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ARTICLE INFO ABSTRACT

Keywords: Anti-drug antibodies (ADA) reduce the efficacy of immunotherapies in multiple sclerosis (MS) and are associated

MUItiPIE_SdemSiS with increased disease progression risk. Blood biomarkers predicting immunogenicity to biopharmaceuticals

EFOgreS]i‘OH represent an unmet clinical need. Patients with relapsing remitting (RR)MS were recruited before (baseline),
lomarkers

three, and 12 (M12) months after commencing interferon-beta treatment. Neutralising ADA-status was deter-
mined at M12, and patients were stratified at baseline according to their M12 ADA-status (ADA-positive/ADA-
negative). Patients stratified as ADA-positive were characterised by an early dampened response to interferon-
beta (prior to serum ADA detection) and distinct proinflammatory transcriptomic/proteomic peripheral blood
signatures enriched for ‘immune response activation’ including phosphoinositide 3-kinase-y and NFkB-signalling
pathways both at baseline and throughout the treatment course, compared to ADA-negative patients. These
immunogenicity-associated proinflammatory signatures significantly overlapped with signatures of MS disease
severity. Thus, whole blood molecular profiling is a promising tool for prediction of ADA-development in RRMS
and could provide insight into mechanisms of immunogenicity.

Immunogenicity
Anti-drug antibodies

1. Introduction (ADAs) which result from an undesirable immune response against the

therapeutic (termed immunogenicity) [1-4]. Neutralising (n)ADA can

Immunotherapies have revolutionised the treatment of autoimmune block the biological activity of the drug, reduce treatment effectiveness,

diseases, including multiple sclerosis (MS). A main caveat for immu- or exacerbate adverse reactions to treatment by altering drug pharma-
notherapy effectiveness is the development of anti-drug antibodies codynamic properties [1,3,5].

Abbreviations: ADAs, Anti-drug antibodies; BMI, Body mass index; DEG, Differentially expressed gene; DMTs, Disease modifying therapies; EDSS, Expanded
disability status score; FDR, False discovery rate; FC, Fold change; M, Month; MS, Multiple sclerosis; NPX, Normalised protein expression; padj, Adjusted p-value;
RRMS, Relapsing remitting multiple sclerosis; SPMS, Secondary progressive multiple sclerosis..
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MS is a progressive, inflammatory, demyelinating, and neurode-
generative disease of the central nervous system [6,7]. Although there is
no cure for MS, there are over 18 disease modifying therapies (DMTs)
approved for relapsing remitting (RR)MS [8]. However, clinical trials
investigating DMTs in progressive disease have yielded largely negative
results, with only ocrelizumab indicated for primary progressive MS
[6,9] and Siponimod for secondary progressive (SP)MS, which target the
inflammatory component of the disease [10]. Instead, focus has relied
on treatment during the RRMS phase since studies demonstrate that
early and effective treatment with DMTs decreases the conversion rate
from RRMS to SPMS and reduces the proportion of patients reaching
irreversible damage [11,12]. Therefore, early treatment with an effec-
tive DMT in RRMS is of the utmost importance for the long-term prog-
nosis of people with MS.

Immunogenicity is seen against many DMTs used to treat MS,
including interferon-beta (IFNf), alemtuzumab, natalizumab, and
ocrelizumab [13]. IFNf is still used widely globally as a first-line
immunotherapy for many RRMS patients [14,15] and has a relatively
high incidence of ADA (from 7 to 42% across IFN clinical trials) asso-
ciated with a significant reduction of clinical effectiveness [16,17],
making IFNf an excellent candidate treatment to investigate signatures
of immunogenicity. The incidence of nADAs to IFNf varies across the
different drug formulations: 28-47% for subcutaneous IFNf-1b (Beta-
feron/Extavia), 13-25% for subcutaneous IFNB-1a (Rebif) and 2-22%
for intra-muscular IFNf-1a (Avonex) [17]. However, irrespective IFNf
type, dose, or frequency of administration, once high nADA titres have
been established, they persist for many years and render the therapy
ineffective [16,17]. A recent observational study found that MS patients
with high titre IFNp nADAs had significantly increased annualised
relapse rates, shorter time to first relapse and increased disease activity
levels compared to nADA negative patients, likely due to the loss of IFNB
effectiveness [17]. This highlights the importance of early identification
of nADA positive patients (‘proactive monitoring’). However, nADA
testing is not performed regularly when monitoring MS patients, rather
patients are assessed for a loss in treatment efficacy (‘reactive moni-
toring’). Since time spent on an ineffective treatment can place MS pa-
tients at risk of developing irreversible neurological damage and worse
long-term outcomes this study aimed to identify early markers of
immunogenicity in a prospective RRMS cohort and investigate how
these markers may be associated with disease severity.

