2 pt and in all cases by the 6 x 2 pt config-
urations, where the latter also constrains the shifts to as much
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as 4x greater precision (Table 5). As highlighted in Sect. 4 and
Fig. 11, the correct shifts help the yy and 3 X 2 pt configura-
tions by reducing the error in the lensing efficiency ¢(z), but they
amplify errors in the full-shape redshift distribution n(z). The
shift model therefore has a disproportionately negative impact
upon density statistics — principally the photometric clustering —
that are sensitive not only to the mean but also to the shape of
the redshift distributions.

The 3PP x 2 pt configuration is able to use the shifts to fit
higher amplitudes from shear correlations (particularly at at
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Table 5. o¢3(0z;) for shift parameters 0z;.

Configuration 068(021) 068(022) 068(6z3) T68(074) T68(25)
x102 x10? x10% x102 x102
Stage 111
vy : coh. 3.28 1.98 2.25 1.71 1.45
yy : incoh. 3.18 1.94 2.20 1.71 1.39
3 X 2pt:coh. 3.44 2.13 2.47 1.88 1.58
3 X 2pt: incoh. 3.42 2.17 2.53 1.86 1.57
3ph x 2pt : coh. 1.59 1.16 1.10 1.00 1.14
3ph % 2 pt : incoh. 1.58 1.28 1.23 1.14 1.11
6 X 2pt : coh. 0.78 0.60 0.58 0.63 0.87
6 x 2 pt : incoh. 0.88 0.60 0.61 0.63 0.85
Stage IV
vy : shift. 1.21 1.67 2.34 3.08 5.14
3 X 2pt : shift. 0.91 0.83 0.89 1.01 1.67
3P0 x 2 pt : shift. 0.47 0.56 0.62 0.65 0.99
6 x 2 pt : shift. 0.25 0.19 0.16 0.16 0.40

Notes. The sizes of intervals oeg(dz;) for shift parameters dz;, as con-
strained by each of our redshift-biased forecast configurations (left-
most column), each multiplied by 10? for clarity. One sees dra-
matic gains in precision coming purely from including spectroscopic-
photometric cross-clustering in the 6 X 2 pt.

high-7), yielding minor improvements to the recovery of A; (rel-
ative to the ‘do nothing’ case), and a sharp increase in FoM.
However, these shifts cause a strong suppression of the density
statistics, resulting in an increase in og (coupled to a decrease in
bg; Fig. 14), and (to maintain the shear amplitude) a decrease in
Q. These changes are so large for the n§°h case, that the signs of
biases in o3, Qp, and by are flipped relative to the ‘do nothing’
case (Fig. 14).

Meanwhile, the 6 X 2 pt configuration cannot use the shift
model to improve the fit to the shear correlations because
the spectroscopic-photometric cross-clustering would then be
poorly described. It continues to underestimate A; and remains
largely unbiased on the S'g—Q,, plane for both n;“C and ng"h —but
at the cost of some 11-13% of its FoM.

We further elucidate these trends by considering the red-
shift distribution bias metrics defined in Sect. 3.1.1, Ajncoherent
and Agy, now computed for the final redshift distributions
with best-fit nuisance models applied (the trends derived for
Aincoherents Acoherent are quite similar, hence we focus only on
Aincoherent here). The left and middle panels in Fig. 16 show
for our stage III forecasts the inverse og(Sg) and FoM on the
Ss—Qp, plane vs. the respective parameter biases (relative to
the idealized case for each respective probe set) according to
Eq. (4.2) (for the 2-d bias). The right-hand panel then shows
the corresponding final deviation in tomographic mean redshifts
Aincoherent VS- the final full-shape deviation Agy);, each normalized
to the relevant untreated (‘do nothing’) case.

Marker styles give the nuisance model and redshift bias sce-
narios as outlined in the middle right and bottom left legends,
respectively, whilst colours denote the probe configurations as
in previous figures (also given in the top legend). Circular points
denote the ‘do nothing” model, and these are not shown in the
right-hand panel, where each would sit at the centre of the
cross-hair. Parameter bias thresholds of 0.1c, 0.20,, 10, 20 are
illustrated in the first two panels with grey shading, such that
the unshaded regions indicate higher accuracy of cosmologi-
cal parameter inference. The precision of parameter inference
increases towards the top of these panels. In the right-hand panel,

mean redshift (z); errors decrease towards the bottom, whilst
full-shape n(z) errors decrease towards the left of the panel.

Each non-circular point in Fig. 16 can be thought of as an
attempt to improve upon the corresponding circle (or the cross-
hair) via some redshift nuisance model, calibrated by the various
two-point data-vectors (denoted by different colours). Whilst the
best-fit shift model is able to reduce the cosmological param-
eter bias in all cases (triangles compared to circles in left and
middle panels), it yields a much poorer recovery of the full-
shape n(z) (as reckoned by Agy) when not constrained by the
cross-clustering (orange as compared to red, blue, and green tri-
angles; right panel). Under the 6 X 2 pt configurations, which do
include the cross-clustering, each shift z; is constrained to a sig-
nificantly smaller magnitude at much higher precision. The shift
model is thus only able to produce small reductions in Ajpconerent
and Afuu.

The impact of the best-fit shifts upon the n(z) recoveries can
be seen in Fig. 17, where the first two columns show the final
redshift distribution error An(z) for the stage III (in)coherently
biased forecast configurations. In almost every panel, the 6 x 2 pt
best-fit shifts yield the closest recovery of the true redshift distri-
bution, followed by the photometric density-probing 3P" x 2 pt,
and then the photometric shear-only configurations yy and
3 x 2 pt. The relative precision of shift parameter constraints is
given in Table 5, which quotes ogg for shifts oz;, for each of
the shift model configurations. The 6 x 2 pt probe combination
is seen to yield constraints on the shift 0z; parameters that are
up to ~4 times more precise (depending on the tomographic bin)
than the spectroscopic 3 X 2 pt constraints.

