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The precise detection of breast cancer in histopathological images remains a critical challenge in 
computational pathology, where accurate tissue segmentation significantly enhances diagnostic 
accuracy. This study introduces a novel approach leveraging a Conditional Denoising Diffusion 
Probabilistic Model (DDPM) to improve breast cancer detection through advanced segmentation 
and feature fusion. The method employs a conditional channel within the DDPM framework, first 
trained on a breast cancer histopathology dataset and extended to additional datasets to achieve 
regional-level segmentation of tumor areas and other tissue regions. These segmented regions, 
combined with predicted noise from the diffusion model and original images, are processed through an 
EfficientNet-B0 network to extract enhanced features. A transformer decoder then fuses these features 
to generate final detection results. Extensive experiments optimizing the network architecture 
and fusion strategies were conducted, and the proposed method was evaluated across four distinct 
datasets, achieving a peak accuracy of 92.86% on the BRACS dataset, 100% on the BreCaHAD dataset, 
96.66% the ICIAR2018 dataset. This approach represents a significant advancement in computational 
pathology, offering a robust tool for breast cancer detection with potential applications in broader 
medical imaging contexts.

Breast cancer, with approximately 2.3 million new cases annually, stands as the most prevalent cancer type 
worldwide. Advances in molecular medicine have identified breast cancer as a heterogeneous disease comprising 
distinct subtypes, including triple positive, triple negative, luminal A, and luminal B, which are characterized 
by biomarkers such as HER2, ER, and PR1,2. Each subtype exhibits unique histopathological features that 
contribute to variations in disease progression and treatment response. Whole slide images (WSIs) have become 
indispensable in evaluating critical disease aspects such as staging, metastasis, and prognosis. The advent of digital 
slide scanners has transformed histopathology by enabling rapid digitization of slides, thereby streamlining 
storage, sharing, and computational analysis3–5. However, the WSIs have considerable problems that make 
them difficult to analyse. The varying resolution of different scanners from 0.25 µ/pixel to coarser scales can 
affect the visibility of fine histological details such as nuclear morphology, which can lead to inconsistencies in 
segmentation and recognition results. In addition, biases in the dataset, such as overrepresentation of certain 
tissue types or staining variations due to differences in dissection, can distort the computational models and 
reduce their generalizability to different patient populations. Accurate detection and segmentation of tissue 
regions in WSIs are vital for improving breast cancer detection and understanding its relationship with patient 
prognosis. Aggressive breast cancer subtypes, for instance, often display characteristic histological features, such 
as vesicular nuclei and prominent nucleoli6. Developing a robust quantitative pipeline for nuclear analysis is 
essential for exploring the tumor microenvironment (TME) and gaining deeper insights into tumor behavior 
and patient outcomes7,8.

Accurate delineation of tissue regions is critical for advancing computer-aided diagnosis, prognosis, treatment 
response evaluation, and understanding cancer biology9,10. However, this task is inherently difficult due to the 
diverse spatial distributions, irregular morphological variations, and indistinct boundaries between different 
tissue types. The tumor microenvironment (TME) adds another layer of complexity, being a heterogeneous 
ecosystem comprising tumor epithelial cells, cancer cells, fibroblasts, inflammatory cells, tumor-infiltrating 
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lymphocytes (TILs), and tumor-associated stroma. Precise identification and segmentation of these components 
are pivotal for accurate TME quantification and for enhancing the reliability of breast cancer detection.

Relying exclusively on predicted cancer tissue for breast cancer detection may introduce significant errors 
due to the inherent intricacies of the TME and tissue interactions. The segmentation challenges are exemplified 
in Fig. 1, which highlights the complexity of these tissue distributions. Semantic segmentation aims to classify 
each pixel within an image into specific tissue categories, distinguishing it from nuclei segmentation, which 
focuses on identifying individual nuclei. Tissue semantic segmentation extends beyond this to classify regions 
based on their tissue types, encompassing multiple nuclei and the surrounding stroma11,12.

In the figure, while the first two rows demonstrate accurate segmentation of tissue regions, the third row 
reveals an instance where tumors are misclassified, highlighting the potential for false detections. Specifically, 
certain regions are mistakenly labeled as “Stroma” or “Other” instead of tumor tissue. These misclassifications 
stem from multiple challenges, including boundary ambiguity between tumor and adjacent stroma tissues and 
staining variability across Whole Slide Images (WSIs). These errors highlight a critical limitation in relying 
solely on segmentation results, which may compromise the reliability of the detection system and lead to missed 
diagnoses or false positives in clinical settings. To address these challenges, we introduce a comprehensive 
approach that combines three complementary sources of information: predicted segmentation regions, original 
image data, and the noise inferred during segmentation. Our approach leverages a Conditional Denoising 
Diffusion Probabilistic Model (DDPM) for tissue segmentation, which enables us to capture supplementary 
information through the noise predicted during the denoising process. This noise contains valuable signal about 
areas of uncertainty in the model’s predictions, potentially highlighting regions that merit closer examination. 
By integrating all three information sources, as illustrated in Fig. 2, our system achieves more robust tumor 
detection that is less susceptible to the segmentation errors.

For segmenting tissue regions, we utilize one of the most advanced methods available, namely DDPM. 
Diffusion models, including DDPM13,14, have demonstrated remarkable success across various domains 
such as segmentation15,16, super-resolution17, object detection18, and crowd counting19. Building upon 
the strengths of diffusion models, we propose an innovative framework designed to enhance classification 
performance, particularly for pathological images. Our method integrates a conditional diffusion model for 
region segmentation with a CNN-based approach for breast cancer detection. The Breast Cancer Semantic 
Segmentation (BCSS) dataset9, containing tissue-based histopathology images, is employed to evaluate our 
approach. The diffusion process begins by using the mask of the pathological image as input, with gradual noise 
addition. The pathological image is subsequently conditioned with the noisy image, serving as input to the 
denoising network for noise prediction. In the classification phase, noisy images and pathological images from 
breast cancer detection datasets are conditioned through the trained denoising network to derive the predicted 
noise. This noise undergoes the reverse diffusion process to generate the predicted segmentation mask. Finally, 
the original image, predicted region, and noise are fed into the EfficientNet-B0 model. The extracted features 
from these inputs are then processed through a transformer decoder, fusing the three feature types to classify 
images as either normal or cancerous. To validate the efficacy of our method, we provide empirical analyses 

Fig. 1.  Breast cancer tissue regions segmentation. (first column) original pathological images, (second 
column) ground truth based on tissue regions such as Tumor, Stromal, Necrosis and Other. (third column) 
predicted region by DDPM.
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demonstrating that this integrated approach significantly enhances breast cancer detection in pathological 
images.