Table 1
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2. Materials and methods
2.1. Patients

Treatment naive patients with RRMS (n = 11), diagnosed according to
the revised McDonald criteria 2010 [18], were recruited from the General
University Hospital in Prague from January 30, 2014 to January 22, 2016
as part of an observational clinical trial (Anti-Biopharmaceutical Immu-
nization: Prediction and analysis of clinical relevance to minimize the risk
of immunization in multiple sclerosis patients on interferon-beta treat-
ment) which is registered in the EU Clinical Trials Register: https://www.
clinicaltrialsregister.eu/ctr-search/trial/2012-005450-30/SE) (ABIRISK,
www.abirisk.eu/). Patients (n = 11) were subsequently treated with
either IFNB-1a (Rebif) or IFNp-1b (Betaferon/Extavia) as part of their
normal standard of care (Table 1). Serum and whole blood RNA (Pax-
gene) was collected at three timepoints: Baseline, prior to starting IFNf
therapy (MO0), three months (M3) and 12 months (M12) after starting
treatment. Serum was tested for nADAs using a cell-based luciferase re-
porter gene assay [19]. Patients were classified as ADA-positive (ADApos)
if they had a nADAs titre >320 U/mL at any point within 12 months of
starting treatment [19,20]. Of the 11 RRMS patients, six were ADApos
and five remained ADA-negative (ADAneg). Additionally, SPMS patients
(n = 8), diagnosed according to the revised McDonald criteria [18], were
recruited as part of the RELOAD study at University College London
Hospital NHS Trust. SPMS patients were not on any DMTs at time of blood
sampling. Demographic and clinical information were recorded,
including sex, age, ethnicity, body mass index (BMI), smoking status,
type, and dose of IFNB, and expanded disability status score (EDSS)
(Table 1). Smoking status was categorized as ‘never smoked’, ‘ex-smoker,
or ‘current smoker’. Ethnicity was determined from study database
(ABIRISK) or self-reported (RELOAD).

Ethical approvals for this work were obtained from the Medical
Ethics Committee of the General University Hospital in Prague (125/12
and Evropsky grant 1. LF UK-CAGEKID) and from the University College
London Hospitals National Health Service Trust research ethics com-
mittee (18/SC/0323, RELOAD-MS study). All participants provided
informed written consent in accordance with the Declaration of
Helsinki.

Patient demographics: Baseline demographic and clinical characteristics were compared between relapsing remitting (RR)MS patients (n = 11) who did or did not
develop neutralising anti-drug antibodies (ADA) (ADApos, n = 6 vs ADAneg n = 5) to IFNf treatment within 12 months, and in 8 secondary progressive (SP)MS
patients. At time of blood sampling no SPMS patients were on disease modifying therapies. Statistical comparisons were made using 'chi-squared, 2Mann-Whitney U.
Age and disease duration are given in years. Abbreviations: BMI, body mass index; EDSS, expanded disability status score; IFNf-1a, Rebif; IFNf-1b, Betaferon/Extavia;

IQR, interquartile range; MO, month 0, before first treatment with IFNp.

RRMS RRMS SPMS P-value P-value
ADAneg ADApos n=28) ADApos vs ADAneg SPMS (n = 8)
(n=5) (n=6) 'S
RRMS (n—11)
Sex Female 3 (60) 5(83.3) 6 (75) 1 1
n (%) Male 2 (40) 1(16.7) 2(25) 03869 0-2801
Age Median (IQR) 34 (3) 34 (6.5) 57.5(11) 0.7114> 0.00052
Disease Duration Median (IQR) 0.4 (0.6) 5.9 (5) 18 (7.5) 0.05492 0.00032
L. White 5 (100) 6 (100) 7 (87.5)
Ethnicity n (%) Mixed 0(0) 0 (0 1025) n/a n/a
BMI Median (IQR) 24.3 (1.9) 25.6 (5.9) 28.1 (7.5) 0.64552 0.47152
Non-smoker 2 (40) 4 (66.7) 3(37.5)
. Quit smokin, 3 (60) 1(16.7) 4 (50)
Smoking n (%) Current smoier 0(0) 1(16.7) 0(0) 0.1967" 0.0832"
Not disclosed 0 (0) 0 (0) 1(12.5)
DMT IFNB-la 3 (60) 2(33.3) 0 (0)
(%) IFNB-1b 2 (40) 4 (66.7) 0 (0) 0.3765" n/a
None 0(0) 0 (0) 8 (100)
EDSS at MO Median (IQR) 2.0 (0.5) 2.0 (0.4) 6 (0) 0.52222 0.00222
Change in EDSS Median (IQR) 0 (0.0) 0 (0.75) n/a 0.85722 n/a
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2.2. RNA preparation sequencing and analysis