The right panel of Fig. 16 demonstrates that, whilst the shift
model (triangles) can be effective in mitigating errors in tomo-
graphic mean redshifts, it does so at the cost of increased errors
in the full shape of the n(z). This is not a problem for probe com-
binations with weak sensitivity to the n(z) shape, like yy (red)
and 3 x 2 pt (blue), but for configurations probing the photomet-
ric density field — 3P" x 2 pt (green) and 6 X 2 pt (orange) — such
increases cannot be tolerated. For these configurations, more
accurate cosmological inference is achieved through the use of
a more flexible nuisance model: the Gaussian ‘comb’ model
(squares & diamonds; Sect. 2.3), to which we now turn.

5.3. Comb model

Fig. 18 displays confidence contours for Q,, Sg, Aj, 6z;, as in
Fig. 15, now for the comb + shift (Noomp + dz;) model — this
model finds an optimized redshift distribution #compopi(z) via
Eq. (2.23) before likelihood sampling (see Sects. 2.3 and 4),
and then applies the shift model to the optimized n(z) during
sampling.

First, considering the Sg—Q., plane (top left), the
(in)coherently biased forecast constraints are almost identical for
a given probe configuration, and almost completely unbiased, at
<0.10 in most cases. The exception is the 3P" x 2 pt case, where
the maximum bias is still relatively small at 0.35¢". This is a sig-
nificant result, as the data-vectors differ fundamentally between
ni" and n¢°", in such ways as to source the various biases found
in previous sections, and yet the Niomp + 0z; model is able to
homogenize the accuracy and precision of the constraints (as is
the N.omp model, not shown).

This mitigation of redshift bias is effective regardless of the
probe configuration. As seen in the right panel of Fig. 16 for
every ng"h and n"° configuration (large squares and diamonds),
the comb models are able to reduce the error in A;,., whilst
causing minimal damage to Ay relative to the corresponding
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Fig. 16. Summary statistics describing the accuracy and precision of the cosmological parameter inference, and corresponding recovery of the true
redshift distribution via internal recalibration, for each of our stage III forecast configurations. Colours denote different probe sets, whilst marker-
styles give the form of the redshift bias and the applied redshift nuisance model (legends in right panel; star markers denote the nI™° : do nothing
case for each probe set). Left and middle: Accuracy and precision of the cosmological constraints given in terms of the S bias and inverse g
for shear-only (left), and the two-dimensional parameter bias and the FoM (Sect. 4) on the S3—Q,, plane for other probe sets (middle). Biases are
given relative to the idealized case for each respective probe set (see Eq. (4.2) for the 2-d bias). The x-axes (Sg or Sg—Q,, bias) scale linearly
between 0 and |0.207, and logarithmically thereafter. Right: The n(z) recovery is characterized by the redshift distribution bias metrics Ag, and
Aincoherent defined in Sect. 3.1.1 (Egs. (3.1) and (3.2)). Each describes the deviance of the recovered n(z) with respect to the true distribution (Eni“C
for open points, n§°h for filled points, or n‘Z‘“b' for small points) via a Euclidean distance, with Ag,; computed over the full n(z) shapes, and Ajjconerent
computed between the 5-vectors of tomographic mean redshifts. These are given after the respective normalization to Ajnconerent and Agyy found
for the ‘do nothing” model (Table 2), corresponding to circles in the left and middle panels. Circles and stars are not shown in the right panel for
the ‘do nothing’ model, where each would sit at the centre of the dotted cross-hair. The spread of points shows that maximal parameter accuracy
(towards zero in the left panel, and leftwards in the middle panel) and precision (upwards in the left and middle panels) most often come from a
balance between reductions in Ajpconerent and minimal increases in Ag,; (towards the bottom left in the right panel), and that this is most achievable
through use of the comb model (squares and diamonds), particularly for configurations that probe photometric densities (green and orange).
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Fig. 17. Residual five-bin (rows, 1-5 descending) tomographic redshift distribution errors, An(z), found for the best-fit (MAP) shift models
(Sect. 2.2) constrained by each of our stage III and stage IV redshift-biased forecasts (see Table 2 for a summary of configurations). Colours
and line-styles give the probe configurations as in previous figures (except yy, indicated here by dotted curves for clarity; see legend). For the
stage III configuration, columns show the attempted recoveries of the incoherently (left) and coherently (middle) biased redshift distributions
(Sect. 3.1.1), which feature full-shape n(z) deviations. For the stage IV configurations (right), the shifted distribution features pure shifts in the
tomographic means (Sect. 3.2.1). The shift model enjoys generally superior recoveries of the true n(z) upon inclusion of spectroscopic-photometric
cross-clustering correlations within the 6 X 2 pt configurations. We note that the pure-shift biases examined for the stage IV forecasts are well
compensated for (residual errors are at the sub-percent level), and that the shift model offers a comparatively more accurate treatment of these
stage IV biases than the full-shape n(z) errors in the stage III forecasts, where the largest residuals exceed 100%.
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Fig. 18. 10 confidence contours for cosmological nuisance parameters, as in Fig. 15, now for forecasts employing the comb + shift model Ncomp +
0z; for internal redshift calibration (Sect. 2.3). The comb + shift recalibration reduces biases on the Ss—Q,, plane with respect to the ‘do nothing’
(Fig. 13) and shift (Fig. 15) models, and recovers some of the FoM lost to the shift model even whilst marginalizing over scalar shifts.

shift models (triangles; some of which are unable to significantly
improve Aj,c, as discussed in the previous section). We reiter-
ate that the shifts are still in place for the Ncomp + 0z; model
(squares), and yet the n(z) recovery is similar to that seen for
the N¢omp model (diamonds); the gain, therefore, comes almost
exclusively from the flexible optimization of the n(z) against the
data-vector, and is not predicated upon the inclusion of cross-
clustering correlations (though they help to further improve the
recovery). This is also reflected in the final redshift distributions;
our analysis of the best-fit Noomp + 0z; and pure Neomp mod-
els shows smaller An(z) performance differentials between the
6 x 2 pt and less complex configurations.

