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We propose simple nonparametric estimators for mediated and time-varying dose response curves based on ker-
nel ridge regression. By embedding Pearl’s mediation formula and Robins’ g-formula with kernels, we allow
treatments, mediators, and covariates to be continuous in general spaces, and also allow for nonlinear treatment-
confounder feedback. Our key innovation is a reproducing kernel Hilbert space technique called sequential kernel
embedding, which we use to construct simple estimators that account for complex feedback. Our estimators pre-
serve the generality of classic identification while also achieving nonasymptotic uniform rates. In nonlinear sim-
ulations with many covariates, we demonstrate strong performance. We estimate mediated and time-varying dose
response curves of the US Job Corps, and clean data that may serve as a benchmark in future work. We extend our
results to mediated and time-varying treatment effects and counterfactual distributions, verifying semiparametric
efficiency and weak convergence.
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1. Introduction

We study mediation analysis and time-varying treatment effects with possibly continuous treatments.
Mediation analysis asks, how much of the total effect of the treatment D on the outcome Y is medi-
ated by a particular mechanism M that takes place between the treatment and outcome? Time-varying
analysis asks, what would be the effect of a sequence of treatments D .7 on the outcome Y, even when
that sequence may not have been implemented? We consider nonparametric causal functions of con-
tinuous treatments. For example, the time-varying dose response curve of two continuous treatments is
the function 98; F (dy,dy) :=E{Y (d1,d2) }, which may refer to medical dosages, lifestyle habits, occupa-
tional exposures, or training durations.

The time-varying dose response curve arises when evaluating social programs from several rounds
of surveys. For example, the National Job Corps Study randomized access to a large scale job training
program in the US and collected several rounds of surveys (Schochet, Burghardt and McConnell, 2008).
Individuals could decide whether to participate and for how many hours, possibly over multiple years.
A natural question is: how much would the average individual benefit from a certain number of class
hours in year one and a possibly different number of class hours in year two? This quantity is an
example of a time-varying dose response curve, where the number of class hours is the time-varying
dose, and the expected benefit is the response.

The difficulty in estimating time-varying dose response curves is the complex feedback loop result-
ing from the initial dose. Formally, we model class hours in different years as a sequence of continuous
treatments subject to treatment-confounder feedback. In other words, we consider the possibility that
class hours in one year may affect health behaviors such as drug use in a subsequent year, which
may then affect subsequent class hours. Though several rounds of Job Corps surveys were collected,
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economists typically study only the initial survey due to a concern for treatment-confounder feedback,
and a lack of simple yet flexible estimators that can adjust for it, while allowing treatments to be contin-
uous. We propose such an estimator using kernels, establish its properties, share a cleaned data set that
includes the additional surveys, and carry out empirical analysis on the cleaned data as well as on simu-
lated data. Previous methods using kernels for continuous treatments (Singh, Xu and Gretton, 2024) do
not handle treatment-confounder feedback, and therefore cannot analyze the additional surveys. This
paper’s technical innovation is a sequential kernel embedding to do so.

While mediated and time-varying causal functions are identified in theory, they are challeng-
ing to estimate in practice. For example, under standard assumptions on time-varying covariates
X1.7, the time-varying dose response is identified as the g-formula, i.e. the sequential integral
05" (d1.da) = [ yo(di.dp.x1,x2)dP(x2]dy,x1)dP(x1), where yo(dy, da.x1,x) = E(Y|Dy =dy, D, =
d>, X1 = x1,X» = x) (Robins, 1986). When treatments are continuous, the functional y +» /
v(dy,dy,x1,x2) dP(x3]di,x1) dP(x1) is generally not bounded (van der Vaart, 1991, Newey, 1994)
or pathwise differentiable (Bickel et al., 1993, ch. 3 and 5). Popular estimators restrict attention to a
binary treatment, parametric models, Markov simplifications, or constrained effect modification for
tractability, and may even redefine the estimand. See Vansteelandt and Joffe (2014) for a review. Each
of these restrictions simplifies the sequential integral in order to simplify estimation. Our research
question is: can we devise simple machine learning estimators for causal functions that preserve the
richness of the sequential integral, and therefore the generality of treatment-confounder feedback in
classic identification, while also achieving nonasymptotic uniform rates?

In this paper, we match the generality of mediated and time-varying identification with the flexibil-
ity and simplicity of kernel ridge regression estimation. We propose a new family of nonparametric
estimators for causal inference over short horizons. Our algorithms combine kernel ridge regressions,
so they inherit the practical and theoretical virtues that make kernel ridge regression widely used. Cru-
cially, we preserve the nonlinearity, dependence, and effect modification of identification theory with
time-varying confounders. Our contribution has three aspects.

First, we introduce an algorithmic technique that appears to be an innovation in the reproducing ker-
nel Hilbert space (RKHS) literature: sequential kernel embeddings, i.e. RKHS representations of medi-
ator and covariate conditional distributions given a hypothetical treatment sequence, which account for
treatment-confounder feedback. For example, we introduce the sequential embedding px, x, (d) such
that the inner product (f, ux, x, (d1)) in an appropriately defined Hilbert space equals the g-formula’s
sequential integral / f(x1,x2)dP(x3|d,x1)dP(x1). We prove that the sequential kernel embedding
exists because the RKHS restores boundedness of the g-formula’s functional y +— f v(dy,dy,x1,x2)
dP(x»|dy,x1)dP(x1), even when the treatments are continuous.

Second, we use our new technique to derive estimators with simple closed forms that combine kernel
ridge regressions, extending the regression product (Baron and Kenny, 1986) and recursive regression
(Bang and Robins, 2005) insights to machine learning. We use sequential embeddings to propose uni-
formly consistent machine learning estimators of time-varying dose response curves without restrictive
linearity, Markov, or no-effect-modification assumptions, which to our knowledge is new. As exten-
sions, we propose what may be the first unrestricted incremental response curves and counterfactual
distributions for time-varying treatments, relaxing the restrictions of the structural nested distribution
model (Robins, 1992). In Section 9 of Singh, Xu and Gretton (2025), for discrete treatments, we use
sequential embeddings to propose simpler nuisance parameter estimators for known inferential proce-
dures. In particular, we avoid multiple levels of sample splitting and iterative fitting.

Third, we prove that our simple estimators based on sequential embedding achieve nonasymptotic
uniform rates for causal functions. Specifically, for the continuous treatment case, we prove uniform
consistency with finite sample rates that combine minimax rates for kernel ridge regression (Caponnetto
and De Vito, 2007, Fischer and Steinwart, 2020, Li et al., 2022). The rates do not directly depend on
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the data dimension, but rather smoothness and the effective dimension, generalizing Sobolev rates. We
extend these results to incremental response curves and counterfactual outcome distributions. We relate
our results to semiparametric analysis in Section 9 of Singh, Xu and Gretton (2025). In particular, for
the discrete treatment case, we verify n~1/2 Gaussian approximation and semiparametric efficiency,
articulating a double spectral robustness whereby some kernels may have higher effective dimensions
as long as others have sufficiently low effective dimensions.