Whole blood RNA was isolated from patients with RRMS (n = 11)
and SPMS (n = 8) using Qiagen PAXgene Blood RNA extraction kit. See
Supplementary Methods for detailed description of RNA-sequencing
methods. Differential gene expression comparisons performed were:
Time-course analysis including RRMS patients (n = 11) at three different
timepoints, to investigate response to IFNp: 1) ADAneg-MO vs ADAneg-
M3; 2) ADAneg-MO vs ADAneg-M12; 3) ADApos-MO vs ADApos-M3; 4)
ADApos-M0O vs ADApos-M12; 5) ADApos-M3 vs ADAneg-M3; 6)
ADApos-M12 vs ADAneg-M12; Baseline analysis investigating differ-
ences in transcriptomic and proteomic profiles at baseline (M0) between
RRMS patients (n = 11) and SPMS patients (n = 8): 1) ADApos-MO vs
ADAneg-MO; 2) SPMS vs ADApos-MO; 3) SPMS vs ADAneg-MO. Differ-
entially expressed gene (DEG) lists are supplied in Supplementary Data
File 1.

2.3. Proteomics

Serum samples from all patients were analysed using the Olink tar-
geted ‘immune response’ panel (https://www.olink.com/content/
uploads/2021,/09/1051-v1.2-immune-response-panel-content-final.pd
f) comprising 96 proteins. Data was standardised to normalised protein
expression (NPX) values for relative quantification. NPX values were
transformed into linear measurements, for more informative investiga-
tion of protein values. Differentially expressed protein lists are supplied
in Supplementary Data File 2.

2.4. Data Analysis

The data analysis pipeline is summarized in Fig. S1. See Supple-
mentary Methods for details of analysis methods used.

2.5. Statistical analysis

Genes which passed a threshold of both FDR adjusted p-value <0.05
(padj) and fold change (FC) + 1.5 (log2FC: 0.585) were included in
differential gene expression analysis. Proteomic values were assessed for
FC, with p-values obtained from standard t-tests, which were not
adjusted for multiple testing. P values P < 0.05 were considered sig-
nificant. Box plots for individual genes/proteins were plotted and mean
+/-SD shown. All statistical analysis was performed using R
programming.

3. Results

3.1. Transcriptomic and proteomic profiles detect early loss of response to
IENp in ADA-pos RRMS patients

While changes in blood transcriptomic profiles after initiation of
IFN( treatment are described in patients with RRMS [16,21-23], they
have not been investigated in the context of patients who go on to
develop nADA. Therefore, longitudinal whole blood transcriptomic
profiling was performed on matched samples from patients with RRMS
at baseline (MO, before first treatment with IFNf), and 3 months (M3)
and 12 months (M12) after IFNB treatment initiation. Patients were
stratified by their nADA status determined at M12: ADApos (n = 6) and
ADAneg (n = 5) (Table 1 for patient characteristics, Figs. 1 and S1 for
study analysis plan). There were no significant differences in baseline
demographic or disease activity measures between patients in ADApos
and ADAneg groups. Also, most patients in the ADApos group remained
below the threshold for ADA-positivity at M3 (Table S1).

Differential gene expression was assessed between pre-and post-
treatment samples stratified for ADA status as shown in Fig. 1. As ex-
pected, patients who remained ADAneg had a robust response to IFNf at
M3 (M3 vs MO) characterised by 713 wupregulated and 250
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IFNB Naive RRMS /
CIS patients

v

Pre IFNB Treatment

Predictive Analysis

(M0)
3 Months on
Treatment (M3)
12 Months on
Treatment (M12)
ADA Status
determined
* ADA Negative
» ADA Positive

