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Abstract
Convolutional ~ Neural — Networks (CNNs) and
Transformer-based self-attention models have become
the standard for medical image segmentation.  This

paper demonstrates that convolution and self-attention,
while widely used, are not the only effective methods for
segmentation. Breaking with convention, we present a
Convolution and self-Attention-free Mamba-based seman-
tic Segmentation Network named CAMS-Net. Specifically,
we design Mamba-based Channel Aggregator and Spatial
Aggregator, which are applied independently in each
encoder-decoder stage. The Channel Aggregator extracts
information across different channels, and the Spatial Ag-
gregator learns features across different spatial locations.
We also propose a Linearly Interconnected Factorized
Mamba (LIFM) block to reduce the computational com-
plexity of a Mamba block and to enhance its decision
function by introducing a non-linearity between two factor-
ized Mamba blocks. Our model outperforms the existing
state-of-the-art CNN, self-attention, and Mamba-based
methods on CMR and M&Ms-2 Cardiac segmentation
datasets, showing how this innovative, convolution, and
self-attention-free method can inspire further research
beyond CNN and Transformer paradigms, achieving
linear complexity and reducing the number of parameters.
Source code and pre-trained models are available at:
https://github.com/kabbas570/CAMS-Net.

1. Introduction

Image segmentation is an essential part of Cardiac im-
age analysis [33]. It can help quantify the size and shape
of different regions of interest, such as left ventricle (LV),
right ventricle (RV), left atrium (LA), right atrium (RA),
myocardium (MYO), useful for monitoring disease progres-
sion, prognosis and supporting computer-aided interven-
tion [4]. Manual segmentation is considered a gold stan-
dard; however, with the developments in artificial intelli-

gence, recent research has been focused on developing au-
tomatic methods for faster, cheaper, and reproducible re-
sults [17,26].

Convolutional neural networks (CNNs) and transformer-
based self-attention mechanisms have significantly evolved
the landscape of medical image segmentation [51]. Al-
though CNNs have been the commonly used choice [!],
current literature suggests that self-attention-based meth-
ods produce better results than CNN architectures [23] due
to their global receptive field, ability to model long-range
dependencies, and the dynamic weights mechanism [8].
CNN-based methods have been criticized for their limited
receptive field [40], limited ability to effectively capture
long-range dependencies, and their bias toward recognizing
textures rather than shapes [12]. However, attention-based
methods are computationally expensive compared to CNNs
due to their quadratic complexity [36] and excessive mem-
ory requirements [39]. Recent research work has focused on
reducing the computational complexity of attention-based
methods while maintaining accuracy, including efficient
additive attention [44], efficient self-attention [11], and
separable self-attention [35]. Hybrid CNN-transformer-
based segmentation methods have also been a recent trend
that harnesses relative strengths of CNN and self-attention
[22,46]. These methods combine CNN and self-attention
to capture local and global features while reducing self-
attention’s computational complexity.

Recently, Mamba has gained prominence in the com-
puter vision field and integrates Gated MLP [34] into the
State Space Model (SSM) of H3 [6]. Readers are encour-
aged to refer to [37,52] for a more comprehensive under-
standing of this topic. SSMs [14] such as Mamba [13]
are considered as a potential replacement for transformers
because they can capture long-range dependencies while
maintaining linear computation complexity. Several archi-
tectures have been proposed to show the power of Mamba
for computer vision tasks, including Vision Mamba [55],
Visual Mamba (VMamba) [29], ZigMa [18], and medical
image segmentation is no exception [42, 50]. The majority
of existing encoder-decoder medical image segmentation
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architectures inspired by Mamba [ 13] and vision transform-
ers [8] differ in how the convolution layers, self-attention,
and Mamba blocks are arranged.

In this paper, we go beyond the arrangements of these
blocks and propose a novel convolution and attention-free
CAMS-Net for medical image segmentation. We pro-
pose Mamba-based spatial and channel aggregators to ex-
tract information across different channels and spatial lo-
cations, along with a Linearly Interconnected Factorized
Mamba (LIFM) block to further reduce the computational
complexity and enhance its decision function. Unlike
CNN-based segmentation networks, it excels at capturing
global features while surpassing self-attention-based meth-
ods by modeling long-range dependencies with linear rather
than quadratic complexity. Compared to other Mamba-
based segmentation networks, CAMS-Net stands out for its
convolutional-free design, eliminating the need for hybrid
architectures. Along with these innovations, the CAMS-Net
outperforms existing networks, making it a more efficient
and effective solution for medical image segmentation.