We illustrate the practicality of our approach by conducting comparative simulations and estimat-
ing the mediated and time-varying response curves of the Jobs Corps. In nonlinear simulations over
short horizons, the algorithms reliably outperform some state of the art alternatives. Under standard
identifying assumptions, our direct and indirect dose response curve estimates suggest that job training
reduces arrests via social mechanisms besides employment. By allowing for continuous treatments and
treatment-confounder feedback, our time-varying dose response curve estimates suggest that relatively
few class hours in the first and second year confer most of the benefit to counterfactual employment. Of
independent interest, we clean and share a version of the Job Corps data that may serve as a benchmark
for new approaches to time-varying estimation.

2. Related work

In seminal works, Robins and Greenland (1992), Pearl (2001), Imai, Keele and Yamamoto (2010) and
Robins (1986) rigorously develop identification theory for mediation analysis and time-varying treat-
ment effects, respectively. A rich class of mediated and time-varying causal functions are estimable in
principle if the analyst has a sufficiently rich set of covariates over time X|.7. Treatments may be contin-
uous; relationships among the outcome, treatments, and covariates may be nonlinear; and dependences
may include treatment-confounder feedback and effect modification by time-varying confounders (Gill
and Robins, 2001, VanderWeele and Vansteelandt, 2009).

For continuous treatments, nonparametric estimators for mediated response curves of Huber et al.
(2020), Ghassami et al. (2021) use density estimation, which can be challenging as dimension increases.
Machine learning estimators for time-varying dose response curves of Lewis and Syrgkanis (2021) rely
on restrictive linearity, Markov, and no-effect-modification assumptions, which imply additive effects
of time-varying treatments.

For binary treatments, a rich literature provides abstract conditions for n semiparametric estima-
tion, to which we relate our results in Section 9 of Singh, Xu and Gretton (2025); see e.g. Scharfstein,
Rotnitzky and Robins (1999), van der Laan and Rubin (2006), Zheng and van der Laan (2011), van der
Laan and Gruber (2012), Tchetgen Tchetgen and Shpitser (2012), Petersen et al. (2014), Molina et al.
(2017), Luedtke et al. (2017), Rotnitzky, Robins and Babino (2017), Chernozhukov et al. (2018), Farb-
macher et al. (2022), Bodory, Huber and Lafférs (2022), Singh (2021a) and references therein. Still,
estimators that preserve the full generality of identification for binary treatments are not widely used in
empirical research (Vansteelandt and Joffe, 2014), perhaps due to the complexity of nuisance parameter
estimation.

Unlike previous work that incorporates the RKHS into causal inference, we provide a framework for
mediated and time-varying estimands. Previous work incorporates the RKHS into time-fixed causal
inference. Nie and Wager (2021), Foster and Syrgkanis (2023), Kennedy (2023) propose methods
based on orthogonal loss minimization for heterogeneous treatment effects, and Wong and Chan (2018),
Zhao (2019), Kallus (2020), Hirshberg, Maleki and Zubizarreta (2019), Singh (2021b) propose methods
based on balancing weights for average treatment effects. Muandet et al. (2021) propose counterfac-
tual distributions for a binary treatment, while Singh, Xu and Gretton (2024) propose dose responses
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and counterfactual distributions for a continuous treatment. Whereas previous work studies the time-
fixed setting, we study sequential settings and prove strong results despite the additional challenges of
treatment-confounder feedback and effect modification by time-varying confounders.

This paper subsumes our earlier draft Singh, Xu and Gretton (2021), which subsumed Singh, Xu and
Gretton (2020, Sections B and C).

3. RKHS assumptions

We summarize RKHS notation, interpretation, and assumptions that we use in this paper. Let & :
W x W — R be a function that is continuous, symmetric, and positive definite. We call k the
kernel, and we call ¢ : w — k(w,-) the feature map. The kernel is the inner product of features
k(w,w") = (p(w), p(w’))g, and we formally define the inner product below. The RKHS is the clo-
sure of the span of the features {¢(w)}, e . As such, the features are interpretable as the dictionary
of basis functions for the RKHS: for f € H, we have that f(w) = (f, p(w)).

Kernel ridge regression uses the RKHS H as the hypothesis space in an infinite dimensional opti-
mization problem with a ridge penalty, and it has a well known closed form solution:

. 1 < .
f= arjgn;i{n;Z{& —FOWDP+AfIRs  fw) =Y (Kww +ndD) ™ K, (1)
€ i=1

where Kww € R is the kernel matrix with (7, j)th entry k(W;,W;) and Kw,, € R" is the kernel
vector with ith entry k(W;,w). To tune the ridge penalty hyperparameter A, both generalized cross
validation and leave one out cross validation have closed form solutions, and the former is asymptot-
ically optimal (Li, 1986). To analyze the bias and variance of kernel ridge regression, the statistical
learning literature places assumptions on the smoothness of f and the effective dimension of . Both
assumptions describe the kernel’s spectrum, which we now define.

Denote by L%,(‘W ) the space of square integrable functions with respect to the measure v. Consider
the convolution operator L : L%,("W) — L%, (W), [ f k(-,w)f(w)dv(w). By the spectral theorem,
we define its spectrum, where (77) are weakly decreasing eigenvalues and (¢ ;) are orthonormal eigen-
functions that form a basis of L2 (‘W). As such, Lf = Zjozl ni{e;, f>L%,((W) CQ;.

Remark 3.1 (RKHS versus L? inner product). To interpret how the RKHS 7 compares to L2 (‘W),
we express both function spaces in terms of the orthonormal basis (¢ ;). In other words, we present the
spectral view of the RKHS. For any f, g € L%, (W), write f = Z;‘;l fipjand g = 2;":1 gjpj. Then

LIW)=[f=>figi: D <ol (@) =D, fig);
Jj=1 j=1 Jj=1
1=t Y L <o, (fgu= D EEL
Jj=1 j=1 j j=1 j

The space H is the subset of L2 (‘W) for which higher order terms in (¢ ;) have a smaller contri-
bution, subject to v satisfying the conditions of Mercer’s theorem (Steinwart and Scovel, 2012). Under
those conditions, k(w,w’) = Z;‘il njej(w)e;(w’); (n;) and (¢;) describe the kernel’s spectrum.
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An analyst can place smoothness and effective dimension assumptions on the spectral properties of
a statistical target f estimated in the RKHS H (Caponnetto and De Vito, 2007, Fischer and Steinwart,
2020). These assumptions are formalized by parameters (b, ¢):

o0

f2
foeH = f= me Z eS|t ce(2 m=Cit b2l @
]

The value ¢ quantifies how well the leading terms in (¢;) approximate fp; a larger value of ¢ corre-
sponds to a smoother target fy. A larger value of b corresponds to a faster rate of spectral decay and
therefore a lower effective dimension. Both (b, ¢) are joint assumptions on the kernel and data distri-
bution. Correct specification implies ¢ > 1 and a bounded kernel implies b > 1 (Fischer and Steinwart,
2020, Lemma 10). Minimax optimal rates for regression are governed by (b, c) (Caponnetto and De
Vito, 2007, Fischer and Steinwart, 2020), with faster rates corresponding to higher values. In our analy-
sis of causal estimands, we obtain nonparametric rates and semiparametric rate conditions that combine
regression rates in terms of (b, c).

