
Optimizing Case-Based Reasoning System for Functional Test
Script Generation with Large Language Models

Siyuan Guo∗
School of Artificial Intelligence,

International Center of Future Science
Jilin University

Changchun, China
guosyjlu@gmail.com

Huiwu Liu
Huawei Technologies Ltd.

Nanjing, China
liuhuiwu@huawei.com

Xiaolong Chen
Huawei Technologies Ltd.

Nanjing, China
chenxiaolong42@huawei.com

Yuming Xie
Huawei Technologies Ltd.

Nanjing, China
yuming.xie@huawei.com

Liang Zhang
Huawei Technologies Ltd.

Nanjing, China
zhangliang1@huawei.com

Tao Han
Huawei Technologies Ltd.

Nanjing, China
hantao@huawei.com

Hechang Chen†
School of Artificial Intelligence

Jilin University
Changchun, China
chenhc@jlu.edu.cn

Yi Chang†
School of Artificial Intelligence,

International Center of Future Science
Jilin University

Changchun, China
yichang@jlu.edu.cn

Jun Wang†
University College London

London, UK
jun.wang@cs.ucl.ac.uk

Abstract
In this work, we explore the potential of large language models
(LLMs) for generating functional test scripts, which necessitates
understanding the dynamically evolving code structure of the tar-
get software. To achieve this, we propose a case-based reasoning
(CBR) system utilizing a 4R cycle (i.e., retrieve, reuse, revise, and
retain), which maintains and leverages a case bank of test intent
descriptions and corresponding test scripts to facilitate LLMs for
test script generation. To improve user experience further, we in-
troduce Re4, an optimization method for the CBR system, com-
prising reranking-based retrieval finetuning and reinforced reuse
finetuning. Specifically, we first identify positive examples with
high semantic and script similarity, providing reliable pseudo-labels
for finetuning the retriever model without costly labeling. Then, we
apply supervised finetuning, followed by a reinforcement learning
finetuning stage, to align LLMs with our production scenarios, en-
suring the faithful reuse of retrieved cases. Extensive experimental
results on two product development units from Huawei Datacom
demonstrate the superiority of the proposed CBR+Re4. Notably,
we also show that the proposed Re4 method can help alleviate the
repetitive generation issues with LLMs.
∗This work was done during the internship at Huawei.
†Corresponding Authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’25, August 3–7, 2025, Toronto, ON, Canada.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1454-2/25/08
https://doi.org/10.1145/3711896.3737254

CCS Concepts
• Computing methodologies→ Natural language generation.

Keywords
Case-Based Reasoning; Large Language Model; Test Script Genera-
tion; Functional Testing; Reinforcement Learning

ACM Reference Format:
Siyuan Guo, Huiwu Liu, Xiaolong Chen, Yuming Xie, Liang Zhang, Tao
Han, Hechang Chen, Yi Chang, and Jun Wang. 2025. Optimizing Case-
Based Reasoning System for Functional Test Script Generation with Large
Language Models. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V.2 (KDD ’25), August 3–7, 2025,
Toronto, ON, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3711896.3737254

1 Introduction
Software testing is a critical phase in the software development
lifecycle, ensuring the quality and reliability of software products.
Functional testing, a key component of this process, verifies that the
software’s features and operations align with the specified require-
ments, thereby meeting user expectations. In Huawei Datacom,
writing test scripts constitutes approximately 40% of the workload
in functional testing. Even seasoned test engineers can produce
only one or two test scripts per day, highlighting an urgent need to
improve the efficiency of script writing.

Large language models (LLMs) have demonstrated remarkable
success in complex code generation tasks, such as bug fixing [16, 32],
automated data science [9, 10], and code translation [21, 45]. Yet,
their application in software testing has primarily focused on unit
test generation [3, 35], leaving the more complex domain of func-
tional testing underexplored [33]. In this work, we investigate the
potential of LLMs to assist test engineers in generating functional

ar
X

iv
:2

50
3.

20
57

6v
2

 [
cs

.S
E

]
 2

2
M

ay
 2

02
5

https://doi.org/10.1145/3711896.3737254
https://doi.org/10.1145/3711896.3737254
https://doi.org/10.1145/3711896.3737254

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Guo et al.

Navigate to the login page, enter an invalid username or password,
and click Login. The system will display an error message.

Test Intent Description

Test Script

navigate_to_login_page()

enter_username("invalid_user")

enter_password("wrong_password")

click_login_button()

assert get_message() == "Invalid credentials"

Figure 1: An example of the functional test script.

test scripts. Different from unit test generation, functional test
scripts require invoking existing functions within the target soft-
ware to build workflows based on the test intent description, as illus-
trated in Figure 1. This requirement goes beyond the static knowl-
edge embedded in LLMs. Furthermore, as the software evolves with
each version, the knowledge of the code structure should be also
continuously updated. Unfortunately, such dynamic knowledge
cannot be directly integrated into the context of LLMs due to the
lengthy code structure of the target software, while performing
continual finetuning is computationally expensive and inefficient.

To address the aforementioned challenge, we adopt a classic
AI problem-solving paradigm, case-based reasoning (CBR) [1, 10,
18, 36], which maintains a structured case bank of past test intent
descriptions and corresponding test scripts to enhance the capa-
bilities of LLMs in test script generation. As shown in Figure 2(a),
we employ the classic 4R cycle [1] to construct the CBR system,
which consists of four steps: (1) Retrieve similar cases from the
case bank based on the given test intent description; (2) Reuse
the retrieved cases to generate the test script using LLMs; (3) Re-
vise the generated test scripts by human test engineers; (4) Retain
the revised test script and corresponding test intent description
into the case bank for future use. Benefiting from the CBR system,
LLMs can utilize the mapping between test intent descriptions and
corresponding function calls from the retrieved cases to generate
test scripts. Additionally, the CBR system offers a flexible learning
mechanism by continuously retaining human-validated cases in
the case bank during the deployment stage.

Thanks to the zero-shot capabilities of pretrained retriever mod-
els and LLMs, the CBR system has shown initial effectiveness in our
production scenario. To further enhance the user experience, we
aim to optimize the Retrieve and Reuse steps within the CBR system,
as the other steps do not rely on machine learning models. For the
Retrieve step, finetuning the retriever model can be challenging due
to the lack of ground-truth labeled data. While previous works pro-
pose to utilize the feedback from LLMs to generate pseudo-labels
[6, 29, 30], their applicability in our production scenario is limited
by the high computational and time costs associated with intensive
LLM interactions. In terms of the Reuse step, supervised finetun-
ing (SFT) appears promising for enabling LLMs to generate test
scripts by reusing the retrieved cases. However, ground-truth test
scripts typically include function calls absent from the retrieved
cases. As a result, the SFT objective may push LLMs to generate
unseen functions, introducing noise during alignment and thereby

exacerbating hallucination issues during inference, which would
undermine the user experience.

To this end, we proposeRe4, an optimizationmethod for the CBR
system with reranking-based retrieval finetuning and reinforced
reuse finetuning. Given that test script generation can be viewed
as a text-to-code translation task, similar test scripts are expected
to share similar test intent descriptions. Building on this insight,
we propose a reranking-based retrieval finetuning method, which
identifies positive examples with both high semantic and script
similarity. This can provide reliable pseudo-labels for contrastive
learning, enabling the finetuning of the retriever model without
the need for costly human labeling or feedback from LLMs. More-
over, we propose a reinforced reuse finetuning method to align the
LLM with our production scenario, ensuring faithful reuse of the
retrieved cases for test script generation. We first perform SFT as
a warm-up stage to establish initial alignment. Following this, we
introduce a reinforcement learning finetuning (RLFT) stage with a
critic-free online reinforcement learning algorithm, REINFORCE
[39]. In this stage, we leverage the similarity between the generated
script and the ground-truth test script as the golden reward to fur-
ther refine the alignment, which eliminates the undesired behavior
patterns introduced during the SFT stage. We present extensive
experimental results to demonstrate the effectiveness of the pro-
posed Re4 optimization method. Empirically, CBR+Re4 outperforms
other baselines on datasets collected from two product develop-
ment units (PDUs) at Huawei Datacom. Notably, CBR+Re4 can also
effectively alleviate the repetitive generation issues encountered
with the previously deployed CBR+SFT method.

We summarize the contributions of our work as follows:
• To the best of our knowledge, this is the first attempt to
utilize LLMs to assist test engineers in functional testing.
• We propose a CBR system to enhance the capabilities of
LLMs for functional test script generation.
• We introduce the Re4 method to finetune both the retriever
model and the LLM within the CBR system, ensuring better
alignment with our production scenario.
• We conduct extensive experiments on real-world datasets
from Huawei Datacom to demonstrate the superiority of the
proposed Re4 method. Meanwhile, our findings show that
CBR+Re4 alleviates the repetitive generation issues of LLMs,
further improving the user experience.

