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Abstract

Knorrer periodicity is an equivalence of matrix factorisations categories which has
been proven to hold under certain fairly restrictive conditions. We show that the
phenomenon can be understood as a deformation of categories even in the cases
where there is no equivalence. The class of this deformation in the Hochschild
cohomology of the category can be thought of as a local obstruction to Knorrer
periodicity.

Furthermore, we study this deformation and show there is a strong argument
that if we assume the equivalence to hold and the triviality of the deformation up
to first order, then the conditions mentioned above are necessary. This presents

an approximate converse to Knorrer periodicity.



Impact Statement

This thesis contributes to the understanding of relationships between categories
of matrix factorisations, one of the key classes of category involved in conjectures
around homological mirror symmetry. This is a broad and very active area of
research within academia: to systematically understand mirror symmetry at a
categorical level. The more general versions of a theorem are still very open. Mirror
symmetry itself is a highly studied conjecture which came about as a result of
predictions made by physicists working on string theoretical models for space-time,
and a mathematical understanding of the phenomenon could lead to interesting
conclusions for this theory.

This research fits into this body of work by presenting a new framework for
understanding the most well-known equivalence of matrix factorisation categories,
allowing an exploration of the limitations of the equivalence as well as to what
extent it can be salvaged when it does fail. This will be useful for other researchers
within the field both as a source of intuition about the relationships of these
categories and as a source of tests to apply when figuring out if two categories are
equivalent. There are a few low-hanging generalisations, for example there should
be little work in making the same statements outside of the affine context, but there
are more interesting questions raised as well. For instance: what corresponds to the
non-trivial deformations described below ‘through the mirror’ of mirror symmetry
- when studying the symplectic geometry of the mirror space in terms of Fukaya

categories?
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1 Introduction

Matrix Factorisations were introduced by Eisenbud in [4] in order to study max-
imal Cohen-Macaulay modules. In particular an equivalence is established, using
the cokernel functor, between the matrix factorisation category of a regular local
ring paired with a distinguished non-unit element and the stable category of max-
imal Cohen-Macaulay modules of the ring obtained from the quotient with the
aforementioned element.

This was then followed by an interesting result from Knorrer [10] which, along
with its many descendants, became known as Knorrer periodicity. The original
purpose of this result was for applications in algebra, but it expresses a funda-
mental property of categories of matrix factorisations themselves. Namely, that
extending the ring by new independent variables and adding a quadratic term in
these variables to the superpotential constitutes no change to the actual category:
there is an equivalence of categories given by tensoring with a particular bimodule.

Outside of abstract algebra, matrix factorisations also find application in the
homological mirror symmetry conjecture. This comes from there being two topo-
logical twists of the field theory in topological string theory: the A model and the
B model. The relationship between the spaces in these models is what is known as
mirror symmetry - they are referred to as ‘mirrors’ of each other. The endpoints
of open strings are required to lie on a subspace called a D brane. Mathematically,
we think of D branes as the objects of category, and states of open strings spanning
between them as morphisms. For a Calabi-Yau target space, the category of D
branes for the B model (called B branes) is the derived category of the Calabi-Yau.
For other natural classes of examples such as Fano varieties, we are led to mirrors
called Landau-Ginzburg models. The B branes of Landau-Ginzburg models are
categories of matrix factorisations.

These categories of matrix factorisations were studied within the world of de-



rived algebraic geometry by Orlov [I5] via an equivalence with the ‘singularity
category’ of the associated hypersurface cut out by the vanishing of the superpo-
tential. Orlov proves a more general version of Knoérrer periodicity in [16] where
the previously quadratic function is replaced with the product of a fibre coordi-
nate of a bundle and a regular function on the base. The functor that gives the
equivalence is also realised geometrically as the composition of a pull up and a
push forward. This method suggests that the phenomenon is closely tied to the
presence of this ‘linearity’ given by the fibres which provides a direction to pull up
along. As a consequence we will use the shorthand ‘semilinear’ to refer to this case.
Several different proofs and extensions of the result have since been developed by
Isik [9], Hirano [7], Shipman [20] and Teleman [21]. In particular, if we consider
regular functions f, g € Ox on an affine scheme X, these results roughly speaking
compare the derived category of Y = V(f, g) with matrix factorisations of W = fg
on X. Orlov’s result says that there is an equivalence when one of f and g is linear
and the other is invariant in this linear direction. From Teleman we learn that
when Y is smooth, Y = Crit(fg) and there is an equivalence up to some global
obstructions such as from the super-Brauer group. In a formal neighbourhood of a
point, however, things look like the previous case where Knorrer periodicity holds
since Vf and Vg are non-zero and linearly independent. We shall explore what
happens when Y is singular, focusing on local obstructions.

In general, there are relatively few equivalences known between different matrix
factorisation categories, with examples coming either from different kinds of flops
or from versions of Knorrer’s result. The goal of the work presented here is to
understand the result as a special case of a certain deformation, which exists more
generally, and to use this to present something of a converse argument: that if the
deformation is trivial to first order then we only have Knorrer periodicity in the

‘semilinear’ case.



Our main theorem shows that given a regular pair of functions we can construct
a close relationship between categories of matrix factorisations on the vanishing
locus Y of the functions and on a formal neighbourhood of Y where the product of
the functions is added to the superpotential. The semilinearity assumptions would
usually require that one of these functions is linear in the sense of being a fibre

coordinate function for some vector bundle on Y.

Theorem 1.1. Let f,g,h € Ox be a reqular sequence of regular functions on a
smooth affine scheme X and )/(\f,g be the completion of X with respect to f and g.

Let
f

K= Ox ___~0Ox e MF(X, fg),

g
then there is a differential graded algebra R, which gives an equivalence
- Homg, (K,—)

MF(Ry,h) =~ MF(Xz4,h+ fg).
—-®xK

to the category of completed matrix factorisations on X\ﬂg. Furthermore, Rq is a

deformation of Ry, the Kozsul resolution Y =V (f,g) C X.

The DG algebra R4 is the endomorphism algebra of the object K. We can see
it as the fibre over 1 of R — A} where R is the Z/2Z-graded DG algebra:

OX[t]<61,62>/([61,62] =t,6&s =5 =0,0¢; = f,0e5 = g) where |e1| = |ea| = 1.

Ry, the fibre over 0, is quasi-isomorphic to Oy and in fact this induces a quasi-
equivalence of the derived categories of these two objects. However, our matrix
factorisation categories are instead analagous to the absolute derived categories of
Positselski [I8] for which it is not necessarily true that a quasi-equivalence of DG-
algebras induces an equivalence of matrix factorisation categories. For our specific
case of a complete intersection Y and its two-step Koszul resolution we expect

and conjecture the equivalence W(RO, h) = W(Y, h). So matrix factorisations
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of h on Y are a deformation of (completed) matrix factorisations of h + fg on X
(completed with respect to f and g).

The next question of particular interest is to know when this deformation is
trivial, since this suggests an equivalence of categories much like Knorrer period-
icity. However, the deformation is non-formal and therefore most of our tools are
inadequate to study it directly. We can, however, study it up to first order by
investigating the associated class in the Hochschild cohomology of the category of
matrix factorisations on the DG-algebra Ry. When this class vanishes it is sugges-
tive that we should have an equivalence. The concept seems closely tied to Knorrer
periodicity, however for that we need full triviality of the deformation, not just
infinitesimally or to first order. As for the converse, strictly speaking it is possible
to hypothesise pathological situations where the deformation is non-trivial to first
order yet the categories at Ry and R, happen to be equivalent, but we expect
these not to exist in any meaningful way:.

To find the class of this deformation in Hochschild cohomology, we will use
a version of the Hochchild-Konstant-Rosenberg theorem. It turns out, since we
are deforming the relation [e1, €] = 0 to [e1, €3] = 1, that this class is represented
by the degree 2 differential operator J.,0.,. When this class is nonzero, it can
be thought of as a local obstruction to Knorrer periodicity. This is in contrast
to previous obstructions, such as in Teleman’s work [2I], which are due to global
phenomena.

Since this study is local in nature, we can pass to a formal neighbourhood of a
point in X, which is the same as looking at a formal neighbourhood of the origin
in affine space, since X is a smooth affine scheme.

Our final study is a heuristic argument that is close to a converse to the previous
statements of Knorrer periodicity. We argue that when such an equivalence holds

we are only a trivial deformation away from the semilinear case. This is done by

10



first assuming our deformation representing Knorrer periodicity is trivial which
allows us to change coordinates so that one of our functions f or g is just the first
coordinate function. Without loss of generality suppose this is f. From here we
can set up a commuting square of deformations, where our Knoerrer periodicity
equivalence is obtained by deforming from a semilinear case where we take the parts
of g and the superpotential h which are independent of the coordinate direction
associated to f. Further yet, if the deformation from the semilinear case is trivial
then the classes of the deformation are everywhere zero in Hochschild cohomology,
in particular vanishing in the Jacobi ring meaning it is locally a coordinate change.
If we can integrate these coordinate changes up to the non-formal deformation then

we really were in the semilinear case to begin with.

1.1 Summary

In section 2 we will cover some background topics and definitions. Starting with
definitions of matrix factorisation categories first in the smooth affine case and
then expanding to include singular, non-affine and then a definition for factorisa-
tions over differential graded algebras too. We then cover a few more topics, such
as relations to categories of maximal Cohen-Macaulay modules and derived sin-
gularity categories, and then some necessary technicalities on completions, limits
and Hochschild cohomology.

Section 3 will be a recap on the origins and various approaches and different
statements of the Knorrer periodicity theorem to date.

In section 4, we set up functors between MF(X, fg + h) and MF(Rq, k) and
prove Theorem setting up an equivalence after completion of X with respect
to f and g.

