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Real-time instanton approach to quantum activation
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Driven-dissipative nonlinear systems exhibit rich critical behavior, related to bifurcation, bistability, and
switching, which underlie key phenomena in areas ranging from physics, chemistry, and biology [T. Wilhelm,
BMC Syst. Biol. 3, 90 (2009)] to social sciences and economics. The importance of rare fluctuations leading to
a dramatic jump between two very distinct states, such as survival and extinction in population dynamics [A.
Taitelbaum et al., Phys. Rev. Lett. 125, 048105 (2020); A. Kamenev and B. Meerson, Phys. Rev. E 77, 061107
(2008)], success and bankruptcy in economics [S. Ghashghaie et al., Nature (London) 381, 767 (1996)], and the
occurrence of earthquakes [L. Knopoff and Y. Kagan, J. Geophys. Res. 82, 5647 (1977)] or of epileptic seizures
[K. Lehnertz, Extreme Events in Nature and Society (Springer, Berlin, Heidelberg, 2006), pp. 123–143], have
been already established. In the quantum domain, switching is of importance in both chemical reactions and the
devices used in quantum state detection and amplification [R. Vijay et al., Rev. Sci. Instrum. 80, 111101 (2009)].
In particular, the simplest driven single oscillator model serves as an insightful starting point. Here we describe
switching induced by quantum fluctuations and illustrate that an instanton approach within Keldysh field theory
can provide a deep insight into such phenomena. We provide a practical recipe to compute the switching rates
semi-analytically, which agrees remarkably well with exact solutions across a wide domain of drive amplitudes
spanning many orders of magnitude. Being set up in the framework of Keldysh coherent states path integrals, our
approach opens the possibility of studying quantum activation in many-body systems where other approaches
are inapplicable.

DOI: 10.1103/5jtm-ht4n

I. INTRODUCTION

Quantum activation is a process in which a driven sys-
tem, such as a nonlinear oscillator, switches between two
metastable states of forced vibrations due to random noise
from spontaneous emission events [1–9]. Since energy is
continually pumped into the system, these switching events
can occur even when the temperature of the bath is zero,
unlike the process of classical activation. Although the system
may spend the majority of its time close to metastable states,
emission events may cause rare fluctuations, taking the system
away from one metastable steady state towards an intermedi-
ate unstable state, and then into the basin of attraction of the
other metastable state.

The instanton approach in quantum field theory has already
been used to study qubit decoherence via quantum activation
[10] for evaluating the decay time of metastable states [11]
and switching rates [10,12], and existing theory can also ex-
plain some universal dependencies for switching of a single
oscillator close to the bifurcation points in the semiclassical
regime [13,14]. However, significant recent advances in super-
conducting, electromechanical, and optomechanical devices
running beyond this regime necessitate a general approach
[15,16].

*These authors contributed equally to this work.

The method for calculating switching which we now ex-
plore is based on Keldysh field theory [17–20]. Whereas in
thermal equilibrium we can obtain switching rates by studying
the dynamics of a system in imaginary time [21–24], this is
no longer possible when drive and dissipation are included. In
this situation the state of the system is described by a density
matrix and in the formalism of Keldysh field theory this leads
to a doubling of the dimensions of the phase space. The
additional dimensions open paths for dissipative (noise-based)
motion, see Fig. 1, to be included in the mean-field description
of the dynamics and allow us to gain more insight into the
processes of activation and switching. With this approach we
can semi-analytically calculate the exponential dependence
of the switching times on the drive amplitude and frequency
and find that they agree with numerical simulations over a
wide range of parameters. In particular, we find our method
to work well when the nonlinearity of the oscillator is of
a similar order as the oscillator decay rate, i.e., outside the
semiclassical regime. Importantly, our results extend previous
work to parameter ranges further away from the bifurcation
points. This includes comprehensive numerical simulations
and detailed comparison of the instanton-based results with
the results of exact simulations of the Liouvillian master
equation. Below we first describe our analytical approach
based on Keldysh field theory, which is general and could be
applied in a wide range of scenarios, even including many-
particle systems. Later, we discuss numerical studies of the
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FIG. 1. Keldysh escape paths. The switching paths following the equations of motion derived using Keldysh field theory. The parameters
of the model are (χ/κ, δ/κ, ε/κ ) = (−0.5, 5.8, −4.0). The full four-dimensional path cannot be shown, so in panels (a) (top view) and
(b) (angled view) we plot the two classical variables xclassical and pclassical as well as the quantum variable xquantum. Within the classical plane
defined by xquantum = pquantum = 0 we display a density plot of the Wigner function of the steady state along with the fixed points (white, black
and yellow) of the classical equations of motion. The white and black balls mark the bright and dim fixed points, respectively, while the yellow
ball marks the unstable point. The switching paths originate at the stable fixed points and immediately leave the classical plane. By utilizing
the quantum degrees of freedom, the system is able to escape the classical basin of attraction of the bright state and arrive at the unstable point,
from which it may relax classically to the other stable point. The quantum components xquantum and pquantum of the escape paths from (c) the
bright state and (d) the dim state start and end at the values of zero, indicating that the escape path starts and ends in the classical plane.

Lindblad master equation, which we use to validate our ana-
lytical results.

II. DYNAMICS OF THE KERR OSCILLATOR

A. Keldysh action

We focus on the prototypical model of the nonlinear
driven-dissipative Kerr oscillator in the quantum regime. The
self-Kerr effect is a nonlinear shifting of a resonator frequency

as a function of the number of photons in the mode. A simple
quantum system where this can been seen is the quantum
Duffing oscillator, with its term proportional to (a†a)2 in the
Hamiltonian, where a is the photon annihilation operator for
a resonator mode. In the classical limit, this becomes the
quadratic dependence of the refractive index on the electric-
field strength, sometimes known as self-phase modulation
[25–27]. This effect manifests itself at second order in a
series expansion of the Jaynes–Cummings interaction in the
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dispersive limit [15,28–30]. In a frame rotating at the drive
frequency the Kerr oscillator Hamiltonian reads

H = δa†a + χa†a†aa + iε(a† − a), (1)

where δ is the detuning between the oscillator and the drive
frequency, χ is the nonlinearity of the oscillator, ε is the
drive amplitude, and we have taken h̄ = 1. The rotating wave
approximation has been applied.

