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Abstract

Knörrer periodicity is an equivalence of matrix factorisations categories which has

been proven to hold under certain fairly restrictive conditions. We show that the

phenomenon can be understood as a deformation of categories even in the cases

where there is no equivalence. The class of this deformation in the Hochschild

cohomology of the category can be thought of as a local obstruction to Knörrer

periodicity.

Furthermore, we study this deformation and show there is a strong argument

that if we assume the equivalence to hold and the triviality of the deformation up

to first order, then the conditions mentioned above are necessary. This presents

an approximate converse to Knörrer periodicity.
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Impact Statement

This thesis contributes to the understanding of relationships between categories

of matrix factorisations, one of the key classes of category involved in conjectures

around homological mirror symmetry. This is a broad and very active area of

research within academia: to systematically understand mirror symmetry at a

categorical level. The more general versions of a theorem are still very open. Mirror

symmetry itself is a highly studied conjecture which came about as a result of

predictions made by physicists working on string theoretical models for space-time,

and a mathematical understanding of the phenomenon could lead to interesting

conclusions for this theory.

This research fits into this body of work by presenting a new framework for

understanding the most well-known equivalence of matrix factorisation categories,

allowing an exploration of the limitations of the equivalence as well as to what

extent it can be salvaged when it does fail. This will be useful for other researchers

within the field both as a source of intuition about the relationships of these

categories and as a source of tests to apply when figuring out if two categories are

equivalent. There are a few low-hanging generalisations, for example there should

be little work in making the same statements outside of the affine context, but there

are more interesting questions raised as well. For instance: what corresponds to the

non-trivial deformations described below ‘through the mirror’ of mirror symmetry

- when studying the symplectic geometry of the mirror space in terms of Fukaya

categories?
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1 Introduction

Matrix Factorisations were introduced by Eisenbud in [4] in order to study max-

imal Cohen-Macaulay modules. In particular an equivalence is established, using

the cokernel functor, between the matrix factorisation category of a regular local

ring paired with a distinguished non-unit element and the stable category of max-

imal Cohen-Macaulay modules of the ring obtained from the quotient with the

aforementioned element.

This was then followed by an interesting result from Knörrer [10] which, along

with its many descendants, became known as Knörrer periodicity. The original

purpose of this result was for applications in algebra, but it expresses a funda-

mental property of categories of matrix factorisations themselves. Namely, that

extending the ring by new independent variables and adding a quadratic term in

these variables to the superpotential constitutes no change to the actual category:

there is an equivalence of categories given by tensoring with a particular bimodule.

Outside of abstract algebra, matrix factorisations also find application in the

homological mirror symmetry conjecture. This comes from there being two topo-

logical twists of the field theory in topological string theory: the A model and the

B model. The relationship between the spaces in these models is what is known as

mirror symmetry - they are referred to as ‘mirrors’ of each other. The endpoints

of open strings are required to lie on a subspace called a D brane. Mathematically,

we think of D branes as the objects of category, and states of open strings spanning

between them as morphisms. For a Calabi-Yau target space, the category of D

branes for the B model (called B branes) is the derived category of the Calabi-Yau.

For other natural classes of examples such as Fano varieties, we are led to mirrors

called Landau-Ginzburg models. The B branes of Landau-Ginzburg models are

categories of matrix factorisations.

These categories of matrix factorisations were studied within the world of de-
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rived algebraic geometry by Orlov [15] via an equivalence with the ‘singularity

category’ of the associated hypersurface cut out by the vanishing of the superpo-

tential. Orlov proves a more general version of Knörrer periodicity in [16] where

the previously quadratic function is replaced with the product of a fibre coordi-

nate of a bundle and a regular function on the base. The functor that gives the

equivalence is also realised geometrically as the composition of a pull up and a

push forward. This method suggests that the phenomenon is closely tied to the

presence of this ‘linearity’ given by the fibres which provides a direction to pull up

along. As a consequence we will use the shorthand ‘semilinear’ to refer to this case.

Several different proofs and extensions of the result have since been developed by

Isik [9], Hirano [7], Shipman [20] and Teleman [21]. In particular, if we consider

regular functions f, g ∈ OX on an affine scheme X, these results roughly speaking

compare the derived category of Y = V (f, g) with matrix factorisations of W = fg

on X. Orlov’s result says that there is an equivalence when one of f and g is linear

and the other is invariant in this linear direction. From Teleman we learn that

when Y is smooth, Y = Crit(fg) and there is an equivalence up to some global

obstructions such as from the super-Brauer group. In a formal neighbourhood of a

point, however, things look like the previous case where Knörrer periodicity holds

since ∇f and ∇g are non-zero and linearly independent. We shall explore what

happens when Y is singular, focusing on local obstructions.

In general, there are relatively few equivalences known between different matrix

factorisation categories, with examples coming either from different kinds of flops

or from versions of Knörrer’s result. The goal of the work presented here is to

understand the result as a special case of a certain deformation, which exists more

generally, and to use this to present something of a converse argument: that if the

deformation is trivial to first order then we only have Knörrer periodicity in the

‘semilinear’ case.
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Our main theorem shows that given a regular pair of functions we can construct

a close relationship between categories of matrix factorisations on the vanishing

locus Y of the functions and on a formal neighbourhood of Y where the product of

the functions is added to the superpotential. The semilinearity assumptions would

usually require that one of these functions is linear in the sense of being a fibre

coordinate function for some vector bundle on Y .

Theorem 1.1. Let f, g, h ∈ OX be a regular sequence of regular functions on a

smooth affine scheme X and X̂f,g be the completion of X with respect to f and g.

Let

K = OX

f
++ OX

g
kk ∈ MF(X, fg),

then there is a differential graded algebra R1 which gives an equivalence

M̂F(R1, h)
HomR1 (K,−)

..∼= M̂F(X̂f,g, h + fg)
−⊗XK

mm .

to the category of completed matrix factorisations on X̂f,g. Furthermore, R1 is a

deformation of R0, the Kozsul resolution Y = V (f, g) ⊂ X.

The DG algebra R1 is the endomorphism algebra of the object K. We can see

it as the fibre over 1 of R → A1
t where R is the Z/2Z-graded DG algebra:

OX [t]⟨ϵ1, ϵ2⟩
/

([ϵ1, ϵ2] = t, ϵ2
1 = ϵ2

2 = 0, ∂ϵ1 = f, ∂ϵ2 = g) where |ϵ1| = |ϵ2| = 1.

R0, the fibre over 0, is quasi-isomorphic to OY and in fact this induces a quasi-

equivalence of the derived categories of these two objects. However, our matrix

factorisation categories are instead analagous to the absolute derived categories of

Positselski [18] for which it is not necessarily true that a quasi-equivalence of DG-

algebras induces an equivalence of matrix factorisation categories. For our specific

case of a complete intersection Y and its two-step Koszul resolution we expect

and conjecture the equivalence M̂F(R0, h) ∼= M̂F(Y, h). So matrix factorisations
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of h on Y are a deformation of (completed) matrix factorisations of h + fg on X

(completed with respect to f and g).

The next question of particular interest is to know when this deformation is

trivial, since this suggests an equivalence of categories much like Knörrer period-

icity. However, the deformation is non-formal and therefore most of our tools are

inadequate to study it directly. We can, however, study it up to first order by

investigating the associated class in the Hochschild cohomology of the category of

matrix factorisations on the DG-algebra R0. When this class vanishes it is sugges-

tive that we should have an equivalence. The concept seems closely tied to Knörrer

periodicity, however for that we need full triviality of the deformation, not just

infinitesimally or to first order. As for the converse, strictly speaking it is possible

to hypothesise pathological situations where the deformation is non-trivial to first

order yet the categories at R0 and R1 happen to be equivalent, but we expect

these not to exist in any meaningful way.

To find the class of this deformation in Hochschild cohomology, we will use

a version of the Hochchild-Konstant-Rosenberg theorem. It turns out, since we

are deforming the relation [ϵ1, ϵ2] = 0 to [ϵ1, ϵ2] = 1, that this class is represented

by the degree 2 differential operator ∂ϵ1∂ϵ2 . When this class is nonzero, it can

be thought of as a local obstruction to Knörrer periodicity. This is in contrast

to previous obstructions, such as in Teleman’s work [21], which are due to global

phenomena.

Since this study is local in nature, we can pass to a formal neighbourhood of a

point in X, which is the same as looking at a formal neighbourhood of the origin

in affine space, since X is a smooth affine scheme.

Our final study is a heuristic argument that is close to a converse to the previous

statements of Knörrer periodicity. We argue that when such an equivalence holds

we are only a trivial deformation away from the semilinear case. This is done by
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first assuming our deformation representing Knörrer periodicity is trivial which

allows us to change coordinates so that one of our functions f or g is just the first

coordinate function. Without loss of generality suppose this is f . From here we

can set up a commuting square of deformations, where our Knoerrer periodicity

equivalence is obtained by deforming from a semilinear case where we take the parts

of g and the superpotential h which are independent of the coordinate direction

associated to f . Further yet, if the deformation from the semilinear case is trivial

then the classes of the deformation are everywhere zero in Hochschild cohomology,

in particular vanishing in the Jacobi ring meaning it is locally a coordinate change.

If we can integrate these coordinate changes up to the non-formal deformation then

we really were in the semilinear case to begin with.

1.1 Summary

In section 2 we will cover some background topics and definitions. Starting with

definitions of matrix factorisation categories first in the smooth affine case and

then expanding to include singular, non-affine and then a definition for factorisa-

tions over differential graded algebras too. We then cover a few more topics, such

as relations to categories of maximal Cohen-Macaulay modules and derived sin-

gularity categories, and then some necessary technicalities on completions, limits

and Hochschild cohomology.

Section 3 will be a recap on the origins and various approaches and different

statements of the Knörrer periodicity theorem to date.

In section 4, we set up functors between M̂F(X, fg + h) and M̂F(R1, h) and

prove Theorem 1.1, setting up an equivalence after completion of X with respect

to f and g.

Section 5 then addresses the deformation between M̂F(R0, h) and M̂F(R1, h)

using Hochschild cohomology and passing to a formal neighbourhood of a point.
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We explore the implications when the second cohomology class associated to the

deformation vanishes and make a heuristic converse argument to the Knörrer pe-

riodicity theorem.
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2 Background

2.1 Matrix Factorisations

Consider W , an element of a ring A (often a k-algebra where k is a field of

characteristic zero). A factorisation is a pair of other elements f, g such that

fg = gf = W . However, we can find more factorisations if we instead consider a

pair of matrices F, G ∈ Matn×n(A) such that F ·G = G · F = W · Idn.