Section 5 then addresses the deformation between MF(Ry, k) and MF(R, h)

using Hochschild cohomology and passing to a formal neighbourhood of a point.
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We explore the implications when the second cohomology class associated to the
deformation vanishes and make a heuristic converse argument to the Knorrer pe-

riodicity theorem.

12



2 Background

2.1 Matrix Factorisations

Consider W, an element of a ring A (often a k-algebra where k is a field of
characteristic zero). A factorisation is a pair of other elements f,g such that
fg = gf = W. However, we can find more factorisations if we instead consider a
pair of matrices F, G € Mat,,»,(A) such that F'-G =G - F =W - 1d,.

As an illustration, factorisations in terms of matrices are one way of arriving
at the concept of complex numbers. Let A = Z and W = —1. The only way
to factorise is 1- —1 = —1 -1 = —1. However, if we allow matrices, there is an

interesting factorisation

(?_01)22 (49)=1-1d

If we identify Z with an isomorphic subring Z - Ids of Mat,,«,(Z), then the ex-
tension by this ‘matrix factorisation” of —1 gives us a subring ZK? _olﬂ which
is isomorphic to the Gaussian integers Z[i]. Similarly with R replacing Z we can

discover C as a subring of Matsy2(R).

Remark. This example is just an analogy to illustrate the concept. The actual

category we will define would make this factorisation trivial.

The examples of interest to us come from polynomials. Take wzr — yz in
Clw, z,y, z]. This does not factorise in terms of other polynomials, however it

does in terms of matrices of polynomials.

(m2) (28)=(wo—y2) Tdo = (2 8)- (=)
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2.1.1 The smooth affine case

To study matrix factorisations we must define an appropriate category. Let A be
a regular commutative algebra over a field of characteristic zero and W € A a
regular element, which we call the ‘superpotential. We will define a category of
matrix factorisations associated to the pair (A, W). We will model our approach
on the definition of the bounded derived category of coherent sheaves so that we
can hope to retain many of its useful properties.

Let us first then look at how the derived category behaves in the simple case
of a smooth affine scheme X = Spec(A). The differential graded bounded derived
category of finitely generated A-modules D?(A) has a differential graded subcate-
gory Perf(A) of perfect complexes. Perfect complexes are those quasi-isomorphic
to bounded complexes of finite projective A-modules. For all our purposes A will
be Noetherian, so we can treat projective and locally free interchangeably. Un-
der our smoothness condition, there is an equivalence of triangulated categories
DP(A) = [Perf(A)] (where the square brackets indicate passing from the dif-
ferential graded category to the homotopy category and DP represents the usual
triangulated bounded derived category). This is because all complexes in D°(A)
have finite resolutions by finite locally free A-modules. In fact, if we take the
smaller category V of these bounded complexes of finite locally free modules, all
quasi-isomorphisms of such complexes come from genuine homotopy equivalences.
So in fact [V] = Db(A) without needing to invert quasi-isomorphisms (equivalently

there is no need to quotient by acyclic objects since they are already contractible).

Remark. To see why smoothness is critical here, consider the singular point in
the scheme Spec(C[x]/x?). Locally free resolutions of this point are necessarily

infinite, the obvious one being

% Cla]/a® %> Cla)/2? —=> Clz)/a? —~C.

14



We shall model our approach to matrix factorisations on these properties of
the derived category, at least in the smooth affine case. A matrix factorisation
shall be a pair of finite locally free modules with morphisms between them:

do

M M

dy
such that both compositions of these morphisms are just the action of W on the
respective modules, i.e. didy = Wldn, and dody = Wldpg,. We shall often instead
think of this pair as a Z/2Z-graded module with differential d of odd degree, which
squares to give the action of W. We can then consider two matrix factorisations
(M,dy) and (N, dy), and the chain complex of homomorphisms given by
Homwip, ,(a,wy (M, N) = 6{9 }HomA(MZ»,Nj)
i,je{0,1

with grading (i—j)mod2 and induced differential defined on homogeneous elements

h € Homa(M;, N;) as dh = dyh — (—1)"7hd)s and extended linearly.

Definition 2.1. Take a regular commutative algebra A, over a field of character-
istic zero, and a regular element W. The DG category of matrix factorisations
MFLr(A, W) has as its objects the set of Z/2Z-graded finite locally free modules
equipped with differentials d of odd degree such that d* = W. The morphisms are

the chain complexes

Homygp, p(aw) (M, N) = (€@ Homu(M;, N;), d )
i,j€{0,1}
with differential ‘d’ as above.

The homotopy category of matrix factorisations [MFp(A, W)] has the same

objects and its morphisms are

Hompyry e (a,w)) (M, N) = H° (Homry g (a,w) (M, N)).

15



Proposition 2.2. MF;p(A, W) can be given the structure of a pre-triangulated
category which also makes [MF (A, W)| a triangulated category.

We shall not give a proof here, since this is essentially a matter of straight-
forward checks once the structure is specified. A thourough treatment is given in
[17]. So we shall define that structure: namely the shift functor and a class of
distinguished triangles. The shift functor simply switches degrees and the sign of

the differential, so an object

becomes

and a morphism (Fp, F}) becomes (Fy, F1)[1] = (F}, Fp).

To define distinguished triangles, we first take the cone of a morphism F

dM
Mo__ M
dM

Fo d;’ Fy
2.
M_ "M
dN

and then take the totalisation when the diagram above is viewed as a Z/2Z-graded

(5 )
NdMy_ No@Ml
N
(do —ZE”)

We define the standard triangles as those coming from cones as above:

double complex:

(id,0)

M F N ) (Ov_id)

Cone(F) MI1]

in the usual manner and distinguished (or ‘exact’) triangles as those isomorphic

to these standard ones in the homotopy category.

16



2.1.2 Including singularity

Now, to generalise to the singular case we should heed a warning indicated by
our comparison with the derived category. For a singular algebra A, [Perf(A)] is
a strict subcategory of D?(Coh(A)). So we should consider more objects, either
complexes of coherent sheaves or even all quasi-coherent sheaves. This also forces
us to address the need to now invert quasi-isomorphisms, since these will no longer
simply be homotopy equivalences as in the smooth case (or equivalently to quotient
by acyclic objects since they are no longer necessarily contractible).

We will use the naive generalisation as an intermediate category. Let
MFcon(A, W) be defined as MFr(A, W) was above, only with A not necessarily
smooth and with objects being pairs of any finitely generated modules, not just
locally free ones. We can define our ‘acyclic’ matrix factorisations by taking all
exact sequences in MF con(A, W) and fold them up by degrees into a single object,
T, called the totalisation.

Definition 2.3. Let

Jm

Mo T g

be a complex in MFcon(A, W), then the totalisation T'(M) is an object in MF gon (A, W)
given by
TWM)i= & M

n+j=i mod(2)
with differential df = 3,1 moace)(f] + (—=1)"d}) where d* is the internal differ-

ential on M™.

Now we denote by T'(A, W) the smallest full thick DG subcategory containing
all such totalisations of exact sequences.

For this and the next section, we follow the definitions set out by Orlov in [17].

17



Definition 2.4. For an algebra A and a regular element W, the pre-triangulated
DG category of matrix factorisations MF o, (A, W) is given by the DG quotient
of MFcon(A, W) by the full thick DG subcategory T(A,W). The associated
triangulated homotopy category is [MFcon(A4, W)].

Remark. We are justified in calling this ‘the’ category of matrix factorisations
since when A is smooth, [MFcon(A, W)] = [MFLp(A, W)], just like how [V] =
Perf(A) = D°(Coh(A)). This is because coherent sheaves on smooth schemes
have finite bounded resolutions in terms of locally free modules and short exact
sequences of projective modules are split. This means the totalisations of exact
sequences are homotopically trivial, so our ‘acylic’ objects in MFpr(A, W) are

already zero in the homotopy category.

2.1.3 Non-affine matrix factorisations

We can also consider matrix factorisations on a non-affine scheme X, paired with

W € Ox a regular function (see [17]).

Definition 2.5. Let X be a scheme over k and W € Oy a regular function, then
MF con(X, W) is defined just as in Definition [2.4] where instead of Z/2Z-graded

finite A modules we instead consider Z/2Z-graded coherent sheaves on X.

Furthermore, our calculations will present us with objects most naturally un-

derstood as quasi-coherent, so we will expand our definition to include this case.

Definition 2.6. Let X be a scheme and W € Ox a regular function, then
MF qcon (X, W) is defined just as in Definition [2.4] where instead of Z/2Z-graded

finite A modules we instead consider Z/2Z-graded quasi-coherent sheaves on X.

Remark. We have defined our notion of ‘acyclic’ well, since just like with the
derived category, the quotient neatly handles issues presented by both singularities

and non-affineness.
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2.1.4 Curved differential graded algebras

We shall need one further generalisation of the affine case: a category of matrix
factorisations over a differential graded algebra (DGA). In order to define this, we
must first take a detour into the curvy world of curved differential graded (CDG)

modules over curved differential graded algebras.

Definition 2.7. A curved differential (Z/2Z-)graded algebra over a field k is
a triple (A,d,h) consisting of a (not necessarily commutative) Z/2Z-graded k-
algebra A, a graded derivation d (i.e. satisfying the graded Leibniz rule) of odd de-

gree, and a ‘curvature’ element h of even degree satisfying the equations d?a = [h, al

for all a € A and dh = 0.

Remark. This is a specialisation of the definition of a curved A, algebra where
the higher maps vanish. These are in turn special cases of A, categories, just as

k-algebras are k-linear categories with one object.

Definition 2.8. A CDG module of a CDG algebra (A,d,h) is a pair (M,dy)
consisting of a graded A-module M and an odd derivation d,; of degree 1 satisfying
the equation d3,m = hm for all m € M. The fact that the derivation is odd means
it satisfies the graded Leibniz rule dy/(am) = (da)m + (—1)%e@a(dym) for all

a€ Aand m & M.

