Genome-wide association meta-analyses of drug-resistant epilepsy

Costin Leu, ^{1,2,3,*,§} Andreja Avbersek, ^{2,4,*} Remi Stevelink, ^{5,6} Helena Martins Custodio, ^{2,4} Siwei Chen, ^{7,8} Doug Speed, ⁹ Caitlin A. Bennett, ¹⁰ Lina Jonsson, ¹¹ Unnur Unnsteinsdóttir, ¹² Andrea L. Jorgensen, ¹³ Gianpiero L. Cavalleri, ^{14,15} Norman Delanty, ^{15,16} John J. Craig, ¹⁷ Chantal Depondt, ¹⁸ Michael R. Johnson, ¹⁹ Bobby P.C. Koeleman, ²⁰ Emadeldin Hassanin, ²¹ Maryam Erfanian Omidvar, ²² Roland Krause, ²¹ Holger Lerche, ²² Anthony G. Marson, ^{23,24,25} Terence J. O'Brien, ^{26,27} Josemir W. Sander, ^{2,4,28,29} Graeme J. Sills, ³⁰ Pasquale Striano, ^{31,32} Federico Zara, ^{32,33} Hreinn Stefansson, ¹² Kari Stefansson, ^{12,34} Patrick May, ²¹ Benjamin M. Neale, ^{7,8} Dennis Lal, ^{1,3,35,36} Samuel F. Berkovic, ^{10,37} Epi25 Collaborative, [†] EpiPGX Consortium, [‡] Sanjay M. Sisodiya, ^{2,4,§}

- 1. Department of Neurology, McGovern Medical School, UTHealth Houston, Houston, TX, US
- 2. Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- 3. Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, US
- 4. Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire, UK
- 5. Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, NL
- 6. Department of Child Neurology, UMC Utrecht Brain Centers, University Medical Center Utrecht, Utrecht, NL
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, US
- 8. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, US
- 9. Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, DK
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Melbourne, AU
- 11. Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE
- 12. deCODE Genetics/Amgen Inc., Reykjavik, IS
- 13. Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK

- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin,
 IE
- 15. FutureNeuro Research Centre, Science Foundation Ireland, Dublin, IE
- 16. Department of Neurology, Beaumont Hospital, Dublin, IE
- 17. Department of Neurology, Belfast Health and Social Care Trust, Belfast, UK
- 18. Department of Neurology, CUB Erasmus Hospital, Free University of Brussels, University Hospital Brussels, Brussels, BE
- 19. Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- 20. Department of Genetics, University Medical Center Utrecht, Utrecht, NL
- 21. Luxembourg Centre for Systems Biomedicine, University of Luxembourg, LU
- 22. Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, DE
- 23. Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- 24. The Walton Centre NHS Foundation Trust, Liverpool, UK
- 25. Liverpool Health Partners, Liverpool, UK
- 26. Departments of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, Parkville, AU
- 27. Departments of Neuroscience and Neurology, The School of Translational Medicine, Monash University and The Alfred Hospital, Melbourne, AU
- 28. Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, NL
- 29. Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- 30. School of Life Sciences, University of Glasgow, Glasgow, UK
- 31. Paediatric Neurology and Muscular Diseases Unit, IRCCS "G. Gaslini" Institute, Genova, IT
- 32. Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, IT
- 33. Laboratory of Neurogenetics and Neuroscience, IRCCS "G. Gaslini" Institute, Genova, IT
- 34. Faculty of Medicine, University of Iceland, Reykjavik, IS
- 35. Center of Neurogenetics, UTHealth Houston, TX, US
- 36. Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, US

37. Department of Neurology, Austin Health, Heidelberg, AU

- * Joint first authors.
- † Appendix 1.
- ‡ Appendix 2.
- § Corresponding authors.

Corresponding authors:

Sanjay M. Sisodiya, PhD, FRCP

Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology

Queen Square, London WC1N 3BG, UK

Email: s.sisodiya@ucl.ac.uk

Costin Leu, PhD

Department of Neurology, McGovern Medical School, UTHealth Houston, Houston, TX 77030,

USA

Email: Costin.Leu@uth.tmc.edu

Summary

Background: Epilepsy is one of the most common neurological disorders, affecting over 50 million people worldwide. One-third of people with epilepsy do not respond to currently available anti-seizure medications, constituting one of the most important problems in epilepsy. Little is known about the molecular pathology of drug resistance in epilepsy, in particular, possible underlying genetic factors are largely unknown.

Methods: We performed a genome-wide association study (GWAS) in two epilepsy cohorts of European ancestry, comparing drug-resistant (N=4,208) to drug-responsive individuals (N=2,618) followed by meta-analyses across the studies. Next, we performed subanalyses split into two broad subtypes: acquired or non-acquired focal and genetic generalized epilepsy.

Findings: Our drug-resistant versus drug-responsive epilepsy GWAS meta-analysis showed no significant loci when combining all epilepsy types. Sub-analyses on individuals with focal epilepsy (FE) identified a significant locus on chromosome 1q42.11-q42.12 (lead SNP: rs35915186, $P=1.51\times10^{-8}$, OR[C]=0.74). This locus was not associated with any epilepsy subtype in the latest epilepsy GWAS (lowest uncorrected P=0.009 for FE vs healthy controls), and drug resistance in FE was not genetically correlated with susceptibility to FE itself. Seven genome-wide significant SNPs within this locus, encompassing the genes *CNIH4*, *WDR26*, and *CNIH3*, were identified to protect against drug-resistant FE. Further transcriptome-wide association studies (TWAS) imply significantly higher expression levels of *CNIH3* and *WDR26* in drug-resistant FE than in drug-responsive FE. *CNIH3* is implicated in AMPA receptor assembly and function, while *WDR26* haploinsufficiency is linked to intellectual disability and seizures. These findings suggest that *CNIH3* and *WDR26* may play a role in mediating drug response in focal epilepsy.

Interpretation: We identified a contribution of common genetic variation to drug-resistant focal epilepsy. These findings provide insights into possible mechanisms underlying drug response variability in epilepsy, offering potential targets for personalised treatment approaches.

Funding: This work is part of the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 279062 (EpiPGX) and the Centers for Common Disease Genomics (CCDG) program, funded by the National Human Genome Research Institute (NHGRI) and the National Heart, Lung, and Blood Institute (NHLBI).

Research in context

Evidence before this study

The causes of drug resistance in epilepsy are not well understood, leading to a stagnation of drug therapy in epilepsy in the last 40 years. We searched PubMed with the terms 1.) "epilepsy" and "common variants", 2.) "seizure outcomes" and "genetics", 3.) "drug-resistant epilepsy" and "genetics" OR "association" OR "GWAS" for reports published before 1st July 2024, with no language restrictions. While rare genetic variants have been established as causal factors in epilepsy, and evidence suggests their potential overlap with drug resistance, this primarily applies to rare/monogenic epilepsy syndromes. These syndromes represent only a small fraction of all epilepsy cases. The majority of epilepsy cases exhibit a complex/polygenic genetic architecture, well-characterized by numerous successful genome-wide association and polygenic risk-scoring studies. However, to date, no study has successfully identified genome-wide significant common genetic factors influencing drug response in all forms of epilepsy.

Added value of this study

Prior studies, although inconclusive, suggested the involvement of common genetic variants in drug response and a potential heritable component to drug resistance in epilepsy. This study provides evidence for common genetic variants associated with drug response in focal epilepsy, confirming these earlier suggestions. To investigate the genetic basis of drug resistance, we leveraged data from two large-scale initiatives: EpiPGX, an international multicenter research project on epilepsy pharmacogenetics, and Epi25, the largest sequencing study in epilepsy. In the combined cohort of 6,826 individuals with drug-resistant and -responsive epilepsy, we identified a locus on chromosome 1q42.11-q42.12, encompassing the genes *CNIH4*, *WDR26*, and *CNIH3*, associated with protection against drug resistance in focal epilepsy. Additionally, we observed

significantly higher predicted expression levels of CNIH3 and WDR26 in individuals with drug-

resistant focal epilepsy compared to those with drug-responsive focal epilepsy.

Implications of all the available evidence

The present study provides two key insights into understanding drug resistance in epilepsy. First,

we demonstrate that drug resistance in focal epilepsy has a common genetic component, which

may enable quantification of each individual's polygenic risk for drug resistance in (focal) epilepsy

and, thus, inform treatment strategies. The common genetic basis of drug resistance also suggests

a future need to target multiple pathways rather than single molecules/genes. Second, fine-

mapping of the association signal for drug response in focal epilepsy implicates three candidate

genes: CNIH4, WDR26, and CNIH3. Pathogenic variants in WDR26 have been shown to cause a

drug-responsive seizure phenotype consistent with the protective effect observed in our meta-

analysis and the higher expression levels in drug-resistant cases suggested by our transcriptome-

wide association study. CNIH3 acts as an auxiliary subunit that regulates AMPA receptor gating

and trafficking, and abnormal AMPA receptor trafficking could contribute to seizure activity. The

findings of this study provide a foundation for future research exploring the common genetic

origins of drug resistance in epilepsy.