As an illustration, factorisations in terms of matrices are one way of arriving

at the concept of complex numbers. Let A = Z and W = −1. The only way

to factorise is 1 · −1 = −1 · 1 = −1. However, if we allow matrices, there is an

interesting factorisation

(
0 −1
1 0

)2
=

(
1 0
0 1

)
= 1 · Id2

If we identify Z with an isomorphic subring Z · Id2 of Matn×n(Z), then the ex-

tension by this ‘matrix factorisation’ of −1 gives us a subring Z
[(

0 −1
1 0

)]
which

is isomorphic to the Gaussian integers Z[i]. Similarly with R replacing Z we can

discover C as a subring of Mat2×2(R).

Remark. This example is just an analogy to illustrate the concept. The actual

category we will define would make this factorisation trivial.

The examples of interest to us come from polynomials. Take wx − yz in

C[w, x, y, z]. This does not factorise in terms of other polynomials, however it

does in terms of matrices of polynomials.

(
w −y
−z x

)
·

(
x y
z w

)
= (wx− yz) · Id2. =

(
x y
z w

)
·

(
w −y
−z x

)
.
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2.1.1 The smooth affine case

To study matrix factorisations we must define an appropriate category. Let A be

a regular commutative algebra over a field of characteristic zero and W ∈ A a

regular element, which we call the ‘superpotential’. We will define a category of

matrix factorisations associated to the pair (A, W ). We will model our approach

on the definition of the bounded derived category of coherent sheaves so that we

can hope to retain many of its useful properties.

Let us first then look at how the derived category behaves in the simple case

of a smooth affine scheme X = Spec(A). The differential graded bounded derived

category of finitely generated A-modules Db(A) has a differential graded subcate-

gory Perf(A) of perfect complexes. Perfect complexes are those quasi-isomorphic

to bounded complexes of finite projective A-modules. For all our purposes A will

be Noetherian, so we can treat projective and locally free interchangeably. Un-

der our smoothness condition, there is an equivalence of triangulated categories

Db(A) ∼= [Perf(A)] (where the square brackets indicate passing from the dif-

ferential graded category to the homotopy category and Db represents the usual

triangulated bounded derived category). This is because all complexes in Db(A)

have finite resolutions by finite locally free A-modules. In fact, if we take the

smaller category V of these bounded complexes of finite locally free modules, all

quasi-isomorphisms of such complexes come from genuine homotopy equivalences.

So in fact [V ] ∼= Db(A) without needing to invert quasi-isomorphisms (equivalently

there is no need to quotient by acyclic objects since they are already contractible).

Remark. To see why smoothness is critical here, consider the singular point in

the scheme Spec(C[x]/x2). Locally free resolutions of this point are necessarily

infinite, the obvious one being

· · · x // C[x]/x2 x // C[x]/x2 x // C[x]/x2 // C.

14



We shall model our approach to matrix factorisations on these properties of

the derived category, at least in the smooth affine case. A matrix factorisation

shall be a pair of finite locally free modules with morphisms between them:

M0

d0 ++M1
d1

kk

such that both compositions of these morphisms are just the action of W on the

respective modules, i.e. d1d0 = W IdM0 and d0d1 = W IdM1 . We shall often instead

think of this pair as a Z/2Z-graded module with differential d of odd degree, which

squares to give the action of W . We can then consider two matrix factorisations

(M, dM) and (N, dN), and the chain complex of homomorphisms given by

HomMFLF(A,W )(M, N) =
⊕

i,j∈{0,1}
HomA(Mi, Nj)

with grading (i−j)mod2 and induced differential defined on homogeneous elements

h ∈ HomA(Mi, Nj) as dh = dNh− (−1)i−jhdM and extended linearly.

Definition 2.1. Take a regular commutative algebra A, over a field of character-

istic zero, and a regular element W . The DG category of matrix factorisations

MFLF(A, W ) has as its objects the set of Z/2Z-graded finite locally free modules

equipped with differentials d of odd degree such that d2 = W . The morphisms are

the chain complexes

HomMFLF(A,W )(M, N) =
( ⊕

i,j∈{0,1}
HomA(Mi, Nj), d

)

with differential ‘d’ as above.

The homotopy category of matrix factorisations [MFLF (A, W )] has the same

objects and its morphisms are

Hom[MFLF(A,W )](M, N) = H0(HomMFLF(A,W )(M, N)).

15



Proposition 2.2. MFLF(A, W ) can be given the structure of a pre-triangulated

category which also makes [MFLF(A, W )] a triangulated category.

We shall not give a proof here, since this is essentially a matter of straight-

forward checks once the structure is specified. A thourough treatment is given in

[17]. So we shall define that structure: namely the shift functor and a class of

distinguished triangles. The shift functor simply switches degrees and the sign of

the differential, so an object

M = M0

d0 ++M1
d1

kk

becomes

M [1] = M1

−d1 ++M0
−d0

kk .

and a morphism (F0, F1) becomes (F0, F1)[1] = (F1, F0).

To define distinguished triangles, we first take the cone of a morphism F

M0

dM
0 ++

F0
��

M1
dM

1

kk

F1
��

N0

dN
0 ** N1

dN
1

jj

and then take the totalisation when the diagram above is viewed as a Z/2Z-graded

double complex:

N1 ⊕M0

(
dN

1 F0
0 −dM

0

)
..
N0 ⊕M1(

dN
0 F1
0 −dM

1

)nn .

We define the standard triangles as those coming from cones as above:

M
F // N

(id,0) // Cone(F ) (0,−id)//M [1]

in the usual manner and distinguished (or ‘exact’) triangles as those isomorphic

to these standard ones in the homotopy category.
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2.1.2 Including singularity

Now, to generalise to the singular case we should heed a warning indicated by

our comparison with the derived category. For a singular algebra A, [Perf(A)] is

a strict subcategory of Db(Coh(A)). So we should consider more objects, either

complexes of coherent sheaves or even all quasi-coherent sheaves. This also forces

us to address the need to now invert quasi-isomorphisms, since these will no longer

simply be homotopy equivalences as in the smooth case (or equivalently to quotient

by acyclic objects since they are no longer necessarily contractible).

We will use the naïve generalisation as an intermediate category. Let

MFCoh(A, W ) be defined as MFLF(A, W ) was above, only with A not necessarily

smooth and with objects being pairs of any finitely generated modules, not just

locally free ones. We can define our ‘acyclic’ matrix factorisations by taking all

exact sequences inMFCoh(A, W ) and fold them up by degrees into a single object,

T , called the totalisation.

Definition 2.3. Let

Mn fn //Mn+1fn+1 // ...
fm //Mm

be a complex inMFCoh(A, W ), then the totalisation T (M) is an object inMFCoh(A, W )

given by

T (M)i =
⊕

n+j=i mod(2)
Mn

j

with differential dT
i = ∑

n+j=i mod(2)(fn
j + (−1)ndn

j ) where dn is the internal differ-

ential on Mn.

Now we denote by T (A, W ) the smallest full thick DG subcategory containing

all such totalisations of exact sequences.

For this and the next section, we follow the definitions set out by Orlov in [17].

17



Definition 2.4. For an algebra A and a regular element W , the pre-triangulated

DG category of matrix factorisations MFCoh(A, W ) is given by the DG quotient

of MFCoh(A, W ) by the full thick DG subcategory T (A, W ). The associated

triangulated homotopy category is [MFCoh(A, W )].

Remark. We are justified in calling this ‘the’ category of matrix factorisations

since when A is smooth, [MFCoh(A, W )] ∼= [MFLF(A, W )], just like how [V ] ∼=

Perf(A) = Db(Coh(A)). This is because coherent sheaves on smooth schemes

have finite bounded resolutions in terms of locally free modules and short exact

sequences of projective modules are split. This means the totalisations of exact

sequences are homotopically trivial, so our ‘acylic’ objects in MFLF(A, W ) are

already zero in the homotopy category.

2.1.3 Non-affine matrix factorisations

We can also consider matrix factorisations on a non-affine scheme X, paired with

W ∈ OX a regular function (see [17]).

Definition 2.5. Let X be a scheme over k and W ∈ OX a regular function, then

MFCoh(X, W ) is defined just as in Definition 2.4, where instead of Z/2Z-graded

finite A modules we instead consider Z/2Z-graded coherent sheaves on X.

Furthermore, our calculations will present us with objects most naturally un-

derstood as quasi-coherent, so we will expand our definition to include this case.

Definition 2.6. Let X be a scheme and W ∈ OX a regular function, then

MFQCoh(X, W ) is defined just as in Definition 2.4, where instead of Z/2Z-graded

finite A modules we instead consider Z/2Z-graded quasi-coherent sheaves on X.

Remark. We have defined our notion of ‘acyclic’ well, since just like with the

derived category, the quotient neatly handles issues presented by both singularities

and non-affineness.
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2.1.4 Curved differential graded algebras

We shall need one further generalisation of the affine case: a category of matrix

factorisations over a differential graded algebra (DGA). In order to define this, we

must first take a detour into the curvy world of curved differential graded (CDG)

modules over curved differential graded algebras.

Definition 2.7. A curved differential (Z/2Z-)graded algebra over a field k is

a triple (A, d, h) consisting of a (not necessarily commutative) Z/2Z-graded k-

algebra A, a graded derivation d (i.e. satisfying the graded Leibniz rule) of odd de-

gree, and a ‘curvature’ element h of even degree satisfying the equations d2a = [h, a]

for all a ∈ A and dh = 0.

Remark. This is a specialisation of the definition of a curved A∞ algebra where

the higher maps vanish. These are in turn special cases of A∞ categories, just as

k-algebras are k-linear categories with one object.

Definition 2.8. A CDG module of a CDG algebra (A, d, h) is a pair (M, dM)

consisting of a graded A-module M and an odd derivation dM of degree 1 satisfying

the equation d2
Mm = hm for all m ∈M . The fact that the derivation is odd means

it satisfies the graded Leibniz rule dM(am) = (da)m + (−1)deg(a)a(dMm) for all

a ∈ A and m ∈M .

We will often just write (A, h) for the CDG algebra or M instead of (M, dM)

leaving the differential implicit.

Definition 2.9. Let M and N be CDG modules over a CDG algebra, then the

complex of homomorphisms

HomA,h(M, N) = (
⊕

i,j∈Z

HomA(Mi, Nj), dM,N)

19



where the grading is given by (j−i) and the differential is defined on homogeneous

elements f ∈ HomA(Mi, Nj) by dM,N(f)(m) = dN(f(m)− (−1)deg(f)f(dM(m))) for

all m ∈M (and extended linearly).

We start once again with an intermediate definition which does not have the

‘derived’ properties that we want.

Definition 2.10. Let (A, d, h) be a CDG algebra. The DG category of (finitely

generated) CDG modules CDG(A, d, h) over A has as objects the CDG modules

(M, dM) defined above for which M is a finitely generated A-module. The com-

plexes of morphisms are HomA,h(M, N).

Now we must again quotient out by some ‘acyclic object’ equivalent. Simi-

larly to before, we let T (A, d, h) be the DG subcategory of totalisations of exact

sequences in CDG(A, d, h).

Definition 2.11. Let (A, d, h) be a CDG algebra. The Derived DG category of

(finitely generated) CDG modules DCDG(A, d, h) over A is the DG quotient of

CDG(A, d, h) by the full thick subcategory T (A, d, h).