2 Preliminaries
To clearly explain the problem under investigation, we first intro-
duce the overall case-based reasoning framework for functional
test script generation with large language models, and then present
the business metric in our production scenario.

2.1 The Case-Based Reasoning System
In this work, we focus on investigation of functional test script
generation with large language models (LLM). Given a test intent
description 𝑞, LLMs are tasked with generating the corresponding
test script 𝑦, which can be framed as a text-to-code generation
problem. However, different from general text-to-code generation
problems and other test script generation tasks (e.g., unit test genera-
tion), functional test script generation requires LLMs to understand

Optimizing Case-Based Reasoning System for Functional Test Script Generation with Large Language Models KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Positive NegativeCase Bank

Retrieve

Reuse

Revise

Retain

Test Intent
Description

(a) The CBR System (b) Reranking Based Retrieval Finetuning (c) Reinforced Reuse Finetuning

Retriever Model

Case Bank
Top- Case

LLM

Supervised Finetuning

SFT

On-Policy Sampling

Semantic
Similarity

Script
Similarity

Retriever Model🔥
InfoNCE

Loss

Finetuned LLM🔥

Reinforcement Learning Finetuning

LLM

Initialization

🔥

REINFORCE

Dataset

Reward
Function

(q, Cq)

(q, Cq)

y

y

ŷ ŷ

{(q, Cq, y)}

{(q, Cq, y)}

(q, Cq, ŷ, r)

sim(ŷ, y)

q

y

q

{(qi, yi)}

(q, y)

ωω

ωω ωωSFT

yi1 > yi2 > ... > yik

qi1 qi2 ... qik

q1 > q2 > ... > qk

y1 y2 ... yk

k

FF1 Score Based Reranking

Eω

Eω

c+ C→

C→

Figure 2: The overall paradigm of the proposed CBR+Re4. (a) The CBR system, which follows a 4R cycle of Retrieve, Reuse, Revise
and Retain; (b) Reranking-based retrieval finetuning, which identifies cases with both high semantic and script similarity as
positive examples and applies contrastive learning for finetuning; (c) Reinforced reuse finetuning, which consists of supervised
finetuning and function f1 score based reinforcement learning finetuning for LLMs.

detailed code structures of the target software. Given that the size
of industrial software typically exceeds the token capacity of LLMs,
this task still remains underexplored [33].

In our production scenario, there exist a large collection of func-
tional test scripts written by human test engineers for each software,
containing rich implicit knowledge that maps test intent description
to test scripts. To fully harness this wealth of knowledge, we adopt
a classic problem-solving paradigm, case-based reasoning (CBR)
[1, 18, 36], to enhance the capabilities of LLMs for functional test
script generation. Specifically, we follow the classic 4R CBR cycle
[1], which contains four steps: (1) Retrieve similar cases from the
case bank; (2) Reuse the retrieved cases to solve the current task;
(3) Revise the solution to guarantee the correctness for the current
task; (4) Retain the task and the solution into the case bank. The
overall workflow of CBR system is demonstrated in Figure 2(a).

We now provide a detailed description of the CBR system for
functional test script generation with LLMs. Given a test intent
description 𝑞, the CBR system first retrieves top-𝑀 similar cases
from the case bank C = {𝑐𝑖 }𝑁𝑖=1 with each case 𝑐𝑖 = (𝑞𝑖 , 𝑦𝑖). To
achieve this, we utilize a pretrained embedding model E𝜙 (·) as the
retriever model to calculate the semantic similarity between two
test intent descriptions 𝑞 and 𝑞′ as:

sim𝜙 (𝑞, 𝑞′) = cos⟨E𝜙 (𝑞), E𝜙 (𝑞′)⟩. (1)

Next, the LLM 𝜋𝜃 (·) reuses the retrieved cases C𝑞 = {𝑐𝑖 }𝑀𝑖=1 to
generate the test script, i.e., 𝑦 ∼ 𝜋𝜃 (·|𝑞, C𝑞). Human test engineers
then verify the correctness of the generated test scripts and revise
them as necessary. Finally, the test intent description 𝑞 and the
corresponding revised test script 𝑦 are retained into the case bank,
i.e., C ← C ∪ {(𝑞,𝑦)}. We summarize the workflow of this CBR
system in Algorithm 1 in Appendix A.2.

Note that the aforementioned Retrieve-Reuse process in the
CBR system is similar to the retrieval-augmented generation (RAG)

techniques [7, 25, 34]. The key difference is that RAG retrieves
relevant document chunks to provide detailed context for LLM
generation, whereas CBR retrieves similar cases to enable analogical
reasoning for task-solving. Furthermore, the CBR system benefits
from the Retain step to achieve a flexible learningmechanism during
deployment, eliminating the need for resource-intensive finetuning.

2.2 Business Metric
In the context of our production scenario, the goal is to assist human
test engineers in improving their efficiency in writing functional
test scripts, rather than fully automating the process in current stage.
This decision is driven by two main considerations: (1) the provided
test intent descriptions are often not detailed enough to enable
complete test script generation by LLMs; (2) the retrieved cases
may not comprehensively cover the software structures required
for functional test script generation. Therefore, the acceptance rate,
the percentage of generated test scripts accepted by human test
engineers, can be regarded as the online business metric. However,
this metric is significantly biased in practice, as user preferences
for accepting generated test scripts vary widely. Worse still, the
limited number of users within each PDU prevents the mitigation
of bias through the law of large numbers.

To solve this issue, we design offline business metrics by eval-
uating the script similarity between the generated test script 𝑦
and the ground-truth test script 𝑦. This task is particularly chal-
lenging due to the vast space of functionally equivalent code. One
notable characteristic of our production scenario is that functional
test scripts focus on invoking functions to structure the desired
workflow. Thus, the accuracy of functions within the generated
test script is crucial for achieving high user satisfaction. Based on
this observation, we propose to measure the script similarity with
three offline business metrics: function precision, function recall

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Guo et al.

and function f1 score, defined as follows:

FPrecision(𝑦,𝑦) = |Func(𝑦) ∩ Func(𝑦) ||Func(𝑦) | , (2)

FRecall(𝑦,𝑦) = |Func(𝑦) ∩ Func(𝑦) ||Func(𝑦) | , (3)

FF1(𝑦,𝑦) = 2 · FPrecision(𝑦,𝑦) · FRecall(𝑦,𝑦)
FPrecision(𝑦,𝑦) + FRecall(𝑦,𝑦) , (4)

where Func(·) returns the set of functions invoked in the test script.
Among them, function precision measures the accuracy of the
functions called in the generated test script, while function recall
evaluates how well the generated test script covers the functions
in the ground-truth test script. The function f1 score balances both
precision and recall, providing a comprehensive measure of over-
all performance. Hence, the function f1 score is the most crucial
business metric in our production scenario.

In addition to these three metrics, we also incorporate code sim-
ilarity [8], measured using a normalized Levenshtein distance [19]
score, as a complementary metric. We defer implementation details
of the aforementioned offline business metrics to Appendix A.1.

3 Methodology
In this section, we aim to optimize the aforementioned CBR system
for better alignment with our production scenario. As Revise and
Retain steps do not involve machine learning models, we focus on
optimizing the retriever model E𝜙 (·) in the Retrieve step, and the
LLM 𝜋𝜃 (·) in the Reuse step. We introduce Re4, an optimization
method for our CBR system, comprising two key components: (1)
a reranking-based retrieval finetuning method, which optimizes
the retriever model to retrieve cases more similar to the query,
and (2) a reinforced reuse finetuning method, which enables LLMs
to faithfully reuse the retrieved cases for solving new tasks. The
overall framework of Re4 is illustrated in Figure 2.

In this work, we adopt the offline training strategy to avoid
high computational costs required in real-time online training. Let
D = {(𝑞𝑖 , 𝑦𝑖)}𝑁𝑖=1 be the training set with 𝑁 samples, where 𝑞𝑖 is
the 𝑖-th test intent description, and 𝑦𝑖 is the corresponding test
script. For each sample (𝑞𝑖 , 𝑦𝑖) ∈ D, we regard the other samples
in the training set as the case bank, i.e., C = D \ {(𝑞𝑖 , 𝑦𝑖)}.