All correlation functions and observables of this system,
such as the rate of switching between metastable states, can
be obtained from the partition function [18,20]

Z =
∫

Da−Da∗
−Da+Da∗

+eiS[a+,a∗
+,a−,a∗

−], (2)

which in the Keldysh formalism involves a path integral over
two degrees of freedom: the forward a+ and backward a− time
paths. The action S is given by

S =
∫

Ldt, (3)

L = a∗
+i∂t a+ − a∗

−i∂t a− + iε(a∗
+ − a+ − a∗

− + a−)

− δ(a∗
+a+ − a∗

−a−) − χ (a∗2
+ a2

+ − a∗2
− a2

−)

− iκ (2a+a∗
− − a∗

+a+ − a∗
−a−), (4)

where + (−) denotes the fields in forward (backward)
branches. The dissipative terms have been obtained from
integration over the degrees of freedom of a bosonic bath
coupled to the system [31]. In the present case we consider a
Markovian bath at zero temperature in order to compare with
numerical results obtained for a Lindblad master equation.

B. Switching paths

We can now define classical and quantum field variables
according to ac = (a+ + a−)/

√
2, aq = (a+ − a−)/

√
2. In

the absence of quantum fluctuations, the evolution will be
restricted to the classical plane (i.e., aq = 0) for the system
to move towards either of two stable fixed points, correspond-
ing to the bright and dim metastable states. Activation and
tunneling events which allow switching from one metastable
state to another are expected to occur via the quantum degree
of freedom aq.

To study the dynamics of our quantum and classical field
variables we now decompose them into real and imaginary
components according to

ac = (xc + ipc)/
√

2, aq = (x̃q + i p̃q)/
√

2. (5)

In these terms the Lagrangian reads

L = ẋc p̃q − ṗcx̃q −
[
δ + χ

2

(
x2

c + p2
c + x̃2

q + p̃2
q

)]

× (xcx̃q + pc p̃q) + κ (xc p̃q − pcx̃q)

+ iκ
(
x̃2

q + p̃2
q

) + 2ε p̃q, (6)

up to total derivatives, while the partition function is now
expressed as

Z =
∫

DxcDpcDx̃qD p̃qeiS[xc,pc,x̃q,p̃q]. (7)

We may wish to approximate the above Lagrangian by taking
into account only the saddle-point (the most probable) paths.
This would allow us to determine the equations of motion and
find the paths which connect the metastable states, and which
dominate the partition function. Unfortunately, no such paths
exist for real values of the coordinates (see Appendix A).
Motion is constrained to the classical plane and there are no
paths leaving the metastable states.

At this point we can consider the approach explored in
Ref. [18]: what if the stationary paths lie along the imaginary
axes of x̃q and p̃q instead? Although the integrals in Eq. (7) are
all along real axes we may use Cauchy’s theorem to deform
the paths without changing their values. Therefore we choose
to make the quantum coordinates imaginary and we rewrite
them as follows:

x̃q → −ipq, p̃q → ixq (8)

in terms of which the Lagrangian can be written as

iL = −[ẋc pc + ṗc pq − H (xc, pc, xq, pq )], (9)

with an auxiliary Hamiltonian given by

H =
(

δ + χ

2

(
x2

c + p2
c − x2

q − p2
q

))
(pcxq − xc pq )

− κ (xcxq + pc pq) + κ
(
x2

q + p2
q

) + 2εxq. (10)

The saddle-point equations of motion are then given by

żc = ∂zq H, żq = −∂zc H, (11)

where zc = (xc, pc) and zq = (xq, pq ) and the action, conse-
quently, becomes iS = i

∫
L dt = − ∫

dzc · zq. We see that our
equations of motion now allow evolution out of the classical
plane and can connect the metastable states, as seen in Fig. 1.

To identify the fixed points corresponding to these
metastable states we obtain the classical equations of motion
by setting the quantum variables to zero, xq = pq = 0. It is
known that in the bistable regime there are three fixed points
within this plane, two of which are stable. We refer to these
as the bright and dim states according to the intensity of the
oscillator field at those points. Meanwhile, there is a third
unstable point lying on the separatrix which divides the plane
into the two basins of attraction of the stables states.

Although the bright and dim states are stable within the
classical plane, we find that quantum fluctuations can allow
rare escape events, during which the system moves to the
unstable point along a path lying outside the plane, where
quantum components of the fields are nonzero. Once it has
reached the unstable point it may relax along the classical
path to the other stable point. The trajectories of these escape
events are described by the full equations of motion above and
examples are displayed in Fig. 1.

Here we are particularly interested in calculating the rate at
which these escape events occur. In the saddle-point approx-
imation, the rate of switching from the point Z j to the other
stable point Zk can be written as

γ j→k = ω j→ueiS j→u , (12)

where the prefactor ω j→u is the attempt frequency [11,32] and
the action is calculated by integrating the Lagrangian along
the path from Z j to the unstable point Zu. Results from these
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FIG. 2. Results of Liouvillian and stochastic Schrödinger equation methods. (a) The amplitude and (b) the phase of the cavity state during a
quantum trajectory produced at (χ/κ, δ/κ, ε/κ ) = (−0.5, 5.8, 4.0). In panel (a) the amplitude goes up to ≈3, corresponding to an occupation
of ≈9 photons, allowing for accurate simulations in a small truncated Hilbert space. In the bistable regime this trajectory displays sudden jumps
between two metastable states whose lifetimes are typically much longer than the lifetime of the cavity 1/κ . (c) The occupation probabilities
of the bright and dim states vs the drive amplitude ε, obtained by studying the eigenstates of the Liouvillian at (χ/κ, δ/κ ) = (−1.0, 6.0). As
the system moves through the bistable regime it transitions from a state consisting entirely of the dim state to entirely of the bright state. The
markers indicate occupation probabilities calculated by studying the trajectories produced using a stochastic Schrödinger equation. Excellent
agreement between these methods is seen. (d) The asymptotic decay rate (green) falls significantly in the bistable regime, indicating the onset
of critical slowing down. The bright (blue) and dim (orange) state occupation probabilities used to calculate the switching rates. (e) The
transmission of the cavity as we increase the drive. The oscillator amplitude reaches ≈2, corresponding to an occupation of ≈4 photons. The
bistable regime coincides with a small dip before a sudden increase in the cavity amplitude.

calculations can be seen in Figs. 3(b) and 3(c). Details of the
calculations can be found in Appendix B.