Now, with these many definitions out of the way, we will fix a notation. When

we refer to MF(X, W ), if X is a scheme, we shall mean MFCoh(X, W ), though

we shall sometimes need to implicitly use the fact that this is a subcategory of

MFQCoh(X, W ). When X is smooth and affine, MF(X, W ) is quasi-equivalent to

MFLF(X, W ).

When instead we have a central element h of a DG algebra (A, d), we will

write MF(A, h) to mean the DG category DCDG(A, d, h) of (finitely generated)

CDG modules over the CDG algebra (A, d, h).

Remark. Since h is taken to be central, [h,−] ≡ 0, so since d2 = 0 in a DG algebra,

(A, d, h) is indeed a CDG algebra. We can see that this is actually a generalisation
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of the definition of matrix factorisations since we can always consider an algebra

and superpotential (A, h) as a CDG algebra with trivial grading and differential.

2.2 Relationships to Other Categories

Starting with a ring R and an element W which is not a zero divisor, we shall

explore two ways in which MFLF(R, W ) is related to the hypersurface ring S =

R/W .

2.2.1 Maximal Cohen-Macaulay Modules

Matrix factorisations were introduced by Eisenbud [4] as a means of studying (the

‘stable category’ of) maximal Cohen-Macaulay modules.

To define this class of modules we will need the notion of ‘depth’.

Definition 2.12. Let M be a finitely generated R module for a local ring (R, m).

The depth of M is the maximal length of a sequence f1, ..., fn ∈ m such that f1

is not a zero divisor in M and for all 1 ≤ i ≤ n − 1, fi+1 is not a zero divisor in

M/(f1, ..., fi).

Definition 2.13. A maximal Cohen-Macaulay module M over a local ring (R, m)

is one that is finitely generated such that depth(M) = dimKrull(R).

Remark. If R is regular, the Auslander-Buchsbaum formula tells us that the pro-

jective dimension of M is the difference between the Krull dimension of R and the

depth of M , so maximal Cohen-Macaulay modules are just finitely generated free

modules.

A maximal Cohen-Macaulay module M over the hypersurface ring S = R/W

is also an R module, and since the Krull dimension of R is one greater than that

of S, by the Auslander-Buchsbaum formula the projective dimension of M over R
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is 1. Therefore M has a length 1 free resolution.

0 //M1
d0 //M0 //M // 0

Since W acts trivially on M , there is a contracting homotopy d1 :M0 →M1 such

that W · IdM0⊕M1 = d(d1) = d0d1 + d1d0. Put another way, we have

M0

d0 ++M1
d1

kk

such that d0d1 = W · IdM1 and d1d0 = W · IdM0 . So maximal Cohen-Macaulay

modules on S = R/W allow us to construct elements of MFLF(R, W ). We can

also recover M as coker(d0). In fact, starting with the matrix factorisation we can

construct a maximal Cohen-Macaulay module in this way, since WM1 ∈ Im(d0)

so W annihilates coker(d0), which can therefore be thought of as an S module. It

has projective dimension 1 over R and therefore is maximal Cohen-Macaulay over

S.

So we have a correspondence between matrix factorisations of (R, W ) and max-

imal Cohen-Macaulay S modules. To compare morphisms, we take the S module

M and find a free resolution. We can obtain one by starting with the resolution

over R and modding out W .

...
d0 //M1/WM1

d1 //M0/WM0
d0 //M1/WM1

d1 //M0/WM0 //M

We observe that the resulting resolution is 2 periodic. We want to consider

the morphisms which themselves become 2 periodic along this resolution, so we

quotient out by F , the set of S module homomorphisms which factor through a

free module.

Definition 2.14. The stable category of maximal Cohen-Macaulay modules of S

has as objects the maximal Cohen-Macaulay modules of S and as morphisms sets

HomSMCM(S)(M, N) = HomS(M, N)/F .
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Which finally leads to the context in which matrix factorisations were studied

by Eisenbud, Knörrer and their contemporaries.

Theorem 2.15. (Eisenbud [4])

There is a functor coker : [MFLF(R, W )] → SMCM(S) which takes a matrix

factorisation

M0

d0 ++M1
d1

kk

and sends it to a maximal Cohen-Macaulay module coker(d0). This functor induces

an equivalence of categories.

Remark. Although we defined matrix factorisations for k-algebras only due to our

geometric motivation, it works exactly the same for a ring R and an element W

which is not a zero divisor.

2.2.2 Derived Singularity Categories

For a ring R, as was peviously mentioned, when R is smooth we have that

Perf(R) = Db(Coh(R)) (where we are now staying at the DG level). For singular

R, Perf(R) is a strict subcategory of Db(Coh(R)). Therefore it is sensible to think

of the difference between these two categories as an obstruction to smoothness, or

a measure of singularity.

Definition 2.16. The Derived Category of Singularities of a ring R is the homo-

topy category of the DG quotient

Dsg(R) := [Db(Coh(R))/Perf(R)].

Take an R module, M . We can consider a (potentially infinite) locally free

resolution of M . Since we are quotienting by perfect complexes, we can essentially

ignore any finite chunk of this resolution, so that in the singularity category it

seems we only care about the behaviour off towards infinity.
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Theorem 2.17. (Eisenbud [4])

Let (R, m) be a local ring, W ∈ R and S = R/W , then every finitely generated S

module has an eventually 2 periodic free resolution.

In fact, we can drop the local condition on the ring as long as we instead con-

sider locally free resolutions. Note that we now have something of a generalisation

of the maximal Cohen-Macaulay case.

Theorem 2.18. (Buchweitz [1])

Let (R, m) be a regular local ring and W ∈ R such that S = R/W is a singular

hypersurface. The obvious embedding

SMCM(S)→ Dsg(S)

is an equivalence of categories.

Therefore, combining Theorems 2.15 and 2.18 there is also an equivalence of

categories

[MFLF(R, W )] ∼= Dsg(S)

which also happens to be an equivalence of triangulated categories. Thus we

should think of the study of matrix factorisations as also the study of singularities

of hypersurfaces.

2.3 Completions

We will eventually need to work on formal neighbourhoods, so we define completed

matrix factorisations and describe some technical results on limits and completions.

2.3.1 Completed matrix factorisations

Definition 2.19. An inverse system is a partially ordered set (I,≤), a family

of objects (Mi, fij)i,j∈I and morphisms fij : Mi ← Mj in a category C such that

fii = IdMi
and fik = fijfjk for all i ≤ j ≤ k in I.
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Definition 2.20. The inverse limit of an inverse system (Mi, fij)i,j∈I in the cate-

gory C is the universal object L with morphisms pi : L→Mi satisfying pi = fijpj

for all i ≤ j in I such that for any other such object L′ with morphisms p′i there

is a unique morphism f ′ : L′ → L which makes the following diagram commutes

for all i ≤ j in I.

L′

p′
i

��

f ′

�� p′
j

��

L

pi
xx

pj
&&

Mi Mj

fijoo

We write

L = lim
←

Mi.

Definition 2.21. A filtered abelian group is an abelian group G with a descending

filtration G = F 0G ⊃ F 1G ⊃ F 2G... of subgroups. This forms an inverse system

in the category of abelian groups with I = N and the morphisms fij : G/F jG ←

G/F iG for i ≥ j are just given by the quotient(
G⧸F iG

)
⧸F jG

∼= G⧸F jG

since F iG ⊂ F jG.

The completion of a filtered abelian group G is the inverse limit

Ĝ = lim
←

(G/(F nG)).

Remark. We can construct the completion as the subgroup of the direct product

given by

Ĝ =
{

(mn)n≥0 ∈
∏
n≥0

(G/(F nG))
∣∣∣∣ for all i ≤ j, ai = aj (mod F nG)

}
.

where essentially we take a class from every quotient and ensure they are compat-

ible in the sense that they map to each other under the quotient maps.
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Remark. We define a filtered ring in the same was as for a filtered abelian group,

and similarly for a filtered curved differential graded algebra. The completion of

a filtered ring will have an induced ring structure.

Now let M be a matrix factorisation in MF(R, W ) for some filtered ring R.

Suppose R̂ is the completion of R. Then we can consider a ‘completed matrix

factorisation’ M̂ which is simply the completion of the filtered R-module M =

MF 0R ⊃ MF 1R ⊃ MF 2R ⊃ .... This is now a matrix factorisation over R̂.

Completion then gives a functor from MF(R, W ) to MF(R̂, W ).

Remark. There is, of course, a forgetful functor in the opposite direction but this

is not an inverse since there are R̂ modules that are not equal to their completions.

Example 2.22. Consider the C[[x, y]] module C[[x]][[y]]. The completion of this

module is the limit of C[x, y]/(x, y)n which is just C[[x, y]] itself.

Example 2.23. Similarly the completion of the C[[x]] module C[[x]][x−1] is the

limit of C[x, x−1]/xn = 0 which is just 0.

Definition 2.24. Given a filtered, curved differential graded algebra (A, d, h)

where A = F 0A ⊃ F 1A ⊃ F 2A ⊃ ..., we obtain an inverse system of quotient

rings fij : A/F jA ← A/F iA for i ≥ j whose morphisms induce functors which

give us an inverse system of categories

Fij : MF(A/F iA, h)← MF(A/F jA, h)

We take the limit of this inverse system of categories to obtain a category of

completed matrix factorisations which we denote M̂F(Â, h). The objects of the

category are completions of matrix factorisations and the morphisms are limits of

morphisms in the inverse system of categories.
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2.3.2 Limits of cohomology and tensor products

We will need to use a notion of product ‘·’ which validates such statements as

C[[x]] · C[[y]] = C[[x, y]]. The usual tensor product does not satisfy this condition,

however we can use a ‘completed tensor product’ to realise it.

Definition 2.25. Consider two filtered modules M = F 0M ⊃ F 1M ⊃ F 2M...

and N = G0N ⊃ G1N ⊃ G2N... with completions M̂ and N̂ respectively. The

completed tensor product is then the inverse limit

M̂⊗̂N̂ = lim
←

(M/(F mM)⊗ (N/GnN)).

This is particularly useful for us in combination with the following condition.

Definition 2.26. We call an inverse system (Mi, fij)i,j∈I Mittag-Leffler if for each

N ∈ I there exists M ≥ N such that for all n ≥M ,

Im(fNn) = Im(fNM).

In other words the image at any given degree eventually stabilises.

Proposition 2.27. The inverse limit functor is exact on filtered chain complexes

and therefore commutes with taking homology of these complexes.

Any filtered group G is Mittag-Leffler since all the maps are surjections between

quotients. Therefore, using C.11.1 from [12], the first derived functor of the inverse

limit vanishes lim1(G/F nG) = 0. In other words the inverse limit functor is exact

on filtered groups, of which filtered chain complexes are a special case. A functor

being exact is the precise condition needed to commute with the homology functor.