We find some differences in the constraints according to the
form of the redshift bias. First, A is still slightly under-estimated
bythe 6 X 2pt: ng"h : Neomb + 02; configuration (at ~107; see the
third group of points in the right panel of Fig. 14), though to
a lesser extent than for the ‘do nothing’ and 6z; models (biased
at $1.5-20). This would suggest that the recovery of n<" by
the optimized comb model is not sufficient to yield large enough
shear amplitudes, such that the alignment contribution must con-
tinue to compensate.

We further find that the best-fit shifts, ¢0z;, found by the
Neomb +07; configurations are still not equal to the ‘correct’ shifts
(recalculated after optimization of the comb to reflect the actual
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difference in the tomographic mean redshifts), now also for the
coherently biased 3 X 2 pt and yy forecasts. Instead, they are uni-
formly consistent with zero, for all tomographic bins across all
forecasts. This is partially due to the application of zero-mean
Gaussian priors for the shifts 0z; (with the same widths o; car-
ried over from the ensemble {n(z)}x; Sect. 3.1.1). As discussed
in Sect. 4, this was done to preserve a fair comparison between
the Neomp + 0z; model and the shift model (for which priors limit
the freedom of z;) but also because the original centres for the
shifts would be inappropriate after optimization of the comb!'?.

To investigate the sensitivity of Ncomp + 0z; maxima a
posteriori models to the recentring (to zero-mean) of the dz;
priors, we experiment with priors of 2x and 3x the width; flat
priors between +30;; and with no priors (i.e. a pure maximum-
likelihood search). We find that the application of zero-mean pri-
ors results in stronger reductions of Ajpconerent, and smaller biases
on the Sg—Q,, plane, in all cases. When the priors are widened
or removed, some configurations start to prefer non-zero shifts
0z;, but this always results in a larger Sg—Q, bias, and 6 X 2 pt
configurations always prefer post-comb shifts that are consistent
with zero. This suggests that widening the priors for shifts in the
Neomb + 0z; model does not necessarily yield the correct mean
redshifts in the end, and that the primary correction occurs dur-
ing the comb optimization, as previously indicated.

We tested this interpretation by also considering the comb
model without shifts, simply fixing the optimized n(z) for use by
the sampler. Under most n¢°" and 7" configurations, both the
Neomp +07z; and Neomp models (squares and diamonds in Fig. 16)
see a reduced parameter bias as well as matched or increased
precision in comparison with the corresponding shift model (tri-
angles). In addition, the N omp makes small gains in precision
relative to the N.omp + 6z; model (squares), whilst not appre-
ciably losing accuracy. The only exceptions are yy : n¢®" and
3Ph x 2 pt : n<, where the shift model has higher precision, but
at the cost of increased parameter bias. Hence, the strong per-
formance of either of the two comb models relative to the shift
model reinforces our expectation that a more flexible recalibra-
tion of biased redshift distributions is generally preferred.

That said, we identify shortcomings in our implementation
of comb models when applied to the unbiased data-vector (cor-
responding to n;‘“b'; Sect. 3.1.1), particularly for the 6 x 2 pt con-
figuration. In this case, the resulting redshift distribution poorly
recovers n?“b' compared to the shift or ‘do nothing” models (top
right of right panel in Fig. 16), resulting in best-fit parameters
that are biased up to ~0.50 on the Sg—Q,, plane. As Fig. 11
shows, the optimized comb (solid green curves) outperforms the
shift model (dotted red curves) in recovering both the lensing
efficiency ¢(z) and the redshift distribution n(z), but it cannot
avoid slightly amplifying the error in n(z) relative to that seen
for the unmodified distribution N(z) (dashed purple curves), as
the fine structure is effectively smoothed-over by the Gaussian
components. When the true distribution is unbiased relative to
the starting distribution, this causes both the initial and opti-
mized comb models to significantly worsen the already-small
redshift distribution errors An(z) — as seen for the small points
in top right corner of the right panel in Fig. 16, where Agqy is
effectively a sum over the square of An(z). Put differently, the
redshift-space width of comb components is not sufficiently nar-

12 One could compute new non-zero centres for the shift priors after
comb optimization, but this would involve returning to the hypotheti-
cal external redshift calibration. Instead, we assume that the mean cor-
rection has been applied by the comb optimization, and proceed with
zero-mean priors for the shifts.
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row to capture the intricate structure of the redshift distribution,
and the ‘do nothing’ case consequently offers a closer recovery.

A higher-resolution comb model might be more successful in
handling very small redshift distribution errors An(z), though we
note that there may be associated trade-offs to consider; the opti-
mization procedure would probably be more time-consuming,
and a higher density of comb components could increase the
space of degenerate n(z) solutions for a given data-vector. But
this is not a feature of the comb alone: all small symbols in
Fig. 16 are located upwards (and many rightwards) of the cross-
hair, signifying that the ‘do nothing” model, that is, N(z) unmod-
ified, offers the best recovery of n;'“b‘ in terms of both the mean
redshifts and the full shape (as reckoned by our metrics Ajycoherent
and Ag).

The requirement for tuning of a flexible redshift distribution
model, and the possibility of introducing biases into pristinely
calibrated prior distributions, further motivate the need for more
flexible n(z) nuisance modelling, and for marginalization over
uncertainty in the n(z). Some tuning of the comb resolution (as
in Stolzner et al. 2021) is also likely to be necessary.