C. Master equation and stochastic Schrödinger equation

Before we discuss these results, we also wish to obtain
some exact numerical results via an alternative approach as
verification. Assuming the dilute-gas limit of instantons [11]
and an effective two-state model [32,33], the occupation prob-
abilities of the bright and dim states are governed by the
following rate equation:

d

dt

(
pb

pd

)
=

(−γb→d γd→b

γb→d −γd→b

)(
pb

pd

)
. (13)

At long times the system relaxes to a steady state in which the
probabilities are given by

pss
b(d) = γd(b)→b(d)/γtotal, γtotal ≡ γb→d + γd→b. (14)

The steady-state occupation probabilities pss
b(d) and the total

decay rate γtotal can both be obtained by studying the dynamics
of the Liouvillian master equation. This is outlined in Ap-
pendix C, where we find the eigenvalues and eigenvectors of
the Liouvillian matrix and highlight the equality between γtotal

and the asymptotic decay rate γad, which is the real component
of the slowest decaying perturbation from the steady state.
This quantity is plotted in Figs. 2(c) and 2(d). Consequently,
we are able to obtain the switching rates according to

γd(b)→b(d) = pb(d)γad. (15)
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FIG. 3. Comparing Keldysh and Liouvillian switching rates at χ/κ = −0.1. (a) The oscillator amplitude as a function of δ and ε. The
boundaries of the bistable region (red solid lines) surround a sudden transition from low to high amplitude states as the drive (detuning) is
increased (decreased) and are calculated using the classical equations of motion. In panels (b) (for ε/κ = 10.0) and (c) (for δ/κ = 6.33) we
plot the switching rates and oscillator amplitude along the black lines marked in panel (a). The oscillator amplitude reaches ≈6, corresponding
to an occupation of ≈36 photons, placing the system in the regime where the instanton approach is most applicable and direct comparison with
QUTIP becomes challenging. Here, we have fitted ωb→d/κ = 1.0 and ωd→b/κ = 0.1 to give an excellent agreement between the Keldysh and
Liouvillian switching rates over several orders of magnitude. This indicates that our assumption that the attempt rates vary slowly with the drive
parameters was remarkably accurate and the dominant variations in the switching rates are well described by the action of the optimal switching
path. The overlaid cavity amplitude (orange) shows that the crossing of the rates coincides with transition between high- and low-amplitude
states of the oscillator.

In this manner we can calculate the switching rates in the
bistable regime, which are also included in Fig. 2(d).

Next, we also obtain switching rates more directly by
observing switching events in solutions of the stochastic
Schrödinger equation for an optical cavity under heterodyne
detection [34]. These simulations were performed using the
stochastic solvers available in the Quantum Toolbox in Python
(QUTIP) [35]. By simulating a trajectory over a sufficiently
long period of time, we are able to observe many switching
events [Figs. 2(a) and 2(b)] and obtain the occupation prob-
abilities displayed in Fig. 2(c), which agree closely with the
results of the master equation.

D. Keldysh switching rates

We can now move forward and compare our various meth-
ods in Fig. 3, using the master equations predictions as a
validation for the path integral method. In Fig. 3(a) we first
plot the steady-state oscillator amplitude as a function of δ

and ε at χ/κ = −0.1. The boundaries of the bistable regime
according to the classical equations of motion are marked
in red and we see the familiar opening of this regime in
the upper-right quadrant. Within this regime, we also see the
expected sudden transition between low- and high-amplitude
states of the oscillator. These states are separated by a small
dip in intensity due to destructive interference between the
bistable states, visible in Figs. 3(b) and 3(c).

The black lines in Fig. 3(a) highlight the parameter ranges
over which Figs. 3(b) and 3(c) were produced. In these ranges

we calculated the paths escaping from the metastable states to
the unstable state, along with their actions, in order to obtain
the switching rates in Eq. (12). Since we currently do not have
a means to calculate the attempt frequencies ωb→u and ωd→u,
we use them as fitting parameters and assume they vary little
with changes in δ or κ . Despite this we are able to obtain
excellent agreement between the switching rates produced by
the Keldysh and Liouvillian methods over several orders of
magnitude. This indicates that the exponential dependence
on the action is by far the dominant factor governing the
switching rates and that it can be accurately calculated using
the Keldysh method.

Finally, we explore how the switching rates vary with
the rate of dissipation κ . Previous approaches to calculating
switching rates have been limited either to the weak-
dissipation limit [1,2,36], or close to the bifurcation points
[13]. In particular, Ref. [1] showcased an approach that
involved deriving the equation for the density matrix and ap-
plying saddle-point methods to obtain four-dimensional equa-
tions of motion similar to those obtained from the Keldysh
formalism in Eq. (11). However, these equations were only
solved in the zero-damping limit, which we now extend
beyond.

In later work, the switching dynamics were studied in great
detail in the vicinity of the bifurcation points [13,14]. In this
regime, the unstable state can be found very close to either
of the metastable states and, as these two states approach
each other in phase space, a soft mode emerges between them
along which the evolution of the system slows down. The
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FIG. 4. Measuring the activation barrier height at χ/δ = −1/78. (a) The limits of the bistable regime as a function of κ and ε. As we
increase the drive amplitude the bistable regime appears when the bright and unstable states emerge at the unstable-bright bifurcation. When
there is no damping present in the system this bifurcation happens at zero drive. For sufficiently high drive amplitudes the unstable and dim
states combine and annihilate each other at the unstable-dim bifurcation. In panel (b) we plot the variation of the barrier height Rj→u with
κ at ε/δ = 2.44. This barrier height is measured relative to the scaled Planck constant λ = 0.0128. The barrier height is calculated in two
ways: First, we solve the equations of motion derived from the Keldysh approach and calculate the actions along the paths escaping from
the metastable states to the unstable state. These barrier heights are marked by solid lines. Second, we treat escape as a Kramers problem
in a one-dimensional potential close to the bifurcation points. These results are marked by dashed lines. Both approaches agree close to the
bifurcation points where the one-dimensional approximation can be made but begin to disagree in the middle of the bistable regime. Since the
switching rates depend exponentially upon the barrier height this can lead to significant disagreements in calculated switching rates, especially
at the crossing point where both switching rates and their corresponding populations are equal.

system becomes effectively one dimensional and the dynam-
ics resemble a Kramers problem in which fluctuations may
allow the system to escape from the metastable state by climb-
ing a potential barrier whose peak is found at the unstable
state. Beyond this point the system then decays to the other
metastable state and the switching event is complete. This
approach proved successful and was able to accurately model
the switching rates, but only in the vicinity of the bifurcation
points where this soft mode emerges. The switching rate is
primarily determined by the quantum activation energy RA,
whose scaling behavior near the bifurcation points was calcu-
lated to be RA ∝ |η|3/2 for a resonantly driven Kerr oscillator
[13], where η is the distance from the saddle-node bifurcation
(see Appendix D).

In Fig. 4 we compare the Kramers problem approach with
the results of the Keldysh approach. In the Kramers approach
the switching rates can be modeled in terms of a barrier height
Rj→u as

γ j→k ∝ exp(−Rj→u/λ). (16)

In this equation Rj→u represents the barrier height to move
from metastable state j to the unstable point u. It is rescaled by
the scaled Planck constant λ = χ/δ. In terms of the switching
actions we have studied so far, this barrier height is given by
Rj→u = iλS j→u. Both the Kramers and Keldysh approaches
agree in the vicinity of the bifurcation points where the escape
problem becomes one dimensional. The barrier starts at zero
at these bifurcation points and increases as we move into the

bistable regime. Both the Kramers and Keldysh approaches
show a monotonic dependence on kappa but disagree quanti-
tatively towards the middle of the bistable regime where the
rates are balanced.