This, along with the completed tensor product, will help us to separate coho-

mology calculations into constituent parts.
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Proposition 2.28. Suppose we have two bounded below cochain complexes of R-

modules A• and B•, one of which is flat, with filtrations given by the truncations

F n = τ≥n. Then

H∗(Â•⊗̂B̂•) = H∗(Â•)⊗̂H∗(B̂•).

The completions Â• and B̂• can be thought of as direct product complexes.

The claim is that cohomology distributes over the completed tensor product.

Proof.

H∗(Â•⊗̂B̂•) = H∗
(

lim
←

(
A•⧸(τ≥mA•)⊗

B•⧸(τ≥nB•)
))

by the definition of the completed tensor product. Since we trivially have Mittag-

Leffler, lim← is exact and therefore

= lim
←

(
H∗

(
A•⧸(τ≥mA•)⊗

B•⧸(τ≥nB•)
))

= lim
←

(
H∗

(
A•⧸(τ≥mA•)

)
⊗H∗

(
B•⧸(τ≥nB•)

))
where homology distributes over the tensor product by our flatness assumption.

Now we apply the definition of the completed tensor product again

= lim
←

(
H∗

(
A•⧸(τ≥mA•)

))
⊗̂ lim
←

(
H∗

(
B•⧸(τ≥nB•)

))
and we can once again use the previous proposition since these systems are Mittag-

Leffler to conclude that

= H∗
(

lim
←

(
A•⧸(τ≥mA•)

))
⊗̂H∗

(
lim
←

(
B•⧸(τ≥nB•)

))
= H∗(Â•)⊗̂H∗(B̂•).

qed

2.4 Deformation Theory

2.4.1 Hochschild Cohomology

Let k be an algebraically closed field of characteristic zero. We will study the

deformation theory of A, an associative k-algebra.
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Definition 2.29. The bar complex Cbar
∗ (A) is the chain complex of A-bimodules

(or A⊗k Aop modules)

· · · dn+1 // Cbar
n (A) = A⊗kn+2 dn // · · · d2 // A⊗k3 d1 // A⊗k A // 0

with differentials

dn(a0 ⊗k a1 ⊗k ...⊗k an+1) =
n∑

i=0
(−1)ia0 ⊗k ...⊗k aiai+1 ⊗k ...⊗k an+1.

Definition 2.30. The Hochschild chain complex of an A bimodule M is C∗(A, M) =

M ⊗A⊗kAop Cbar
∗ (A).

The point is to resolve A as a bimodule, essentially to then compute Tor(A, M).

For our purposes we will only need C∗(A) := C∗(A, A), the chain complex of A-

bimodules

· · · dn+1 // Cn(A) = A⊗kn+1 dn // · · · d3 // A⊗k3 d2 // A⊗k A
d1 // A // 0

with differentials

dn(a0⊗ka1⊗k...⊗kan) = (−1)nana0⊗ka1⊗k...⊗kan−1+
n−1∑
i=0

(−1)ia0⊗k...⊗kaiai+1⊗k...⊗kan.

Definition 2.31. The Hochschild cohomology of A is the cohomology of the

cochain complex given by HomA⊗kAop(Cbar
∗ (A), A) which computes ExtA⊗kAop(A, A).

Example 2.32. Let us look at the affine space A = k[x1, ..., xn]. We resolve A

over the enveloping algebra A ⊗k Aop ∼= k[x1, ..., xn, y1, ..., yn]. We have a map

A ⊗k Aop → A with kernel I = (x1 − y1, ..., xn − yn). We can extend this to a

Koszul resolution of A over A⊗k Aop to see that A is quasi-isomorphic to the chain

complex

∧nI → · · · → ∧2I → I → A⊗k Aop.
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Now we must tensor with A considered as an A ⊗k Aop module. In this context

A ∼= A⊗k Aop/I, so we get the complex

∧nI/I2 → · · · → ∧2I/I2 → I/I2 → A

with zero differential. Dualising gives us

HomA(A, A)→ HomA(I/I2, A)→ · · · → HomA(∧nI/I2, A).

It can be shown that HomA(I/I2, A) = Derk(A) and that dualising commutes

with the wedge product here so that

HH∗(A) ∼= ∧∗Derk(A).

HH∗(A) can be given the structure of a differential graded Lie algebra using

the cup product and the Gerstenhaber bracket [5].

The algebra in the example above, ∧∗Derk(A), is the algebra of polyvector

fields on A and it has its own bracket called the Schouten bracket.

Our observation in the example can famously be generalised.

Theorem 2.33. (Hochschild-Konstant-Rosenberg [8])

If A is smooth as a k-algebra, there is an isomorphism HH∗(A) ∼= ∧∗Derk(A)

of graded k-algebras which furthermore sends the Gerstenhaber bracket to the

Schouten bracket.

There are two further generalisations of interest to us which can be seen as

stepping stones to dealing with curved differential algebras.

Suppose first that we now consider A to be a differential graded algebra with

differential d. On the left hand side we simply include this differential and grading

when computing the homology HH∗(A, d) while on the right we must find a corre-

sponding action on polyvector fields. To do so we use the correspondence between

derivations and vector fields Derk(A) ∼= TX where X = Spec(A) to define a vector
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field Qd corresponding to the differential d. The natural, and indeed correct, thing

to do then is to let d act via the Lie derivative LQd
and take cohomology.

HH∗(A) ∼= H∗(∧TX ,LQd
).

We are mainly interested in the Hochschild cohomology of categories, not just

algebras. Fortunately, we have a correspondence between functors in derived cat-

egories and objects which are the Fourier-Mukai kernels of those functors. In par-

ticular, the Hochschild cohomology of the derived category can be computed as

the extensions of the identity functor, whose Fourier-Mukai kernel is the diagonal

whose extensions compute the Hochschild cohomology of the algebra.

ExtDb(A)(1) ∼= ExtX×X(O∆)

This argument is due to Toën [22] who then establishes the equivalence

HH∗(Db(A)) ∼= HH∗(A)

By an adaptation of the same argument, if (A, h) is a curved algebra then

HH∗(MF(A, h)) ∼= HHII
c (A, h).

where the right hand side represents the Hochschild cohomology of the second kind

(see [18] and [6]), which is essentially arrived at by swapping direct products and

direct sums with each other throughout the theory.

What is the effect of the curvature element h on our polyvector fields? Since it

is just an element of A, the commutator [h,−] is a derivation on A and therefore

gives a vector field Qh and acts via the lie derivative as before (see [3] [14] [18]

[19])

HH∗(MF(A, h)) ∼= H∗(∧TX ,LQh
).
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2.4.2 First Order Deformations

Of particular interest to us is the connection between the second Hochschild co-

homology group and first order deformations of an algebra.

Definition 2.34. A first order deformation of a k-algebra A is an algebra structure

on A[t]/t2 which extends the usual product on A and is linear over t.

We consider two deformations equivalent if there is an isomorphism between

the algebras that restricts to the identity on A. Let µ0 be multiplication on A

and µt be our new product. We observe that by the linearity and distribution

properties of the product and the vanishing of t2,

µt(a + ct, b + dt) = µ0(a, b) + (µt(a, d) + µt(c, b))t.

So our deformations are defined by how the product acts on elements of A. We

set µt(a, b) = µ0(a, b) + µ1(a, b)t, the the deformation is in fact determined by the

Hochschild 2-cocycle µ1. It is not hard to check that the equivalence relation on

these deformed products corresponds to that of the cohomology.

Proposition 2.35. There is a one to one correspondence between cohomology

classes in HH2(A) and classes of first order deformations of A which matches the

trivial deformation with the trivial cohomology class.

3 Knörrer Periodicity, A Recap

We start with some heuristic motivation. Since our motivation comes from al-

gebraic geometry, we start with affine space. One of the first non-trivial matrix

factorisation categories we can write down is MF(C[u, v], uv) with the matrix fac-

torisation
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C[u, v]
u --

C[u, v]
v
mm .

This turns out to be the only object in the category up to quasi-isomorphism

and it has endomorphism group C.

Another way to see this is since MF(C[u, v], uv) ∼= Dsg(C[u, v]/uv), we are really

examining the singularity category of the ordinary double point or node. It should

not be too surprising that this category looks like the derived category of a point,

since this is exactly the critical locus. It is not quite true that MF(C[u, v], uv) ∼=

Db(C) however, since the former is Z/2Z-graded and the latter is Z-graded.

Remark. In general, for a k-scheme Y the Z/2Z-grading on MF(Y, W ) can be

upgraded to a Z-grading, in the presence of a k∗ action (internal Z-grading). If,

in our construction of the singularity category, we quotient the k∗-equivariant

derived category by the full subcategory of k∗-equivarient perfect complexes, we

obtain Dk∗
sg (Y ) which has a Z-grading induced by the k∗-action.

In our case this allows us to say that MF(C[u, v], C∗, uv) ∼= Db(C) with the

standard C∗ action that makes u, v degrees 0 and 2 respectively.

We might sensibly wonder how to generalise this. Suppose we have Y = An
k

and an element h ∈ k[x1, ..., xn]. We can also consider h + uv ∈ k[x1, ..., xn, u, v].

It is generally true that matrix factorisations are supported on the critical locus

of the superpotential. We can see this since points away from the critical locus

are perfect using a Koszul resolution. Therefore they don’t support the singularity

category of the hypersurface cut out by the superpotential, which as we have seen

is equivalent to it’s matrix factorisation category. Because of this, we should find

the fact that Crit(h) = Crit(h + uv) rather suggestive.

Remark. It is natural to ask exactly what the relationship between matrix factori-

sations and the derived category of the critical locus of the superpotential. It is

tempting to try to generalise the fact above to claim that it is just some kind of
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2-periodisation of the critical locus, but this is not true in general. For Morse func-

tions it is true up to a potential Clifford algebra factor (in odd dimensions) and

if the superpotential is only Morse-Bott then we must also include a deformation

to get from one to the other. These global obstructions are shown in the paper of

Teleman [21].

This is alright, however, because there are known cases of Knörrer periodicity

where the critical loci of the superpotentials on either side are not the same. This

is part of the motivation for this project.

3.1 Knörrer

Take a commutative ring R and an element h ∈ R. The story starts with Knörrer,

who originally studied a functor

[MF(R, h)] H // [MF(R[u, v], h + uv)]

(F0 ⊗R R[u, v]even)⊕ (F1 ⊗R R[u, v]odd)

(
u f1
f0 −v

)
��

F � //

(F0 ⊗R R[u, v]odd)⊕ (F1 ⊗R R[u, v]even).

(
v f0
f1 −u

)
KK

where 1, u2, uv, v2, ... ∈ R[u, v]even and u, v, u3, u2v, ... ∈ R[u, v]odd are obtained

by considering a grading where R is in degree zero and u, v are elements of degree

1. One can think of this functor as tensoring with the element

k[u, v]
u --

k[u, v]
v
mm

of MF(k[u, v], uv). He showed that this functor induced an equivalence of cate-

gories and then applied this to show the equivalence for maximal Cohen-Macaulay

modules.
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Theorem 3.1. (Knörrer, see [10])

The functor H induces an equivalence of triangulated categories

[MF(R, h)] ∼= [MF(R[u, v], h + uv)]

and equivalently

SMCM(R/(h)) ∼= SMCM(R[u, v]/(h + uv)).

