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Abstract

This thesis focuses on developing methodologies to approximate the fil-

tering distribution in partially observed state space models, with particu-

lar attention to addressing particle degeneracy issues that arise in high-

dimensional state spaces and when dealing with informative observations.

Chapter 1 introduces the challenge of sequential inference within state

space models, along with an overview of the Sequential Monte Carlo (SMC)

methodology. The chapter also presents the bootstrap filter as a tool for

approximating the filtering distribution, discussing its limitations and pro-

viding background information.

Chapter 2 reviews three popular existing methodologies for filtering dis-

cretely observed stochastic differential equations (SDEs).

Chapters 3 and 4 propose a new methodology for filtering partially ob-

served SDEs. This approach combines likelihood-informed proposals, tem-

pering steps targeting intermediate distributions between prior and poste-

rior densities, and mutations through Markov Chain Monte Carlo (MCMC)

steps to enhance particle diversity. The methodology’s effectiveness is eval-

uated through a small-scale experiment involving a double-well potential

process.

Chapter 5 applies filtering techniques to a tsunami wave field model, treated

as a discrete-time state space model. The optimal filter can be derived un-

der a linear observation scheme with Gaussian noise processes for both

observations and process noise. We present an efficient approach for com-
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puting the optimal filter using the Fast Fourier Transform, which enables

efficient sampling of conditional Gaussian random fields and rapid matrix-

vector multiplication. Numerical experiments demonstrate the accuracy

and efficiency of the proposed method.

Chapter 6 extends the methodology from Chapter 3 to the filtering of a

tsunami wave field model represented as a stochastic partial differential

equation. This complex setting is tested through experiments that examine

the algorithm’s robustness with respect to both spatial resolution and the

informativeness of observations.
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Impact statement

The work presented in this thesis makes contributions to the field of se-

quential Monte Carlo methods, specifically focusing on high-dimensional

state space models with highly informative observations.

The potential applications of this research exist in domains where data as-

similation in complex systems is necessary. One example covered in the

thesis is the application of the particle filtering method to tsunami wave-

field data assimilation. Here the method demonstrates its potential for

predicting and monitoring the evolution of tsunami wavefields, which is

important for early warning systems, risk mitigation strategies, and pub-

lic safety. By improving the robustness and computational efficiency of

data assimilation techniques in this context, the developed method could

inform public policy and enhance the capability of authorities to deliver

timely, data-driven responses to natural disasters, potentially saving lives

and reducing economic losses.
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Chapter 1

Introduction

Stochastic processes are widely used to model complex real-world phenom-

ena. Their applications span various fields, including biology [Wilkinson,

2006, Goel and Richter-Dyn, 2016], physics [Van Kampen, 1992, Coffey

and Kalmykov, 2012, Sobczyk, 2013], neuroscience [Tuckwell, 1989], en-

gineering [Wong and Hajek, 2012, Sobczyk, 2013], and financial market

analysis [Rolski et al., 2009, Kijima, 2002, Marsh and Rosenfeld, 1983].

In many of these systems, data arrives sequentially, and we aim to make in-

ferences each time a new set of observations is received. Additionally, this

data often contains observation errors that must be accounted for. While

traditional Markov Chain Monte Carlo (MCMC) methods can be used to

make these inferences, they require sampling from the initial time to the

current time each time we receive new data and take into account all pre-

vious data points at each time instance, this is impractical for online infer-

ence. To overcome these limitations, sequential Monte Carlo (SMC) meth-

ods have been developed.

SMC methods allow us to retain information about the system and update

our posterior as data arrives, avoiding some of the impracticalities asso-

ciated with MCMC methods and significantly reducing computational cost.

Additionally, when compared to other online estimation algorithms, such as
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the Kalman filter, we require fewer assumptions about both the underlying

dynamical system and error function to make estimates about the current

state of the system. These methods can be applied to a wider variety of

problems.

SMC methods do have their own limitations, specifically in the small noise

and high dimensional settings. We aim to improve on some of these meth-

ods, with a focus on techniques applied in the setting of a continuous time

stochastic system observed at discrete time periods.

1.1 Hidden Markov models

Hidden Markov models (HMM) are used to model the probability distribu-

tion of the state of some system where the state of the system is hidden

from the observer and the system satisfies the Markov property; that is,

given the state of the system at time t, the state of the system at time t+ 1

depends only on the state of the system at time t and is independent of all

states prior to that.

A HMM is defined by a latent, underlying Markov process {Xt}t>0, on some

space X with initial distribution X0 ∼ f(x0), transition probability density

Xt|(Xt−1 = xt−1) ∼ f(xt|xt−1), (1.1)

and Y-valued observations with density

Yt|(Xt = xt) ∼ g(yt|xt). (1.2)
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A simple example of such a system can be seen in Figure 1.1 and a graph

showing the dependencies of the system can be seen in Figure 1.2.

Coin 1 Coin 2

H T

1
3

1
3

2
3

2
3

1
2 1

2

4
5

1
5

Figure 1.1: An illustration of the probabilities underlying a simple HMM. There are
two coins, coin 1 is a fair coin and coin 2 is biased. At time 0, a coin is chosen
uniformly at random and flipped. At each subsequent time a fair die is rolled, if the
result of the roll is greater than 4, the coin is swapped, otherwise the same coin is
flipped. In the HMM model an observer would see only the result of the coin toss at
each time, the state of the system (in this case, which coin has been flipped) is hidden.

X0
. . . Xt−1 Xt Xt+1 . . .

Y0 Yt−1 Yt Yt+1

Figure 1.2: A diagram showing the dependence relations in a HMM with underlying
Markov process {Xt}n>0 and observations {Yt}n>0.

1.1.1 The filtering problem

Assume we have a latent, discrete time Markov process, Xt, taking val-

ues in X , with transition probabilities f (xt|xt−1) and noisy observations,

Yt ∼ g (yt|xt). We are interested in recursively estimating the distribution

of the state of our latent Markov process at the current time, given the ob-

served information up to and including the current time, i.e. estimating
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the posterior distributions {p (x0:t|y0:t)}t>0 (known as the smoothing distri-

butions), and the marginals {p (xt|y0:t)}t>0 (known as the filtering distribu-

tions), where xi:j := {xi, . . . , xj}, i ≤ j.

We proceed using a Bayesian approach to inference. Our model provides a

prior distribution of the latent process,

p(x0:t) = f(x0)
t∏
i=1

f(xi|xi−1), (1.3)

and likelihood of the observed data

p(y0:t|x0:t) =
t∏
i=0

g(yi|xi). (1.4)

The smoothing distribution over the hidden process up to time t is given by

p (x0:t|y0:t) =
p(y0:t|x0:t)p(x0:t)

p(y0:t)

=
p(y0:t|x0:t)p(x0:t)∫
p(y0:t|x0:t)p(x0:t)dx0:t

,

(1.5)

It is simple to show that this distribution (1.5) satisfies the recursion

p(x0:t|y0:t) = p(x0:t−1|y0:t−1)
f(xt|xt−1)g(yt|xt)

p(yt|y0:t−1)
. (1.6)

where the conditional likelihood of the data point at the current time given

the data so far is

p(yt|y0:t−1) =

∫
p(xt−1|y0:t−1)g(yt|xt)f(xt|xt−1)dxt−1:t, (1.7)
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and the likelihood of all the data points up to the current time can be

calculated recursively as

p(y0:t) = p(y0)
t∏
i=1

p(yi|y0:i−1). (1.8)

Integrating out x0:t−1 from (1.6) gives us a recursion satisfied by the filter-

ing distribution

p(xt|y0:t) =
p(xt|y0:t−1)g(yt|xt)

p(yt|y0:t−1)
, (1.9)

where

p(xt|y0:t−1) =

∫
p(xt−1|y1:t−1)f(xt|xt−1)dxt−1. (1.10)

The recursions (1.9) and (1.10) are commonly referred to as the “update”

step and “prediction” step respectively. While these recursions look sim-

ple, in the majority of cases we cannot evaluate the integrals involved. We

could use Markov chain Monte Carlo (MCMC) or regular importance sam-

pling methods to estimate the posterior, but we would like to be able to

update the distributions sequentially as new data arrives. In both MCMC

and regular importance sampling, old samples cannot be reused when we

get a new data point and we must run brand new simulations to obtain

a new estimate for the posterior. Neither method is well suited for online

estimation in problems of this nature, so particle filtering methods were

developed to provide approximations to the distributions of interest. These

methods are part of a more general class of methods known as Sequential

Monte Carlo (SMC) methods.
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1.2 Sequential Monte Carlo Methods

SMC methods are a subset of Monte Carlo methods, designed to sample

from sequence of target densities. We begin this section with a brief re-

fresher on the principles of Monte Carlo sampling and Importance Sam-

pling (IS), going on to introduce Sequential Importance Sampling (SIS)

and the generic SMC algorithm.

1.2.1 Basic Monte Carlo Sampling

Suppose we wanted to approximate some target density, pt(x0:t), defined on

the product space X t+1. If we are able to sample N independent and iden-

tically distributed (i.i.d.) random variables {X i
0:t}

N
i=1 according to pt(x0:t)

then an empirical estimate of the distribution is given by

p̂t(x0:t) =
1

N

N∑
i=1

δXi
0:t

(x0:t), (1.11)

where δXi
0:t

(x0:t) denotes the Dirac delta mass located at X i
0:t. More pre-

cisely, the expectation of any function, ϕ : X t+1 → R, integrable with

respect to pt(x0:t),

Ept(ϕ(X0:t)) :=

∫
ϕ(x0:t)pt(x0:t)dx0:t, (1.12)

is simply approximated by

∫
ϕ(x0:t)p̂t(x0:t)dx0:t =

1

N

N∑
i=1

ϕ(X i
0:t). (1.13)
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and the strong law of large numbers says

1

N

N∑
i=1

ϕ(X i
0:t)

a.s.−−−→
N→∞

Ept(ϕ(X0:t)), (1.14)

where a.s.−−−→ denotes convergence in an almost surely sense.

It is clear to see the estimator is unbiased

Ept

(
1

N

N∑
i=1

ϕ(X i
0:t)

)
=

1

N

N∑
i=1

Ept
(
ϕ(X i

0:t)
)

= Ept(ϕ(X0:t)), (1.15)

and if Var(ϕ(X0:t)) is finite, the variance of the estimator is given by

Var

(
1

N

N∑
i=1

ϕ(X i
0:t)

)
=

1

N2

N∑
i=1

Var(ϕ(X0:t)) =
1

N
Var(ϕ(X0:t)). (1.16)

Furthermore, we can obtain a central limit theorem

√
N

(
1

N

N∑
i=1

ϕ(X i
0:t)− Ept(ϕ(X0:t))

)
d−−−→

N→∞
N (0,Var(ϕ(X0:t))) , (1.17)

where d−−−→ denotes convergence in distribution.

Following the standard Monte Carlo approach, we can construct (1.13)—an

unbiased estimate of (1.12)—using a set of independent and identically dis-

tributed (i.i.d.) samples drawn from the distribution pt(x0:t). The standard

error of this estimate is independent of the dimensionality of the space,

X t+1, and decreases proportionally to the square root of the number of

samples. However, in many cases, efficient sampling from the target distri-

bution pt(x0:t) is not feasible, requiring an alternative approach.
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1.2.2 Importance Sampling

Importance Sampling addresses this problem by introducing an importance

(or proposal) distribution, qt(x0:t), where the support of pt(x0:t) is a subset

of the support of qt(x0:t) .

Assume now that we cannot draw samples from pt(x0:t) and that it is only

known up to a normalising constant, that is,

pt(x0:t) =
γt(x0:t)

Zt
(1.18)

where γt : X t+1 −→ R+ is known pointwise and the normalising constant,

Zt =

∫
γt(x0:t)dx0:t, (1.19)

is unknown.

Now let wt(x0:t) be the unnormalised importance weight

wt(x0:t) =
γt(x0:t)

qt(x0:t)
. (1.20)

From (1.18), (1.19) and (1.20) we get the identities

pt(x0:t) =
wt(x0:t)qt(x0:t)

Zt
(1.21)

Zt =

∫
wt(x0:t)qt(x0:t)dx0:t. (1.22)

If we choose our proposal distribution such that we can easily draw N

i.i.d. samples {X i
0:t}

N
i=1 according to qt(x0:t), we can use the resulting Monte

23



Carlo approximation of qt(x0:t) with (1.21) and (1.22) to obtain estimates

of the target distribution and normalising constant

p̂t(x0:t) =
N∑
i=1

w̃itδXi
0:t

(x0:t) (1.23)

Ẑt =
1

N

N∑
i=1

wt(X
i
0:t) (1.24)

where the normalised importance weights, w̃it, are given by

w̃it =
wt(X

i
0:t)∑N

j=1wt(X
j
0:t)

. (1.25)

It is clear to see that, Ẑt, the approximation to the normalising constant is

unbiased

Eqt

(
1

N

N∑
i=1

wt(X
i
0:t)

)
=

1

N

N∑
i=1

Eqt
(
γt(X

i
0:t)

qt(X i
0:t)

)

=
1

N

N∑
i=1

∫
γt(x0:t)

qt(x0:t)
qt(x0:t)dx0:t

= Zt.

(1.26)

An approximation of the expectation of some pt-integrable function is given

by

Ept(ϕ) ≈
∫
ϕ(x0:t)p̂t(x0:t)dx0:t =

N∑
i=1

w̃itϕ(X i
0:t). (1.27)

As this estimate (1.27) is the ratio of two estimates, it is biased for finite N

(note that if the normalising constant is known then we can construct an

unbiased estimator), but under weak assumptions the strong law of large
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numbers applies [Geweke, 1989] and we have

N∑
i=1

w̃itϕ(X i
0:t)

a.s.−−−→
N→∞

Ept(ϕ). (1.28)

Under further assumptions (see Geweke [1989] for details), we can obtain

a central limit theorem

√
N

(
N∑
i=1

w̃itϕ(X i
0:t)− Ept(ϕ)

)
d−−−→

N→∞
N
(
0, σ2

t

)
, (1.29)

where

σ2
t =

1

N

∫
p2
t (x0:t)

qt(x0:t)
(ϕ(x0:t)− Ept(ϕ))2dx0:t. (1.30)

IS enables the approximation of integrals with respect to distributions that

are difficult to sample from directly. However, the computational complex-

ity of sampling from a proposal distribution qt(x0:t) generally increases with

t . This growing complexity over time renders IS unsuitable for recursive

estimation tasks, such as estimating the filtering distribution of a HMM as

data arrives sequentially. For these tasks, a method with computational

complexity independent of t at each time step is required.

1.2.3 Sequential Importance Sampling

Sequential Importance Sampling (SIS) is a restricted form of Importance

Sampling (IS), characterized by the requirement to choose an importance

distribution of the form:

qt(x0:t) = qt−1(x0:t−1)qt(xt|x0:t−1). (1.31)
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Iterating (1.31) over t, we obtain:

qt(x0:t) = q0(x0)
t∏

k=1

qt(xt|x0:t−1). (1.32)

So to generate a sample, X i
0:t ∼ qt(x0:t), we sample X i

0 ∼ q0(x0) at time 0

and then recursively sample X i
k ∼ qk(xk|X i

0:k−1) for each time, k, up to time

t.

An importance distribution of the form (1.31) is necessary as it allows us

to compute the unnormalised importance weights recursively,

wt(x0:t) =
γt(x0:t)

qt(x0:t)

=
γt−1(x0:t−1)

qt−1(x0:t−1)

γt(x0:t)

γt−1(x0:t−1)qt(xt|x0:t−1)

= wt−1(x0:t−1)
γt(x0:t)

γt−1(x0:t−1)qt(xt|x0:t−1)
.

(1.33)

The recursive updating of the importance weights is the defining feature

of SIS, enabling the propagation of samples from time t − 1 to time t and

allowing for the recursive estimation of the posterior pt(x0:t) . The SIS

algorithm is outlined in Algorithm 1.1.

SIS is a special case of the more general IS, so empirical estimates p̂t(x0:t)

and Ẑt are as in IS, (1.23) and (1.24) respectively. The estimates of the

normalisation constant and expectation of a test function inherit the bias

and convergence properties outlined for those estimates based on IS.

SIS is an appealing method and in most cases can be implemented with

a computational cost that scales linearly in the number of particles and
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Algorithm 1.1: Sequential importance sampling
Initialise particles:

1. For i = 1, . . . , N :
(i) Sample xi0 ∼ q0(x0).

(ii) Compute unnormalised importance weights w0(xi0) =
γ0(xi0)

q0(xi0)

and normalised importance weights w̃i0 ∝ w0(xi0).
2. Set t = 1.

Importance sampling:
3. For i = 1, . . . , N

(i) Sample xit ∼ q(xt|xi0:t−1).
(ii) Compute unnormalised importance weights,

wt(x
i
0:t) = wt−1(xi0:t−1)

γt(x
i
0:t)

γt−1(xi0:t−1)qt(xit|x0:t−1)

4. Compute normalised importance weights,

w̃it =
wt(x

i
0:t)∑N

j=1 wt(x
j
0:t)

.

5. Set t = t+ 1. If t > T , proceed. Else, go to (3).

Output:
6. For t = 0, . . . , T :

(i) Output {xi0:t, w̃
i
t}Ni=1.

number of time steps. However, it is well known that the efficiency of IS

scales poorly with the dimension of the space [Gordon et al., 1993, Gilks

et al., 1996] - the variance of the estimates increases exponentially in t. As

SIS is merely a specific case of IS it will inherit this adverse property.

This problem reveals itself in the distribution of the weights; as t increases

the maximum of the weights will approach one while the remaining weights

are close to zero. Clearly this situation is inadequate, effectively approxi-
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mating the target distribution with a single sample. An extra step can be

added to the standard SIS algorithm in an attempt to combat this degener-

acy.

1.2.4 Resampling

Resampling seeks to multiply the samples with high importance weights

and remove the samples whose importance weights are close to zero [Gor-

don et al., 1993]. Estimates of the posterior from SIS consist of N weighted

samples, {X i
0:t, w̃

i
t}Ni=0, with an approximation to the posterior given by

(1.23). We replace these weighted samples with N unweighted samples,

sampled from our IS approximation to the posterior; that is we select N

samples with replacement, where the probability of selecting a sample,

X i
0:t, is equal to its importance weight, w̃it. This gives us an empirical esti-

mate of the estimator p̂(x0:t)

ˆ̂p(x0:t) =
1

N

N∑
i=1

N i
t δXi

0:t
(x0:t), (1.34)

where N i
t is the number of copies of X i

0:t in the resampled set.

We would like to perform this resampling so that we have an unbiased

estimator of p̂(x0:t). Three common unbiased resampling schemes are de-

scribed below:

• Multinomial Resampling - Draw ui ∼ U(0, 1) and find the correspond-

ing ki such that
ki−1∑
j=1

w̃jt 6 ui 6
ki∑
j=1

w̃jt (1.35)
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is satisfied. The set of indices {ki}Ni=1 refer to the new samples and

our resampled set is
{
Xki

0:t

}N
i=1

.

• Stratified Resampling - Stratify the unit interval into N disjoint inter-

vals, (0, 1
N

), · · · , (1− 1
N
, 1), and draw ui ∼ U( i−1

N
, i
N

). Find correspond-

ing ki that satisfy (1.35) and proceed as above.

• Systematic Resampling - Draw u1 ∼ U(0, 1
N

). For i > 1, set

ui = u1 +
i− 1

N
(1.36)

and again find the corresponding ki satisfying (1.35) to determine the

indices of the resampled set of samples.

Systematic and stratified sampling are often used in practice as they fre-

quently offer improved performance, but convergence can be sensitive to

the ordering of the samples [Gerber et al., 2019]. For a detailed discussion

of the properties of these resampling schemes see Douc and Cappe [2005].