Spectral assumptions are easy to interpret in Sobolev spaces (Fischer and Steinwart, 2020). Let
W c RP. Denote by Hj the Sobolev space with s > p/2 square integrable derivatives, which can be
generated by the Matern kernel. Suppose H =Hj is chosen as the RKHS for estimation. If f € H;O,
then ¢ = s¢/s; ¢ quantifies the additional smoothness of f; relative to 9. In this Sobolev space, b =
2s/p > 1. The effective dimension is increasing in the original dimension p and decreasing in the
degree of smoothness s. The minimax optimal regression rates are

1 _S0
n" 2B = Totr in L2 norm, n

c— S0=S

7B = n_ 20*P in Sobolev norm, 3)

I\)I'—‘

and both are achieved by kernel ridge regression with A = n~1/(¢+1/0) = =25/ (2so+p)

We place five types of assumptions in this paper, generalizing the standard RKHS learning theory
assumptions from kernel ridge regression to mediated and time-varying causal inference: identifica-
tion, RKHS regularity, original space regularity, smoothness, and effective dimension. We formally
instantiate these assumptions for mediated responses in Section 4, time-varying responses in Section 5,
and counterfactual distributions in Section 10 of Singh, Xu and Gretton (2025). We uncover a double
spectral robustness in related semiparametric inferential theory in Section 9 of Singh, Xu and Gret-
ton (2025): some kernels may have higher effective dimensions, as long as other kernels have lower
effective dimensions.

4. Mediated response curves

4.1. Pearl’s mediation formula

Mediation analysis decomposes the total effect of a treatment D on an outcome Y into the direct effect
versus the indirect effect mediated via the mechanism M. The problem is sequential since D causes
M and Y, then M also causes Y. We denote the counterfactual mediator M (%) given a hypothetical
intervention on the treatment D = d. We denote the counterfactual outcome ¥ (") given a hypothetical
intervention on the treatment D = d and the mediator M =m.

Definition 4.1 (Pure mediated response curves (Robins and Greenland, 1992)). Suppose the treat-
ment D is continuous.
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1. The total response OgE (d,d")=E [Y{d,’M(d/>} _yldmM@ 1] is the total effect of a new treatment
value d’ compared to an old value d.

2. The indirect response HéE(d, d) = E[Y{d/’M(d/)} - Y{d/’MW}] is the component of the total
response mediated by M.

3. The direct response OODE (d,d") = E[Y{d/’M(d)} - Y{d’M(d)}] is the component of the total re-
sponse that is not mediated by M.

4. The mediated response 984 Ed,d'y=E[yld-M @ }] is the counterfactual mean outcome in the
thought experiment that the treatment is set at a new value D = d’ but the mediator M follows the
distribution it would have followed if the treatment were set at its old value D = d.

Likewise we define incremental response curves, e.g. Gg/lE’V (d,d")=E [VdrY{d"M(d) H.

Remark 4.1 (Interventional mediated response curves). Definition 4.1 considers cross world coun-
terfactuals that involve different treatment values for the potential outcomes and potential mediators
(Robins and Greenland, 1992, Pearl, 2001, Imai, Keele and Yamamoto, 2010). An alternative paradigm
instead considers interventional counterfactuals; see e.g. Robins and Richardson (2011), Richardson
and Robins (2013), Robins, Richardson and Shpitser (2022) and references therein. The alternative
view avoids defining potential mediators and instead supposes that the treatment can be decomposed
into multiple separable components. Though these two paradigms define different mediated response
curves, when they are identified, their identifying formulae coincide as Pearl’s mediation formula,
which we quote in Lemma 4.1 as the starting point for our analysis. As such, our estimation results
apply to both important paradigms for mediation analysis.

0({ E(d,d") generalizes average total effects. The average total effect of a binary treatment is

E[Y{I’M(l)} - Y{O’M(O)}]. For a continuous treatment, the function d +— E[Y{d’M<d)}] may be infi-
nite dimensional, which makes this problem fully nonparametric.

An analyst may wish to measure how much of the total effect is indirect: how much of the total
effect would be achieved by simply intervening on the distribution of the mediator M? For example,
in Section 6, we investigate the extent to which employment mediates the effect of job training on
arrests. With a binary treatment, the indirect effect is E[Y (LMW} y{1,M ) ]. In the former term,
the mediator follows the counterfactual distribution under the intervention D = 1, and in the latter, it
follows the counterfactual distribution under the intervention D = 0.

The remaining component of the total effect is the direct effect: if the mediator were held at the
original distribution corresponding to D = d, what would be the impact of the treatment D = d’? For
example, in Section 6, we investigate the effect of job training on arrests holding employment at the
original distribution. With a binary treatment, the direct effect is E[Y {1-M @) _ylo.m©y ].

The final target parameter is 9(1)‘4E (d,d"). 1t is useful because QgE (d,d"), G(I)E (d,d’), and GODE (d,d")
can be expressed in terms of 93’1 E(d,d"). With a binary treatment, this quantity is a matrix in R?*2,
With a continuous treatment, it is a surface over D X D.

Proposition 4.1 (Convenient expressions). Mediated response curves can be expressed in terms of
9(’)‘4E(d, d):

L 6JE(d.d)=0DF(d.d")+6(F (d.d');

2. 00F(d.d") =0 (d'.d") - 6} E (d.d');

3. 00E(d.d") =0)'E (d.d") - 6}'E (d.d).
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In seminal works, Robins and Greenland (1992), Pearl (2001), Imai, Keele and Yamamoto (2010)
state sufficient conditions under which the mediated response curves can be measured from the out-
come Y, treatment D, mediator M, and covariates X, which we call selection on observables for medi-
ation. We modestly extend the classic identification result from 98’1 E(d,d") to its incremental version

9(1)\/1E’V(d, d’). Let ,yO(d’m’x) - E(Y|D =d,M=m,X :x).

Lemma 4.1 (Pearl’s mediation formula). Under selection on observables for mediation,

1. 9(1)‘/1E(d, d)= /yo(d’,m,x)dP(m|d,x)dP(x) (Robins and Greenland, 1992, Pearl, 2001, Imai,
Keele and Yamamoto, 2010) and
2. 0)"5V(d, d") = [ Varyo(d',m,x)dP(m|d,x)dP(x).

See Section 12 of Singh, Xu and Gretton (2025) for the identifying assumptions and proof of our
extension. Proposition 4.1 identifies the other quantities in Definition 4.1. For subsequent analysis, it
helps to define wy(d.d’;x) = [ yo(d’,m,x)dP(m|d,x), so that O} (d,d’') = [ wo(d,d’;x)dP(x).

Remark 4.2 (Pearl’s mediation formula is unbounded over > when the treatment is continuous).
Define the functional F: L2 - R, y f y(d’,m,x)dP(m|d,x)dP(x). When the treatment is continu-
ous, F is generally unbounded, i.e. there does not exists some C < co such that F(y) < C||y||;2 for all
y € L? (van der Vaart, 1991, Newey, 1994). This technical challenge is well documented in the causal
inference literature; see van der Laan, Bibaut and Luedtke (2018) for references.