3.2 Orlov

Orlov’s approach [15] uses the language of derived categories of singularities Dsg(Z)

defined as the quotient of Db(Z), the bounded derived category of coherent sheaves

on Z, by the full triangulated subcategory of perfect complexes Perf(Z).

Orlov then proves [16] a version of Knörrer Periodicity; we will first focus on

a local picture where X = Z ′ × A1
x for some smooth scheme Z ′ and h is a regular

function on Z ′. This will provide a more direct comparison to our theorem later.

Let Y be a smooth hypersurface in Z ′, cut out by a regular function g, for which

h|Y is non-constant.

V (h|Y )× A1
x

p
����

� � i // V (h + xg) � � //

$$ $$

X

����
V (h|Y ) � � // Y �

� // Z ′

Theorem 3.2. (Orlov [16])

There is an equivalence of triangulated categories Dsg(V (h|Y )) ∼= Dsg(V (h + xg))

induced by the functor Ri∗p∗. Therefore also MF(Y, h|Y ) ∼= MF(X, h + xg).

In fact, more generally, Orlov sets up with a regular section s ∈ H0(S, E)

of a vector bundle E on a noetherian seperated regular scheme S of finite Krull
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dimension. Then Y is the zero subscheme of s, and Z is the zero subscheme in E

of the section on the canonical line bundle induced by s.

NZ/S

p

��

� � i // Z �
� //

##

Tot(E∨)

��
Y �
� // S

Theorem 3.3. (Orlov [16])

There is an equivalence of triangulated categories Dsg(Y ) ∼= Dsg(Z) induced by the

functor Ri∗p∗.

3.3 Post-Orlov

Following Orlov there have been several reimaginings of the result in different

contexts and perspectives.

The case of MF(Y, 0) is interesting, because it is very close to simply being the

derived category of Y , only we need a k∗ action to induce a Z-grading. Once we

have that, the previous statements can be adapted to say Db(Y ) ∼= MF(Y, k∗, 0) ∼=

MF(X, k∗, xg) ∼= Dk∗
sg (Z) where Z = V (xg) ⊂ X.

Isik sets this up in his paper [9] as follows. Take a vector bundle E on a smooth

variety S. Just like in Orlov’s set up we have a section s ∈ H0(S, E) which cuts out

the zero subscheme Y in S. We also have Z, the zero subscheme of the induced

section on X, the total space of the dual vector bundle E∨.

Theorem 3.4. (Isik [9]) Under the conditions above,

Db(Y ) ∼= Dk∗

sg (Z)

is an equivalence both of triangulated categories and of their DG enhancements.

The equivalence here is given by resolving the projection of S onto Z, applying a

form of (linear) Koszul duality. It is then shown that perfect objects on the Z side
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correspond to objects supported on S. Taking quotents by these subcategories

then gives Dk∗
sg (Z) on the one hand and the complement of the zero section on

the other, which is also a shift of the Kozsul resolution of Y , leaving a category

equivalent to Db(Y ).

There is another proof by Shipman [20] of a similar result which sets up the

situation much like in Orlov’s version. He uses Γ, the double of the k∗ action, with

character χ. He constructs functors using a distinguished matrix factorisation K,

which plays essentially the same role as the K we will use later.

If X is the total space of the vector bundle E∨ and p : X → S is the projection,

then Shipman notes that p∗E has a canonical section sS which cuts out the S ⊂ X.

There is also a cosection from the pullback of our section s.

OX
sS // p∗E s // OX

Then the matrix factorisation K is (∧
p∗E∨(χ−1), d) with differential d(−) =

sS ∧ (−) + s ∨ (−). Importantly, the endomorphisms of K are quasiisomorphic to

OY . In fact K is isomorphic to i∗Oq−1Y as matrix factorisations.

q−1Y

p

��

� � i // X

q

��
Y �
� // S

We also need the regular function Qs on X which is induced by the section s.

Theorem 3.5. (Shipman [20])

The functor i∗p
∗ induces an equivalence of triangulated categories Db(Y ) ∼= MF(X, Γ, Qs).

A natural further extension then is to replace k∗ with more general group

actions. This is what Hirano does in the paper [7]. Let χ : G → Gm be a

character of a reductive affine algebraic group acting on a regular scheme S, and

let h be a χ semi-invariant regular function. Then we can define MF(S, χ, h) by
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considering factorisations F where F0, F1 are equivariant, f0, f1 are invariant and

f1 : F1 → F0(χ).

Hom(F, G)2m := Hom(F1, G1(χm))⊕Hom(F0, G0(χm)) (1)

Hom(F, G)2m+1 := Hom(F1, G0(χm))⊕Hom(F0, G1(χm+1)) (2)

If we take a G-invariant section s of a G-equivariant, finite rank locally free

sheaf E and Y the zero locus of s, there is an induced action of G on the vector

bundle V (E(χ)), as well as an induced χ semi invariant regular function Qs.

V (E(χ))|Y
p

��

� � i // V (E(χ))
q

��
Y �
� // S

Theorem 3.6. (Hirano [7])

For h a χ semi invariant regular function on Z, such that h|Y is flat, then i∗p
∗

induces an equivalence of triangulated categories

MF(Y, χ, h|Y ) ∼= MF(V (E(χ)), χ, q∗h + Qs).

The case we shall focus on is when the total space of the bundle is X = S×A1
x,

g is a regular function that gives a section of this bundle and Y = V (g) ⊂ S. The

theorem then tells us the following.

Theorem 3.7. (Hirano)

MF(Y, χ, h) ∼= MF(X, χ, h + xg)

Subsequent work by Teleman [21] examines global obstructions to Knörrer

periodicity. Take a Morse-Bott function W on X, so the critical locus Y is smooth

(the function is locally quadratic), then there is n element τ of the super-Brauer

group formed from the first two Stiefel-Whitney classes.
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Theorem 3.8. (Teleman [21]) MF(X, W ) is equivalent to a deformation of the

τ -twisted differential super-category DSτ (Y ).

The deformation is trivial when the first neighbourhood is split. The obstruc-

tion to this comes about when a tubular neighbourhood of Y in X is not equal to

the normal bundle NY/X .

Remark. Both τ and the deformation here are global obstructions to Knörrer pe-

riodicity which are locally trivial. In Section 5 we will find a local obstruction.

4 Comparing Categories

4.1 Set Up

We fix X a regular affine scheme, (f, g) a regular sequence of regular functions. We

shall explore an expansion of Knörrer periodicity, where we search for a relationship

between the category of matrix factorisations MF(X, fg) and the derived category

of the vanishing locus of the functions Y = V (f, g) ⊂ X. More generally, between

MF(X, fg + h) and MF(Y, h) under some conditions on h. Essentially we are

asking if we can relax the condition maintained in the previous versions that one

of these functions should be linear.

We will, of course, study the matrix factorisation

K = OX

f
++ OX

g
kk ∈ MF(X, fg),

since this is just about the only interesting object we can write down. The first

natural question is what the endomorphisms of this obect are.

Proposition 4.1. Let R1 be the Z/2Z-graded DGA:

OX⟨ϵ1, ϵ2⟩
/

([ϵ1, ϵ2] = 1, ϵ2
1 = ϵ2

2 = 0, ∂ϵ1 = f, ∂ϵ2 = g)

where |ϵ1| = |ϵ2| = 1. R1 is the endomorphism algebra of K.
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Proof. We can see two endomorphisms in degree 1 which identify copies of OX

along the two diagonals:

OX

f
++ OXg

oo

ϵ1

||
OX

f // OX
g
kk

and

OX

f
++

ϵ2

""

OXg
oo

OX
f // OX
g
kk

whose differentials are f and g respectively, and whose compositions ϵ1ϵ2 and ϵ2ϵ1

are

OX

f
++

1
��

OXg
oo

OX
f // OX
g
kk

and

OX

f
++ OXg

oo

1
��

OX
f // OX
g
kk

respectively. So we see the relation ϵ1ϵ2 + ϵ2ϵ1 = [ϵ1, ϵ2] = 1.

Now we can look at the endomorphism algebra as given by the object K∨⊗XK.

Note that K∨ is the dual matrix factorisation

OX

−g
++ OX

f

kk ∈ MF(X,−fg).

and that we can tensor these CDG modules over the commutative algebra OX to

obtain a new curved module whose curvature is the sum of the others. We label

the generators (as an OX module) for K as a, b so that ∂a = fb and ∂b = ga.
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Similarly we can give K∨ corresponding generators b′, a′ so that ∂b′ = −ga′ and

∂a′ = fb′. Now we carefully chose a generating set for K∨ ⊗ K: (b′ ⊗ a − a′ ⊗

b, a′⊗ a, b′⊗ b, a′⊗ b), which if we identify with (1, ϵ1, ϵ2, ϵ1ϵ2) gives an R1 module

isomorphism K∨ ⊗X K ∼= R1. qed

Remark. Note that H0(End(K)) = OY , whence the interest in this object for

building our desired connection. However, OY is not in general quasi-equivalent

to R1, but it is equivalent to a closely related DGA.

Let R be the Z/2Z-graded DGA:

OX [ϵ1, ϵ2, t]
/

([ϵ1, ϵ2] = t, ∂ϵ1 = f, ∂ϵ2 = g)

where |ϵ1| = |ϵ2| = 1. From the obvious projection map R → k[t] we see that R1 is

a deformation of the fibre R0. All these fibres when considered as OX modules are

just the Koszul resolution of Y in X, but the fibre R0 is the one with the correct

product structure to be quasi-equivalent to OY as a DGA.

As K is both an R1 module and a matrix factorisation of fg on X, we can use

it to construct functors:

MF(R1, h)
HomR1 (K,−)

..
MF(X, h + fg)

−⊗XK
nn

.

We would like some kind of equivalence here, so that we can then work our

way through the deformation given by R → A1
t to R0 and therefore Y .

4.2 The endofunctors

Proposition 4.2. The composition of these functors HomR1(K,−) ⊗X K is the

identity endofunctor on MF(R1, h).
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Proof. Take a matrix factorisation M belonging to MF(R1, h). If we apply both

functors we are left with the object HomR1(K, M) ⊗X K. Which we can rewrite

using hom-tensor adjunction as

HomX(K∨, HomR1(K, M)) = HomR1(K∨ ⊗X K, M) = HomR1(R1, M) = M.

Thus, the composition functor is given by homomorphisms from the module R1

so must be the identity functor on MF(R1, h).

qed

Now, the other composition is significantly more complicated. To understand

the functor, we will need to find an R1 free resolution of the module K, for which

we shall use the following complex over the DG algebra A = R1 ⊗X R1.