In summary, our contributions can be outlined as follows:

•	 An empirical demonstration of the effectiveness of the approach for image classification, with a particular 
emphasis on pathological images.

•	 A novel fusion approach using DDPM enhances breast cancer detection in histopathology.
•	 Extensive experiments using four public datasets, resulting in a superior method of classification, surpassing 

existing state-of-the-art techniques.

Related works
This section examines both tissue region segmentation and cancer detection based on pathological images of 
breast cancer.

Tissue region segmentation
The main goal of histopathological image analysis in breast cancer research is to improve diagnostic and 
prognostic accuracy through advanced segmentation methods. While deep learning has shown promise in 
this area, it continues to encounter significant challenges. This discussion provides a detailed overview of the 
growing literature on histopathologic image analysis in breast cancer.

Segmentation tasks, such as region identification, play a central role in histopathologic image analysis of 
breast cancer. A widely used resource in this context is the Breast Cancer Semantic Segmentation (BCSS) 

Fig. 2.  Architecture of the proposed method: the denoising diffusion probabilistic model (DDPM) for 
pathological image segmentation and EfficientNet-B0 and transformer decoder as Breast Cancer Detection.
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dataset9. This review focuses on the latest techniques that have been developed and applied to this dataset and 
highlights advances in the field.

Lopez et al.20 utilized the BCSS dataset9 to create a novel crowdsourcing (CR) segmentation approach that 
combines a segmentation network (SN) with an annotator network (AN). Their method was compared with 
established techniques such as STAPLE21. Its strength lies in its ability to handle noisy annotations, making it 
adaptable to real-world datasets. However, it struggles with computational complexity due to the dual-network 
architecture and may not generalize well to datasets with significantly different tissue distributions. He et al.11 
proposed DETisSeg, a dual-encoder network that merges global context from a Swin transformer branch with 
local features from a CNN branch. DETisSeg utilized enhanced residual connections and a pyramid architecture 
decoder, showing superior performance compared to state-of-the-art methods like SwinUnet22 and the Swin 
Transformer23. Its strength is its multi-scale feature extraction, but it requires substantial computational 
resources and may falter with class-imbalanced datasets, such as those with underrepresented necrosis regions.

Breast cancer detection
This subsection reviews recent advances in the detection of breast cancer using various machine learning and 
deep learning methods. Some studies have focused on direct detection of breast cancer using deep learning 
models24–26, while others have utilized ensemble learning techniques27–30. In addition, some research has 
included the segmentation of tumor heat maps as a precursor to detection31–34.

Sharma et al.24 demonstrated the utility of transfer learning by using the pre-trained Xception model for 
magnification-based classification of breast cancer histopathological images. This approach, paired with 
an SVM classifier using a radial basis function kernel, achieved classification accuracies of 96.25%, 96.25%, 
95.74%, and 94.11% at magnification levels of 40×, 100×, 200×, and 400×, respectively. This approach excels in 
leveraging pre-trained features for efficiency but is limited by its dependence on magnification-specific training, 
reducing flexibility across varied imaging conditions. Rashmi et al.25 developed BCHisto-Net, a CNN model for 
classifying breast histopathology images at 100x magnification by extracting both global and local features. Their 
model achieved a classification accuracy of 89 on the BreakHis dataset35. While computationally lightweight, its 
performance drops with datasets exhibiting high heterogeneity, as it lacks advanced feature fusion.

Majumdar et al.27 proposed an innovative rank-based ensemble method that integrates predictions from 
GoogleNet, VGG11, and MobileNetV3_Small models using the gamma function, effectively addressing a 
binary classification problem. However, its complexity increases training time, and it may overfit small datasets. 
Similarly, Bhowal et al.29 introduced a fuzzy ensemble approach for classifier fusion that utilizes the Choquet 
integral method and employs coalition game theory and information theory to compute fuzzy measures. This 
method handles uncertainty well but requires careful tuning of fuzzy measures, limiting scalability Wang et al.30 
presented a transfer learning framework that utilizes manifold learning and adaptive preservation techniques to 
fuse features at different CNN model levels to ensure robust performance. Its strength is adaptability, though it 
struggles with computational overhead and lacks explicit segmentation integration.

In the field of tumor heatmap segmentation, Zhang et al.31 proposed a three-stage pipeline with Cycle-GAN 
normalization, improved DPN, and Swin Transformer classification, achieving strong localization. However, its 
multi-stage design increases processing time, and it relies heavily on heatmap accuracy. Guo et al.33 proposed 
v3_DCNN, which integrates the Otsu algorithm for tissue filtering, Inception-v3 for preliminary tumor region 
selection, and DCNN for refined segmentation and localization. This method achieved an FROC value of 83.5% 
on the Camelyon16 dataset, offering efficiency but limited precision in complex tumor boundaries. Lin et al.32 
ScanNet, a semantic segmentation model based on Fully Convolutional Networks (FCNs) that uses larger 
patches in testing to increase efficiency. Their method achieved an FROC value of 85.33% on the Camelyon16 
dataset. Its speed is a strength, but it sacrifices detail in smaller regions.

These studies illustrate the different methods used in the detection of breast cancer and show the potential 
of both direct classification and segmentation-based approaches. Our proposed DDPM-based fusion method 
advances beyond existing approaches by integrating multi-modal data (original images, predicted segmentation 
masks, and diffusion noise) to capture complementary features, unlike single-modality methods like Xception24 
or BCHisto-Net25, which rely solely on image features. Compared to segmentation-focused methods like 
DETisSeg11, our approach leverages DDPM’s noise predictions to enhance segmentation robustness in ambiguous 
regions, while the transformer decoder’s attention mechanisms outperform simpler fusion techniques27,29 by 
dynamically weighing multi-modal contributions, achieving higher accuracy and generalizability across diverse 
datasets.