Remark 4.3 (Mediational g-formula). A rich literature defines mediated response curves in the con-
text of time-varying treatments; see e.g. VanderWeele and Tchetgen Tchetgen (2017), Malinsky, Sh-
pitser and Richardson (2019) and references therein. The mediational g-formula synthesizes Pearl’s
mediation formula in Lemma 4.1 and Robins’ g-formula in Lemma 5.1. Our framework generalizes
to these more complex causal functions, using the techniques in Section 11 of Singh, Xu and Gretton
(2025).

4.2. Sequential kernel embedding

Lemma 4.1 makes precise how each mediated response curve is identified as a sequential integral of
the form fyo(d’,m,x)dQ for the distribution Q = P(m|d,x)P(x). Since x appears in yo(d’,m,x),
P(m|d,x), and P(x), the sequential integral is coupled and therefore challenging to estimate. We prove
that, with the appropriate RKHS construction, the components yy(d’, m, x), P(m|d, x), and P(x) can be
decoupled. Moreover, the sequential distribution Q can be encoded by a sequential kernel embedding,
which is our key innovation. We use these techniques to reduce sequential causal inference into the
combination of kernel ridge regressions, which then allows us to propose simple estimators with closed
form solutions.

To begin, we construct the appropriate RKHS for yg. In our construction, we define RKHSs
for the treatment D, mediator M, and covariates X, then assume that the regression is an ele-
ment of a certain composite space. To lighten notation, we will suppress subscripts when argu-
ments are provided. We assume the regression 7yq is an element of the RKHS H with the kernel
k(d,m,x;d’,m’,x") = kp(d,d" Yk py(m,m")k x (x,x”). Formally, this choice of kernel corresponds to
the tensor product: yg € H = Hyp ® Hpy ® Hy, with the tensor product dictionary of basis functions
¢(d) ® ¢p(m) ® ¢(x). As such, yo(d,m,x) = (y0, p(d) ® p(m) ® ¢(x))¢ and [|¢(d) ® p(m) ® ¢ (x)|l4 =
()l 3, | (M) [ 31,16 () [ 24, - We place regularity conditions on this RKHS construction in order
to prove our decoupling result. Anticipating Section 10 of Singh, Xu and Gretton (2025), we include
conditions for an outcome RKHS in parentheses.
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Assumption 4.1 (RKHS regularity conditions). Assume

1. kp, kp, kx (and ky) are continuous and bounded, i.e. sup,cqp l1¢(d)ll#,, < Ka, SUP,,em
lo(m)ll#y, < Kms sUPxex 16Xl 9, < &x {and supycy [6(W M4, < &y}

2. ¢(d), p(m), ¢(x) {and ¢(y)} are measurable;

3. k. kx (and ky) are characteristic (Sriperumbudur, Fukumizu and Lanckriet, 2010).

For incremental responses, further assume 9 C R is an open set and V4V k¢ (d,d’) exists and is
continuous, hence sup ;¢ ¢ [|Va¢(d)l44 < &

Commonly used kernels are continuous and bounded. Measurability is a similarly weak condition.
The characteristic property means that different distributions will have different embeddings in the
RKHS. For example, the indicator kernel is characteristic over a discrete domain, while the exponenti-
ated quadratic kernel is characteristic over a continuous domain.

Theorem 4.1 (Decoupling via sequential kernel embeddings). Suppose the conditions of Lemma 4.1
hold. Further suppose Assumption 4.1 holds and yo € H. Then

1. (l)()(d’ dl;x) = <7(),¢(d') ®,Um(d,x) ® ¢(x)>7_{’
2. OME (d,d’) = (y0, $(d") ® pm,x (d))3¢, and

3. 655V (d.d') = (0. Var 6(d') @ pnx ()30
where u(d.x) = [ $(m)AP(mld.x) and g (d) = [ (d.x) ® $(x)}dP(x).

Proof sketch. Consider wq(d,d’;x) = /yo(d’,m,x)dP(m|d,x). We show

wo(d,d';x) = / (y0.9(d") ® p(m) ® ¢(x))dP(m|d,x) = (yo, ¢(d") ® m(d,x) ® ¢(x))p.

Sequentially repeating this technique for 6’3’1 Ed,d) = / wo(d,d’;x)dP(x),

eg/IE(d,d,)=/<70,¢(d’)®ﬂm(dax)®¢(x)>‘l-{dp(x)=<70a¢(d,)®ﬂm,x(d)>7-(~ O

See Section 13 of Singh, Xu and Gretton (2025) for the full proof. The quantity u,,(d,x) =
/ ¢(m)dP(m|d,x) embeds the conditional distribution P(m|d,x) as an element of the RKHS H 4,
which is a popular technique in the RKHS literature. It satisfies, for f € Hpy, (f, um(d,x)) 9, =

ff(m)dP(m|d,x).

Remark 4.4 (Key innovation). The quantity u,, »(d) is a sequential kernel embedding that en-
codes the counterfactual distribution of the mediator M and covariates X when the counterfactual
treatment value is D = d. It is our key innovation. It has the property that, for f € Hy ® Hy,
(fs m,x () H 0 Hy = f f(m,x)dP(m|d,x)dP(x), implementing Pearl’s mediation formula.

Remark 4.5 (Pearl’s mediation formula is bounded over /{ when the treatment is continuous).
Define the functional F : H - R,y > f y(d’,m,x)dP(m|d,x)dP(x). Under Assumption 4.1, we show
that F is bounded even when the treatment is continuous, i.e. there exists some C < oo such that F(y) <
C||y|l4 for all y € H. This observation generalizes the observation of Singh, Xu and Gretton (2024) for
time-fixed dose response curves. It follows immediately from the definition of the RKHS as the space
of functions for which the functional y + y(d’, m,x) is bounded (Berlinet and Thomas-Agnan, 2004).



Sequential kernel embedding for response curves 3021

Boundedness of the functional is what guarantees the existence of the sequential kernel embeddings in
Theorem 4.1.

Theorem 4.1 decouples yo(d’,m,x), P(m|d,x), and P(x), providing a blueprint for estimation that
avoids density estimation and sequential integration. Our estimator will be §ME (d,d’) = (§, ¢(d’) ®
fm.x(d))g where fi x(d) =n~! 2 Am(d, X;) ® ¢(X;)}. The estimator 7 is a standard kernel ridge
regression. The estimator i, (d, x) is an appropriately generalized kernel ridge regression. We combine
them by averaging and taking the product.

Algorithm 4.1 (Nonparametric estimation of mediated response curves). Denote the kernel matri-
ces by Kpp, Ky, Kxx € R™". Let ® be the elementwise product. Mediated response curves have
closed form solutions:

1. &(d,d;x) =Y (Kpp © Kpiam © Kxx +nAdl) " [Kpa © {Kym (Kpp @ Kxx +nd1 )" (Kpg ©
ISXx)} © Kxx] and
2. ME(ad,d)=n"' 31 O(d,d"; X;),

L

where (4, 1) are ridge regression penalty parameters. For mediated incremental response curve esti-
mators, we replace Kp g with V Kp g where (Vg Kpg)i = Vo k(D;,d").