These resampling schemes multiply the particles with higher weights and

eliminate many of the particles with low weights, reducing the sample di-

versity, a side effect of this is that extra variance is introduced in our esti-

mators. Because of this, we may only want to perform resampling when the

weights of the samples have degenerated beyond some threshold. This is

often determined by looking at the effective sample size (ESS) [Liu, 2008],

defined at time t as

ESSt =
1∑N

i=1(w̃it)
2
. (1.37)
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The ESS can be interpreted as an approximation to the number of inde-

pendent and identically distributed (IID) samples that we would need from

the target distribution to achieve a similar level of estimation accuracy. A

common approach is to resample adaptively, only resampling at those time

steps where the ESS falls below a pre-determined threshold, often N
2

.

1.2.5 Sequential Monte Carlo

Sequential Monte Carlo methods can be thought of as SIS with an added

resampling step. A repeated sequence of propagating samples forward in

time according to a proposal distribution qt(xt|x0:t−1), followed by (if re-

quired) resampling the samples according to their normalised weights be-

fore propagating forward to the next time step. A generic SMC algorithm

is presented in Algorithm 1.2.

1.3 Particle filtering

We return now to the problem of online estimation of the latent state of a

HMM and the filtering problem, as described in section 1.1.1. A common

way to approach this problem is by applying the SMC methods introduced

in the previous sections, with the target distribution as the state of the

latent Markov process dependent on the observed data points, pt(x0:t|y0:t).

From this, the marginals can be taken to estimate the filtering distribution,

pt(xt|y0:t).

We are seeking to estimate the posterior of the hidden process as in (1.5),

comparing this with (1.18) we can identify the unnormalised distribution

γt(x0:t) = p(y0:t|x0:t)p(x0:t) and the normalisation constant Zt = p(y0:t). We
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Algorithm 1.2: Sequential Monte Carlo (with adaptive resampling)
Initialise particles:

1. For i = 1, . . . , N :
(i) Sample xi0 ∼ q0(x0).

(ii) Compute unnormalised importance weights w0(xi0) =
γ0(xi0)

q0(xi0)

and normalised importance weights w̃i0 ∝ w0(xi0).
2. Set t = 1.

Importance sampling:
3. For i = 1, . . . , N

(i) Sample xit ∼ qt(xt|xi0:t−1).
(ii) Compute unnormalised importance weights,

wt(x
i
0:t) = wt−1(xi0:t−1)

γt(x
i
0:t)

γt−1(xi0:t−1)qt(xit|x0:t−1)

4. Compute normalised importance weights,

w̃it =
wt(x

i
0:t)∑N

j=1 wt(x
j
0:t)

.

Resampling:
5. Calculate ESS, if resampling condition is met, proceed. Else, go to

(8).
6. For i = 1, . . . , N :

(i) Sample x̄i0:t according to

p̂t(x0:t) =
N∑
i=1

w̃itδxi0:t(x0:t)

7. Set {xi0:t, w̃
i
t}Ni=1 = {x̄i0:t,

1
N
}Ni=1.

8. Set t = t+ 1. If t > T , proceed. Else, go to (3).

Output:
9. For t = 0, . . . , T :

(i) Output {xi0:t, w̃
i
t}Ni=1.
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choose our proposal distribution to be time homogeneous and dependent

only on the state of the Markov process at the previous time step and the

data point at the current time, i.e. qt(xt|x0:t−1) = q(xt|xt−1, yt). Combining

this with (1.33) we obtain a recursion for updating the importance weights

wt(x0:t) = wt−1(x0:t−1)
g(yt|xt)f(xt|xt−1)

q(xt|xt−1, yt)
, (1.38)

where f(xt|xt−1) and g(yt|xt) are as in the definitions of a HMM, (1.1) and

(1.2) respectively.

The application of SMC in the context of filtering is known in the literature

as the particle filter. A generic particle filtering algorithm, with observations

{Y0, Y1, · · · , Yt}, is presented in Algorithm 1.3.

1.3.1 Bootstrap particle filter

The bootstrap filter [Gordon et al., 1993] is one of the most widely used fil-

tering algorithms, utilizing the transitional prior f(xt|xt−1) as the proposal

distribution. This choice simplifies the update of the importance weights

to:

wt ∝ wt−1g(yt|xt). (1.39)

The bootstrap algorithm is applicable to a wide range of models, and its

simplicity makes it easy to implement and highly suitable for parallel pro-

cessing. However, this simplicity comes at the cost of computational in-

efficiency in more complex applications, particularly as the state space di-

mension increases or the variance of observation noise decreases. In such

cases, a more sophisticated proposal distribution may be required to better
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Algorithm 1.3: Particle filter
Initialise particles:

1. For i = 1, . . . , N :
(i) Sample xi0 ∼ q(x0).

(ii) Evaluate unnormalised importance weights wi0 = g(y0|xi0).
2. Normalise importance weights and set t = 1.

Importance sampling:
3. For i = 1, . . . , N

(i) Sample xit ∼ q(xt|xit−1, yt).
(ii) Evaluate unnormalised importance weights,

wit = wit−1

g(yt|xit)f(xit|xit−1)

q(xit|xit−1, yt)
.

4. Normalise importance weights,

w̃it =
wit∑N
j=1w

j
t

.

Resampling:
5. Calculate ESS.

(i) If resampling condition is met, proceed. Else, go to (8).
6. For i = 1, . . . , N :

(i) Sample x̄i0:t according to

p̂(x0:t|y0:t) =
N∑
i=1

δxi0:t(x0:t)w̃
i
t

7. Set {xi0:t, w
i
t}Ni=1 = {x̄it, 1

N
}Ni=1.

8. Set t = t+ 1:
(i) Set t = t+ 1. If t > T , proceed. Else, go to (3).

Output:
9. For t = 0, . . . , T :

(i) Output {xi0:t, w
i
t}Ni=1.
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“guide” the particles toward the target distribution.

1.3.2 Auxiliary particle filter

In the standard particle filter, it’s possible to guide particles toward the re-

gions of state space which are more likely given the observed data at the

current time by selecting an appropriate proposal, q(xt|xt−1, yt), the parti-

cles are then resampled according to their weights. This resampling is done

without any information about the next observation, yt. This information

could be useful in preserving diversity in the particles by taking into ac-

count which particles are likely to produce samples in regions compatible

with the next observation.

The auxiliary particle filter attempts to mitigate this problem with the intro-

duction of an auxiliary variable at the sampling step of the regular particle

filter. This auxiliary variable, k ∈ {1, · · · , N}, corresponds to the index of a

particle and is sampled according to some distribution that attributes each

particle a weight corresponding to its compatibility with the next observed

data point. The new state for a particle is then sampled as the child of the

particle corresponding to index k. In attributing particles weight for the in-

dex selection we seek to find some approximation p̂(yt|xt−1), of p(yt|xt−1),

where

p(yt|xt−1) =

∫
g(yt|xt)f(xt|xt−1)dxt. (1.40)

The weight update then becomes

wit ∝ wkit−1

g(yt|xit)f(xit|x
ki
t−1)

p̂(yt|xkit−1)q(xit|xkit−1, yt)
, (1.41)
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where ki is the index sampled for the ith particle, the auxiliary particle

filtering algorithm is given in Algorithm 1.4.

It is worth noting that Carpenter et al. [1999] presents a version of the aux-

iliary particle filter in which the auxiliary weights and standard weights are

combined and only a single resampling step takes place per iteration, this

approach is generally preferred in the literature. Here we have presented

the version of auxiliary particle filtering from Pitt and Shephard [1999], as

its structure is closer to that of the random weight particle filter presented

in Fearnhead et al. [2008].

1.4 Feynman-Kac models

We introduce Feynman-Kac models Del Moral [2004], which give us an

alternative way of thinking about sequential importance sampling. These

models consist of two main elements: a Markov chain with its associated

probability measure on the state space and sequence of potentials corre-

sponding to a repartition of the mass of the path measure. We introduce

these models in the abstract setting for general state spaces.

Let (En, εn) be a collection of measurable spaces and consider the Markov

transitions qn(xn−1, dxn) from En−1 to En and an initial probability measure

µ ∈ P (E0). We have a Markov chain taking values xi ∈ Ei, for simplicity

we introduce the notation xi:j := xi:j := {xi, . . . , xj} and Ei:j := Ei×. . .×Ej.

For any measurable function Fn on E0:n we have

Eµ (Fn (X0, . . . , Xn)) =

∫
E0:n

Fn(x0, . . . , xn)Pµ,n(d(x0, . . . , xn)), (1.42)
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Algorithm 1.4: Auxiliary particle filter
Initialise particles:

1. For i = 1, . . . , N :
(i) Sample xi0 ∼ q(x0).

(ii) Evaluate unnormalised importance weights wi0 = g(y0|xi0).
2. Normalise importance weights and set t = 1.

Importance sampling:
3. For i = 1, . . . , N

(i) Sample ki according to

p(k) =
p̂(yt|xkt−1)∑N
j=1 p̂(yt|x

j
t−1)

(ii) Sample xit ∼ q(xt|xkit−1, yt).
(iii) Evaluate unnormalised importance weights,

wit = wkit−1

g(yt|xit)f(xit|x
ki
t−1)

p̂(yt|xkit−1)q(xit|xkit−1, yt)
.

4. Normalise importance weights,

w̃it =
wit∑N
j=1w

j
t

.

Resampling:
5. Calculate ESS.

(i) If resampling condition is met, proceed. Else, go to (8).
6. For i = 1, . . . , N :

(i) Sample x̄i0:t according to

p̂(x0:t|y0:t) =
N∑
i=1

δxi0:t(x0:t)w̃
i
t

7. Set {xi0:t, w
i
t}Ni=1 = {x̄it, 1

N
}Ni=1.

8. Set t = t+ 1:
(i) Set t = t+ 1. If t > T , proceed. Else, go to (3).

Output:
9. For t = 0, . . . , T :

(i) Output {xi0:t, w
i
t}Ni=1.
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where the distribution Pµ,n is given by

Pµ,n(d(x0, . . . , xn)) = µ(dx0)q1(x0, dx1) . . . qn(xn−1, dxn). (1.43)

Now let Gn : En → R+ be a collection of bounded and measurable non-

negative functions such that for all n ∈ N

Eµ

(
n∏
p=0

Gp(Xp)

)
> 0. (1.44)

We can now define the Feynman-Kac path space models associated with the

potential/transition kernel pairs (Gn, qn).

Definition 1.4.1. The Feynman-Kac prediction and updated path models as-

sociated with the pair (Gn, qn), with initial distribution µ, are the sequence of

path measures defined respectively by

Q̂µ,n(d(x0, . . . , xn)) :=
1

Ẑn

{
n−1∏
p=0

Gp(xp)

}
Pµ,n(d(x0, . . . , xn)) (1.45)

Qµ,n(d(x0, . . . , xn)) :=
1

Zn

{
n∏
p=0

Gp(xp)

}
Pµ,n(d(x0, . . . , xn)) (1.46)

for any n ∈ N. The normalising constants Ẑn and Zn are given by

Ẑn = Eµ

(
n−1∏
p=0

Gp(Xp)

)
, Zn = Ẑn+1 = Eµ

(
n∏
p=0

Gp(Xp)

)
. (1.47)

It is clear to see the role of the potential functions, Gn, in the above def-
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inition; they act to redistribute the probability mass associated with the

Markov chain with transition kernels qn. In a real-world inference setting

the Markov chain acts as our prior while the potential functions Gn effec-

tively give additional information to allow us to estimate the true posterior

of some model.

The measures Qµ,n and Q̂µ,n, defined in the above definition can also be

defined for any measurable test function Fn by

Q̂µ,n (Fn) =
1

Zn
Eµ

(
Fn(X0, . . . , Xn)

n−1∏
p=0

Gp(Xp)

)
, (1.48)

Qµ,n (Fn) =
1

Ẑn
Eµ

(
Fn(X0, . . . , Xn)

n∏
p=0

Gp(Xp)

)
. (1.49)

Using this new description of the measures associated with Feynman-Kac

models we can go on to define the time marginals for these models

Definition 1.4.2. The sequence of bounded non-negative measures γ̂n and γn

on En defined for any measurable function fn by

γ̂n(fn) = Eµ

(
fn(Xn)

n−1∏
p=0

Gp(Xp)

)
(1.50)

γn(fn) = Eµ

(
fn(Xn)

n∏
p=0

Gp(Xp)

)
(1.51)

are respectively called the unnormalised prediction and the updated Feynman-

Kac model associated with the potential/kernel pair (Gn, qn). The sequence of
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distributions η̂n and ηn on En defined for any measurable fn as

η̂n(fn) =
γ̂n(fn)

γ̂n(1)
, ηn(fn) =

γn(fn)

γn(1)
(1.52)

are respectively called the normalised prediction and updated Feynman-Kac

model associated with the potential/kernel pair (Gn, qn).

1.4.1 Sequential Monte Carlo as a Feynman-Kac Model

It can be useful useful to think of sequential importance sampling in terms

of Feynman-Kac models. We consider a Feynman-Kac model as defined in

1.4.1 and compare this to sequential importance sampling, Algorithm 1.1.

Intuitively, the Feynman-Kac model can be thought of as a sequential change

of measure between the probability law of the underlying Markov process,

to some other law Qµ,t, the modification applied to carry out this change of

measure, at time t, is given by the potential function, Gt. This can also be

viewed as a case of sequential importance sampling; at each t we wish to

sample from the distribution Qµ,t by initially sampling from Xt, our under-

lying Markov process, and re-weighting these samples according to Gt. It’s

easy to deduce from 1.4.1 that we can set up a recursion for the sequence

of distributions Qt

Qt(dx0:t) =
Zt−1

Zt
Qt−1(dx0:t−1)qt(xt−1, dxt)Gt(xt). (1.53)

A similar recursion can also be used to find the filtering distribution, Qt(dxt),
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which is the marginal distribution of Xt with respect to the previous states

Qt(dxt−1, dxt) =
Zt−1

Zt
Qt−1(dxt−1)qt(xt−1, dxt)Gt(xt), (1.54)

This recursion allows us to describe sequential importance sampling in

the language of Feynman-Kac models. Suppose again that we have some

Feynman-Kac model with Markov process Xt on some state space E, with

transitions qt(xt−1, xt), initial distribution µ(x0) and potential functions Gt :

E → R+. We can proceed to recursively estimate the filtering distributions,

Qt(dxt), of this model as follows.

At time 0 we sample x1:N
0 ∼ µ(dx0) and re-weight these particles according

to G0, so we have an approximation to Q0(dx0) as

QN
0 (dx0) =

N∑
n=1

W n
0 δxn0 (dx0), W n

0 =
G0(xn0 )∑N
m=1G0(xm0 )

(1.55)

Then for each time t, we use the recursion (1.54) to perform importance

sampling at each step, using our previous approximation QN
t−1(dxt−1) in

place of Qt−1(dxt−1) to draw samples x1:N
t from a proposal distribution

QN
t−1(dxt−1)q(xt−1, dxt) =

N∑
n=1

W n
t−1δxnt−1

(dxt−1)q(xnt−1, dxt). (1.56)

To do this, we draw ant ∼ Multinomial(W 1:N
t ) for each n, then sample xnt ∼

q(x
ant
t−1, dxt), these samples are then re-weighted byGt to give an importance
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sampling approximation of Qt(dxt):

QN
t (dxt) =

N∑
n=1

W n
t δxnt (dxt), W n

t =
Gt(x

n
t )∑N

m=1Gt(xmt )
. (1.57)

Note that sampling the proposal in this way is equivalent to sequential

importance resampling, we could skip drawing from the multinomial dis-

tribution, simply sample xnt ∼ q(xnt−1, dxt) and propagate previous weights

forward to give us

QN
t (dxt) =

N∑
n=1

W n
t δxnt (dxt), W n

t = W n
t−1

Gt(x
n
t )∑N

m=1Gt(xmt )
(1.58)

as an approximation to the filtering distribution, but this would suffer from

the same problems of particle degeneracy explained in the previous section.

These weights and particles can then be used to calculate estimations for

the time marginals associated with the Feynman-Kac model:

1

N

N∑
n=1

ϕ(xnt ) ≈ η̂t(ϕ),
1

N

N∑
n=1

W n
t ϕ(xnt ) ≈ ηt(ϕ) (1.59)

for any measurable test function ϕ, where η̂t and ηt are defined as in 1.4.2.

This is a more abstract way of thinking of sequential Monte-Carlo meth-

ods than we introduced previously, each Feynman-Kac model generates a

unique SMC algorithm. In the case of the bootstrap particle filter, the cor-

responding Feynman-Kac would be defined by q(xt | xt−1) = p(xt | xt−1) the

law of the transitional prior and potential functions Gt = g(yt | xt) corre-

sponding to the likelihood of a particle given the data point at time t, then
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for any measurable function ϕ we have

E[ϕ(X0:n) | Y1:n] =

∫
ϕ(x1:n)p(x1:n | x0)g(y1:n | x1:n)dx1:n∫

p(x1:n | x0)g(y1:n | x1:n)dx1:n

(1.60)

=

∫
ϕ(x1:n)p(x1:n | x0)

n∏
t=1

Gt(xt)dx1:n∫
p(x1:n | x0)

n∏
t=1

Gt(xt)dx1:n

(1.61)

=

E

[
ϕ(X1:n)

n∏
t=1

Gt(Xt)

]

E

[
n∏
t=1

Gt(Xt)

] ., (1.62)

and the expectations can be approximated sequentially via the standard

bootstrap filter.

1.5 Stochastic differential equations with discrete-

time observations

We describe here the main problem we concern ourselves with, inference

for situations where the underlying process is a continuous-time stochastic

differential equation (SDE) with noisy observations at discrete time inter-

vals.

1.5.1 Brownian motion

We introduce Brownian motion (or Wiener process), which is the main

building block of many continuous time stochastic processes.
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Definition 1.5.1. Let {Wt}t>0 be a stochastic process. Wt a standard (one-

dimensional) Brownian motion if it satisfies the following properties:

1. W0 = 0

2. With probability 1, the function t→ Wt is continuous in t.

3. For any 0 6 s < t 6 u < v, Wt −Ws and Wv −Wu are independent

random variables.

4. For any t > 0, Ws+t − Ws is normally distributed with mean 0 and

variance t.

A standard d-dimensional Brownian motion is a vector-valued stochastic pro-

cess,

Wt =
(
W 1
t ,W

2
t , . . . ,W

d
t

)
,

where the components, W i
t , are independent standard one-dimensional Brow-

nian motions.

These basic properties are all we need to concern ourselves with for now,

for more a rigorous and involved discussion and construction of these pro-

cesses see Øksendal [1998], Szabados [2010].

1.5.2 Partially observed stochastic differential equations

We concern ourselves with problems on discretely observed non-linear SDEs.

Consider the model

dXt = b (Xt) dt+ σ (Xt) dWt, (1.63)
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where b : Rd → Rd is the drift term, σ : Rd → Rd×d is the diffusion matrix,

Wt is a d dimensional Brownian motion and we have the initial state X0 =

x0 ∈ Rd.

We assume that the drift b and diffusion σ coefficients satisfy the conditions

required to ensure the existence of a unique strong solution for (1.63).

Specifically, these standard conditions require that both b and σ satisfy a

global Lipschitz condition and a linear growth condition. The Lipschitz

condition ensures that the coefficients do not change too rapidly, prevent-

ing explosive solutions, while the linear growth condition bounds the rate

at which the coefficients can grow. For more details see Øksendal [1998],

Mikosch [1998].

We have the observations Yk

Yk = Xtk +N(0,Σ), (1.64)

for t1 < · · · < tn = T and N(µ,Σ) is the normal distribution with mean µ

and covariance Σ.