As was previously discussed (Sect. 2.3), we do not
implement an analytic marginalization over the comb model
uncertainty (see Stolzner etal. 2021) in this work, owing
to development needed for extended analyses, and ques-
tions concerning appropriate priors for comb amplitudes
— though analytic marginalization is certainly a primary
avenue for improvement. Another possibility is the Hyperrank
approach of Cordero et al. (2022) (see similar approaches in
Hildebrandt et al. 2017 and Zhang et al. 2023), which consis-
tently and efficiently marginalizes over a space of possible red-
shift distributions (generated through the external calibration
procedure; Myles et al. 2021) by rank-ordering them via hyper-
parameters (typically defined as functions of the tomographic
mean redshifts (z);) which are then sampled-over in the chain.
Inspired by this approach, we suggest a complementary strategy
making use of the comb, or other flexible n(z) models. Since the
data-vector d and corresponding covariance are typically given
ultimate authority to arbitrate between possible recalibrations of
the n(z), we propose that the data-vector itself be used to gener-
ate the n(z) ensemble. Re-sampling d many times, each sample
could be used to constrain a flexible n(z) model — for example,
the optimized comb model — assuming the best-fit cosmological
and nuisance model for the fiducial data-vector. The resulting
ensemble of 7comb,op(z) realizations would then sample the space
of redshift distributions preferred by the observational data,
which could be efficiently marginalized over during sampling
of the cosmological and nuisance model with the Hyperrank
method.

5.4. Stage IV forecasts

As a final demonstration of the redshift calibration power of
spectroscopic-photometric multi-probe analyses, we turn to our
stage IV analysis forecasts, the results of which are summa-
rized in Table 6. Our stage IV synthetic samples (Table 1) take
the form of five-bin Rubin LSST Y1-like tomography for the
photometric sample (Sect. 3.2.1), and DESI-like bright galaxy,
ELG, and LRG spectroscopic samples (Sect. 3.2.2). Besides
overall increases to survey depths, areas, and number densities,
these mock data also feature greater area and redshift overlaps
between spectroscopic and photometric samples, in comparison
with our stage-III-like samples. We note that the final results are
sensitive to these survey characteristics, which ultimately deter-
mine the S/Ns of the different probes explored in this analysis.
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Table 6. Summary statistics for stage I'V forecasts.

Probes n(z) bias n(z) model édog,Qn[oc] FoM /\/12\/1AP S/N
vy true do nothing 0.00 31197 0.00 42 620
shifted 12.57 35055 118.20 41856
shifted 07 0.32 6084 0.00 41856
3x2pt true do nothing 0.00 82 854 0.00 116120
shifted 11.40 63358 275.58 115112
shifted 07 0.00 48111 0.00 115112
3P0 x 2 pt true do nothing 0.00 80312 0.00 248263
shifted 9.64 88409 2108.51 222605
shifted 07 0.01 44556 0.02 222 605
6 X 2pt true do nothing 0.00 96 626 0.00 315421
shifted 6.02% - 493295 316056
shifted 0z 0.00 88546 0.08 316056

Notes. The same as Table 4, but now for our stage IV forecast configurations (left-most column; see also Table 2). Note that, as is discussed at the
end of Sect. 4, we now quote statistics for the os—Q,, plane for all configurations including y7y, given the increase in ., constraining power, and

reduction in non-linearity of the os—Q,, plane, for stage-IV-like statistics. We also note that the 6 X 2 pt :

nMift : do nothing forecast was unable

to achieve convergence when sampling the posterior distribution; the parameter bias is quoted in this case “for the MAP model (marked by an

asterisk), and the FoM is accordingly omitted.

To simulate redshift biases, we simply drew random scalar
shifts from five zero-mean Gaussian distributions, with widths
increasing as a function of redshift'?, and applied these to the
fiducial photometric distributions. This simpler model for red-
shift bias was adopted owing to a lack of n(z) covariance esti-
mates for our stage-IV-like samples, which would have enabled
us to follow a similar procedure to that outlined in Sect. 3.1.1.
Given that these are not full-shape n(z) biases, which must be
expected for real analyses, we note that these forecasts are more
optimistic about the performance of the shift model than those
performed for stage III surveys.

We sub-divided the spectroscopic sample into 11 partially
overlappmg tomographic bins of width Az > 0.2, as described
in Sect. 3.2.2, and conduct forecasts for the subset of conﬁgura—
tions given in Table 2. These include the exactly known n™¢ and
shifted n$M redshift distributions; the ‘do nothlng and scalar
shift oz; (w1th optimistic priors; Sect. 3.1.1) nuisance models;
and the four probe configurations: yy, 3 x 2pt, 3P" x 2 pt, and
6 x 2 pt. Similarly to the stage III survey set-up, we neglected
to run stage I'V shift model forecasts where the n(z) was exactly
zero (6z; : n"®).

Fig. 19 displays the collated results of our stage IV forecasts,
with red contours corresponding to y7y, blue to 3 x 2 pt, green to
3P" % 2 pt, and orange to 6 x 2 pt. Solid contours display 7"™(z)
forecasts without any nuisance model; the idealized scenarios.
We note that the blue, green, and orange contours are often over-
lapping. We find that the non-linear o3—€),, degeneracy seen for
stage III analyses is linearized for our stage IV set-up, and quote
statistics for the os—(, plane accordingly. Relative to yy, the
FoM(og—Q,) is seen to increase by factors of ~2.7 (3 x 2pt),
~2.6 (3P" x 2 pt), and ~3.1 (6 X 2 pt).