3.1 Reranking-based Retrieval Finetuning
In the CBR system, the Retrieve step is crucial for retrieving simi-
lar cases from the case bank to support the subsequent Reuse step.
While pretrained embedding models offer strong zero-shot retrieval
performance, we aim to further finetune the models to better align
with the specific corpus of our production scenario. Therefore, we
utilize contrastive learning, a widely adopted approach for repre-
sentation learning, to finetune the pretrained embedding model.
Formally, given a test intent description 𝑞 with an associated pos-
itive example 𝑐+ = (𝑞+, 𝑦+) and a pool of negative examples C− ,
the well-known InfoNCE loss [15, 23] is defined as

L(𝜙) = −
exp(sim𝜙 (𝑞, 𝑞+)/𝜏)

exp(sim𝜙 (𝑞, 𝑞+)/𝜏) +
∑
𝑞−∈C− exp(sim𝜙 (𝑞, 𝑞−)/𝜏)

,

(5)
where 𝜏 denotes the hyper-parameter for temperature. Different
from general retrieval problems [17, 22, 41, 47], positive examples

are not explicitly available in our setting, making the key challenge
the effective mining of positive and negative examples for a given
query. One promising approach is to leverage LLMs to provide
pseudo-labels of positive and negative examples [6, 29, 30]. How-
ever, this requires multiple rounds of sampling from LLMs, resulting
in significant computational and time costs.

To address this challenge, we aim to identify the positive exam-
ple based on the nature of our production scenario. As the basic
assumption of CBR [4, 14] — that similar problems have similar solu-
tions — is invertible in text-to-code generation due to its translation
nature, we can expect that similar test scripts should correspond
to similar test intent descriptions. Therefore, we identify positive
examples as those with both high semantic similarity and script
similarity. Since functional testing emphasizes invoking functions
to construct workflows, the script similarity can be effectively mea-
sured using the function f1 score, as defined in Eq. (4). Based on the
aforementioned findings, we propose a reranking-based retrieval
finetuning method, as shown in Figure 2(b).

Given a case (𝑞,𝑦), we first retrieve top-𝑘 cases from the case
bank C based on the semantic similarity defined in Eq. (1), i.e.,

C′ = arg top-𝑘
(𝑞′,𝑦′) ∈C

sim𝜙 (𝑞, 𝑞′). (6)

Then, we rerank the retrieved cases C′ based on the script similarity
with function f1 score. The positive case 𝑐+ is labeled as the case
with most similar test script, and the remaining cases form the pool
of negative cases C− , as follows:

𝑐+ = argmax
(𝑞′,𝑦′) ∈C′

FF1(𝑦′, 𝑦), (7)

C− = C′ \ {𝑐+}. (8)

As such, we can follow the InfoNCE loss defined in Eq. (5) to finetune
the pretrained embedding model. Following previous works [17, 47,
48], we also include in-batch negative examples for the InfoNCE
loss, which has been shown to be an effective trick that boosts the
number of training examples. We summarize the reranking-based
retrieval finetuning method in Algorithm 2 in Appendix A.2.

3.2 Reinforced Reuse Finetuning
In the CBR system, the Reuse step focuses on adapting solutions of
past similar cases to the current task. While modern LLMs demon-
strate strong instruction-following capabilities, they may still suffer
frommisalignment issues [31, 37, 44] when confronted with unseen
tasks. Therefore, further finetuning of LLMs is necessary to ensure
alignment with the desired behavior in our production scenarios.
To this end, we propose a reinforced reuse finetuning method that
incorporates both supervised finetuning (SFT) and reinforcement
learning finetuning (RLFT), as shown in Figure 2(c).

3.2.1 Supervised Finetuning. Given a training sample (𝑞,𝑦) ∈ D
and its corresponding retrieved cases C𝑞 , we can perform standard
SFT by maximizing the log probability of each token in 𝑦. The loss
function of SFT can be formulated as

LSFT (𝜃) = − log𝜋𝜃 (𝑦 |𝑞, C𝑞). (9)

Then, we can derive a finetuned LLM with parameters 𝜃SFT, which
is also the starting point for RLFT.

Optimizing Case-Based Reasoning System for Functional Test Script Generation with Large Language Models KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

(a) Retrieved Cases

A B C

B D E

A C E

Case 1

Case 2

Case 3

(b) Ground-truth Label
(SFT Objective)

B E F G H

Seen functions

Unseen functions

Figure 3: Amotivating example for the limitation of SFT. SFT
objective may contain unseen functions beyond the retrieved
cases, resulting in noisy alignment.

3.2.2 Reinforcement Learning Finetuning. While SFT is efficient
for alignment, it can be problematic in our production scenario,
which requires LLMs precisely invoking functions contained in the
retrieved cases to structure the testing workflow. Now, we present
a motivating example. As illustrated in Figure 3, the retrieved cases
include five functions (A, B, C, D, E), whereas the ground-truth
label involves five different functions (B, E, F, G, H), three of which
(F, G, H) are absent from the retrieved cases. Since the SFT objective
enforces fitting the ground-truth label, it compels LLMs to generate
unseen functions, introducing noise into alignment and exacer-
bating hallucination issues during inference. To address this issue,
we introduce an online RLFT stage to further refine the alignment
and mitigate these negative effects. Specifically, given a sample
(𝑞,𝑦) ∈ D and its corresponding retrieved cases C𝑞 = {(𝑞𝑖 , 𝑦𝑖)}𝑀𝑖=1,
the optimization objective of RLFT can be formulated as:

max
𝜃
E𝑦̂∼𝜋𝜃 (· |𝑞,C𝑞) [𝑟 (𝑦)], (10)

where 𝑟 (·) is the reward function that quantifies the quality of the
generated script. Here, we utilize the script similarity between the
generated script 𝑦 and ground-truth label 𝑦 as the golden reward,
which can be effectively measured by the function f1 score defined
in Eq. (4). Thus, we can reformulate the optimization objective as:

max
𝜃
E𝑦̂∼𝜋𝜃 (· |𝑞,C𝑞) [FF1(𝑦,𝑦) − 𝛽 · DKL (𝜋𝜃 | |𝜋𝜃SFT)], (11)

where we follow previous works [2, 20, 28, 46] to incorporate a
KL divergence penalty term to avoid too much deviation from the
reference SFT policy model 𝜋𝜃SFT , and 𝛽 denotes the coefficient for
the KL divergence penalty. As such, we can encourage faithful reuse
that invokes the correct functions, while penalizing the inclusion
of incorrect functions resulting from the hallucination issue. Mean-
while, this objective does not push LLMs to fit unseen functions as
SFT, thereby avoiding the introduction of new noise during RLFT.

To solve the problem defined in Eq. (11), proximal policy opti-
mization (PPO) [27] is the most widely adopted algorithm; however,
it is overly complicated for optimization and hyper-parameter tun-
ing, especially for LLMs. To avoid unnecessary complicated designs,
many previous works, such as RLOO [2], Remax [20] and GRPO
[28], devote to the simplification of PPO algorithm. However, they
typically require two or more times of on-policy sampling for vari-
ance reduction in the optimization process, leading to additional
computational and time costs and limiting the application in our
production scenario. Different from these algorithms designed for
reinforcement learning from human feedback (RLHF) for open-
ended text generation, our RLFT setting requires LLMs to focus

on the reuse of the retrieved cases for test script generation, sig-
nificantly narrowing the action space. As such, the randomness
from the sampling of LLMs is far less compared to open-ended
text generation, thereby weakening the high variance issue of the
stochastic gradient. This enables us to omit all the variance reduc-
tion techniques and back to the most basic on-policy RL algorithm
REINFORCE [39] for RLFT, which can be formulated as:

LREINFORCE (𝜃) = E𝑦̂∼𝜋𝜃 (· |𝑞,C𝑞) [−𝑟 (𝑦) · log𝜋𝜃 (𝑦 |𝑞, C𝑞))], (12)

where 𝑟 (𝑦) denotes the reward function containing the function
f1 score and the KL divergence penalty term as in Eq. (11). We
provide a more detailed discussion on why REINFORCE works in
our RLFT setting in Appendix B. We summarize the reinforced
reuse finetuning method in Algorithm 3 in Appendix A.2.

4 Experiments
4.1 Experimental Setups
4.1.1 Dataset. We collect datasets from two product development
units (PDU) in Huawei Datacom, referred to as Data Communica-
tion Network (DCN) and Software Platform (SP). The DCN dataset
consists of 30,887 samples, while the SP dataset contains 58,429
samples. The collected datasets include noisy samples, such as those
with poor coding practices and ambiguous or lengthy descriptions.
To minimize human effort, we opt not to pre-process them fur-
ther. Instead, we curate a clean and representative testing dataset
to ensure reliable evaluation, comprising 366 samples for SP and
689 samples for DCN. We use consistent train-validation-test splits
across all the methods.

4.1.2 Experiment Setting. The CBR system in this paper involves
two backbone models, a pretrained embedding model for the Re-
trieve step and a LLM for the Reuse step. We utilize bge-m3 [5] as
the embedding model, and an internal LLM with approximately
7B parameters as the base model across all the methods. Due to
computational requirements, we utilize LoRA [13] for finetuning,
enabling training to be conducted on a single Huawei Ascend 910B
NPU with 64GB of memory.