III. CONCLUSION

In conclusion, we have shown that the Keldysh technique
can be used to obtain an extended mean-field theory, which
captures the quantum activation and switching dynamics in a
Kerr oscillator. By assuming that the system predominantly
follows the saddle-point path of the Keldysh action we are
able to predict switching rates which are in excellent agree-
ment with numerical simulations of the exact dynamics and
we explain how the system moves in the extended classical-
quantum phase space between the different fixed points.

The potential of our method goes beyond this demonstra-
tion. In this work we chose to highlight the power of the
Keldysh approach when applied to a system in contact with
a Markovian thermal bath, which allowed us to cross-check
our results against those obtained using a standard Liouvillian
master equation. However, in the future it could be possible to
take memory effects into account by, for example, allowing κ

in Eq. (4) to vary as a function of frequency [31].
Furthermore, since the Keldysh approach is formulated in

the language of second quantization (i.e., coherent-state path
integrals), it can be straightforwardly applied to more complex
many-body systems such as coupled oscillators, spins coupled

012216-6



REAL-TIME INSTANTON APPROACH TO QUANTUM … PHYSICAL REVIEW A 112, 012216 (2025)

to bosons, or even bosonic lattices. Although methods already
exist which can produce similar results for the Kerr oscilla-
tor, it would not be straightforward to apply them to more
complex systems. For example, an alternative approach to the
calculation of switching rates has previously been explored
based on applying saddle-point methods to the evolution of
the Wigner function [1]. As in our Keldysh method, this ap-
proach relies on calculating the action along a path escaping
from the basin of attraction via the unstable point. In the
limit of weak nonlinearity the equations of motion converge;
however, that method would only be applicable to a single par-
ticle and it would be challenging to extend to non-Markovian
dynamics. This generalizability is a key advantage of the
Keldysh approach and will be the main theme of future work
as we go beyond regimes which can easily be compared with
other methods.
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APPENDIX A: EQUATIONS OF MOTION

In terms of field quadratures the Lagrangian is given by

L = ẋc p̃q − ṗcx̃q + κ (xc p̃q − pcx̃q)

−
[
δ + χ

2

(
x2

c + p2
c + x̃2

q + p̃2
q

)]
(xcx̃q + pc p̃q)

+ iκ
(
x̃2

q + p̃2
q

) + 2ε p̃q, (A1)

while the partition function is given by

Z =
∫

DxcDpcDx̃qD p̃qeiS[xc,pc,x̃q,p̃q]. (A2)

We may wish to estimate this partition function using a saddle-
point approximation. In this method we find the dominant
path in the integral above by solving the Euler-Lagrange equa-
tions for the Lagrangian above. These equations of motion are
given by

∂t xc = δpc − 2ε − 2iκ p̃q − κxc

+ 1
2χ

(
p3

c + 3pc p̃2
q + pcx2

c + pcx̃2
q + 2 p̃qxcx̃q

)
, (A3)

∂t pc = −δxc − κ (pc − 2ix̃q)

− 1
2χ

(
p2

cxc + 2pc p̃qx̃q + p̃2
qxc + x3

c + 3xcx̃2
q

)
, (A4)

∂t x̃q = 1
2χ

(
3p2

c p̃q + 2pcxcx̃q + p̃3
q + p̃qx2

c + p̃qx̃2
q

)
+ δ p̃q + κ x̃q, (A5)

∂t p̃q = − 1
2χ

(
p2

cx̃q + 2pc p̃qxc + p̃2
qx̃q + 3x2

c x̃q + x̃3
q

)
− δx̃q + κ p̃q. (A6)

If we examine these equations carefully it becomes clear that
there are no solutions for purely real values of xc, pc, p̃q, and
p̃q. If all coordinates are initialized to real values then xc and
pc will immediately evolve to complex values. However, we
may be able to find solutions where xc and pc are both real
while p̃q and p̃q are purely imaginary.

This may seem problematic since the path integrals in
the partition function above are over real values of p̃q and
p̃q. However, we can use Cauchy’s theorem to deform the
contours of integration to follow the imaginary axes without
changing the values of the integrals [18]. To account for this
we find it convenient to rewrite the equations of motion using

x̃q → −ipq, p̃q → ixq. (A7)

In terms of these real coordinates we find

∂t xc = δpc − 2ε + 2κxq − κxc

+ 1
2χ

(
p3

c − 3pcx2
q + pcx2

c − pc p2
q + 2xqxc pq

)
, (A8)

∂t pc = −δxc − κ (pc − 2pq )

− 1
2χ

(
p2

cxc + 2pcxq pq − x2
qxc + x3

c − 3xc p2
q

)
, (A9)

∂t xq = 1
2χ

(
pq p2

c − p3
q + 3pqx2

c − pqx2
q − xc pcxq

)
+ δpq + κxq, (A10)

∂t pq = 1
2χ

(
2pq pcxc + xq p2

q + x3
q − xqx2

c − 3p2
cxq

)
− δxq + κ pq. (A11)

The solution to the above equations of motion can be used
in the saddle-point approximation of the partition function.
For cases where κ becomes frequency dependent, e.g., at
finite temperature, the action will be nonlocal in time and the
saddle-point equations will become a set of coupled integro-
differential equations.

APPENDIX B: OBTAINING SWITCHING PATHS

1. Classical fixed points

The equations of motion (11) have three fixed points within
the classical plane, two of which are stable while the other is
unstable. The dim and bright fixed points are denoted by Zd

and Zb, respectively, and the unstable point is denoted Zu. The
two stable points each have their own basin of attraction and
the unstable point lies on the boundary which separates these
two basins.

To switch from one stable point to another the system must
leave the classical plane by utilizing the quantum dimensions
xq and pq. The path of least action takes the system to the
unstable point, from which it may move into the basin of
attraction of the other stable point.

2. Stability analysis

To classify the fixed points and understand the escape
mechanisms, we perform a comprehensive stability analysis
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by linearizing the full four-dimensional equations of motion
around each fixed point.