Dotted contours give the n" forecasts'4, also without any
nuisance model for the n(z). The induced blases on the og—Q,
plane are seen to be severe. Similar to our stage III forecasts,
the alignment amplitude A, is significantly mis-estimated as a
consequence of unmitigated redshift biases. In contrast to the

13 The resulting shifts were [0.016,—0.012,-0.016,—0.043,0.043],
respectively.

14 In this case, we refrain from showing the 6 X 2 pt configuration due
to difficulty in finding convergence.

stage IIT 3P" x 2 pt configurations, A; is shifted high here due
to the different form of redshift bias, with bins 2—4 shifted low,
and bins 1 & 5 shifted high. Whilst the net requirement for the
vy and 3 X 2 pt configurations is for increased shear amplitudes,
resulting in underestimations of A; (similarly to stage III), the
3P" % 2 pt must also satisfy a demand for reduction of photomet-
ric GGL signals, and thus yields an overestimation of A;.

The dashed contours in Fig. 19 show the ni"" forecasts with
the application of the shift model for redshift recalibration. The
scalar shifts are found to effectively mitigate the og—Q,, bias
for each of the configurations. However, weak 0z; constraints
and inter-parameter correlations (between 0z;, and with A; and
cosmological parameters) cause the yy, 3 x 2pt, and 3P" x 2 pt
configurations to lose significant proportions of their FoM in
exchange for the correction. In contrast, the 6 X 2 pt configura-
tion is able to constrain the shift parameters at up to ~19x%, 6x,
and 4x the precision seen for yy, 3 x 2 pt, and 3P" x 2 pt, respec-
tively (Table 5), thereby retaining >90% of its idealized FoM.
As aresult, the FoM(og—Q,) gain factor, relative to yy, is ~7.9
(3 x2pt), ~7.3 (3Ph x 2pt), and ~14.6 (6 x 2pt) — the 6 x 2 pt
analysis allows for a far-superior retention of constraining power
throughout the n(z) recalibration.

We reiterate that the artificial redshift distribution bias imple-
mented for these forecasts is particularly generous to the shift
model (see Fig. 17, where the n(z) error is reduced to sub-percent
level by each configuration). One should expect the recalibra-
tion to suffer in all cases under more realistic redshift calibra-
tion errors, such as those implemented in our stage III forecasts
(Sect. 3.1.1). However, improved recalibration upon inclusion of
cross-clustering correlations should be expected for any form of
redshift bias, as demonstrated by the dramatic increases in pre-
cision for nuisance parameters constrained by the stage III and
stage IV 6 x 2 pt forecasts, independent of the suitability of the
model for correction of the bias.

We note here that, as discussed in Sect. 2.2, stage IV fore-
casts are far more capable of meaningfully constraining the halo
model amplitude Ap,ry, When compared with their stage III coun-
terparts — particularly the 6 x 2 pt and 3P" x 2 pt configurations,
for which the upper edge of the prior (indicating a zero-feedback
universe) sits beyond 40 in the marginalized 1-d posterior dis-
tribution (not shown). Our work therefore indicates that, modulo
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Line style Probes nodel pbias Precision Bias
- vy x  n™ FoM(og, Qy): 31197 0.000
........ 1y x Mt FoM(og, Qn): 35055 12570
..... ¥y 0z FoM(og, Q): 6084  0.320
- 3x2pt X FoM(og, Qu): 82854  0.000
........ 3x2pt X FoM(og, Qu): 63358 11.400
3x2pt 0z FoM(og, Q): 48111 0.000
3Phxopt  x FoM(og, Qm): 80312 0.000
3Phxopt  x M FoM(og, Q): 88409 9.640
3Phxopt 6z n“.;hm FoM(og, Qm): 44556 0.01c
6x2pt X ny" FoM(og, Qm): 96626  0.000
6x2pt 0z pShif FoM(og, Q0 ): 88546  0.000
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Fig. 19. 10 confidence contours for cosmological and nuisance parameters, as in Fig. 15, now for all forecasts conducted using synthetic stage-
IV-like galaxy samples (Sects. 3.2.1 & 3.2.2), including: the true redshift distribution n{" with the ‘do nothing’ model (i.e. the idealized case;
solid contours); the shifted distribution nihif‘ with the ‘do nothing’ model (the uncorrected case; dotted contours); and the shifted distributions with
the shift 6z; model (the corrected case; dashed contours); each performed for the yy (red), 3 x 2 pt (blue), 3P" x 2 pt (green), and 6 x 2 pt (orange)
configurations. Contours for the 6 x 2pt : 7" : do nothing configuration are excluded from this figure owing to difficulties in reaching stable
convergence within the inference chains, though the MAP estimate reveals a strong bias, at >60 on the Sg—Q,, plane (Table 6) The addition
of clustering cross-correlations within the 6 X 2 pt configuration increases the precision of constraints upon the shift parameters, dz;, thereby
preserving >90% of the idealized FoM whilst erasing the bias on the og—€, plane (given in the legend). Conversely, the {yy, 3 x 2 pt, 3?" x 2 pt} :

0z; forecasts compensate for the parameter bias, but see reductions in the FoM by factors of ~1.8-5.

the approximations made here, the next generation of weak lens-
ing experiments is indeed promising for the future of baryonic
feedback modelling.