We want to compute recursively the filtering distribution of this model, i.e.

the posterior distribution of Xtk given the observations up to the current

time,

p (Xtk |Y1, . . . , Yk) . (1.65)
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1.5.3 Challenges of particle filtering in continuous time

We aim to use Sequential Monte Carlo (SMC) methods to approximate the

distributions of interest and the associated normalizing constants. How-

ever, the continuous-time nature of the underlying system introduces sev-

eral challenges. A primary challenge is that, unlike in the discrete-time

case, the transition density, f(xt | xt−1) , is not explicitly available. In par-

ticle filtering algorithms, this transition density plays a crucial role in the

recursion used to update the weights (1.38). As a result, we are initially

constrained to the bootstrap filter, where the weight updates rely solely

on the likelihood of the observation given the proposed state of the sys-

tem. This approach requires only the ability to sample from the transition

density without needing its pointwise evaluation. However, as previously

discussed, the bootstrap filter is often inefficient, particularly in scenarios

involving high-dimensional state spaces or low observational noise, neces-

sitating the use of more advanced methods.

1.5.4 Girsanov’s theorem and diffusion bridges

In this section we outline in a simple manner some results that prove to be

useful and motivating for further topics in this thesis, for a more rigorous

treatment of the content found in this section see Øksendal [1998] and

Delyon and Hu [2006]. Consider the SDEs

dXt = b1(Xt)dt+ σ(Xt)dWt, (1.66)

dXt = b2(Xt)dt+ σ(Xt)dWt, (1.67)
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for t ∈ [0, s]. Denote by X and Z the measures induced on the space of

continuous paths between time 0 and time s by the processes (1.66) and

(1.67) respectively. A well known result in the theory of stochastic pro-

cesses is that under standard regularity conditions for b1, b2 and σ, the

measure X is absolutely continuous with respect to Z and the density of

X with respect to Z, known as the Radon-Nikodym derivative, is given by

Girsanov’s Theorem [Øksendal, 1998]:

dX
dZ

(X) = exp

[∫ s

0

[b1(Xt)− b2(Xt)]
Tσ−1(Xt)dWt

− 1

2

∫ s

0

[b1(Xt)− b2(Xt)]
Tσ−1(Xt)[b1(Xt)− b2(Xt)]dt

]
.

(1.68)

Intuitively, this Radon-Nikodym derivative (1.68), provides the ratio of the

likelihood that a given sample path is sampled from X versus the path being

sampled from Z. This naturally lends itself to playing a role in the impor-

tance weight of an importance sampler, allowing us to evaluate expecta-

tions under X by sampling from Z and re-weighting the samples according

to the Radon-Nikodym derivative (1.68).

A frequently studied problem is that of sampling from a stochastic process

Xt, as defined in (1.66), conditioned so that X0 = x and Xs = y, such pro-

cesses are commonly referred to in the literature as “diffusion bridges”. The

addition of this conditioning introduces complex dependencies meaning it

is generally not possible to calculate the transition densities required for di-

rect simulation of sample paths. However, by using a version of (1.68) for

diffusion bridges we can instead sample from a simpler process to generate

46



proposals for the target process and re-weight these proposals according

to the Radon-Nikodym derivative. Again let X and Z denote the measures

induced on the space of continuous paths between time 0 and time s by the

processes (1.66) and (1.67).

Applying Bayes theorem to dX
dZ (X | X0 = x,Xs = y), we obtain

dX
dZ

(X|X0 = x,Xs = y) =
X(Xs = y|X)X(dX)/X(Xs ∈ dy)

Z(Xs = y|X)Z(dX)/Z(Xs ∈ dy)
, (1.69)

where, for simplicity, the conditioning on X0 = x is omitted in the notation

but is easy to impose as required. As we are considering constrained paths,

by definition X(Xs = y|X) = 1 and Z(Xs = y|X) = 1 and from the Girsanov

theorem we have that the density X(dX)
Z(dX)

is given by (1.68). Denoting (1.68)

as G(X) we have

dX
dZ

(X|X0 = x,Xs = y) = G(X)
Z(Xs ∈ dy | X0 = x)

X(Xs ∈ dy | X0 = x)
. (1.70)

Assuming (1.66) and (1.67) have analytically available transition densities

ps(y | x) and qs(y | x) respectively, we can write

dX
dZ

(X|X0 = x,Xs = y) = G(X)
qs(y | x)

ps(y | x)
. (1.71)

Of note here is the fact that qs(x, y) and ps(x, y) will be constant across all

samples from the proposal process and therefore qs(y|x)
ps(y|x)

acts as a normalis-

ing constant and does not need to be evaluated pointwise, this allows the

use (e.g. as sample weight in an importance sampler or as part of accep-

47



tance probabilities in a Metropolis-Hastings framework) of (1.71) without

the need for explicit calculation of the transition densities of the uncondi-

tional processes (1.66) and (1.67).

It still remains a challenge to find a proposal process that is straightforward

to sample from in the case where the target distribution is that of a diffu-

sion bridge. One commonly used example in the literature is the so called

Brownian bridge (see e.g. Durham and Gallant [2002]). Suppose we wish

to sample from a diffusion bridge

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x,Xs = y, (1.72)

and denote by Xx,y the measure induced on the space of continuous paths

between time 0 and time s by the process (1.72). The Brownian bridge is a

process

dXt = b̃(Xt)dt+ σ(Xt)dWt, X0 = x, (1.73)

where

b̃(Xt) =
y −Xt

s− t
. (1.74)

The specific form of the drift (1.74), ensures that the process satisfies the

condition Xs = y and is straightforward to sample from. Denote by Wx,y

the measure induced on the space of continuous paths between time 0 and
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time s by the process (1.73), then we have

dXx,y

dWx,y

(X) = G̃(X)
ws(y | x)

ps(y | x)
(1.75)

∝ G̃(X), (1.76)

where G̃(X) represents the Radon-Nikodym derivate defined in (1.68) with

b1 = b and b2 = b̃ and ws(y | x) and ps(y | x) are the transition densities of

the unconditioned versions of the processes (1.72) and (1.73) respectively.
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Chapter 2

Beyond the bootstrap filter

In this section we highlight some current approaches from the literature

that provide more sophisticated methods than bootstrap for particle filter-

ing on SDEs.

2.1 Intermediate weighting

Del Moral and Murray [2015] propose methods which introduce a series of

intermediate times between observations, at which weighting and resam-

pling occur, in an attempt to guide the proposal toward the observation.

They expect these methods to be particularly effective when the observa-

tions are highly informative.

Consider the situation in which we have a continuous time Markov process,

Xt ∈ Rd, satisfying some SDE like (1.63). For a sequence of times t0, · · · , tn

write X0:n := {Xt0 , · · · , Xtn}. The process is observed at the final time, tn,

via some random variable, Yn ∼ p(yn|xn), and we have a prior distribution

over the initial state of the system, X0 ∼ p(x0). The method seeks to simu-

late X0:n ∼ p(x0:n|yn) and is underpinned by the following [Del Moral and

Murray, 2015]:
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Proposition 2.1.1. For any bounded function ϕ on Rd(n+1), we have

E [ϕ(X0:n)|yn] =

E

[
ϕ(X0:n)p(X0)p(yn|Xn)

r(yn|X0)

r(yn|Xn)

n∏
k=1

Jk(Xk−1:k)

]

E

[
p(X0)p(yn|Xn)

r(yn|X0)

r(yn|Xn)

n∏
k=1

Jk(Xk−1:k)

]

with the weight functions

Jk(xk−1:k) :=
r(yn|xk)
r(yn|xk−1)

and chosen positive functions r(yt|xk) for k = 0, . . . , N .

Proof. First notice that

E [p(yn|Xn)] =

∫
p(yn|xn)p(xn)dxn

= p(yn)

then we have

E [ϕ(X0:n)|yn] =

∫
ϕ(x0:n)p(x0:n|yn)dx0:n

=

∫
ϕ(x0:n)p(yn|x0:n)p(x0:n)

p(yn)
dx0:n

=

∫
ϕ(x0:n)p(yn|xn)p(x0:n)

p(yn)
dx0:n

=
E [ϕ(X0:n)p(yn|Xn)]

E [p(yn|Xn)]
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Introduce the weighting functions and notice

r(yn|x0)

r(yn|xn)

n∏
k=1

Jk(xk−1:k) = 1.

We then have

E [ϕ(X0:n)|yn] =

E

[
ϕ(X0:n)p(X0)p(yn|Xn)

r(yn|X0)

r(yn|Xn)

n∏
k=1

Jk(Xk−1:k)

]

E

[
p(X0)p(yn|Xn)

r(yn|X0)

r(yn|Xn)

n∏
k=1

Jk(Xk−1:k)

] .

The recursive nature of the weight functions Jk(xk−1:k) in proposition 2.1.1

suggests the use of a particle filter with intermediate steps between ob-

servation times, repeatedly propagating particles forward, weighting and

resampling to help guide the proposal toward the next state.

The methodology is perhaps best understood via the Feynman-Kac frame-

work. Recall the Feynman-Kac model for the standard particle filter out-

lined in (1.60), (1.61) and (1.62). The intermediate weighting method

can be seen as a modification of this, where we have a sequence of inter-

mediate times, t0, · · · , tn, and only a single data point yn at the final time,

tn. The expectation of interest for a measurable function ϕ is then

E [ϕ(X0:n) | yn] =

∫
ϕ(x0:n)p(x1:n | x0)p(x0)p(yn | xn)dx0:n∫

p(x1:n | x0)p(x0)p(yn | xn)dx0:n

, (2.1)
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and by proposition 2.1.1 we obtain

E [ϕ(X0:n)|yn] =

E

[
ϕ(X0:n)p(X0)p(yn|Xn)

r(yn|X0)

r(yn|Xn)

n∏
k=1

r(yn|Xk)

r(yn|Xk−1)

]

E

[
p(X0)p(yn|Xn)

r(yn|X0)

r(yn|Xn)

n∏
k=1

r(yn|Xk)

r(yn|Xk−1)

] ,

(2.2)

for some positive functions r(yn|xk). We can write (2.2) as

E [ϕ(X0:n)|yn] =

E

[
ϕ(X0:n)p(X0)

n∏
k=1

Gk(Xk, Xk−1)

]

E

[
p(X0)

n∏
k=1

Gk(Xk, Xk−1)

] , (2.3)

where

G1(x1, x0) :=
r(yn | x1)

r(yn | x0)
r(yn | x0)

= r(yn | x1),

Gk(xk, xk−1) :=
r(yn | xk)
r(yn | xk−1)

, k = 2, · · · , n− 1,

Gn(xn, xn−1) :=
r(yn | xn)

r(yn | xn−1)

p(yn | xn)

r(yn | xn)

=
p(yn | xn)

r(yn | xn−1)
.

(2.4)

Therefore, we have a Feynman-Kac model with transition kernel p(xk+1 |

xk) and incremental weights Gk(Xk, Xk−1), this differs from the model of

the standard particle filter in that the weights are not just a function of the

current position of the particle but a function of the current and previous

positions. It’s now straightforward to construct a particle filter to estimate
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the expectation in (2.1), this can be seen in Algorithm 2.1.

Algorithm 2.1: Particle filtering with intermediate weighting
Initialise particles:

1. For i = 1, . . . , N :
(i) Sample xi0 ∼ p(x0).

(ii) Set all weights wi0 = 1
N

.

Importance sampling:
3. For k = 1, . . . , n:

(i) Sample xik ∼ p(xk|xik−1).
(ii) Evaluate unnormalised importance weights,

wik = wik−1Gk(x
i
k, x

i
k−1).

(iii) Calculate ESS
If resampling is triggered:

(a) For i = 1, . . . , N , sample x̄ik according to

p(xik) =
N∑
i=1

δxik(xk)w
i
k

(b) Set {xik, wik}Ni=1 = {x̄ik, 1
N
}Ni=1.

Else:
(a) Normalise importance weights,

wik =
wik∑N
j=1w

j
k

.

4. Set t = t+ 1. If t > T , proceed. Else, go to (3).

Like the bootstrap filter, this algorithm requires only that we can simu-

late from the transition density p(xk|xk−1) and not that it can be evaluated

pointwise. Other than this, the method places few assumptions on the un-

derlying SDE and can be applied to a wide range of problems.

The choice of the weighting function, r(yn|xk), is key to the performance
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of the algorithm. For good performance we would like r(yn|xk) ≈ p(yn|xk).

It is suggested that a useful approach is often to fit a Gaussian process to

the observed data and construct weight functions based around that, see

Del Moral and Murray [2015] for details.

2.2 Random weight particle filter

The approach presented in Fearnhead et al. [2008] is for d-dimensional

SDEs of the form

dZs = α(Zs)ds+ dWs, (2.5)

with observations at discrete time steps t0, · · · , tn, related to the signal by

a known density g(yj|ztj). Some further assumptions on (2.5) are also

required:

1. α is continuously differentiable in all arguments.

2. There exists some A : Rd → R such that α(z) = ∇A(z).

3. φ(z) is bounded below by some l ∈ R, where

φ(z) :=
||α(z)||2 + ∆A(z)

2
. (2.6)

Where ∆ is the Laplacian operator and || · || is the Euclidean norm. To

apply the methods to a more general SDE of the form (1.63), we require

that there is an explicit transformation, η(Xs) = Zs, where Z solves an

SDE of form (2.5) and the conditions specified above are satisfied. The

density of the observations then becomes g(yj|η−1((Ztj)). Finding such a
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transformation is fairly straightforward under mild conditions when d = 1,

but is much harder, or even impossible, in higher dimensions [Fearnhead

et al., 2008].

The approach follows a framework similar to the auxiliary particle filter,

defined in section 1.3.2. We have a proposal density of the form

N∑
i=1

βij−1q(ztj |zitj−1
, yj); (2.7)

to sample a new particle at time tj, we first sample ki ∈ {1, · · · , N} where

p(k) = βkj−1, then simulate a new state zitj ∼ q(ztj |z
ki
tj−1

, yj). We are free to

choose βkj−1 and q(ztj |ztj−1
, yj). The pairs {(zkitj−1

, zitj)}
N
i=1 are then assigned

weights using the recursion

wij ∝ wkij−1

g(yj|zitj)p(z
i
tj
|zkitj−1

)

βkij−1q(z
i
tj |z

ki
tj−1

, yj)
, (2.8)

For most SDEs of interest, the transition density p(ztj |ztj−1
) is intractable.

The random weight particle filter aims to get around this problem by re-

placing the weight, (2.8), with an unbiased estimator.

2.2.1 Weight simulation

Though the transition of density of a general SDE is usually intractable,

there is an expression available in the case of (2.5) [Papaspiliopoulos,

2011]. Denote by Zzt the density on the space of continuous paths be-

tween time 0 and t induced by the diffusion bridge with SDE (2.5) and

Z0 = z0, Zt = zt. Likewise, denote by Wzt the equivalent but where the
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underlying SDE is simply a Brownian motion. From the Girsanov formula

for diffusion bridges (1.71) we have

dZzt
dWzt

(Z) =
dZ
dW

(Z)
Nt(zt − z0)

p(zt | z0)
, (2.9)

where p(zt | z0) is the transition density of the SDE (2.5) and Nt(u) is the

density of a d-dimensional normal distribution with mean 0 and variance

tId evaluated at u ∈ Rd (the transition density of a d-dimensional Brownian

motion). Z and W are the densities corresponding to the unconditioned

SDE (2.5) and Brownian motion respectively. Rearranging (2.9) and taking

expectations with respect to Wzt gives

p(zt | z0) = Nt(zt − z0)E
[
dZ
dW

(Z)

]
. (2.10)

The Girsanov formula for unconditional SDEs (1.68) gives that

dZ
dW

(Z) = exp

{∫ t

0

α(Zs)dWs −
1

2

∫ t

0

||α(Zs)||2ds
}
. (2.11)

Recalling that α(z) = ∇A(z), we can rewrite (2.11) as

dZ
dW

(Z) = exp

{∫ t

0

∇A(Zs)dWs −
1

2

∫ t

0

||∇A(Zs)||2ds
}
. (2.12)

We now focus on the integral with respect to Ws in (2.12). As A is twice

continuously differentiable, by Ito’s Lemma [Øksendal, 1998] we know that

dA(Zs) = ∇A(Zs)dZs +
1

2
∆A(Zs)ds. (2.13)
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From our initial SDE (2.5) we have that dZs = ∇A(Zs)ds+ dWs, substitute

this into (2.13) and rearrange to get (using the convention that dWsdWs =

ds)

∇A(Zs)dWs = dA(Zs)−
(
||∇A(Zs)||2 −

1

2
∆A(Zs)

)
ds, (2.14)

therefore

∫ t

0

∇A(Zs)dWs = A(Zt)− A(Z0)−
∫ t

0

||∇A(Zs)||2ds−
∫ t

0

1

2
∆A(Zs)ds.

(2.15)

Combining (2.12) and (2.15) gives

dZ
dW

(Z) = exp

{
A(Zt)− A(Z0)−

∫ t

0

||∇A(Zs)||2 −
1

2
∆A(Zs)ds

}

= exp{A(Zt)− A(Z0)} exp

{
−
∫ t

0

φ(Zs)ds

}
,

(2.16)

where φ(z) is defined in (2.6). Finally, combining (2.10) and (2.16) gives

the transition density of the SDE (2.5) as

p(zt|z0) = Nt(zt−z0) exp{A(zt)−A(z0)}E
[
exp

{
−
∫ t

0

φ(Ws)ds

}]
, (2.17)

where the expectation is taken with respect to a Brownian bridge, Ws, with

W0 = z0 and Wt = zt.

Combining expression (2.17) with (2.8) give us a weight of the form

wij ∝ hj(z
ki
tj−1

, zitj , yj)µφ(zkitj−1
, zitj , tj−1, tj), (2.18)
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where

hj(z
ki
tj−1

, zitj , yj) = wkij−1

g(yj|zitj)Ntj−tj−1
(zitj − z

ki
tj−1

) exp{A(zitj)− A(zkitj−1
)}

βkij−1q(z
i
tj |z

ki
tj−1

, yj)
,

(2.19)

and

µφ(zkitj−1
, zitj , tj−1, tj) := E

[
exp

{
−
∫ tj

tj−1

φ(Ws)ds

}]
, (2.20)

where the expectation is with respect to a Brownian bridgeWs, withWtj−1
=

zkitj−1
and Wtj = zitj .

Typically, the expectation in (2.20) is intractable. We would therefore like

to replace µφ(zkitj−1
, zitj , tj−1, tj) with an unbiased estimator in our calcula-

tion of the weights (2.18). The approach of Fearnhead et al. [2008] is to

construct auxiliary random variables, V , and an easy to evaluate function,

r(vj, z
ki
tj−1

, zitj , tj−1, tj) > 0, such that

E
[
r(V, zkitj−1

, zitj , tj−1, tj)
]

= µφ(zkitj−1
, zitj , tj−1, tj), (2.21)

and the auxiliary variables are sampled via V ∼ Q(v|zkitj−1
, zitj , tj−1, tj), for

some appropriate distribution Q. If we can construct Q and r such that

(2.21) holds then we can replace µφ in (2.18) with an unbiased estimator

and therefore construct a particle filter that targets the correct filtering

distribution. This gives rise to the random weight particle filter, as outlined

in Algorithm 2.2.

59



Algorithm 2.2: Random weight particle filter
1. For i = 1, · · · , N , sample zi0 ∼ p(z0) and set wi0 = 1

N
. Set j = 1.

2. Calculate ESS of {βij−1}Ni=1.
If resampling condition is met:
For i = 1, · · · , N :

(i) Sample ki from {1, · · · , N} with p(k) ∝ βkj−1

(ii) Set δij = 1.
Else:
For i = 1, · · · , N :

(i) Set ki = i, δij = βij−1

3. For i = 1, · · · , N :
(i) Sample next state zitj ∼ q(ztj |ztj−1

, yj)

(ii) Sample auxiliary variables vij ∼ Q(vj|zkitj−1
, zitj , tj−1, tj)

4. For i = 1, · · · , N :
(i) Calculate particle weight:

wij ∝ δijhj(z
ki
tj−1

, zitj , yj)r(v
i
j, z

ki
tj−1

, zitj , tj−1, tj)

5. Set j = j + 1. If j > n, proceed. Else, go to (2).
6. For j = 1, · · · , N :

(i) Output particles {zitj , w
i
j}Ni=1

2.2.2 Generalised Poisson Estimators

To carry out the random weight particle filter we need an unbiased estima-

tor of (2.20). Fearnhead et al. [2008] builds on the work of Beskos et al.