To linearize the equations of motion, we write the state of
the system as

Z(t ) = Z0 + �Z(t ), (B1)

where

Z0 = (xc0, pc0, xq0, pq0) (B2)

denotes the coordinates of a fixed point, and �Z(t ) represents
a small deviation from that point. Expanding the equations of
motion to first order in �Z(t ) yields

d

dt
�Z(t ) = J (Z0)�Z(t ), (B3)

where J (Z0) is the Jacobian matrix evaluated at Z0. The Jaco-
bian matrix J , evaluated at a fixed point Z0, is given by

J (Z0)i j = ∂Żi

∂Z j

∣∣∣∣
Z=Z0

. (B4)

The equations of motion can be written as

Ż = (ẋc, ṗc, ẋq, ṗq ) =
(

∂H

∂xq
,

∂H

∂ pq
,−∂H

∂xc
,− ∂H

∂ pc

)
, (B5)

and the explicit 4 × 4 Jacobian matrix is

J (Z0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2H
∂xq∂xc

∂2H
∂xq∂ pc

∂2H
∂x2

q

∂2H
∂xq∂ pq

∂2H
∂ pq∂xc

∂2H
∂ pq∂ pc

∂2H
∂ pq∂xq

∂2H
∂ p2

q

− ∂2H
∂x2

c
− ∂2H

∂xc∂ pc
− ∂2H

∂xc∂xq
− ∂2H

∂xc∂ pq

− ∂2H
∂ pc∂xc

− ∂2H
∂ p2

c
− ∂2H

∂ pc∂xq
− ∂2H

∂ pc∂ pq

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B6)

The eigenvalues and eigenvectors of the Jacobian J (Z0)
provide the local stability properties of the fixed point. Specif-
ically, consider the eigenvalue problem

J (Z0)vi = λivi. (B7)

Any small deviation from the fixed point can be expressed as
a linear combination of these eigenvectors:

�Z(t ) =
4∑

i=1

civie
λit , (B8)

where the coefficients ci are determined by the initial con-
dition �Z(0) = ∑4

i=1 civi. This expansion illustrates how
�Z(t ) evolves over time: each eigenmode evolves as eλt ,
where the real part of λ governs the exponential growth or
decay. Specifically, eigenvalues with positive real parts lead to
exponential growth of the corresponding perturbations, while
those with negative real parts result in exponential decay.
Moreover, if an eigenvalue is complex, its imaginary part will
introduce oscillatory behavior on top of this exponential trend.

Because the full system is Hamiltonian with canonical
coordinates for the classical and quantum fields, the Jacobian
is a symplectic matrix satisfying

JT 
J = 
, where 
 =
(

0 I2

−I2 0

)
, (B9)

where I2 is the 2 × 2 identity matrix. This symplectic structure
leads to important constraints on the eigenvalue spectrum: if
λ is an eigenvalue, then −λ must also be an eigenvalue. Com-
bined with complex-conjugate pairing, eigenvalues appear in
quadruplets: λ, −λ, λ∗, and −λ∗.

The symplectic structure also implies a crucial biorthog-
onality relation between left and right eigenvectors. For any
two distinct eigenvalues λi and λ j , their corresponding eigen-
vectors satisfy

wT
i 
v j = 0 if λi �= λ j, (B10)

where wi and v j are the left and right eigenvectors, re-
spectively. This orthogonality relationship is essential for
constructing escape trajectories because it determines which
linear combinations of eigenmodes correspond to physically
realizable paths in the four-dimensional phase space. Specifi-
cally, if v is a right eigenvector with eigenvalue λ, then 
v is
a left eigenvector with eigenvalue −λ, which couples the clas-
sical stability (negative eigenvalues) with quantum instability
(positive eigenvalues) and enables escape from classically
stable states.

3. Fixed point classification

For the stable fixed points, the classical equations of mo-
tion (restricted to xq = pq = 0) are not Hamiltonian due to
drive and dissipation. The stability behavior depends on the
location within the bistable regime. The eigenvalues are given
either by

λ ∈ {−κ1,−κ2} (B11)

near a saddle-node bifurcation (nodes with different decay
rates), where perturbations decay monotonically to the fixed
point, or by

λ ∈ {−κ − iω,−κ + iω} (B12)

deeper into the bistable regime (focus points with spiraling
decay), where perturbations exhibit damped oscillations. This
distinction between node and focus behavior has important
implications for the computational feasibility of finding es-
cape trajectories, as the spiraling motion can introduce widely
different timescales that challenge numerical methods.

When we extend the analysis to include quantum fields,
the system becomes Hamiltonian and we find two additional
eigenvalues with positive real parts that complete the expected
quadruplets:

λ ∈ {−κ1,−κ2, κ1, κ2} (B13)

near bifurcations, or

λ ∈ {−κ − iω,−κ + iω, κ − iω, κ + iω} (B14)

away from them. Crucially, the eigenvectors with positive
eigenvalues provide escape paths from the classically stable
points via quantum fluctuations. These unstable eigenvectors
have components in both classical and quantum dimensions,
illustrating how quantum fluctuations couple to classical
motion to enable transitions that would be forbidden in a
purely classical system. The coupling between classical sta-
bility (negative eigenvalues) and quantum instability (positive
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eigenvalues) is the mechanism by which the system can es-
cape from apparently stable states.

Meanwhile, at the saddle point in the classical case, the
eigenvalues are

λ ∈ {−κ1,+κ2}, (B15)

describing incoming and outgoing motion in the classical
plane. When quantum fields are included, these pair with

λ ∈ {−κ1,+κ2,+κ1,−κ2}. (B16)

The additional eigenvectors allow motion along directions
in the full four-dimensional phase space and provide stable
manifolds for escape trajectories to reach the saddle point.

4. Numerical implementation

The eigenvalue analysis reveals significant computational
challenges for finding escape trajectories. At small decay rates
deep in the bistable regime, stable fixed points exhibit strong
oscillatory behavior with the ratio of imaginary to real parts
of eigenvalues becoming very large. This causes escape tra-
jectories to have significant spiraling motion with slow escape
rates, where widely differing timescales and accumulation of
numerical errors make it challenging to find exact paths from
fixed points to the saddle point.

Near bifurcation points, one eigenvalue of the saddle
point approaches zero, indicating emergence of a soft mode
connecting the saddle to one of the stable fixed points.
This simplifies the escape dynamics and corresponds to the
one-dimensional Kramers problem, making trajectory compu-
tation more tractable.

The probability of a successful escape event is proportional
to eiS j→u , where iS j→u is the action calculated along the path
from stable fixed point j to the unstable point:

iS j→u = −
∫

Z j→Zu

dzc · zq. (B17)

This action is computed from the numerical solution of the
equations of motion.

The theoretical predictions for eigenvalue behavior can
be verified numerically across parameter space. Using pa-
rameters χ/κ = −0.1 and δ/κ = 7.8, we plot the real and
imaginary parts of the eigenvalues around each fixed-point
type, along with the upper and lower bifurcation lines to
clearly mark the limits of the bistable regime. Figures 5 and 6
show the eigenvalue spectra for the three types of fixed points
in our system.

Key features observed include: (1) complex eigenvalues
forming conjugate pairs across most of the parameter space
for stable points, indicating oscillatory motion (focus behav-
ior); (2) transition to purely real eigenvalues near bifurcation
points, transforming fixed points into nodes; and (3) for the
saddle point, eigenvalues maintain opposite signs throughout
the bistable regime, with one pair approaching zero near bi-
furcations indicating soft-mode emergence.