2. Related Work

UNet [41] is a pioneering network architecture for med-
ical image segmentation, and several subsequent architec-
tures, including ResUNet [7], UNet++ [54], have extended
its initial formulation. These networks use an encoder-
decoder design, where the encoder extracts information
from images, and the decoder reconstructs the segmenta-
tion map. Skip connections [9] mitigate the vanishing gra-
dient problem and reuse the features from the encoder side.
With the advent of the vision transformer [&], self-attention-
based methods have become popular in medical image
segmentation to overcome the limitations of CNN-based
pipelines. These methods include Swin-UNet [3], which
replaces the convolutional layers with Swin-Transformer
blocks [30]. The Swin-UNet also follows a U-shaped ar-
chitecture, where the encoder utilizes a hierarchical Swin
Transformer with shifted windows to extract context fea-
tures and a symmetric decoder with patch-expanding layers
for upsampling. The UNEt TRansformers (UNETR) [16]
uses a transformer-based encoder to learn sequence repre-
sentations of the input images, allowing the network to cap-
ture global multi-scale information and a CNN-based de-
coder for localized information. Similar to Swin-UNet [3],
Swin-UNETR [15] is also built on a hierarchical Swin trans-
former. However, it has a hybrid architecture that only uses
a Swin transformer in the encoder to extract features and a
CNN-based decoder to generate the segmentation map.

Mamba-UNet [50] incorporates the VMamba-based [29]
encoder-decoder structure with UNet. The Cross-Scan
Module from VMamba scans the input image in four ways
to integrate information from all other locations for each el-
ement of the features. Mamba-UNet utilizes these VMamba

[29] blocks throughout the U-shaped architecture to capture
semantic contexts from intensity images. Vision Mamba
UNet (VM-UNet) [42] extends Vision Mamba [55] using
foundation blocks named Visual State Space. Its asym-
metrical encoder-decoder structure leverages the power of
SSMs to capture contextual information while maintaining
linear computational complexity.

Nevertheless, these hybrid methods address the chal-
lenges posed by self-attention and CNNs and utilize both
local and global features in dense prediction tasks, like seg-
mentation. However, convolution-free methods have be-
come a recent trend in computer vision, and some of these
approaches have tried to utilize self-attention-based archi-
tectures only. For example, Kim et al. [24] proposed Re-
STR for referring image segmentation, where transformer-
based encoders extract features from each modality, image,
and text, followed by coarse-to-fine segmentation decoder
transforms to reconstruct the output from fused features.
Karimi et al. [21] proposed a convolution-free 3D network
for medical image segmentation. The 3D image block is
divided into n* patches (k=3, or 5) and computes a 1D em-
bedding for each patch. Their method predicts the center
patch of the block using self-attention between patch em-
beddings. MLP-Mixer [47] proposed an alternative archi-
tecture for image classification tasks built solely on multi-
layer perceptrons (MLPs). The channel- and token-mixing
MLPs learn the per-location features and between different
spatial locations (tokens), respectively.

Although these most recent models attempt to overcome
challenges posed by CNNs, they are based on self-attention
with quadratic computational complexity and high mem-
ory requirements. This paper introduces a convolution-
free and self-attention-free model to mitigate the limitations
of convolution-based and self-attention-based architectures
while maintaining the benefits that self-attention brings, i.e.,
the global receptive field, dynamic weight mechanism, and
long-range dependencies at the expense of linear complex-
ity. The contributions of this work are:

1. To the best of our knowledge, we are the first to
propose a convolution and self-attention-free Mamba-
based segmentation network, CAMS-Net.

2. We propose a Linearly Interconnected Factorized
Mamba (LIFM) block to reduce the trainable param-
eters of Mamba and improve its non-linearity. LIFM
implements a weight-sharing strategy for different
scanning directions, specifically for the two scanning
direction strategies of vision Mamba [55], to reduce
the computational complexity further whilst maintain-
ing accuracy.

3. We propose the Mamba Channel Aggregator (MCA)
and Mamba Spatial Aggregator (MSA) and demon-
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Figure 1. (a) Overall architecture of proposed CAMS-Net, (b) the Non-Convolutional (NC) Mamba Block without local convolution, (c)
comparison of proposed LIFM block with original Mamba, (¢) Mamba Channel Aggregator (MCA), (f) Mamba Spatial Aggregator (MSA),

and (g) the Channel-Spatial Information Fusion (CS-IF) Module.

strate how they can learn information along the chan-
nel and spatial dimensions of the features, respectively.