We acknowledge that stage IV analyses wishing to make use
of galaxy clustering and GGL measurements up to our fiducial
kmax = 0.3 2 Mpc~! will most likely need to go beyond the lin-
ear bias assumption (e.g. Nicola et al. 2024). For this reason,
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we also considered a scenario where the analysis is restricted to
kmax = 0.1 hMpc‘l. ‘We find that this scenario does not remove
the biases caused by uncorrected photometric redshifts shifts;
they remain comparable to our fiducial scenario. The stricter kp,x
cut does result in lowered FoM values, as one would expect from
including fewer modes in the data vector. However, compara-
tively, the 6 X 2 pt probe combination is the most robust to the
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Fig. 20. Histograms showing the number of likelihood evaluations per
second (top), the final accepted fraction of evaluations (middle), and
the total forecast run-time in hours (botfom) of our stage III forecasts,
coloured according to the probe configurations (as in previous figures,
and also given in the legend; see Table 2). We note that these are indica-
tive estimates for runtimes, excluding some forecasts that were rerun at
later stages, and including some variability stemming from the number
of parallel threads utilized for each specific forecast. As a result, some
forecast timings were unrepresentative (<10 evaluations s™'), and these
are not shown.

small-scale cuts. This manifests in a factor of ~3 improvement
in the FoM relative to the 3 X 2 pt probe combination, instead
of a factor of ~2 fiducially, which is in line with previous work
(Joudaki & Kaplinghat 2012).

5.5. Speed of convergence

We remark here upon the requirements and consequences posed
by the inclusion of spectroscopic-photometric cross-clustering
correlations within the joint LSS analysis. We emphasize that
our conclusions here might be specific to the choice of a nested
sampler and the priors adopted in our analyses and they might
change if either of these choices are modified.

One of the major lessons learned during this study is that the
cross-clustering works to improve nuisance recalibration of red-
shift distributions by dramatically decreasing acceptance frac-
tions during the sampling of the posterior probability distribu-
tion. This reflects the much smaller space of parameters that are
able to simultaneously satisfy the cross-clustering — pinned to the
spectroscopic n(z) — and the demands from shear correlations for
modified redshift distributions.

The time required for convergence of the chains is found
to increase accordingly. In order to enable the running of many
forecast configurations including the cross-clustering, this moti-
vated us to make the series of approximations described in
Sect. 2.4. We illustrate this point in Fig. 20, which shows the
likelihood evaluation rates (top), final acceptance fractions (mid-
dle), and total run-times'> (bottom) of our stage III forecasts
(colours denote probe configurations; see Table 2). Our approxi-
mations enabled us to evaluate the likelihoods of extended data-
vectors ~20 times per second, on-average, and yet the low accep-
tance rate (middle panel; leftward) of the 6 X 2pt configura-
tion resulted in total run-times ranging from a few days to sev-
eral days, with the slowest approaching 10 days (40—48 cores).
If we are to utilize the redshift calibration power from cross-
clustering in future analyses, further advances in the realms of
power spectrum emulation and fast computation of other cos-
mological functions would be a great boon.

6. Conclusions

We have conducted simulated likelihood forecasts for the fully
combined analysis of weak lensing and galaxy clustering from
overlapping stage-III- and stage-IV-like photometric and spec-
troscopic galaxy surveys. In particular, we assessed the poten-
tial for positional cross-correlations between the spectroscopic
and photometric galaxies to improve the precision and accuracy
of the calibration of shear sample redshift distributions, thereby
reducing biases in the cosmological parameter inference and
increasing the statistical constraining power of the surveys.

Synthetic stage III samples were defined to have similar
photometric statistics to the ones reported for the fourth Data
Release of the Kilo Degree Survey (Kuijken et al. 2019), sup-
plemented by spectroscopic galaxies from the completed Baryon
Oscillation Spectroscopic Survey (Eisenstein et al. 2011) and
2-degree Field Lensing Survey (Blake et al. 2016), assuming
661 deg? of overlap (Asgari et al. 2021). For our stage IV con-
figuration, we mimicked the expected statistics for the first
year of Rubin Observatory: Legacy Survey of Space and
Time observations (Mandelbaum et al. 2018), supplemented by
spectroscopic observations resembling the Dark Energy Spec-
troscopic Instrument bright galaxy, ELG, and LRG samples
(DESI Collaboration 2016), assuming 4000 deg® of overlap.

We simulated redshift calibration failures for stage III sur-
veys by sampling many thousands of five-bin redshift distri-
butions with variations over the full n(z) shape and selecting
extreme outliers in terms of the differences in tomographic mean
redshifts. We distinguished between samples according to the
‘coherence’ of the mean redshift errors; whether the bulk dis-
tribution is shifted in one direction, or features more internal
scattering and full-shape n(z) errors. Our goal with our choice
of n(z) realizations was to find a pessimistic scenario that is still
compatible with the structure of the n(z) covariance. Beyond the
expected degrees of cosmological parameter bias, we are partic-
ularly interested in understanding the capacity of probe combi-
nations to mitigate such extreme n(z) calibration errors. For our
stage IV configuration, we simply drew random, uncorrelated

15 We note that minor timing overheads are incurred by the optimization
process for each of our stage III comb model configurations. The mag-
nitude of the overhead is dependent upon the choice of algorithm, its
hyperparameters (e.g. tolerance, maximum function evaluations, etc.),
and the probes—redshift bias combination. Regardless, the time to opti-
mize is subdominant to that required by likelihood sampling, and the
optimization timing is not included in Fig. 20.
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shifts to apply to the means of tomographic distributions, mak-
ing it more closely resemble a stage III ‘incoherent’ bias, but
lacking full-shape errors due to the lack of a realistic redshift
distribution covariance.

We explored the capabilities of the commonly used tomo-
graphic bin-wise shift parameters in recalibrating redshift dis-
tributions to accommodate such biases, in contrast to a flexi-
ble Gaussian mixture model for the n(z), as well as a ‘do noth-
ing’ case in which the biases were left unaddressed. Our cen-
tral proposal was that any redshift recalibration model should
be more precisely and accurately constrained by analyses that
include clustering cross-correlations with spectroscopic sam-
ples, thereby ‘pinning’ the nuisance variables to the well-known
spectroscopic n(z). To this end, we explored joint analyses of var-
ious combinations of up to six cosmological observables, prob-
ing the cosmic shear field traced by photometric galaxies and
the cosmic density field traced by both photometric and spectro-
scopic galaxies.