The implications for trajectory computation are illustrated
in Fig. 4, which shows classical decay trajectories from the
saddle to the dim fixed point under different conditions. In
the top-left panel we examine the system at small decay
rate (κ/δ = 0.1/7.8, ε/δ = 10.0/7.8) deep within the bistable

FIG. 5. Eigenvalue spectra of stable fixed points. Real and imag-
inary parts of eigenvalues for (top) dim fixed point and (bottom)
bright fixed point across parameter space. Both show the character-
istic transition from complex eigenvalues (focus behavior) in most
regions to real eigenvalues (node behavior) near bifurcation bound-
aries, indicating the change from oscillatory to monotonic approach
dynamics.

regime, leading to a focus point with decaying spiralling mo-
tion. The small value of the decay rate causes the motion to be
almost circular.
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FIG. 6. Eigenvalue spectrum of saddle point. Real and imag-
inary parts of eigenvalues for the saddle point across parameter
space. Unlike the stable fixed points, eigenvalues remain purely
real throughout the bistable regime, with characteristic opposite-sign
pairs confirming the unstable nature. One eigenvalue approaches zero
near bifurcations, indicating soft-mode emergence.

This poses a significant challenge when attempting to find
escape trajectories. The eigenvectors of the Jacobian which
allow escape are part of the same quadruplet as ingoing eigen-
vectors which control decaying motion. Just as the decaying
path has significant spiralling motion with slow relaxation
to the fixed point, the escaping trajectories will have signif-
icant spiralling motion with slow escape rates. The widely
differing timescales and accumulation of numerical errors
make it challenging to find the exact path from the fixed point
to the saddle point.

In the top-right panel we examine the system close to the
cusp point where the bistable regime closes (κ/δ = 4.3/7.8,
ε/δ = 25.6/7.8). The motion is quite different: the dim fixed
point becomes a node and the system moves almost linearly
from one point to the other, making it much easier to find the
exact trajectory.

Figure 7 quantifies the computational challenges by show-
ing how the ratio of imaginary to real eigenvalue parts
diverges at small decay rates, making numerical path-finding
increasingly difficult due to the separation of timescales be-
tween fast oscillatory motion and slow escape dynamics.

The emergence of soft modes near bifurcation points is
illustrated in Fig. 8, which shows how one eigenvalue of the
saddle point approaches zero as the system approaches the bi-
furcation. This soft mode represents the critical slowing down
of dynamics perpendicular to the approaching bifurcation,
providing insight into the mechanism by which the saddle
point and stable fixed point merge at the bifurcation boundary.

FIG. 7. Parameter regimes for trajectory computation. Ratio of
imaginary to real parts of eigenvalues for dim and bright fixed points.
The diverging ratio as decay rate approaches zero indicates increas-
ing computational difficulty, which can be mitigated by working
close to bifurcation points where the ratio remains finite.

5. Switching path problem formulation

Our objective is to find optimal paths Z(t ) that connect
stable fixed points Z0 (nodes or foci) to the saddle point Zs.
These paths represent the most probable escape trajectories in
the four-dimensional phase space and determine the switching
rates between metastable states.

The key insight is to use the eigenvector structure of the
Jacobian at both fixed points to set appropriate boundary
conditions. Small deviations from any fixed point can be
expressed in the eigenvector basis, allowing us to control the
boundary conditions by specifying which eigenvector direc-
tions are active at the start and end of the trajectory.

At each fixed point, the Jacobian possesses both incoming
(stable) and outgoing (unstable) eigenvector directions. For a
proper switching trajectory, we require that at the initial time
the deviation lies purely along eigenvectors leaving the stable
point, and at the final time the deviation lies purely along
eigenvectors arriving at the saddle point.

FIG. 8. Soft-mode emergence at saddle point. Ratio of eigen-
values at the saddle point showing the onset of the soft mode. The
vanishing of the λ0 eigenvalue at the bifurcation point indicates the
disappearance of the restoring force as the saddle point merges with
the stable fixed point, revealing the critical slowing down character-
istic of the approach to the bifurcation.
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With these paths, we calculate the corresponding action
using the simplified form

Saux = −
∫

dt[ẋcxq + ṗc pq], (B18)

since the Hamiltonian is conservative and the initial and final
points lie in the classical plane where H = 0.

6. Numerical solution via collocation

To find the switching paths connecting stable fixed points
to the saddle point, we formulate a boundary-value problem
(BVP) with appropriate boundary conditions derived from our
stability analysis and we solve this BVP using a collocation
method implemented in SCIPY’s solve_bvp function [38].
This method expresses the path in terms of cubic splines
between a mesh of points known as collocation points. The
solver determines the position of the collocation points such
that the equations of motion are satisfied to a given tolerance
at each point.

The boundary conditions are set using the eigenvector
structure at each fixed point to ensure proper asymptotic be-
havior. This approach transforms the infinite-time problem
into a finite-time boundary-value problem while preserving
the essential physics.

At the stable fixed point Z0. At t → −∞, the trajectory
must depart along the unstable manifold. For finite times ti,
we enforce this by requiring that the initial deviation aligns
only with unstable eigenvectors:

Li · [Z(ti ) − Z0] = 0 for stable modes, (B19)

where Li are the left eigenvectors corresponding to stable
eigenvalues.

At the saddle point Zs. At t → +∞, the trajectory must
arrive along the stable manifold. For finite times t f , we enforce
this by requiring that the final deviation aligns only with stable
eigenvectors:

L j · [Z(t f ) − Zs] = 0 for unstable modes, (B20)

where L j are the left eigenvectors corresponding to unstable
eigenvalues.

These projection conditions are implemented using the
biorthogonality relationship between left and right eigenvec-
tors. If the right eigenvectors are arranged in matrix R and the
corresponding normalized left eigenvectors in matrix L, then
any deviation �Z can be expanded as �Z = Rc, where the
coefficients are extracted by c = L�Z. The boundary condi-
tions then simply require setting specific coefficients to zero.

Two main numerical considerations are important for
convergence:

(1) We must use a finite time domain [ti, t f ] instead of
the theoretical [−∞,+∞], but the domain should be long
enough to ensure the initial and final states are close to the
fixed points.

(2) The error tolerance in the collocation method controls
the accuracy of the solution, with lower tolerances requiring
more collocation points.

(3) An initial guess must be provided for the path between
the fixed points. Convergence of the solution is dependent on
the quality of this initial guess.

Convergence is verified by checking that the calculated
action stabilizes with respect to changes in the time domain
and error tolerance. For the calculations in this paper we used
(t f − ti )/δ = 1.28, a maximum number of 1 × 106 colloca-
tion points, and the default error tolerance of 1 × 10−3 at each
collocation point.