Fig. 1. Stratification of treatment naive patients diagnosed with RRMS or
CIS. Patients diagnosed with relapsing remitting multiple sclerosis (RRMS) or
clinically isolated syndrome (CIS) according to revised McDonald criteria 2010
and treatment naive for IFNp were recruited and treated as standard of care by
their treating clinician. Patient and clinical data and biological samples were
collected at baseline (month, M0), M3 and M12 following treatment initiation.
Serum was tested for neutralising and binding anti-drug antibodies (ADA).
Patients were stratified according to their ADA status at M12. ADA positivity
was defined according to the ABIRISK guideline [19,24]: ADA-positive = positive
for binding ADA and/or had a neutralising ADA titre > 320 U/mL within 12 months
of starting treatment. Most patients first developed ADA after 6 months (M6) on
IFNp treatment (See Table S1). ADA-positive / ADA-negative stratification at
M12 was applied to patients at baseline (MO, prior to first treatment) and all
analysis was performed based on this stratification.

downregulated genes (Fig. 2A), However, patients stratified as ADApos,
had a muted response to IFNJ with far fewer differentially expressed
genes (DEGs), 144 upregulated and 7 downregulated (Fig. 2B). Thus,
while all patients demonstrated changes in gene expression in response
to IFN treatment at M3, those patients stratified as ADApos had a lesser
response, even before significant detectable ADA were present in most
patients (Table S1). At M12, 486 upregulated and 189 downregulated
genes were detected in ADAneg patients (M12 vs MO, Fig. 2C), but no
DEGs were identified in ADApos patients at this timepoint (Fig. 2D),
likely due to ADAs neutralising any effect of IFNp. Interestingly, when
DEGs from all comparisons were assessed across ADAneg and ADApos
patients, 136 shared DEGs were identified (Fig. 2E). Pathway enrich-
ment analysis of the 136 shared DEGs point to a signature of IFNp
response (“Interferon Alpha Response” and “Interferon Signalling™) as
well as pathways known to be upregulated in response to IFNf in RRMS
patients [16,22] including apoptosis-related pathways (“p53 transcrip-
tional gene network” and “Apoptosis”) (Fig. 2F). Overall, these results
highlight that all patients had a molecular response to IFNf therapy at
early timepoints (M3) however this response was much stronger, more
significant and sustained over 12 months in the ADAneg patients but
abrogated by M12 in the ADApos patients.

The early differential response to IFNJ in ADApos versus ADAneg
patients was further confirmed in proteomic analysis where 96 proteins
from an immune response panel were analysed at MO (baseline), M3,
and M12 using the same four comparisons (Fig. 2G-J). As seen in the
transcriptomic analysis, ADAneg patients had a stronger or more sus-
tained molecular reaction to IFNf compared to ADApos patients, and
ADApos patients lost signatures of response to treatment by M12. This is
particularly evidenced by two IFN-related proteins, DDX58 (DEAD box
protein 58) and LAMP3 (Lysosomal Associated Membrane Protein 3),
which were identified in both the proteomic and gene expression


https://www.olink.com/content/uploads/2021/09/1051-v1.2-immune-response-panel-content-final.pdf
https://www.olink.com/content/uploads/2021/09/1051-v1.2-immune-response-panel-content-final.pdf
https://www.olink.com/content/uploads/2021/09/1051-v1.2-immune-response-panel-content-final.pdf
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Fig. 2. Patients who go on to develop ADA at M12 have a muted response to IFNf compared to patients who remain ADAneg. RRMS patients were stratified
according to the detection of neutralising anti-drug antibodies at M12 following initiation of IFNP therapy (ADApos/ADAneg). (A-D) Volcano plots showing
differentially expressed genes (DEGs) where each gene is plotted according to its -log10 adjusted p-value (padj), y-axis, and log2fold change, x-axis. Genes were
considered up/down-regulated at fold change +/— > 1.5, and significant at padj <0.05. (A) ADAneg: M3 vs MO; (B) ADAneg: M12 vs MO; (C) ADApos: M3 vs MO; (D)
ADApos: M12 vs MO. (E) Venn analysis comparing overlapping DEGs for comparisons in A-C. (F) Pathway enrichment analysis using for overlapping DEGs (n = 136)
from E. (G-J) Proteomic response to IFNp treatment in RRMS patients comparing protein concentrations in ADApos and ADAneg patients. Volcano plots summarising
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Data File 1.
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analysis (Fig. 2K-L). The early muted effect of INFp in ADApos patients
was further illustrated when 17 genes and proteins previously associated
with response to IFNf were investigated within the transcriptomic
dataset, including eight IFN-responsive genes [21,23], eight apoptosis
genes [16,22], and LAMP3 which correlates directly with IFNp