We will often just write (A, h) for the CDG algebra or M instead of (M, dyy)

leaving the differential implicit.

Definition 2.9. Let M and N be CDG modules over a CDG algebra, then the

complex of homomorphisms

HOIIlA,h(M, N) = (@ HOIIlA(MZ‘,Nj>,dM’N>

i.jEZ

19



where the grading is given by (j —) and the differential is defined on homogeneous
elements f € Homa(M;, N;) by dyrn(f)(m) = dn(f(m) — (=1)%D f(dyr(m))) for
all m € M (and extended linearly).

We start once again with an intermediate definition which does not have the

‘derived’ properties that we want.

Definition 2.10. Let (A, d, h) be a CDG algebra. The DG category of (finitely
generated) CDG modules CDG(A, d, h) over A has as objects the CDG modules
(M, dys) defined above for which M is a finitely generated A-module. The com-

plexes of morphisms are Homy (M, N).

Now we must again quotient out by some ‘acyclic object’ equivalent. Simi-
larly to before, we let T'(A,d, h) be the DG subcategory of totalisations of exact
sequences in CDG(A,d, h).

Definition 2.11. Let (A, d, h) be a CDG algebra. The Derived DG category of
(finitely generated) CDG modules Dcpg (A, d,h) over A is the DG quotient of
CDG(A,d, h) by the full thick subcategory T'(A,d, h).

Now, with these many definitions out of the way, we will fix a notation. When
we refer to MF(X, W), if X is a scheme, we shall mean MF¢, (X, W), though
we shall sometimes need to implicitly use the fact that this is a subcategory of
MFqcon (X, W). When X is smooth and affine, MF (X, W) is quasi-equivalent to
MFpp (X, W).

When instead we have a central element h of a DG algebra (A,d), we will
write MF(A, h) to mean the DG category Dcpa(A,d, h) of (finitely generated)
CDG modules over the CDG algebra (A, d, h).

Remark. Since h is taken to be central, [k, —] = 0, so since d*> = 0 in a DG algebra,

(A,d, h) is indeed a CDG algebra. We can see that this is actually a generalisation

20



of the definition of matrix factorisations since we can always consider an algebra

and superpotential (A, h) as a CDG algebra with trivial grading and differential.

2.2 Relationships to Other Categories

Starting with a ring R and an element W which is not a zero divisor, we shall
explore two ways in which MFr(R, W) is related to the hypersurface ring S =
R/W.

2.2.1 Maximal Cohen-Macaulay Modules

Matrix factorisations were introduced by Eisenbud [4] as a means of studying (the
‘stable category’ of) maximal Cohen-Macaulay modules.

To define this class of modules we will need the notion of ‘depth’.

Definition 2.12. Let M be a finitely generated R module for a local ring (R, m).
The depth of M is the maximal length of a sequence fi, ..., f,, € m such that f;

is not a zero divisor in M and for all 1 < i < n — 1, f;11 is not a zero divisor in

M/(f1s s fi)-

Definition 2.13. A maximal Cohen-Macaulay module M over a local ring (R, m)

is one that is finitely generated such that depth(M) = dimg,.1(R).

Remark. If R is regular, the Auslander-Buchsbaum formula tells us that the pro-
jective dimension of M is the difference between the Krull dimension of R and the
depth of M, so maximal Cohen-Macaulay modules are just finitely generated free

modules.

A maximal Cohen-Macaulay module M over the hypersurface ring S = R/W
is also an R module, and since the Krull dimension of R is one greater than that

of S, by the Auslander-Buchsbaum formula the projective dimension of M over R
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is 1. Therefore M has a length 1 free resolution.

do

0——M; M, M 0

Since W acts trivially on M, there is a contracting homotopy d; : My — M such
that W - Idpgam, = d(dy) = dody + didp. Put another way, we have

do

Mo My

di
such that dody = W - Idpm, and didg = W - Idpg,. So maximal Cohen-Macaulay

modules on S = R/W allow us to construct elements of MF r(R,W). We can
also recover M as coker(dy). In fact, starting with the matrix factorisation we can
construct a maximal Cohen-Macaulay module in this way, since WM; € Im(dy)
so W annihilates coker(dp), which can therefore be thought of as an S module. It
has projective dimension 1 over R and therefore is maximal Cohen-Macaulay over
S.

So we have a correspondence between matrix factorisations of (R, W) and max-
imal Cohen-Macaulay S modules. To compare morphisms, we take the S module
M and find a free resolution. We can obtain one by starting with the resolution

over R and modding out W.

B My WM =B Mo /WMy —2 My WMy~ Mo /WMy — M

We observe that the resulting resolution is 2 periodic. We want to consider
the morphisms which themselves become 2 periodic along this resolution, so we
quotient out by F, the set of S module homomorphisms which factor through a

free module.

Definition 2.14. The stable category of maximal Cohen-Macaulay modules of S
has as objects the maximal Cohen-Macaulay modules of S and as morphisms sets

HomSMCM(S)<M7 N) = Homs(]\/[, N)/F

22



Which finally leads to the context in which matrix factorisations were studied

by Eisenbud, Knoérrer and their contemporaries.

Theorem 2.15. (Eisenbud [])])
There is a functor coker : [MFpp(R,W)] — SMCM/(S) which takes a matriz

factorisation
do

My M

di

and sends it to a mazimal Cohen-Macaulay module coker(dy). This functor induces

an equivalence of categories.

Remark. Although we defined matrix factorisations for k-algebras only due to our
geometric motivation, it works exactly the same for a ring R and an element W

which is not a zero divisor.

2.2.2 Derived Singularity Categories

For a ring R, as was peviously mentioned, when R is smooth we have that
Perf(R) = D*(Coh(R)) (where we are now staying at the DG level). For singular
R, Per f(R) is a strict subcategory of D?(Coh(R)). Therefore it is sensible to think
of the difference between these two categories as an obstruction to smoothness, or

a measure of singularity.

Definition 2.16. The Derived Category of Singularities of a ring R is the homo-
topy category of the DG quotient

Dyy(R) := [D*(Coh(R))/Perf(R)).

Take an R module, M. We can consider a (potentially infinite) locally free
resolution of M. Since we are quotienting by perfect complexes, we can essentially
ignore any finite chunk of this resolution, so that in the singularity category it

seems we only care about the behaviour off towards infinity.
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Theorem 2.17. (Eisenbud [{|])
Let (R,m) be a local ring, W € R and S = R/W, then every finitely generated S

module has an eventually 2 periodic free resolution.

In fact, we can drop the local condition on the ring as long as we instead con-
sider locally free resolutions. Note that we now have something of a generalisation

of the maximal Cohen-Macaulay case.

Theorem 2.18. (Buchweitz [1))
Let (R,m) be a regular local ring and W € R such that S = R/W is a singular

hypersurface. The obvious embedding
SMCM(S) — Dsy(S)
is an equivalence of categories.

Therefore, combining Theorems and there is also an equivalence of
categories

[MFLp(R, W)] = Dyy(5)

which also happens to be an equivalence of triangulated categories. Thus we
should think of the study of matrix factorisations as also the study of singularities

of hypersurfaces.

2.3 Completions

We will eventually need to work on formal neighbourhoods, so we define completed
matrix factorisations and describe some technical results on limits and completions.
2.3.1 Completed matrix factorisations

Definition 2.19. An inverse system is a partially ordered set (I, <), a family
of objects (M;, fij)ijer and morphisms f;; : M; <— M, in a category C such that
fii = IdMZ and fzk = fijfjk for all ¢ < j < kin I.

24



Definition 2.20. The inverse limit of an inverse system (M;, fi;)i jer in the cate-
gory C is the universal object L with morphisms p; : L — M; satisfying p; = fi;p;
for all ¢ < j in I such that for any other such object L’ with morphisms p} there
is a unique morphism [’ : L' — L which makes the following diagram commutes

forall < jin I.

We write

L = lim M;.
—

Definition 2.21. A filtered abelian group is an abelian group G with a descending
filtration G = F°G D F'G D F?G... of subgroups. This forms an inverse system
in the category of abelian groups with I = N and the morphisms f;; : G/FIG «+
G/F'G for i > j are just given by the quotient

(G/FiG)/FjG s G/FjG

since F'G C F'G.
The completion of a filtered abelian group G is the inverse limit

~

G = lim(G/(F"G)).

Remark. We can construct the completion as the subgroup of the direct product
given by

G = {mm)as0 € TN (G/(F7G))

n>0

for alli < j, a; = a; (mod F”G)}

where essentially we take a class from every quotient and ensure they are compat-

ible in the sense that they map to each other under the quotient maps.
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Remark. We define a filtered ring in the same was as for a filtered abelian group,
and similarly for a filtered curved differential graded algebra. The completion of

a filtered ring will have an induced ring structure.

Now let M be a matrix factorisation in MF(R, W) for some filtered ring R.
Suppose R is the completion of R. Then we can consider a ‘completed matrix
factorisation’ M which is simply the completion of the filtered R-module M =
MF°R > MF'R > MF2?R > ... This is now a matrix factorisation over R.
Completion then gives a functor from MF(R, W) to MF(R, W).

Remark. There is, of course, a forgetful functor in the opposite direction but this

is not an inverse since there are B modules that are not equal to their completions.

Example 2.22. Consider the C[[z,y]] module C[[z]][[y]]. The completion of this
module is the limit of C[x,y]/(x,y)™ which is just C[[z, y]] itself.

Example 2.23. Similarly the completion of the C[[z]] module C[[z]][z~!] is the
limit of C[z,z7!]/2" = 0 which is just 0.