We modelled the matter power spectrum, P(k), with the
CosmoPower emulator (Spurio Mancini et al. 2022), trained
against a library of power spectra featuring baryonic contri-
butions according to the one-parameter HMCode2016 model
(Mead et al. 2015, 2021). We used the CCL library (Chisari et al.
2019a) in ‘calculator’ mode to compute Limber-approximated
angular power spectra for the cosmic shear, C,, (£), GGL, C,,({),
and galaxy clustering, C,,({), including all contributions from
lensing magnification and intrinsic alignments. We considered
the multipole range £ € [100, 1500] for a stage III (and ¢ €
[100,3000] for a stage IV) survey set-up, modelling all scales
for cosmic shear correlations and limiting positional probes to
an £y corresponding to kyax = 0.32Mpc™ at a given redshift.

We performed simulations for a flatt ACDM cosmolog-
ical model, sampling the posterior probability distribution

for five cosmological parameters, QN2 O k2, In (IOIOAS), h, ng

(then deriving og and Sg = 0 V,/0.3), one amplitude each
for intrinsic alignments, A, and baryonic contributions, Ay, (if
applicable) one linear galaxy bias, by, per tomographic sample,
and (if applicable) one scalar shift, 0z;, in the mean redshift per
photometric tomographic sample. We used an analytical Gaus-
sian covariance in the process. Our primary findings are summa-
rized as follows:

— Under idealized conditions, without redshift biases or nui-
sance models, a stage III 6 X 2 pt analysis offers a ~40% gain
in FoM on the S3—Qp, plane, relative to the spectroscopic
3 X 2 pt analysis, and a ~45% gain relative to the photomet-
ric 3PP x 2 pt analysis (noting these figures may be specific
to our sample definitions).

— The relative coherence of biases in the redshift distribution
is important in determining the manifestation of the bias at
the level of cosmological parameters. Coherent biases — uni-
directional shifts in the bulk distribution — are more likely to
affect the determination of Sg by demanding large changes
to the shear correlation amplitudes across all redshifts. Con-
versely, incoherent biases — multi-directional shifts, and full-
shape errors — are more harmful to inferences of o, Qy, and
the photometric galaxy bias, bghm, as they manifest more
strongly in density correlations that depend differently upon
og and Q.

— If we do nothing to the (either coherently or incoherently)
biased redshift distributions, the intrinsic alignment ampli-
tude, Ay, is mis-estimated in order to compensate for the red-
shift errors. Modifications to A; can suppress or amplify the
shear signal (primarily via GI contributions to off-diagonal
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correlations), and thereby mimic the shifting of lower-z bins.
This is less effective at higher redshifts, where intrinsic align-
ments are weaker, and where most of the S/N for cosmic
shear lies. We confirm that the direction of the error in A,
corresponds to the direction of the bias in tomographic mean
redshifts; under-estimation of mean redshifts results in an
under-estimation of Aj, though this picture is complicated
when considering multiple probes beyond cosmic shear, or
when tomographic mean errors are variable, that is, multi-
directional.

— Even when the IA amplitude is mis-estimated in this way,
there remain significant biases on the Sg—Q, plane, espe-
cially for the photometric 3P" x 2pt (2207) and 6 x 2pt
(210) configurations. Among all configurations, the spectro-
scopic 3 X 2 pt is the most robust to redshift biases, owing to
its weaker sensitivity to the fine structure of the photometric
n(z).

— The ‘shift model’ is often able to reduce the overall error,
Aine, in the tomographic mean redshifts, but does so whilst
typically increasing the full-shape n(z) error, Agy. Cosmic
shear, yy, and the spectroscopic 3 X 2 pt configuration (with
spectroscopic lens galaxies) are sensitive to the photometric
redshift distribution only via the lensing efficiency, which is
largely determined by the mean redshift; increases to Ag) are
relatively unimportant here, and the shift model is effective
in mitigating cosmological parameter biases.

— In contrast, the photometric 3P" x 2 pt and 6 x 2 pt configu-
rations are sensitive to the full shape of the n(z) via photo-
metric density probes. In these cases, significant increases in
Ay cannot be tolerated by the data-vector. The shift model
is thus less able to reduce Aj,., such that the n(z) recovery
is relatively poor, and small cosmological parameter biases
remain, at ~0.50 (3P" x 2 pt) and ~0.30 (6 x 2 pt).

— A more flexible model for n(z) recalibration — the ‘comb’,
a Gaussian mixture model — is able to effectively mitigate
tomographic mean errors, Aj,., without also expanding the
full-shape errors, Ag,y. With or without the additional appli-
cation of scalar shifts, this model yields the most accurate
recoveries of (in)coherently biased redshift distributions, and
lowest cosmological parameter biases, per the configuration
of probes. However, more work is needed to ensure that the
comb does not yield adverse impacts for near-perfectly cal-
ibrated redshift distributions, for which n(z) biases are not
significant.

— For the stage III configuration, the inclusion of
spectroscopic-photometric  cross-clustering correlations
within the full 6 X 2 pt analysis yields up to ~4X and ~2x
tighter constraints upon shift model parameters 6z;, relative
to the 3 x 2 pt and 3P" x 2 pt analyses, respectively. For our
stage IV set-up, these figures rise to ~6x and ~4X, respec-
tively. This gain in nuisance calibration power translates into
double the o3—Q,,, FoM compared to 3 x 2 pt/3P" x 2 pt, and
only an ~8% FoM loss compared to the idealized, zero-bias
6 % 2 pt scenario. Large-scale structure analyses seeking to
maximize constraining power whilst effectively mitigating
redshift calibration errors should therefore consider making
use of cross-clustering correlations for their enhanced
recalibration potential.