[2006] to construct a family of such estimators with desirable properties,

the so called Generalised Poisson Estimator (GPE).

This is introduced in a general context of simulating an unbiased estimator

of

E
[
exp

{
−
∫ t

0

g(Ws)ds

}]
, (2.22)

where the expectation is taken with respect to a d-dimensional Brownian
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bridge and g is an arbitrary continuous function on Rd. It is assumed that

W0 = x1 and Wt = x2 for arbitrary x1, x2 ∈ Rd and that t > 0. It is also

noted that the time-homogenous nature of Brownian bridges ensures the

method extends to the case where the integration limits are changed to t0

and t0 + t for any t > 0.

The GPE builds on the Poisson Estimator proposed in Wagner [1988]. For

the case where g is bounded. The Poisson Estimator is given by

e(λ−c)tλ−κ
κ∏
j=1

[
c− g(Wψj

)
]
, (2.23)

where κ is a Poisson(λt) random variable and ψj are distributed uniformly

on [0, t] for all j. This estimator is unbiased, to see this we first take the

expectation of (2.23) with respect to κ to see that

E

[
e(λ−c)tλ−κ

κ∏
j=1

[
c− g(Wψj

)
]]

= E

[
∞∑
k=0

e(λ−c)tλ−k
k∏
j=1

[
c− g(Wψj

)
] λktke−λt

k!

]

= E

[
∞∑
k=0

e−ct
1

k!

k∏
j=1

[
ct− g(Wψj

)t
]]
.

(2.24)
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As we have ψj ∼ U [0, t], g(Wψj
)t is an unbiased estimator of

∫ t
0
g(Ws)ds and

E

[
∞∑
k=0

e−ct
1

k!

k∏
j=1

[
ct− g(Wψj

)t
]]

= E

[
∞∑
k=0

e−ct
1

k!
E

[
k∏
j=1

[
ct− g(Wψj

)t
]]]

= E

[
∞∑
k=0

e−ct
1

k!

k∏
j=1

[
ct−

∫ t

0

g(Ws)ds

]]

= E

[
∞∑
k=0

e−ct
1

k!

[
ct−

∫ t

0

g(Ws)ds

]k]

= E
[
exp

{
−
∫ t

0

g(Ws)ds

}]
.

(2.25)

The estimator (2.23) is not sure to have finite variance for unbounded g,

it may also return negative estimates. The methods of Fearnhead et al.

[2008] generalise (2.23), allowing c and λ to depend on W and allowing

κ to be a general discrete distribution.

This generalisation requires the ability to simulate random variables LW

and UW such that

LW 6 g(Ws) 6 UW , for all s ∈ [0, t], (2.26)

along with the ability to simulate Ws for all s, conditional on LW and UW

in (2.26). An efficient algorithm for performing these simulations can be

found in Beskos et al. [2008a].

Assuming LW and UW satisfy the condition (2.26), introduce {ψj}, a se-

quence of uniform random variables on [0, t] and notice that we can rewrite
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(2.22) as

E
[
exp

{
−
∫ t

0

g(Ws)ds

}]
= E

[
e−UW t exp

{∫ t

0

(UW − g(Ws))ds

}]
(2.27)

= E

[
e−UW t

∞∑
k=0

1

k!

(∫ t

0

(UW − g(Ws))ds

)k]
(2.28)

Notice that if ψ ∼ U [0, t], then t(UW − g(Wψ)) is an unbiased estimator of∫ t
0
UW − g(Ws)ds, conditioned on UW , LW . So (2.28) becomes

E

[
e−UW t

∞∑
k=0

1

k!
(E [t(UW − g(Wψ))|UW , LW ])k

]
(2.29)

= E

[
e−UW t

∞∑
k=0

tk

k!
E

[
k∏
j=1

(UW − g(Wψj
))|UW , LW

]]
(2.30)

where the equality of the second line in the above comes from the fact that

{ψj} are i.i.d. and drawn from U [0, t]. We can apply Fubini’s theorem to

(2.30) to swap the order of the infinite summation and expectation, giving

E

[
e−UW tE

[
∞∑
k=0

tk

k!

k∏
j=1

(UW − g(Wψj
))|UW , LW

]]
(2.31)

= E

[
e−UW t tκ

κ!p(κ|UW , LW )

κ∏
j=1

(UW − g(Wψj
))

]
, (2.32)

where κ is a discrete random variable with probabilities p(k|UW , LW ).

By specifying p(k|UW , LW ) we can derive various different estimators of
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(2.22), this family of estimators is the GPE and is of the form

e−UW t tκ

κ!p(κ|UW , LW )

κ∏
j=1

(UW − g(Wψj
)). (2.33)

2.3 Using Girsanov’s theorem with a scaled pro-

posal

Särkkä et al. [2008] introduces a method that uses Girsanov’s theorem to

construct likelihood ratios between the densities of two stochastic differen-

tial equations (SDEs). The authors show that when working with original

and proposal SDEs that have invertible but different diffusion matrices, it is

possible to appropriately scale the proposal process to match the diffusion

matrix of the original process. This adjustment guarantees absolute conti-

nuity between the densities of the original and the scaled process, allowing

for the establishment of a Radon-Nikodym derivative. This insight expands

the range of potential proposal processes that can be applied within a par-

ticle filtering framework.

The method is presented in the context of estimating the filtering distribu-

tion of an SDE of the form

dXt = b1(Xt)dt+ σ1(t)dWt, (2.34)

with observations at discrete time steps t0, · · · , tn, related to the signal by a

known density g(yj|xtj) and with σ1(t) invertible for all t. Assume that we
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have constructed a proposal process that approximates the filtering distri-

bution of (2.34) with an SDE of the form

dZt = b2(Zt)dt+ σ2(t)dWt, (2.35)

where σ2(t) is also invertible for all t. Define the process Z∗t as

dZ∗t = σ1(t)σ−1
2 (t)dZt (2.36)

and denote by Z∗ and X the densities induced on the space of continuous

paths between time 0 and time s by (2.36) and (2.34). Then Z∗ is abso-

lutely continuous with respect to X and the Radon-Nikodym derivative is

given by

dX
dZ∗

(Z) = exp

[∫ s

0

B(Zt, t)
Tσ−T1 (t)dWt

− 1

2

∫ s

0

B(Zt, t)
T [σ1(t)σ1(t)T ]−1B(Zt, t)dt

]
,

(2.37)

where B(Zt, t) = b1(Z∗t ) − σ1(t)σ−1
2 (t)b2(Zt). We omit the technical details

here for brevity, but a proof can be found in the appendix of Särkkä et al.

[2008].

The method of Särkkä et al. [2008] is to use the Radon-Nikodym derivative

(2.37) to construct a particle filter that targets the filtering distribution of

(2.34) using the proposal process (2.35). Weight updates are calculated as

wij = wij−1Gxij−1
(Zi, yj)g(yj|xitj), (2.38)
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Algorithm 2.3: Particle filter with transformed proposal
1. For i = 1, · · · , N , sample xi0 ∼ p(x0) and set wi0 = 1

N
. Set j = 1.

2. For i = 1, · · · , N ,
(i) Generate proposals on [tj−1, tj]:

dZi
t = b2(Zi

t)dt+ σ2(t)dWt, Zi
tj−1

= xitj−1

dZ∗,it = σ1(t)σ−1
2 (t)dZi

t , Z∗,itj−1
= xitj−1

(ii) Update importance weights:

wij = wij−1Gxij−1
(Zi)g(yj|xitj)

3. Normalise importance weights.
4. Calculate ESS of {wij}Ni=1:

(i) If resampling condition is met, resample particles and set
wij = 1

N
.

5. Set j = j + 1, if j > n proceed, else go to (2).
6. For j = 1, · · · , n:

(i) Output particles {xij, wij}Ni=1

where Gxitj−1
(Zi) is the likelihood ratio as defined in (2.37) between times

tj−1 and tj. The method is outlined in Algorithm 2.3.

2.3.1 Proposal process via the extended Kalman filter

A suggested approach to generating a proposal process involves using the

continuous discrete extended Kalman filter (CDEKF) (see e.g. Jazwinski

[2007]). Here, we provide a brief outline of how such a proposal process

can be created.

We wish to generate a proposal process for filtering of a SDE of the form of

2.34, with observations

yk = h(xtk) + η, (2.39)

where h is a differentiable function and η ∼ N(0,Σ). Suppose that we

are at time tk−1, we have the initial condition Xtk−1
= xtk−1

and we wish
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to generate the proposal process up to time tk. The CDEKF estimates a

Gaussian posterior distribution of the state of the system at time tk and is

made up of two stages:

• A data-blind prediction step, giving initial estimates for the mean and

covariance of the state of the system at time tk.

• An update step to take into account the information given by the

observed data point.

To carry out the prediction step, start from initial conditions Xtk−1
= xtk−1

and P (tk−1) = 0 and integrate between tk−1 and tk the differential equa-

tions

dXt

dt
= b1(Xt)

dP (t)

dt
= F (t)P (t) + P (t)F (t)T + σ1(t),

(2.40)

where F is the Jacobian of b1 with respect to the state of the system. This

gives initial estimates of the mean and covariance which we denote by

x̂k|k−1 and P̂k|k−1 respectively. These estimates are then updated via

Kk = P̂k|k−1H
T
k (HkP̂k|k−1H

T
k + Σ)−1,

x̂k = x̂k|k−1 +Kk(yk − h(x̂k|k−1),

P̂k = (Id −KkHk)P̂k|k−1,

(2.41)

where Hk is the Jacobian of h(x̂k|k−1) and Id is an identity matrix of appro-

priate dimension.

We now have an estimate of how the system is distributed at time tk as a
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Gaussian distribution with mean x̂k and covariance P̂k. A proposal process

that satisfies this is given by

dXt =
(x̂k − xtk−1

)

∆t
dt+

1√
∆t
P̂

1/2
k dWt. (2.42)
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Chapter 3

Particle filtering with tempering and

mutation for partially observed SDEs

We aim to develop an algorithm that allows for more stability in the particle

weights and is more robust than the standard bootstrap filter. In particular,

we focus on developing methods which are robust to the dimension of the

SDE and perform well in the small noise setting.

The primary challenge in filtering high-dimensional systems with informa-

tive observations is the rapid degeneracy of particle weights, a problem

where the bootstrap filter often fails. While the components of our pro-

posed algorithm have appeared individually in prior work (see e.g. Andrieu

et al. [2010], Doucet et al. [2000], Del Moral et al. [2006]), the novelty

of our approach lies in the combination of these techniques to address this

challenge.

The algorithm we propose has three key elements:

• A guided proposal, using the latest observation to steer particles to-

ward regions of high posterior probability.

• A tempering procedure to help bridge the gap between the proposal

and the target distribution.
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• An MCMC mutation step to jitter samples and ensure particle diver-

sity.

We introduce each of these ideas below and bring them together to form

a new method for the filtering of discretely observed SDEs. We refer to

this combined methodology as the Guided Proposal with Tempering and

Mutation Filter (GPTMF)

3.1 The proposal step

The standard bootstrap filter proposes samples from the prior distribution

defined by the underlying SDE (1.63) and is blind to the observed data

point, Yk. The proposals can clearly be improved by taking the new data

point into account and guiding particles toward the data and into regions

of higher probability given the observed data.

At each time we wish to generate proposals that approximate the law of

our underlying SDE (1.63), of the form

dXt = b (Xt) + σ (Xt) dWt,

over the time interval [0, T ], conditioned on X0 = x0 ∈ Rd and an observa-

tion at time T , yT , observed with Gaussian noise as defined in (1.64).

Following the methods of Schauer et al. [2017] we can build such a pro-

posal as

dZt = b(Zt)dt+ σ(Zt)σ(Zt)
T∇x log p̃(yT , T |Zt, t)dt+ σ(Zt)dWt, (3.1)
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where p̃(y, T |z, t) is the likelihood of observing the data point given that

the underlying SDE is a Brownian motion, i.e. b = 0, σ = Id. It is straight-

forward to show [Golightly and Wilkinson, 2008] that this likelihood cor-

responds to the density of the Gaussian, N(z,Σ + (T − t)Id), where Σ is the

covariance matrix of the noise in the observations. From here we get that

∇x log p̃(y, T |z, t) = (Σ + (T − t)Id)−1(y − z) (3.2)

and (3.1) becomes

dZt = b̃(Zt, t, yT , T )dt+ σ(Zt)dWt (3.3)

where

b̃(z, t, y, T ) := b(z) + σ(z)σ(z)T (Σ + (T − t)Id)−1(y − z). (3.4)

The use of (3.3) to generate proposals is justified by Schauer et al. [2017],

in the sense that the law of the process (3.3) is absolutely continuous with

respect to the law of the target process (1.63) and an expression for the

Radon-Nikodym derivative can be found.

3.1.1 Euler-Maruyama method

In order to sample from the proposal we are required to numerically ap-

proximate the solution of a given SDE. There are numerous ways to do this

(see Kloeden and Platen [2013]) but for our purposes we restrict ourselves

to the Euler-Maruyama scheme, which is fast and easy to implement.
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Suppose we have an SDE of the form (1.63) with initial condition X0 = x0

and we would like to approximate a solution on the time interval [0, T ]. We

partition the time interval into N sections of equal length 0 = t0 < · · · <

tN = T and recursively define

Xti+1
= Xti + b(Xti)(ti+1 − ti) + σ(Xti)(Wti+1

−Wti), (3.5)

where Wt is a standard Brownian motion. This gives a discretised approxi-

mation to a solution of (1.63) with weak approximation error that isO(∆t),

and strong approximation error that is O(
√

∆t). These convergence rates

hold under standard regularity conditions, namely that both the drift and

diffusion coefficients satisfy both a global Lipschitz condition and a linear

growth bound. [Kloeden and Platen, 2013].

3.2 The tempering step

Denote by Xx,j the distribution on the space of continuous paths C[tj−1, tj]

induced by (1.63) for initial value Xtj−1
= x, define Zx,j similarly for the

distribution induced by (3.3).

At the jth time step of a particle filter such as Algorithm (2.3) the target

distribution of the sampler is Xx,j(dX|yj) - the distribution Xx,j(dX), con-

ditioned on the observation yj. In the straightforward setup of Algorithm

(2.3) the idea is to use proposals from Zx,j as candidate paths from the

target and weight these paths according to the Radon-Nikodym derivative

dXx,j(X|yj)
dZx,j(X)

= Gx,j(X, yj), (3.6)
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where

Gx,j(X, yj) =
dXx,j(X)

dZx,j(X)
p(yj | Xtj). (3.7)

We then have a set of weighted samples as an approximation to the target

distribution.

Issues can arise with this method if the proposal is not similar enough to

the target distribution and the particle weights can soon degenerate and

become dominated by a relatively small number of particles. To try and

combat this we can supplement Algorithm (2.3) with a tempering proce-

dure - the idea is to use a sequence of temperatures

0 = φ0 < φ1 < · · · < φK = 1 (3.8)

which give rise to a sequence of intermediate path distributions

Zx,j(dX)Gx,j(X, yj)
φ0 ,Zx,j(dX)Gx,j(X, yj)

φ1 , . . . ,Zx,j(dX)Gx,j(X, yj)
φK ,

(3.9)

note that Zx,j(dX)Gx,j(X, yj)
φ0 = Zx,j(dX) and Zx,j(dX)Gx,j(X, yj)

φK =

Xx,j(dX|yj).

These distributions act as a bridge between our proposal and target distri-

butions, and we can perform iterative importance sampling to reach the

target. That is, at each step of the tempering procedure we perform im-

portance sampling with proposal distribution Zx,j(dX)Gx,j(X, yj)
φl−1 and

target distribution Zx,j(dX)Gx,j(X, yj)
φl, with the idea being that these dis-

tributions are similar enough to preserve some level of stability in the par-

73



ticle weights.

The temperatures φl are determined on the fly and chosen to be as large

as possible while preserving a minimum ESS at each step of the procedure

(e.g. via bisection search).

3.3 The mutation step

3.3.1 MCMC on general spaces

Markov Chain Monte Carlo (MCMC) methods were developed to generate

samples from target distribution with density π that cannot be sampled us-

ing standard methods. The approach constructs a reversible Markov chain

with π as its stationary distribution. By running this chain until equilibrium

and collecting its trajectory, we obtain correlated samples from π.

Perhaps the most commonly used method of constructing a Markov chain

with a specified target distribution is the standard Metropolis-Hastings [Hast-

ings, 1970, Metropolis et al., 1953] algorithm. For this we require a tran-

sition kernel q(dx′|x), from which we draw a candidate for the next state,

this candidate is then accepted with probability

α(x, x′) = 1 ∧ π(x′)q(x′|x)

π(x)q(x|x′)
. (3.10)

This process is repeated until we are satisfied that the chain has converged

to its stationary distribution, we then continue the process to draw samples

from π.

In the above presentation it is assumed that all densities present in (3.10)
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are all with respect to a common reference measure. For state spaces of

finite dimension this is typically the Lebesgue measure on Rd. In more

complex state spaces it is more typical that a common reference measure

cannot be found. For instance, the state space relevant to our use case

is C[0, t], the infinite-dimensional space of continuous paths on Rd over

some interval [0, t]. For Markov kernels on this space it is often the case

that the proposal transitions are singular for different current states, i.e.

the probability measures q(dx′|x1) and q(dx′|x2) are mutually singular for

x1 6= x2.

For the construction of Metropolis-Hastings algorithms in these more com-

plex state spaces we refer to the more general theory developed in Tierney

[1998]. For a target distribution with density π(dx) and transition kernel

q(dx′|x) define the bivariate distributions

µ(dx, dx′) := π(dx)q(dx′|x), (3.11)

µT (dx, dx′) := π(dx′)q(dx|x′). (3.12)

From Tierney [1998] we have that if µ and µT are absolutely continuous

with respect to each other then the acceptance probability, α(x, x′), is well

specified, in the sense that it is µ-a.s. positive (as opposed to the case

where µ and µT are mutually singular and the acceptance probability is

µ-a.s. zero.) and we have

α(x, x′) = 1 ∧ dµ
T

dµ
(x, x′). (3.13)
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Therefore, calculating acceptance probabilities for MCMC kernels in com-

plex state spaces requires finding the Radon-Nikodym derivative dµT

dµ
in

(3.13).

3.3.2 MCMC on pathspace

We return now to the task of finding a Markov kernel to mutate the particles

in our tempering procedure. We wish to specify kernels Kj,l(dX
′, X), that

preserve the distribution Zx,j(dX)Gx,j(X, yj)
φl, denote this distribution by

Plj and note that it is defined such that

dPlj
dZx,j

(X) ∝ Gx,j(X, yj)
φl , (3.14)

where Zx,j corresponds to the law of the process

dZt = b̃(Zt, t, ytj , tj)dt+ σ(Zt)dWt, t ∈ [tj−1, tj], Ztj−1
= x (3.15)

Under the assumption that σ is invertible and other regulatory conditions

which we omit for brevity (3.15) gives rise to a 1-1 mapping [Golightly and

Wilkinson, 2008]:

W → F (W,x, yj) := Z (3.16)

The paths generated by solutions of (3.15) are uniquely determined by

the realisations of the Brownian motion W . Denote by W the law of the

standard Brownian motion on Rd and we immediately have Zx,j ◦ F ≡ W.