Definition 2.24. Given a filtered, curved differential graded algebra (A,d,h)
where A = FYA > F'A D F?A D ..., we obtain an inverse system of quotient
rings fi; : A/FIA < A/F'A for i > j whose morphisms induce functors which

give us an inverse system of categories
Fyj: MF(A/F'A, h) + MF(A/F7A, h)

We take the limit of this inverse system of categories to obtain a category of
completed matrix factorisations which we denote 1\//[?‘(21, h). The objects of the
category are completions of matrix factorisations and the morphisms are limits of

morphisms in the inverse system of categories.
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2.3.2 Limits of cohomology and tensor products

We will need to use a notion of product ‘- which validates such statements as
Cllz]] - Clly]] = C][z, y]]. The usual tensor product does not satisfy this condition,

however we can use a ‘completed tensor product’ to realise it.

Definition 2.25. Consider two filtered modules M = F°M > F'M > F?*M...
and N = G°N D G'N D G?N... with completions M and N respectively. The

completed tensor product is then the inverse limit
M@&N = 1lim(M/(F™M) ® (N/G"N)).
This is particularly useful for us in combination with the following condition.

Definition 2.26. We call an inverse system (M, f;;)i jer Mittag-LefHer if for each
N € I there exists M > N such that for all n > M,

Im(fnn) = Im(fyu)-

In other words the image at any given degree eventually stabilises.

Proposition 2.27. The inverse limit functor is exact on filtered chain complezres

and therefore commutes with taking homology of these complexes.

Any filtered group G is Mittag-Leffler since all the maps are surjections between
quotients. Therefore, using C.11.1 from [12], the first derived functor of the inverse
limit vanishes lim!(G/F"G) = 0. In other words the inverse limit functor is exact
on filtered groups, of which filtered chain complexes are a special case. A functor
being exact is the precise condition needed to commute with the homology functor.

This, along with the completed tensor product, will help us to separate coho-

mology calculations into constituent parts.
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Proposition 2.28. Suppose we have two bounded below cochain complexes of R-
modules A* and B®, one of which is flat, with filtrations given by the truncations

F" =1s,. Then

H*(A*®B*) = H*(A*)@H*(B*).

The completions A* and B* can be thought of as direct product complexes.

The claim is that cohomology distributes over the completed tensor product.

Proof.
s (Ao e — I 1im (A° B*
HAeB) = 1 (1 (st © /()
by the definition of the completed tensor product. Since we trivially have Mittag-

Leffler, lim . is exact and therefore

L «(A® B* . w(A® «(B®
where homology distributes over the tensor product by our flatness assumption.

Now we apply the definition of the completed tensor product again

L «(A® ~ 1. «(B°®
=lim (H (4, a0))) B0 (H (A, 7))
and we can once again use the previous proposition since these systems are Mittag-

Leffler to conclude that
= 1 (lim (A ge))8H (1im (B pey)) = H'(A)BH (B).

qged

2.4 Deformation Theory
2.4.1 Hochschild Cohomology

Let k be an algebraically closed field of characteristic zero. We will study the

deformation theory of A, an associative k-algebra.
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Definition 2.29. The bar complex C%"(A) is the chain complex of A-bimodules
(or A ®; A’ modules)

L Ol (A) = AT e e g 4

with differentials

dn(ao @k a1 R ... Ok Apy1) = Z(—l)iao Q- Ok 10341 Ok -.. QO Appt1-
=0
Definition 2.30. The Hochschild chain complex of an A bimodule M is C,(A, M) =

M ®agy a0 CY7(A).

The point is to resolve A as a bimodule, essentially to then compute Tor(A, M).
For our purposes we will only need C,(A) := C,(A, A), the chain complex of A-

bimodules

with differentials
n—1 )

dy(ag®@ka1 Q... Qpay,) = (_1)nana0®ka1®k---®kan71+z(—1>1a0®k---®kaiai+1®k--~®kan-
i=0

Definition 2.31. The Hochschild cohomology of A is the cohomology of the
cochain complex given by Hom g, 400 (C?*"(A), A) which computes Ext s, 400 (A, A).

Example 2.32. Let us look at the affine space A = k[zq,...,x,]. We resolve A
over the enveloping algebra A ®; A? = kl[x1,...,%n, Y1, ..., Yn]. We have a map
A ®y A — A with kernel I = (x1 — vy, ...,x, — yn). We can extend this to a
Koszul resolution of A over A ®j A to see that A is quasi-isomorphic to the chain
complex

AT — oo 5 N2 > T — AR, AP.
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Now we must tensor with A considered as an A ®; A°? module. In this context

A= A®, AP/1, so we get the complex
AT — o = N TP — T — A
with zero differential. Dualising gives us
Hom (A, A) — Homy(I/1?, A) — -+ - — Homu (A1 /1%, A).

It can be shown that Homy(I/I?, A) = Dery(A) and that dualising commutes

with the wedge product here so that
HH*(A) = N Deri(A).

HH*(A) can be given the structure of a differential graded Lie algebra using
the cup product and the Gerstenhaber bracket [5].

The algebra in the example above, A*Deri(A), is the algebra of polyvector
fields on A and it has its own bracket called the Schouten bracket.

Our observation in the example can famously be generalised.

Theorem 2.33. (Hochschild-Konstant-Rosenberg [§])

If A is smooth as a k-algebra, there is an isomorphism HH*(A) = AN*Derg(A)
of graded k-algebras which furthermore sends the Gerstenhaber bracket to the
Schouten bracket.

There are two further generalisations of interest to us which can be seen as
stepping stones to dealing with curved differential algebras.

Suppose first that we now consider A to be a differential graded algebra with
differential d. On the left hand side we simply include this differential and grading
when computing the homology H H*(A, d) while on the right we must find a corre-
sponding action on polyvector fields. To do so we use the correspondence between

derivations and vector fields Dery(A) = Tx where X = Spec(A) to define a vector
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field Q4 corresponding to the differential d. The natural, and indeed correct, thing

to do then is to let d act via the Lie derivative L, and take cohomology.
HH*(A) = H*(NTx, Lg,)-

We are mainly interested in the Hochschild cohomology of categories, not just
algebras. Fortunately, we have a correspondence between functors in derived cat-
egories and objects which are the Fourier-Mukai kernels of those functors. In par-
ticular, the Hochschild cohomology of the derived category can be computed as
the extensions of the identity functor, whose Fourier-Mukai kernel is the diagonal

whose extensions compute the Hochschild cohomology of the algebra.
EItDb(A)<1) = ExtXXX(OA)
This argument is due to Toén [22] who then establishes the equivalence
HH*(D'(A)) = HH*(A)
By an adaptation of the same argument, if (A, h) is a curved algebra then
HH*(MF(A, h)) = HH(A, h).

where the right hand side represents the Hochschild cohomology of the second kind
(see [I8] and [6]), which is essentially arrived at by swapping direct products and
direct sums with each other throughout the theory.

What is the effect of the curvature element h on our polyvector fields? Since it
is just an element of A, the commutator [h, —] is a derivation on A and therefore

gives a vector field @), and acts via the lie derivative as before (see [3] [14] [I8]

[197)

HH*(MF(A, h)) = H*(ATx, Lo, ).
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2.4.2 First Order Deformations

Of particular interest to us is the connection between the second Hochschild co-

homology group and first order deformations of an algebra.

Definition 2.34. A first order deformation of a k-algebra A is an algebra structure

on A[t]/t? which extends the usual product on A and is linear over t.

We consider two deformations equivalent if there is an isomorphism between
the algebras that restricts to the identity on A. Let uo be multiplication on A
and p; be our new product. We observe that by the linearity and distribution

properties of the product and the vanishing of 2,
pie(a+ct, b+ dt) = pola,b) + (ue(a, d) + pi(e, b))t

So our deformations are defined by how the product acts on elements of A. We
set pi(a,b) = uo(a,b) + p1(a, b)t, the the deformation is in fact determined by the
Hochschild 2-cocycle pq. It is not hard to check that the equivalence relation on

these deformed products corresponds to that of the cohomology.

Proposition 2.35. There is a one to one correspondence between cohomology
classes in HH?(A) and classes of first order deformations of A which matches the

trivial deformation with the trivial cohomology class.

3 Knorrer Periodicity, A Recap

We start with some heuristic motivation. Since our motivation comes from al-
gebraic geometry, we start with affine space. One of the first non-trivial matrix
factorisation categories we can write down is MF(C|u, v], uv) with the matrix fac-

torisation
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Clu, v j Clu,v] .

v

This turns out to be the only object in the category up to quasi-isomorphism
and it has endomorphism group C.

Another way to see this is since MF(Clu, v], uv) = D, (Clu, v]/uv), we are really
examining the singularity category of the ordinary double point or node. It should
not be too surprising that this category looks like the derived category of a point,
since this is exactly the critical locus. It is not quite true that MF(Clu, v], uv) =

D*(C) however, since the former is Z/2Z-graded and the latter is Z-graded.

Remark. In general, for a k-scheme Y the Z/2Z-grading on MF(Y, W) can be
upgraded to a Z-grading, in the presence of a k* action (internal Z-grading). If,
in our construction of the singularity category, we quotient the k*-equivariant
derived category by the full subcategory of k*-equivarient perfect complexes, we

obtain D¥ (Y') which has a Z-grading induced by the k*-action.

In our case this allows us to say that MF(C[u,v],C*,uv) = D’(C) with the
standard C* action that makes u, v degrees 0 and 2 respectively.

We might sensibly wonder how to generalise this. Suppose we have Y = A}
and an element h € k[xy,...,z,]. We can also consider h + uv € k[zy, ..., x,, u, v].
It is generally true that matrix factorisations are supported on the critical locus
of the superpotential. We can see this since points away from the critical locus
are perfect using a Koszul resolution. Therefore they don’t support the singularity
category of the hypersurface cut out by the superpotential, which as we have seen
is equivalent to it’s matrix factorisation category. Because of this, we should find

the fact that Crit(h) = Crit(h + uv) rather suggestive.