The collocation method also requires an initial guess. We
typically use linear interpolation between the fixed points,
which works well near saddle-node bifurcations where the
fixed points are close. For more complex paths deeper in
the bistable regime, we employ numerical continuation, using
solutions from nearby points in parameter space as initial
guesses.

Once we obtain the switching path Z(t ), we can finally cal-
culate the action, which determines the switching rate between
the metastable states, with lower action corresponding to more
probable transitions.

The computational implementation of these methods is
available as open-source Python code, providing a practical
framework for applying the instanton approach to the driven-
dissipative system considered in this paper [37].

7. Validation and results

The switching path methodology has been extensively val-
idated through comparison with analytical predictions and
numerical simulations. We have computed switching paths
and their corresponding actions across different parameter
regimes, with particular focus on two key scenarios.

Systematic studies as functions of both κ (at fixed ε/δ =
2.44) and ε (at fixed κ/δ = 0.240) demonstrate the method’s
robustness across the bistable regime. The switching paths
were computed using boundary-condition thresholds of 10−3

to 10−2 for proper manifold alignment, with numerical in-
tegration performed over finite time domains of (t f − ti )δ =
78.0 to 85.8.

Figure 9 shows the results for switching paths and actions
as a function of κ at fixed ε/δ = 2.44. The upper panel dis-
plays the bifurcation structure with the red and blue lines
representing the unstable-bright and unstable-dim bifurcation
boundaries, respectively. The lower panel shows the calcu-
lated actions for both switching directions: red line for the
bright-to-unstable transition Rb→u and blue line for the dim-
to-unstable transition Rd→u, alongside the analytical Kramers
predictions (dashed lines).

Similarly, Fig. 10 presents results for the complementary
parameter sweep as a function of ε at fixed κ/δ = 0.240.
The structure mirrors the κ sweep but with the parameter cut
oriented vertically in the bifurcation diagram.

8. Comparison with Kramers theory

Close to bifurcation points, our numerically computed
Keldysh actions show excellent agreement with analytical
Kramers predictions, validating the numerical approach in the
regime where one-dimensional approximations are valid. The
actions are measured relative to the scaled Planck constant
λ = χ/δ. Deeper into the bistable regime, the methods di-
verge, indicating the breakdown of the one-dimensional (1D)
approximation and demonstrating the necessity of the full
four-dimensional treatment.
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FIG. 9. Switching paths and actions vs κ . Parameter sweep at
fixed ε/δ = 2.44 showing (upper panel) the bifurcation structure
and (lower panel) the calculated Keldysh actions Rb→u (red) and
Rd→u (blue) compared with analytical Kramers predictions (dashed
lines). Actions are measured relative to λ = χ/δ. Close agreement
near bifurcation points validates the numerical approach, while di-
vergence deeper in the bistable regime indicates breakdown of the
one-dimensional approximation.

FIG. 10. Switching paths and actions vs ε. Parameter sweep at
fixed κ/δ = 0.240 showing (upper panel) the bifurcation structure
and (lower panel) the calculated Keldysh actions compared with an-
alytical Kramers predictions. The agreement validates the numerical
approach close to bifurcation points, while convergence challenges
in the middle of the bistable regime prevent action calculation in that
region.

9. Computational challenges

The method’s effectiveness depends on the parameter
regime. Near saddle-node bifurcations, where fixed points
are close and soft modes emerge, linear interpolation pro-
vides adequate initial guesses and convergence is readily
achieved. However, at small decay rates deep in the bistable
regime, where stable fixed points exhibit strong oscillatory
behavior, numerical continuation from neighboring parameter
points becomes essential for obtaining converged solutions.
In the middle of the bistable regime for the ε sweep, con-
vergence was not achieved, highlighting these computational
limitations.

The complete computational framework, including param-
eter sweep generation, path calculation, and action evaluation,
is available in the open-source metastable Python package
[37], providing a practical toolkit for applying the instanton
approach to driven-dissipative quantum systems.

APPENDIX C: EXTRACTING BRIGHT AND DIM STATES
FROM LIOUVILLIAN EIGENVECTORS

In the following we show how the relaxation rate γtotal and
stationary probabilities pss

b(d) can be calculated by studying
the Lindblad master equation directly. The eigenvalues and
eigenvectors of the Liouvillian matrix were found using the
Lanczos eigensolver available in SCIPY [38]. This provides an
alternative method for calculating the switching rates which
can then be compared with the results of the Keldysh formal-
ism. The master equation in question is given by

∂tρ = −i[H, ρ] + κ (aρa† − a†aρ − ρa†a). (C1)

Since the master equation is linear, we can rewrite the evolu-
tion in terms of the Liouvillian superoperator L [39],

∂tρ = Lρ. (C2)

The eigenvalue equation of this operator takes the form
Lρm = −(γm + iωm)ρm, where the real and imaginary com-
ponents of the complex eigenvalues are denoted by γm and
ωm, respectively. We can write down the evolution of a state
in this eigenbasis as

ρ(t ) =
∑

m

cme−(γm+iωm )tρm. (C3)

We see that γm represents the decay rate of the component
ρm and ωm represents its oscillation frequency. It is known
that γm � 0 for all eigenvectors [39] and this ensures that
ρ is well behaved at long times. States for which γm > 0
will decay over time until the only remaining components of
ρ(t ) consists of those eigenvectors for which γm = 0. For our
system we expect a single such eigenvector which forms the
steady state, denoted ρss. In the bistable regime this state will
consist of a mixture of the two metastable states, as we can see
in the Wigner function displayed in Figs. 1(a) and 1(b) and in
the trajectory displayed in Figs. 2(a) and 2(b):

ρss = pbρb + pdρd. (C4)

However, we are also interested in the asymptotically decay-
ing eigenvector, i.e., the eigenvector with the smallest finite
value of γm, which will be denoted ρad. At long times the
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state of the system will consists of a mixture of the steady-
state and this asymptotically decaying eigenvector, all other
eigenvectors having already decayed to negligible levels.

We now have two alternative descriptions of the transient
response of the system: one from the Keldysh approach and
one from the Liouvillian approach. The Keldysh approach
shows us that the system approaches steady-state via switch-
ing events between the two metastable states which eventually
cause the system to reach a dynamic equilibrium whereby
the rates in each direction are balanced. This equilibration
occurs at the rate described in Eq. (14). But now we see that
this process is also described by the decay of an unknown
asymptotically decaying eigenvector at rate γad. These rates
are in fact identical, i.e., γad = γtotal.