4. Extensive experimental validation, including ablation
studies, is conducted to showcase the efficacy of our
proposed model. Our proposed CAMS-Net outper-
forms existing state-of-the-art segmentation models
on the CMR and the Multi-Disease, Multi-View, and
Multi-Center (M&Ms-2) segmentation datasets, in-
cluding pure CNN, self-attention, and hybrid self-
attention, as well as methods using the original
Mamba-based architecture combined with CNNs.

3. Methodology

Figure 1 (a) shows the proposed convolution and a self-
attention-free segmentation network, CAMS-Net. The in-
put image is transformed into non-overlapping patches with
a patch size of 2 x 2, reducing the in-plane spatial reso-
lution by 2, and a linear embedding layer to project the
features into dimension CI/ = 64. It also incorporates si-
nusoidal positional embeddings to encode spatial context
information, enabling the encoder to understand the rela-
tive positions of different regions within the image. The
features are downsampled at each encoder’s stage using a

2x2 average pooling layer. In the next encoder stage and
bottleneck, we implement the CS-IF module, allowing the
model to learn richer features along channel and spatial di-
mensions.

On the decoder side, the features are upsampled at each
stage using a bilinear interpolation window of 2 X2 to match
the output dimension, followed by the CS-IF module in the
first stage after the bottleneck and MCA in all other decoder
stages. The skip connections [9] are also implemented at
each encoder-decoder stage to reuse the features and for
faster convergence. Finally, a five-class segmentation map
(one for each class, LA, RA, LV, RA, and background) is
generated, followed by a Softmax activation. This section
will explain the components of the CAMS-Net.

3.1. Factorized Mamba with LIFM Block

Inspired by deep convolutional neural networks [45],
where a stack of two 3 X 3 convolution filters have an ef-
fective receptive field of 5 x 5, we propose the idea of fac-
torized Mamba, which makes the decision function more
discriminative and also reduces the number of parameters.
The ‘Mamba block expansion factor’ (E) and the ‘SSM state
expansion factor’ (D) control the overall complexity of the
Mamba block. More specifically, E expands the dimensions



of the Mamba block using linear layers with learned weights
W1, and W5, while D projects the dimension within the
SSM. We implemented the Mamba block with various E
and D factors and analyzed their computational complex-
ity, shown in Table 1 of the supplementary material. In the
Mamba block, most of the parameters stem from E, with
minimal increment from D. The majority of the Mamba-
based networks use the default SSM and Mamba block ex-
tension, shown in Figure 1 (c), which is computationally
expensive, and a single Mamba block brings 11,776 train-
able parameters (for ¢;,=32 and c,,,;=64). Mathematically,
it can be represented as,

Xou = NC-MambaBlock (xi,, D, E), (1
with,
Xou = W (0(Waxin) © SSM(o(Wixin) ), @)

where W1,W3, W3 are learnable weights for linear lay-
ers shown in Figure 1 (b) used for input x;, projection, ®
represents element-wise multiplication and o SiLU activa-
tion [10].

Our factorized Mamba block splits the extension param-
eters for SSM and Mamba, shown in Figure 1 (d). We also
add a linear layer followed by SiL.U activation [ 10] between
two Mamba blocks to add more non-linearity and named
it the Linearly Interconnected Factorized Mamba (LIFM)
block, used throughout our proposed architecture. A single
factorized Mamba block has 4,608 parameters (for c;,=32
and c,,;=64), and the proposed LIFM-Block requires only
9,184 trainable parameters. For the first factorized Mamba
block and linear layer, C;,, = C,,,+ = 32, and for the second
factorized Mamba block, C,,; = 64. Mathematically, we
can represent the LIFM Block as

x; = NC-MambaBlock(x;,, D1, F1) 3)
Xy, = O (mexl ) (4)
Xout = NC-MambaBlock(x;, Dy, E5) (5)

where, Dy = Dy =2, and £y = Ey = 1, Wy, represents
the linear layer between factorized two Mamba blocks.

Empirically, we also found that a large Mamba block
can easily overfit the data and increase the overall compu-
tational burden of the network. So, we factorized the larger
Mamba blocks at each stage and used two consecutive rel-
atively smaller ones. This factorized approach reduces the
number of trainable parameters and helps the network to in-
crease its non-linearity to learn more complex patterns and
representations in the data.