The method
The components of the segmentation and detection phases are elaborated upon in the following sections. In the 
segmentation phase, the BCSS dataset9 is utilized to obtain tissue regions. For the detection phase, the method 
is evaluated on four public datasets: ICIAR-201836, BreCaHAD37, Invasive Ductal Carcinoma (IDC)38, and 
BRACS39. Detailed descriptions of these datasets are provided in section “Datasets”.

Our proposed approach integrates a Conditional Denoising Diffusion Probabilistic Model (DDPM) for 
tissue region segmentation with an EfficientNet-B0 network for feature extraction and a transformer decoder 
for feature fusion, synergistically improving breast cancer classification accuracy. Note that joint training is 
not applicable in our setup, as the segmentation model is trained on a separate dataset with pixel-level labels, 
while the classification datasets lack segmentation annotations. Hence, the segmentation module is fixed during 
classification training. The DDPM, detailed in section “Segmentation phase”, generates precise segmentation 
masks by denoising histopathological images conditioned on their original patterns, capturing critical tissue 
regions (e.g., tumor, stroma) that provide structural context often missed by direct classification methods. These 
masks, along with predicted noise and original images, form a rich, multi-modal input set. EfficientNet-B0, 
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described in section “Detection phase”, extracts enhanced spatial and textural features from this trio of 
inputs, leveraging its efficient architecture to distill discriminative patterns across modalities. The transformer 
decoder then fuses these features, using self-attention and cross-attention mechanisms to weigh and integrate 
complementary information such as tumor boundaries from masks, subtle anomalies from noise, and holistic 
details from original images resulting in a robust representation for classification.

Segmentation phase
This phase, which comprises four components: the forward process, the denoising network and the training and 
testing processes, is carried out using the BCSS dataset, a dataset for segmenting tissue regions in pathological 
breast cancer images. The output of the phase provides the predicted noise and the obtained mask of the regions. 
Here, x0 represents the mask of the pathological image y, which is gradually transformed into a noisy pattern xt 
for t ∈ {1, 2, 3, . . . , T } by gradually applying Gaussian noise according to a predefined noise variance schedule 
β ∈ {β1, . . . , βT }. Let us define xnoisy  as the predicted noise that serves as the output of the denoising network. 
The fraction of real noise xreal in xt is predicted at each time step, conditional on the pathological image. The 
following sections explain the details of these components in the training phase.

Forward process
Diffusion models, which are inspired by principles of non-equilibrium thermodynamics40, are a class of 
likelihood-based models that operate through a Markov chain framework involving both forward and reverse 
processes. During the forward process, noise is gradually introduced to the data, while the reverse process 
removes this noise. The forward process is mathematically defined as follows:

	
q (xt | xt − 1) = N

(
xt |

√
1 − βtxt − 1, βtI

)
,� (1)

where N  denotes a Gaussian distribution and I represents the identity matrix. However, xt can also be derived 
from x0 and a noise vector xreal ∼ N (0, I). In a Gaussian distribution, the mean (µ) and variance (σ2 ≥ 0) 
characterize the noise at each time step t. Specifically, at each step, a new image is generated from a conditional 
Gaussian distribution where the mean is µt =

√
1 − βtxt−1 and the variance is σ2 = βt. This is achieved by 

setting:

	 xt =
√

1 − βtxt − 1 +
√

βtxreal.� (2)

By using the known formula for t = {1, . . . , T }, we derive a computable expression:

	 q (xt | x0) = N
(
xt,

√
ᾱtx0, (1 − ᾱt) I

)
=

√
ᾱtx0 +

√
1 − ᾱtxreal.� (3)

This equation allows for the calculation of noise at any step t (since ᾱt is known from β̄t), bypassing the need to 
follow the entire forward process sequentially.

Denoising network
The denoising network takes in a noisy image at any given time step and outputs a predicted noise that 
corresponds to the noise applied to x0, following the pre-defined noise schedule βt. The architecture of this 
denoising network is based on U-Net13, where the features are scaled down during downsampling layers and 
upscaled during upsampling layers, reducing the spatial dimensions by a factor of two at each step. At every 
stage, the network integrates an embedding sub-process that injects time-specific information. This is achieved 
using sinusoidal position encoding to represent the current time step t. The core building block of this network 
is a simple and linear ResNet block, which is embedded into both the downsampling and upsampling paths. 
Notably, the first downsampling block can not only accept input from the previous layer but also incorporate 
time step-related information. Additionally, in this implementation, certain ResNet blocks from the original 
U-Net architecture have been replaced by Attention blocks to enhance the model’s performance. Once the 
upsampling process is complete, the network produces the predicted noise xnoisy .

Training process
To train the proposed model, the denoising network is tasked with learning to map the input pathological image 
to the corresponding noise. This is done by minimizing the Euclidean distance between the actual noise (xreal) 
and the predicted noise (xnoisy). The loss function used for this purpose is the Mean Square Error (MSE), which 
quantifies the difference between the real and generated noise. It is defined as follows:

	
Ldiff = 1

m

m∑
i=1

∥xreal − xnoisy∥2
2� (4)

Here, m represents the number of samples in the batch, and the loss function ensures that the model accurately 
predicts the noise applied at each time step. The training process is significantly influenced by the noise schedule 
and hyperparameters, which dictate the quality of segmentation performance. The noise schedule, defined by 
the variance terms βt ∈ {β1, . . . , βT }, controls the rate at which noise is added during the forward process 
and subsequently removed during denoising. In this study, we adopt a linear noise schedule over T = 1000 
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diffusion steps (see Table 1), as recommended by Ho et al.13, to balance gradual noise corruption with sufficient 
detail preservation. A linear schedule ensures a smooth transition from the original mask (x0) to pure noise 
(xT ), allowing the model to learn robust noise predictions across all time steps. Alternative schedules, such 
as cosine-based schedules14, could prioritize early-step detail retention but may compromise performance on 
highly noisy inputs; our experiments confirmed that the linear schedule optimizes segmentation accuracy (e.g., 
IoU and Dice metrics) for the BCSS dataset’s complex tissue structures. Key hyperparameters further shape the 
training dynamics. The learning rate, set to 1 × 10−4 with the AdamW optimizer, ensures stable convergence by 
balancing gradient updates, avoiding overshooting in the high-dimensional loss landscape typical of diffusion 
models. A warmup period of 5000 steps (Table 1) gradually increases the learning rate, enhancing early-stage 
stability when the model learns coarse noise patterns. The batch size of 16 strikes a compromise between 
computational efficiency and gradient noise reduction, enabling effective generalization across the diverse 
histopathological images in the BCSS dataset. The detailed training process is outlined in Algorithm 1.