For the CBR system, we retrieve𝑀 = 3 cases from the case bank
for both training and inference stage. For the optimization of the
Retrieve step, we finetune the embedding model for five epochs,
setting the temperature 𝜏 to 1.0, learning rate to 1e-6, and batch
size to 64 for both datasets. In terms of the optimization for the
Reuse step, we perform SFT for one epoch with the batch size of
32. As for RLFT, we finetune the LLM with one epoch and batch
size of 64, using a KL divergence coefficient 𝛽 of 0.1. For both SFT
and RLFT, we set the learning rate as 3e-5 for DCN and 1e-5 for SP.
Additionally, we apply a cosine scheduler with a 3% warmup for
the learning rate.

During training, we set the LLM’s sampling temperature to 0.9 to
enhance the diversity of the generated test scripts. During inference,
we adopt greedy decoding to exclude randomness.

4.1.3 Evaluation Metric. During evaluation, we regard the train-
ing set as the case bank. We adopt four evaluation metrics: code
similarity (CS), function precision (FP), function recall (FR), and
function F1 score (FF1), as detailed in Section 2.2. Among these, FF1
score is the most critical metric for evaluation.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Guo et al.

Table 1: Performance comparison of different methods across two datasets. The best results are highlighted in bold. We also
report the relative improvement of CBR+Re4 over the best baseline.

DCN SP

CS (↑) FP (↑) FR (↑) FF1 (↑) CS (↑) FP (↑) FR (↑) FF1 (↑)
Naïve SFT 47.62 57.28 50.40 49.46 43.72 42.35 39.50 38.71
Naïve CBR 53.63 67.11 67.93 64.01 56.47 55.97 57.09 54.60
CBR 54.80 66.47 70.13 64.67 54.49 56.52 59.78 55.83
CBR+SFT 63.38 74.09 68.89 67.87 61.10 61.31 58.27 57.98
CBR+Re4 (Ours) 64.60 75.50 71.33 70.11 62.38 64.89 62.43 61.92

Improvement +1.92% +1.90% +3.54% +3.30% +2.09% +5.84% +7.14% +6.80%

0 20 40 60 80 100

SP

DCN

24.86% 65.30% 9.84%

28.59% 56.75% 14.66%

CBR+Re4 v.s. CBR+SFT

Win Tie Lose

Figure 4: Comparison between CBR+Re4 and CBR+SFT. The
win, tie and lose rates are evaluated by humans.

4.1.4 Baselines. To the best of our knowledge, this is the first
paper that discusses the optimization of the full workflow in the
CBR system with LLMs. Thus, there are not any other previous
works suitable for comparison. To contextualize the performance
of the proposed method, we carefully design four baselines:
• Naïve SFT: It directly performs supervised finetuning for
test script generation without applying CBR techniques.
• Naïve CBR: It implements the simplest form of CBR by
retrieving a single case from the case bank as the generated
test script. Despite its simplicity, this approach is a strong
baseline in our early attempts.
• CBR: It retrieves three similar cases from the case bank and
uses them as context to prompt the LLM for generating test
scripts. It does not perform any finetuning for both retriever
model and LLM.
• CBR+SFT: Built on top of CBR, it further applies SFT for
LLMs with three retrieved cases in the context, as described
in Section 3.2.1. Note that it does not perform finetuning for
the retriever model.

4.2 Main Results
4.2.1 Overall Comparison. We present the experimental results
of the offline evaluation metrics for both datasets in Table 1. Note
that we follow most LLM works to report the result of a single
run due to the overly computational costs, which might be one
limitation of this work. We can observe that Naïve SFT performs
the worst among all methods, even underperforming the simplest
baseline, Naïve CBR. This is expected, as functional test script gen-
eration requires the LLM to invoke functions beyond its knowledge,

CS FP FR FF1 CS FP FR FF1
-2

-1

+0

+1

Pe
rfo

rm
an

ce
 G

ap
 (%

) DCN------------- SP-------------

(a)

CBR+Re4 w/o Retrieval Finetuning

DCN SP
0

2

4

6

Re
pe

titi
ve

 G
en

er
at

ion

 P
er

ce
nt

ag
e

(%
)

6.24%

2.46%

3.77%

0.45%

(b)

CBR+SFT
CBR+Re4

Figure 5: (a) Performance gap in an ablation study of
CBR+Re4 w/o retrieval finetuning. (b) Repetitive generation
percentage of different methods.

which cannot be directly injected by SFT. Consequently, this leads
to significant hallucination issues during inference. In contrast,
CBR outperforms Naïve CBR, thanks to the strong foundational
capabilities of LLMs. These capabilities are further enhanced by
incorporating SFT, making CBR+SFT the strongest baseline. Among
all the methods, the proposed CBR+Re4 achieves the highest FF1
score for both datasets, showing improvement of 3.30% and 6.80%
over the best baseline, CBR+SFT, for DCN and SP, respectively. This
validates the effectiveness of both the reranking based retrieval
finetuning method and the reinforced reuse finetuning method.

4.2.2 Human Evaluation. To comprehensively evaluate the quality
of the generated test scripts, we perform pairwise human evalu-
ations comparing the proposed CBR+Re4 with the best baseline,
CBR+SFT, on two datasets. The win, tie, and loss rates are reported
in Figure 4. The results show that CBR+Re4 achieves a higher win
rate on both datasets compared to CBR+SFT, further validating the
superiority of the proposed method.

4.3 In-Depth Analyses for Re4
In this subsection, we present in-depth analyses for the proposed
finetuning methods for both retriever model and LLM.

4.3.1 Analyses for Reranking-based Retrieval Finetuning. As the
key challenge for finetuning retriever models is lack of ground-
truth labels, most advanced finetuning methods cannot be adapted
to our setting. Thus, we analyze the proposed reranking-based
retrieval finetuning method via an ablation study. The performance

Optimizing Case-Based Reasoning System for Functional Test Script Generation with Large Language Models KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Table 2: In-depth analyses of the proposed reinforced reuse finetuning method across two datasets. We highlight those results
better than CBR+Re4 with .

DCN SP
#On-policy samples CS (↑) FP (↑) FR (↑) FF1 (↑) CS (↑) FP (↑) FR (↑) FF1 (↑)

CBR+Re4 (Ours) 1 64.60 75.50 71.33 70.11 62.38 64.89 62.43 61.92

Ablation study for reinforced reuse finetuning method

CBR+Re4 w/o Finetuning 0 55.39 68.81 71.03 66.06 57.72 59.83 63.01 59.17
CBR+Re4 w/o SFT 1 55.24 69.87 70.94 66.60 58.78 61.02 63.12 60.02
CBR+Re4 w/o RLFT 0 64.10 74.8 69.44 68.64 60.92 61.99 59.29 59.06

Comparison with different RL algorithms in reinforced reuse finetuning method

CBR+Re4 w/ Online DPO 2 63.99 74.76 69.31 68.58 60.71 61.98 59.56 59.09
CBR+Re4 w/ Remax 2 64.35 75.03 69.46 68.80 60.99 62.02 59.36 59.10
CBR+Re4 w/ RLOO 4 64.76 75.62 71.01 69.88 61.87 63.44 62.05 60.97
CBR+Re4 w/ GRPO 4 65.67 75.69 72.29 70.80 63.18 64.82 62.83 62.17

gap of CBR+Re4 without retrieval finetuning is reported for both
datasets in Figure 5(a). The results show that the ablation causes
a performance drop of approximately 1% in terms of FF1 score on
both datasets. This highlights the effectiveness of the proposed
reranking-based retrieval finetuning method.

4.3.2 Analyses for Reinforced Reuse Finetuning. Now,we present in-
depth analyses for the proposed reinforced reuse finetuningmethod.
First, we conduct an ablation study to validate its effectiveness.
Next, we replace the proposed REINFORCE algorithm with several
state-of-the-art RLHF algorithms to highlight the superiority of
our approach. We then demonstrate an additional advantage of
the RLFT stage in mitigating repetitive generation issues. Finally,
we analyze the impact of the KL coefficient 𝛽 through a hyper-
parameter analysis.
Ablation study.We first conduct an ablation study of CBR+Re4
by evaluating the following ablation variants: (1) w/o Finetuning,
which relies solely on the foundational capabilities of the LLM; (2)
w/o SFT, which applies RLFT directly to the base LLM without the
prior SFT stage; and (3) w/o RLFT, which involves only SFT stage
without the subsequent RLFT stage.