3.2. Mamba Channel Aggregator

The Mamba channel aggregator (MCA) aims to learn
cross-channel information, as shown in Figure 1 (e), learn-
ing the per-location features at different channels. Similar

to a UNet structure, the number of channels is increased
as {64,128, 256,512,1024} at each encoder stage and de-
creased as {512, 256,128,64} at each decoder stage. For
the channel aggregator, the incoming features RB>*C>HxW
are reshaped to RBXLXC where L = H x W. Then, the
input is divided into two branches where, in one branch,
the LIFM Block is applied, and the second branch acts as a
residual connection, where a linear layer is used, followed
by an element-wise addition operation with the features of
the first branch. Mathematically, it can be represented as,

Tout = H(LIFM_Block(fl(xm)) & Wc(fl(xin))>7 6)
where, f; : RBXC:HXW — RBXEXC represents a reshap-
ing function and f; : REXLXC 5 REXCXHXW performs

the inverse operation, W, is the residual linear layer of
MCA, and @ represents element-wise addition.

3.3. Mamba Spatial Aggregator

As shown in Figure 1 (f), the Mamba spatial aggrega-
tor (MSA) aims to learn information about different spatial
locations and enables communication amongst them. The
spatial aggregator’s computational complexity depends on
the features’ spatial dimensions, so it is only used for the
lower-dimensional features of the U-shaped network. More
specifically, it is used in the bottleneck, one encoder stage
before the bottleneck, and one decoder stage after the bottle-
neck, shown in Figure 1 (a). For the spatial aggregator, the
incoming features REXC>HxW are reshaped to REXC* L,
The features follow the same protocol as that of MCA, and
finally, a linear layer is used either to expand (in the en-
coder) or to compress (in the decoder) the number of chan-
nels. In mathematical terms,

Xout = Wiz (LIFM_Block (£2(xin)) W, (£2(xin)) ).

(N
Here, f; : REXCXHXW _y RBXCOXL represents a reshap-
ing function and fy : REXCXL _ REXCXHXW doeg the
inverse, W g is the residual linear layer of MSA, and W ; is
a linear layer that either increases or decreases the number
of channels in MSA, to match with MCA.

3.4. Bidirectional Information Learning

Inspired by Vision Mamba [55], we implemented both
MCA and MSA using a bidirectional scanning arrangement
scheme, shown in Figure 1 of the supplementary material.
We incorporated the bidirectional SSMs to make the net-
work spatially aware. Unlike Vision Mamba, we found
that sharing the weights for two-direction schemes results in
better average performance and also lowers computational
complexity, as shown in the Table 3 of the ablation study.
We also experimented with a multi-directional scanning ar-
rangement, such as a four-directional [29] and an eight-



directional scheme [18]. However, the bidirectional scan-
ning scheme augmented with the proposed weight-sharing
strategy is the best practice for the task at hand due to the
smaller dataset and the method’s reduced complexity.

3.5. Channel-Spatial Information Fusion Module

The Channel-Spatial Information Fusion (CS-IF) mod-
ule comprises the MCA and MSA and merges the infor-
mation extracted along channel and spatial dimensions, de-
picted in Figure 1 (g). The incoming features are passed to
the MCA and MSA, where each aggregation learns the fea-
tures in both the forward and backward scanning directions
using the same instance of the corresponding aggregation,
making it shareable in utilizing the weights. An element-
wise addition operation sums up the output of both passes
and to avoid overfitting, a dropout of 0.1 is applied to the
output of each aggregator.

4. Experimental Validation

This section provides details of the datasets, implemen-
tation, and our experimental results showing our approach’s
superior performance compared to the state-of-the-art.

4.1. Datasets Description

We use the following two datasets for experimental val-
idation of our method. The CMRxsegmentation dataset
provides a balanced gender distribution (160 females, 140
males) and age diversity (mean age 26 + 5 years), ensuring a
representative analysis. It also includes multi-contrast CMR
images, offering comprehensive coverage of cardiac tissue
characteristics. The M&Ms-2 dataset represents clinically
relevant cardiac conditions and offers diverse anatomical
variations. Additionally, the dataset includes disease and
healthy subjects, making the CAMS-Net robust and gener-
alizable to various clinical scenarios.