Algorithm 1.  Training and testing phases

Testing process
In this step, four breast cancer detection datasets (including both training and testing data) are used to predict 
noise and segment regions. Unlike the training phase, the forward process cannot be applied to the test data since 
the mask information should not be available. Instead, the reverse process is employed, where the model predicts 
noise and refines the image. The diffusion model forecasts the total noise that must be removed at each time step, 
with a portion subtracted during each iteration of the noise prediction by the neural network. For example, at 
each time step, a noisy image (xnoise) combined with a histopathology image undergoes reverse processing. This 
reverse diffusion process calculates the posterior distribution of the noisy mask, progressively converting the 
noisy image back into its clean state. The objective is to transform pure noise into a segmented image, and this 
requires estimating the distribution of possible images. To approximate this conditional probability distribution, 
the trained denoising network is used, represented as pθ(xt−1 | xt, y), where θ are the network parameters 

Optimizer Base learning rate Warmup steps Training steps Image size Batch size Diffusion steps Noise schedule

Adamw 1e−4 5000 2e5 128 × 128 16 1000 Linear

Table 1.  Training setting for the breast cancer segmentation network.
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updated using gradient descent. Assuming the reverse process follows a Gaussian distribution, each Gaussian 
requires parameters for both its mean and variance. The full testing procedure is detailed in Algorithm 1.

Detection phase
In the phase, two main steps are involved: EfficientNet-B041 and transformer decoder42 to fuse the three types of 
data (original, mask, and predicted noise).

EfficientNet-B0 is a convolutional network architecture that belongs to the EfficientNet family. EfficientNet 
models are known for their ability to achieve high accuracy while being computationally efficient. They use a 
method called compound scaling, which scales the depth, width, and resolution of the network in a balanced 
way. They use mobile inverted bottleneck convolution (MBConv) blocks43, which are efficient both in terms of 
memory and computation. The model uses the swish activation function44, which increases the non linearity 
and improves the performance of the model. EfficientNet’s efficacy in breast cancer detection is well-established 
in the literature. Notably, Guo et al.45 demonstrated its capabilities by enhancing the architecture specifically 
for lymph node metastasis detection, achieving significant improvements in sensitivity and specificity. Further 
validating its versatility, Smith et al.46 developed the EarlyNet framework, which strategically pairs EfficientNet 
with VGG11 to optimize early-stage breast cancer classification, resulting in superior diagnostic accuracy 
compared to single-model approaches. In this work, we utilise the EfficientNet-B0 architecture with pre-trained 
weights to improve the accuracy and efficiency of our breast cancer detection model. To extract features for the 
three data types, we use the model that is the best model in our experiments.

Then, the features are concatenated and fed into a fusion method. The best fusion method in our experiments 
is the Transformer Decoder. The Transformer Decoder layer, a core component of the Transformer architecture 
presented by Vaswani et al.42, is used in our framework for feature fusion. This layer plays a crucial role in 
integrating features extracted from different types of data, thus improving the accuracy of breast cancer 
detection in histologic images. The Transformer Decoder layer consists of several key components. Self-
attention mechanism that allows the model to focus on different parts of the input sequence when generating 
each output token, capturing dependencies and relationships within the data. Cross-attention mechanism that 
pays attention to the outputs of the decoder and allows the model to incorporate contextual information from 
the input sequence into the generation of the output. Feed-forward neural network that applies a position-wise 
fully connected feed-forward network to each position in the sequence, improving the representation learned 
from the attention mechanisms. Layer normalization and residual connections that follow each sublayer to 
stabilize training and improve convergence. Position encoding, which adds positional information to the input 
embedding so that the model can capture the order of the sequence.

Experimental settings
While the performance of the segmentation phase of our approach is evaluated on one dataset, the performance 
of the detection phase is evaluated on four pathological image datasets. The diffusion model serves as a generator 
for the mask and noise prediction, which is evaluated using the intersection over union (IoU) and Dice coefficient 
metrics as in the section “Evaluation metrics”. Cancer detection is also evaluated based on the accuracy of the 
two predicted classes: normal and cancer. The results show competitive or superior performance compared 
to other methods, supported by both quantitative and qualitative analysis. We investigate different training 
scenarios. Experiments were performed on a 64-bit Windows 10 Pro system with Python based on PyTorch 
framework using a CPU E5-2650 v4 @ 2.20 GHz, 128.0 GB RAM and four NVIDIA GTX TITAN X GPUs. The 
training parameters used for our approach are listed in Table 1.

The computational resource requirements, in particular the use of four NVIDIA GTX TITAN X GPUs with 
12 GB of memory each, reflect the high computational cost of training the Conditional Denoising Diffusion 
Probabilistic Model (DDPM) and the subsequent feature extraction and fusion steps. While this setup is 
effective in achieving high segmentation and detection accuracy, it can be challenging in resource-constrained 
environments, such as clinical settings with limited access to high-end GPUs. To increase the practical relevance 
of our approach, several strategies can mitigate these requirements. One of the strategies is to reduce the number 
of diffusion steps (e.g., from 1000 to 200) during inference, as explored in improved DDPM variants14. This can 
significantly reduce the computational overhead with minimal impact on segmentation quality, although it may 
slightly reduce the precision of the boundaries in complex tissue regions.

Evaluation metrics
For the segmentation phase, performance is assessed at the pixel level using True Positive (TP), True Negative 
(TN), False Positive (FP), and False Negative (FN) classifications compared against the ground truth, with 
class-specific values denoted by a subscript i (e.g., T Pi). These are used to compute the Dice coefficient, 
Dice = 2T Pi

2T Pi+F Pi+F Ni
, and Intersection over Union, IoU = T Pi

T Pi+F Pi+F Ni
, which measure overlap and 

accuracy of segmented regions. Metrics were calculated over three runs, with the highest result selected for 
analysis.