Furthermore, in our two-state approximation we can show
that the asymptotically decaying state is proportional to the
difference between the bright and dim states ρad ∝ ρd − ρb.
The argument is as follows: In the two-state approximation
we can write the asymptotically decaying state as

ρad = Ndρd + Nbρb, (C5)

where Nd and Nb are constants that will be determined below.
Meanwhile, at long times we can rewrite Eq. (C4) as

ρ(t ) = ρss + cadρade−γadt . (C6)

Since ρd, ρb, ρ(t ), and ρss are all physical states their traces
are all equal to 1. Applying this above we find

Tr[ρ(t )] = Tr(ρss) + cadTr(ρad )e−γadt , (C7)

1 = 1 + cadTr(ρad )e−γadt . (C8)

This can only be satisfied in general if Tr(ρad ) = 0 and hence
we must have Nd = −Nb. Hence the asymptotically decaying
state can be written as

ρad = N (ρd − ρb), (C9)

where the normalization factor N = Nd = −Nb.
Given that the steady and asymptotically decaying eigen-

vectors are linearly independent mixtures of bright and dim
states, we might consider how we can combine them to isolate
their components and the corresponding occupation probabil-
ities. These could then be used to calculate the switching rates
in Eq. (14).

In Fig. 11 we illustrate the method of extracting the
bright and dim states from the eigenstates of the Liouvil-
lian superoperator describing the evolution of the state at
(χ/κ, δ/κ, ε/κ ) = (1.0, 6.0, 3.6). We first display the Wigner
functions of the steady state ρss [Fig. 11(a)] and the asymptot-
ically decaying eigenvector ρad [Fig. 11(b)] and we observe
that these components both consist of a weighted sum of
bright and dim states according to the structure outlined in
Eqs. (C4) and (C9). In the steady state the weights correspond
to probabilities and are both positive, resulting in the two
peaks observed in Fig. 11(a). Meanwhile in the asymptotically
decaying eigenvector the weights are equal in magnitude but
opposite in sign, which results in the peak and dip seen in
Fig. 11(b).

FIG. 11. Extracting the metastable states from the Liouvil-
lian. Wigner functions of the steady state [panels (a)] and the
asymptotically decaying eigenvector [panels (b)] produced at
(χ/κ, δ/κ, ε/κ ) = (1.0, 6.0, 3.6). The steady state is a mixture of
the two metastable states while the asymptotically decaying eigen-
vector is an antisymmetric mixture. This allows us to reconstruct the
metastable states from a sum of steady and asymptotically decaying
eigenvectors. (c) The smallest eigenvalue of τ ( f ) = ρss + f ρad. At
f = fb and f = fd the state τ ( f ) consists entirely of the (d) dim and
(e) bright states, respectively.

These two states can be combined to form the mixture τ

defined by

τ ( f ) = ρss + f ρad

= (pb − f N )ρb + (pd + f N )ρd. (C10)

To extract the bright and dim states we plot the minimum
eigenvalue min(τ ) against f in Fig. 11(c) and identify the
points at which this eigenvalue falls below zero. Finally, we
plot the Wigner functions of the resulting bright and dim
states. In Fig. 11(d) we display ρd ∝ τ ( fd ) while in Fig. 11(e)
we display ρb ∝ τ ( fb). We see that these states consist of a
single peak, as expected.

In order that ρb and ρd are both physically realistic states
they should be positive semidefinite, i.e., they should have no
negative eigenvalues. If we define the function min(τ ), which
returns the smallest eigenvalue of τ , then our condition can
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now be stated as min(ρb), min(ρd ) � 0. Next we assume the
metastable states do not overlap, i.e., Tr(ρbρd ) = 0, which is
a good approximation provided the drive amplitude is suf-
ficiently strong for the bistable states to be well separated.
Given this assumption, the state τ ( f ) will be positive semidef-
inite if and only if the coefficients of the bistable states are
both greater than or equal to zero. Therefore, we can identify
the values fd = pb/N and fb = −pd/N by plotting min[τ ( f )]
as a function of f and locating where this function falls below
zero. The values of fb and fd thus obtained are then combined
with the normalization pb + pd = 1 to obtain the occupation
probabilities

pb = fb

fb − fd
, pd = − fd

fb − fd
, (C11)

which are plotted in Fig. 2(c).

APPENDIX D: SCALING OF THE BARRIER HEIGHT

Close to saddle-node bifurcation points, switching between
metastable states can be expressed as a one-dimensional
Kramers problem [13]. The barrier height for escape from
a metastable state is quantified by the quantum activation
energy, RA, given by

RA =
√

2|η|3/2

3DB|b|1/2β
3/4
B

. (D1)

This expression involves four key quantities: η, DB, b, and βB.
In the following, we summarize the parameter definitions and
relationships from Ref. [13] and explain how these parameters
are related to the variables used in the body of this paper: κ ,
δ, χ , and ε.

1. Distance from bifurcation

The parameter η measures the distance from the bifurcation
point and is defined as

η = β − βB, (D2)

where β is a dimensionless measure of the drive strength
and βB denotes the bifurcation value of β. In our analysis, η

indicates how far the system is from the critical point at which
the metastable state vanishes.

2. Driving strength

The drive intensity parameter β is obtained via

β = 2λε2

δ2
, (D3)

where
(1) λ is the effective (rescaled) Planck constant,
(2) ε is the amplitude of the drive, and
(3) δ is the detuning.

3. Scaled Planck Constant

The effective Planck constant is given by

λ = χ

|δ| , (D4)

where χ is the nonlinearity of the oscillator. In our analysis,
λ quantifies the magnitude of quantum fluctuations and is
assumed to be small in the semiclassical regime.

4. Diffusion coefficient

The diffusion coefficient DB, which characterizes the
noise-induced diffusion of the slow variable near the bifur-
cation, is given by

DB = 1

2

, (D5)

under the assumptions of zero thermal occupation and negligi-
ble dephasing. Here, 
 sets the scale of the system dynamics.
The parameter 
 is defined as


 = |δ|
κ

, (D6)

where
(1) |δ| is the magnitude of the detuning, and
(2) κ is the damping rate.

5. Bifurcation threshold

The quantity βB represents the bifurcation point, i.e., the
critical value of β at which a metastable state merges with
a saddle point. In our analysis, two bifurcation thresholds
emerge (denoted β1 and β2). They are expressed in terms of

 as

β(1,2)B = 2

27

[
1 + 9


2
∓

(
1 − 3


2

)3/2
]
, (D7)

where the upper (−) and lower (+) signs correspond to the
different branches of the bifurcation diagram.

6. Curvature parameter and its calculation

The parameter b, which encodes the local curvature of the
effective potential near the bifurcation, is given by

b = −β
1/2
B

1

2YB
[1 − 2
2YB + 
2]. (D8)

The quantity YB is expressed in terms of 
 as

YB = 1

3

[
2 ±

√
1 − 3


2

]
, (D9)

where the choice of sign depends on the particular bifurcation
branch under consideration.
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