CMRxRecon Segmentation data: The CMRxRecon
MICCAI-2023 challenge [49] data has multi-contrast,
multi-view, multi-slice, and multi-coil cardiac magnetic res-
onance imaging (MRI) data from 300 subjects. The re-
search community uses the data for both reconstruction
and segmentation tasks [38, 53]; in the proposed study, we
have only used it as segmentation data. The challenge
includes short-axis (SAX), two-chamber (2CH), three-
chamber (3CH), four-chamber (4CH) long-axis (LAX)
views, and T1 mapping and T2 mappings. We used the
4CH-LAX cine images and corresponding segmentation la-
bels, which have been manually labeled by an expert ra-
diologist where annotations are provided for four Cardiac
chambers: LA (label=1), RA (label=2), LV (label=3), and
RV (label=4). We utilize a randomly selected five-fold
cross-validation split of the CMRxSegmentation dataset.

M&Ms-2 data: The M&Ms-2 is MICCAI 2021 challenge
[2, 32], focused on RV segmentation and provided labels

for LV, RV, and LV-myocardium (MYO). The data is col-
lected from three clinical centers in Spain utilizing nine
scanners from three vendors (Siemens, General Electric,
and Philips). It contains 360 subjects, sequentially divided
into 160 for training, 40 for validation, and 160 for testing.
In the proposed study, we have used the LA view segmen-
tation images, and similar to [27], all models are evaluated
using a 5-fold cross-validation split.

4.2. Implementation Details

Comparative networks and the proposed framework
were implemented using PyTorch, and all experiments were
performed using NVidia A100 GPUs with 40GB RAM.
AdamW [31] optimizer is used with 31, 52 = [0.5,0.55];
training was performed for 500 training epochs using Dice
Loss [19] with an initial learning rate of le~* which was
halved after every 100 epochs. Similar to [28], we pre-
trained the encoder part of the proposed CAMS-Net on Im-
ageNet [43], followed by fine-tuning it on the segmentation
data. We pre-process each input intensity image by nor-
malizing it by its mean and standard deviation. Various
intensity and geometric data augmentation are applied to
improve the diversity of training, including Gaussian noise,
blur, brightness contrast, random ghosting, rotation, scal-
ing, random flipping, and random affine. For a fair compar-
ison, all the networks are trained with the same protocol and
fine-tuned where the pre-trained weights were available.

4.3. Experimental Validation with CMR Dataset

We compared and performed experiments with a number
of state-of-the-art methods, including (i) CNNs-based mod-
els: UNet [41] and ResUNet [7], (ii) self-attention-based
Swin-UNet [3], (iii) hybrid-architectures (CNNs+self-
attention): UNETR [16] and Swin-UNETR [15], and (iv)
Mamba-based models: VM-UNet [42] and Mamba-UNet
[50]. Table 1 shows experimental validation results us-
ing five-fold cross-validation with the CMR-segmentation
dataset. The proposed method outperforms existing meth-
ods while requiring the least model parameters. We note
our method has 18.56 million trainable parameters, com-
pared to counterparts with parameter counts ranging from
25.13 to 95.85 million. We attribute this to a combination of
architectural innovations, including the LIFM block, which
factorizes the Mamba block; the CS-IF module, which in-
cludes MCA and MSA capturing information along both
channel and spatial dimensions; and the proposed bidi-
rectional scanning scheme augmented with the proposed
weight-sharing strategy.

Figure 2 shows the visual results of CAMS-Net and each
comparative network. For rows (a) and (b), the proposed
CAMS-Net column shows precise segmentation of anatom-
ical structures, delineating clear boundaries. Specifically,
row (a) shows the accurate segmentation of the LA bound-



) Dice Score (%) 1 Hausdorff Distance- HD (mm) |,
Methods # Params (M)} —2——a— T v RV | Avg | LA | RA | LV | RV | Avg
UNet [41] 31.03 85.36 | 79.81 | 90.39 | 85.17 | 85.18 | 4.66 | 10.71 | 6.11 | 546 | 6.73
ResUNet [7] 46.41 82.34 | 79.27 | 91.38 | 85.21 | 84.55 | 5.36 6.13 378 | 532 | 5.14
UNETR [16] 95.85 83.45 | 81.18 | 90.62 | 84.64 | 84.97 | 5.20 5.95 5.31 | 6.18 | 5.66
Swin-UNETR [15] 25.13 82.70 | 81.33 | 91.19 | 85.14 | 85.09 | 5.50 5.73 448 | 593 | 541
Swin-UNet [3] 41.35 83.48 | 81.91 90.60 | 84.54 | 85.13 | 4.51 6.28 448 | 6.10 | 5.34
TransUNet [5] 66.80 85.23 | 82.02 | 91.59 | 85.50 | 86.08 | 5.27 6.69 5.69 | 698 | 6.15
VM-UNet [42] 44.27 80.65 | 80.30 | 91.59 | 85.22 | 84.44 | 4.74 5.90 398 | 5.59 | 5.05
Mamba-UNet [50] 35.85 82.27 | 81.06 | 91.58 | 85.33 | 85.05 | 4.95 6.29 4.02 | 573 | 5.24
CAMS-Net(ours) 18.56 86.06 | 84.44 | 92.53 | 87.35 | 87.59 | 4.07 543 3.10 | 5.40 | 4.50

Table 1.