The corresponding results are presented in the upper section of
Table 2. Among them, CBR+Re4 w/o Finetuning demonstrates the
poorest performance on both datasets, emphasizing the necessity of
further aligning the LLMwith our production scenario. Additionally,
both CBR+Re4w/o SFT andw/o RLFT underperformCBR+Re4. This
outcome aligns with expectations: SFT may introduce undesired
behaviors due to the noise in ground-truth labels, while RLFT may
suffer from sample inefficiency. The combined SFT-RLFT paradigm,
consistent with best practices in the RLHF community, strikes the
desired trade-off between effectivenss and efficiency.
Comparison with advanced RLHF algorithms.We compare the
proposed REINFORCE algorithmwith several state-of-the-art RLHF
algorithms. Unlike typical RLHF settings, our production scenario
leverages a golden reward function instead of a trained reward
model. Moreover, we focus on improving the case-based reasoning
capabilities instead of general instruction following as in RLHF.
Specifically, we evaluate the following algorithms: (1) Online DPO

0 0.01 0.03 0.1 0.3 1.0
KL Coefficient

69

70

71

FF
1

DCN

0 0.01 0.03 0.1 0.3 1.0
KL Coefficient

59

60

61

62

FF
1

SP

Figure 6: Hyper-parameter analyses of KL coefficient 𝛽 on
both datasets.

[11], which performs pairwise comparisons with the reward func-
tion and optimizes the LLM using DPO [24] in an online manner.
(2) Remax [20], which incorporates a baseline via greedy decoding
in the REINFORCE algorithm to reduce variance. (3) RLOO [2],
which employs a variance-reduced multi-sample estimate for policy
updates. (4) GRPO [28], which calculates the advantage in the PPO
objective based on group-level relative rewards. Due to space limi-
tations, implementation details are provided in Appendix C. Note
that we exclude the PPO [27] algorithm from our comparison due
to its high computational costs. Furthermore, prior RLHF works
have demonstrated that Remax, RLOO, and GRPO achieve superior
alignment compared to PPO.

The experimental results are presented in the lower section of
Table 2. These results show that all four RLHF algorithms fur-
ther improve alignment compared to the SFT stage, confirming
the necessity of the RLFT stage. Additionally, the proposed REIN-
FORCE algorithm outperforms Online DPO, Remax, and RLOO,
while delivering competitive performance relative to GRPO, further
demonstrating its effectiveness. Notably, all these RLHF algorithms
require two or more on-policy samples per query, significantly in-
creasing time and computational costs. In contrast, the proposed
REINFORCE algorithm requires only a single on-policy sample
per query, striking the desired trade-off between the alignment
performance and costs of on-policy sampling.
Analysis on repetitive generation issue. During prior online
deployment of CBR+SFT, we observed that the generated test scripts

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Guo et al.

0 1 2 3 4 5 6
Number of Samples (1e3)

-80%

-60%

-40%

-20%

+0%

+20%

Av
g

Im
pr

ov
em

en
t o

f F
F1

+2.75%

-78.65%

DCN

0 1 2 3 4 5 6
Number of Samples (1e3)

-80%

-60%

-40%

-20%

+0%

+20%

+10.08%

-69.22%

SP

CBR+Re4 v.s. CBR+SFT CBR+Re4 w/o Retain v.s. CBR+SFT

Figure 7: Online evaluation results of CBR+Re4 on two PDUs.

often exhibited the repetitive generation issue [12, 42]. An example
of such repetitive generation is provided in Figure 10 in Appendix D.
This issue significantly slows response times, increases inference
costs, and adversely impacts user experience. As such patterns
are challenging to detect using rule-based methods, we conduct a
human evaluation to assess the repetitive generation issue in the
test scripts generated by CBR+SFT and CBR+Re4.

The percentage of repetitive generation is presented in Fig-
ure 5(b). As observed, CBR+Re4 effectively mitigates the repetitive
generation issue, reducing it by 2.47% for DCN and 2.41% for SP.
Notably, CBR+Re4 exhibits only 0.45% repetitive generation in SP,
highlighting the superiority of the RLFT stage. This improvement
is understandable, as SFT may memorize poor coding practices
from the training corpus, while the noise in the ground-truth labels
further exacerbates these undesired behaviors. In contrast, during
the RLFT stage, test scripts with repetitive generation patterns re-
ceive near-zero rewards due to repetitive invocation of the same
functions. As such, these repetitive behaviors are penalized by the
on-policy RL objective, thereby alleviating the issue.
Hyper-parameter analysis on KL coefficient 𝛽. Finally, we
analyze an important hyperparameter in the reinforced reuse fine-
tuning method: the KL divergence coefficient 𝛽 . We evaluate 𝛽 at
values of {0, 0.01, 0.03, 0.1, 0.3, 1.0} and report the FF1 score on both
datasets in Figure 6. Notably, 𝛽 = 0 serves as an ablation study of
the KL divergence term in Eq. (12), resulting in a significant perfor-
mance decline. This highlights the importance of preventing too
much deviation from the finetuned LLM parameters. As expected,
setting 𝛽 too conservatively or too aggressively can negatively im-
pact performance. As shown in Figure 6, 𝛽 = 0.1 yields the best
performance on both datasets.

4.4 Online Evaluation Results
In this subsection, we provide an online evaluation of the proposed
CBR system. A natural approach to quantifying online performance
is to estimate the acceptance rate through online A/B tests. How-
ever, this can be problematic in our production scenario. Specifically,
users exhibit significant variability in their preferences for accepting
the generated test scripts, resulting in biased evaluation outcomes.
Worse still, the limited number of users within each PDU prevents
the law of large numbers from eliminating this bias. In addition, the
human evaluation method described in Section 4.2.2 is prohibitively

expensive for assessing online performance. To address this chal-
lenge, we report the online performance with FF1 score, evaluated
on approximately 6,000 recent online samples from the deployed
system across two PDUs. The evaluation aligns with the workflow
of the CBR system: sequentially processing the user requests of
test intent description, generating test scripts with the Retrieve and
Reuse step, and finally retaining the test intent description with
the revised test script into the case bank.

We compare the previously deployed CBR+SFT system with
two methods: (1) CBR+Re4 and (2) CBR+Re4 w/o Retain, an ab-
lation variant of the CBR system where the Retain step is removed
and the case bank remains fixed. It is worth noting that CBR+Re4
w/o Retain can be viewed as a variant of RAG, as it only reserves
the Retrieve-Reuse process in CBR. Figure 7 depicts the average im-
provement in FF1 score as the number of online samples increases
across two PDUs, DCN and SP. We observe that CBR+Re4 w/o
Retain significantly underperforms CBR+Re4. This performance
gap can be attributed to the dynamic nature of our scenario, where
the software is continuously updated, and new modules are regu-
larly introduced. Consequently, updating the case bank in an online
manner is crucial for maintaining the effectiveness of test script
generation. The Retain step in the CBR system addresses this need
by enabling seamless integration of new information into the case
bank. Furthermore, the proposed CBR+Re4 consistently outper-
forms the previously deployed CBR+SFT, achieving improvements
in FF1 score of 2.75% in DCN and 10.08% in SP. These results validate
the effectiveness of the proposed Re4 optimization method.

5 Related Work
5.1 LLMs for Software Testing
LLMs have demonstrated remarkable success in the field of code
generation [9, 10, 16, 21, 32, 45]. Recently, the software testing com-
munity has been exploring the potential of LLMs for automated
software testing [33], with a primary focus on unit test generation.
For instance, Wang et al. [35] introduce TestEval, a benchmark
designed to evaluate the capabilities of LLMs in generating unit test
cases. Additionally, Alshahwan et al. [3] develop an autonomous
workflow at Meta, enabling LLMs to improve assured unit test cases
without human intervention. Different from these prior works, we
explore the application of LLMs for functional test script genera-
tion, which necessitates a deep understanding of the complex code
structure of the target software.

5.2 Case-Based Reasoning
CBR [1, 18, 36] is a classic AI paradigm that operates by retrieving
similar past cases, reusing their solution and continuously retaining
new cases into the case bank. There are some recent works [10, 38,
40] that integrate LLMs with CBR to enhance the capabilities of
LLMs. Unlike these works, we explore the optimization of the CBR
system in this work by further finetuning the retriever model and
the LLM to alignwith the production scenario. Notably, the Retrieve-
Reuse process in the CBR system is similar to the well-established
RAG techniques [7, 25, 34], offering valuable insights for optimizing
the CBR system. However, prior approaches [6, 29] to finetuning the
retriever model rely heavily on feedback from LLMs, which proves
too costly for our production scenario. Moreover, previous RAG

Optimizing Case-Based Reasoning System for Functional Test Script Generation with Large Language Models KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

works [26, 43, 49] focus on finetuning LLMs to generate responses
with the retrieved document chunks in a robust manner, while the
CBR system emphasizes adapting and reusing the retrieved cases
for solving the new problem. As a result, these existing methods
cannot be seamlessly leveraged for optimizing our CBR system.