Running head: GWAS in drug-resistant epilepsy

Keywords: genetics, association, pharmacogenomics, treatment, antiseizure medication

Number of characters in the title: 64

Number of characters in the running head: 31

Number of words in the abstract: 334

Number of words overall: 4694

Number of colour figures: 2

Number of tables: 2

Number of references: 93

6

Introduction

Epilepsy is a burdensome neurological disorder affecting over 50 million people worldwide.¹ One-third of people with epilepsy experience ongoing seizures despite treatment with appropriate antiseizure medications (ASMs). The standard operational definition of drug resistance in epilepsy, formulated by the International League Against Epilepsy (ILAE), is "failure of adequate trials of two tolerated, appropriately chosen and used ASM schedules (whether as monotherapies or in combination) to achieve sustained seizure freedom".² Drug-resistant epilepsy (DRE) is associated with reduced quality of life, treatment side effects, comorbidities, lowered socioeconomic status, stigmatisation, and premature mortality.^{3–9} Despite the availability of more than 25 registered ASMs, the proportion of people with DRE has remained steady over time.¹⁰ A single-centre 30-year longitudinal cohort study found a similar proportion of people with DRE over the study period despite a marked increase in the use of newer ASMs.¹¹

The causes of DRE are unknown. Evidence suggests the existence of general mechanisms of drug resistance that act regardless of epilepsy syndrome or specific drug. ¹² Several hypotheses have arisen as putative explanations for DRE, including the target, ¹³ multidrug transporter, ¹⁴ intrinsic severity, ¹⁵ epigenetic, ¹⁶ network, ¹⁷ and others. ¹⁸ However, evidence for these hypotheses remains limited. ¹² While genetic factors have been suspected to play a role in drug resistance, definitive evidence has been limited. Only one epilepsy GWAS on drug response has been published (N=889), which did not find any genome-wide significant loci. ¹⁹ More recently, a familial aggregation of a history of uncontrolled seizures (≥4 tonic-clonic seizures per year) was demonstrated, suggesting a genetic component of seizure outcomes. ²⁰

We hypothesised a common-variant genetic component to DRE. We performed genome-wide SNP-based association studies (GWAS) in two independent international epilepsy cohorts (EpiPGX and Epi25) with drug response phenotypes, followed by meta-analyses. Given existing evidence that focal and generalised epilepsies have distinctive biologies and that DRE is more common in focal than generalised epilepsies, we hypothesised that any genetic basis for DRE would differ between these two categories²¹ and performed subanalyses in focal and generalised epilepsies.

Methods

Ethics

All individuals from the EpiPGX Consortium and Epi25 Collaborative gave written informed consent. Each centre's ethics committees/institutional review boards approved data collection and use. For the EpiPGX consortium, all participants provided written informed consent for appropriately coded use of their clinical data. Ethical approval for this study was obtained from the Camden and Kings Cross Research Ethics Committee (reference number: 11/LO/2016). Consent from parents or legal guardians was obtained from those unable to consent. For the Epi25 cohort, patients or their legal guardians provided signed informed consent/assent according to local IRB requirements;²² as samples had been collected over 20 years in some centres, forms reflected standards at the time of collection. For Epi25 Collaborative samples collected after 25th January 2015, forms required specific language according to the NIH Genomic Data Sharing Policy.²³

Study cohorts

Individuals were recruited from EpiPGX, an international multicenter research project on epilepsy pharmacogenetics, and Epi25, the largest sequencing study in epilepsy.²²

The EpiPGX database contains coded demographic and clinical details of about 10,000 individuals with a diagnosis of epilepsy confirmed by an epilepsy specialist. The database includes detailed data on >39,000 treatment regimens collected retrospectively from contemporary records. Participants were recruited mainly from tertiary referral centres in the UK, Ireland, Belgium, the Netherlands, Germany, and Italy. Data collection spanned from 2012-2016. All individuals were classified for treatment response, following a modification of the International League Against Epilepsy (ILAE) definition² of DRE. According to the ILAE definition of DRE, individuals with very rare seizures (for example, one seizure in 12 months) may be classified as drug-resistant²⁴ and preclude the identification of clinically meaningful DRE phenotypes. Therefore, this study adopted a threshold of four or more seizures per year, consistent with established practice in pharmacogenetic and pharmacogenomic investigations. This modified DRE definition was: "seizures occurring at a frequency of ≥4/year during the year preceding the latest data entry, despite adequate trials of ≥ 2 tolerated and appropriately chosen (and used) ASM schedules, whether as monotherapies or in combination." It is important to note that the ILAE study advises adaptation of the definitions for particular circumstances and studies. Given that the phenotypic data for this study were collected retrospectively and that pre-intervention inter-seizure intervals were not consistently documented, drug-responsive epilepsy was defined as freedom from seizures for ≥12

months up to the latest recorded visit. 11 Consequently, individuals with 1-3 seizures in the 12 months preceding the latest data entry were excluded from the study. This usage is within the ILAE definition,² which categorises a treatment outcome as "seizure-free" (Category 1 response) if "the treatment results in seizure freedom for 12 months, or for a minimum of three times the longest pre-intervention inter-seizure interval, whichever is longer". Our usage aligns with the seizurefree interval that often actually leads to changes in daily life (e.g., permitting reinstatement of driving privileges) and ensures that those who are considered drug-responsive have experienced a seizure-free interval of at least 12 months. Of note, none of the individuals classified as drugresponsive were seizure-free without medication (Table 1; an average of 1.9 adequate ASM trials). An AED trial was considered adequate if administered at an appropriate dose for a sufficient duration. Appropriateness was determined by prior evidence of efficacy, ideally from randomised controlled trials. Minimum therapeutic doses for adults were established by a panel of EpiPGX principal investigators (SMS, JC, ND, CD, HL, AGM, JWS, GJS), informed by World Health Organization (WHO) defined daily doses (DDD) (atcddd.fhi.no/atc ddd index/). It is important to note that the agreed appropriate AED daily doses only apply to monotherapy trials and that the list was used as guidance rather than a set of strict rules. Clinical judgment was required to evaluate the adequacy of AED trials in the context of polytherapy, extremely low or high body weight, and for AED trials taking place in an individual's childhood. Laboratory reports of AED levels were taken into account if available. If the AED levels were below the local reference range while the individual was taking a stable dose of the AED and there were no signs indicating CNS toxicity, the AED trial was considered inadequate. Individuals with non-epileptic seizures or known nonadherence were excluded from the study. Individuals who underwent epilepsy surgery were classified as drug-resistant if they met the DRE criteria before surgery and excluded from analysis if they achieved remission following epilepsy surgery. This classification approach required substantial efforts and resources. Of the ~10,000 individuals in the EpiPGX database, only those who could be robustly classified in one of the two response groups were included. We note that this level of phenotyping depth requires significant time and effort and is not generally feasible. The EpiPGX cohort thus represents a deeply-phenotyped group nested within the broader framework of the Epi25 cohort. The deep phenotyping used for EpiPGX, designed as a pharmacogenomics study, was not undertaken for the second cohort from the Epi25 Collaborative, the primary purpose of which was gene discovery. Overall, the joint cohort achieves robust and

aligned classification of seizure freedom (and thus drug responsiveness, as all patients achieving seizure freedom were on ASMs) and real-world usages for response to individual ASMs. This approach will facilitate both ease of independent replication and enlargement of the cohort in our own future work.

For the Epi25 Collaborative, the unmodified ILAE definitions of DRE (failure of adequate trials of two tolerated, appropriately chosen, and used ASM schedules)² and drug responsiveness ("seizure-free for a minimum of three times the longest pretreatment inter-seizure interval, or 12 months, whichever is longer") were used. This, too, ensures that individuals were seizure-free for at least 12 months (or longer). Across both cohorts, therefore, those deemed drug-responsive had been seizure-free for at least 12 months, a meaningful and consequential period of seizure freedom aligned across the two cohorts. Because detailed drug response data was only provided in a minority of Epi25 participants, we could only include a fraction of the whole Epi25 study. The study cohorts are detailed in Table 1. Both cohorts displayed similar demographics, apart from the mean age at epilepsy onset of drug-responsive individuals, which was higher in the EpiPGX compared to the Epi25 cohort. Age is, however, not considered a factor in the development of drug resistance.¹² The EpiPGX and Epi25 GWAS cohorts included individuals with possible genetic causes (EpiPGX: 3.7% of the drug-resistant and 5.9% of the drug-responsive individuals; Epi25: 17% of the drug-resistant and 13% of the drug-responsive individuals; Supplementary Tables 6 and 7), without a significant enrichment of individuals with a possible genetic cause in either of the drug response groups across both cohorts (P=0.083 [Cochran-Mantel Haenszel test stratified for the two cohorts]). These individuals were included in the analyses following evidence that common genetic risk variants are enriched in individuals with a family history of the phenotype or unique causal variants.^{25–29} Epilepsy type and epilepsy sub-syndromes were diagnosed in all cohorts based on the primary mode of seizure onset (generalised vs focal), taking into account clinical interview data, neurological examination, EEG, and imaging data, following ILAE schemata.30

Single nucleotide polymorphism genotyping

All EpiPGX samples were genotyped at deCODE Genetics (Reykjavik, Iceland) using Illumina single nucleotide polymorphism (SNP) arrays (OmniExpress-12 v1.1, OmniExpress-24 v1.1, Human610-Quad, HumanHap550v3). SNP genotypes were called with the Genotyping Module of

the GenomeStudio Software (Illumina, CA, USA). Epi25 samples were genotyped at the Broad Institute of Harvard and MIT (Cambridge, MA, USA) using the Illumina Global Screening Array with Multi-disease drop-in (GSA-MD v1.0). SNP genotypes were called using Illumina's genotyping analysis software Autocall. Rare SNPs (minor allele frequency, MAF<0.1) were called with the zCall software³¹ into the Autocall output.

Data quality control and imputation - EpiPGX cohort

For the EpiPGX samples, data quality control (QC) and imputation were performed separately for each chip type and genotyping batch. Before imputation, we excluded genotyped individuals based on the following criteria: (1) genotyping call rate (CR) <0.98; (2) heterozygosity rate outliers with >5 standard deviations (SD) from the median of the whole sample, using a subset of uncorrelated SNPs (pairwise $r^2 < 0.1$ in 100 Kbp sliding windows with a step size of 25 SNPs); (3) missing, ambiguous, or sex mismatch between X-chromosome genotype and reported sex; (4) one individual from each pair of closely related individuals with >0.9 identity by state; (5) individuals with <90% European ancestry, as identified using STRUCTURE-v2.2, 32 with HapMap European samples as the reference population and 2,766 ethnicity-sensitive SNPs. We then excluded SNPs based on the following criteria: (1) SNP-CR<0.95; (2) MAF<0.01; (3) deviation from the Hardy-Weinberg equilibrium (HWE) with $P < 10^{-6}$. We applied pre-imputation checks according to scripts available on the website of Will Rayner of the Wellcome Trust Centre for Human Genetics (Supplementary material, URLs) to align the QC-filtered dataset to the imputation reference (variant name, variant position, and strand orientation), remove all A/T and C/G SNPs to avoid strand issues, and to remove SNPs with allele frequencies deviating >20% from the frequency in the 1000 Genomes phase 3 reference.³³ We then split genotypes up according to chromosome arms (and in the case of chromosome X, we split additionally into pseudo-autosomal regions, PAR, and non-PAR) and created phased haplotypes using SHAPEIT-v215³⁴ with recommended effective size setting (HapMap2 European, N=11,418), and using the 1000 Genomes phase 1 integrated (v3) map files as reference. Following haplotype phasing, we imputed genotypes into our dataset using IMPUTE-v2.3.0³⁵ with recommended effective population size settings (20,000) and 1000 Genomes phase 1 integrated (v3) genotypes as reference.³⁶ The haplotype phasing and imputation were performed in separate batches for each genotyping dataset.