Derivation sketch. Consider wy(d,d’;x). Analogously to (1), the kernel ridge regression estimators
of the regression g and the conditional kernel embedding u,,(d, x) are

n

1
7= argmin = ) [¥i = (7. 6(D) ® $(M1) @ (X)yl” + Ay
Y€ i=1

. 1 v
E= argmin = > [8(M;) = E{¢(D;) ® ¢(X) > + M EIZ 4. 4 ,
Ee Ly (Hy Hpoty) 1 ; l l ! Lr(Hp, Hp®Hy)

where fi,n(d,x) = E*{¢(d) ® ¢(x)} and E* is the adjoint of E. The closed forms are
$(d',x)=Y"(Kpp © Kpm © Kxx +ndl) " (Kpar © K. © Kxx),
[fim(d.x)]1(-) = K-p (Kpp © Kxx +nAi 1)~ (Kpa © Kxx).
To arrive at the main result, match the empty arguments (-) of the kernel ridge regressions. O

We derive this algorithm in Section 13 of Singh, Xu and Gretton (2025). We give theoretical values
for (4,4;) that optimally balance bias and variance in Theorem 4.2 below. Section 16 gives practical
tuning procedures with closed form solutions to empirically balance bias and variance, one of which is
asymptotically optimal. We formally define the operator space Lo (Hp, Hp ® Hyx) below.

4.3. Uniform consistency with finite sample rates

Towards a guarantee of uniform consistency, we place regularity conditions on the original spaces.
Anticipating Section 10 of Singh, Xu and Gretton (2025), we include conditions for the outcome in
parentheses.

Assumption 4.2 (Original space regularity conditions). Assume (i) D, M, X (and Y) are Polish
spaces; (ii) Y Cc R and |Y| < C almost surely.
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A Polish space is a separable and completely metrizable topological space. Random variables sup-
ported in a Polish space may be discrete or continuous and even texts, graphs, or images. Boundedness
of the outcome Y can be relaxed. Next, we place assumptions on the smoothness of the regression y
and the effective dimension of H the sense of (2).

Assumption 4.3 (Smoothness and effective dimension of the regression). Assume yy € H¢ with
ce(1,2],and n;(H) < Cj~> with b > 1.

See Section 14 of Singh, Xu and Gretton (2025) for alternative ways of writing and interpreting
Assumption 4.3 in the tensor product space . We place similar conditions on the conditional kernel
embedding u,,(d,x), which is a generalized regression. We articulate this assumption abstractly for
the conditional kernel embedding p (b) = f ¢(a)dP(a|b) where a € Ay and b € By. As such, all one
has to do is specify Ay and B to specialize the assumption. For u, (d,x), A; = M and B; =D x X.
We parametrize the effective dimension and smoothness of u, (b) by (be,cy).

Formally, define the conditional expectation operator E; : Ha, — Hsg,, f(-) = E{f(A¢)|Br =-}.
By construction, Ey encodes the same information as u, (b) since

ﬂa(b)=/¢(a)d1’(a|b)=[Er{¢(-)}](b)=[EZ{¢(b)}](-), aeAr, beBy,

where E7 is the adjoint of E,. We denote the space of Hilbert-Schmidt operators between s, and
Hg, by Lo(Ha,, Hs,). Here, Lo(Ha,, Hg,) is an RKHS in its own right, for which we place
smoothness and effective dimension assumptions in the sense of (2). See Griinewilder, Gretton and
Shawe-Taylor (2013, Appendix B) and Singh, Sahani and Gretton (2019, Appendix A.3) for details.

Assumption 4.4 (Smoothness and effective dimension of a conditional kernel embedding). As-
sume E; € Lz(ﬂﬂg,?{;’;) with cp € (1,2], and 57 (Hg,) < Cj~Pt with by > 1.

Just as we place approximation assumptions for yp in terms of H, which provides the features onto
which we project Y, we place approximation assumptions for E, in terms of Hg,, which provides
the features ¢(By) onto which we project ¢(A,). Under these conditions, we arrive at our first main
theoretical guarantee.

Theorem 4.2 (Uniform consistency of mediated response curves). Suppose the conditions of The-
orem 4.1 hold, as well as Assumptions 4.2, 4.3, and 4.4 with A; = M and B) = D X X. Set
(A, A1) = {n~ Y etl/b) y=1/(cr+1/b)Y \which is rate optimal regularization. Then

L |GME —ME|| o = 0, [n (=D QRAx1/B)) 4 y=(er=D/Q2Aer+1/bD}] g
2. ||[ME.V _ 934E~V||w =0, [n~(e=D/2Aet/B)} 4 p=(er=D/2(er+1/bn)}],

See Section 14 of Singh, Xu and Gretton (2025) for the proof. By Proposition 4.1, the quantities in
Definition 4.1 are uniformly consistent with the same rate, which combines optimal rates for standard
(Fischer and Steinwart, 2020, Theorem 2) and generalized (Li et al., 2022, Theorem 3) kernel ridge
regression in RKHS norm. Section 14 gives the exact finite sample rate and the explicit specialization of
Assumption 4.4. The rate is at best n~'/* when (¢, ¢1) =2 and (b, b;) — oo, i.e. when (yg, i) are very
smooth with finite effective dimensions. The rates reflect the challenge of a sup norm guarantee, which
is much stronger than an L2 norm guarantee and is useful for policymakers who may be concerned
about each treatment value. See (3) to specialize these rates for Sobolev spaces.
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Remark 4.6 (Technical contribution). The technical contribution underlying our theoretical guar-
antee is an RKHS norm rate for the sequential kernel embedding. In particular, Proposition 14.1 in
Section 14 of Singh, Xu and Gretton (2025) derives a nonasymptotic bound on sup ;¢ ¢ ||fm,x(d) —
Hm.x (@) ||, @Hy > as a stepping stone to Theorem 4.2. This intermediate result is not contained in
Singh, Xu and Gretton (2024) nor in other previous works on kernel methods for causal inference.

Remark 4.7 (Rate improvements). For the time-fixed dose response curve, Kennedy et al. (2017)
prove pointwise rates, assuming smoothness of the dose response as well as finite uniform entropy in-
tegrals for the regression estimator and for the density estimator of treatment given covariates. Later
works use sample splitting to relax the entropy conditions to rate conditions, e.g. Semenova and Cher-
nozhukov (2021), Colangelo and Lee (2020).

If the regression and density have sufficiently fast rates, then pointwise rate improvements are possi-
ble, reflecting the smoothness and lower dimension of the dose response. These are called oracle rates
with second order dependence on the regression and density. See e.g. Nie and Wager (2021), Foster
and Syrgkanis (2023), Kennedy (2023) for time-fixed heterogeneous treatment effects.

For our RKHS estimator of the mediated response curve, we prove uniform rates, under smoothness
assumptions on the regression function and a conditional expectation operator. To achieve sup norm rate
improvements for our RKHS estimator, future work may place an additional smoothness assumption
on the mediated response curve and rate conditions on the regression, conditional expectation operator,
and appropriate conditional densities.