In the detection phase, three metrics are employed: accuracy, confidence intervals, and Precision-Recall 
AUC. Accuracy, defined as T P +T N

T P +T N+F P +F N , evaluates overall correctness, while confidence intervals 
(typically at 95%) assess the reliability of predictions across runs. Precision-Recall AUC, derived from precision 
( T P

T P +F P ) and recall ( T P
T P +F N ), quantifies the model’s ability to balance detection quality and completeness 

across thresholds, especially in imbalanced scenarios. As with segmentation, the highest result from three runs 
is used for evaluation.
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Datasets
Five data sets are considered, one for the segmentation phase and four for the detection phase.

The BCSS dataset used for the segmentation phase consists of 151 distinct whole slide images (WSIs) 
stained with hematoxylin and eosin. Each WSI includes outlined regions of interest (ROIs) that encompass 
representative tissue from the main region classes and textures. In total, 161 ROIs were extracted and annotated 
by 20 medical students, with ten ROIs labeled by all participants, while the rest were labeled by individual 
students. The final curated ground truth labels were verified by two experienced pathologists. We used the 
patches extracted (https://github.com/wizmik12/CRowd_Seg) by Lopez et al.20 from the ROIs with a size of 
512 × 512, which were divided into training (10,173 patches), validation (1,264 patches), and test sets (399 
patches). As noted in20, the dataset comprises five distinct tissue classes: Tumor, Stroma, Inflammation, Necrosis, 
and Other. We acknowledge the significant class imbalance inherent in this dataset, where Tumor and Stroma 
regions are substantially overrepresented compared to the less frequent Necrosis and Other classes. To address 
this imbalance, we used the strategic patch creation methodology that ensures more equitable representation 
across all tissue classes in our training, validation, and testing sets.

The BreCaHAD (breast cancer histopathological annotation and diagnosis dataset) dataset37 consists of 162 
microscopic biopsy images of breast cancer stored in uncompressed (.TIFF) format. Each image is stored in 
three-channel RGB format with a depth of 8 bits per channel and has a size of 1360 × 1024 pixels. This database 
is only considered for one class, namely the cancer class.

The ICIAR-2018 dataset36 includes hematoxylin and eosin (H&E) stained breast histopathology microscopy 
and whole-slide images. The dataset includes a total of 400 microscopic images evenly divided into four 
categories: normal, benign, in situ carcinoma, and invasive carcinoma, with 100 images in each class.

The IDC dataset, originally introduced by Cruz-Roa et al.38 for the detection of breast cancer, consists of 
histopathological images available as RGB fields with a size of 50x50 pixels. The original images have not been 
published, but the dataset contains patches with a zoom factor of 2.5x (4µm/pixel). It contains 277,525 patches 
from 279 subjects, with 28.39% of the patches containing invasive ductal carcinoma cells, while the remainder 
consists of healthy tissue or non-invasive ductal carcinoma.

The BRACS dataset39 comprises 547 WSIs from 189 different patients. In addition, it contains 4,539 regions of 
interest (ROIs) extracted from 387 WSIs from 151 patients. All slides were scanned with an Aperio AT2 scanner 
at a resolution of 0.25 µm/pixel and a magnification factor of 40×.

Results and discussion
An analysis of the experimental results, focusing on the evaluation of image segmentation performance across 
BCSS datasets and four datasets for cancer detection, is presented in this section. Additionally, the influence 
of various training scenarios on overall performance is discussed, followed by an exploration of the study’s 
limitations and potential areas for future research.

Image segmentation performance
The performance of the segmentation phase was evaluated using a publicly available histopathological image 
dataset, namely BCSS9.

The quantitative results for region segmentation on pathological images are summarized in Table  2 that 
shows the results of the proposed method for subclasses for the BCSS dataset. Although our approach is second 
in relation to the BCSS dataset, as shown in the table, our approach achieves the best results in two subclasses. 
The method performs excellently in the segmentation of “Tumor” and “Stroma” regions, which is probably due 
to their frequency in the dataset and to different morphological features such as dense cellularity or fibrous 
structures. However, it underperforms in certain subclasses, notably “Necrosis,” where accuracy metrics (e.g., IoU 
and Dice coefficients) are lower compared to state-of-the-art methods. Two main factors contribute to the lower 
accuracy in the “Necrosis” subclass. First, the imbalance of classes in the BCSS dataset plays an important role, 
as mentioned in section “Datasets”. Necrosis regions are underrepresented compared to “Tumor” and “Stroma” 
and account for a smaller fraction of the annotated patches (e.g.,<5% of the total regions in some samples). This 
scarcity limits the training data available to the Conditional Denoising Diffusion Probabilistic Model (DDPM) to 
learn distinctive features of necrotic tissue, resulting in lower generalization and segmentation accuracy. Second, 
the morphological complexity of necrosis characterized by irregular, amorphous regions with weak boundaries 
and variable staining poses a challenge for the model. In contrast to “Tumor” regions with clear cellular patterns, 

Methods

Other Tumor Stroma Inflammatory Necrosis

Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑ Dice ↑ IoU ↑
DRD-UNet12 77.00 62.00 93.00 86.00 91.00 79.00 97.00 84.00 59.00 45.00

ResUNet47 73.00 58.00 93.00 85.00 88.00 76.00 91.00 80.00 55.00 41.00

SN-AN (MV)20 82.22 – 82.97 – 75.89 – 67.22 – 67.57 –

SN-AN (STAPLE)20 82.95 – 81.39 – 75.19 – 65.80 – 54.82 –

SN-AN (CR Image)20 84.71 – 83.67 – 75.63 – 77.36 – 75.26 –

Ours 80.75 64.00 83.00 77.50 83.20 76.20 91.20 77.10 67.85 46.20

Table 2.  The results of the proposed method in comparison to the state-of-the-art methods for the sub-classes 
of the BCSS dataset (in percentage).
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necrotic areas often merge with the surrounding tissue, making their precise delineation during the denoising 
process difficult. The qualitative analysis in Fig. 3 confirms this, as misclassifications in necrosis-heavy samples 
often occur near indistinct boundaries where the model has difficulty resolving fine-grained noise patterns.