Comparison of state-of-the-art methods using a five-fold cross-validation split of CMR-Segmentation Dataset. Best results are

shown in Bold and model parameters (# Params) are listed in millions (M).

Ground Truth UNet ResUNet UNETR

Swin-UNETR

Swin-UNet TransUNet VM_UNet

Mamba-UNet CAMS-Net (ours)

Figure 2. Qualitative comparison from CMRxSegmentation dataset, using CAMS-Net and other networks, highlighting CAMS-Net’s
enhanced performance in boundary separation and preserving spatial integrity across different regions. Please zoom in for details.

ary, while row (b) illustrates the distinct segmentation of
the RV and RA boundaries compared to other networks. In
row (c), where all other networks fail to reconstruct RA and
LA correctly, the proposed CAMS-Net can segment these
anatomies precisely with clear boundaries; we attribute this
improvement to the incorporation of MSA, which helps
maintain spatial coherence, as also demonstrated in ablation
studies (also see Figure 4). For the last two rows of Fig-
ure 2, where the comparative networks either over-segment
or under-segment, the CAMS-Net still performs compara-
bly by ensuring balanced and accurate segmentation. In
row (d), the CAMS-Net preserves the shape and structure
of RV, compared to UNet, ResUNet, and Mamba-UNet,
which segment sections of RV as RA. Finally, in row (e),
where ResUNet, UNETR, and TransUNet generate a float-
ing prediction for RV and other networks fail to delineate
LA boundaries, the proposed CAMS-Net can gather spatial
context from both directions because of Bidirectional scan-
ning, which helps it to resolve ambiguities regions.

4.4. Experimental Validation with M&Ms-2 Dataset

To show the capability of CAMS-Net to work on multi-
ple datasets, we also perform additional experimental val-
idation using the M&Ms-2 dataset. Table 4 shows the
CAMS-Net performance compared to existing methods,
where it achieves the highest Dice Score across all cate-
gories and the lowest HD values, highlighting CAMS-Net’s
superior boundary accuracy.

The visual results shown in Figure 3 further advocate the
superior performance of the proposed CAMS-Net. In rows
(a) and (b), all networks struggle to differentiate between
the LV and MYOQO'’s boundaries and fail to accurately cap-
ture the variable shapes of RV, compared to the proposed
CAMS-Net’s results, where it generates clear boundaries.
In row (c), the other comparative networks, except SWIN-
UNETR, are unable to segment the RV properly, resulting
in higher false negatives. In row (d), except for the Mamba-
based networks, all other comparative networks cannot cap-
ture the relationship between MYO and LV. Our CAMS-



Dice Score (%) HD (mm) |

Methods IV | RV | Myo | Avg | IV | RV | Myo | Avg
UNet [11] §7.26 | 88.20 | 79.96 | 85.14 | 13.04 | 8.76 | 12.24 | 11.35
ResUNet [7] 87.61 | 88.41 | 80.12 | 8538 | 12.72 | 839 | 11.28 | 10.80
InfoTrans* [25] | 88.21 | 89.11 | 80.55 | 85.96 | 12.47 | 7.23 | 1021 | 9.97
TransUNet [5] | 87.91 | 88.23 | 79.05 | 85.06 | 12.02 | 8.14 | 11.21 | 10.46
MCTrans [20] | 88.42 | 88.19 | 79.47 | 8536 | 11.78 | 7.65 | 10.76 | 10.06
MCTrans* [20] | 88.81 | 88.61 | 79.94 | 85.79 | 11.52 | 7.02 | 10.07 | 9.54
UTNet [11] 86.93 | 89.07 | 80.48 | 85.49 | 11.47 | 635 | 10.02 | 9.28
UTNet* [11] | 8736 | 90.42 | 81.02 | 8627 | 11.13 | 591 | 9.81 | 895
SWIN-UNET [3] | 90.88 | 86.66 | 79.93 | 85.82 | 10.08 | 10.08 | 6.07 | 8.74
UNETR[16] | 91.08 | 87.30 | 81.17 | 86.52 | 8.86 | 9.93 | 598 | 825
SWIN-UNETR [15] | 91.91 | 86.77 | 82.36 | 87.01 | 7.19 | 877 | 4.65 | 6.87
TransFusion® [27] | 89.78 | 91.52 | 81.79 | 88.70 | 1025 | 5.12 | 8.69 | 8.02
VM-UNet [42] | 92.47 | 87.79 | 8239 | 8755 | 6.09 | 7.60 | 4.87 | 6.18
Mamba-UNet [50] | 93.44 | 87.18 | 82.54 | 87.72 | 6.63 | 8.08 | 5.59 | 6.76
CAMS-Net (ours) | 94.45 | 91.87 | 86.21 | 90.84 | 3.64 | 479 | 2.61 | 4.34