A . . .
[−,ϵ1]

xx
A

[−,ϵ1]

zz
A

[−,ϵ1]

zz

A . . .
[−,ϵ1]

yy

[−,ϵ2]

ff

R1 Aoo A
[−,ϵ1]

zz

[−,ϵ2]

dd

A
[−,ϵ2]

dd

A . . .
[−,ϵ1]

xx

[−,ϵ2]

ee

A
[−,ϵ2]

dd

A . . .
[−,ϵ2]

ff

Proposition 4.3. This is a chain complex, is exact, and is therefore a free reso-

lution of R1 as an A module.

Proof. First of all, quotienting A = R1 ⊗X R1 by the image of [−, ϵ1] and [−, ϵ2]

corresponds to identifying the right and left copies of R1 via the OX-linear R1-
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module isomorphism from R1 considered as a left module to a right module. It

reverses the order of multiplication and changes signs in odd degree:

1, ϵ1, ϵ2, ϵ1ϵ2 7→ 1,−ϵ1,−ϵ2, ϵ2ϵ1.

So taking A modulo the images of [−, ϵ1] and [−, ϵ2] just leaves a single copy

of the bimodule R1. Now for the rest of the complex.

Let α ∈ A, then we can use the Jacobi Identity to check the compositions

0 = (−1)|α||ϵ2|[[α, ϵ1], ϵ2] + (−1)|ϵ1||α|[[ϵ1, ϵ2], α] + (−1)|ϵ2||ϵ1|[[ϵ2, α], ϵ1]

= (−1)|α|[[α, ϵ1], ϵ2]− [[ϵ2, α], ϵ1]

= (−1)|α|[[α, ϵ1], ϵ2]− [−(−1)|α||ϵ2|[ϵ2, α], ϵ1]

= (−1)|α|([[α, ϵ1], ϵ2] + [[α, ϵ2], ϵ1])

where we used that |ϵ1| = |ϵ2| = 1, the fact that [ϵ1, ϵ2] = 1 by the definition of

R1 and therefore [[ϵ1, ϵ2], α] = 0 and the super-skew symmetry rule. We see the

composition [−, ϵ1] ◦ [−, ϵ2] + [−, ϵ2] ◦ [−, ϵ1] is zero. Using the same calculations

for the other compositions shows that

0 = [[α, ϵ1], ϵ1] + [[α, ϵ1], ϵ1]

and

0 = [[α, ϵ2], ϵ2] + [[α, ϵ2], ϵ2]

so that [−, ϵ1] ◦ [−, ϵ1] = 0 and [−, ϵ2] ◦ [−, ϵ2] = 0, therefore we have a chain

complex.

To see exactness, we can view our complex as the tensor product (over A) of

the two complexes

A A
[−,ϵ1]oo A

[−,ϵ1]oo A
[−,ϵ1]oo A

[−,ϵ1]oo ...
[−,ϵ1]oo

and

A A
[−,ϵ2]oo A

[−,ϵ2]oo A
[−,ϵ2]oo A

[−,ϵ2]oo ...
[−,ϵ2]oo
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which are exact. We can see this simply by observing that A is free over OX and

can be split into 16 summands such that, for each of [−, ϵ1] and [−, ϵ2], 8 are in

the kernel and the same 8 are the image.

The tensor product functor preserves exactness here since the complexes are

made up of free A modules which are therefore flat. So the entire complex above

is indeed a A free resolution of R1.

qed

Proposition 4.4. The composition of functors HomR1(K,−⊗X K) that gives an

endofunctor on MF(X, h + fg) is completion with respect to f and g.

Proof. Take some N ∈ MF(X, h + fg), and apply both functors to get the object

HomR1(K, N ⊗X K).

We can now apply K ⊗R1 − to the complex in proposition 4.3 to obtain an

R1-free resolution of K. This allows us to calculate HomR1(K, N ⊗X K) using the

following chain complex which we consider as an inverse limit of the inverse system

of finite quotients:

HomR1(K ⊗X R1, N ⊗X K) . . .

HomR1(K ⊗X R1, N ⊗X K)

[−,ϵ1]
44

[−,ϵ2] **
HomR1(K ⊗X R1, N ⊗X K)

[−,ϵ1]
44

[−,ϵ2] **

HomR1(K ⊗X R1, N ⊗X K) . . .

HomR1(K ⊗X R1, N ⊗X K)

[−,ϵ2] **

[−,ϵ1]
44

HomR1(K ⊗X R1, N ⊗X K) . . .

where each term is HomR1(K ⊗X R1, N ⊗X K), which, using Hom-Tensor ad-

junction, is HomX(K, HomR1(R1, N ⊗X K)) = HomX(K, N ⊗X K) = N ⊗X K⊗X
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K∨ = N ⊗X R1. So our composition of functors is completed tensor product with

the following element of Db(X).

R1 . . .

R1

[−,ϵ1]
66

[−,ϵ2] ((
R1

[−,ϵ1]
77

[−,ϵ2]
''

R1 . . .

R1

[−,ϵ2] ((

[−,ϵ1]
66

R1 . . .

Since we are interested in this object only as a complex of OX modules, we can

divide it into the completed tensor product of two complexes

ϵ1OX

f
��

1

$$

ϵ1OX

f
��

1

$$

ϵ1OX

f
��

1

&&

ϵ1OX . . .

f
��

OX OX OX OX . . .

and

ϵ2OX

g

��

1

$$

ϵ2OX

g

��

1

$$

ϵ2OX

g

��

1

&&

ϵ2OX . . .

g

��
OX OX OX OX . . .

which have cohomology OX [[f ]] and OX [[g]] respectively. Since in the inverse

system of quotients each map is actually a surjection, we trivially have the Mittag-

Leffler condition meaning the inverse limit functor is exact and therefore commutes

with taking cohomology. Using Proposition 2.28 since these complexes are free

and therefore flat over X, the cohomology of the direct product complex above

is then the completed tensor product of the cohomologies of the two component

complexes OX [[f ]]⊗̂OX [[g]] = OX [[f, g]] (all complexes here are inverse limits after
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applying HomX(K ⊗R1 −, N ⊗X K), so we can write the finite quotients of the

larger complex as the tensor product of quotients of the smaller complexes and then

pass to the limit). Therefore our object N is actually mapped to N ⊗X OX [[f, g]].

qed

4.3 An Equivalence

Denote by X̂f,g the completion of X with respect to f and g, i.e. Spec(OX [[f, g]]).

We will complete R1 similarly to R̂1, and consider the completed categories of

matrix factorisations which inherit the functors HomR1(K,−) and − ⊗X K as

limits of analagous functors involving finite truncations of K.

Theorem 4.5. There is an equivalence of categories induced by the two functors.

M̂F(R̂1, h)
HomR1 (K,−)

..∼= M̂F(X̂f,g, h + fg)
−⊗XK

mm

Proof. Using propositions 4.2 and 4.4 we can establish a commuting triangle of

functors.

MF(R1, h)

HomR1 (K,−) ((
ρ
��

MF(X, h + fg)−⊗XKoo

ρ
��

M̂F(R̂1, h) M̂F(X̂f,g, h + fg)

In order to construct functors between the completed categories, we use trun-

cations the resolution ofR1 from 4.3 and tensor these with K to obtain truncations
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of a resolution of K. For example,

A
[ϵ1,−]

��
A

[ϵ1,−]

��
R3

1 = A A

[ϵ1,−]��

[ϵ2,−]
^^

A
[ϵ2,−]

^^

A
[ϵ2,−]

__

K ⊗X R1
[ϵ1,−]

ww
K ⊗X R1

[ϵ1,−]

ww
K3 = K ⊗X R1 K ⊗X R1

[ϵ1,−]ww

[ϵ2,−]
gg

K ⊗X R1

[ϵ2,−]

gg

K ⊗X R1

[ϵ2,−]

gg

Now, let I be the ideal (f, g) ⊂ OX (or by abuse of notation in R1 too). We

use these truncations to construct functors on the inverse system

MF(R1/In, h)
HomR1 (Kn,−)

..
MF(OX/In, fg + h)

−⊗XKn
nn

Since we use finite truncations, the functors send finitely generated matrix

factorisations to finitely generated CDG modules and vice-versa. We can now

take the limit of this entire diagram along the inverse system to induce functors

on the completed categories for which the proofs in the previous section still apply,
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so that both compositions − ⊗ R̂1 and − ⊗ OX [[f, g]] are now the identity. This

gives an equivalence of categories. qed

Remark. Although we deal only with the affine case here, reading Orlov’s paper

[16] should make clear how we can relax this restriction by considering sections of

bundles instead of regular functions.

5 Converse to Knörrer Periodicity

So we have a Knörrer periodicity type equivalence (after completion) between

matrix factorisations (or derived categories of CDG modules) on (OX , h + fg)

and (R1, h). However, in order to compare to previous work and to obtain more

geometric relevance we need to pass via the deformation to R1 from R0 and then

the quasi-equivalence to OY (all over the completion of X w.r.t. f and g).

Conjecture 5.1. There is an equivalence of categories M̂F(R̂0, h) ∼= M̂F(Y, h).

R̂0 is just the Koszul resolution of the subspace Y = V (f, g) ⊂ X̂f,g, and so

there is a homomorphism of DG algebras to OY which gives a quasi-isomorphism

since it does not affect the cohomology Hn(R̂0) ∼= Hn(Y ). It is well known that

such quasi-isomorphisms induce equivalences of derived categories. The argument

is that for any R̂0 DG module M , Hn(M) ∼= Hn(M ⊗L

R̂0
OY ) and therefore that

the endofunctor −⊗L

R̂0
OY : Db(R̂0)→ Db(R̂0) is fully faithful and clearly has no

kernel. This functor is really the composition of −⊗L

R̂0
OY : Db(R̂0)→ Db(Y ) with

the functor induced by the resolution map from R̂0 → OY . Similarly, we can com-

pose the functors the other way to obtain an endofunctor on Db(Y ) which is fully

faithful and has no kernel. This proves that these functors are both equivalences.

Regarding our completed categories, we can also take a different approach. Let

I be the ideal (f, g) in R0, then our completed category M̂F(R̂0, 0) is the limit
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of the categories MF(R0/In, 0). Each of these categories contains only finitely

generated CDG modules.

MF(R0/In, h)
HomR0/In (OY ,−)

--MF(Y, h)
−⊗R0/InOY

nn

Taking the limit over the invese system gives us functors

M̂F(R̂0, h)
Hom

R̂0
(OY ,−)

--MF(Y, h)
−⊗

R̂0
OY

mm

Investigating the kernel of the compositions of these functors and take the limit

over the inverse system gives the diagonal object, meaning we should get an equiv-

alence.