Post-imputation QC filters were applied first separately for every imputation batch to remove genotyped variants with low concordance between the observed genotype and masked, imputed genotype (IMPUTE2 r2_type0 score <0.90, concordance_type0<0.90). We then performed further QCs on the merged datasets for GWAS cases and controls separately, removing variants based on the following criteria: (1) SNPtest v2³⁷ imputation quality info score <0.97; (2) SNPtest average_maximum_posterior_call<0.90; (3) MAF<0.01; (4) deviation from HWE with P<10⁻⁶ in controls only. QC-filtered imputed genotypes were converted for subsequent analyses to hard calls using GTOOL (Supplementary material, URLs). At the individual level, we removed duplicate samples across imputation batches (using the same parameter as in the pre-imputation step).

Data quality control and imputation - Epi25 cohort

Before imputation, genotyped Epi25 individuals were excluded based on the following sample-level QC filters: (1) heterozygous/homozygous SNP ratio outliers with >4 SD from the mean of the whole sample; (2) individuals with missing, ambiguous, or mismatch between genetically inferred and reported sex; (3) one individual from each pair of closely related individuals with >0·2 proportion of identity by descent; (4) population outliers not clustering with the 1000 Genomes Project³³ European samples in a principal component analysis (PCA). SNPs were filtered out with the following criteria: (1) SNP-CR<0·98; (2) monomorphic SNPs; (3) SNPs with batch association (P<10⁻⁴); (4) deviation from HWE with P<10⁻¹⁰. The resulting QC-filtered SNPs were used for imputation to the Haplotype Reference Consortium reference r1.1³⁸ using Minimac4³⁹ and reference-based phasing with Eagle-v2.4,⁴⁰ as implemented on the Michigan Imputation Server.³⁹ All Epi25 samples were imputed as one single batch.

Post-imputation, we randomly removed one individual from each pair of individuals with 3rd-degree relationships and higher (kinship coefficient >0.0442) using KING.⁴¹ Imputed genotypes were converted to hard calls using PLINK-v1.9⁴² and filtered for high quality based on the following criteria: (1) Minimac4 imputation quality score, $R^2 \ge 0.3$; (2) Minimac4 squared correlation value between masked genotypes of genotyped SNPs and the imputed dosages, Emp- $R^2 \ge 0.3$.

Detection of overlapping individuals across the EpiPGX and Epi25 cohorts

To identify individuals that were ascertained in the EpiPGX and the Epi25 study without sharing individual-level data between sites, we used a protocol inspired by the one-way cryptographic hash function. One-way cryptographic hashes are a security algorithm form that alters input data so that the resulting output data cannot be reverted feasibly to the original form. We first generated ten batches of SNPs, which did not have missing genotypes in any of the studies. We then computed hash values (checksums) for each of the ten batches for each individual, using the Linux "cksum" command. The "cksum" command will always generate the same unique hash value when using the same SNPs, with the same information (same non-missing genotype), and in the same order (sorted by physical position). We then marked every pair of individuals with one or more identical hash values (out of the ten) as duplicate and excluded the corresponding individual from the Epi25 cohort. The procedure is implemented in Perl and is freely available (Supplementary material, URLs). We removed 22 samples from the Epi25 cohort duplicated between the EpiPGX and Epi25 cohorts before generating the GWAS statistics.

Genetic correlation analyses

We used LDSC to calculate the genetic correlation (Rg) of the drug response phenotype in focal epilepsy with epilepsy and the two main subtypes (focal and generalised epilepsy) (Supplementary Table 5). The summary statistics for epilepsy vs. (healthy) controls were obtained from the most recent GWAS in epilepsy.⁴⁴ We used pre-computed LD scores suitable for GWASs based on European individuals, generated as described in Bulik-Sullivan et al. (2015).⁴⁵

Genome-wide association and meta-analysis

We used logistic regression adjusted for sex and the first ten principal components of ancestry in PLINK-v1.9⁴² to perform separate GWASs in the EpiPGX and Epi25 cohorts. We did not adjust our analysis for potential non-genetic predictors of drug resistance. We performed three GWASs for each cohort in drug-resistant vs. drug-responsive individuals with (1) any type of epilepsy, 'all-EPI'; (2) non-acquired or lesional focal epilepsy, 'FE'; or (3) generalised epilepsy, 'GE'. SNPs for GWASs were selected based on the following criteria: (1) $CR \ge 0.98$ in the combined case/control dataset; (2) $MAF \ge 0.01$; (3) deviation from HWE with $P > 10^{-5}$. Sample and SNP QC procedures were performed using PLINK-v1.9.⁴² To minimise confounding due to population stratification, we performed a stringent, post-imputation selection of individuals clustering exclusively with

Western European and British individuals from the 1000 Genomes Project³³ in a PCA using GCTA.⁴⁶ Of note, as well as excluding individuals with Finnish ancestry, as is standard (best) practice for GWASs in the European population, we also excluded European individuals that clustered with Tuscan⁴⁷ and Iberian⁴⁸ individuals to avoid population stratification within the largely Western and Central European GWAS cohort.

Next, we performed *P*-value-based fixed-effects meta-analyses with GWAMA⁴⁹ for each of the three epilepsy phenotypes (all-EPI, FE, and GE). The threshold for genome-wide significance in the meta-analyses was set to the commonly used $\alpha=5x10^{-8}$. Fine-mapping of the meta-analysis association signals was performed using FUMA,⁵⁰ LocusZoom,⁵¹ and Haploview.⁵² Gene-based association analyses were performed using MAGMA⁵³ as implemented in FUMA. The Bonferroni-corrected threshold for a significant association in the MAGMA analysis was set to $\alpha=2.63x10^{-6}$ (19,005 tested protein-coding genes).

Transcriptome-wide association analysis (TWAS) was performed using the S-MultiXcan framework⁵⁴ on all available brain-specific GTEx v8 transcriptome datasets (N=13). S-MultiXcan⁵⁴ leverages the substantial sharing of quantitative trait loci (QTL) across tissues to increase the power of identifying associated gene expression or alternative splicing variation.⁵⁵ Expression and splicing predictions were generated using multivariate adaptive shrinkage (mash) models⁵⁶ for GTEx v8 expression QTL (eQTL) and splicing QTL (sQTL) data.⁵⁷ We then applied the S-MultiXcan framework on all brain-specific GTEx v8 transcriptome datasets (N=13). The Bonferroni-corrected thresholds for a significant association were set to α =2·69x10⁻⁶ (18,562 tested genes) in the eQTL-based TWAS and α =3·78x10⁻⁷ (132,272 tested splicing events) in the sQTL-based TWAS. Power calculations were performed *post hoc* using the PGA Power Calculator,⁵⁸ assuming a disease prevalence of 0·1%, an additive risk model, and linkage disequilibrium (LD) r²=0·9 between a causal variant and a genotyped marker.

Role of funders

The funding institutions had no role in the design and conduct of the study, including data collection, analysis, and interpretation of results, or the preparation, review, and decision to submit the manuscript for publication.

Results

Genome-wide association meta-analysis reveals one locus associated with drug resistance in focal epilepsy

To test for a possible genetic basis of DRE, we performed European ancestry-focused genomewide association (GWA) meta-analyses in 4,208 individuals with DRE vs. 2,618 individuals with drug-responsive epilepsy. We did not identify any genome-wide significant loci in the all-EPI analysis (Figure 1) despite 80% power to detect a genetic predictor of relative risk ≥1.33 (Supplementary Figures 1 and 2). Subanalyses were performed in drug-resistant vs. drugresponsive individuals with FE or GE (see cohorts in Table 1). The sample size for drug-resistant GE was underpowered to detect common risk factors and SNPs showing association trends not overlapping with 'all-EPI' or FE associatiation signals (Figure 1, Supplementary Figure 1). Fixedeffects GWA meta-analysis for drug resistance in FE identified seven genome-wide significant SNPs in a region of strong linkage disequilibrium on chromosome 1q42.11-q42.12 encompassing CNIH4, WDR26, and CNIH3 (lead SNP: rs35915186, P=1.51x10⁻⁸ [logistic regression], odds ratio OR[C]=0.74, 95% confidence interval [95%-CI]:0.66-0.82) (Figure 1). Interestingly, all associated SNPs at the identified locus had OR<1, indicating that the minor allele (MAF=0·14) protects against drug resistance. This locus was not significantly associated with any epilepsy subtype in the most recent epilepsy GWAS⁴⁴ (lowest uncorrected P=0.009 [linear mixed model] for FE vs healthy controls, Supplementary Tables 2 and 3). The GWAS Catalog listed 86 associations with $P < 5 \times 10^{-8}$ within +/-500Kb of the lead SNP, of which 33 were in strong LD with rs35915186 (r²>0·8), but none were related to neurological or psychiatric traits (Supplementary Table 4). Notably, we did not find any genetic correlation between drug resistance in FE and susceptibility to FE itself, based on genetic correlation analyses with the ILAE 2023 GWAS for FE⁴⁴ (linkage disequilibrium score regression genetic heritability=-0.22, standard error=0.38, P=0.28 [regression]; Supplementary Table 5).

WDR26, CNIH3, and CNIH4 are candidate drivers of drug response in focal epilepsy

Fine-mapping of the region associated with drug response in FE narrowed down the critical region to a 161Kb LD block of 106 SNPs in high LD with at least one of the seven genome-wide significant SNPs ($r^2 \ge 0.8$ using 1000g Phase 3 EUR data, Figure 2). The identified LD block featured three genes: *CNIH4*, *WDR26*, and the first two exons of a *CNIH3* transcript variant (ENST00000471578.5). All three genes emerged as genome-wide significant after Bonferroni

correction for multiple testing ($P < 2.63 \times 10^{-6}$ [multiple regression with F-test]) in a MAGMA⁵³ gene-based association analysis of drug-resistant FE (Supplementary Table 1, Supplementary Figure 3).