6 Conclusion
In this paper, we explore the pioneering application of LLMs for
functional test script generation. We introduce a CBR system that
facilitates LLMs to effectively and flexibly utilize the mapping be-
tween test intent descriptions and function calls in the retrieved
cases for test script generation. To further enhance the CBR sys-
tem, we propose Re4, which consists of a reranking-based retrieval
finetuning method for the retriever model and a reinforced reuse
finetuning method for the LLM. Experimental results on two real-
world datasets from Huawei Datacom demonstrate that the pro-
posed CBR+Re4 approach significantly outperforms other baselines.
Moreover, the Re4 method helps mitigate the issue of repetitive
generation in LLMs, further enhancing the user experience.

7 Limitation and Future Work
Firstly, we utilize bge-m3 with cosine similarity as the retriever
in this work, which can be further improved by hybrid retrieval
methods, multiple-stage retrieval methods, etc. Secondly, more com-
prehensive offline evaluation metrics may help us better benchmark
the performance of the algorithms, such as function parameter ac-
curacy, execution success rate, etc. In this work, we focus on the
evaluation of function correctness, as this is the most important
business metric based on our preliminary internal investigation. In
contrast, execution success rate is a much more reliable evaluation
metric; however, it is hard to calculate due to the complicated execu-
tion environment required by the target commercial software. Thus,
there is still a long way to go towards fully automated functional
testing, and this work aims to serve as a good starting point. Fur-
thermore, the proposed CBR system can also be extended to broader
decision-making scenarios in fields such as law, medicine, and fi-
nance. We plan to further explore the potentials in these domains
in future work. Lastly, this paper focuses on function correctness
and does not perform comprehensive user-centric evaluation, such
as user acceptance rate, user satisfaction rate, time savings, etc. In-
vestigation on these metrics may help us understand the bottleneck
of the algorithms better.

Acknowledgments
We truly thank the reviewers for their great effort in our submission.
In this work, Siyuan Guo, Hechang Chen and Yi Chang are sup-
ported by National Natural Science Foundation of China through
grants (624B2059), National Key R&D Program of China under
Grant (No. 2023YFF0905400), National Natural Science Foundation
of China through grants (U2341229, 61976102, U19A2065, 62476110),
Key R&D Project of Jilin Province (No. 20240304200SF), and Interna-
tional Cooperation Project of Jilin Province (No. 20220402009GH).

References
[1] Agnar Aamodt and Enric Plaza. 1994. Case-based reasoning: Foundational issues,

methodological variations, and system approaches. AI communications 7, 1 (1994),
39–59.

[2] Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer,
Olivier Pietquin, Ahmet Üstün, and Sara Hooker. 2024. Back to Basics: Revisiting
REINFORCE-Style Optimization for Learning from Human Feedback in LLMs.
In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 12248–12267.

[3] Nadia Alshahwan, Jubin Chheda, Anastasia Finogenova, Beliz Gokkaya, Mark
Harman, Inna Harper, Alexandru Marginean, Shubho Sengupta, and Eddy Wang.
2024. Automated unit test improvement using large language models at meta. In
Companion Proceedings of the 32nd ACM International Conference on the Founda-
tions of Software Engineering. 185–196.

[4] Leila Amgoud and Vivien Beuselinck. 2022. Towards a principle-based approach
for case-based reasoning. In International Conference on Scalable Uncertainty
Management. Springer, 37–46.

[5] Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu.
2024. BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity
Text Embeddings Through Self-Knowledge Distillation. arXiv:2402.03216

[6] Guanting Dong, Yutao Zhu, Chenghao Zhang, Zechen Wang, Zhicheng Dou, and
Ji-Rong Wen. 2024. Understand what LLM needs: Dual preference alignment for
retrieval-augmented generation. arXiv preprint arXiv:2406.18676 (2024).

[7] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai,
Jiawei Sun, and Haofen Wang. 2023. Retrieval-augmented generation for large
language models: A survey. arXiv preprint arXiv:2312.10997 (2023).

[8] Zenon Gniazdowski and Maciej Boniecki. 2019. Detection of a source code
plagiarism in a student programming competition. arXiv preprint arXiv:1912.08138
(2019).

[9] Antoine Grosnit, Alexandre Maraval, James Doran, Giuseppe Paolo, Albert
Thomas, Refinath Shahul Hameed Nabeezath Beevi, Jonas Gonzalez, Khyati
Khandelwal, Ignacio Iacobacci, Abdelhakim Benechehab, et al. 2024. Large Lan-
guage Models Orchestrating Structured Reasoning Achieve Kaggle Grandmaster
Level. arXiv preprint arXiv:2411.03562 (2024).

[10] Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang.
2024. DS-Agent: AutomatedData Science by Empowering Large LanguageModels
with Case-Based Reasoning. In Proceedings of the 41st International Conference on
Machine Learning. 16813–16848.

[11] Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe
Llinares, Alexandre Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. 2024.
Direct language model alignment from online ai feedback. arXiv preprint
arXiv:2402.04792 (2024).

[12] Tatsuya Hiraoka and Kentaro Inui. 2024. Repetition Neurons: How Do Language
Models Produce Repetitions? arXiv preprint arXiv:2410.13497 (2024).

[13] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In International Conference on Learning Representations.

[14] Eyke Hullermeier. 2007. Credible case-based inference using similarity profiles.
IEEE Transactions on Knowledge and Data Engineering 19, 6 (2007), 847–858.

[15] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bo-
janowski, Armand Joulin, and Edouard Grave. 2022. Unsupervised Dense Infor-
mation Retrieval with Contrastive Learning. Transactions on Machine Learning
Research (2022).

[16] Carlos E Jimenez, John Yang, AlexanderWettig, Shunyu Yao, Kexin Pei, Ofir Press,
and Karthik R Narasimhan. 2024. SWE-bench: Can Language Models Resolve
Real-world Github Issues?. In The Twelfth International Conference on Learning
Representations.

[17] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, 6769–6781.

[18] Janet L Kolodner. 1992. An introduction to case-based reasoning. Artificial
intelligence review 6, 1 (1992), 3–34.

[19] VI Levenshtein. 1966. Binary codes capable of correcting deletions, insertions,
and reversals. Proceedings of the Soviet physics doklady (1966).

[20] Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-
Quan Luo. 2024. ReMax: A Simple, Effective, and Efficient Reinforcement Learning
Method for Aligning Large Language Models. In Proceedings of the 41st Interna-
tional Conference on Machine Learning. 29128–29163.

[21] Bingchang Liu, Chaoyu Chen, Zi Gong, Cong Liao, Huan Wang, Zhichao Lei,
Ming Liang, Dajun Chen, Min Shen, Hailian Zhou, et al. 2024. Mftcoder: Boosting
code llms with multitask fine-tuning. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 5430–5441.

[22] Gabriel de Souza P Moreira, Radek Osmulski, Mengyao Xu, Ronay Ak, Benedikt
Schifferer, and Even Oldridge. 2024. NV-Retriever: Improving text embedding
models with effective hard-negative mining. arXiv preprint arXiv:2407.15831
(2024).

[23] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[24] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano
Ermon, and Chelsea Finn. 2023. Direct preference optimization: Your language

https://arxiv.org/abs/2402.03216

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Guo et al.

model is secretly a reward model. Advances in Neural Information Processing
Systems 36 (2023).

[25] Ohad Rubin, Jonathan Herzig, and Jonathan Berant. 2022. Learning To Retrieve
Prompts for In-Context Learning. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. 2655–2671.

[26] Tobias Schimanski, Jingwei Ni, Mathias Kraus, Elliott Ash, and Markus Leippold.
2024. Towards Faithful and Robust LLM Specialists for Evidence-Based Question-
Answering. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 1913–1931.

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[28] Zhihong Shao, PeiyiWang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei
Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath: Pushing
the limits of mathematical reasoning in open language models. arXiv preprint
arXiv:2402.03300 (2024).

[29] Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Richard James, Mike
Lewis, Luke Zettlemoyer, and Wen-tau Yih. 2024. REPLUG: Retrieval-Augmented
Black-Box Language Models. In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers). 8364–8377.

[30] Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin
Chen, Dawei Yin, and Zhaochun Ren. 2023. Is ChatGPT Good at Search? Investi-
gating Large Language Models as Re-Ranking Agents. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing. 14918–14937.

[31] Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and
Bo An. 2024. True Knowledge Comes from Practice: Aligning Large Language
Models with Embodied Environments via Reinforcement Learning. In The Twelfth
International Conference on Learning Representations.

[32] Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai Lin, Yinxu Pan, Yesai Wu,
Haotian Hui, Weichuan Liu, Zhiyuan Liu, et al. 2024. Debugbench: Evaluating
debugging capability of large language models. arXiv preprint arXiv:2401.04621
(2024).