Remark. 1t is natural to ask exactly what the relationship between matrix factori-
sations and the derived category of the critical locus of the superpotential. It is

tempting to try to generalise the fact above to claim that it is just some kind of
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2-periodisation of the critical locus, but this is not true in general. For Morse func-
tions it is true up to a potential Clifford algebra factor (in odd dimensions) and
if the superpotential is only Morse-Bott then we must also include a deformation
to get from one to the other. These global obstructions are shown in the paper of
Teleman [21].

This is alright, however, because there are known cases of Knorrer periodicity
where the critical loci of the superpotentials on either side are not the same. This

is part of the motivation for this project.

3.1 Knorrer

Take a commutative ring R and an element h € R. The story starts with Knorrer,

who originally studied a functor

[MF(R, h)] A [MF(R[u, v], h + uv)]

(-;CO ®R R[U, U]even) S¥ (fl ®R R[U, U]odd)

Fi FEAIRITES

(fO ®R R[U, U]odd) S (fl ®R R[U, U]even)'
where 1, 4% uv,v?, ... € R[u, v]even and u, v, u®, u?v, ... € R[u, v]oqq are obtained
by considering a grading where R is in degree zero and u, v are elements of degree

1. One can think of this functor as tensoring with the element

Eklu, v] ;ui k[u, v]

v

of MF (k[u,v],uv). He showed that this functor induced an equivalence of cate-
gories and then applied this to show the equivalence for maximal Cohen-Macaulay

modules.
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Theorem 3.1. (Knorrer, see [10])

The functor H induces an equivalence of triangulated categories

IMF(R, h)] = [MF(R[u,v], h 4+ uv)]

and equivalently

SMCM(R/(h)) = SMCM(R[u,v]/(h + uv)).

3.2 Orlov

Orlov’s approach [15] uses the language of derived categories of singularities D;,(2)
defined as the quotient of D°(Z), the bounded derived category of coherent sheaves
on Z, by the full triangulated subcategory of perfect complexes Perf(Z7).

Orlov then proves [16] a version of Knorrer Periodicity; we will first focus on
a local picture where X = Z’ x Al for some smooth scheme Z’ and h is a regular
function on Z’. This will provide a more direct comparison to our theorem later.
Let Y be a smooth hypersurface in Z’, cut out by a regular function g, for which

hly is non-constant.

V(hly) x A=V (h + zg)— X

F N

V(hly) y¢ z'

Theorem 3.2. (Orlov [10])
There is an equivalence of triangulated categories Dy,(V (h|y)) = Dsy(V (h + xg))
induced by the functor Ri.px. Therefore also MF(Y, hly) = MF(X,h + zg).

In fact, more generally, Orlov sets up with a regular section s € H°(S,€)

of a vector bundle £ on a noetherian seperated regular scheme S of finite Krull
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dimension. Then Y is the zero subscheme of s, and Z is the zero subscheme in £

of the section on the canonical line bundle induced by s.

Nz/s(i—> 7 TOt(gv)
N
Y¢ S

Theorem 3.3. (Orlov [16])
There is an equivalence of triangulated categories Dyy(Y') = Dyy(Z) induced by the
functor Ri.px.

3.3 Post-Orlov

Following Orlov there have been several reimaginings of the result in different
contexts and perspectives.

The case of MF (Y, 0) is interesting, because it is very close to simply being the
derived category of Y, only we need a k* action to induce a Z-grading. Once we
have that, the previous statements can be adapted to say D°(Y) = MF(Y, k*,0) =
MF (X, k*,zg) = D} (Z) where Z =V (zg) C X.

Isik sets this up in his paper [9] as follows. Take a vector bundle £ on a smooth
variety S. Just like in Orlov’s set up we have a section s € H°(S, £) which cuts out
the zero subscheme Y in S. We also have Z, the zero subscheme of the induced

section on X, the total space of the dual vector bundle £V.
Theorem 3.4. (Isik [9]) Under the conditions above,
b ~ Pk*
DY) = Dg, (%)
is an equivalence both of triangulated categories and of their DG enhancements.

The equivalence here is given by resolving the projection of S onto Z, applying a

form of (linear) Koszul duality. It is then shown that perfect objects on the Z side
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correspond to objects supported on S. Taking quotents by these subcategories
then gives D¥ (Z) on the one hand and the complement of the zero section on
the other, which is also a shift of the Kozsul resolution of Y, leaving a category
equivalent to D°(Y).

There is another proof by Shipman [20] of a similar result which sets up the
situation much like in Orlov’s version. He uses I', the double of the k* action, with
character y. He constructs functors using a distinguished matrix factorisation K,
which plays essentially the same role as the I we will use later.

If X is the total space of the vector bundle £ and p : X — S is the projection,
then Shipman notes that p*&€ has a canonical section sg which cuts out the S C X.

There is also a cosection from the pullback of our section s.

Ox 5> p*€ —> Oy

Then the matrix factorisation K is (Ap*EV(x™!),d) with differential d(—) =
ss A (=) + sV (—). Importantly, the endomorphisms of K are quasiisomorphic to

Oy. In fact K is isomorphic to 7,0 -1y as matrix factorisations.

q—lyci_> X

b

We also need the regular function ); on X which is induced by the section s.

Theorem 3.5. (Shipman [20])
The functori,p* induces an equivalence of triangulated categories D*(Y) = MF(X, T, Q,).

A natural further extension then is to replace k* with more general group
actions. This is what Hirano does in the paper [7]. Let x : G — G,, be a
character of a reductive affine algebraic group acting on a regular scheme S, and

let h be a y semi-invariant regular function. Then we can define MF(S, x, h) by
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considering factorisations F' where Fy, F} are equivariant, fy, f; are invariant and

fl : Fl — F()(X)

Hom(F,G)* := Hom(Fy,G1(x™)) ® Hom(Fy, Go(x™)) (1)

Hom(F,G)** .= Hom(Fy, Go(xX™)) ® Hom(Fy, G1(x™)) (2)

If we take a G-invariant section s of a G-equivariant, finite rank locally free
sheaf £ and Y the zero locus of s, there is an induced action of G on the vector

bundle V(E(x)), as well as an induced x semi invariant regular function Q.

VEN)) Iy~ V(E(x))
I X
Yyo—«— S
Theorem 3.6. (Hirano [7])
For h a x semi invariant reqular function on Z, such that h|y is flat, then i.p*

induces an equivalence of triangulated categories
MFE(Y, x, hly) = MF(V(E(X)), X, ¢"h + Qs)-

The case we shall focus on is when the total space of the bundle is X = S x AL,
g is a regular function that gives a section of this bundle and Y = V(g) C S. The

theorem then tells us the following.

Theorem 3.7. (Hirano)
ME(Y, x,h) = MF(X, x, h + zg)

Subsequent work by Teleman [2I] examines global obstructions to Knorrer
periodicity. Take a Morse-Bott function W on X, so the critical locus Y is smooth
(the function is locally quadratic), then there is n element 7 of the super-Brauer

group formed from the first two Stiefel-Whitney classes.
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Theorem 3.8. (Teleman [21]) MF(X, W) is equivalent to a deformation of the

T-twisted differential super-category DS™(Y").

The deformation is trivial when the first neighbourhood is split. The obstruc-
tion to this comes about when a tubular neighbourhood of Y in X is not equal to

the normal bundle Ny, x.

Remark. Both 7 and the deformation here are global obstructions to Knorrer pe-

riodicity which are locally trivial. In Section 5 we will find a local obstruction.

4 Comparing Categories

4.1 Set Up

We fix X a regular affine scheme, (f, g) a regular sequence of regular functions. We
shall explore an expansion of Knorrer periodicity, where we search for a relationship
between the category of matrix factorisations MF (X, fg) and the derived category
of the vanishing locus of the functions Y = V(f, g) C X. More generally, between
MF (X, fg+ h) and MF(Y,h) under some conditions on h. Essentially we are
asking if we can relax the condition maintained in the previous versions that one
of these functions should be linear.

We will, of course, study the matrix factorisation

f
K= Ox___Ox € MF(X, fg),

9

since this is just about the only interesting object we can write down. The first

natural question is what the endomorphisms of this obect are.

Proposition 4.1. Let Ry be the Z/2Z-graded DGA:
Oxferna) /(e = 1.6 = 4= 0,06 = .92 = g)
where |e1| = |ea| = 1. Ry is the endomorphism algebra of K.
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Proof. We can see two endomorphisms in degree 1 which identify copies of Ox

along the two diagonals:
f
Ox ? Ox
>
Ox L= 0x

g

and
RN
€2
Ox L= 0
g

whose differentials are f and g respectively, and whose compositions €165 and €x€;

are
AN
&
Ox == Oy
g
and

f
Ox=,~ Ox

¥

Ox —=0x
g

respectively. So we see the relation €1es + €367 = [€1, €a] = 1.
Now we can look at the endomorphism algebra as given by the object ¥ ® x K.
Note that £V is the dual matrix factorisation
-9

Ox ___Ox € MF(X, —fg).
f

and that we can tensor these CDG modules over the commutative algebra Oy to
obtain a new curved module whose curvature is the sum of the others. We label

the generators (as an Oy module) for K as a,b so that da = fb and 0b = ga.
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Similarly we can give KV corresponding generators ', a’ so that b’ = —ga’ and
da’ = fb'. Now we carefully chose a generating set for KV @ K: (V' ® a — d ®
b,d’ ®a,b' ®b,a’ ®b), which if we identify with (1, €y, €, €1€5) gives an Ry module
isomorphism £V @x K = R,. qed

Remark. Note that H°(End(K)) = Oy, whence the interest in this object for
building our desired connection. However, Oy is not in general quasi-equivalent

to R4, but it is equivalent to a closely related DGA.