We then performed two multi-tissue TWASs for eQTL and sQTL GTEx v8 data using S-MultiXcan⁵⁴ to identify expression or splicing events associated with drug response in FE. eQTL-based TWAS across 13 GTEx v8 brain tissues implied significantly higher expression levels of *CNIH3* and *WDR26* in drug-resistant compared to drug-responsive FE (P_{CNIH3} =1·10x10⁻⁶, Z_{MEAN} =3·55; P_{WDR26} =1·60x10⁻⁶, Z_{MEAN} =3·44; multivariate regression with F-test; Table 2) at a Bonferroni-corrected significance threshold α =2·69x10⁻⁶. sQTL-based TWAS across the same brain tissues revealed 18 unique splicing events associated with drug response in FE, mapping exclusively to the three candidate genes at a Bonferroni-corrected significance threshold α =3·78x10⁻⁷ (*CNIH3*, *WDR26*, and *CNIH4*, Supplementary Table 9).

CNIH3 is one of two members of the cornichon family of transmembrane proteins coassembled with AMPA receptors (along with CNIH2)⁵⁹ and a brain-specific expressed gene that shows the highest expression in the frontal cortex (BA9).⁶⁰ Upon successful assembly, CNIH3 increases the surface expression of AMPA receptors and slows deactivation and desensitisation kinetics. 59,61 Cnih3 knock-out in mice depresses AMPA receptor synaptic transmission only when combined with Cnih2 knock-out, suggesting that CNIH2 can compensate for the lack of CNIH3.62 All four genes encoding AMPA receptors have been reported to cause monogenic autosomal dominant neurodevelopmental disorders with seizures (GRIA1, 63 GRIA2, 64 GRIA3, 65 GRIA466). CNIH4 is a brain-expressed but not brain-specific gene that shows the highest expression in cultured fibroblasts⁶⁰ and is a distantly related member of the cornichon family,⁶⁷ which lacks key residues responsible for binding to AMPA receptors.⁶⁸ Cnih4 knock-out mice were reported as viable without any "overt" developmental abnormalities. 68 WDR26 is a brain-expressed but not brain-specific gene with the highest expression levels in the skin. 60 WDR26 haploinsufficiency is known to cause an (ultra-rare) distinct clinical phenotype characterised by intellectual disability and seizures (WDR26-related intellectual disability / Skraban-Deardorff syndrome).⁶⁹ The exact biological function of WDR26 is not established; studies suggest roles in MAPK signalling,⁷⁰ PI3K/AKT signalling,⁷¹ and the negative regulation of β-catenin degradation within the Wnt signalling pathway⁷² (among other possible functions^{73–76}). Notably, the seizure types described in affected individuals were self-limited or responded well to standard treatments.⁷⁷ Upon screening

samples that also had whole-exome sequencing, we identified 10 individuals with FE, eight individuals with GE and one individual with DEE who carried rare variants in the candidate genes (N_{WDR26} =10, N_{CNIH3} =7, and N_{CNIH4} =2). Only one of these variants was classified as likely pathogenic according to ACMG criteria (without considering gene-disease relationships), while all others were classified as variants of uncertain significance. There was no clear over-representation of rare variant carriers in either group (drug-resistant or drug-responsive) (Supplementary Table 8).

Discussion

We performed case-case GWAS meta-analyses for drug response in the EpiPGX Consortium and the Epi25 Collaborative cohorts. Following evidence from previous studies that showed significant differences between the genetic architectures of epilepsy sub-syndromes, ^{78,79} we performed additional GWAS meta-analyses for drug resistance in focal (FE) and generalised epilepsy (GE). We found a genome-wide significant locus at 1q42.11-q42.12 associated with protection against drug resistance in FE. This common risk locus driving drug response in FE was not previously reported as a risk factor for FE itself or any other epilepsy type. ⁴⁴ We had insufficient power to identify genetic factors associated with drug-resistant GE. In line with our hypothesis that different mechanisms drive drug response in FE compared to GE, we found no significant risk factors when combining FE and GE in an 'all epilepsies' (all-EPI) analysis. This study and one of our previous GWAS studies in mesial temporal lobe epilepsy with febrile seizures⁸⁰ demonstrate the value of focusing on more narrowly defined subtypes to identify common risk factors for traits of interest in FE.

Fine-mapping the association signal for drug response in FE revealed three candidate genes: *CNIH4*, *WDR26*, and *CNIH3*. Among these, pathogenic variation in *WDR26* has been shown to cause a drug-responsive seizure phenotype⁷⁷ consistent with the protective effect from drug-resistant epilepsy we observed from the meta-analysis, and the higher expression levels for *CNIH3* and *WDR26* in drug-resistant cases suggested by the TWAS. Although *CNIH3* has not been identified as a monogenic epilepsy gene, common *CNIH3* variants could plausibly act as a modifier of drug response. CNIH3 acts as an auxiliary subunit that regulates AMPA receptor gating and trafficking,^{59,61,81} and abnormal AMPA receptor trafficking could contribute to seizure activity.⁸² Our result should spark further research to uncover novel therapies, as no drug-gene

interactions are currently reported for the three candidate genes. ⁸³ Our eQTL- and sQTL-based TWAS framework could not conclusively prioritise between the three candidate genes. However, as the underlying gene expression and splicing variation predictions are based on GTEx postmortem bulk transcriptomics data, our analyses may suffer from sensitivity limitations and not fully capture cell-type-specific expression and transcriptional patterns of living tissues or under disease-specific conditions. ⁸⁴

While we identified common variants predicting drug response in FE, additional genetic (and environmental) factors are likely to play a role in DRE. There is accumulating evidence that rare genetic variation is important in epilepsy causation, and such variation can overlap with poor response to ASMs.⁸⁵ Rare variants known to cause monogenic forms of epilepsy can also influence drug response. For example, sodium channel blockers aggravate seizures in most people with Dravet syndrome due to loss-of-function *SCN1A*⁸⁶ mutations or epilepsy due to loss-of-function variants in *SCN2A*⁸⁷ or *SCN8A*.⁸⁸ Conversely, sodium channel blockers are an effective treatment for people with epilepsy due to gain-of-function variants in *SCN1A*,⁸⁹ *SCN2A*,⁸⁷ or *SCN8A*.⁸⁸

Further research in larger cohorts is needed to detect the causal genes and mechanisms for drug resistance in epilepsy. Our GWA meta-analyses were underpowered to capture significant single-SNP associations with drug-resistant GE. We focused on overall drug resistance in large epilepsy subgroups. Testing in larger cohorts that allow drug-specific sub-analyses, drug-matched control usage, and stratification for comorbid disorders may help uncover biomarkers for drugspecific resistance in epilepsy. For example, a recent study suggested rare variants underlie resistance to two common ASMs:85 rare variants in ADME (absorption, distribution, metabolism, and excretion) genes were associated with resistance to valproic acid and rare variants in drug target genes were associated with resistance to levetiracetam. We opted for a very stringent selection of individuals with Western and Central European-like ancestry to reduce potential confounding of association statistics by population sub-structure. 90 Therefore, the generalizability of these results to individuals beyond European-like ancestry remains to be determined. Operational definitions, typically applied at a single point in time to define drug-resistant and drugresponsive cases, cause additional challenges in drug-resistance research in epilepsy. Such definitions do not consider the dynamic relationship between drug resistance and seizure remission and recurrence. Most people with epilepsy attain remission early, later in their disease history, or never, with only a minority fluctuating between periods of seizure freedom and relapse. 91 Because

a dynamic course is more common in individuals with infrequent seizures, ⁹² the EpiPGX definition of DRE (which requires a minimum of four seizures in the past 12 months) partially addresses this issue. Continued efforts are needed in the field to reach a consensus on addressing the temporal course of drug resistance in epilepsy for research purposes. Finally, phenotyping and clinical information collection for the EpiPGX cohort was completed over a decade ago, utilising terminology and classifications predating the current definition of Developmental and Epileptic Encephalopathies (DEEs). ⁹³ Consequently, the presence of individuals with DEE within the FE GWAS meta-analyses cannot be entirely ruled out. However, we note that even if there were an over-representation of individuals with DEE in the drug-resistant cohorts, and even if these individuals have a monogenic basis for their epilepsy and the drug-resistant nature of that epilepsy, this would serve only to reduce the power of our current analysis. The same applies to the possibility that any focal epilepsies might have been monogenic.

In conclusion, we show that drug resistance in focal epilepsy has a common genetic component. More large-scale projects are needed to identify biomarkers for drug resistance in epilepsy. Potentially, such work could provide new clues to the aetiology and pathophysiology of drug-resistant epilepsy, especially focal epilepsy. The common polygenic nature of the genetic contribution to drug resistance could inform treatment strategies and may point to the need for alternative approaches focused broadly on pathways rather than single molecular targets.

Contributors

CL and SMS designed the study. AA, AGM, ALJ, BMN, BPCK, CAB, CD, FZ, GJS, GLC, HL, HS, JJC, JWS, KS, LJ, MRJ, ND, PM, PS, SFB, SMS, TJOB, UU, the EpiPGX Consortium, and the Epi25 Collaborative collected data. AA, CL, EH, HMC, LJ, MEO, PM, RS, SC, and UU analysed the data. AA, CL, DS, RS, and SMS accessed and verified the underlying data, interpreted the analyses, and were responsible for the decision to submit the manuscript. BMN, DL, HS, PM, RK, and SMS provided the computational infrastructure. SMS supervised the study. AA, CL, RS, and SMS wrote the manuscript. All authors interpreted the data, read and revised the manuscript, and approved the final version of the manuscript.