Table 2. Comparison of results obtained from different methods using a five-fold cross-validation split of M&Ms-2 dataset. Methods
indicated with a * use multi-view inputs. The best results are shown in Bold.

Ground Truth UNet ResUNet UNETR

SWIN-UNETR

- MYO E Boundary of Ground-Truth m Bounding Box to Highlight Improved Results

TransUNet SWIN-UNET VM_UNet

Mamba-UNet CAMS-Net (ours)

Figure 3. Qualitative comparison of visual results of CAMS-Net and other networks using M&Ms?2 dataset. Please zoom in for details.

Net’s predictions closely match the ground truth, confirm-
ing its capability of capturing long-range dependencies. For
the last row (e), all other networks produce incomplete
segmentations compared to the CAMS-Net, demonstrating
spatial continuity and coherence in segmenting all three re-
gions of interest, which is attributed to our proposed MSA
module that captures information along spatial dimensions
(see Figure 4 and Section 5 for further analysis).

5. Ablation Studies

We performed the following ablation studies on the
CMR dataset to show how each proposed module con-
tributes to improved accuracy. CAMS-Net W/ and WO/
MSA: The MSA fosters intercommunication among spa-
tial locations, and its effectiveness is evaluated by remov-

ing it from the CS-IF module and using MCA throughout
the network. The first two rows of Table 3 list the quanti-
tative results of utilizing MSA and MCA, bringing an aver-
age improvement of 1.5% in the Dice score. Also, shown
in the third row of Figure 4, the MSA enables the model
to learn spatial dependencies between different regions of
the image, resulting in better delineation of boundaries, bet-
ter spatial coherence, fewer errors in spatial relationships,
and generally improved localization of anatomical struc-
tures. Note that we have utilized the default scanning strat-
egy from Mamba [13].

Bidirectional scanning and weight sharing strategy:
The bidirectional scanning scheme incorporated at each
encoder-decoder stage improves the results, shown in row
3 of the Table 3. However, this comes at the cost of ex-



Bidirectional | Weights [ Positional
MCA | MSA Scanning Sharing | Embeddings | Pretraining LA RA LV RV Avg
4 X X X X X 80.15 | 78.33 | 89.65 | 83.22 | 82.83
4 v X X X X 82.17 | 81.09 | 90.30 | 83.79 | 84.33
4 v v X X X 83.27 | 81.83 | 90.27 | 84.76 | 85.03
v v v v X X 83.20 | 81.10 | 91.46 | 84.68 | 85.11
4 v v v v X 84.11 | 82.09 | 91.50 | 84.51 | 85.55
v v v v v v 86.06 | 84.44 | 92.53 | 87.35 | 87.59

Table 3. Ablation studies (Dice score %) utilizing MCA, MSA, bidirectional scanning augmented with weight sharing strategy, positional
embeddings, and pretraining on ImageNet using a five-fold cross-validation split of CMR-segmentation dataset.

(a) (b) (c) (d)

Ground Truths

MCA:v , MSA:X
Bidirectional-Scanning :
Weight Sharing : X
Positional Embeddings :
Pretrained Weights : X

MCA: Vv
Bidirectional-Scanning : X
Weight Sharing : X
Positional Embeddings : X
Pretrained Weights : X
MCA:v , MSA:V
Bidirectional-Scanning : v
Weight Sharing : X
Positional Embeddings : X|
Pretrained Weights : X
MCA:v , MSA:V
Bidirectional-Scanning : v’
Weight Sharing : v/
Positional Embeddings : X|
Pretrained Weights : X

MCA:v , MSA:V
Bidirectional-Scanning : v
Weight Sharing : v/
Positional Embeddings : V|
Pretrained Weights : X