A B

Baseline: ADApos vs ADAneg I .
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activation [25] (Table S2, Fig. S2A). While most of these genes were
significantly upregulated at M3 compared to baseline (padj <0.05),
regardless of ADA status, the gene expression was significantly higher in
ADAneg compared to ADApos patients at M3 for most genes. This dif-
ference was large and significant enough that a gene score could be

C Pathways enriched in ADApos Patients
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Fig. 3. Transcriptomic profile differentiates ADApos from ADAneg patients prior to starting IFN therapy: (A) Volcano plot showing differentially expressed
genes (DEGs) between RRMS patients stratified according to their neutralising anti-drug antibody status at M12 after treatment initiation with IFN§ (ADApos /
ADAneg). DEGs are plotted according to -logl0 adjusted p-value (padj), y-axis, and log2fold change, x-axis. Genes were considered up/down-regulated at fold
change+/— > 1.5, and significant with padj threshold of <0.05. (B) Heatmap of top 10 significantly up and down regulated genes (see Table S2). (C) Pathway
enrichment analysis showing top 20 pathways based on upregulated DEGs (see Fig. S3). (D) Principal component analysis (PCA) of genes within the membrane
trafficking or signalling pathways from (C). (E-F) Volcano plots showing DEGs comparing ADApos patients to ADAneg patients at M3 (E) and M12 (F). (G) Venn
analysis of upregulated genes identifying DEGs upregulated at all timepoints. (H) Pathway enrichment analysis of commonly upregulated genes (n = 212) from (G).
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constructed to classify patients into ADA status using the fold changes in
the IFN-response genes from MO to M3 (Table S2 and Fig. S2B).
Together, these results show that the full effect of IFNf treatment is
inhibited in RRMS patients that go on to develop ADA from as little as
M3 following treatment initiation, even though there are no significant
detectable ADA in the serum at that time (Table S1).

3.2. Patients who develop ADA by M12 have distinct transcriptomic and
proteomic profiles prior to treatment initiation

Since patients stratified according to their M12 ADA status had
striking differences in their early molecular responses to IFNf treatment,
the baseline (MO) transcriptomic and proteomic profiles of these pa-
tients were further investigated to find potential predictive signatures of
immunogenicity. A comparison between RRMS patients stratified as
ADApos and ADAneg prior to first IFNf administration (MO0) found 669
upregulated and only 27 downregulated DEGs (Fig. 3A). The top 10 most
significantly up- and down-regulated genes clearly stratified ADApos
from ADAneg patients (Fig. 3B, Table $3). Pathway enrichment analysis
of the upregulated DEGs identified pathways associated with immune
activation including: ‘membrane trafficking’ (p = 3.12E-11, enrichment
score 3.5) and ‘Rab (Ras-associated binding proteins) regulation of
trafficking’, (p = 2.92E-07, enrichment score 5.9) (Fig. 3C). Eleven of
the top 20 regulated pathways were associated with cell signalling,
notably ‘NFxB (nuclear factor kappa-light-chain-enhancer of activated
B-cells) Pathway’ (p = 3.75E-07; enrichment score 16), ‘PI3KCl (phos-
phoinositide 3-kinase Class I) Pathway’ (p = 1.76E-06; enrichment score
9.1), and ‘TNFA (tumour necrosis factor-a) Signalling via NFxB’ (p =
7.03E-06; enrichment score, 4.1). Class I PI3Ks are known to play an
important role in immune cell signalling including B-cell and T-cell re-
ceptor signalling, T-cell survival, proliferation, and differentiation [26],
pathways that were significantly upregulated in ADApos patients
(Fig. S3). DEGs associated with both membrane trafficking (n = 42) and
cell signalling pathways (n = 156) were also able to stratify patients by
ADA status (Fig. 3D) and support the importance of immune cell
migration across the blood brain barrier and cytokine signalling in the
pathology of MS [16,27].

The transcriptomic differences between ADApos and ADAneg pa-
tients were maintained after treatment at M3 and M12 (Fig. 3E-F).
Importantly, a subset of upregulated DEGs consistently discriminated
between ADApos and ADAneg at all timepoints (n = 212 genes)
(Fig. 3G). These genes were enriched within various signalling pathways
including the ‘TNF pathway’, ‘TNFa signalling via NFkB’, and ‘PI3K-AKT
mTOR (mammalian target of rapamycin) signalling’, matching the
signature discriminating between ADApos from ADAneg patients at
baseline (MO0) (Fig. 3H). This suggests that patients who go on to develop
ADA have a pro-inflammatory signature prior to starting treatment
(Fig. 3C), that is maintained throughout the treatment time course.