Declaration of Interests

AA is an employee of Regenon and owns Regenon stocks.. AGM received institutional consulting fees from Jazz Pharmaceuticals and UCB Pharma; institutional honoraria for lectures from Sanofi and GSK, institutional support for meeting attendance/travel from Angelini Pharma, and has unpaid leadership roles at the European Academy of Neurology and Epilepsy Research Institute... BMN is a member of the Neumora Scientific and Deep Genomics Scientific Advisory boards.. CD received institutional honoraria from UCB Pharma, support for meeting attendance/travel from Angelini Pharma, and is a member of Angelini Pharma and Neuraxpharm Advisory Boards.. DL received institutional research funding from the National Institutes of Health (NIH), National Institute of Neurological Disorders and Stroke (NINDS) under R01 NS117544.. GC received research funding from Janssen Pharmaceuticals and consultancy fees from Ono Pharmaceuticals... GJS received personal consulting fees from Angelini Pharma, and personal honoraria for lectures from Angelini Pharma, Bial Pharma UK, and UCB Pharma. HL received personal consulting fees from Praxis Precision Medicine and institutional fees from Lario Therapeutics, personal lecture honoraria from Eisai and UCB Pharma, personal payment for expert testimony for Fondazione Telethon, and is an advisory board member of IntraBio.. HS, KS, and UU are employees of deCODE genetics/Amgen Inc.. JJC received honoraria from UCB-Pharma, Glaxo Smith Kline, Janssen-Cilag, Sanofi-Synthelabo, Pfizer, and Eisai to attend advisory boards, present lectures / tutorials.. JWS received institutional research funding from the UK National Institute for Health Research, Angelini Pharma, UCB Pharma, Epilepsy NL, the Academy of Medical Sciences, and the Wellcome Trust Alliance, institutional consulting fees from the UK Competition & Markets

Authority and Eisai, personal honoraria from Angelini Pharma, Eisai, and UCB, and personal fees for participation on an advisory board of Angelini Pharma, and holds unpaid roles as Medical Director of the UK Epilepsy Society and Editorial Board member for Lancet Neurology.. LJ received institutional research funding from the Swedish state under the ALF agreement (ALFGBG-966370), Genomic Medicine Sweden (GMS K131050263), and the Söderström König Foundation.. MRJ received research funding from the UK Research and Innovation (UKRI) Medical Research Council (MRC) (Award Nos. MR/S02638X/1 and MR/W029790/1).. ND received consulting fees and honoraria from Angelini Pharma, Actiobio, Eisai, UNEEG Medical, and Jazz Pharma, and owns stocks from Actiobio.. PS received consulting fees from Jazz Healthcare and UCB Pharma for participation on advisory boards, and honoraria from Proveca and UCB Pharma for presentation at congresses/workshops.. SFB received institutional research funding from the National Health and Medical Research Council (NHMRC) (Grant IDs 1091593, 1196637, 2010562), UCB Pharma, Eisai, SEER, Chiesi, and LivaNova, personal consulting fees from Praxis Precision Medicines, personal honoraria from Eisai and DeltaMed, co-owns a patent held by Bionomics Inc. licensed to Athena Diagnostics, Genetics Technologies Ltd, and is the Chief Medical Officer of the Epilepsy Foundation (Victoria).. SMS received institutional research funding from CURE Epilepsy, Epilepsy Society, and MRC, honoraria from Angelini Pharma, Eisai, Zogenix, UCB, Eisai, Jazz Pharmaceuticals, and UCB, travel support from UCB Pharma, and is a member of Advisory Boards of Biocodex, Stoke Therapeutics, and Takeda.. TJOB received institutional research funding from NHMRC, MRFF, DOD, and NIH, institutional consulting fees from Kinoxis Therapeutics, Jazz Pharmaceuticals, and Livanova, institutional honoraria from UCB, institutional travel support from Longboard Pharmaceuticals, is a member of the Kinoxis Therapeutics Advisory Board, and hold an unpaid position as Cabrini Health Board Member. All other authors have no conflict of interests to declare.

Acknowledgements

We thank all the people with epilepsy who contributed to this project. Parts of the computational analysis were performed on the high-performance computer system of the University of Luxembourg. We thank the Epi25 principal investigators, local staff from individual cohorts, and all of the patients with epilepsy who participated in the study for making this global collaboration

and resource possible to advance epilepsy genetics research. We thank the Stanley Center for Psychiatric Research at the Broad Institute for supporting the genomic data generation efforts.

This work is part of the European Union's Seventh Framework Programme (FP7/2007-2013), and GJS, HL, and SMS received research funding under grant agreement n° 279062 (EpiPGX). The contribution of HL and his group was further supported by the German Research Foundation (DFG, FOR-2715, LE1030/16-2) and the Federal Ministry of Education and Research (BMBF, Treat-ION, 01GM2210A). SMS received additional institutional research funding from the Epilepsy Society for the current study. We are grateful for support from the Epilepsy Society. MRJ was supported by the UKRI MRC (Award No: MR/S02638X/1). TJOB and Australian patient sample collection and phenotyping were supported by an NHMRC Program Grant (#APP1091593) and an NHMRC Investigator Grant (#APP1176426). This work was partly carried out at NIHR University College London Hospitals Biomedical Research Centre, which receives a proportion of funding from the UK Department of Health's NIHR Biomedical Research Centres funding scheme. PS and FZ were supported by #NEXTGENERATIONEU (NGEU) and funded by the Ministry of University and Research (MUR), National Recovery and Resilience Plan (NRRP), project MNESYS (PE0000006) – A Multiscale integrated approach to the study of the nervous system in health and disease (DN. 1553 11.10.2022). IRCCS 'G. Gaslini' is a member of ERN-Epicare. This publication has partly emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number 16/RC/3948 and co-funded under the European Regional Development Fund and by FutureNeuro industry partners. This work is part of the Centers for Common Disease Genomics (CCDG) program, funded by the National Human Genome Research Institute (NHGRI) and the National Heart, Lung, and Blood Institute (NHLBI). CCDG-funded Epi25 research activities at the Broad Institute, including genomic data generation in the Broad Genomics Platform, are supported by NHGRI grant UM1 HG008895. The Genome Sequencing Program efforts were also supported by NHGRI grant 5U01HG009088-02. The content is solely the authors' responsibility and does not necessarily represent the official views of the National Institutes of Health. Supplemental Epi25 phenotyping was supported by "Epi25 Clinical Phenotyping R03" National Institutes of Health (1R03NS108145-01).

Data Sharing Statement

GWAS/meta-analysis summary statistics that support the findings of this study are available on application to the Data Access Committees of the EpiPGX Consortium and the Epi25 Collaborative through the corresponding authors. Due to ethical restrictions, we cannot publicly share individual-level raw data of the EpiPGX cohort. However, subject to data use agreements and collaborator approval, we can provide regulated access to bona fide researchers on our secure servers. Interested researchers can contact the corresponding author for further details. Individual-level raw data of the Epi25 cohort are deposited in dbGaP (accession number: phs001489.v3.p2). Summary statistics of GWAS in epilepsy used in this study for correlation analyses are available from the open-access Epilepsy Genetic Association database (epiGAD, https://www.epigad.org/).

References

- 1. Bell GS, Neligan A, Sander JW. An unknown quantity--the worldwide prevalence of epilepsy. Epilepsia. 2014 Jul;55(7):958–62.
- 2. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010 Jun;51(6):1069–77.
- 3. Tellez-Zenteno JF, Patten SB, Jetté N, Williams J, Wiebe S. Psychiatric comorbidity in epilepsy: a population-based analysis. Epilepsia. 2007 Dec;48(12):2336–44.
- 4. Téllez-Zenteno JF, Matijevic S, Wiebe S. Somatic comorbidity of epilepsy in the general population in Canada. Epilepsia. 2005 Dec;46(12):1955–62.
- 5. Lang J, Jeschke S, Herziger B, Müller RM, Bertsche T, Neininger MP, et al. Prejudices against people with epilepsy as perceived by affected people and their families. Epilepsy Behav. 2022 Feb;127:108535.
- 6. Krumholz A, Hopp JL, Sanchez AM. Counseling Epilepsy Patients on Driving and Employment. Neurol Clin. 2016 May;34(2):427–42, ix.
- 7. Kaur J, Paul BS, Goel P, Singh G. Educational achievement, employment, marriage, and driving in adults with childhood-onset epilepsy. Epilepsy Behav. 2019 Aug;97:149–53.
- 8. Beghi E. Accidents and injuries in patients with epilepsy. Expert Rev Neurother. 2009 Feb;9(2):291–8.
- 9. Tian N, Boring M, Kobau R, Zack MM, Croft JB. Active Epilepsy and Seizure Control in Adults United States, 2013 and 2015. MMWR Morb Mortal Wkly Rep. 2018 Apr 20;67(15):437–42.
- 10. Kalilani L, Sun X, Pelgrims B, Noack-Rink M, Villanueva V. The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia. 2018 Dec;59(12):2179–93.
- 11. Chen Z, Brodie MJ, Liew D, Kwan P. Treatment Outcomes in Patients With Newly Diagnosed Epilepsy Treated With Established and New Antiepileptic Drugs: A 30-Year Longitudinal Cohort Study. JAMA Neurol. 2018 01;75(3):279–86.
- 12. Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev. 2020;72(3):606–38.
- 13. Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain. 2006 Jan;129(Pt 1):18–35.
- 14. Löscher W. How to explain multidrug resistance in epilepsy? Epilepsy Curr. 2005 Jun;5(3):107–12.
- 15. Rogawski MA, Johnson MR. Intrinsic severity as a determinant of antiepileptic drug refractoriness. Epilepsy Curr. 2008 Oct;8(5):127–30.