[33] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2024. Software Testing With Large Language Models: Survey, Landscape,
and Vision. IEEE Transactions on Software Engineering 50, 4 (2024), 911–936.
https://doi.org/10.1109/TSE.2024.3368208

[34] Liang Wang, Nan Yang, and Furu Wei. 2023. Learning to retrieve in-context
examples for large language models. arXiv preprint arXiv:2307.07164 (2023).

[35] Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu,
Da Song, Lingming Zhang, An Ran Chen, and Lei Ma. 2024. TESTEVAL: Bench-
marking Large Language Models for Test Case Generation. arXiv preprint
arXiv:2406.04531 (2024).

[36] IanWatson and Farhi Marir. 1994. Case-based reasoning: A review. The knowledge
engineering review 9, 4 (1994), 327–354.

[37] Muning Wen, Ziyu Wan, Jun Wang, Weinan Zhang, and Ying Wen. 2024. Rein-
forcing LLM Agents via Policy Optimization with Action Decomposition. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems.

[38] Kaitlynne Wilkerson and David Leake. 2024. On Implementing Case-Based
Reasoning with Large Language Models. In International Conference on Case-
Based Reasoning. Springer, 404–417.

[39] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8 (1992), 229–256.

[40] Nirmalie Wiratunga, Ramitha Abeyratne, Lasal Jayawardena, Kyle Martin, Stew-
art Massie, Ikechukwu Nkisi-Orji, Ruvan Weerasinghe, Anne Liret, and Bruno
Fleisch. 2024. CBR-RAG: case-based reasoning for retrieval augmented gen-
eration in LLMs for legal question answering. In International Conference on
Case-Based Reasoning. Springer, 445–460.

[41] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett,
Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor Neg-
ative Contrastive Learning for Dense Text Retrieval. In International Conference
on Learning Representations.

[42] Jin Xu, Xiaojiang Liu, Jianhao Yan, Deng Cai, Huayang Li, and Jian Li. 2022.
Learning to break the loop: Analyzing and mitigating repetitions for neural
text generation. Advances in Neural Information Processing Systems 35 (2022),
3082–3095.

[43] Ran Xu, Hui Liu, Sreyashi Nag, Zhenwei Dai, Yaochen Xie, Xianfeng Tang, Chen
Luo, Yang Li, Joyce CHo, Carl Yang, et al. 2024. SimRAG: Self-Improving Retrieval-
Augmented Generation for Adapting Large Language Models to Specialized
Domains. arXiv preprint arXiv:2410.17952 (2024).

[44] Xue Yan, Yan Song, Xidong Feng, Mengyue Yang, Haifeng Zhang, Haitham Bou
Ammar, and Jun Wang. 2025. Efficient Reinforcement Learning with Large
Language Model Priors. In The Thirteenth International Conference on Learning
Representations.

[45] Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan
Hong, Xiaoxue Ma, Zhi Jin, and Ge Li. 2024. Exploring and unleashing the power
of large language models in automated code translation. Proceedings of the ACM

on Software Engineering 1, FSE (2024), 1585–1608.
[46] Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun

Wang. 2024. Token-level Direct Preference Optimization. In Proceedings of the
41st International Conference on Machine Learning. 58348–58365.

[47] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping
Ma. 2021. Optimizing dense retrieval model training with hard negatives. In
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 1503–1512.

[48] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. 2020. Rep-
BERT: Contextualized text embeddings for first-stage retrieval. arXiv preprint
arXiv:2006.15498 (2020).

[49] Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion
Stoica, and Joseph E Gonzalez. 2024. Raft: Adapting language model to domain
specific rag. arXiv preprint arXiv:2403.10131 (2024).

Appendix
A Algorithmic Details
A.1 Business Metric Details
For the proposed function precision, function recall, and function
f1 score, we first extract the list of the invoked functions in the test
scripts with abstract syntax tree, and then calculate these metrics
with Eq. (2), Eq. (3), and Eq. (4). To make it more clear, we provide
an example of the calculation of these three metrics in Figure 8.

Now, we detail the definition of the code similarity [8] with the
tool of Levenshtein distance [19]. Given the generated test script 𝑦
and the ground-truth test script 𝑦, the code similarity is defined as:

CodeSimilarity(𝑦,𝑦) = 1 − 𝑑L (𝑦,𝑦)
max(|𝑦 |, |𝑦 |) , (13)

where 𝑑L denotes the Levenshtein distance, measuring the min-
imum number of single-character edits (insertions, deletions, or
substitutions) needed to change one string into another. As stated
earlier, code similarity serves only as a complementary evaluation
metric, and we take function f1 score as the most critical evaluation
metric due to the characteristics of our production scenario.

A.2 Algorithm Details
In this subsection, we provide the pseudo-codes for our proposed
method. We first summarize the workflow of the proposed CBR
system during deployment in Algorithm 1. Our CBR system adopts
the 4R cycle with Retrieve, Reuse, Revise and Retain. Then, we sum-
marize the proposed reranking-based retrieval finetuning method
in Algorithm 2, which first generates pseudo labels for positive and
negative examples and then finetunes the retriever model with con-
trastive learning. Finally, we summarize the proposed reinforced
reuse finetuning method in Algorithm 3, which consists of super-
vised finetuning and reinforcement learning finetuning, striking
the desired trade-off between efficiency and effectiveness.

B Why Does REINFORCEWork in Our RLFT
Setting?

REINFORCE [39] is the most basic on-policy RL algorithm. Despite
its simplicity, it suffers from high variance in the stochastic gradient
[2, 20]. As highlighted in [20], this high variance arises from two
sources: (1) external randomness in the Markov Decision Process
(MDP) and (2) internal randomness in the sampling of LLMs. In
RLHF and RLFT settings, external randomness is eliminated due
to the deterministic nature of the transition and reward functions
in the MDP. However, in RLHF, external randomness still affects

https://doi.org/10.1109/TSE.2024.3368208

Optimizing Case-Based Reasoning System for Functional Test Script Generation with Large Language Models KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Generated Test Script

navigate_to_login_page()

enter_password("wrong_password")

enter_username("invalid_user")

click_logged_button()

assert message == "Invalid credentials"

Ground-Truth Test Script

navigate_to_login_page()

enter_username("invalid_user")

enter_password("wrong_password")

click_login_button()

assert get_message() == "Invalid credentials"

: navigate_to_login_page, enter_password, enter_username, click_logged_button
: navigate_to_login_page, enter_username, enter_password, click_login_button, get_message

: navigate_to_login_page, enter_username, enter_password

ŷ y

Func(y)

Func(ŷ)
Func(ŷ) → Func(y)

FPrecision = |Func(ŷ) → Func(y)|/|Func(ŷ)| = 3/4

FF1 = 2 → FPrecision → FRecall/(FPrecision + FRecall) = 2/3

FRecall = |Func(ŷ) → Func(y)|/|Func(y)| = 3/5

Figure 8: An example for the calculation of function precision, function recall and function f1 score.

Algorithm 1 The CBR System During Deployment
1: Input: Case Bank C, Finetuned embedding model E𝜙 , and

Finetuned LLM 𝜋𝜃 .
2: for user request with test intent description 𝑞 do
3: ⊲ Retrieve
4: Retrieve top-𝑀 cases C𝑞 based on Eq. (6)
5: ⊲ Reuse
6: Sample a test script 𝑦 ∼ 𝜋𝜃 (·|𝑞, C𝑞)
7: ⊲ Revise
8: Revise the generated test script 𝑦 as 𝑦 by test engineers if

necessary
9: ⊲ Retain
10: Retain the test intent description and the test script as a new

case into the case bank, i.e., C ← C ∪ {(𝑞,𝑦)}
11: end for

Algorithm 2 Reranking-based Retrieval Finetuning Method
1: Input: Training set D, Pretrained embedding model E𝜙 .
2: Initialize labeled training dataset Dlabeled = {}

⊲ Generate pseudo-labels for positive and negative examples
3: for sample (𝑞,𝑦) in D do
4: Construct the case bank as C = D \ {(𝑞,𝑦)}
5: Retrieve top-𝑘 cases C𝑞 based on Eq. (6)
6: Rerank the retrieved cases C𝑞 to generate pseudo-label for

positive example 𝑐+ and negative examples C− as in Eq. (7)
and Eq. (8)

7: Store the labeled samplesDlabeled ← Dlabeled∪{(𝑞, 𝑐+, C−)}
8: end for

⊲ Finetune the embedding model with labeled dataset
9: for labeled sample (𝑞, 𝑐+, C−) in Dlabeled do
10: Update 𝜙 by minimizing L(𝜙) in Eq. (5)
11: end for

performance, as the model receives varying reward scales due to
the diverse prompts in the training set, leading to high variance
in the stochastic gradient [20]. In contrast, our RLFT setting does
not exhibit this issue, since it focuses on enabling LLMs to reuse
retrieved cases for test script generation, significantly narrowing

Algorithm 3 Reinforced Reuse Finetuning Method
1: Input: Training set D, Finetuned embedding model E𝜙 , Large

language model 𝜋𝜃 .
2: Retrieve𝑀 cases C𝑞 for each sample in D using E𝜙

⊲ Supervised finetuning
3: for sample (𝑞, C𝑞, 𝑦) in D do
4: Update 𝜃 by minimizing LSFT (𝜃) in Eq. (9)
5: end for

⊲ Reinforcement learning finetuning
6: for sample (𝑞, C𝑞, 𝑦) in D do
7: Sample a test script 𝑦 ∼ 𝜋𝜃 (·|𝑞, C𝑞)
8: Update 𝜃 by minimizing LREINFORCE (𝜃) in Eq. (12)
9: end for

the action space. This results in more aligned reward scales and
reduced variance.