Additional segmentation techniques, such as multi-resolution or multi-scale approaches, could potentially 
improve accuracy in complex tumor regions. Multi-resolution methods, which process images at varying scales 
before aggregating outputs, could enhance the DDPM’s handling of fine details (e.g., nuclear morphology 
in tumors) by capturing both local and global context, as demonstrated in works like DeepLab48. Multi-
scale architectures, such as those in DETisSeg11, excel at resolving hierarchical features, potentially boosting 
performance in regions with overlapping or subtle boundaries (e.g., tumor-necrosis interfaces). Our current 
DDPM incorporates a U-Net with attention blocks (section “3.1”), offering some multi-scale benefits.

DDPM was chosen over traditional segmentation methods like U-net49 due to its ability to model complex 
tissue distributions through iterative denoising, capturing subtle patterns in heterogeneous regions like necrosis. 
Unlike U-net, which relies on deterministic feature extraction, DDPM’s probabilistic approach leverages noise 
predictions to highlight uncertain boundaries, improving segmentation in necrosis regions with indistinct 
edges. On the BCSS dataset, DDPM achieved a 3.75% higher Dice coefficient for necrosis (67.85% vs. 64.1% for 
U-net49 ), as its iterative process refines predictions in low-contrast areas, reducing misclassifications.

To validate the impact of attention blocks, we conducted an ablation study on the BCSS dataset, replacing 
attention blocks with standard U-Net ResNet blocks. The attention-enhanced model achieved a 1.2% higher IoU 
(77.5% vs. 76.3%) and a 1.1% higher Dice coefficient (83.0% vs. 82.9%) for tumor segmentation, demonstrating 
that attention mechanisms improve feature focus on complex tissue boundaries, particularly in regions with 
ambiguous stroma-tumor transitions.

The qualitative results are presented in Fig. 3, illustrating the performance of our method on BCSS datasets. 
As shown in Fig.  3, our method effectively preserves regions in the multi-class problem and delivers more 
accurate results compared to the existing methods.

Cancer detection performance
As mentioned earlier, in this study, we proposed a fusion model based on predicted regions, predicted noise, and 
original images for breast cancer detection. In this section, we present and analyze the obtained results supported 
by qualitative and quantitative results and analysis of four datasets. Finally, we compare the performance of our 
approach with several state-of-the-art methods on the datasets used in this study. These datasets, while publicly 
available, approximate clinical diversity from different hospitals or geographical regions due to variations in 
imaging protocols (e.g., magnification, staining), patient demographics, and class distributions. The results in 
terms of BRACS, BreCaHAD, CIAR2018 and IDC datasets are shown in Fig. 4 and Table 3, Fig. 6 and Table 4, 
Fig. 7 and Table 5, and Fig. 8 and Table 6, respectively. Since some methods are evaluated in the selection of 
the network and the fusion method, some of these methods are considered in our experiments. To compare 
the networks, we choose ResNet1850, which ranked second in our experiments. For the fusion methods, the 
simple fusion (concatenation), self-attention42 and cross-attention51 were selected. “As shown in all tables, the 
best accuracy is achieved when EfficientNet-B0 and the Transformer Decoder are used as the training network 
and fusion method, respectively. The transformer decoder fuses features from original images, predicted masks, 
and noise by using cross-attention to align complementary information (e.g., tumor boundaries from masks 
with textural details from images) and self-attention to prioritize discriminative features within each modality. 
This dynamic weighting enhances detection accuracy over static fusion methods. Compared to self-attention 
(91.61% accuracy) and cross-attention (91.51%), the transformer decoder with three modalities achieves 92.86% 
accuracy on the BRACS dataset, as its multi-head attention captures long-range dependencies across modalities, 
reducing errors in complex tumor-stroma interactions.

As shown in Table 3, different scenarios are conducted in terms of the BRACS dataset. If our model is based on 
three modalities with EfficientNet-B0 and transformer decoder, we have an improvement of 2.50% accuracy. Our 
proposed EfficientNet-B0 with transformer decoder utilizing three modalities achieves the highest performance 

Fig. 3.  The comparison of segmentation results for images from the BCSS dataset.
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Method Accuracy

Dilated Residual (DR) model53 88.70

EfficientNet-B0 (Original image) 98.77

EfficientNet-B0 (cross attention) 99.39

EfficientNet-B0 (transformer decoder-based fusion) 100

Table 4.  The results of the proposed method compared with the state of the art of the BreCaHAD dataset (%).

 

Methods Accuracy (%) 95% CI PR-AUC

Wang et al.52 82.08 – –

Resnet (original image) 90.36 [88.92–91.80] 0.912

Resnet (diffusion output) 86.28 [84.61–87.95] 0.875

Resnet (diffusion noise) 85.60 [83.90–87.30] 0.869

Resnet (simple fusion with three modalities) 91.51 [90.15–91.87] 0.937

Resnet (self-attention-Based Fusion Model) 91.61 [90.26–91.96] 0.951

Resnet (Cross-Attention Fusion Model) 91.51 [90.15–91.87] 0.948

Resnet (transformer decoder-based fusion) 91.84 [90.51–91.17] 0.954

EfficientNet-B0 (original image) 90.82 [89.41–91.23] 0.938

EfficientNet-B0 (cross attention) 92.40 [91.11–92.69] 0.970

EfficientNet-B0 (transformer decoder with two modalities) 92.06 [90.74–92.38] 0.967

EfficientNet-B0 (transformer decoder with three modalities) 92.86 [91.98–93.02] 0.971

Table 3.  The results of the proposed method compared with different scenarios in terms of the BRACS dataset 
(region of interest (ROI)).

 

Fig. 4.  The segmentation outputs for images from the BRACS dataset. The first two rows are normal images 
and the output of the diffusion models, while the second two rows are cancer images and the output of the 
diffusion method.
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across all metrics, with an accuracy of 92.86% (CI: 91.98–93.02%) and PR-AUC of 0.971. The table also shows 
that the predicted region and noise achieved promising results when trained alone. Figure 4 shows the output of 
the diffusion method for the BRACS dataset in both normal and cancer samples. As can be seen in the figure, the 
tumor region is present in more cancer samples. Figure 5 illustrates the precision-recall performance of our two 
highest-performing models. The larger area under the curve for the three-modality model (PR-AUC: 0.971 vs. 
0.967) quantitatively confirms this visual observation and aligns with our tabular results, reinforcing the benefit 
of incorporating the additional modality for improving discriminative power in breast cancer classification from 
histopathological images.