3.3. Signatures of immunogenicity at baseline (MO0) overlap with
signatures of disease severity

Some of the signatures of immunogenicity found both at baseline and
following treatment with IFNp also overlapped with published bio-
markers of SPMS. For example, PI3Ky and NF«B signalling pathways,
were upregulated in ADApos patients at all timepoints (Fig. 3H) and
have also been associated with MS incidence and disease severity
[28-31]. On an individual gene level, MMP9 (Matrix Metalloproteinase
9), a well-established marker of MS disease progression, was upregu-
lated in ADApos patients at all timepoints (Supplemental Data File 1).
Interestingly, increased expression of RAB32 in active lesions of MS
patients has been described previously [32] and RAB genes and the
pathway ‘RAB regulation of membrane trafficking’ were also upregu-
lated in ADApos patients (Fig. 3C). Therefore, the potential overlap
between patients with RRMS stratified as ADApos and patients who have
progressed to SPMS was investigated further.
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Patients with RRMS stratified by nADA status at baseline (MO prior to
starting IFNf therapy), were compared to eight SPMS patients using
whole blood transcriptomics and proteomics. Differential gene expres-
sion analysis between SPMS vs ADAneg RRMS patients identified mul-
tiple differences (776 genes enriched in SPMS patients, and 91 genes
enriched in ADAneg RRMS) (Fig. 4A), while in SPMS vs ADApos RRMS
patients only nine genes were enriched in SPMS, and 21 genes enriched
in ADApos RRMS patients (Fig. 4B). This demonstrated a potential
similarity between ADApos RRMS patients and SPMS patients, which
was confirmed by comparing the overlap between genes enriched in the
SPMS vs ADAneg comparison and those enriched in the ADApos vs
ADAneg RRMS comparison (n = 515 DEGs, Fig. 4C). In addition, pa-
tients could be grouped as either SPMS, ADApos RRMS, or ADAneg
RRMS (Fig. 4D-E) using only the list of 196 membrane trafficking and
immune signalling genes upregulated in ADApos RRMS patients
compared to ADAneg patients (Fig. 3D). Gene counts of MS biomarkers
including MMP9 and RAB35 [16,32] followed a similar trend, wherein
the gene expression between SPMS and ADApos RRMS patients were
comparable, but significantly different from ADAneg RRMS patients
(Fig. 4F). These results were confirmed using proteomics analysis
(Fig. S4A—B).

Finally, the PI3Ky and NFxB pathways, as summarized in Fig. 5A
were of particular interest. These pathways are not only linked to MS
and disease progression, but also feature among the top 20 pathways to
be upregulated in RRMS patients stratified as ADApos compared to
ADAneg. The genes involved in these pathways were further investi-
gated in SPMS, ADApos, and ADAneg RRMS patient groups (Fig. 5B-C)
and were again confirmed by proteomics (Fig. 5D, Fig. S4C). Thus, these
results demonstrate the transcriptomic and proteomic overlap between
immunogenicity and disease progression in patients with MS.

4. Discussion

Although DMTs such as alemtuzumab, natalizumab, and ocrelizu-
mab are more effective at modifying disease progression compared to
IFN(, the preferable safety profile and convenient administration of
IFNf mean that it remains commonly used globally as a first-line treat-
ment for patients with RRMS [9,33,34]. While previous research has
identified various molecular markers of response to IFNp treatment in
RRMS patients [16,21-23], these markers have not been investigated in
the context of nADAs. In this study we examined longitudinal tran-
scriptomic and proteomic signatures of response to IFN therapy in
treatment naive RRMS patients at MO, M3, and M12, stratified by M12
nADA status. This approach both validated IFNB-response markers in
ADAneg patients and characterised how these response markers
changed in ADApos patients. ADApos patients had a much weaker
response to IFNP during the early phases of treatment before significant
detectable nADA titres were observed, but also had distinct tran-
scriptomic and proteomic signatures prior to first treatment with IFN,
associated with elevated immune activation. Finally, signatures associ-
ated with nADA development significantly overlapped with signatures
of disease severity identified in patients with SPMS.