Let P̃lj denote the law of F−1(X) forX ∼ Plj, then by the absolute continuity

of Plj with respect to Zx,j and the preservation of measure under one-to-one
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transformations we have

dP̃lj
dW

(W ) ≡
dPlj
dZx,j

(F (W,x, yj)) ∝ Gx,j(F (W,x, yj), yj)
φl . (3.17)

The preservation of Plj is equivalent to preserving P̃lj under the transforma-

tion, F , and we can mutate our paths by mutating the driving Brownian

motion.

In (3.17) we have expressed P̃lj as a change of a measure from a Gaus-

sian distribution. Much work has been done in developing well specified

MCMC kernels on infinite-dimensional pathspaces for targets in this family

of distributions, including Metropolis-adjusted Langevin algorithm (MALA)

[Roberts et al., 1996] and Hybrid Monte Carlo (HMC) methods [Duane

et al., 1987, Beskos et al., 2013]. For the purposes of this thesis we use the

Preconditioned Crank-Nicolson (pCN) method [Beskos et al., 2008b, Cotter

et al., 2013].

We wish to provide an MCMC kernel that preserves P̃lj and we have shown

that it can be expressed as a change of measure from a Gaussian law. For

target distribution P̃lj and proposal kernel Q(dW ′|W ) specified by the pro-

posal

W ′ = ρW +
√

1− ρ2ξ, ξ ∼ N(0, C) (3.18)

where C is the covariance of the Brownian motion and ρ is a parameter

that controls the step size, it follows from Cotter et al. [2013] Theorem 6.2

that the measures η(dW, dW ′) := P̃lj(dW )Q(dW ′|W ) and ηT (dW, dW ′) :=

P̃lj(dW ′)Q(dW |W ′) are mutually absolutely continuous, with Radon-Nikodym
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derivative

dηT

dη
(W,W ′) =

Gx,j(Z
′, yj)

φl

Gx,j(Z, yj)φl
, Z = F (W,x, yj), Z ′ = F (W ′, x, yj).

(3.19)

We now have an MCMC transition kernel that preserves P̃lj (and hence

preserves Plj via the F -transform), defined via proposals as in (3.18) and

acceptance probability

α(W,W ′) = 1 ∧ Gx,j(Z
′, yj)

φl

Gx,j(Z, yj)φl
. (3.20)

3.4 The algorithm

We are now ready to put the above methods together and describe a par-

ticle filtering algorithm with tempering and mutation steps for filtering of

partially observed SDEs. The algorithm is outlined in Algorithm 3.1.
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Algorithm 3.1: Particle filter with tempering
1. For i = 1, . . . , N , sample xi0 ∼ p(x0). Set j = 1.
2. For current particles {xij−1}Ni=1, set φ0 = 0, l = 1.

(i) For i = 1, . . . , N generate sample paths on [tj−1, tj] as
X i ∼ Zxij−1,j

.
(ii) For φ > φl−1 determine weights

wil(φ) = Gxij ,j
(X i, yj)

φ−φl−1

(iii) Find φ > φl−1 such that ESS({wil(φ)}Ni=1) = ESSmin for some
predetermined ESSmin. Set φl = 1 ∧ φ.

(iv) Resample {X i}Ni=1 according to {wil(φ)}Ni=1. Set {X̄ i}Ni=1 to be
the set of resampled paths.

(v) For i = 1, . . . , N , mutate X i ∼ Kj,l(dX
′, X̃ i) for kernel

specified by pCN scheme to preserve Zxij−1,j
(dx)Gxij ,j

(x, yj)
φl.

(vi) If φ < 1, set l = l + 1 and return to step 2(ii); else proceed.
3. Output particles {xij, wij}Ni=1, where xij = X i

tj
.

4. Set j = j + 1, if j > n end, else return to step 2.
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Chapter 4

Numerical experiments on double-

well potential

We compare the results of the GPTMF in Algorithm (3.1) with results ob-

tained by applying the standard bootstrap algorithm.

We run both filters from t = 0 to t = 10, with a time between observations

of 0.1.

In all cases we run the algorithms with 1000 particles, resampling in the

bootstrap algorithm is triggered when the ESS falls below 500 and temper-

atures are found in the tempering step such that the ESS stays above the

same value. The value of ρ for pCN steps (as in (3.18)) is 0.99 in all cases

and we carry out five pCN steps to generate a single mutation step.

We consider a d-dimensional process where each dimension is an indepen-

dent double-well process. That is the filtering problem with underlying

SDE

dXt = b(Xt)dt+ dWt, (4.1)
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where

b(Xt,1, · · · , Xt,d) =


4Xt,1(1−X2

t,1)

...

4Xt,d(1−X2
t,d)

 , (4.2)

and we have observations

Yk = Xtk +N(0,Σ), (4.3)

with Σ = 0.01Id.

Figure 4.1 shows point estimates and confidence intervals for the first co-

ordinate of a double-well process, calculated for problems of different di-

mensions using both the bootstrap and GPTMF. It is clear to see the deteri-

oration in performance of the bootstrap filter as we increase the dimension

of the problem. This deterioration shows in two ways: first, the point

estimates themselves fail to accurately track the true state. Second, the

confidence intervals shrink as the weights are dominated by just one or

two particles. We can see, particularly in the d = 10 case, that many of the

actual states of the system are outside these artificially narrow confidence

intervals.

GPTMF on the other hand appears to be much more robust to the dimen-

sion of the problem. The point estimates maintain good tracking accuracy

even in high dimensions. Additionally, the confidence intervals maintain a

reasonable width that properly reflects the posterior uncertainty, with the

majority of the actual states of the system found inside these confidence

intervals. Figure 4.2 shows this difference very clearly, as we increase the
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dimension of the SDE the proportion of actual states of the system at the

observation times that can be found inside the confidence intervals gener-

ated from the bootstrap methodology decreases dramatically, while for the

method that makes use of tempering and mutation this proportion stays

relatively stable.

Figure 4.3 shows how, as expected, the number of temperatures required

in the tempering step increases with the dimension of the SDE. As the

dimensionality increases we expect to see the weights in a particle filter

dominated by fewer particles, so it makes sense that as we increase the di-

mension we would have to increase the number of temperatures required

to bridge the gap between our proposal and posterior distributions.

Each tempering step adds a computational load, involving weight calcula-

tions, resampling, and MCMC mutations for all N particles. Therefore, the

total cost of the GPTMF per time step is significantly higher than that of

the bootstrap filter and grows with the dimension. However, the payoff is

that the GPTMF yields accurate and reliable estimates in settings where the

bootstrap filter fails completely.

While we do not have a precise scaling law for how the number of temper-

atures scales with the dimension of the SDE, Figure 4.3 suggest a growth

that is sublinear. This indicates that while the computational cost increases

with dimensionality, it may do so at a manageable rate, making the ap-

proach feasible for high-dimensional problems.

Figure 4.4 shows the value of the first coordinate of our proposal paths
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pre and post mutation at various times. It is clear to see there is a strong

positive, but not perfect correlation between the values. This corresponds

to the kind of mixing we expect to see from our pCN kernel. We do not

want to move the particles significantly, just jitter them slightly to increase

the diversity in the particle set.

Figure 4.5 shows that mixing effectiveness decreases with dimension. This

suggests that higher dimensional problems may benefit from additional

pCN steps to achieve comparable mixing quality, though at increased com-

putational cost. Future work could explore adaptive schemes that adjust

the number of mutation steps based on dimension or monitored mixing

diagnostics.

The nature of the double-well problem (4.2), means that each coordinate

is independent of all others. Because of this we could just run a separate,

one-dimensional particle filter, for each coordinate. This allows us to run a

bootstrap particle filter with a large number of particles to establish a highly

accurate benchmark for the posterior distribution for a given coordinate. To

test the effectiveness of our tempering algorithm we run a bootstrap filter

(effective for a one-dimensional problem) with 10000 particles on the first

coordinate of our problem and compare with the estimated posterior for

that coordinate from our tempering algorithm run on the ten-dimensional

problem with just 1000 particles, the results of this can be seen in figure

4.6. It’s clear to see that the tempering algorithm produces reasonable

estimates of the posterior when compared to this benchmark posterior.
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(a) d = 2, bootstrap (b) d = 2, GPTMF

(c) d = 6, bootstrap (d) d = 6, GPTMF

(e) d = 10, bootstrap (f) d = 10, GPTMF

Figure 4.1: Estimates and confidence intervals of the first coordinate of double-well
processes at different dimensions. The black dots are the true states of the hidden
process Xt at observation times, the coloured line is the point estimate of the state of
the actual process and the shaded area correspond to 95% confidence intervals.
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Figure 4.2: Above shows the proportion of 95% confidence intervals that contain the
actual state of the system at the observation times, for confidence intervals gener-
ated using the bootstrap (blue) estimates and the GPTMF (orange) estimates. These
values were calculated using ten independent runs of the algorithm for each of the
dimensions 2,4,6,8,10 and 20.

Figure 4.3: The above shows the average number of temperatures per time step
against the dimension of the SDE. These values were calculated using ten indepen-
dent runs of the algorithm for each of the dimensions 2,4,6,8,10 and 20.
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(a) t = 2.0 (b) t = 3.0 (c) t = 4.0

(d) t = 5.0 (e) t = 6.0 (f) t = 7.0

(g) t = 8.0 (h) t = 9.0 (i) t = 10.0

Figure 4.4: Above shows the positions of the endpoint of the first coordinate of pro-
posal paths in the GPTMF algorithm, pre-mutation is on the x-axis and post mutation
is on the y-axis. These results were taken from a single run of the PF algorithm on a
six dimensional double-well problem.

86



Figure 4.5: Pearson’s correlation coefficient of the pre and post mutation positions of
the first coordinate of the particles at each observation time. These results were taken
from a single run of the GPTMF algorithm for dimensions 2,4,6,8,10 and 20.
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(a) t = 2.0 (b) t = 3.0 (c) t = 4.0

(d) t = 5.0 (e) t = 6.0 (f) t = 7.0

(g) t = 8.0 (h) t = 9.0 (i) t = 10.0

Figure 4.6: Estimated densities of the posterior from the one-dimensional bootstrap
algorithm with 10000 particles (blue) compared with the estimated posterior from
the GPTMF run on the ten-dimensional problem with 1000 particles (orange). The
black dashed line shows the true value of the underlying system at that time and the
red dashed line shows the observed value of the system.
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Chapter 5

Data Assimilation of Tsunami Wave-

fields

Early detection of tsunamis can help to enable timely reactions to the sit-

uation, such as evacuating coastal areas, that help to minimise the loss of

life and damage to property. Key to being able to accurately forecast the

incidence of a wave at a coastline is the ability to assimilate data into the

models in real time.

Many detection schemes require the use of data from seismic events, this

may lead them to overlook tsunamis caused by other types of event (e.g.

those caused by landslides or volcanic eruptions). We follow the work of

Maeda et al. [2015] and present a scheme that uses a network of tsuname-

ters measuring wave heights to estimate the height and velocity of the

tsunami. In contrast to Maeda et al. [2015], who assimilate data via a

Kalman filter, we present a particle filter based approach.
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5.1 Tsunami PDE model

As in Maeda et al. [2015] the behaviour of the waves is assumed to be

governed by a simple 2-D linear long-wave equation

∂η(x, y, t)

∂t
= −∂M(x, y, t)

∂x
− ∂N(x, y, t)

∂y

∂M(x, y, t)

∂x
= −gD(x, y)

∂η(x, y, t)

∂x

∂N(x, y, t)

∂y
= −gD(x, y)

∂η(x, y, t)

∂y
,

(5.1)

where η is the tsunami height, M,N are the vertical and horizontal compo-

nents of the tsunami velocity, g is the gravitational constant and D(x, y) is

the depth of the ocean.

5.1.1 Boundary conditions

Suppose we simulate the above equations on a grid, the dynamics we are

interested in should occur far from the boundary of the grid and we seek

boundary conditions such that the dynamics far from the edge of the grid

are not significantly affected. To achieve this we adopt the non-reflecting

boundary condition from Cerjan et al. [1985], outlined below.

Suppose we simulate on a 2D domain Ω = [0, P ]× [0, Q], where we discre-

tise Ω in space to form a grid of (p+ 1)× (q + 1) equally spaced points, i.e.

the grid

Ωg := {(w1,i, w2,j) : w1,i = i∆p, w2,j = j∆q, 0 6 i 6 p, 0 6 j 6 q} , (5.2)
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where ∆p = P/p,∆q = Q/q.

The boundary conditions are then applied via the matrix, B, where for a

point (w1,i, w2,j) in Ωg the corresponding matrix entry is defined as:

B(i, j) = exp
[
−(λmax {0, ds − de(i, j)})2

]
(5.3)

where

1. λ is a damping factor, decided by the user.

2. ds is the size of the boundary, i.e. the number of points from the edge

of the grid that boundary damping will begin.

3. de(i, j) is the number of points to the closest edge of the grid (verti-

cally or horizontally), i.e.

de(i, j) = min(i, p− i, j, q − j).

Essentially the wave begins to be damped as it gets within a specified dis-

tance of the edge of the grid and this damping gets exponentially stronger

as you approach the edge of the grid.

5.1.2 Simulation

We simulate the system of equations 5.1 via a simple finite difference scheme,

outlined below.

Suppose that we are working on a grid Ωg as defined above (5.2), and

suppose that we know the height and velocity fields, η,M,N at time t. We
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evolve the system to time t+ 1 as follows:

Define

∆xηt(w1,i, w2,j) :=
ηt(w1,i, w2,j)− ηt(w1,i−1, w2,j)

∆p

and similarly

∆yηt(w1,i, w2,j) :=
ηt(w1,i, w2,j)− ηt(w1,i, w2,j−1)

∆q

.

Update velocities:

Mt+1(w1,i, w2,j) = B(i, j)
[
Mt(w1,i, w2,j)− gD(w1,i, w2,j)∆xηt(w1,i, w2,j)∆t

]
Nt+1(w1,i, w2,j) = B(i, j)

[
Nt(w1,i, w2,j)− gD(w1,i, w2,j)∆yηt(w1,i, w2,j)∆t

]
.

Then define

∆Mt+1(w1,i, w2,j) =
Mt+1(w1,i+1, w2,j)−Mt+1(w1,i, w2,j)

∆p

∆Nt+1(w1,i, w2,j) =
Nt+1(w1,i, w2,j+1)−Nt+1(w1,i, w2,j)

∆q

.

Finally we can update the height as:

ηt+1(w1,i, w2,j) = B(i, j)
[
ηt(w1,i, w2,j)−∆t

(
Mt+1(w1,i, w2,j) +Nt+1(w1,i, w2,j)

)]
.

5.1.3 Initialisation of tsunami

To simulate a tsunami we require initial conditions that artificially simulate

the kind of event that would usually cause a tsunami. Following Maeda

et al. [2015], we achieve this by starting with our initial sea height ex-
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tremely high in one area of our domain. The water in this area then falls

into the sea, creating a wave that propagates across our domain.

More precisely, if we want to initiate a wave centred at a point (xc, yc), 0 ≤

xc ≤ P, 0 ≤ yc ≤ Q, with initial spread s and initial maximum height hmax

then the initial height field can be calculated as

η0(x, y) =


hmaxhxc,s(x)hyc,s(y) if |x− xc| ≤ s and |y − yc| ≤ s

0 otherwise
, (5.4)

where

ha,s(z) :=
1 + cos(π z−a

s
)

2
. (5.5)

Initial values for velocities in both the x and y directions are set to 0.

5.2 Discrete time model noise

5.2.1 Model dynamics

We first consider the case of adding model noise to the system (5.1) via the

addition of noise at discrete time steps. Between these time steps we solve

the system deterministically. This gives us the dynamics:

x0 ∼ p(dx0)

xt = F (xt−1) + ξt

yt = Axt + ζt,

(5.6)
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(a) t = 25s (b) t = 50s (c) t = 75s

(d) t = 100s (e) t = 125s (f) t = 150s

(g) t = 175s (h) t = 200s (i) t = 225

Figure 5.1: Example of a deterministic tsunami simulation driven by the 2-D linear
long wave equation(5.1) . Simulated on a regular 100 × 100 grid and with a time
step of 0.1 seconds.
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for a mapping F : Rdx → Rdx, linear operator A ∈ Rdy×dx and iid sequences

of noise

ξt ∼ N(0,Σ)

ζt ∼ N(0, S)

for covariance matrices Σ ∈ Rdx×dx , S ∈ Rdy×dy .

In this particular context of data assimilation for a tsunami wavefield, the

mapping F corresponds to moving the system forward via the dynamics

in (5.1), the linear operator A selects the locations at which we have ob-

servation stations and the model noise ξ is sampled from some stationary

Gaussian field with covariance function r(x, y). We aim to construct a par-

ticle filter for online estimation of the filtering distribution, p(dxt|y1:t).

Although we could apply the bootstrap filter to estimate the filtering distri-

bution, we anticipate poor performance due to the high dimensionality of

the tsunami wavefield.

5.2.2 Optimal filter

The particular structure of the dynamics (5.6) allows us to use what is

known in the literature as the optimal filter [Doucet et al., 2000], specifi-

cally a particle filter with proposal distribution

q(xt|xt−1, yt) := p(xt|xt−1, yt) (5.7)
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and corresponding weight update

wt = wt−1
p(xt|xt−1)p(yt|xt)
p(xt|xt−1, yt)

= wt−1p(yt|xt−1).

(5.8)

Since the observation operator A is linear and both noise terms are addi-

tive Gaussian, the distributions p(xt|xt−1, yt) and p(yt|xt−1) are analytically

tractable. Direct calculation gives

p(dyt|xt−1) = N
(
AF (xt−1), AΣAT + S

)
(5.9)

and

p(dxt|xt−1, yt) = N
(
V (Σ−1F (xt−1) + ATS−1yt), V

)
, (5.10)

where V := (Σ−1 + ATS−1A)−1.

5.2.3 Computational setup

As before, we assume we are considering the dynamics on a 2D-domain,

Ω = [0, P ] × [0, Q] and that the domain is discretised to form a grid Ωg, as

in 5.2, of size ng = (p+ 1)× (q + 1).

The state of the system at time t is represented by a vector xt ∈ R3ng ,

where we have mapped the three-dimensional field on Ωg representing

wave height, horizontal velocity and vertical velocity to a single vector of

length 3ng. The first ng entries correspond to the wave heights, the sec-

ond ng entries correspond to the horizontal velocity and the final ng entries

correspond to the vertical velocity.
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With the above correspondence, we consider the mapping F : R3ng → R3ng

(in our case this is solving equations 5.1 forward in time) via its effect on

the three fields. That is, we rewrite F as

F (xt) =


F1(xt)

F2(xt)

F3(xt)

 . (5.11)

We assume our dy observation stations are located at fixed points located on

the grid Ωg, producing a vector, yt ∈ Rdy , of height observations. The linear

operator A selects these points from our grid. As we have no observations

of velocity, A can be represented by a dy × 3ng matrix of the form

A =

[
A1 0dy×ng 0dy×ng ,

]
(5.12)

where A1 is a dy × ng matrix with zeros everywhere, except for a single

entry of 1 on each row, each corresponding to the position of an observation

station.

We assume the observation errors are independent across stations and that

each follows a Gaussian distribution with mean 0 and variance c2, so we

can write the covariance matrix, S, as S = c2Idy . We also assume that the

model noise is independent across the three height and velocity fields, and
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we can write the covariance matrix as

Σ =


Σ1 0ng×ng 0ng×ng

0ng×ng Σ2 0ng×ng

0ng×ng 0ng×ng Σ3,

 (5.13)

where Σ1,Σ2,Σ3 ∈ Rng×ng are the covariance matrices of the model noise in

the wave height, horizontal velocity and vertical velocity fields respectively.

Given the above computational setup, if we want to apply the optimal

filter it remains to find efficient methods to calculate the weight update,

p(yt|xt−1), and sample from the optimal proposal, p(dxt|xt−1, yt).