Let R be the Z/2Z-graded DGA:

OX[617627t]/([61a€2] = t,aﬁl = f’ a62 = g)

where |€;| = |e2| = 1. From the obvious projection map R — kl[t] we see that R is
a deformation of the fibre Ry. All these fibres when considered as Ox modules are
just the Koszul resolution of Y in X, but the fibre Ry is the one with the correct
product structure to be quasi-equivalent to Oy as a DGA.

As K is both an R; module and a matrix factorisation of fg on X, we can use

it to construct functors:

Homg, (K,—)
MF(R4, h) MF(X,h+ fg)
-®xK

We would like some kind of equivalence here, so that we can then work our

way through the deformation given by R — A} to R¢ and therefore Y.

4.2 The endofunctors

Proposition 4.2. The composition of these functors Homg, (K, —) ®x K is the
identity endofunctor on MF(Ry, h).
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Proof. Take a matrix factorisation M belonging to MF(R1, k). If we apply both
functors we are left with the object Homg, (I, M) ®x K. Which we can rewrite

using hom-tensor adjunction as
Homy (K", Homg, (K, M)) = Homg, (K" @x K, M) = Homg, (Ry, M) = M.

Thus, the composition functor is given by homomorphisms from the module R,
so must be the identity functor on MF (R4, h).

qed

Now, the other composition is significantly more complicated. To understand
the functor, we will need to find an R, free resolution of the module K, for which

we shall use the following complex over the DG algebra A = R ®x R1.

R

[_761] \
]
A. ..
2
€2]
\ —€1] \
A

Proposition 4.3. This is a chain complezx, is exact, and is therefore a free reso-

lution of R as an A module.

Proof. First of all, quotienting A = Ry ®x Ry by the image of [—, €] and [—, €]
corresponds to identifying the right and left copies of Ry via the Ox-linear R;-
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module isomorphism from R; considered as a left module to a right module. It

reverses the order of multiplication and changes signs in odd degree:
17 €1, €9, €1€2 > 17 —€1, —€2, €2€7.

So taking A modulo the images of [—, ¢;] and [—, €3] just leaves a single copy
of the bimodule R;. Now for the rest of the complex.

Let a € A, then we can use the Jacobi Identity to check the compositions

where we used that |e;| = |ea] = 1, the fact that [e1, €] = 1 by the definition of
R, and therefore [[e1, €], @] = 0 and the super-skew symmetry rule. We see the
composition [—, €] o [—, €s] + [—, €2] o [—, €1] is zero. Using the same calculations

for the other compositions shows that

0= [[av 61]7 61] + [[O&, 61]7 61]

and

0 = [[a, €], €] + [[, €3], €]
so that [—,e1] o [—,€1] = 0 and [—, €3] o [—, 2] = 0, therefore we have a chain
complex.

To see exactness, we can view our complex as the tensor product (over A) of

the two complexes

]

A [_751] A [_751} A [_761 A [_761} A [_761]

and

]

A [—e2] A [—e2] A [—e2 A [—e2] A [—e2]
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which are exact. We can see this simply by observing that A is free over Ox and
can be split into 16 summands such that, for each of [—, €] and [—, €], 8 are in
the kernel and the same 8 are the image.

The tensor product functor preserves exactness here since the complexes are
made up of free A modules which are therefore flat. So the entire complex above
is indeed a A free resolution of R;.

qged

Proposition 4.4. The composition of functors Homg, (K, — ®x K) that gives an
endofunctor on MF (X, h + fg) is completion with respect to f and g.

Proof. Take some N € MF(X,h + fg), and apply both functors to get the object
Homp, (K, N ®x K).

We can now apply K ®z, — to the complex in proposition to obtain an
Ri-free resolution of K. This allows us to calculate Homg, (K, N ®x K) using the
following chain complex which we consider as an inverse limit of the inverse system

of finite quotients:

I‘IOIIlR1 IC ®X Rl,N ®X IC)

/

I‘IOHIR1 IC@X Rl,N®X’C

/ \
€2]

Hole (’C ®X Rl? N ®X IC I—IOI'H’R1 IC ®X Rl, N ®X IC)

[—€2]

Homg, (K ®@x R1, N ®@x K)

x

I‘IOH’I'R1 ’C ®X Rl, N ®X ’C)
where each term is Homg, (K ®x R1, N ®x K), which, using Hom-Tensor ad-
junction, is Homx (K, Homg, (R1, N ®x K)) = Homx (K, N ®x K) = N @x K ®x
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KY = N ®x Ri. So our composition of functors is completed tensor product with

the following element of D’(X).

R4
—,el] \
[_762]
1

Ri...

Ri...
Ry

R

[
[_762]
R

Since we are interested in this object only as a complex of Ox modules, we can

divide it into the completed tensor product of two complexes

61(9)( 610)( 610)( €1OX...
N AN AN
Ox Ox Ox Ox...
and
EQOX EQOX EQOX EQOX...
lg\ ig\ lg \ ig
Ox Ox Ox Ox...

which have cohomology Ox[[f]] and Ox][[g]] respectively. Since in the inverse
system of quotients each map is actually a surjection, we trivially have the Mittag-
Leffler condition meaning the inverse limit functor is exact and therefore commutes
with taking cohomology. Using Proposition [2.28| since these complexes are free
and therefore flat over X, the cohomology of the direct product complex above
is then the completed tensor product of the cohomologies of the two component

complexes Ox[[f]]©Ox|[g]] = Ox|[[f, 9] (all complexes here are inverse limits after
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applying Homy (K ®%, —, N ®x K), so we can write the finite quotients of the
larger complex as the tensor product of quotients of the smaller complexes and then
pass to the limit). Therefore our object N is actually mapped to N ®x Ox|[f, gl].

qed

4.3 An Equivalence

Denote by X\ﬁg the completion of X with respect to f and g, i.e. Spec(Ox|[f,9]])-
We will complete R, similarly to ﬁl, and consider the completed categories of
matrix factorisations which inherit the functors Homg, (K, —) and — ®x K as

limits of analagous functors involving finite truncations of .

Theorem 4.5. There is an equivalence of categories induced by the two functors.

o Homp, (K,—) S
MF(Ri,h) = = MF(X;4,h+ fg)
—-Qx K

Proof. Using propositions and we can establish a commuting triangle of
functors.

MF(R1, h) <2 "MF(X, h + fg)

lp \;\ lp
Homp, (K,—

MF(Ry, k) MF(Xpgh+ f9)
In order to construct functors between the completed categories, we use trun-

cations the resolution of R from[4.3]and tensor these with K to obtain truncations
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of a resolution of K. For example,

A
[el,/
A
[el’y \\527_]
A

RS = A
[627_\ Av_]
A
TN
A
K®x Ry
K ®x Rq
I3 = K ®x Rq K ®x Rq
K®x Ry
K®x Ry

Now, let I be the ideal (f,g) C Ox (or by abuse of notation in R; too). We

use these truncations to construct functors on the inverse system

Homp, (K™,—)

MF(Ox/I", fg + h)

MF(Ry/I™, h)

-Qx K"
Since we use finite truncations, the functors send finitely generated matrix
factorisations to finitely generated CDG modules and vice-versa. We can now
take the limit of this entire diagram along the inverse system to induce functors

on the completed categories for which the proofs in the previous section still apply,
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so that both compositions — ® Ry and — ® Ox][[f, g]] are now the identity. This

gives an equivalence of categories. qed

Remark. Although we deal only with the affine case here, reading Orlov’s paper
[16] should make clear how we can relax this restriction by considering sections of

bundles instead of regular functions.

5 Converse to Knorrer Periodicity

So we have a Knorrer periodicity type equivalence (after completion) between
matrix factorisations (or derived categories of CDG modules) on (Ox,h + fg)
and (R, h). However, in order to compare to previous work and to obtain more
geometric relevance we need to pass via the deformation to Ry from Ry and then

the quasi-equivalence to Oy (all over the completion of X w.r.t. f and g).
Conjecture 5.1. There is an equivalence of categories 1\//@(7/3\0, h) = 1\//I\F(Y, h).

Ry is just the Koszul resolution of the subspace Y = V(f, g) C X\fyg, and so
there is a homomorphism of DG algebras to Oy which gives a quasi-isomorphism
since it does not affect the cohomology H™(Ro) = H™(Y). It is well known that
such quasi-isomorphisms induce equivalences of derived categories. The argument
is that for any Ro DG module M, H"(M) = H"(M ®7L/€; Oy) and therefore that
the endofunctor — ®%0 Oy : D'(Ry) — DP(Ry) is fully faithful and clearly has no
kernel. This functor is really the composition of _®7L/€B Oy : D*(Ry) — D¥(Y) with
the functor induced by the resolution map from Ry — Oy . Similarly, we can com-
pose the functors the other way to obtain an endofunctor on D’(Y’) which is fully
faithful and has no kernel. This proves that these functors are both equivalences.

Regarding our completed categories, we can also take a different approach. Let

I be the ideal (f,g) in Ry, then our completed category 1\//[?(7/3\0, 0) is the limit
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of the categories MF(Ro/I™,0). Each of these categories contains only finitely
generated CDG modules.

HomRo/I” (OY,*)

MF(Ro/I", )

MF(Y, h)

—®Rrq/m Oy

Taking the limit over the invese system gives us functors

HomR/\O(OY7_)

MF (Ro, h) MF (Y, h)

*®a0y
Investigating the kernel of the compositions of these functors and take the limit

over the inverse system gives the diagonal object, meaning we should get an equiv-

alence.