- 16. Kobow K, El-Osta A, Blümcke I. The methylation hypothesis of pharmacoresistance in epilepsy. Epilepsia. 2013 May;54 Suppl 2:41–7.
- 17. Fang M, Xi ZQ, Wu Y, Wang XF. A new hypothesis of drug refractory epilepsy: neural network hypothesis. Med Hypotheses. 2011 Jun;76(6):871–6.
- 18. Tang F, Hartz AMS, Bauer B. Drug-Resistant Epilepsy: Multiple Hypotheses, Few Answers. Front Neurol. 2017;8:301.
- 19. Speed D, Hoggart C, Petrovski S, Tachmazidou I, Coffey A, Jorgensen A, et al. A genome-wide association study and biological pathway analysis of epilepsy prognosis in a prospective cohort of newly treated epilepsy. Hum Mol Genet. 2014 Jan 1;23(1):247–58.
- 20. Ellis CA, Tu D, Oliver KL, Mefford HC, Hauser WA, Buchhalter J, et al. Familial aggregation of seizure outcomes in four familial epilepsy cohorts. Epilepsia. 2024 May 13;
- 21. Sultana B, Panzini MA, Veilleux Carpentier A, Comtois J, Rioux B, Gore G, et al. Incidence and Prevalence of Drug-Resistant Epilepsy: A Systematic Review and Meta-analysis. Neurology. 2021 Apr 27;96(17):805–17.
- 22. Epi25 Collaborative. Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes. Nat Neurosci. 2024 Oct;27(10):1864–79.
- 23. Epi25 Collaborative. Electronic address: s.berkovic@unimelb.edu.au, Epi25 Collaborative. Ultra-Rare Genetic Variation in the Epilepsies: A Whole-Exome Sequencing Study of 17,606 Individuals. Am J Hum Genet. 2019 Aug 1;105(2):267–82.
- 24. Kwan P. Defining drug-resistant epilepsy. Neurology Asia. 2011;16:67-9.
- 25. Tosto G, Bird TD, Tsuang D, Bennett DA, Boeve BF, Cruchaga C, et al. Polygenic risk scores in familial Alzheimer disease. Neurology. 2017 Mar 21;88(12):1180–6.
- 26. Gormley P, Kurki MI, Hiekkala ME, Veerapen K, Häppölä P, Mitchell AA, et al. Common Variant Burden Contributes to the Familial Aggregation of Migraine in 1,589 Families. Neuron. 2018 16;98(4):743-753.e4.
- 27. Niemi MEK, Martin HC, Rice DL, Gallone G, Gordon S, Kelemen M, et al. Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature. 2018;562(7726):268–71.
- 28. Andlauer TFM, Guzman-Parra J, Streit F, Strohmaier J, González MJ, Gil Flores S, et al. Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders. Mol Psychiatry. 2021 Apr;26(4):1286–98.
- 29. Oliver KL, Ellis CA, Scheffer IE, Ganesan S, Leu C, Sadleir LG, et al. Common risk variants for epilepsy are enriched in families previously targeted for rare monogenic variant discovery. eBioMedicine. 2022 Jul;81:104079.

- 30. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, Van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010 Apr;51(4):676–85.
- 31. Goldstein JI, Crenshaw A, Carey J, Grant GB, Maguire J, Fromer M, et al. zCall: a rare variant caller for array-based genotyping: genetics and population analysis. Bioinformatics. 2012 Oct 1;28(19):2543–5.
- 32. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003 Aug;164(4):1567–87.
- 33. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015 Oct 1;526(7571):68–74.
- 34. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods. 2013 Jan;10(1):5–6.
- 35. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009 Jun;5(6):e1000529.
- 36. Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 (Bethesda). 2011 Nov;1(6):457–70.
- 37. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010 Jul;11(7):499–511.
- 38. the Haplotype Reference Consortium. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016 Oct;48(10):1279–83.
- 39. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48(10):1284–7.
- 40. Loh PR, Danecek P, Palamara PF, Fuchsberger C, A Reshef Y, K Finucane H, et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet. 2016;48(11):1443–8.
- 41. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010 Nov 15;26(22):2867–73.
- 42. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.
- 43. Turchin MC, Hirschhorn JN. Gencrypt: one-way cryptographic hashes to detect overlapping individuals across samples. Bioinformatics. 2012 Mar 15;28(6):886–8.
- 44. International League Against Epilepsy Consortium on Complex Epilepsies, Stevelink R, Campbell C, Chen S, Abou-Khalil B, Adesoji OM, et al. GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture. Nat Genet. 2023 Sep;55(9):1471–82.

- 45. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics Consortium, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015 Mar;47(3):291–5.
- 46. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011 Jan 7;88(1):76–82.
- 47. Raveane A, Aneli S, Montinaro F, Athanasiadis G, Barlera S, Birolo G, et al. Population structure of modern-day Italians reveals patterns of ancient and archaic ancestries in Southern Europe. Sci Adv. 2019 Sep;5(9):eaaw3492.
- 48. Olalde I, Mallick S, Patterson N, Rohland N, Villalba-Mouco V, Silva M, et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science. 2019 Mar 15;363(6432):1230–4.
- 49. Mägi R, Morris AP. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics. 2010;11:288.
- 50. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017 28;8(1):1826.
- 51. Boughton AP, Welch RP, Flickinger M, VandeHaar P, Taliun D, Abecasis GR, et al. LocusZoom.js: interactive and embeddable visualization of genetic association study results. Marschall T, editor. Bioinformatics. 2021 Sep 29;37(18):3017–8.
- 52. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005 Jan 15;21(2):263–5.
- 53. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015 Apr;11(4):e1004219.
- 54. Barbeira AN, Pividori M, Zheng J, Wheeler HE, Nicolae DL, Im HK. Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet. 2019 Jan;15(1):e1007889.
- 55. Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, Torres JM, et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun. 2018 May 8;9(1):1825.
- 56. Urbut SM, Wang G, Carbonetto P, Stephens M. Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. Nat Genet. 2019 Jan;51(1):187–95.
- 57. Barbeira AN, Melia OJ, Liang Y, Bonazzola R, Wang G, Wheeler HE, et al. Fine-mapping and QTL tissue-sharing information improves the reliability of causal gene identification. Genet Epidemiol. 2020 Sep 10;44(8):854–67.
- 58. Menashe I, Rosenberg PS, Chen BE. PGA: power calculator for case-control genetic association analyses. BMC Genet. 2008 May 13;9:36.

- 59. Schwenk J, Harmel N, Zolles G, Bildl W, Kulik A, Heimrich B, et al. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science. 2009 Mar 6;323(5919):1313–9.
- 60. The GTEx Consortium, Aguet F, Anand S, Ardlie KG, Gabriel S, Getz GA, et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020 Sep 11;369(6509):1318–30.
- 61. Coombs ID, Soto D, Zonouzi M, Renzi M, Shelley C, Farrant M, et al. Cornichons Modify Channel Properties of Recombinant and Glial AMPA Receptors. Journal of Neuroscience. 2012 Jul 18;32(29):9796–804.
- 62. Herring BE, Shi Y, Suh YH, Zheng CY, Blankenship SM, Roche KW, et al. Cornichon proteins determine the subunit composition of synaptic AMPA receptors. Neuron. 2013 Mar 20;77(6):1083–96.
- 63. Ismail V, Zachariassen LG, Godwin A, Sahakian M, Ellard S, Stals KL, et al. Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome. Am J Hum Genet. 2022 Jul 7;109(7):1217–41.
- 64. Efthymiou S, Rumbos Siurana E, Salpietro V, Bayat A, Houlden H. GRIA2-Related Neurodevelopmental Disorder. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993 [cited 2025 Mar 11]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK599285/
- 65. Rinaldi B, Bayat A, Zachariassen LG, Sun JH, Ge YH, Zhao D, et al. Gain-of-function and loss-of-function variants in *GRIA3* lead to distinct neurodevelopmental phenotypes. Brain. 2024 May 3;147(5):1837–55.
- 66. Martin S, Chamberlin A, Shinde DN, Hempel M, Strom TM, Schreiber A, et al. De Novo Variants in GRIA4 Lead to Intellectual Disability with or without Seizures and Gait Abnormalities. Am J Hum Genet. 2017 Dec 7;101(6):1013–20.
- 67. Erives A, Fritzsch B. A Screen for Gene Paralogies Delineating Evolutionary Branching Order of Early Metazoa. G3 (Bethesda). 2020 Feb 6;10(2):811–26.
- 68. Dil S, Ye J, Ma H, Unar A, Khan I, Ali A, et al. Cornichon protein CNIH4 is not essential for mice gametogenesis and fertility. Dev Biol. 2023 Jan 16;496:15–23.
- 69. Skraban CM, Wells CF, Markose P, Cho MT, Nesbitt AI, Au PYB, et al. WDR26 Haploinsufficiency Causes a Recognizable Syndrome of Intellectual Disability, Seizures, Abnormal Gait, and Distinctive Facial Features. Am J Hum Genet. 2017 Jul 6;101(1):139–48.
- 70. Zhu Y, Wang Y, Xia C, Li D, Li Y, Zeng W, et al. WDR26: a novel Gbeta-like protein, suppresses MAPK signaling pathway. J Cell Biochem. 2004 Oct 15;93(3):579–87.
- 71. Ye Y, Tang X, Sun Z, Chen S. Upregulated WDR26 serves as a scaffold to coordinate PI3K/ AKT pathway-driven breast cancer cell growth, migration, and invasion. Oncotarget. 2016 Apr 5;7(14):17854–69.