5.2.4 Weight calculation

From (5.9), we immediately have that

log p(yt|xt−1) ∝
(
yt − A1F1(xt−1)

)T (
A1Σ1A

T
1 + c2Idy

)−1 (
yt − A1F1(xt−1)

)
.

(5.14)

A1F1(xt−1) is the expected observation at each station given the state of the

system at the previous time step and A1Σ1A
T
1 is the covariance matrix of

the model noise at the observation locations.

We need to calculate (5.14) for each particle in our filter, with xt−1 vary-

ing over the particles. Given that we need only perform a single, offline

calculation of
(
A1Σ1A

T
1 + c2Idy

)−1, the cost of computing (5.14) for each

particle and time step is O(d3
y). As we expect dy � ng, these costs should

not become prohibitive.
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5.2.5 Sampling from the optimal proposal

We aim to sample from the optimal proposal (5.10). This is a Gaussian

distribution with variance that can be written as

V = (Σ−1 + ATS−1A)−1

=


(Σ−1

1 + AT1 S
−1A1)−1 0ng×ng 0ng×ng

0ng×ng Σ2 0ng×ng

0ng×ng 0ng×ng Σ3

 .
(5.15)

Using (5.15) and recalling the structure of F (5.11), A (5.12) and the fact

that we have S = c2Idy , we can rewrite the mean of the optimal proposal

as

µ = V (Σ−1F (xt−1) + ATS−1yt)

=


(Σ−1

1 + AT1 S
−1A1)−1(Σ−1F (xt−1) + AT1 S

−1yt)

(Σ−1
2 + 0ng×dyS

−10dy×ng)−1(Σ−1
2 F2(xt−1) + 0ng×dyS

−1yt)

(Σ−1
3 + 0ng×dyS

−10dy×ng)−1(Σ−1
3 F3(xt−1) + 0ng×dyS

−1yt)



=


(Σ−1

1 + c−2AT1A1)−1(Σ−1F (xt−1) + c−2AT1 yt)

F2(xt−1)

F3(xt−1).



(5.16)

We can see from (5.15) and (5.16) that for the horizontal and vertical

velocity fields we simply sample from the prior dynamics. We can therefore

purely concern ourselves with sampling from the optimal distribution for
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the height field, N(µ1, V1), where

µ1 := (Σ−1
1 + c−2AT1A1)−1(Σ−1F (xt−1) + c−2AT1 yt)

V1 := (Σ−1
1 + c−2AT1A1)−1.

(5.17)

We split the sampling from this distribution into two parts, first generating

unconditional samples from the Gaussian N(0, V1); following the approach

of Dietrich and Newsam [1993] and Dietrich and Newsam [1996] we can

generate these samples with O(ng log ng) cost.

Secondly, we calculate the conditional mean, µ1, and condition our un-

conditional sample from the above on our observation, yt, via the method

outlined in Dietrich and Newsam [1996].

See section 5.3.2 for an outline of the approach taken in Dietrich and

Newsam [1993] and Dietrich and Newsam [1996]. The focus of the pa-

pers was the simulation of conditional Gaussian random fields, we apply

the methods in a particle filtering setting.

We still need to ensure we have an efficient method of calculating µ1. We

can split µ1 into a sum using the Woodbury Matrix Identity [Higham, 2002],

which states that, for appropriately sized matrices B,U,C,W , the following

identity holds:

(B + UCW )−1 = B−1 −B−1U(C−1 +WB−1U)−1WB−1 (5.18)
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Subbing B = Σ−1
1 , U = AT1 ,W = c−2A1, c = Idy into (5.18) gives

(Σ−1
1 + c−2AT1A1)−1 = Σ1 − Σ1A

T
1 (Idy + c−2A1Σ1A

T
1 )−1c−2A1Σ1

= Σ1 − Σ1A
T
1 (A1Σ1A

T
1 + c2Idy)−1A1Σ1.

(5.19)

Therefore, we can write

µ1 = µ1,1 + µ1,2,

µ1,1 := F1(xt−1)− Σ1A
T
1 (A1Σ1A

T
1 + c2Idy)−1A1F1(xt−1),

µ1,2 :=
(

Σ1 − Σ1A
T
1 (A1Σ1A

T
1 + c2Idy)−1A1Σ1

)
(c−2AT1 yt).

(5.20)

As mentioned in section 5.2.4, the matrix (A1Σ1A
T
1 + c2Idy)−1 need only be

calculated a single time, offline. Note also that we only need to compute

µ1,2 once per time step, as this will not vary across particles.

This leaves only the computation of µ1,1 for each particle at each time step.

Specifically we require an efficient way to calculate the matrix multipli-

cation Σ1v for the ng × ng covariance matrix Σ1 and arbitrary v ∈ Rng .

Thankfully, we can exploit the Block Toeplitz with Toeplitz Blocks nature

of Σ1 to perform the calculation with O(ng log ng) cost, via the Fast Fourier

Transform. For more details see section 5.3.1.
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5.3 Efficient computations for the optimal filter

5.3.1 Efficient matrix multiplication via Fast Fourier Trans-

form

The one-dimensional discrete Fourier transform (DFT) of a complex-valued

vector, (vn)N−1
n=0 , is defined as

v̂k =
N−1∑
n=0

vne
−2πink/N , k = 0, 1, . . . , N − 1. (5.21)

Similarly, the inverse discrete Fourier transform (IDFT) is defined as

vk =
1

N

N−1∑
n=0

v̂ne
2πink/N , k = 0, 1, . . . , N − 1. (5.22)

Let ω = e−2πi/N be the primitive N -th root of unity, then define the DFT

matrix as

FN :=



1 1 · · · 1

1 ω1 · · · ωN−1

1 ω2 · · · ω2(N−1)

...
...

...

1 ωN−1 · · · ω(N−1)(N−1)


, (5.23)

the one-dimensional DFT can then be expressed as v̂ = FNv. The IDFT

corresponds to the inverse of the DFT matrix and is given by

F−1
N =

1

N
F ∗N , (5.24)
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where F ∗N is the conjugate transpose of FN .

Computing the DFT (or IDFT) of a vector via standard matrix multiplication

would come at a cost of O(N2). The fast Fourier transform (FFT) [Cooley

and Tukey, 1965] is an efficient algorithm for the computation of the DFT

(or IDFT) that reduces this cost to O(N logN) [Van Loan, 1992]. Using the

FFT we can carry out matrix-vector multiplication at this reduced cost, for

some specific classes of matrices.

An N ×N matrix is known as circulant if all its columns contain the same

elements and each column is a downwards cyclic shift of the column to its

left, i.e. a matrix of the form

C =



c0 cN−1 cN−2 · · · c1

c1 c0 cN−1 · · · c2

c2 c1 c0 · · · c3

...
...

...
...

cN−1 cN−2 cN−3 · · · c0


. (5.25)

So a circulant matrix, C, can be completely specified by its first column

c := (c0, c1, . . . , cN−1)T .

An important property of circulant matrices is that they can be diagonalised

by the DFT matrix (see e.g. Gray [2006]):

C = F−1
N DFN , (5.26)

where D is a diagonal matrix containing the eigenvalues of C. Moreover,
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these eigenvalues can be calculated by applying the DFT matrix to the first

column of C, i.e.

D = diag(FNc). (5.27)

Combining (5.26) and (5.27) we can use to DFT to carry out matrix-vector

multiplication for a circulant matrix. Let v be an arbitrary N-dimensional

vector, then we have

Cv = F−1
N DFNv

= F−1
N (FNc ◦ FNv),

(5.28)

where ◦ denotes element-wise multiplication. So the matrix-vector multi-

plication, Cv, can be calculated via the DFT and IDFT - each of which can

be computed efficiently using the FFT.

Circulant matrices are a special case of a broader class of matrices known

as Toeplitz matrices. An N × N matrix, T , is called Toeplitz if it has the

form

T =



t0 t−1 t−2 · · · t−(N−1)

t1 t0 t−1 · · · t−(N−2)

t2 t1 t0 · · · t−(N−3)

...
...

...
...

tN−1 tN−2 tN−3 · · · t0


(5.29)

that is, the values along each diagonal are constant. A Toeplitz matrix is

completely specified by its first row and column.

An N×N Toeplitz matrix can be embedded into a 2N×2N circulant matrix
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with first column (t0, . . . , tN−1, 0, t−(N−1), . . . , t−1), giving the matrix

TC =



t0 t−1 t−2 · · · t−(N−1) 0 tN−1 tN−2 · · · t1

t1 t0 t−1 · · · t−(N−2) t−(N−1) 0 tN−1 · · · t2

t2 t1 t0 · · · t−(N−3) t−(N−2) t−(N−1) 0 · · · t3
...

...
...

...
...

...
...

...

tN−1 tN−2 tN−3 · · · t0 t−1 t−2 t−3 · · · 0

0 tN−1 tN−2 · · · t1 t0 t−1 t−2 · · · t−(N−1)

t−(N−1) 0 tN−1 · · · t2 t1 t0 t−1 · · · t−(N−2)

t−(N−2) t−(N−1) 0 · · · t3 t2 t1 t0 · · · t−(N−3)

...
...

...
...

...
...

...
...

t−1 t−2 t−3 · · · 0 tN−1 tN−2 tN−3 · · · t0



.

(5.30)

If we now let v′ be a 2N -dimensional vector made by padding N zeros to

an arbitrary N -dimensional vector, v, we can compute the matrix-vector

multiplication TCv
′ efficiently via the FFT, as described above. The first N

elements of TCv′ will then be equal to Tv, so we can carry out matrix-vector

multiplication with a Toeplitz matrix at a cost of O(N logN).

Above we have shown how the 1-d DFT (and hence the FFT) can be used

to efficiently carry out matrix-vector multiplication for some special classes

of matrices. We go on to show how the FFT can be used to carry out the

sme operation for two more classes of matrices but we must first introduce

to two-dimensional DFT.

The two-dimensional DFT of a complex-valued N×M matrix, A, is defined
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as

Âjk =
N−1∑
n=0

M−1∑
m=0

e−2πinj/Ne−2πimk/MAnm, 0 ≤ j ≤ N − 1, 0 ≤ k ≤M − 1.

(5.31)

With the corresponding IDFT defined as

Ajk =
1

MN

N−1∑
n=0

M−1∑
m=0

e2πinj/Ne2πimk/M Ânm, 0 ≤ j ≤ N−1, 0 ≤ k ≤M−1.

(5.32)

In matrix form, the 2-d DFT can be written as Â = FNAFM , where FN

and FM are defined as in 5.23. Similarly, the matrix form of the 2-d IDFT

is given by A = F−1
N ÂF−1

M . These can both be computed at a cost of

O(MN logMN) via the FFT, applying the FFT first to the columns of A

and then applying the FFT to each row of the resulting matrix.

For any N ×M matrix A = (aij) and an arbitrary matrix B, the Kronecker

product is defined as

A⊗B =



a11B a12B · · · a1MB

a21B a22B · · · a2MB

...
...

...

aN1B aN2B · · · aNMB


. (5.33)

We also define an operator that stacks the columns of a N × M matrix

vertically and returns a single column of length MN .

vec(A) = (a11, . . . , aN1, a12, . . . , aN2, . . . , a1M , . . . , aNM)T . (5.34)
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The 2d-DFT can then be expressed as

vec(Â) = (FM ⊗ FN)vec(A), (5.35)

and similarly the 2d-IDFT can be written

vec(A) = (FM ⊗ FN)−1vec(Â). (5.36)

An MN × MN matrix is known as block circulant with circulant blocks

(BCCB) if it has the following form:

C =



C0 CN−1 CN−2 · · · C1

C1 C0 CN−1 · · · C2

C2 C1 C0 · · · C3

...
...

...
...

CN−1 CN−2 CN−3 · · · C0


, (5.37)

where each Cj is an M ×M circulant matrix. A BCCB matrix is fully spec-

ified by its first column c = (c0, . . . , cN−1)T , where cj is the first column of

matrix Cj. All columns contain the same elements and each column is a

downward cyclic shift of M places of the column to it’s left.

Analogous to a circulant matrix and 1d-DFT, a BCCB matrix can be diago-

nalised by the 2d-DFT (see e.g. Davis [2013]). Specifically, we have

C = (FN ⊗ FM)−1D(FN ⊗ FM), (5.38)
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where D = diag((FN ⊗ FM)c). Similarly to (5.28) the multiplication of an

MN ×MN BCCB matrix with an arbitrary MN -dimensional vector v can

be computed via the 2d-DFT

Cv = (FN ⊗ FM)−1D(FN ⊗ FM)v

= (FN ⊗ FM)−1((FN ⊗ FM)c ◦ (FN ⊗ FM)v).

(5.39)

The above involves two computations of the 2d-DFT and a single com-

putation of the 2d-IDFT, allowing the matrix-vector multiplication to be

calculated at a cost of O(MN logMN) via the FFT.

An MN × MN matrix is known as block Toeplitz with Toeplitz blocks

(BTTB) if it has the form

T =



T0 T−1 T−2 · · · T−(N−1)

T1 T0 T−1 · · · T−(N−2)

T2 T1 T0 · · · T−(N−3)

...
...

...
...

TN−1 TN−2 TN−3 · · · T0


, (5.40)

the values along each block diagonal are constant and each Tj is an M ×M

Toeplitz matrix.

We wish to efficiently compute the matrix-vector multiplication Tv, for an

arbitrary vector v of length MN . We know that we can do this for a BCCB

matrix, so similar to the case of a Toeplitz matrix, we want to embed our

BTTB matrix inside a BCCB matrix.
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Each Toeplitz block can be embedded inside a 2M × 2M circulant block as

in (5.30), which gives a block Toeplitz matrix with circulant blocks. The

resulting matrix can then be embedded inside a 4MN×4MN BCCB matrix

in an almost identical way to (5.30), with the circulant blocks taking the

place of single elements in the matrix. Denote this BCCB matrix by TBC .

Now consider the vector v to be made up of N smaller vectors of length M .

Extend v by first appending M zeros to each of the smaller vectors and then

appending an additional N zero vectors of length 2M to the larger vector.

So for a vector v = (v0 v1 · · · vN)T where each vj is a vector of length

M , the corresponding extended vector is

v′ = (v0 0M v1 0M · · · vN 0M 02NM)T , (5.41)

where 0M denotes a vector of zeros of length M . The BCCB matrix vector

multiplication TBCv′ can now be computed efficiently via FFT as described

in (5.39). The result Tv can now be obtained from the resulting vector by

taking the first M elements of the first N sub-vectors of length M of the

resulting vector [Vogel, 2002], i.e. denote TBCv′ = (v̂0, v̂1, . . . , v̂4NM−1)T ,

where each v̂ is a single element. Then we have

Tv = (v̂0, . . . , v̂M−1, v̂2M , . . . , v̂3M−1, · · · , v̂M(2N−2), . . . , v̂M(2N−1)−1). (5.42)

Recall that we want to be able to compute Σ1v efficiently in order to per-

form the calculations in (5.20), where Σ1 is the ng × ng covariance matrix

of a stationary Gaussian random field and v ∈ Rng . Above we have shown
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that if Σ1 is a BTTB matrix then we can exploit its structure to perform the

computation at a cost of O(ng log ng).

It is actually the case that any stationary Gaussian field on a grid of points

that are regularly spaced in the x and y directions has a covariance matrix

with a BTTB structure. Suppose we have a stationary Gaussian field, Z,

on a set of points {s0, s1, . . . , sMN−1} arranged in a regular grid as shown

below:

s0

s1

s2

...
sN−1

sN

sN+1

sN+2

...
s2N−1

s2N

s2N+1

s2N+2

...
s3N−1

. . .

. . .

. . .

. . .

s(M−1)N

s(M−1)N+1

s(M−2)N+2

...
sMN−1

As Z is stationary, E(Z(sj)) is a constant, without loss of generality we may

assume that E(Z(sj)) = 0. Also by stationarity we have that the covariance

between points si and sj depends only on si − sj. So we have

Cov(Z(si), Z(sj)) : = E [(Z(si)− E(Z(sj)) (Z(si)− E (Z(sj))]

= E [Z(si)(Z(sj)]

= r(xi − xj, yi − yj),

(5.43)

where (xi, yi), (xj, yj) are the x and y coordinates of si and sj respectively

and r : R2 → R is a covariance function. LetR be theMN×MN covariance
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matrix for [Z(s1), Z(s2) . . . , Z(sMN−1)] such that

R(i, j) = Cov(Z(si), Z(sj)) = r(xi − xj, yi − yj). (5.44)

This covariance matrix has the form

R =



R00 R01 R02 · · · R0,M−1

R10 R11 R12 · · · R1,M−1

R20 R21 R22 · · · R2,M−1

...
...

...
...

RM−1,0 RM−1,2 RM−1,3 · · · RM−1,M−1


, (5.45)

where each Rmn is an N ×N submatrix that corresponds to the covariance

between points in the mth and nth column of points when the points are

arranged in a regular grid. Let (Rmn)kl denote the (k, l)th element of the

(m,n)th submatrix.

Without loss of generality we can also assume that adjacent points in the

grid are separated by unit distance in both the x and y directions. Consider

an element (Rmn)kl and an integer a such that (Rmn)k+a,l+a is an element
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of the submatrix Rmn, then we have

(Rmn)k+a,l+a = Cov(sMm+k+a, sMn+l+a)

= r(xMm+k+a − xMn+l+a, yMm+k+a − yMn+l+a)

= r(xMm+k − xMn+l, yMm+k+a − yMn+l+a)

= r(xMm+k − xMn+l, yMm+k + a− (yMn+l + a))

= r(xMm+k − xMn+l, yMm+k − yMn+l)

= (Rmn)kl,

(5.46)

so each N × N submatrix Rmn is Toeplitz. Similarly consider a submatrix

Rmn and an integer b such that Rm+b,n+b is also a submatrix of R, then we

have

(Rm+b,n+b)kl = Cov(sM(m+b)+k, sM(n+b)+l)

= r(xMm+Mb+k − xMn+Mb+l, yMm+Mb+k − yMn+Mb+l)

= r(xMm+Mb+k − xMn+Mb+l, yMm+k − yMn+l)

= r(xMm+k +Mb− (xMn+l +Mb), yMm+k − yMn+l)

= r(xMm+k − xMn+l, yMm+k − yMn+l)

= (Rmn)kl,

(5.47)

implying that R is block Toeplitz and therefore R is also BTTB.

5.3.2 Efficient sampling of Gaussian Random Fields

We consider the problem of generating realisations of a stationary Gaussian

random field on a rectangular grid, conditioned on direct or indirect obser-
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vations. We follow the approach outlined in Dietrich and Newsam [1996],

which extends the methods of Dietrich and Newsam [1993] (for generating

unconditional realisations) to the conditional case.

Specifically, we seek to generate realisations of a stationary Gaussian ran-

dom field, Z(x, y), on a 2D-domain, Ω = [0, P ] × [0, Q], discretised to

form a grid, Ω1 = {(xi, yj) = (iδx, jδy) : 0 6 i 6 p, 0 6 j 6 q}, of size n1 =

(p + 1) × (q + 1), where δx and δy are the distance between nodes of Ω1,

in the x and y directions respectively. These are to be conditioned on n2

measurements of Z on a grid Ω2 = {(xk, yk) : 1 6 k 6 n2}.

As Z is stationary, its mean is constant, without loss of generality we assume

the mean of Z equals zero. Then if z1 and z2 are vectors of samples of Z on

Ω1 and Ω2 respectively, then

z =

z1

z2

 , (5.48)

has zero mean and covariance matrix

R =

R11 R12

R21 R22

 , (5.49)

where Rij is the covariance matrix of Z between points in Ωi and Ωj.