Remark. These arguments work for ordinary derived categories, however they do
not generalise to absolute derived categories, where the acyclic subcategory is
defined similarly to how we defined it for matrix factorisations. For example,

the matrix factorisation Clz] Clz] in MF(C[z]/x?,0) is acyclic in the usual

x
derived category and so quasi-isomorphic to the zero object but it is non-zero in
our definition of matrix factorisations which coincides with the absolute derived
category instead. Unfortunately when dealing with curved modules there is no

analogue to the usual derived category since that version of ‘acyclicity’ breaks

down.

The author is currently unaware of a general result that applies to this specific
case in the curved setting, however we conjecture that for the two step Koszul
resolution of a complete intersection that the desired equivalence of matrix fac-
torisation categories does indeed hold: MF(Ro, h) = MF(Y, k). In any case it is

undoubtable that these categories will share a very close relationship.
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5.1 Deformation

Suppose that we have some case where Knorrer periodicity holds: a smooth scheme
X and a regular sequence f,g,h € Ox such that if Y = V(f,g) € X then
MF(Y,h) = MF(X, fg+ h). We choose a point in X that lies along Y and pass to a
formal neighbourhood of that point. We replace X, and R; with their completions
(omitting the notation) and also complete all our matrix factorisation categories.
This assumption will carry for the rest of this chapter.

Around this point, since X is smooth, the formal neighbourhood has an isomor-
phism to Spec(k[[x1, ..., ¥,]]) where n is the dimension of X. We then abuse our no-
tation and consider f,g,h € k[[xy,...,z,]] and Y =V (f, g) C Spec(k[[z1, ..., x,]]).
It follows that MF(Y,h) & MF(k[[z1, ..., z,]], fg + h). Note that k[[z1, ..., z,]] is
already complete with respect to f and g.

Then, since we assume MF (Y, h) = 1\//@(720, h), using Theorem , it follows
for

Ry = k[[z1, o, z]][e1, 62]/([61,62] — 1,061 = f,0es = g)

that MF (R, h) = MF(Ry, h).

So we have a non-formal deformation MF(Rg, h) ~» MF(Ry, h) for which the
endpoints are equal when Knorrer periodicity holds. In this case we should expect
the deformation to be trivial, however it is possible to think of rare cases where a
nontrivial deformation produces isomorphic fibres over 0 and 1. Pathological situa-
tions aside though, it behoves us to study this deformation further. Our main tool
here is Hochschild cohomology, however this tells us about formal deformations,
so we can only really study our deformation locally and to finite order.

We use a version of the Hochschild-Kostant-Rosenberg theorem for curved
differential graded algebras. [

'While we can only currently find references for the differential graded algebra and curved

algebra cases separately, we can see no reason why the arguments should not work for the
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Conjecture 5.2. Let (A,d,h) be a smooth curved differential graded algebra,
X = Spec(A) with associated vector fields Qg and Q. Then we can compute the

Hochschild cohomology of the matriz factorisation category as polyvector fields:
HH*(MF(A,d,h)) = H* (ANTx, Lo,+q),)-
In our case this should imply that
HH*(MF(Ro, h)) = H*(X, (A Tx[[0e:, 0ller, 2], L))

where Q = f0., + g0, + h is the vector field coming from our differential and L
is the Lie derivative. For our purposes we are specifically just taking an Ox-free
CDGA (whose Hochschild cohomology will give the polyvector field) and deforming

the superpotential and differential.

Example 5.3. (Isolated Singularities) Suppose we want to compute the Hochschild
cohomology of MF(A, h) with h cutting out an isolated hypersurface singularity.
Then we have a Koszul resolution of the critical locus given by the partial deriva-
tives of h. This means when computing the cohomology using this resolution that
in degree 1 we have the cokernel of these functions (and nothing in higher degrees)
which is the Jacobian algebra (see [2]). In this case we can construct a converse to
Knorrer periodicity using the Mather-Yau theorem [13]. If MF(A, h) = MF (A, 1)
then HH*(MF(A, h)) = HH*(MF (A, 1)), therefore Jac(h) = Jac(h') and so since
the Jacobian algebra dictates the singularity type for isolated hypersurface singu-

larities, this dictates h’, given h, up to a nondegenerate quadratic form.

Since our deformation is taking the relation [e1, €] = 0 in Ry and making it
nonzero: [e1, €] = 1, the class of polyvector fields representing the infinitesimal

first order deformation in this direction is [, ,,].

combination. Proof of this is beyond our scope, however, but the reader can see similar results
in Efimov [3], Guan-Holstein-Lazarev [6], Lin-Pomerleano [I1], also section 3.3 in Nordstrom [I4]

as well as Polishchuk-Positselski [I8], Preygel [19] and Toen [23].
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The differential on our polyvector fields acts as follows:
axi — fa:iaq + g:ciaeg + hxl €1 —— f €Eo——>¢g

and extends linearly over Ox [0, Oe,].

It is interesting to consider when the Hochschild cohomology class correspond-
ing to our deformation is trivial to first order, i.e. when [0, 0,,] = 0, since we
can expect this to be closely related to when MF(Rg, h) = MF (R4, h). However,
neither direction is a direct implication.

There is one case where the class vanishes for trivial reasons, that is when A does
not have a critical point at the origin. We can see that in this case all categories

W(Rt, h) are trivial. Let us see what happens in the Hochschild cohomology.

Proposition 5.4. If the origin is not a critical point for the function h, then

[0, 0e,] = 0.

Proof. If we are not a critical point, then there is some partial derivative h,, which

does not vanish at the origin. In this case

inf m a
Tg k m—j+19j+1 gm—j+1
Z Z hm+1 fﬂﬂz‘gl"i ae1 862 = 851052’

m=0j5=0 ""x;

So the class [0, 0,,] is trivial. qed

Remark. Note that this is not necessarily a finite sum, so it is important that we
are considering direct product complexes rather than direct sums.
Now in the more interesting case where our categories are not trivial, what can

we glean from the vanishing of this cohomology class?

Proposition 5.5. If we are at a critical point of h and [0, 0.,] = 0 then either
Vf#0orVg#D0.

52



Proof. There is a bi-grading that we can track simply by counting ‘9’s and ‘€’s,
with the former coming from the differential structure and the latter from the
grading on Ry. For example the degree of €,0,, is (1,2). We can see that at the
origin, because the h,, terms all vanish, the Lie/Hochschild differential preserves
the first grading (i.e. the number of ‘0’s is fixed).

Therefore we consider the classes with the same 0-degree as the class [0, O,], wich

are Ox-linear combinations of:

€10c,0e, — 0., 0.,
€20¢, 0y — GO, Oc,
02,06, = [2:(0e)? + 92,00, 0cy + e, Oc,y
O 0cy > — 1,06, 0c, + Guy (0ey)” + T, Oy

Our class is trivial if and only if it is in the image of the differential. We take a
general object in the stratum of interest. At the origin f, g and all of the partial

derivatives of h are 0. Restricting to the origin then, for any &, 3 € k[[z1, ..., z,]]",

Q- 852‘861 + B ' ai’a@ = Qe vf(a€1)2 + (0_4 : VQ + /é : vf)aﬂaez + B ' VQ(aQ)Q'

Therefore [0, O, = 0 can happen only if one of the 0., 0., coeflicients is non-zero,

meaning either V f or Vg is non-zero. qed

Example 5.6. Let f =2 +y+y%2 +y22%, g =yz—2* and h = % — 22. We can see
that our Hochschild cohomology class is the image of 0,0,,, so [0, 0.,] = 0.

Example 5.7. Conversely, supposing f and g no terms of degree 1, then their
partial derivatives will vanish, so as long as we are at a critical point of h, it

follows from Proposition [5.5 that [0, O.,] # 0.

Remark. The contrapositive of the proposition yields a useful heuristic: if Vf =

Vg =0 at a point then [0, 0,,] # 0 so we expect Knorrer periodicity not to hold.
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Remark. We will always assume without loss of generality that it is f whose gradi-
ent is nonzero. This means then that there is a coordinate change of k[[z1, ..., x,]]
such that f = 1. If we could somehow argue now that g, h € k[[xs, ..., z,]] then we
would be back in the case where Knorrer periodicity is already proven by Orlov.

We shall use the moniker ‘semilinear’ as a shorthand to refer to this case.

Definition 5.8. We shall call a triple of functions (f,g,h) € k[[x1,xa, ..., 2,]]
‘semilinear’ if we can choose the co-ordinates x; such that f = z; and ¢g,h €

k[[xa, ..., x,]] are regular functions.

Remark. Note that if Y = V(f,g) is smooth, then Vf and Vg are non-zero and
linearly independent, Y = Crit(f,g), and we can choose coordinates on our formal
neighbourhood such that f = z; and g = x5. In this case we are clearly semilinear
so Knorrer periodicity holds. This means in the case of smooth Y that obstructions
happen only at the global level, see [21I]. We will be interested in the case where

Y is singular, where obstructions to the theorem can arise locally.

5.2 The Semi-Linear Case

Now let us recast Orlov’s argument in the terminology used here.
Consider the matrix factorisation category MF(X, fg+ h). Suppose Y =
V(f,g9) € X = Spec(k[[z1,...,x,]]) and (f,g,h) is semilinear. Then Orlov’s geo-

metric picture is the following commuting diagram:

V(g)—"—=V(fg)—=X

y Ry

Y =V(f,9) V().
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%M

He proves that the functor Ri,p* induces an equivalence between MF(X, fg + h) =
MF (Y, h).

If we look at the algebraic side of this picture,

k[[f]|©xOy = Oy (g) =<— Oy (sq) =— Ox

| |

Y OV(f)

we can see that the key point that allows us to set up an appropriate functor is
that the linearity of f lets us create inclusion functors where there would otherwise
only be quotient functors in the opposite direction.