5. Time-varying response curves

5.1. Robins’ g-formula

So far we have considered the effect of a single treatment D. Next, we consider the effect of a sequence
of time-varying treatments D .7 = d;.7 on the counterfactual outcome Y1) If the sequence of treat-
ment values d;.7 is observed in the data, this problem may be called on-policy planning; if not, it may
be called off-policy planning.

Definition 5.1 (Time-varying dose response curves (Robins, 1986)). Suppose the treatments D .7
are continuous.

1. The time-varying response HgF (dy.1) = E{Y4:1)} is the counterfactual mean outcome given
the interventions D .7 = d|.7 for the entire population.

2. With distribution shift, 96’ S(dy.7,P)=E Is{Y(‘lliT)} is the counterfactual mean outcome given
the interventions D .7 = dy.7 for an alternative population with the data distribution P.

Likewise we define incremental response curves, e.g. QSF’V (di.1) = E{VdTY(dliT) 1.

Remark 5.1 (Randomized dynamic policies). For clarity, we focus on the deterministic, static coun-
terfactual policy d;.7. It is deterministic in that it is nonrandom. It is static in that it does not depend
on the observed sequence of covariates X;i.7. The time-varying treatment effect literature extends to
policies that may be randomized and dynamic (Robins, 1986). Our approach extends to randomized
and dynamic policies with additional notation; see Remark 5.3.

Whereas much of the semiparametric literature restricts d; to be discrete, we allow d; to be contin-
uous and consider a nonparametric approach to time-varying response curves (Gill and Robins, 2001).
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For example, in Section 6, we estimate the effect of d; class hours in year one, and d, class hours
in year two, on counterfactual employment, with treatment-confounder feedback. In the spirit of off-
policy planning, we consider a distribution shift from P to P.

In seminal work, Robins (1986) states sufficient conditions under which time-varying responses can
be measured from the outcome Y, treatments D .7, and covariates X;.7. We refer to this collection of
conditions as sequential selection on observables. We modestly extend the classic identification result
by considering incremental responses.

Lemma 5.1 (Robins’ g-formula). Under sequential selection on observables and a distribution shift
condition,

1. 0§% (di.r) = [ yo(dir,x1.0)dP(x1) 1], dP{x/|dy:(s-1)- X1:(-1) } (Robins, 1986) and

2. 095 (dvr, P) = [yo(dir,xi:r)dP(x1) T1{_y dP{xildy.(1-1),%1:¢-1)} (Pearl and Bareinboim,
2014).

3. For incremental response curves, we replace yo(di.r,x1.7) with Vg, vo(di.T, x1.T).

See Section 12 of Singh, Xu and Gretton (2025) for the identifying assumptions and proof of
our extension. We consider a fully nonparametric g-formula with possibly continuous treatments
that allows for distribution shift. Lemma 5.1 handles auxiliary Markov restrictions as special cases,
e.g. if covariates follow a Markov process, then GOGF simplifies by setting P{x;|d1.(;~1),X1:(—1)} =
P(x¢|dy—1,x1-1)-

Remark 5.2 (Robins’ g-formula is unbounded over > when the treatments are continuous). De-
fine the functional F :L>? - R, y — /y(dl:T,ka)dP(x]) ]—Isz2 dP{x;|dy.(t-1),*1:(¢=1)}. When the
treatments are continuous, F is generally unbounded in the sense of Remark 4.2 (van der Vaart, 1991,
Newey, 1994, van der Laan, Bibaut and Luedtke, 2018).

Remark 5.3 (Randomized dynamic policies). To accommodate randomized dynamic policies, the
product in Lemma 5.1 will include factors for the conditional distributions of treatments. Specifically,
the integral will replace d; with g; : {dy.(;-1),X1.+} = G{d;|d1.(;-1),X1.:} where G is the distribution
induced by the randomized dynamic policy (g;).

5.2. Sequential kernel embedding

Similar to Lemma 4.1, Lemma 5.1 identifies each time-varying response as a sequential integral
of the form /yo(dlzT,xlzT)dQ for the distribution Q = P(x;) ]—[z":2 P{x;d1.(1-1),X1:(1-1)} or Q =
P(x)) H;T:Z f’{xt|d1;(t_1),x1:(t_1)}. As before, components of the sequential integral are coupled
and therefore challenging to estimate, since x| appears in yo(di.7,x1.7), P{x¢|d1.(;=1),X1.t=1) }
and P(xj). As in Section 4, we construct an appropriate RKHS to decouple these components,
then to encode Q by a sequential kernel embedding. With these techniques, we again reduce se-
quential causal inference into the combination of kernel ridge regressions. For clarity, we present
the algorithm with 7 = 2, and we define wy(d;,dy;x1) = fyo(dl,dz,xl,xz)dP(x2|d1,x1) so that
GgF(dl,dz) = fwo(dl,dg;xl)dP(xl). We consider T > 2 in Section 11 of Singh, Xu and Gretton
(2025), which also showcases the role of Markov assumptions.

To construct the RKHS for yg, we define RKHSs for each treatment D; and each covariate X;.
Using identical notation as Section 4, we assume the regression yp is an element of the RKHS H
with the kernel k(dy, da,x1,x2;d|, d}), x1,x}) = kp(dy, d)kp(d2, d))kx (x1,x])kx (x2,x)), i.e. yo €
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H=Hp @ Hp ® Hx ® Hy. As such, yo(dy,dar,x1,x2) = (y0, (d1) ® ¢(d2) ® ¢(x1) ® p(x2))4 and

l¢(d1) ® ¢(d2) ® p(x1) ® ¢(x2) I = |(dD) 4, | ()l 1 | (1) Ml 115 Nl @ (x2) | 1 - Undler regularity
conditions on this RKHS construction, we prove an analogous decoupling result.

Theorem 5.1 (Decoupling via sequential kernel embeddings). Suppose the conditions of Lemma 5.1
hold. Further suppose Assumption 4.1 holds and yy € H. Then

L wo(di,dr;x1) = (y0, #(d1) ® ¢(d2) ® ¢(x1) ® px, (d1,x1)) 34,

2. 65 (d1,d2) = (y0, (d1) ® (d2) ® pix, .x, (1)) Where pix, (d1,x1) = [ $(x2)dP(x2]d), x1) and
Haxyoxy (d1) = [{p(x1) @ py (d1, x1) }AP(x1);

3. 605 (d1,dp; P) = (y0, ¢(d1) ® ¢(d2) ® v, x, (d1))gs Where vy, (d1,x1) = [ ¢(x2)dP(x2]dy,x1)
and vy, x,(d1) = [{$(x1) ® vx, (dy,x1) }dP(x)).

For incremental responses, we replace ¢(dz) with V 4,¢(d>).

See Section 13 of Singh, Xu and Gretton (2025) for the proof. In 9((); F  the conditional kernel em-
bedding of P(x2|dy,x1) is px,(d1,x1) = f¢(x2)dP(x2|d1,x1), and it satisfies (f, px, (d1,X1)) 3y =
[ f(x2)dP(xaldy, xy).