It can be shown (see e.g. Eaton [1983]) that the distribution of z1 condi-
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tioned on a direct observation z?2 of z2 is Gaussian with mean

µz1|z?2 = R12R
−1
22 z

?
2 , (5.50)

and covariance matrix

Rz1|z?2 = R11 −R12R
−1
22 R21. (5.51)

If the random variable, z, is distributed N(0, R) (as in (5.48)), on Ω1 ∪ Ω2,

then

z1|z∗2 = µz1|z?2 + z1 −R12R
−1
22 z2 (5.52)

is distributed according to N(µz1|z?2 , Rz1|z?2 ), the desired distribution for a

simulation of the Gaussian field Z on Ω1, conditioned on direct measure-

ments of Z on Ω2.

Often in practice the observations, z?2 , are observed with some observation

error. Assuming this observations error is Gaussian with correlation matrix

Σ, as in (5.6), this can be accounted for by replacing R22 in the above with

the matrix R22 + Σ.

Many methods that compute conditional simulations via the above require

the observation grid, Ω2, to be a subset of Ω1 and so the points in Ω2 are

perturbed to coincide with points in Ω1. Though this should only result in

a small change in R12 and R22, we can see from equation (5.52) that the

conditional realisations depend on R−1
22 , which may be sensitive to small

perturbations of Ω2. This limitation was the motivation behind Dietrich and
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Newsam [1996], which extends the results of Dietrich and Newsam [1993]

to allow efficient simulation of Gaussian fields conditioned on some direct

or indirect observations. These methods are outlined below.

We have a covariance function, r, defined on Ω = [0, P ]× [0, Q], extend this

function to a new function, r̄, defined on [0, 2P ] × [0, 2Q], in the following

way:

r̄(x, y) = r(x, y) 0 6 x 6 P, 0 6 y 6 Q

r̄(x, y) = r(2P − x, y) P 6 x 6 2P, 0 6 y 6 Q

r̄(x, y) = r(x, 2Q− y) 0 6 x 6 P, Q 6 y 6 2Q

r̄(x, y) = r(2P − x, 2Q− y) P 6 x 6 2P, Q 6 y 6 2Q

(5.53)

We then extend r̄ to the entire plane and assume that it is a covariance

function for a zero-mean, stationary, periodic random field, which contains

a single period in [0, 2P ]× [0, 2Q], denoted by Z̄(x, y). Also extend Ω1, the

discretisation of Ω, to cover [0, 2P ]× [0, 2Q] in the natural way, denote this

extension by Ω̄1. Also denote

z̄ =

z̄1

z2

 (5.54)

to be a vector of samples of Z̄(x, y) on Ω̄1 ∪ Ω2. Let R̄ be the covariance
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matrix of Z̄, it can be partitioned as

R̄ =

R̄11 R̄12

R̄21 R22

 , (5.55)

where R̄11 is the covariance matrix between pairs of points in Ω̄1, R̄12 is the

covariance matrix between points in Ω̄1 and Ω2 and R̄21 = R̄T
12. Restricting

r̄ to [0, P ] × [0, Q] is exactly R, so the restriction of a sample z̄ to Ω1 ∪ Ω2

has R as it’s covariance matrix. Therefore, once a sample, z̄, is computed

over the extended grid Ω̄1 ∪ Ω2 we can restrict this to Ω1 ∪ Ω2 to yield a

realisation of a sample z, as desired.

To compute a realisation of z̄ we construct a square root,R̄1/2 of R̄ with the

property R̄1/2(R̄1/2)∗ = R̄ such that a matrix-product R̄1/2ε can be computed

efficiently for any complex-valued vector ε. If ε ∼ N(0, I), then a realisation

z̄ = R̄1/2ε will have R as it’s covariance matrix and be drawn from the

desired distribution.

Thanks to the stationarity of Z̄(x, y), the periodicity of r̄ and the fact that

the points in Ω̄1 are equispaced in the x and y directions, the matrix R̄11 is

circulant. Therefore, R̄11 is uniquely determined by its first column vector

ρ̄ and can be decomposed as

R̄11 = WΛW ∗, (5.56)

where W is the normalised DFT matrix and Λ is a diagonal matrix with

entries (4pq)1/2Wρ̄.
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It is then easy to check that

R̄1/2 =

WΛ1/2 0

K L

 , (5.57)

where K = R̄21WΛ−1/2 and L is a matrix such that LLT = R̄21R̄
−1
11 R̄12 (e.g.

as a result of a Cholesky decomposition), is a square root of R̄.

Given R̄1/2 and ε ∼ N(0, I) a complex normal random variable, then the

real and imaginary parts of R̄1/2ε are two independent realisations of z̄ and

restricting these to Ω1 ∪ Ω2 gives two independent realisations of z.

Rewriting z̄ = R̄1/2ε gives

z̄ =

z̄1

z2

 =

WΛ1/2 0

K L


ε1
ε2

 . (5.58)

For a grid of size n̄1 = 4pq and n2 observations the setup computational

costs of the above are as follows.

• Λ can be computed at a cost of O(n̄1 log n̄1) via FFT.

• The computation of K∗ = Λ−1/2W ∗R̄12 is dominated by computing

the inverse FFT of each column of R̄12 at a cost of O(n̄1n2 log(n̄1)).

• To compute L, KK∗ is computed at a cost of O(n̄1n
2
2) followed by

computing R22 − KK∗ and its Cholesky decomposition at a cost of

O(n3
2).

We have n̄1 ≈ 4n1, assuming n2 � n1 the total setup cost isO(n1n2 max(log n1, n2)).
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Once the setup is complete each realisation involves calculating z̄1 = WΛε1

via FFT at a cost of O(n1 log n1) and z2 = Kε1 +Lε2 at a cost of O(n1n2). So

the total computational cost is a setup cost of O(n1n2 max(log n1, n2)) and

a cost of O(n1 max(log n1, n2)) for computing each realisation.

It is important to note that the above method is only valid if R̄ is a positive

definite matrix, without this condition it is not possible to find a square root

of R̄ such that R̄1/2(R̄1/2)∗ = R̄.

To ensure R̄ is positive definite we need to find conditions such that the

periodic extension, r̄, of a positive definite covariance function r, is also

positive definite. For details on conditions required for this see Dietrich

and Newsam [1996].

5.4 Discrete-time model noise experiments

We conduct numerical experiments to demonstrate the performance of the

optimal filter compared to the bootstrap algorithm. The following parame-

ters were selected to create a challenging but computationally feasible test

scenario that exhibits the key features of tsunami wave propagation:

• 2D-domain Ω = [0, P ] × [0, Q] with P = Q = 40000, discretised as in

5.2, with p = q = 100. This 40km × 40km domain with 400m resolu-

tion provides sufficient space for wave propagation while maintaining

computational tractability.

• Constant sea depth of D(x, y) = 1500m, representing a simplified

deep-ocean environment.

118



• Boundary damping factor λ = 0.015, with a boundary size of 15 grid

points, chosen to minimise boundary reflections without have a sig-

nificant impact on the dynamics of the propagating wave.

• Independent observation noise across stations, distributed N(0, c2),

with c = 0.01m. This noise level was chosen to be small enough to

allow accurate tracking while large enough to present a meaningful

filtering challenge.

• Model noise independent across height and horizontal and vertical

velocity fields, with covariance matrices Σ1,Σ2,Σ3 respectively. These

covariance matrices correspond to the covariance function

r(x, y) = σ2 exp

(
−

√(
x2 + y2

l2

))
. (5.59)

where we set the correlation length l = 3km for all three fields, se-

lected to represent spatial correlations on the scale of tsunami wave-

lengths. We use σ = 0.1m for the covariance of the height field Σ1

and σ = 1m for the covariance of the velocity fields, Σ2,Σ3.

• Initialise the wave at the point (10000, 10000), with an initial spread

s = 3000m and initial max height, hmax = 3m, creating a moderately

sized test wave.

• For both the bootstrap and optimal filters we use 100 particles, a

number chosen to demonstrate filter behaviour while keeping com-

putational costs reasonable for multiple experimental runs. Resam-

pling is activated when the ESS drops below 50, following common
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practice in the particle filtering literature.

• Simulation run for 240 seconds, with observations every second from

70 seconds onwards, allowing the wave to develop before data assim-

ilation begins.

We then run experiments with four different sets of observation station

locations:

• A square of 36 stations, centred in the middle of our grid, with side

lengths of approximately 16km. Results for this experiment can be

seen in figure 5.2.

• A set of stations randomly placed with the restrictions that they may

not be placed in the square of side length 16km with its lower left

corner at the origin, and may not be placed with either the x or y

coordinate greater than 32km. Results for this experiment can be

seen in figure 5.3.

• Three sets of 10 stations equally spaced across radii 20km, 28km and

36km from the origin. Results for this experiment can be seen in

figure 5.4.

• Three sets of 10 stations equally spaced across radii 20km, 22km and

24km from the origin. Results for this experiment can be seen in

figure 5.5.

Figures 5.2, 5.3, 5.4 and 5.5 show comparisons of the actual wave height

to the wave height estimated via the posterior mean of the optimal filter

and bootstrap filter, for different arrangements of station locations. Also
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shown is the effective sample size of the optimal filter over time.

In each case the optimal filter produces a more accurate representation of

the wave height than the bootstrap filter, as we would expect. Though

the performance of the optimal filter seems to be highly dependent on the

location of the observation stations. Compare the regular grid arrangement

of figure 5.2 and the random arrangement of figure 5.3, it’s clear that the

more spatially coherent information provided by the regular grid allows

the filter to more accurately reconstruct the wavefield than the randomly

positioned stations. Comparing the concentric ring placements of figure 5.4

and figure 5.5 shows that the spacing of the stations is also an important

factor in determining how well the optimal filter can reconstruct the wave.

A potential use of experiments like these is in potentially aiding the future

placement of sensors for detecting future tsunamis, and while a full study

is beyond the scope of this thesis, these early results suggest that strategic

regular placement would be a good starting point.

In all cases the effective sample size of the optimal filter does not collapse,

indicating some stability in the particle weights and avoiding frequent re-

sampling. This should ensure that particle diversity remains high through-

out. This is in contrast to the bootstrap filter where at almost all time steps

the particle weight collapses down to a single particle and resampling is

triggered.

We again see that the placement of the observation stations affects the per-

formance of the optimal filter. The random placement in figure 5.3 provides

less spatially coherent information than the regular grid in figure 5.2, re-
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sulting in the propagated state of the being likely to differ greatly from the

observations. This discrepancy leads to a higher variance in the importance

weights, this causes the ESS to collapse more frequently, triggering the re-

sampling step. This comparison demonstrates the link between the quality

of the observation network and the computational stability of the optimal

filter

Figures 5.6 (along with plots in Appendix B) provides a more granular

analysis of the optimal filter’s performance, they show the estimated prob-

ability density functions of the wave height at all observation stations at

different time points in the case where stations are on a square grid in the

centre of the domain. The actual and observed height are also shown. A

successful filter should produce a posterior density that is centred near the

observation but is broad enough to assign high probability to the true state.

As can be seen across the subplots, the optimal filter consistently achieves

this. The true height (black line) regularly falls within the high-probability

region of the estimated density, demonstrating that the filter is correctly

balancing the information from the noisy data with the uncertainty from

the model to produce a reliable posterior distribution.
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(a) t = 140s, true signal (b) t = 140s, optimal filter (c) t = 140s, bootstrap

(d) t = 170s, true signal (e) t = 170s, optimal filter (f) t = 170s, bootstrap

(g) t = 200s, true signal (h) t = 200s, optimal filter (i) t = 200s, bootstrap

(j) t = 230s, true signal (k) t = 230s, optimal filter (l) t = 230s, bootstrap

(m) Optimal filter effective sample size

Figure 5.2: Estimates of wave height via posterior mean of bootstrap and optimal
filters compared with the actual wave heights. Stations are placed in a regular grid
at the centre of the domain.
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(a) t = 140s, true signal (b) t = 140s, optimal filter (c) t = 140s, bootstrap

(d) t = 170s, true signal (e) t = 170s, optimal filter (f) t = 170s, bootstrap

(g) t = 200s, true signal (h) t = 200s, optimal filter (i) t = 200s, bootstrap

(j) t = 230s, true signal (k) t = 230s, optimal filter (l) t = 230s, bootstrap

(m) Optimal filter effective sample size

Figure 5.3: Estimates of wave height via posterior mean of bootstrap and optimal
filters compared with the actual wave heights. Stations are placed randomly in a
subset of the domain.
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(a) t = 140s, true signal (b) t = 140s, optimal filter (c) t = 140s, bootstrap

(d) t = 170s, true signal (e) t = 170s, optimal filter (f) t = 170s, bootstrap

(g) t = 200s, true signal (h) t = 200s, optimal filter (i) t = 200s, bootstrap

(j) t = 230s, true signal (k) t = 230s, optimal filter (l) t = 230s, bootstrap

(m) Optimal filter effective sample size

Figure 5.4: Estimates of wave height via posterior mean of bootstrap and optimal
filters compared with the actual wave heights. There are three sets of 10 stations
equally spaced across radii 20km, 28km and 36km from the origin.
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(a) t = 140s, true signal (b) t = 140s, optimal filter (c) t = 140s, bootstrap

(d) t = 170s, true signal (e) t = 170s, optimal filter (f) t = 170s, bootstrap

(g) t = 200s, true signal (h) t = 200s, optimal filter (i) t = 200s, bootstrap

(j) t = 230s, true signal (k) t = 230s, optimal filter (l) t = 230s, bootstrap

(m) Optimal filter effective sample size

Figure 5.5: Estimates of wave height via posterior mean of bootstrap and optimal
filters compared with the actual wave heights. There are three sets of 10 stations
equally spaced across radii 20km, 22km and 24km from the origin.
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Figure 5.6: Estimated probability density functions of wave height via the optimal
filter at all station locations at 140 seconds. The black dashed line shows the actual
wave height at the stations and the dashed red line shows the observed wave height.
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Chapter 6

A particle filter for a Tsunami SPDE

model

In this section we consider the filtering problem for a tsunami system, mod-

elled as a stochastic partial differential equation (SPDE) with noisy obser-

vations of the wave height at discrete time steps. Specifically, we model the

wave on a two-dimensional domain as

∂η(x, y, t)

∂t
= −∂M(x, y, t)

∂x
− ∂N(x, y, t)

∂y
+ Σ

1
2
1W (x, y, t)

∂M(x, y, t)

∂x
= −gD(x, y)

∂η(x, y, t)

∂x
+ Σ

1
2
2W (x, y, t)

∂N(x, y, t)

∂y
= −gD(x, y)

∂η(x, y, t)

∂y
+ Σ

1
2
3W (x, y, t),

(6.1)

where η(x, y, t) is the wave height, M(x, y, t) and N(x, y, t) are the horizon-

tal and vertical velocities respectively, D(x, y) is the depth of the sea at the

point (x, y), g is the acceleration due to gravity, W (x, y, t) is a space-time

white noise process and Σ1,Σ2,Σ3 are operators corresponding to some

covariance functions.

The dynamics described by the SPDE (6.1) present a more complex filtering

problem compared to the SDEs discussed in earlier sections. Unlike the SDE

128



case, where the system states are represented as finite-dimensional vectors

in Rd, the states here are functions of both space and time, residing within

an infinite-dimensional Hilbert space. Additionally, while the previous SDE

model featured d independent one-dimensional Brownian motions as the

driving noise, the SPDE model involves space-time white noise, a more

complex, infinite-dimensional process with spatial correlations.

When simulating (5.1), it is necessary to discretise the system in both time

and space, unlike the SDE case where only time discretisation was required.

This added complexity poses a challenge for filtering algorithms because

spatial discretisation can lead to high-dimensional state spaces, potentially

resulting in particle weight degeneracy and poor filtering distribution es-

timates. Therefore, an effective particle filtering algorithm for this setting

must accommodate high-dimensional state spaces, handle complex noise

structures, and be robust to varying levels of time and space discretisation.

This setting also poses significant computational challenges. Solving the

SPDE (6.1) involves applying numerical methods to both solve the PDE

and simulate the space-time white noise process, which becomes increas-

ingly computationally intensive as the spatial and temporal resolution of

the simulation increases. For very fine resolutions, running a particle filter

with a large number of particles may be infeasible due to high costs. Thus,

a trade-off must be found between finer spatial and temporal resolutions,

which reduce discretisation error, and the overall computational cost of the

simulations and particle filtering.

Additionally, calculating the Radon-Nikodym derivative between a proposal
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and target distribution in this context is more computationally demanding

compared to cases with independent Brownian motion noise. This is be-

cause it involves multiplying a vector by the inverse of a large covariance

matrix. For independent Brownian motions, this matrix is diagonal, and

the multiplication scales linearly with the number of dimensions of the

state space. However, with space-time white noise, the covariance matrix

may be dense, causing the multiplication to scale quadratically with the

number of dimensions when performed naively.

Memory usage may also be of concern in this setting. The state space of

the system is represented as a grid of wave heights, horizontal velocities,

and vertical velocities. As the number of grid points increases, the memory

required to store the state space and particle weights grows, potentially

leading to memory limitations for very fine spatial resolutions.

These concerns further motivate the development of a particle filtering al-

gorithm that can effectively handle high-dimensional state spaces, complex

noise structures, and varying levels of spatial and temporal discretisation,

without the need for a prohibitively large number of particles. In the fol-

lowing sections, we propose an algorithm that addresses these challenges

and demonstrate its effectiveness in filtering the tsunami system described

by the SPDE (6.1).

6.1 Model discretisation and setup

From this point, we work with a discretised approximation of the SPDE

(6.1) on a 2D grid of size ng = (p + 1) × (q + 1), where p and q are the
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number of grid points in the x and y directions, respectively. We represent

the state of the system as a vector Xt ∈ R3ng , mapping the wave heights,

horizontal velocities, and vertical velocities to their corresponding entries.

The system dynamics are then given by

dXt = F (Xt)dt+ Σ
1
2dWt, (6.2)

where F is considered as a mapping F : R3ng → R3ng , as in (5.11) and

corresponds to the deterministic dynamics of the shallow water equation as

defined in (5.1), solved via the finite difference scheme described in 5.1.2.

The covariance matrix Σ is block diagonal, with blocks corresponding to the

covariance matrices of the height, horizontal velocity, and vertical velocity

fields, respectively - as in (5.13).

We observe the system at discrete time steps as

Yk = AXtk + ζt, (6.3)

where A is a linear operator and ζt ∼ N(0, S), for some covariance matrix

S.

We again assume we have dy observation stations located at fixed points on

our 2D grid, and that we have only observations of the wave height. The

operator A selects these points from our grid and can be represented by a

dy × 3ng matrix, as in (5.12).

Observational noise is again assumed to be independent across stations and
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each follows a Gaussian distribution with mean 0 and variance c2.

Simulation of the SPDE is done via a discretisation in time, using the Euler-

Maruyama method,

Xt+∆t = Xt + F (Xt)∆t+
√

∆tη (6.4)

where η ∼ N(0,Σ). Theoretically the Brownian increment η corresponds

to a realisation of a Gaussian random field - an element of an infinite-

dimensional Hilbert space. To work with and sample from this distribution,

we must discretise the space using a regular grid, as described in the previ-

ous chapter.

An example simulation of a tsunami system, simulated by the methods

described above can be seen in figure 6.1.

6.2 A particle filter for the tsunami SPDE sys-

tem

We again seek to approximate the filtering distribution, p(Xtk |Y1:k), and

to do this we now adapt the Guided Proposal with Tempering and Muta-

tion Filter (GPTMF) methodology that was introduced in Chapter 3. While

the conceptual framework is the same, its application to the tsunami SPDE

model introduces significant new challenges not present in the SDE case.

The spatial discretisation of the SPDE leads to a very high-dimensional

state space, and the driving noise is now a spatially-correlated, infinite-

dimensional process rather than a vector of independent Brownian mo-
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(a) t = 25s (b) t = 50s (c) t = 75s

(d) t = 100s (e) t = 125s (f) t = 150s

(g) t = 175s (h) t = 200s (i) t = 225

Figure 6.1: Example of a tsunami simulation driven by the SPDE (6.2). Simulated
on a regular 100 × 100 grid and with a time step of 0.1 seconds.
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tions.