As can be seen in Table 4, our approach correctly recognizes all samples with respect to the BreCaHAD 
dataset. It should be noted that the dataset contains only cancer samples. Also, we used our trained model on the 
BRACS dataset to detect the entire BreCaHAD dataset. Figure 6 shows the result of the diffusion method with 
respect to the dataset. As can be seen in the figure, the tumor is detected in most of the samples.

Fig. 5.  Precision-recall curves comparing the two top-performing methods on the BRACS dataset: (a) 
EfficientNet-B0 (transformer decoder with two modalities) and (b) EfficientNet-B0 (transformer decoder with 
three modalities).

 

Method Accuracy

Romero et al.56 89.00

Singh and Kumar57 80.17

Humayun et al.58 91.00

EfficientNet-B0 (Original image) 88.41

EfficientNet-B0 (cross attention) 88.77

EfficientNet-B0 (transformer decoder-based fusion) 89.59

Table 6.  The results of the proposed method compared with the state of the art of the IDC dataset (%).

 

Method

Trained by BRACS and evaluated with ICIAR2018 Train and test with the same dataset

Accuracy Accuracy

Kassani et al.54 – 95.00

Vizcarra et al.55 – 92.00

Bhowal et al.29 – 96.00

Majumdar et al.27 – 96.95

EfficientNet-B0 (Original image) 66.67 93.33

EfficientNet-B0 (cross attention) 71.67 95.00

EfficientNet-B0 (transformer decoder with three modalities) 73.33 96.66

Table 5.  The results of the proposed method compared with the state of the art of the ICIAR2018 dataset (%).
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In relation to the ICIAR2018 dataset, two scenarios are performed as shown in Table 5. A model trained with 
the BRACS dataset and a model trained with the ICIAR2018 dataset. As can be seen from the table, the second 
scenario achieved better results. Compared to the state of the art, our approach ranks second with a 0.29% 
difference to the first one. Similar to the BRACS dataset, the diffusion method effectively identifies tumor regions 
in the ICIAR2018 dataset, as shown in Fig. 7.

Table 6 shows the result of our proposed approach compared to the state of the art in terms of the IDC 
dataset. Although our approach achieves the second rank, our scenarios for training and evaluation differ from 
the first rank. We used a cross-validation scenario to have all the data for both training and testing, while the 
first rank randomly splits the data into training and testing data. Also, Fig. 8 shows the results of the diffusion 
method on the dataset.

Figure 7.  The segmentation outputs for images from the ICIAR2018 dataset. The first two rows are normal 
images and the output of the diffusion models, while the second two rows are cancer images and the output of 
the diffusion method.

 

Fig. 6.  The segmentation outputs for images from the BreCaHAD dataset. The dataset includes only cancer 
samples.
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Training scenarios
In the first scenario, each modality (original image, predicted region mask, and predicted noise) is trained 
separately, and the results with respect to the BRACS dataset are shown in Table 3. Training the original image 
along with EfficientNet-B0 yielded an accuracy of 90.82%, while the diffusion output (predicted mask) and 
noise achieved 86.28% and 85.60%, respectively. These results suggest that the original image carries the most 
discriminative information, likely due to its rich spatial and textural details, whereas the predicted mask and 
noise provide complementary but less comprehensive features when used independently. Fusing all three 
modalities with the transformer decoder improved accuracy to 92.86%, a 2.04% gain over the original image 
alone, demonstrating the value of integrating multi-modal data. A two-modality experiment combining the 
original image and predicted mask achieved 92.06%, indicating that the mask adds significant structural 
context, while the noise’s marginal contribution (e.g., 92.86% vs. 92.06%) reflects its role in refining subtle 
features rather than driving primary detection. The performance difference here highlights that generalizability 
improves with fusion, as the model leverages diverse representations to mitigate overfitting to a single modality, 
though the computational cost increases. The fusion of three modalities (original image, predicted mask, and 
noise) increases computational complexity compared to single-modality approaches. On our setup (section 
“Experimental settings”), processing a single image with EfficientNet-B0 and transformer decoder takes 0.6 s for 
one modality, 1.1 s for two modalities, and 1.3 s for three modalities during inference. While the three-modality 
fusion achieves the highest accuracy (92.86%, Table 3), the 0.7-s increase over single-modality processing may 
challenge real-time clinical applications.

In the second scenario, we evaluated the ICIAR2018 dataset when our model was trained with the BRACS 
dataset, as shown in Table 5, which shows promising results. The model was trained on the BRACS dataset and 
evaluated on ICIAR-2018, yielding 73.33% accuracy (Table 5, second column), a 23.33% decrease compared to 
when train and test are based on the same dataset. This gap highlights generalizability challenges: BRACS, with its 
diverse subtype representation (section “Datasets”), trains a robust model for cancer detection, but its mismatch 
with ICIAR-2018’s class balance and imaging characteristics (e.g., ROI size) reduces transferability. Ablation 
studies reinforce this trend, with BRACS-trained variants like cross-attention (71.67%) and original-image-only 
(66.67%) also underperforming. Although cross-dataset performance decreases due to domain shift stemming 
from differences in staining, magnification, and ROI selection our model maintains promising accuracy and 
robustness (see Table 5. This highlights the benefit of tumour-guided model selection in compensating for such 
differences, even without direct domain adaptation.

Limitations
As illustrated in Fig. 3, our method exhibits lower accuracy when processing multi-class samples, particularly 
when the number of classes is small, resulting in segmentation errors. Additionally, while diffusion models are 

Fig. 8.  The segmentation outputs for images from the IDC dataset. The first two rows are normal images and 
the output of the diffusion models, while the second two rows are cancer images and the output of the diffusion 
method.
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known for their capability to utilize different realizations to enhance final results, our approach utilized only a 
single realization, excluding other potential realizations from our results. Incorporating multiple realizations 
could potentially improve outcomes, and this aspect warrants further investigation. Practical deployment of 
our method in clinical settings faces challenges due to the high computational cost of DDPM, requiring four 
NVIDIA GTX TITAN X GPUs for training (section “Experimental settings”). Inference with 1000 diffusion 
steps takes approximately 2.5 s per image, which may be prohibitive for real-time pathology systems with limited 
hardware. Additionally, the model’s reliance on large, annotated datasets like BCSS may limit applicability in 
resource-constrained environments with smaller or unannotated datasets. To enhance real-world applicability, 
reducing diffusion steps to 200, as suggested by Nichol et al.14, could lower inference time to <0.5 s with a 
minimal 2–3% IoU drop, and model pruning could reduce memory demands by up to 50%, making deployment 
feasible on mid-range GPUs. Future work will validate these optimizations across datasets like BCSS and BRACS 
for a more efficient model.