All markers known to be upregulated in response to IFNf therapy
[16,21-23] were also upregulated in RRMS patients at M3, regardless of
nADA status. However, the extent of these changes was significantly
dampened in ADApos patients compared to ADAneg at M3 and were
completely abrogated by M12. This effect was mirrored in the proteomic
analysis. These results are of particular interest because between M0 and
M3, most ADApos patients did not pass the criteria for nADA positivity.
Therefore, the early difference in response to IFNS in ADApos patients
might not be due to the neutralising effects of ADA, but instead
demonstrate an altered immune response at baseline that is predictive of
future nADA development.

A main aspect of this work was to identify molecular signatures
predictive of immunogenicity to biopharmaceuticals prior to treatment
commencement. We show that prior to IFN therapy, ADApos patients
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had a pro-inflammatory gene/protein signature. For example, upregu-
lation of RAB proteins, is known to regulate the transport of immune
receptors and secretion of chemokines and cytokines [35]. Interestingly,
RAB proteins can predict immunotherapy response in patients with
colorectal cancer [36]. Other work performed as part of the ABIRISK
consortium [37] support that patients can be stratified prior to first
treatment with immunotherapy. A genome-wide association study
(GWAS) investigating clinicogenomic factors of immunogenicity in
rheumatoid arthritis (RA), MS, and inflammatory bowel disease sug-
gested a relationship between C-X-C motif chemokine ligand 12 pro-
duction and ADA development, independent of disease phenotype, and
provided evidence for the association of HLA-DQ-05 in ADA

development [24]. The results also identified that tobacco smoking and
infection during treatment were associated with increased risk of ADA
development, whereas treatment with immunosuppressants and anti-
biotics were associated with decreased risk of ADA development [24].
Immune factors predictive of ADA development have also been
described including a significant reduction of the frequency of signal
regulatory protein (SIRP)a/b expressing memory B-cells in adalimumab-
treated RA patients who went on to develop ADA [38] and activated
NOTCH2 signalling pathway and increased frequency of proin-
flammatory monocyte subsets in RRMS patients prior to starting treat-
ment with IFNf who then go on to develop nADA [39]. In addition,
serum metabolomic signatures can predict future ADA development, as
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well as identify early changes in response to IFNp in ADApos patients as
described here [40]. Collectively these studies provide evidence that
ADA can be predicted prior to starting treatment.

Anti-Type-I interferon antibodies are described in other conditions
including lupus, severe COVID-19 infection and autoimmune poly-
endocrinopathy syndrome type-I (APS-1) [41]. In APS-1, anti-cytokine
antibodies are generated as a result of defects in T cell immune regu-
lation [41], this is in keeping with known mechanisms of anti-drug
development where drug-responsive T helper cells become activated
in the context of reduced regulatory T cell function [42]. In this study,
patients stratified as ADApos were characterised by an activated im-
mune profile, which existed prior to first drug administration. While a

defect in immune regulatory pathways was not detected in these pa-
tients, such a defect predisposing patients to ADA development cannot
be ruled out and deserves further investigation.

Our results also support previous findings that ADAs against IFNp are
associated with disease progression/severity [4,17]. It is known that
patients with RRMS who develop ADAs, and patients with SPMS both
fail to respond to IFNp treatment [6,9,43] suggesting a potential path-
ogenic/mechanistic overlap. Indeed, at baseline there was a large
overlap in significantly enriched genes and proteins between SPMS and
ADApos RRMS patients. Furthermore, various MS disease severity
markers were shared between SPMS and ADApos RRMS patients. This
includes, RAS related protein RAB32 which is associated with MS
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pathology, where increased expression of RAB32 is seen in active lesions
in MS patients [32], suggesting a role for RABs in an inflamed central
nervous system. In addition, genetic association studies identified vari-
ants and altered expression levels of clathrin-mediated endocytosis (a
process regulated by RABs) in Alzheimer’s disease, while altered
expression of endocytic components are associated with Parkinson’s
disease [44]. PI3Ky is also linked with various autoimmune disorders,
including MS, systemic lupus erythematosus and RA [45]. Inhibition of
PI3Ky in mouse models of MS lead to an improvement of clinical scores
[28,30] and reduction in disease severity [46], thus demonstrating
PI3Ky as a marker of MS pathogenesis. Meanwhile, NFkB is activated in
many cell types in MS, including T-cells, macrophages, astrocytes, oli-
godendrocytes, and neurons [29,31]. In experimental models of MS,
mice deficient in NFkB1 had reduced disease severity and CNS inflam-
mation [31]. Additionally, GWAS have identified MS susceptibility loci
in various key members of NFkB signalling, including TNFR1 and
Mucosa-Associated Lymphoid Tissue Lymphoma Translocation (MALT)
1 [29]. This demonstrates that the pathways upregulated in ADApos
patients in this study were not only signatures of immune activation, but
also of MS disease pathology and severity. This is of particular interest
since all RRMS patients included in this study at baseline were recently
diagnosed and treatment naive. The upregulated markers were unaf-
fected by IFNp treatment, as their gene expression remained upregulated
at all timepoints, suggesting that the signatures of immunogenicity,
which are sustained throughout treatment with IFN, may overlap with
signatures of MS disease progression/severity. This theory is further
supported by the upregulation of MMP9 at all timepoints, a well-
established marker of MS disease progression [16]. While the associa-
tion between disease severity and immunogenicity could be due to the
lack of treatment efficacy due to nADA [17,47], the molecular similar-
ities between ADA development and disease progression warrant further
investigation.