Remark. These arguments work for ordinary derived categories, however they do

not generalise to absolute derived categories, where the acyclic subcategory is

defined similarly to how we defined it for matrix factorisations. For example,

the matrix factorisation C[x]
x ++

C[x]
x
kk in MF(C[x]/x2, 0) is acyclic in the usual

derived category and so quasi-isomorphic to the zero object but it is non-zero in

our definition of matrix factorisations which coincides with the absolute derived

category instead. Unfortunately when dealing with curved modules there is no

analogue to the usual derived category since that version of ‘acyclicity’ breaks

down.

The author is currently unaware of a general result that applies to this specific

case in the curved setting, however we conjecture that for the two step Koszul

resolution of a complete intersection that the desired equivalence of matrix fac-

torisation categories does indeed hold: M̂F(R̂0, h) ∼= MF(Y, h). In any case it is

undoubtable that these categories will share a very close relationship.
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5.1 Deformation

Suppose that we have some case where Knörrer periodicity holds: a smooth scheme

X and a regular sequence f, g, h ∈ OX such that if Y = V (f, g) ⊂ X then

MF(Y, h) ∼= MF(X, fg + h). We choose a point in X that lies along Y and pass to a

formal neighbourhood of that point. We replace X, and Rt with their completions

(omitting the notation) and also complete all our matrix factorisation categories.

This assumption will carry for the rest of this chapter.

Around this point, since X is smooth, the formal neighbourhood has an isomor-

phism to Spec(k[[x1, ..., xn]]) where n is the dimension of X. We then abuse our no-

tation and consider f, g, h ∈ k[[x1, ..., xn]] and Y = V (f, g) ⊂ Spec(k[[x1, ..., xn]]).

It follows that M̂F(Y, h) ∼= M̂F(k[[x1, ..., xn]], fg + h). Note that k[[x1, ..., xn]] is

already complete with respect to f and g.

Then, since we assume M̂F(Y, h) ∼= M̂F(R0, h), using Theorem 1.1, it follows

for

Rt = k[[x1, ..., xn]][ϵ1, ϵ2]
/

([ϵ1, ϵ2] = t, ∂ϵ1 = f, ∂ϵ2 = g)

that M̂F(R0, h) ∼= M̂F(R1, h).

So we have a non-formal deformation M̂F(R0, h) ⇝ M̂F(R1, h) for which the

endpoints are equal when Knörrer periodicity holds. In this case we should expect

the deformation to be trivial, however it is possible to think of rare cases where a

nontrivial deformation produces isomorphic fibres over 0 and 1. Pathological situa-

tions aside though, it behoves us to study this deformation further. Our main tool

here is Hochschild cohomology, however this tells us about formal deformations,

so we can only really study our deformation locally and to finite order.

We use a version of the Hochschild-Kostant-Rosenberg theorem 2.33 for curved

differential graded algebras. 1

1While we can only currently find references for the differential graded algebra and curved

algebra cases separately, we can see no reason why the arguments should not work for the
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Conjecture 5.2. Let (A, d, h) be a smooth curved differential graded algebra,

X = Spec(A) with associated vector fields Qd and Qh. Then we can compute the

Hochschild cohomology of the matrix factorisation category as polyvector fields:

HH∗(MF(A, d, h)) ∼= H∗(∧TX ,LQd+Qh
).

In our case this should imply that

HH∗(M̂F(R0, h)) ∼= H∗(X, (
∧
TX [[∂ϵ1 , ∂ϵ2 ]][ϵ1, ϵ2],LQ))

where Q = f∂ϵ1 + g∂ϵ2 + h is the vector field coming from our differential and LQ

is the Lie derivative. For our purposes we are specifically just taking an OX-free

CDGA (whose Hochschild cohomology will give the polyvector field) and deforming

the superpotential and differential.

Example 5.3. (Isolated Singularities) Suppose we want to compute the Hochschild

cohomology of MF(A, h) with h cutting out an isolated hypersurface singularity.

Then we have a Koszul resolution of the critical locus given by the partial deriva-

tives of h. This means when computing the cohomology using this resolution that

in degree 1 we have the cokernel of these functions (and nothing in higher degrees)

which is the Jacobian algebra (see [2]). In this case we can construct a converse to

Knörrer periodicity using the Mather-Yau theorem [13]. If MF(A, h) ∼= MF(A, h′)

then HH∗(MF(A, h)) ∼= HH∗(MF(A, h′)), therefore Jac(h) ∼= Jac(h′) and so since

the Jacobian algebra dictates the singularity type for isolated hypersurface singu-

larities, this dictates h′, given h, up to a nondegenerate quadratic form.

Since our deformation is taking the relation [ϵ1, ϵ2] = 0 in R0 and making it

nonzero: [ϵ1, ϵ2] = 1, the class of polyvector fields representing the infinitesimal

first order deformation in this direction is [∂ϵ1∂ϵ2 ].

combination. Proof of this is beyond our scope, however, but the reader can see similar results

in Efimov [3], Guan-Holstein-Lazarev [6], Lin-Pomerleano [11], also section 3.3 in Nordstrom [14]

as well as Polishchuk-Positselski [18], Preygel [19] and Toen [23].
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The differential on our polyvector fields acts as follows:

∂xi

� // fxi
∂ϵ1 + gxi

∂ϵ2 + hxi
ϵ1

� // f ϵ2
� // g

and extends linearly over OX [∂ϵ1 , ∂ϵ2 ].

It is interesting to consider when the Hochschild cohomology class correspond-

ing to our deformation is trivial to first order, i.e. when [∂ϵ1∂ϵ2 ] = 0, since we

can expect this to be closely related to when M̂F(R0, h) ∼= M̂F(R1, h). However,

neither direction is a direct implication.

There is one case where the class vanishes for trivial reasons, that is when h does

not have a critical point at the origin. We can see that in this case all categories

M̂F(Rt, h) are trivial. Let us see what happens in the Hochschild cohomology.

Proposition 5.4. If the origin is not a critical point for the function h, then

[∂ϵ1∂ϵ2 ] = 0.

Proof. If we are not a critical point, then there is some partial derivative hxi
which

does not vanish at the origin. In this case

inf∑
m=0

m∑
j=0

∂xi

hm+1
xi

fk
xi

gm−j+1
xi

∂j+1
ϵ1 ∂m−j+1

ϵ2 7→ ∂ϵ1∂ϵ2 .

So the class [∂ϵ1∂ϵ2 ] is trivial. qed

Remark. Note that this is not necessarily a finite sum, so it is important that we

are considering direct product complexes rather than direct sums.

Now in the more interesting case where our categories are not trivial, what can

we glean from the vanishing of this cohomology class?

Proposition 5.5. If we are at a critical point of h and [∂ϵ1∂ϵ2 ] = 0 then either

∇f ̸= 0 or ∇g ̸= 0.

52



Proof. There is a bi-grading that we can track simply by counting ‘∂’s and ‘ϵ’s,

with the former coming from the differential structure and the latter from the

grading on R0. For example the degree of ϵ1∂ϵ2 is (1, 2). We can see that at the

origin, because the hxi
terms all vanish, the Lie/Hochschild differential preserves

the first grading (i.e. the number of ‘∂’s is fixed).

Therefore we consider the classes with the same ∂-degree as the class [∂ϵ1∂ϵ2 ], wich

are OX-linear combinations of:

ϵ1∂ϵ1∂ϵ2 7→ f∂ϵ1∂ϵ2

ϵ2∂ϵ1∂ϵ2 7→ g∂ϵ1∂ϵ2

∂xi
∂ϵ1 7→ fxi

(∂ϵ1)2 + gxi
∂ϵ1∂ϵ2 + hxi

∂ϵ1

∂xi
∂ϵ2 7→ −fxi

∂ϵ1∂ϵ2 + gxi
(∂ϵ2)2 + hxi

∂ϵ2 .

Our class is trivial if and only if it is in the image of the differential. We take a

general object in the stratum of interest. At the origin f , g and all of the partial

derivatives of h are 0. Restricting to the origin then, for any ᾱ, β̄ ∈ k[[x1, ..., xn]]n,

ᾱ · ∂x̄∂ϵ1 + β̄ · ∂x̄∂ϵ2 7→ ᾱ · ∇f(∂ϵ1)2 + (ᾱ · ∇g + β̄ · ∇f)∂ϵ1∂ϵ2 + β̄ · ∇g(∂ϵ2)2.

Therefore [∂ϵ1∂ϵ2 ] = 0 can happen only if one of the ∂ϵ1∂ϵ2 coefficients is non-zero,

meaning either ∇f or ∇g is non-zero. qed

Example 5.6. Let f = x + y + y2 + yz2, g = yz− z4 and h = y2− z2. We can see

that our Hochschild cohomology class is the image of ∂x∂ϵ2 , so [∂ϵ1∂ϵ2 ] = 0.

Example 5.7. Conversely, supposing f and g no terms of degree 1, then their

partial derivatives will vanish, so as long as we are at a critical point of h, it

follows from Proposition 5.5 that [∂ϵ1∂ϵ2 ] ̸= 0.

Remark. The contrapositive of the proposition yields a useful heuristic: if ∇f =

∇g = 0 at a point then [∂ϵ1∂ϵ2 ] ̸= 0 so we expect Knörrer periodicity not to hold.
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Remark. We will always assume without loss of generality that it is f whose gradi-

ent is nonzero. This means then that there is a coordinate change of k[[x1, ..., xn]]

such that f = x1. If we could somehow argue now that g, h ∈ k[[x2, ..., xn]] then we

would be back in the case where Knörrer periodicity is already proven by Orlov.

We shall use the moniker ‘semilinear’ as a shorthand to refer to this case.

Definition 5.8. We shall call a triple of functions (f, g, h) ∈ k[[x1, x2, ..., xn]]

‘semilinear’ if we can choose the co-ordinates xi such that f = x1 and g, h ∈

k[[x2, ..., xn]] are regular functions.

Remark. Note that if Y = V (f, g) is smooth, then ∇f and ∇g are non-zero and

linearly independent, Y = Crit(f, g), and we can choose coordinates on our formal

neighbourhood such that f = x1 and g = x2. In this case we are clearly semilinear

so Knörrer periodicity holds. This means in the case of smooth Y that obstructions

happen only at the global level, see [21]. We will be interested in the case where

Y is singular, where obstructions to the theorem can arise locally.

5.2 The Semi-Linear Case

Now let us recast Orlov’s argument in the terminology used here.

Consider the matrix factorisation category MF(X, fg + h). Suppose Y =

V (f, g) ⊂ X = Spec(k[[x1, ..., xn]]) and (f, g, h) is semilinear. Then Orlov’s geo-

metric picture is the following commuting diagram:

V (g) � � i //

p
����

V (fg)

$$ $$

� � // X

����
Y = V (f, g) � � // V (f).

54



p

i

He proves that the functor Ri∗p
∗ induces an equivalence between MF(X, fg + h) ∼=

MF(Y, h).

If we look at the algebraic side of this picture,

k[[f ]]⊗̂kOY
∼= OV (g) OV (fg)oooo OX

oooo

OY

� ?

OO

OV (f)oooo
2 R

dd

� ?