Remark 5.4 (Key innovation). Here, uy, x,(d;) is a sequential kernel embedding that encodes the
counterfactual distribution of the covariates (X, X) when the initial, counterfactual treatment value is
Dy =d,. It satisfies (f, px, x, (d1))HyoHy = ff(xl,xz)dP(x2|d1,x1)dP(x1), implementing Robins’
g-formula. It is our key innovation, and it accounts for treatment-confounder feedback in this setting.

Remark 5.5 (Robins’ g-formula is bounded over /{ when the treatments are continuous). De-
fine the functional F: H - R, y — fy(dlzT,xlzT)dP(xl) ﬂtT:2 dP{x/|d1.(s-1)>X1:(s~1) }. Similar to
Remark 4.5, when the treatments are continuous and when Assumption 4.1 holds, we show that F is
bounded by appealing to the definition of the RKHS. Boundedness of F guarantees the existence of the
sequential kernel embeddings in Theorem 5.1.

As before, this decoupling is a blueprint for estimation. For example, our estimator will be
65T (dy,dr) = (9,¢(d1) ® §(d2) ® fix, x, (d1))g Where fix, x,(d1) =n~' T {d(X11) ® fix, (d1, X))
Here, 7 is a kernel ridge regression, fi, (d1,x1) is a generalized kernel ridge regression, and we com-
bine them by averaging and taking the product.

Algorithm 5.1 (Nonparametric estimation of time-varying response curves). Denote the kernel
matrices Kp,p,, Kp,p,. Kx,x,» Kx,x, € R calculated from the population P. Denote the kernel
matrices Kp, 5. Kp,p,» Kz,%,» Kx,%, € R calculated from the population P. Let © be the elemen-
twise product. Time-varying dose response curves have closed form solutions:

. &(dy,da;x1)=Y"(Kp,p, ©@ Kp,D, © Kx,x, © Kx,x, +nAl)™!
R [KDldl @ KDzdz @ KX].X] @ {KX2X2 (KDlD] @ KX]X] + nA4I)_1 (KDldl @ KX].X] )}]’
2. 65F(dy,dy) =n~" X O(dy.dy: X1i):
3. 0PS(dy,dy; P) ="' XL YT (Kp,p, © Kp,D, © Kx,x, © Kx,x, +nAI) ™!
[KDldl ©Kp,a, © Kx,5,; © {szxz(KDIDI o KXIXI +I7l/l51)_1 (Kf)ldl © K)?l)?”)}]’
where (4, A4, A5) are ridge regression penalty parameters. For incremental responses, we replace Kp, 4,
with deKD2d2 where (deKDzdz)i = dek(Dzi, dy).
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We derive these algorithms in Section 13 of Singh, Xu and Gretton (2025). We give theoretical
values for (4, A4, A5) that optimally balance bias and variance in Theorem 5.2 below. Section 16 gives
practical tuning procedures with closed form solutions to empirically balance bias and variance, one of
which is asymptotically optimal. Note that #”5 requires observations of the treatments and covariates
from the alternative population P.

5.3. Uniform consistency with finite sample rates

Towards a guarantee of uniform consistency, we place regularity conditions on the RKHSs and original
spaces via Assumptions 4.1 and 4.2. We also assume the regression g is smooth and quantify the
effective dimension of H via Assumption 4.3. For the conditional kernel embeddings .y, (d1,x1) and
Vx,(d1,x1), we place further smoothness and effective dimension conditions via Assumption 4.4. With
these assumptions, we arrive at our next main result.

Theorem 5.2 (Uniform consistency of time-varying response curves). Suppose the conditions of
Theorem 5.1 hold, as well as Assumptions 4.2 and 4.3. Set (1,4, s) = {n~ 1/ (c*1/b) p=1/(cat1/by)
A~V estl/bs)y \which is rate optimal regularization.

1. If in addition Assumption 4.4 holds with Ay = X and B4 = D x X, then ||6¢F — H(C);FIIOo =
0, [n—(c—l)/{2(c‘+1/b)} +n—(c‘4—1)/{2(64+1/b4)}].

2. If in addition Assumption 4.4 holds with As = X and Bs = D x X, then ||6PS — GODSHOO =
0, [n—(c—l)/{2(6+l/b)} +ﬁ—(65—1)/{2(65+1/b5)}]_

Likewise for the incremental responses. For example, ||§¢F-V — Gg;F,v lo=0p [n_(c_l)/{z(”]/b)} +
n—(c'4—1)/{2(c4+1/b4)}].

See Section 14 of Singh, Xu and Gretton (2025) for the proof, exact finite sample rates, and explicit
specializations of Assumption 4.4. As before, these rates are at best n~ /4 when (c,c4,c¢5) =2 and
(b, by, bs) — 0. See (3) for the Sobolev special case.

Remark 5.6 (Technical contribution). As before, the technical contribution underlying this theoreti-
cal guarantee is an RKHS norm rate for the sequential kernel embedding. In particular, Proposition 14.2
in Section 14 of Singh, Xu and Gretton (2025) derives nonasymptotic bounds on sup, ¢ o ||fix;,x, (d1) —

Hoxy,x, (A1) |4, o7, and SUP4, e 1Vx1,x, (d1) = Vx|, x2 (d1) | 1y @4y » @ @ stepping stone to Theorem 5.2.
These intermediate results appear to be new.

Remark 5.7 (No effect). Consider the scenario when there is no effect of the second dose, i.e.
E{y(d-@)} = E{y(dD)} As argued in Section 12 of Singh, Xu and Gretton (2025), under this ad-
ditional restriction, y(dy,dy,x1,x2) = E(Y|D = dy, X| = x1, X> = x2). In the proof technique of Sec-
tion 14 of Singh, Xu and Gretton (2025), if the kernel ridge regression estimator ¥ is consistent for a
function 7y that is constant in d;, our rates remain valid.

In particular, our RKHS estimator for the time-varying dose response remains uniformly consistent
as long as Hy contains constant functions. While the RKHS with exponentiated quadratic kernel does
not satisfy this property (Steinwart, Hush and Scovel, 2006), other RKHSs do. Another option is to
augment an RKHS that does not contain constant functions with constant functions.

Interestingly, in this scenario Robins’ g-formula simplifies to 967 Fdy) = f EY|D =d,X =
x1)dP(xy) by the law of iterated expectations. When neither dose has any effect, a similar argument
yields 9(? F = E(Y). Simplifying the g-formula from a surface to a curve to a scalar suggests that rate
improvements may be possible. Remark 4.7 discusses possible directions for future work.
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Figure 1. Nonparametric response simulations. For the mediated response, we implement two estimators: Huber
et al. (2020) (IPW, checkered gray) and our own (RKHS, white). For the time-varying dose response, we implement
four estimators. From left to right, these are Singh, Xu and Gretton (2024) {RKHS (ATE), checkered white}, Singh,
Xu and Gretton (2024) {RKHS (CATE), lined white}, Lewis and Syrgkanis (2021) (SNMM, gray), and our own
{RKHS (GF), white}.