This study included patients treated with IFNp injected subcutane-
ously (Rebif/Beterferon). While subcutaneous drug administration is a
convenient and cost effective delivery method [48,49], the complex
immune environment of the skin, comprising both the innate and
adaptive arms of the immune response [50,51], can predispose a patient
towards immunogenicity in some cases [52]. Indeed, the incidence of
nADAs to IFN is greater in patients receiving subcutaneous compared to
intra-muscular IFNp drug formulations [17,53]. The skin microenvi-
ronment is primed to respond to pathogens and injury [50,51], and in
the same way biopharmaceutical proteins can be taken up and processed
by professional antigen presenting cells either at the site of injection or
draining lymph nodes. Anti-drug responses could be generated in sus-
ceptible individuals in the context of a more pro-inflammatory envi-
ronment. The data presented in this manuscript supports this concept in
that patients who develop ADAs had a more pro-inflammatory systemic
immune profile which could reflect the situation in the skin, especially
since the skin is populated by migratory as well as resident immune cells
[50,51]. Therefore, it is important to understand the mechanisms of
immunogenicity development using subcutaneous drug delivery
compared to other methods including, intra-muscular and intravenous
administration, since some MS therapeutics including ofatumumab and
natalizumab are now available for subcutaneous delivery [48,49].

As well as route of administration, the impact of sex could influence
the development of anti-drug responses. As with many autoimmune
conditions, MS affects females more than males with a ratio of 2-3:1
[54]. Furthermore, females with MS have higher rates of inflammatory
relapses, while males have higher risk of progressive disease and worse
CNS damage. These sex-associated disease profiles are likely associated
with the known differences in innate and adaptive immune responses
between sexes where females have more robust immune responses
compared to males [55]. Such sexual dimorphism can be beneficial
when considering response to vaccines in females, but could also pre-
dispose to females to anti-drug responses [56]. Notably, sex was not an
important factor in driving anti-drug responses within the ABIRISK
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cohorts, where patient and demographic factors were assessed in a
prospective multicohort study comprising four autoimmune diseases
(MS, RA, Crohn’s disease, and ulcerative colitis) treated with eight
different biopharmaceuticals [24]. Similarly, sex did not influence pre-
diction of immunogenicity to IFNf in patients with MS in a serum
metabolomic analysis [40], and overall, despite some studies reporting
increased in immunogenicity to IFNB in females compared to males
[53], there is currently no evidence of sex-based differences influencing
response to DMTs [57].

The study had some limitations. We were unable to unravel any
potential influence of sex on ADA-responses due to the small sample size.
In addition, patients with SPMS and RRMS were recruited from different
geographical regions, which could influence the results through poten-
tial differences in genetic background and environmental factors un-
derlying the MS pathogenesis between these two groups. However, the
patients with SPMS had previously clinically presented with RRMS and
over time ceased to have relapses and developed progression indepen-
dent of relapses. It therefore makes sense that the ADApos RRMS pa-
tients had a similar molecular profile to SPMS patients and supports
similarities in immune activation which could be a predictor of both
ADA and disease severity.

5. Conclusions

In conclusion, this study identified molecular signatures associated
with future nADA development in patients with RRMS prior to first
treatment with IFNB and supports that biomarkers predicting future
immunogenicity to DMTs could be developed for patients with RRMS.
Such biomarkers could improve future disease management and clinical
trial design. This study also highlights important signatures of immu-
nogenicity which overlap with signatures of disease progression/
severity. These findings together demonstrate how multi-omic markers
could be used to aid treatment decisions in patients with RRMS [58].
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