Now, we provide empirical evidence supporting the above claim.
Since a smaller gradient variance corresponds to a smaller gradient
norm, we follow prior work [20] and plot the gradient norm of
REINFORCE in our RLFT setting and RLHF setting in Figure 9. For
RLHF, we follow [20] to train the LLM with the consistent training
setups as ours, where we adopt three prompt dataset (ultrafeedback,
lmsys-chat-1m, sharegpt-en) and the reward model (UltraRM-13B)
for RLHF. The results reveal that the gradient norm of REINFORCE
in our RLFT settings remains below 1 across both datasets, whereas
this value fluctuates between 10 and 4000 in RLHF. Thus, REIN-
FORCE does not suffer from the high variance issue and can achieve
the desired performance in our RLFT setting. Note that the gradi-
ent norm of REINFORCE in RLHF remains 0 in the later stage of
training due to training collapse.

C Discussion of the Compared RLHF
Algorithms

In this section, we present a detailed discussion on how we tailor
the state-of-the-art RLHF algorithms compared in the main body
of the paper for our RLFT setting.
Online DPO [11] samples two test scripts 𝑦1 and 𝑦2 with the LLM
in an on-policy manner. Then, we can label the preference 𝑦𝑤 ≻ 𝑦𝑙

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Guo et al.

0 200 400
Gradient Step

0

1

2

3

4

Gr
ad

ien
t N

or
m

RLFT (DCN)

0 500
Gradient Step

0

1

2

3

4 RLFT (SP)

0 200 400
Gradient Step

0

2000

4000

RLHF

Figure 9: Comparison for the gradient norm of REINFORCE
in RLFT and RLHF.

with the script similarity such that FF1(𝑦𝑤 , 𝑦) > FF1(𝑦𝑙 , 𝑦). The
optimization process aligns with the standard DPO loss [24] as:

LDPO (𝜃) = − log𝜎
(
𝛽 log

𝜋𝜃 (𝑦𝑤 |𝑞, C𝑞)
𝜋𝜃SFT (𝑦𝑤 |𝑞, C𝑞)

− 𝛽 log
𝜋𝜃 (𝑦𝑙 |𝑞, C𝑞)
𝜋𝜃SFT (𝑦𝑙 |𝑞, C𝑞)

)
.

(14)
However, Online DPO only reserves the preference relationship
for alignment and ignores the fine-grained golden reward infor-
mation, thereby decreasing the sample efficiency and resulting in
inferior alignment performance. Moreover, it requires two on-policy
samples per query, which brings 2× time and computational costs
compared to REINFORCE.
Remax [20] samples two test scripts 𝑦1 and 𝑦2 with the LLM in an
on-policy manner. Among them, 𝑦2 is sampled via greedy decoding
to serve as a baseline for variance reduction. The optimization
process merely utilizes 𝑦1, with the standard REINFORCE [39] loss
function as:

LRemax (𝜃) = − log𝜋𝜃 (𝑦1 |𝑞, C𝑞) [𝑟 (𝑦1) − 𝑟 (𝑦2)] . (15)

However, the introduction of baseline value 𝑟 (𝑦2) can be a redun-
dant design in our context, and may even lead to a biased gradient
estimator, despite being theoretically unbiased in expectation. Dif-
ferent from open-ended text generation, our setting only requires
LLMs to reuse the retrieved cases for test script generation, thus
significantly narrowing the action space. As such, the internal ran-
domness mentioned in [20] is much less problematic in our setting.
Similar to Online DPO, Remax also requires two on-policy samples
per query, which brings 2× time and computational costs compared
to REINFORCE.
RLOO [2] samples 𝐾 test scripts per query with the LLM in an
on-policy manner. The optimization process utilizes the standard
REINFORCE [39] with leave-one-out estimator for variance reduc-
tion, which can be formulated as:

LRLOO (𝜃) = −
1
𝐾

𝐾∑︁
𝑖=1

log𝜋𝜃
(
𝑦𝑖 |𝑞, C𝑞

) ©­«𝑟 (𝑦𝑖) − 1
𝐾 − 1

∑︁
𝑗≠𝑖

𝑟 (𝑦𝑘)
ª®¬
 .

(16)
Similarly, the variance reduction technique is also redundant for
our setting. As suggested in [2], we set 𝐾 = 4 in our implementa-
tion, which brings 4× time and computational costs compared to
REINFORCE.

Generated Test Script with Repetitive Generation Issue

navigate_to_login_page()

enter_username("invalid_user")

enter_password("wrong_password")

click_login_button()

click_login_button()

click_login_button()

click_login_button()

click_login_button()

click_login_button()

...

Repetitive
Generation

Issue

Figure 10: An example of generated test script with repetitive
generation pattern.

GRPO [28] also samples 𝐾 test scripts per query. In contrast to
RLOO, GRPO adopts the loss function similar to PPO [27] for fine-
tuning, which can be formulated as:

LGRPO (𝜃) = −
1
𝐾

𝐾∑︁
𝑖=1

1
𝑇𝑖

𝑇𝑖∑︁
𝑡=1[

min
(
𝜌𝑖,𝑡𝐴𝑖,𝑡 , clip(𝜌𝑖,𝑡𝐴𝑖,𝑡 , 1 − 𝜖, 1 + 𝜖)

)
− 𝛽DKL (𝜋𝜃 | |𝜋𝜃SFT)

]
,

(17)

where 𝑇𝑖 denotes the number of tokens in 𝑖-th generated script,
𝜌𝑖,𝑡 =

𝜋𝜃 (𝑦̂𝑖,𝑡 |𝑞,C𝑞 ,𝑦̂𝑖,<𝑡)
𝜋𝜃old (𝑦̂𝑖,𝑡 |𝑞,C𝑞 ,𝑦̂𝑖,<𝑡)

denotes the importance rate of the 𝑡-th to-

ken in 𝑖-th generated test script,𝐴𝑖,𝑡 =
𝑟 (𝑦̂𝑖)−mean({𝑟 (𝑦̂1),...,𝑟 (𝑦̂𝐾) })

std({𝑟 (𝑦̂1),...,𝑟 (𝑦̂𝐾) })
denotes the group-relative reward for advantage estimation, 𝜖 de-
notes the clipping parameter. GRPO achieves better performance
than the proposed REINFORCE algorithm, benefiting from 𝐾× on-
policy samples per query. Different from [28] that sets 𝐾 = 64,
we set 𝐾 = 4 in our implementation to accommodate computa-
tional constraints, which brings 4× time and computational costs
compared to REINFORCE.

D Example of Repetitive Generation Issue
Due to business considerations, we are unable to present a realistic
example from our production scenario. We construct an illustrative
example, as shown in Figure 10. Here are some possible reasons
for this phenomenon: (1) Poor coding practices by human test en-
gineers result in ground-truth test scripts with repetitive patterns,
which is memorized by the LLMs through the SFT objective. (2)
Noise within the SFT objective, as illustrated in Figure 3, contributes
to hallucination issues, potentially worsening the repetitive gener-
ation problem.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Case-Based Reasoning System
	2.2 Business Metric

	3 Methodology
	3.1 Reranking-based Retrieval Finetuning
	3.2 Reinforced Reuse Finetuning

	4 Experiments
	4.1 Experimental Setups
	4.2 Main Results
	4.3 In-Depth Analyses for Re4
	4.4 Online Evaluation Results

	5 Related Work
	5.1 LLMs for Software Testing
	5.2 Case-Based Reasoning

	6 Conclusion
	7 Limitation and Future Work
	Acknowledgments
	References
	A Algorithmic Details
	A.1 Business Metric Details
	A.2 Algorithm Details

	B Why Does REINFORCE Work in Our RLFT Setting?
	C Discussion of the Compared RLHF Algorithms
	D Example of Repetitive Generation Issue