6.2.1 Guided Proposals

As before, we seek to generate proposals that take the data into account

and guide particles into regions of higher probability given the observed

data point.

The process (6.2) for t ∈ [tk−1, tk], conditioned on an observation yk at time

tk and observed with Gaussian noise as defined in win (6.3), satisfies

dXt = F (Xt)dt+ Σ∇x log p(yk|Xt)dt+ Σ
1
2dWt, (6.5)

(see e.g. Rogers and Williams [2000]) where p(yk|Xt) denotes the likeli-

hood of the observation at time tk if the process evolved according to the

unconditioned process (6.2) and ∇x denotes the gradient with respect to

the current state of the process.

We cannot simulate directly from (6.5) as the density p(yk|Xt) is not avail-

able analytically. A standard approach (see e.g. Schauer et al. [2017]) is

to replace this likelihood with a tractable likelihood p̃(yk|Xt) that corre-

sponds to the likelihood of the observation given that the underlying pro-

cess evolves according to

dXt = Σ
1
2dWt, (6.6)

i.e. a process that is spatially-correlated Brownian motion with covariance

matrix Σ. It is then clear to see that p̃(yk|Xt) corresponds to the density of

Y = AX+ζ, where ζ ∼ N(0, S) and X ∼ N(Xt,Σ(tk−t)). Standard results

134



on multivariate normal distributions give that such a density is equal to the

one of N
(
AXt, S + (tk − t)AΣAT

)
. Thus, we obtain

log p̃(yk|Xt) = −1
2
(yk−AXt)

T (S+(tk−t)AΣAT )−1(yk−AXt)+const, (6.7)

and therefore

∇x log p̃(yk|Xt) = AT (S + (tk − t)AΣAT )−1(yk − AXt). (6.8)

The above derivations give us a proposal of the form

dZt = g(Zt)dt+ Σ
1
2dWt, (6.9)

where

g(Zt) := F (Zt) + ΣAT (S + (tk − t)AΣAT )−1(yk − AZt). (6.10)

The proposal (6.9) is straightforward to simulate from and satisfies the con-

ditions required to be absolutely continuous with respect to (6.2). Denote

by Xx,k and Zx,k the distributions on the space of continuous paths between

time points tk−1 and tk, for initial value Xtk−1
= x, induced by (6.2) and

(6.9) respectively, then the Radon-Nikodym derivative of Xx,k with respect
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to Zx,k is given by

log
dXx,k

dZx,k
(Z) =

∫ tk

tk−1

(F (Zt)− g(Zt))
TΣ−1dWt

− 1

2

∫ tk

tk−1

(F (Zt)− g(Zt))
TΣ−1(F (Zt)− g(Zt))dt.

(6.11)

The importance weight for a proposal path, Zt, between observation times

tk−1 and tk is then proportional to

p(Yk|Ztk)
dXx,k

dZx,k
(Zt). (6.12)

The use of (6.9) as a proposal process should lead to proposed paths where

the target density is higher and therefore particle weights that display less

variance than if proposals were generated from the prior dynamics (6.2).

6.2.2 The tempering step

In the high-dimensional setting we find ourselves in, a data-informed pro-

posal such as the one outlined in the previous section may not be enough

to reduce the dissimilarity between target and proposal distributions to a

sufficient level to combat the degeneracy in the particle weights, resulting

in the estimate of the target distribution being dominated by a relatively

small number of particles.

We attempt to improve this situation via the use of a sequence of interme-

diate distributions. This process is as outlined in section 3.2 and gives rise
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to a sequence of temperatures

0 = φ0 < φ1 < · · · < φM = 1 (6.13)

and a corresponding sequence of intermediate path distributions. Denote

by Xx,k and Zx,k the distributions on the space of continuous paths between

time points tk−1 and tk, for initial value Xtk−1
= x, induced by (6.2) and

(6.9) respectively, then this sequence of distributions is

Zx,k(dX)(p(Yk|Xtk)
dXx,k

dZx,k
(X))φ0 ,

Zx,k(dX)(p(Yk|Xtk)
dXx,k

dZx,k
(X))φ1 ,

· · ·

Zx,k(dX)(p(Yk|Xtk)
dXx,k

dZx,k
(X))φM .

(6.14)

These intermediate distributions aim to bridge the gap between the

proposal and target distributions. In particular, we perform itera-

tive importance sampling to go from the proposal to the target dis-

tribution. Note that Zx,k(dX)(p(Yk|Xtk)dX
dZ (X))φ0 = Zx,k(dX) and

Zx,k(dX)(p(Yk|Xtk)dX
dZ (X))φM = Xx,k(dX|Yk).

It remains to be determined how many intermediate distributions to use

and how to choose the temperatures. We propose to choose the tempera-

tures on the fly such that the effective sample size of the particles remains

above a certain threshold. If we are at the kth time step of the algorithm

and have so far executed j − 1 tempering steps, the particle weights will
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be equal across all particles due to resampling at the end of the previous

tempering step. The weight of the ith particle at the jth tempering step,

with proposal path Zi
t for tk−1 < t 6 tk starting at Zi

tk−1
= xik−1 can be given

as a function of the next temperature

W i
k,j(φ) ∝

(
dXxik−1,k

dZxik−1,k

(Zi
t)p(Yk|Ztk)

)φ−φj−1

. (6.15)

The effective sample size of the particles can then be expressed as a func-

tion of φ as

ESS(φ) :=
1∑N

i=1(W i
k,j(φ))2

. (6.16)

The next temperature is then as the solution to the equation ESS(φ) =

ESSmin, where ESSmin is a user-defined minimum effective sample size.

This is straightforward to solve numerically, e.g. using a bisection method.

6.2.3 The mutation step

Resampling multiple times in the tempering step outlined above can lead

to a lack of sample diversity in the particles. To combat this we use a small

(user-defined) number of steps from an MCMC procedure to increase the

diversity of the samples.

More specifically, at the kth time step and jth temperature in our tempering

procedure, we wish to specify a Markov kernel, Kk,l(dX
′, X) that preserves

the intermediate distribution Zx,k(dX)(p(Yk|Xtk)
dZx,k

dXx,k
(X))φj .

Following the approach in section 3.3.2 and again exploiting the fact that a

proposal of the form (6.9) is uniquely determined by the driving noise, we
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can follow a pCN scheme.

We first generate a new sample for the noise as

W ′ = ρW +
√

1− ρ2ξ (6.17)

where ρ is a user-defined parameter controlling the step size, W is the

initial driving noise and ξ is a spatially-correlated Brownian motion with

increments drawn from the Gaussian random field with covariance matrix

Σ.

We then use this new noise sample to generate a new proposal, Z ′, and

accept this new proposal with acceptance probability

α(Z,Z ′) = 1 ∧
(p(Yk|Z ′tk)

dZx,k

dXx,k
(Z ′))φj

(p(Yk|Ztk)
dZx,k

dXx,k
(Z))φj

. (6.18)

The above scheme is straightforward to implement as increments for the

initial driving noise can be stored in memory and new increments can be

quickly generated via FFT using the methods outlined in section 5.3.2.

6.3 Computational considerations

The GPTMF is a computationally intensive algorithm, requiring many sim-

ulations and weight calculations per particle and pCN step, but using the

methods outlined in Chapter 5 can help to improve the efficiency.

For simulating paths of the proposal process (6.9) and for generating new

proposal paths in the pCN step (6.17) we are required to simulate sam-
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ples from a Gaussian random field. We can do this efficiently via FFT as

explained in section 5.3.2.

Both the proposal process (6.9) and the calculation of weights (6.11) re-

quire a matrix vector multiplication where the matrix is either the covari-

ance matrix Σ or its inverse. The method described in section 5.3.1 can be

used to carry out these multiplications efficiently, again using the FFT.

In addition to the efficiencies provided by using the FFT, further speed

enhancements can be achieved through the use of so called “FFT plans.”

An FFT plan, available in many popular FFT libraries (for example, we use

FFTW [Frigo and Johnson, 2005] in this thesis), contains all the necessary

information to perform an FFT (or inverse FFT) operation on a given input

size. This plan sets up an optimized computational strategy to execute the

operation as quickly as possible. In our case, the input size is determined

by the spatial resolution and known at runtime, allowing us to compute the

FFT plan once and reuse it throughout the GPTMF algorithm.

The GPTMF is well suited for parallel computation. Both the proposal step

and the mutation step operate independently across particles and are com-

putationally intensive enough that their execution time outweighs any com-

munication overhead between processes. As a result, parallel computation

can lead to significant efficiency gains.

6.4 Numerical results

The numerical experiments in this section are designed with a physical

setup that is broadly similar to the one used in Chapter 5. However, the

140



fundamental difference lies in the underlying dynamics: the model is now

the full SPDE (6.1), where noise is integrated continuously, rather than at

discrete intervals of a deterministic PDE. The specific parameters for this

experiment are as follows:

• 2D-domain Ω = [0, P ] × [0, Q] with P = Q = 40km, discretised as in

5.2, with p = q = 50.

• Constant sea depth of D(x, y) = 1500m.

• Boundary damping factor λ = 0.015, with a boundary size of 5 grid

points.

• Independent observation noise across stations, distributed N(0, c2),

with c = 0.0025m.

• Model noise independent across height and horizontal and vertical

velocity fields, with covariance matrices Σ1,Σ2,Σ3 respectively. These

covariance matrices correspond to the covariance function

r(x, y) = σ2 exp

(
−

√(
x2 + y2

l2

))
. (6.19)

where we set the correlation length l = 3km for all three fields, σ =

0.01m for the covariance of the height field Σ1 and σ = 1 for the

covariance of the velocity fields, Σ2,Σ3.

• Initialise the wave at the point (6500m, 6500m), with an initial spread

s = 3000m and initial max height, hmax = 3m.

• N = 500 particles, with an ESS threshold of 250 in the tempering
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steps.

• Simulate for a total of 220 seconds, with measurements taken every

second from 70 seconds onwards.

• Observations taken from 25 observation stations, spaced in a regular

grid at the centre of our domain. Side length of square approximately

12km.

• Simulations of SDEs done with a time step of 0.05 seconds.

• Mutation steps are carried out by synthesising 5 pCN steps with ρ =

0.9.

We compare the performance of our algorithm to a bootstrap filter, where

the proposal is generated from the prior dynamics (6.2) and no tempering

or mutation steps are carried out.

Figure 6.2 shows the posterior mean of the wave height field estimated by

both the bootstrap filter and GPTMF at four different time points, along

with the true wave height field at these time points. It is clear to see that

the bootstrap filter struggles to estimate the true signal in comparison to

GPTMF. The GPTMF is able to detect the wave when it is observed by the

first few observation stations and track it as it moves across the domain.

Figure 6.3 shows the actual height and residuals of the height at four differ-

ent stations across all time points. The residuals are calculated as the dif-

ference between the true height field and the posterior mean of the height

field estimated by the GPTMF. These residuals appear are very small across

all stations and time points, indicating that the GPTMF is able to estimate
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the true signal well. The 95 percent confidence are also plotted and for the

majority of time points zero is within the confidence interval, indicating

that the value of the true signal is within the 95 percent confidence interval

of the posterior mean.

Figure 6.4 (along with figures in Appendix B) show the estimated 1-d prob-

ability density functions of the wave height at four different time points at

the locations of the observation stations. The true height value and the

observed height value are also plotted for comparison. These distributions

naturally tend to be centred at the measured height but in the majority of

cases seem to possess sufficient spread so that the actual heights falls in

an area of high probability density, an indication that the GPTMF is able to

estimate the filtering density well.

We also carry out a second numerical experiment, conditions are the same

as stated previously except for the following changes:

• The number of particles is reduced to N = 200, and ESS threshold is

reduced to 100.

• Run the filter for 40 observations from time 80s to time 120s.

• We run for multiple different values of p and q to see how the algo-

rithm performs with different spatial resolutions.

• Run for different values of c to see how the algorithm performs with

different levels of observation noise.

• Run for different numbers of observation stations, again arranged in

a regular grid at the centre of the domain.
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• Run each experiment 10 times.

Results from these experiments can be found in table 6.1. As expected,

we see that the required number of temperatures increases as we make

the observations more informative, either through a reduction in the ob-

servation noise or an increase in the number of observation stations. We

also see that the algorithm seems robust to changes in spatial resolution,

with the number of temperatures required remaining relatively similar for

different values of p and q. Though the number of temperatures is fairly

robust to changes in the spatial resolution we can see that increasing the

spatial resolution significantly increases the runtime of the algorithm, while

increasing the spatial resolution should increase the accuracy of the algo-

rithm it can incur a heavy cost in terms of computation, this represents

an important trade-off for practical applications. Experiments were run on

a GCP c2d-standard-8 instance, with 8vCPUs and 32GB RAM; significant

speed improvements could be achieved could be achieved by using a ma-

chine with more CPUs to take full advantage of the embarrassingly parallel

nature of the proposal and mutation steps across particles.
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(a) t = 130s, true signal (b) t = 130s, GPTMF (c) t = 130s, bootstrap

(d) t = 160s, true signal (e) t = 160s, GPTMF (f) t = 160s, bootstrap

(g) t = 190s, true signal (h) t = 190s, GPTMF (i) t = 190s, bootstrap

(j) t = 220s, true signal (k) t = 220s, GPTMF (l) t = 220s, bootstrap

Figure 6.2: Estimates of wave height via posterior means of GPTMF and bootstrap
particle filters, compared with actual wave heights.
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Figure 6.3: Plot of actual heights and the residual of the height estimates at four
different stations across time. Shaded blue area corresponds to the 95% confidence
intervals and the green dots are the residual value of the observations relative to the
actual height. Plots are for station positions (16.8km, 16.8km), (20km, 20km),
(22.4km, 22.4km), (24.8km, 24.8km).
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Figure 6.4: Estimated probability density functions of wave height via GPTMF at all
station locations at 130 seconds. The black dashed line shows the actual wave height
at the stations and the dashed red line shows the observed wave height.
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c Grid square size No. stations No. temp ESS Runtime (s)

0.0025 50 × 50 16 3.23 112 336
0.0025 50 × 50 25 4.89 110 426
0.0025 50 × 50 36 6.36 107 597

0.0025 75 × 75 16 3.39 113 3027
0.0025 75 × 75 25 5.07 108 4915
0.0025 75 × 75 36 7.12 107 5822

0.0025 100 × 100 16 3.95 111 13297
0.0025 100 × 100 25 5.31 103 14870
0.0025 100 × 100 36 6.54 109 19152

0.005 50 × 50 16 2.85 114 305
0.005 50 × 50 25 3.91 109 413
0.005 50 × 50 36 5.91 108 569

0.01 50 × 50 16 2.60 114 281
0.01 50 × 50 25 3.64 110 374
0.01 50 × 50 36 5.36 108 495

Table 6.1: Average number of temperatures per observation and the average effective
sample size when running the GPTMF over different values of observation noise, spa-
tial resolution and number of observation stations. Results are based on average of
ten independent runs for each set of values.
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Chapter 7

Conclusions and Further Work

The main contributions of this thesis can be summarised as follows:

• Development of a Sequential Monte Carlo methodology for par-

tially observed SDEs: This method approximates the filtering distri-

bution of stochastic differential equations observed at discrete time

steps with added observation noise. The approach integrates guided

proposals, tempering steps that target intermediate distributions be-

tween the prior and posterior densities, and mutation steps executed

through MCMC methods.

• Efficient implementation of an optimal filter for tsunami wave

field data assimilation: This contribution addresses data assimi-

lation when the problem is modelled as a discrete-time state-space

model. By leveraging existing results that utilize the Fast Fourier

Transform to efficiently sample from Gaussian random fields, we adapt

and apply these techniques within a filtering framework.

• Extension of the filtering methodology from SDEs to SPDEs: This

extension tackles the complexities introduced by spatial correlations

in the driving noise, presenting a challenging scenario. Our focus re-

mains on the data assimilation of tsunami wave fields, demonstrating

the robustness of the algorithm through numerical experiments on
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synthetic data.

There are many ways this work could be extended, some examples are:

• Improved proposals: The methodology described in Chapters 3 and

6 could be further refined by improving any of its components, such

as the proposal, tempering, or mutation steps. Specifically, a proposal

that more accurately targets the filtering distribution would lead to

an immediate improvement in the algorithm’s performance by reduc-

ing the variance of particle weights immediately following the pro-

posal step. This reduction would, in turn, decrease the number of

temperatures required and enhance particle diversity. Recent work

demonstrating the success of improved proposals includes Chopin

et al. [2023], where neural networks are used to generate improved

proposals by approximating transformations of stochastic processes

that are typically intractable.

• Application to Real-World data: So far we have only applied the pro-

posed methodology to synthetically generated tsunami height data.

Testing on real-world data is a natural next step and would further as-

sess the robustness, accuracy, and practical applicability of the method-

ology in predicting and modelling tsunami behaviour. Real-world

data provides additional complexities when compared to synthetic

data and may lead to limitations being discovered and further re-

finements to be made to the methodology. Historical tsunami data

could be obtained from the Deep-ocean Assessment and Reporting of

Tsunamis (DART) system [Gonzalez et al., 1998].
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• Optimal filter on irregular grids: One of the key assumptions in

developing the efficient implementation of the optimal filter in chap-

ter 5 is that the space is discretised into a regular grid - this allowed

us to use the methods of Dietrich and Newsam [1996] to efficiently

generate realisations of a Gaussian random field. We could extend

this work to irregular grids, by making use of the integrated nested

Laplace approximation (INLA) approach (see e.g.[Krainski et al., 2018]).

• Localised particle filters: Localised particle filters have been pro-

posed as a method to address particle degeneracy when filtering in

contexts with spatial dependence. By exploiting the weak depen-

dence between distant points, these methods enhance the perfor-

mance of particle filters and mitigate particle degeneracy. For an ex-

ample of such an approach, refer to Graham and Thiery [2019]. We

could explore integrating this localisation strategy into the methodol-

ogy discussed in Chapter 6.
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Appendix A

Plots for optimal filter

This appendix presents probability density functions of wave height esti-

mated using the optimal filter methodology introduced in Chapter 5. These

plots show the filtering distributions at various time points and observation

station locations, with the black dashed lines indicating actual wave heights

and red dashed lines showing the observed measurements.
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Figure A.1: Estimated probability density functions of wave height via the optimal
filter at all station locations at 170 seconds. The black dashed line shows the actual
wave height at the stations and the dashed red line shows the observed wave height.
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Figure A.2: Estimated probability density functions of wave height via the optimal
filter at all station locations at 200 seconds. The black dashed line shows the actual
wave height at the stations and the dashed red line shows the observed wave height.
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Figure A.3: Estimated probability density functions of wave height via the optimal
filter at all station locations at 230 seconds. The black dashed line shows the actual
wave height at the stations and the dashed red line shows the observed wave height.
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Appendix B

Plots for GPTMF

This appendix contains probability density functions of wave height esti-

mated using the GPTMF methodology, applied to the tsunami SPDE model

in Chapter 6. The plots show filtering distributions at various time points

and observation station locations, with black dashed lines indicating actual

wave heights and red dashed lines showing the observed measurements.
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(a)

Figure B.1: Estimated probability density functions of wave height via GPTMF at all
station locations at 160 seconds. The black dashed line shows the actual wave height
at the stations and the dashed red line shows the observed wave height.
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(a)

Figure B.2: Estimated probability density functions of wave height via GPTMF at all
station locations at 190 seconds. The black dashed line shows the actual wave height
at the stations and the dashed red line shows the observed wave height.
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(a)

Figure B.3: Estimated probability density functions of wave height via GPTMF at all
station locations at 220 seconds. The black dashed line shows the actual wave height
at the stations and the dashed red line shows the observed wave height.
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