OO

we can see that the key point that allows us to set up an appropriate functor is

that the linearity of f lets us create inclusion functors where there would otherwise

only be quotient functors in the opposite direction.

In our language then, the functors in the semilinear case (let us now assume we

make some local coordinate change so that f = x1) will come from the following

picture

R1

k[[x2, ..., xn]]/g Soooo
?�

OO
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where the horizontal arrow is just a quasi-isomorphism between Y and its one

step free resolution in k[[x2, ..., xn]], S considered as a DG algebra, namely

S = k[[x2, ..., xn]] ϵ2k[[x2, ..., xn]]goo

or more geometrically [
OÂn−1

g // OÂn−1

] ∼= OY .

This induces a quasi-equivalence of the matrix factorisation categories with the

superpotential h, given by the derived pushforward functor. The vertical arrow

is given by the inclusion into R1, which also gives a quasi-equivalence since the

cohomology of R1 considered as a chain complex over X

OÂn

(x1,−g)// O⊕2
Ân

( g
x1 )
// OÂn

is just OY .

Together these two functors give an equivalence of categories M̂F(Y, h) ∼=

M̂F(R1, h) which by Theorem 1.1 is equivalent to M̂F(X, fg + h), giving our Knör-

rer periodicity statement.

In fact, since the cohomology of Rt as a chain complex is independent of t,

all fibres of this deformation are trivial so the deformation itself is trivial in the

semi-linear case.

Theorem 5.9. (Knörrer Periodicity) Let f, g, h ∈ k[[x1, ..., xn]] be a semilinear

triple, then M̂F(Y, h) ∼= M̂F(X, fg + h). Moreover the deformation from R0 to R1

is trivial.

Remark. The argument presented here is not quite the same as what Orlov does,

since we are effectively going around the square the other way and we are com-

posing functors which are themselves already equivalences.
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5.3 Approaching a Converse

We know that in the ‘semilinear’ case that Knörrer periodicity holds. We also

know that there is a deformation between the two categories of interest whether or

not they are equivalent. We will now make a heuristic argument for why Knörrer

periodicity does not have generalisations beyond this semilinear case except in

some exceptional examples.

We work in a formal neighbourhood of a point as in the previous section.

Suppose first not only that M̂F(R0, h) ∼= M̂F(R1, h) but also that the deformation

M̂F(R0, h) ⇝ M̂F(R1, h) is trivial. It follows that in particular it is trivial to

first order and therefore, given the generalisation of HKR which we mentioned

previously, the cohomology class [∂ϵ1∂ϵ2 ] = 0. By Proposition 5.5 and the following

remark, we can choose coordinates such that f = x1 in k[[x1, ..., xn]].

This allows us to consider another deformation. We can write gs = g0 + sx1g
′

and hs = h0 + sx1h
′ where g0, h0 ∈ k[[x2, ..., xn]] and g′, h′ ∈ k[[x1, ..., xn]] such

that g = g1 and h = h1. The point being that (f, g0, h0) is ‘semilinear’, so our

situation is a deformation of the semilinear case.

We combine both deformations in a square given by

Rt,s := OX [t, s, ϵ1, ϵ2]
/

[ϵ1, ϵ2] = t, ∂ϵ1 = x1, ∂ϵ2 = gs

so that

M̂F(R0,0, h0)

B
��

A // M̂F(R1,0, h0)

C
��

M̂F(R0,1, h1) D // M̂F(R1,1, h1).

The deformations going left to right are the ones coming from Knörrer periodicity

and the vertical arrows are deforming from the semilinear case to our given one.

Consider the deformation on the left. Assuming 5.1 allows us to think of B as

passing from M̂F(V (x1, g0), h0) to M̂F(V (x1, g1), h1). Since we annihilate x1, h =
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h1 = hs = h0 and g = g1 = gs = g0. This implies that B is actually constant.

The deformation at the top, A, is simply Knörrer periodicity for the semilinear case

since with 5.1 and Theorem 1.1, we can see it as the deformation from MF(Y, h0)

to M̂F(X, fg0 + h0). which we know to be trivial also by our previous discussion.

C is given by deforming the superpotential by x1h
′ + x2

1g
′. It has a class [C] in

the Jacobi ring of the curved differential graded algebra (R0,1, h1). The Jacobi

ring classifies these deformations to first order up to change of coordinates, and it

embeds into HH2(M̂F(R0,1, h1)).

D is the deformation given to first order by [∂ϵ1∂ϵ2 ] which we assumed to be trivial

in HH2(M̂F(R0,1, h1)).

Therefore we have a square of deformations where three sides are trivial. This

does not imply that the final side, C, is trivial also. However, were it not then we

would once again have a deformation between categories which is non-trivial yet

circles back to an equivalent category.

So what can we conclude? If we have a version of Knörrer periodicity, at least

locally:

M̂F(Y, h) ∼= M̂F(X, h + fg)

then our equivalence comes from a deformation Rt which, barring the potential

for strange coincidences and exceptions will be itself trivial. In this case we are

in a deformation of a semilinear case where Knörrer periodicity is already known.

This deformation too we would expect to be trivial. If so, then in particular

it is trivial everywhere to first order, so at each value of s the class [C] of the

deformation in the Hochschild cohomology is zero. Since the Jacobi ring injects

into this cohomology, that means the class of our deformation is zero here also.

The Jacobi ring categorises first order deformations up to coordinate changes, so

if we could integrate together all these coordinate changes at every point to get

from s = 0 to s = 1 then we could show that we actually are in the semilinear case
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already.

In summary we need three assumptions: that we don’t have a coincidence

of non-trivial deformations over the unit interval with equivalent endpoints, the

integrability of the coordinate change, and that the quasi-isomorphism from R0 to

Y induces an equivalence of categories. While this is not on the nose a converse to

Knörrer periodicity, it is a strongly implied bound on the possible generalisations

and should be understood as a warning that cases of the equivalence outside the

semilinear we expect at best to be rare and unusual, and may very well not exist

at all.

6 Examples

So let us see what we can now say about comparing the categories MF(X, fg + h)

and MF(Y, h) where Y = V (f, g) ⊂ X and f, g ∈ OX are a regular sequence of

functions on a smooth (affine) scheme and previous assumptions such as Conjecture

5.1 hold.

If Y is smooth, then we can use Teleman’s result [21] since Y = Crit(fg) to

show that Knörrer periodicity holds up to some potential global obstructions.

Otherwise, we pass to the formal neighbourhood of a point on Y ⊂ X. We

choose a critical point of h, otherwise our obstruction vanishes and the categories

are trivially equivalent since they both vanish.

Now, if ∇f = ∇g = 0 at the origin then, by Proposition 5.5, [∂ϵ1∂ϵ2 ] ̸= 0

so M̂F(X, fg + h) and MF(Y, h) are related by a non-trivial deformation and we

therefore expect them not to be equivalent.

Example 6.1. Let f = x2 and g = y2 with h = −z2. Then our obstruc-

tion is nonzero, so we expect not to find an equivalence. Indeed, MF(Y, h) ∼=

Dsg(C[x, y, z]/(x2, y2, z2)) while MF(X, fg + h) ∼= Dsg(C[x, y, z]/(x2y2−z2)) which
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we can also see from the critical loci cannot be equivalent (only one is an isolated

singularity).

Now, without loss of generality, say ∇f ̸= 0 at the origin, then the deformation

of MF(Y, h) to M̂F(X, fg + h) is itself deformed from a trivial deformation coming

from a related semilinear case.

If there exists a fixed vector β ∈ kn such that β · ∇f ̸= 0 but β · ∇g = 0, then

we can choose coordinates x1, ..., xn such that f = x1. We can then transform by

y1 = 1
β·∇f

x1 = 1
β1

x1 and for i ≥ 2, yi = xi − βi

β1
x1 so that

∂g

∂y1
=

n∑
i=1

∂xi

∂y1

∂g

∂xi

=
n∑

i=1
βigxi

= β · ∇g

= 0

Hence this coordinate change puts us in the semilinear case where Knörrer

periodicity is known to hold. Otherwise, things are more complicated.

Example 6.2. If f = x1 and g = 1− 3x1 − 9x2 + x2
1 + 6x1x2 + 9x2

2, then we can

see that gx2 = 3gx1 so β = (3,−1) and we use the coordinate change y1 = 1
3x1 and

y2 = x2 − 1
3x1 which gives us f = 3y1 and g = 1− 9y2 + 9y2

2.

Example 6.3. Let f = x, g = xy + y3 and h = yz2. In this case we compare

MF(Y, h) ∼= Dsg(C[y, z]/(y3, yz)) with MF(X, fg + h) ∼= Dsg(C[x, y, z]/(x2y+xy3+

yz)). We can look to see if our obstruction vanishes:

−∂x∂ϵ2 7→ ∂ϵ1∂ϵ2 − y∂2
ϵ2

We need to see if we can eliminate the y term somehow. The terms we could use

in the image of the differential are multiples of f , g and the partial derivatives
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of g and h, none of which produce y, so our obstruction does not vanish and the

deformation is non-trivial. We therefore expect that Knörrer periodicity fails and

the categories are not equivalent.

Example 6.4. Let f = x, g = xy + y2 and h = 0. We compare Dsg(C[y]/(y2))

with Dsg(C[x, y]/(x2y + xy2)). This time our obstruction vanishes since we have

∂y∂ϵ2 7→ 2y∂2
ϵ2

so ∂ϵ1∂ϵ2 is the image of 1
2∂y∂ϵ2 − ∂x∂ϵ2 . So the deformation from R0 to R1 is

trivial to first order at least. The semilinear case which we deform from is f = x,

g = y2. Let Ws = x(sxy + y2), then W0 = xy2 and W1 = xy(x + y) which clearly

gives a non-trivial deformation R1,s. It is trivial to first order, however, since it is

represented by x2y which is zero in the Jacobi ring of W0 since x2y = x
2 ∂yW0. In

fact it is nontrivial already at second order, so the deformation from the semilinear

case is not a coordinate change and we also see that Knörrer periodicity does not

hold here.

Example 6.5. Similarly if f = x and g = x2 + y2 then since

−∂x∂ϵ2 + 2ϵ1∂
2
ϵ2 7→ ∂ϵ1∂ϵ2 ,

the obstruction in Hochschild cohomology vanishes, Knörrer periodicity again

doesnt hold but this time the deformation from the semilinear case is already

nontrivial at first order.

Of course, in general if the deformation from the semilinear case is trivial then

Knörrer Periodicity does hold since

MF(Y, h) ∼= M̂F(R0,1, h) ∼= M̂F(R0,0, h0) = M̂F(R1,0, h0) ∼= M̂F(R1,1, h) ∼= M̂F(X, fg + h).

That just leaves the possibility of exceptions where the deformation M̂F(R1,0, h0)⇝

M̂F(R1,1, h1) is nontrivial but the categories are equal. These examples are un-
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likely to exist, so we argue is only reasonable to expect Knörrer periodicity in the

semilinear case.
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