- 72. Goto T, Matsuzawa J, Iemura SI, Natsume T, Shibuya H. WDR26 is a new partner of Axin1 in the canonical Wnt signaling pathway. FEBS Lett. 2016 May;590(9):1291–303.
- 73. Jiang L, Wang H, Chen G, Feng Y, Zou J, Liu M, et al. WDR26/MIP2 interacts with VDAC1 and regulates VDAC1 expression levels in H9c2 cells. Free Radic Biol Med. 2018 Mar;117:58–65.
- 74. Sun Z, Tang X, Lin F, Chen S. The WD40 repeat protein WDR26 binds Gβγ and promotes Gβγ-dependent signal transduction and leukocyte migration. J Biol Chem. 2011 Dec 23;286(51):43902–12.
- 75. Feng Y, Zhao J, Hou H, Zhang H, Jiao Y, Wang J, et al. WDR26 promotes mitophagy of cardiomyocytes induced by hypoxia through Parkin translocation. Acta Biochim Biophys Sin (Shanghai). 2016 Dec;48(12):1075–84.
- 76. Hasegawa M, Parkos CA, Nusrat A. WD40 Repeat Protein 26 Negatively Regulates Formyl Peptide Receptor-1 Mediated Wound Healing in Intestinal Epithelial Cells. Am J Pathol. 2020 Oct;190(10):2029–38.
- 77. Skraban CM, Grand KL, Deardorff MA. WDR26-Related Intellectual Disability. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993 [cited 2025 Mar 11]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK540448/
- 78. Speed D, O'Brien TJ, Palotie A, Shkura K, Marson AG, Balding DJ, et al. Describing the genetic architecture of epilepsy through heritability analysis. Brain. 2014 Oct;137(Pt 10):2680–9.
- 79. The International League Against Epilepsy Consortium on Complex Epilepsies, Abou-Khalil B, Auce P, Avbersek A, Bahlo M, Balding DJ, et al. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat Commun. 2018 Dec 10;9(1):5269.
- 80. Kasperaviciute D, Catarino CB, Matarin M, Leu C, Novy J, Tostevin A, et al. Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A. Brain. 2013 Oct;136(Pt 10):3140–50.
- 81. Nakagawa T. Structures of the AMPA receptor in complex with its auxiliary subunit cornichon. Science. 2019 Dec 6;366(6470):1259–63.
- 82. Eiro T, Miyazaki T, Hatano M, Nakajima W, Arisawa T, Takada Y, et al. Dynamics of AMPA receptors regulate epileptogenesis in patients with epilepsy. Cell Rep Med. 2023 May 16;4(5):101020.
- 83. Cannon M, Stevenson J, Stahl K, Basu R, Coffman A, Kiwala S, et al. DGIdb 5.0: rebuilding the druggene interaction database for precision medicine and drug discovery platforms. Nucleic Acids Res. 2024 Jan 5;52(D1):D1227–35.
- 84. Dachet F, Brown JB, Valyi-Nagy T, Narayan KD, Serafini A, Boley N, et al. Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain. Sci Rep. 2021 Mar 23;11(1):6078.

- 85. Wolking S, Moreau C, Nies AT, Schaeffeler E, McCormack M, Auce P, et al. Testing association of rare genetic variants with resistance to three common antiseizure medications. Epilepsia. 2020 Apr;61(4):657–66.
- 86. Brunklaus A, Lal D. Sodium channel epilepsies and neurodevelopmental disorders: from disease mechanisms to clinical application. Dev Med Child Neurol. 2020 Jul;62(7):784–92.
- 87. Wolff M, Johannesen KM, Hedrich UBS, Masnada S, Rubboli G, Gardella E, et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain. 2017 May 1;140(5):1316–36.
- 88. Johannesen KM, Liu Y, Koko M, Gjerulfsen CE, Sonnenberg L, Schubert J, et al. Genotype-phenotype correlations in *SCN8A* -related disorders reveal prognostic and therapeutic implications. Brain. 2022 Sep 14;145(9):2991–3009.
- 89. Brunklaus A, Brünger T, Feng T, Fons C, Lehikoinen A, Panagiotakaki E, et al. The gain of function SCN1A disorder spectrum: novel epilepsy phenotypes and therapeutic implications. Brain. 2022 Jun 13;awac210.
- 90. Sarmanova A, Morris T, Lawson DJ. Population stratification in GWAS meta-analysis should be standardized to the best available reference datasets [Internet]. Genetics; 2020 Sep [cited 2023 Feb 20]. Available from: http://biorxiv.org/lookup/doi/10.1101/2020.09.03.281568
- 91. Brodie MJ, Barry SJE, Bamagous GA, Norrie JD, Kwan P. Patterns of treatment response in newly diagnosed epilepsy. Neurology. 2012 May 15;78(20):1548–54.
- 92. Berg AT, Levy SR, Testa FM, D'Souza R. Remission of epilepsy after two drug failures in children: a prospective study. Ann Neurol. 2009 May;65(5):510–9.
- 93. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512–21.

Table 1: GWA meta-analysis cohorts after quality control.

Study cohorts of individuals with drug-resistant or drug-responsive epilepsy. Epilepsy and epilepsy sub-syndromes were diagnosed in all cohorts according to clinical criteria (clinical interview, neurological examination, EEG, imaging data), following ILAE classifications.³⁰ Abbreviations: All-EPI: all epilepsies; FE: focal epilepsy; GE: generalised epilepsy; DEE: developmental and epileptic encephalopathy; Epilepsy-NOS: epilepsy, not otherwise specified. *Due to ethical restrictions at the time of data collection, the average age at epilepsy onset was based on only 32% of the EpiPGX GWAS sample size.

Table 2: Gene-based TWAS in drug-resistant vs. drug-responsive FE.

TWAS *P*-values were calculated using S-MultiXcan⁵⁴ with MASHR models for GTEx v8 eQTLs across 13 brain-specific tissues. Shown are all genes with $P<10^{-3}$ [multivariate regression with F-test] in a TWAS in drug-resistant vs. drug-responsive FE. The threshold for significant associations after Bonferroni correction was set to $\alpha=2\cdot69\times10^{-6}$ (18,562 tested genes). Significant associations are highlighted in bold. Legend: N: number of "tissues" available for this gene, P_i_best: best p-value of single-tissue S-PrediXcan association (plotted in Supplementary Figure 4), T_i_best: name of best GTEx v8 single-tissue S-PrediXcan association, Z_{MEAN} : mean z-score among single-tissue S-PrediXcan associations.

Fig. 1: Manhattan plot of the GWAS meta-analyses in drug-resistant vs drug-responsive individuals with epilepsy.

The red line shows the threshold for genome-wide significance (P<5x10⁻⁸). Chromosome and position are displayed on the x-axis and -log₁₀(P-values) [logistic regression] on the y-axis. **a**: GWAS meta-analysis in 3,231 drug-resistant vs. 1,578 drug-responsive individuals with focal epilepsy (FE). Annotated genes were tagged by SNPs in high linkage disequilibrium with the lead SNP rs35915186 ($r^2 \ge 0.8$). **b**: GWAS meta-analysis in 4,208 drug-resistant vs. 2,618 drug-responsive individuals with epilepsy (all-EPI). **c**: GWAS meta-analysis in 506 drug-resistant vs. 751 drug-responsive individuals with generalised epilepsy (GE).

Fig. 2: Chromosome 1q42.11-q42.12 locus associated with drug response in FE.

The SNPs in the upper plot are coloured according to their linkage disequilibrium (LD) r^2 value with the lead SNP rs35915186. The linkage disequilibrium pattern with corresponding LD blocks (black triangles) is shown in the lower plot. The pairwise LD values are displayed in shades of grey, with black representing SNP pairs in full LD (r^2 =1).

Cohort name		All-EPI	FE	GE	DEE	Epilepsy- NOS	Males (%)	Mean age at epilepsy onset (years) (SD)	Mean age at last follow-up (years) (SD)	Mean number of adequate ASM trials
EpiPGX	Drug- resistant	2,105	1,802	179	0	124	47.5%	15·5 (SD 13·6)*	45·6 (SD 13·4)	4·3 (SD 2·3)
	Drug- responsive	1,394	999	233	0	162	49.3%	23·1 (SD 17·2)*	44·4 (SD 17·7)	1.9 (SD 1.3)
Epi25	Drug- resistant	2,103	1,429	327	337	10	49.2%	15·6 (SD 14·8)	33·6 (SD 17·0)	Not available
	Drug- responsive	1,224	579	518	107	20	45.1%	10·7 (SD 16·6)	31·0 (SD 19·6)	Not available
	Meta- analysis	6,826	4,809	1,257	444	316				

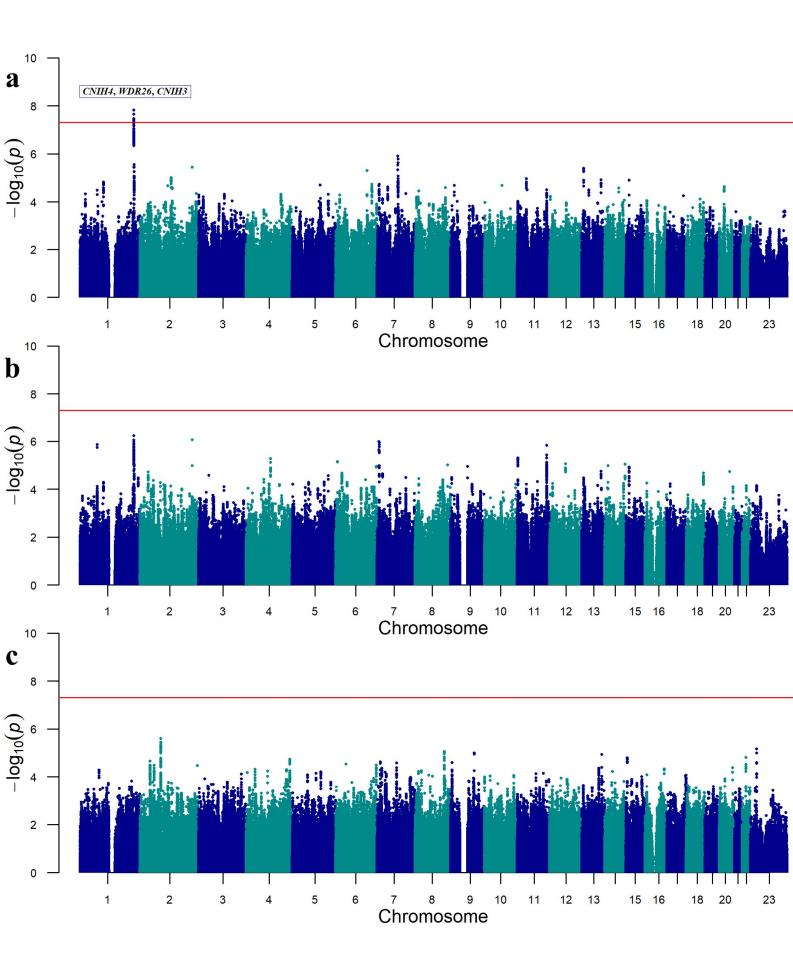

Study cohorts of individuals with drug-resistant or drug-responsive epilepsy. Epilepsy and epilepsy sub-syndromes were diagnosed in all cohorts according to clinical criteria (clinical interview, neurological examination, EEG, imaging data), following ILAE classifications. ²⁹ Abbreviations: All-EPI: all epilepsies; FE: focal epilepsy; GE: generalised epilepsy; DEE: developmental and epileptic encephalopathy; Epilepsy-NOS: epilepsy, not otherwise specified. *Due to ethical restrictions at the time of data collection, the average age at epilepsy onset was based on only 32% of the EpiPGX GWAS sample size.