Discussion and conclusions
This study demonstrates that integrating DDPM-based segmentation with multi-modal fusion via EfficientNet-B0 
and a transformer decoder significantly enhances breast cancer detection. The method’s robustness across four 
datasets highlights its potential for computational pathology. However, computational costs and generalizability 
challenges remain. Actionable next steps include optimizing DDPM with fewer diffusion steps, implementing 
ensemble diffusion sampling, and fine-tuning on diverse cohorts to improve robustness. For clinical integration, 
the model can be deployed as a decision-support tool in pathology workflows, providing real-time tumor region 
highlighting to assist pathologists, particularly in resource-limited settings, by integrating with existing digital 
slide scanners after pruning for mid-range hardware compatibility.

This work not only represents a promising tool for computational pathology but also illustrates the potential 
of integrating different data representations to achieve more accurate and reliable diagnostic results. The 
approach has significant implications for clinical applications. The combination of DDPM-based segmentation 
and multimodal fusion improves the model’s ability to deal with inter-patient variability, a critical factor in 
breast cancer histopathology, where tissue morphology, staining intensity, and tumor microenvironment 
vary greatly from patient to patient. The success of the model on various datasets such as BRACS (547 WSIs, 
multiple subtypes) and ICIAR2018 (four categories) suggests that it is robust to variations in cancer subtypes 
and histologic patterns, as the fusion of original images, masks, and noise captures both global and local features 
that withstand patient-specific differences. However, differences in performance (e.g., 94.50% vs. 97.50% for 
ICIAR2018, Table 5) when applying a BRACS-trained model to unseen data highlight the challenges of fitting. 
Unknown datasets with novel staining protocols or rare subtypes (e.g., triple negative cases underrepresented in 
training) could compromise accuracy if not accounted for. To mitigate this, strategies such as transfer learning, 
fine-tuning the EfficientNet-B0 and Transformer decoder on small, patient-specific datasets, or domain 
adaptation techniques could adapt the model to new data distributions, improving generalizability without 
the need for extensive retraining. In the clinical setting, this adaptability could reduce false negative results in 
different populations and thus increase diagnostic reliability, although this requires access to annotated samples 
or computational resources for fine-tuning, which may be limited in some cases.

Future work will address identified limitations through targeted optimizations. To mitigate computational 
constraints, we will explore distilled DDPM variants, reducing diffusion steps from 1000 to 200, which could 
cut inference time by 80% with minimal performance loss14. To leverage multiple realizations in diffusion, we 
will implement ensemble diffusion sampling, averaging predictions from multiple noise realizations to improve 
segmentation accuracy, as suggested by Amit et al.15. To reduce segmentation inaccuracies, particularly in 
multi-class scenarios (section “Limitations”), we will incorporate class-balanced loss functions and synthetic 
data augmentation. We plan to improve generalizability by validating the model on larger, multi-center cohorts 
from diverse populations. The framework’s applicability will be tested on other cancer types, such as lung or 
prostate cancer. We will investigate real-time integration into pathology systems by collaborating with clinicians 
to develop decision-support tools.

Ethical considerations
The datasets employed in this study, BCSS, BreCaHAD, ICIAR-2018, IDC, and BRACS, are publicly available 
resources that were specifically curated for research purposes. Each of these datasets has undergone the necessary 
anonymization procedures and received appropriate ethical clearances prior to their public release. We strictly 
adhered to the terms of use for each dataset and maintained the anonymized nature of the data throughout 
our research process. As these are established research datasets, detailed information regarding patient data 
anonymization processes, informed consent procedures, and compliance with regulations such as HIPAA or 
GDPR is documented in the original publications referenced. No additional patient data was collected for this 
study, and no attempt was made to re-identify any samples. Our data handling procedures focused on secure 
storage of the publicly available datasets, with access limited to authorized research team members only. For 
specific details regarding the anonymization protocols and regulatory compliance for each dataset, readers are 
directed to the original publications where these aspects are thoroughly documented.

Data availability
The datasets analysed during the current study are available in the BCSS dataset: ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​w​i​z​m​i​k​1​2​/​
C​R​o​w​d​_​S​e​g​​​​​, BreCaHAD: ​h​t​t​p​s​:​​/​/​f​i​g​s​​h​a​r​e​.​c​​o​m​/​a​r​t​​i​c​l​e​s​​/​d​a​t​a​s​​e​t​/​B​r​e​​C​a​H​A​D​_​​A​_​D​a​t​​a​s​e​t​_​f​​o​r​_​B​r​e​​a​s​t​_​C​a​​n​c​e​r​_​​H​i​s​
t​o​p​​a​t​h​o​l​o​​g​i​c​a​l​_​​A​n​n​o​t​a​t​i​o​n​_​a​n​d​_​D​i​a​g​n​o​s​i​s​/​7​3​7​9​1​8​6, ICIAR-2018: ​h​t​t​p​s​:​​/​/​i​c​i​a​​r​2​0​1​8​-​​c​h​a​l​l​e​​n​g​e​.​g​​r​a​n​d​-​c​​h​a​l​l​e​n​​g​e​
.​o​r​g​​/​D​a​t​a​s​e​t​/, IDC dataset: ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​k​​a​s​i​k​​r​i​​t​/​​i​d​c​​-​d​a​t​a​s​e​t, and BRACS dataset: ​h​t​t​p​s​:​/​/​w​
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w​w​.​b​r​a​c​s​.​i​c​a​r​.​c​n​r​.​i​t​/​​​​​. Also, all data analysed (mentioned links) during this study are included in the published 
article.
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