6. Simulations and application

6.1. Simulations

We evaluate our estimators on various nonparametric designs. For each nonparametric design and sam-
ple size, we implement 100 simulations and calculate mean square error (MSE) with respect to the true
causal function. Figure 1 visualizes results, where a lower MSE is desirable. See Section 17 of Singh,
Xu and Gretton (2025) for the data generating processes and implementation details.

The mediated response design (Huber et al., 2020) involves learning the nonlinear causal function
68’1E(d, d’) =0.3d" +0.09d + 0.15dd’ + 0.25(d")3. A single observation is a tuple (Y, D, M, X) for
the outcome, treatment, mediator, and covariates where Y, D, M, X € R. In addition to our estimator
(RKHS, white), we implement the estimator of Huber et al. (2020) (IPW, checkered gray), which in-
volves Nadaraya—Watson density estimation en route to generalized inverse propensity weighting. By
the Wilcoxon rank sum test, RKHS significantly outperforms IPW at all sample sizes, with p values
below 1073

Next, we consider a time-varying dose response design, extending a time-fixed design (Colangelo
and Lee, 2020). The nonlinear causal function is 65 (dy,d,) = 0.6d; +0.5d} +1.2d, + d3. A single
observation is a tuple (Y, D.3, X|.») for the outcome, treatments, and covariates where Y, D, € R and
X, € R190_ See Section 17 of Singh, Xu and Gretton (2025) for low and moderate dimensional settings.
Our machine learning approach for time-varying response curves is uniformly consistent and allows
for nonlinearity, dependence over time, and effect modification, which appears to be new.

To illustrate why treatment-confounder feedback and effect modification matter, we compare
§GF (di,d>) {RKHS (GF), white} with estimators that ignore these complexities to various degrees.
Using the dose response estimator of Singh, Xu and Gretton (2024) {RKHS (ATE), checkered white},
we take D5 to be the treatment and misclassify D as a covariate. Using the heterogeneous response es-
timator of Singh, Xu and Gretton (2024) {RKHS (CATE), lined white}, we take D to be the treatment
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Figure 2. Effect of job training on arrests. We implement our estimators for total, direct, and indirect response
curves (RKHS, solid).

and misclassify D as the subcovariate with meaningful heterogeneity. We also implement the estima-
tor of Lewis and Syrgkanis (2021) (SNMM, gray), which is a machine learning approach with linearity,
Markov, and no-effect-modification assumptions that do not hold in this setting. By the the Wilcoxon
rank sum test, RKHS (GF) significantly outperforms the alternatives at n = 5000 with p value below
1073, The ability of RKHS (GF') to capture treatment-confounder feedback, and effect modification by
time-varying confounders, helps when the sample size is large enough.

6.2. Application: US Job Corps

We estimate the mediated and time-varying responses of the Job Corps, the largest job training program
for disadvantaged youth in the US. The Job Corps serves about 50,000 participants annually, and it
is free for individuals who meet low income requirements. Access to the program was randomized
from November 1994 to February 1996; see Schochet, Burghardt and McConnell (2008) for details.
Though access to the program was randomized, individuals could decide whether to participate and
for how many hours over multiple years. We assume that, conditional on the observed covariates, those
decisions were as good as random in the sense formalized in Section 12 of Singh, Xu and Gretton
(2025).

First, we consider employment to be a possible mechanism through which class hours affect arrests,
under the identifying assumptions of Flores et al. (2012), Huber et al. (2020). The covariates X € R0
are measured at baseline; the treatment D € R is total hours spent in academic or vocational classes
in the first year after randomization; the mediator M € R is the proportion of weeks employed in the
second year after randomization; and the outcome Y € R is the number of times an individual is arrested
by police in the fourth year after randomization. We use the same covariates X € R*’ and sample as
Colangelo and Lee (2020), with n = 2,913 observations. In Figure 2, 67 £(d,d’), 60% (d,d’), and
G(I)E (d,d") are the total, direct, and indirect responses, respectively, of d’ class hours relative to d class
hours on arrests. In particular, G(I)E (d,d”) estimates the extent to which the response is mediated by the
mechanism of employment.

At best, the total response of receiving 1,600 class hours (40 weeks) versus 480 class hours (12
weeks) may be a reduction of about 0.1 arrests. The direct response estimate, of class hours on arrests,
mirrors the total response estimate. Our indirect response estimate of class hours on arrests, as mediated
through employment, is essentially zero. Our results extend the findings of Huber et al. (2020), allowing
both (d, d’) to vary. It appears that the effect of class hours on arrests is direct; there may be benefits of
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Figure 3. Effect of job training on employment. We implement our estimators for time-varying dose and incre-
mental response curves {RKHS (GF), solid}.

the training program that are not explained by employment alone. These benefits, however, may require
many class hours.

Next, we evaluate the time-varying response of job training on employment. Here, X; € R® are
covariates at baseline; D € R is the total class hours in the first year; X; € R30 are covariates observed
at the end of the first year; D, € R is the total class hours in the second year; and Y € R is the proportion
of weeks employed in the fourth year. The covariates and the sample of n = 3, 141 observations we use
are similar to Colangelo and Lee (2020). The time-varying response 987 F(dy,d>) is the counterfactual

mean employment given d; class hours in year one and d; class hours in year two; Hg; F ’V(dl,dz) is
the increment of counterfactual mean employment given d; class hours in year one and incrementally
more than d; class hours in year two. Figure 3 visualizes the time-varying response estimate and its
derivative with respect to the second dose.

The effect of training on employment appears to be positive when the duration of training is relatively
brief. At best, the response to receiving job training appears to be 64% employment, compared to
receiving no class hours at all which gives 56% employment. The maximum response is achieved
by 480-1280 class hours (12-32 weeks) in year one and 0—480 (0-12 weeks) in year two. There is
another local maximum of counterfactual employment achieved by 1200 class hours (30 weeks) in
both years. Class hours in year one and year two may be complementary at low levels, as visualized by
the incremental response. The large plateau in counterfactual employment suggests that a successful
yet cost effective policy may be 480 class hours (12 weeks) in the first year and an optional, brief follow
up in the second year.

In summary, under standard identifying assumptions, we find that the US Job Corps may provide two
distinct benefits: reducing arrests and increasing employment, under different durations of class hours.
Many class hours in the first year may directly decrease arrests in the fourth year, while few class hours
in the first and second years may significantly increase employment in the fourth year. Section 18 of
Singh, Xu and Gretton (2025) provides implementation details and verifies that our results are robust
to the sample choice.

7. Discussion

Previous methods using kernels for continuous treatments (Singh, Xu and Gretton, 2024) do not handle
treatment-confounder feedback, and therefore cannot analyze the later rounds of Job Corps surveys. We
propose the sequential kernel embedding to do so. Whereas survey data for mediation analysis were
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previously available (Huber et al., 2020), we clean additional survey data for time-varying analysis
from raw files (Schochet, Burghardt and McConnell, 2008, Section III.A). By providing clean data,
we enable empirical analysis of the later rounds of Job Corps surveys, where class hours in different
years may be viewed as a sequence of time-varying continuous treatments. Future work may apply the
sequential embedding in dynamic programming for optimal policy estimation.
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