, MsA:v

MCA:v , MSA:V
Bidirectional-Scanning :
Weight Sharing : v/
Positional Embeddings : V|
Pretrained Weights : v/

Figure 4. Visual comparison of results from different ablation
studies on CMR-segmentation dataset. Please zoom in for details.

tra parameters for each forward and backward scanning
scheme. The proposed bidirectional scanning, augmented
with a sharing strategy, overcomes this limitation by reduc-
ing the parameters and improving the overall performance,
shown in row 4 of Table 3. Rows 4 and 5 of Figure 4 depict
how bidirectional scanning improves the results by captur-
ing relationships from both directions, specifically in col-
umn (d); it helps the network better delineate the boundary
between RV and RA.

Positional embeddings: CAMS-Net also utilizes the sinu-
soidal positional embeddings to encode spatial information
about the position of each element within the input image
sequence [48]. Row 5 of Table 3 lists the results of utilizing
positional embeddings, which helps the network improve
its average accuracy. Columns (a) and (b) of row 6 in Fig-
ure 4 exhibit how it can maintain spatial consistency across
different regions, i.e., for RA here.

Effects of pre-training: We conducted experiments to ex-
amine the impact of ImageNet pre-trained parameters on

the proposed CAMS-Net’s performance. The last row of
Table 3 lists the experimental results of this ablation and
shows that utilizing the pre-trained weights improves the
average Dice score by > 2%. Row 7 of Table 3 shows how
pre-training leverages visual features like edges, textures,
and shapes it has learned from ImageNet and improves the
CAMS-Net’s ability to detect boundaries more accurately.

6. Conclusion and Future Work

We are the first to propose a Mamba-based segmentation
network without convolution operations and self-attention
mechanisms to showcase the power of SSM-based archi-
tectures. We introduced several innovative strategies to the
Mamba-based methods to increase their performance and
reduce the computational complexity, including (i) a Lin-
early Interconnected Factorized Mamba (LIFM) block to
reduce the number of trainable parameters and increase de-
cision function, (ii) Mamba-based channel and spatial ag-
gregators to learn the information across different channels
along with spatial locations of the features, and (iii) a bidi-
rectional weight-sharing strategy scheme. Our experiments
demonstrate that the proposed CAMS-Net, an SSM-based
segmentation network, outperforms the existing state-of-
the-art in CNN, self-attention, and Mamba-based methods
on CMR and M&Ms-2 segmentation datasets.

CAMS-Net has been implemented for 2D medical image

segmentation, which has demonstrated impressive results in
segmenting anatomical structures from medical scans like
cardiac MRIs. However, there is significant potential to ex-
tend this work to 3D medical image segmentation, which
we will explore in our future work.
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Dice Score (%) HD (mm) |
Methods IV | RV | Myo | Avg | IV | RV | Myo | Avg
UNet [11] §7.26 | 88.20 | 79.96 | 85.14 | 13.04 | 8.76 | 12.24 | 11.35
ResUNet [7] 87.61 | 88.41 | 80.12 | 8538 | 12.72 | 839 | 11.28 | 10.80
TransUNet [5] | 87.91 | 88.23 | 79.05 | 85.06 | 12.02 | 8.14 | 11.21 | 10.46
MCTrans [20] | 88.42 | 88.19 | 79.47 | 8536 | 11.78 | 7.65 | 10.76 | 10.06
UTNet [11] 86.93 | 89.07 | 80.48 | 85.49 | 11.47 | 635 | 10.02 | 9.28
SWIN-UNET [3] | 90.88 | 86.66 | 79.93 | 85.82 | 10.08 | 10.08 | 6.07 | 8.74
UNETR[16] | 91.08 | 87.30 | 81.17 | 86.52 | 8.86 | 9.93 | 598 | 825
SWIN-UNETR [15] | 91.91 | 86.77 | 82.36 | 87.01 | 7.19 | 877 | 4.65 | 6.87
VM-UNet [42] | 92.47 | 87.79 | 8239 | 8755 | 6.09 | 7.60 | 4.87 | 6.18
Mamba-UNet [50] | 93.44 | 87.18 | 82.54 | 87.72 | 6.63 | 8.08 | 5.59 | 6.76
CAMS-Net (ours) | 94.45 | 91.87 | 86.21 | 90.84 | 3.64 | 479 | 2.61 | 4.34

Table 4. Comparison of results obtained from different methods using a five-fold cross-validation split of M&Ms-2 dataset. Methods

indicated with a * use multi-view inputs. The best results are shown in Bold.
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