6.1. Outlook

One of the challenges we expect for the application of this
method is the computational cost of the likelihood evaluations.
This will be particularly important for stage IV surveys where
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the modelling will have to be more accurate (and costly) to
match the precision of the data. Most of the cost derives from the
computation of cross-clustering correlations between spectro-
scopic and photometric datasets, which enlarge the data-vector
but also diminish the fraction of accepted parameter samples that
make up the chains. The former could in principle be improved
by pre-computation and emulation of the angular power spec-
tra (as opposed to the matter power spectrum), but the latter
is likely to pose a consistent challenge. We emphasize that this
challenge might be specifically linked to our choice of a nested
sampler.

Another aspect to be explored is the configuration of the
comb model. In our work, we followed closely the set-up of
Stolzner et al. (2021), which applied the methodology to cos-
mic shear alone. In principle, the addition of clustering and GGL
statistics could enable a finer comb to more accurately recover
the n(z), which we have found to be desirable for the handling of
residual A; biases or initially unbiased redshift distributions, as
is discussed in Sect. 5.3. However, a finer comb incurs additional
computational costs in the context of analytic marginalization,
where the number of required operations per likelihood evalu-
ation is dramatically increased. For the Ncomp + 0z; and Neomb
approaches explored here, the additional cost would be minimal.
The impact of a more motivated marginalization over uncertainty
in the comb model remains to be explored for (3—6) X 2 pt analy-
sis configurations. This could be achieved following the method-
ology in Stolzner et al. (2021) or by incorporating a strategy
more similar to Hyperrank (see Cordero et al. 2022, and the dis-
cussion at end of Sect. 5.3). Ideally, we would also explore more
variably biased redshift distributions; the coherent and incoher-
ent cases could be more dissimilar, with a different net direction
of bias, and a distribution maximizing the full-shape error (as
opposed to the error in the means) would be of interest.

The need for fast theory-vector evaluations in order to run
our full likelihood analyses of the 6 x 2 pt correlations has led us
to make some simplified model choices. Although we acknowl-
edge that the accuracy needs of next-generation data require
more complex LSS modelling, we emphasize that the choices
were homogeneous throughout the different probe combinations,
(3-6) x 2pt. This allowed us to make meaningful compar-
isons between them. However, in the future, it will be important
to enable extensions of our pipeline to include more accurate
models of baryons (van Daalen et al. 2011, 2020; Chisari et al.
2019b; Mead et al. 2021; Salcido et al. 2023), intrinsic align-
ments (Blazek et al. 2019; Vlahetal. 2020; Fortuna et al.
2021; Bakx et al. 2023; Maion et al. 2024), redshift space dis-
tortions (Kaiser 1987; Taylor & Hamilton 1996; Ross et al.
2011), non-Limber angular power spectra (Campagne et al.
2017; Fangetal. 2020; Leonard et al. 2023), non-linear bias
(Baldauf et al. 2011; Pandey etal. 2020; Mead etal. 2021;
Nicola et al. 2024), and fingers-of-God (Jackson 1972), and of
their redshift evolution. The increased constraining power of
the 6 X 2 pt configuration also makes it interesting to open up
the cosmological parameter space, and to determine the con-
straining power of this probe combination in terms of curva-
ture, neutrino mass, evolving dark energy, and other extensions
(Joudaki et al. 2017b; Troster et al. 2021; Abbott et al. 2023;
Adame et al. 2025).

In this work, we have fixed the number of spectroscopic sam-
ple redshift bins (for each stage). It would be useful for future
work to explore whether or not fewer bins could achieve the
same performance in recalibrating the photometric redshifts of
the shear sample, whilst reducing the cost of each likelihood
evaluation.

As the main motivation of this work has been to under-
stand the gains from including spectroscopic-photometric cross-
correlations, we decided to work with projected angular power
spectra of the clustering of these galaxies instead of their
three-dimensional power spectra. In the future, this alterna-
tive could also be explored. This would increase the cos-
mological constraining power in the spectroscopic sample
alone (e.g. Joudaki et al. 2018; Heymans et al. 2021), specif-
ically by breaking degeneracies with Q. and the spectro-
scopic bias parameters (through the redshift space distortions;
Kaiser 1987). The challenge lies in computing and validat-
ing the covariance matrix when the estimators used for the
different tracers are not the same, which has thus far been
achieved by creating a large suite of numerical simulations
(Harnois-Déraps & van Waerbeke 2015; Joachimi et al. 2021;
Joudaki et al. 2018; Heymans et al. 2021). Recent work more-
over suggests a possible avenue for its analytic computation
(Taylor & Markovic 2022).

We have considered the same, linear galaxy bias function for
the spectroscopic and photometric samples. It is likely that the
galaxy bias will differ in the real data due to the differences in
the redshift coverage and depth of each sample. This can have
advantages in terms of cosmological constraints, as differently
biased tracers that sample the same underlying field can mitigate
the impact of cosmic variance on the cosmological constraints
(McDonald & Seljak 2009).

The increased constraining power from the 6 X 2 pt probe
combination results in a higher sensitivity to modelling choices.
Each element of the model should be tested in the future, such
as whether the 6 X 2 pt analysis is sensitive to models of intrinsic
alignments with higher complexity than NLA, or to fundamental
parameters such as neutrino mass (Font-Ribera et al. 2014). In
this work, except for the case of photometric redshift distribu-
tions, we have always matched the model in the synthetic data
vector with that in the theoretical prediction, but these can be
deliberately mismatched to assess potential biases in the cos-
mological parameters due to assuming overly simplistic mod-
els given the precision of the data. The same applies to mod-
els of galaxy bias, baryonic feedback, and other astrophysical or
instrumental effects. This should further be coupled to an explo-
ration of the range of scales being used in the analysis; for exam-
ple, €max (e.g. Krause et al. 2016).
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