In our language then, the functors in the semilinear case (let us now assume we
make some local coordinate change so that f = x1) will come from the following
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where the horizontal arrow is just a quasi-isomorphism between Y and its one

step free resolution in k[[xs, ..., z,]], S considered as a DG algebra, namely
S = k[[xa, ..., 2]] <t— exk[[2, ..., ]

or more geometrically

{@A 90

An—1 An71i| g OY

This induces a quasi-equivalence of the matrix factorisation categories with the
superpotential h, given by the derived pushforward functor. The vertical arrow
is given by the inclusion into Ry, which also gives a quasi-equivalence since the

cohomology of R, considered as a chain complex over X

g
(@1,-9) Ag2 (21)
Oz o2 L0 0,

is just Oy-.

Together these two functors give an equivalence of categories MF(Y, h) =
W(Rl, h) which by Theorem |1.1{is equivalent to l\//[\F(X , fg+ h), giving our Knor-
rer periodicity statement.

In fact, since the cohomology of R; as a chain complex is independent of t,

all fibres of this deformation are trivial so the deformation itself is trivial in the

semi-linear case.

Theorem 5.9. (Kndrrer Periodicity) Let f,g,h € k[[z1,...,2,]] be a semilinear
triple, then 1\//IF(Y, h) = 1\//IF(X, fg+ h). Moreover the deformation from Ry to Ry

18 trivial.

Remark. The argument presented here is not quite the same as what Orlov does,
since we are effectively going around the square the other way and we are com-

posing functors which are themselves already equivalences.
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5.3 Approaching a Converse

We know that in the ‘semilinear’ case that Knorrer periodicity holds. We also
know that there is a deformation between the two categories of interest whether or
not they are equivalent. We will now make a heuristic argument for why Knoérrer
periodicity does not have generalisations beyond this semilinear case except in
some exceptional examples.

We work in a formal neighbourhood of a point as in the previous section.
Suppose first not only that MF(Ro, h) = MF(R,, k) but also that the deformation
MF(Ryg, h) ~» MF(Ry,h) is trivial. It follows that in particular it is trivial to
first order and therefore, given the generalisation of HKR which we mentioned
previously, the cohomology class [0,,0.,] = 0. By Proposition and the following
remark, we can choose coordinates such that f = zy in k[[z1, ..., 2,]].

This allows us to consider another deformation. We can write g, = go + sx14’
and hs = hg + sz h/ where go, ho € k[[z2,...,z,]] and ¢, h' € K[|z, ..., z,]] such
that ¢ = g1 and h = hy. The point being that (f, go, ho) is ‘semilinear’, so our
situation is a deformation of the semilinear case.

We combine both deformations in a square given by
7275,3 = OX[ta S, €1, 62]/[617 62] - t, ael = 1, 852 = Gs

so that

MF (Ro,0, ho) ~&= MF (R, 9, ho)

i i

MF(Ro 1, ) ~%=MF(Ry1, ).
The deformations going left to right are the ones coming from Knorrer periodicity
and the vertical arrows are deforming from the semilinear case to our given one.
Consider the deformation on the left. Assuming allows us to think of B as
passing from W(V(wl,go), ho) to 1\//[\F(V(3:1,g1), hy). Since we annihilate zq, h =
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hy = hs = hg and g = g1 = gs = go. This implies that B is actually constant.

The deformation at the top, A, is simply Knorrer periodicity for the semilinear case
since with and Theorem [1.1 we can see it as the deformation from MF (Y, ho)
to 1\7[?()( , fgo + ho). which we know to be trivial also by our previous discussion.
C' is given by deforming the superpotential by z1h’ + 22¢’. It has a class [C] in
the Jacobi ring of the curved differential graded algebra (Rg1,h1). The Jacobi
ring classifies these deformations to first order up to change of coordinates, and it
embeds into HH2(MF(Rq1,h1)).

D is the deformation given to first order by [0, O,,] which we assumed to be trivial
in HH2(MF(Rq1,h1)).

Therefore we have a square of deformations where three sides are trivial. This
does not imply that the final side, C, is trivial also. However, were it not then we
would once again have a deformation between categories which is non-trivial yet
circles back to an equivalent category.

So what can we conclude? If we have a version of Knorrer periodicity, at least
locally:

MF(Y, h) = MF(X,h + fg)

then our equivalence comes from a deformation R, which, barring the potential
for strange coincidences and exceptions will be itself trivial. In this case we are
in a deformation of a semilinear case where Knorrer periodicity is already known.
This deformation too we would expect to be trivial. If so, then in particular
it is trivial everywhere to first order, so at each value of s the class [C] of the
deformation in the Hochschild cohomology is zero. Since the Jacobi ring injects
into this cohomology, that means the class of our deformation is zero here also.
The Jacobi ring categorises first order deformations up to coordinate changes, so
if we could integrate together all these coordinate changes at every point to get

from s = 0 to s = 1 then we could show that we actually are in the semilinear case
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already.

In summary we need three assumptions: that we don’t have a coincidence
of non-trivial deformations over the unit interval with equivalent endpoints, the
integrability of the coordinate change, and that the quasi-isomorphism from R to
Y induces an equivalence of categories. While this is not on the nose a converse to
Knorrer periodicity, it is a strongly implied bound on the possible generalisations
and should be understood as a warning that cases of the equivalence outside the
semilinear we expect at best to be rare and unusual, and may very well not exist

at all.

6 Examples

So let us see what we can now say about comparing the categories MF (X, fg + h)
and MF(Y,h) where Y = V(f,g) C X and f,g € Ox are a regular sequence of
functions on a smooth (affine) scheme and previous assumptions such as Conjecture
.11 hold.

If Y is smooth, then we can use Teleman’s result [21] since Y = Crit(fg) to
show that Knorrer periodicity holds up to some potential global obstructions.

Otherwise, we pass to the formal neighbourhood of a point on Y € X. We
choose a critical point of h, otherwise our obstruction vanishes and the categories
are trivially equivalent since they both vanish.

Now, if Vf = Vg = 0 at the origin then, by Proposition [5.5] [0,0,,] # 0
so MF(X, fg+ h) and MF(Y, h) are related by a non-trivial deformation and we

therefore expect them not to be equivalent.

Example 6.1. Let f = 22 and ¢ = y? with h = —z2. Then our obstruc-
tion is nonzero, so we expect not to find an equivalence. Indeed, MF(Y,h) =

Dyy(Clz,y, 2]/ (2%, y?, %)) while MF(X,, fg 4+ h) = D,y(Clx, y, 2]/ (z*y*—2?)) which
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we can also see from the critical loci cannot be equivalent (only one is an isolated

singularity).

Now, without loss of generality, say V f # 0 at the origin, then the deformation
of MF(Y, h) to W(X , fg+ h) is itself deformed from a trivial deformation coming
from a related semilinear case.

If there exists a fixed vector 8 € k™ such that §-Vf # 0 but §- Vg =0, then
we can choose coordinates x1, ..., x, such that f = x;. We can then transform by

_ 1 Bi

Y1 = Tlvfxl = 511’1 and for 7 > 2’ Y = X — Exl S0 that

dg 0z Og
oy B ; Oy, Ox;

=1

=p-Vg
=0

Hence this coordinate change puts us in the semilinear case where Knorrer

periodicity is known to hold. Otherwise, things are more complicated.

Example 6.2. If f = 2y and g = 1 — 32y — 929 + 2% + 67125 + 923, then we can
see that ¢, = 3¢, so 8 = (3, —1) and we use the coordinate change y; = %xl and

Yo = Xy — %xl which gives us f = 3y; and g = 1 — 9y, + 9y2.

Example 6.3. Let f = 2, g = 2y + 9> and h = y22. In this case we compare
MFE(Y, k) = Dy(Cly, 2]/ (y*, yz)) with MF(X, fg + h) = Dyy(Clz, y, 2]/ (2?y+ay’+

yz)). We can look to see if our obstruction vanishes:
=0y 0c, > 0,0y — Y02,

We need to see if we can eliminate the y term somehow. The terms we could use

in the image of the differential are multiples of f, g and the partial derivatives
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of g and h, none of which produce y, so our obstruction does not vanish and the
deformation is non-trivial. We therefore expect that Knorrer periodicity fails and

the categories are not equivalent.

Example 6.4. Let f = 2, ¢ = vy +y? and h = 0. We compare Dsg(c[y]/(yQ))

with Dy, (Clz,y]/(z*y + xy?)). This time our obstruction vanishes since we have
OyOe, > 2902,

50 0,0, is the image of %(%862 — 0:0,,. So the deformation from Ry to R; is
trivial to first order at least. The semilinear case which we deform from is f = z,
g =y?. Let W, = x(szy + y?), then Wy = zy* and W, = zy(z + y) which clearly
gives a non-trivial deformation R; ;. It is trivial to first order, however, since it is
represented by x?y which is zero in the Jacobi ring of W, since 2%y = 50,Ws. In
fact it is nontrivial already at second order, so the deformation from the semilinear

case is not a coordinate change and we also see that Knorrer periodicity does not

hold here.
Example 6.5. Similarly if f = x and g = 22 + y? then since
—0,0e, + 261(9622 > O¢y Oey

the obstruction in Hochschild cohomology vanishes, Knorrer periodicity again
doesnt hold but this time the deformation from the semilinear case is already

nontrivial at first order.

Of course, in general if the deformation from the semilinear case is trivial then

Knorrer Periodicity does hold since
MF (Y, h) = MF(Ro,1,h) = MF(Ro, ho) = MF(R0, ho) = MF(Ry 1, h) = MF(X, fg + h).

That just leaves the possibility of exceptions where the deformation 1\//[\13‘(72170, hg) ~

1\//1?(721,1, hy) is nontrivial but the categories are equal. These examples are un-
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likely to exist, so we argue is only reasonable to expect Knorrer periodicity in the

semilinear case.
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