Table 1: GWA meta-analysis cohorts after quality control

Ensemble ID	Gene name	P-value	N	P_i_best	T_i_best	Z _{MEAN}
ENSG00000143786.7	CNIH3	1·10E-06	2	2·13E-07	Brain_Amygdala	3.55
ENSG00000162923.14	WDR26	1.60E-06	8	2·13E-07	Brain_Frontal_Cortex_BA9	3.44
ENSG00000143771.11	CNIH4	7·68E-06	13	2·37E-07	Brain_Spinal_cord_cervical_c-1	2.85
ENSG00000085563.14	ABCB1	5·09E-05	13	4·50E-04	Brain_Cerebellum	0.26
ENSG00000225924.2	RP1-111D6.4	2·28E-04	2	5·94E-05	Brain_Hippocampus	3.24
ENSG00000254480.1	RP11-23F23.2	2·63E-04	10	2·03E-04	Brain_Putamen_basal_ganglia	-1.74
ENSG00000114446.4	IFT57	2·80E-04	13	4·58E-03	Brain_Hippocampus	-1.01
ENSG00000166268.10	MYRFL	3·46E-04	13	2·07E-04	Brain_Amygdala	-3.52
ENSG00000247970.2	RP11-543C4.1	5·96E-04	9	0.18	Brain_Cerebellar_Hemisphere	0.35
ENSG00000173465.7	SSSCA1	6·19E-04	5	3·07E-03	Brain_Anterior_cingulate_cortex_BA24	-1.07
ENSG00000088930.7	XRN2	7·34E-04	10	8·76E-03	Brain_Cerebellum	-0.31
ENSG00000251562.7	MALAT1	7·51E-04	3	5·39E-03	Brain_Amygdala	1.51
ENSG00000139168.7	ZCRB1	7·83E-04	13	1·33E-03	Brain_Hippocampus	-1.78
ENSG00000006634.7	DBF4	8·00E-04	12	2·54E-03	Brain_Anterior_cingulate_cortex_BA24	-0.89

TWAS P-values were calculated using S-MultiXcan⁵⁶ with MASHR models for GTEx v8 eQTLs across 13 brain-specific tissues. Shown are all genes with P<10-3 [multivariate regression with F-test] in a TWAS in drug-resistant vs. drug-responsive FE. The threshold for significant associations after Bonferroni correction was set to α =2·69x10⁻⁶ (18,562 tested genes). Significant associations are highlighted in bold. Legend: N: number of "tissues" available for this gene, P_i_best: best p-value of single-tissue S-PrediXcan association (plotted in Supplementary Figure 4), T_i_best: name of best GTEx v8 single-tissue S-PrediXcan association, Z_{MEAN} : mean z-score among single-tissue S-PrediXcan

Table 2: Gene-based TWAS in drug-resistant vs. drug-responsive FE

Supplementary material

Genome-wide association meta-analyses of drug-resistant epilepsy

Costin Leu, Andreja Avbersek, Remi Stevelink, Helena Martins Custodio, Siwei Chen, Doug Speed, Caitlin A. Bennett, Lina Jonsson, Unnur Unnsteinsdóttir, Andrea L. Jorgensen, Gianpiero L. Cavalleri, Norman Delanty, John J. Craig, Chantal Depondt, Michael R. Johnson, Bobby P.C. Koeleman, Emadeldin Hassanin, Maryam Erfanian Omidvar, Roland Krause, Holger Lerche, Anthony G. Marson, Terence J. O'Brien, Josemir W. Sander, Graeme J. Sills, Pasquale Striano, Federico Zara, Hreinn Stefansson, Kari Stefansson, Patrick May, Benjamin M. Neale, Dennis Lal, Samuel F. Berkovic, Epi25 Collaborative, EpiPGX Consortium, Sanjay M. Sisodiya

Corresponding authors:

Sanjay M. Sisodiya, PhD, MRCP Department of Clinical and Experimental Epilepsy Institute of Neurology, University College London Queen Square, London WC1N 3BG, UK

Email: s.sisodiya@ucl.ac.uk

Costin Leu, PhD Department of Neurology

McGovern Medical School, UTHealth Houston, Houston, TX, US

1133 John Freeman Blvd, Houston, TX 77030, US

Email: Costin.Leu@uth.tmc.edu

Index

- 1. EpiPGX Consortium
- 2. Epi25 Collaborative
- 3. URLs
- 4. Supplementary Results
 - 4.1. Power analysis

5. Supplementary Figures

- 5.1. Supplementary Figure 1: Power analysis for the genome-wide association meta-analysis in DRE and subphenotypes
- 5.2. Supplementary Figure 2. Quantile-quantile plots of all three genome-wide meta-analyses of drug resistance in epilepsy, focal epilepsy, and generalised epilepsy
- 5.3. Supplementary Figure 3. MAGMA gene-based association study in drug-resistant vs. drug-responsive FF.
- 5.4. Supplementary Figure 4. Single-tissue transcriptome-wide association study (TWAS) in drug-resistant vs. drug-responsive FE

6. Supplementary Tables

- 6.1. Supplementary Table 1: Gene-based association analysis in drug-resistant FE
- 6.2. Supplementary Table 2: ILAE epilepsy GWAS¹ P-values of the drug resistance meta-analysis top hits in FF
- 6.3. Supplementary Table 3: Effect allele frequencies of the FE drug resistance meta-analysis top hits in external datasets
- 6.4. Supplementary Table 4: Associations with P<5x10-8 within +/-500Kb of the lead SNP rs35915186 listed in the NHGRI-EBI GWAS Catalog
- 6.5. Supplementary Table 5: Genetic correlations of the genome-wide meta-analyses of drug resistance in epilepsy with the ILAE epilepsy GWAS¹
- 6.6. Supplementary Table 6: EpiPGX cohort samples with a possible genetic cause
- 6.7. Supplementary Table 7: Epi25 cohort samples with a possible genetic cause
- 6.8. Supplementary Table 8: Rare variants in WDR26, CNIH3, and CNIH4 observed in the GWAS samples which also had whole-exome sequencing
- 6.9. Supplementary Table 9: sQTL-based TWAS in drug-resistant vs. drug-responsive FE

7. References

1. EpiPGX Consortium

Pauls Auce, Andreja Avbersek, Rudi Balling, Felicitas Becker, Bianca Berghuis, Mojgansadat Borghei, Martin J. Brodie, Ellen Campbell, Gianpiero L. Cavalleri, Krishna Chinthapalli, Antonietta Coppola, John Craig, Norman Delanty, Rita Demurtas, Chantal Depondt, Ben Francis, Antonio Gambardella, Lárus J. Gudmundsson, Kristin Heggeli, Christian Hengsbach, Jane L. Hutton, Andrés Ingason, Michael R. Johnson, Andrea Jorgensen, Karl M. Klein, Bobby P. C. Koeleman, Roland Krause, Martin Krenn, Wolfram S. Kunz, Sarah R. Langley, Holger Lerche, Costin Leu, Anthony G. Marson, Mark McCormack, Rikke S. Møller, Andrew Morris, Hiltrud Muhle, Marina Nikanorova, Terence J. O'Brien, Slave Petrovski, Sarah Rau, Zvonka Rener-Primec, Josemir W. Sander, Narek Sargsyan, Reinhard Schneider, Graeme J. Sills, Sanjay M. Sisodiya, Doug Speed, Prashant K. Srivastava, Hreinn Stefansson, Kári Stefánsson, Pasquale Striano, Marian Todaro, Yvonne G. Weber, Sarah Weckhuysen, Joseph Willis, Stefan Wolking, Federico Zara, Fritz Zimprich

2. Epi25 Collaborative

Elisabetta Amadori¹, Danielle M. Andrade², Grazia Annesi³, Ganna Balagura⁴, Simona Balestrini^{5, 6}, Carmen Barba⁷, Karen Barboza², Tobias H. Baumgartner⁸, Betül Baykan⁹, Nerses Bebek^{10, 11}, Felicitas Becker^{12, 13}, Caitlin A. Bennett¹⁴, Ahmad Beydoun¹⁵, Francesca Bisulli^{16, 17}, Ingo Borggräfe¹⁸, Christian Bosselmann¹², Robyn M. Busch¹⁹⁻²¹, Laura Canafoglia²², Barbara Castellotti²³, I-Jun Chou²⁴, Seo-Kyung Chung²⁵⁻²⁷, Chris Cotsapas²⁸, Orrin Devinsky²⁹, Dennis J. Dlugos^{30, 31}, Viola Doccini⁷, Colin P. Doherty^{32, 33}, Hany El-Naggar^{32, 34}, Colin A. Ellis³⁵, Meghan Evans³⁶, Thomas N. Ferraro^{37, 38}, Mark Fitzgerald^{30, 35, 39}, Francesco Fortunato⁴⁰, Jacqueline A. French²⁹, Elena Freri⁴¹, Monica Gagliardi³, Antonio Gambardella⁴⁰, Alica Goldman⁴², Tiziana Granata⁴¹, Namrata Gupta⁴³, Kevin Haas⁴⁴, Shinichi Hirose⁴⁵, Olivia Hoeper¹⁴, Po-Chen Hung²⁴, Michael R. Johnson⁴⁶, Nathalie Khoueiry-Zgheib⁴⁷, Jean Khoury^{20, 21}, Karl Martin Klein⁴⁸⁻⁵⁴, Susanne Knake^{54, 55}, Andreas Koupparis⁵⁶, Ioanna Kousiappa⁵⁶, Roland Krause⁵⁷, Wolfram S. Kunz^{8, 58}, Ruben I. Kuzniecky⁵⁹, Patrick Kwan⁶⁰⁻⁶², Angelo Labate⁶³, Austin Lacey^{32, 64}, Dennis Lal^{20, 21, 70, 116, 117}, Stephan Lauxmann¹², Charlotte Lawthom^{27,65}, Holger Lerche¹², Costin Leu^{5,21,116}, David Lewis-Smith^{30,66-68}, Calwing Liao^{43, 69-71}, Chih-Hsiang Lin⁷², Kuang-Lin Lin²⁴, Tarja Linnankivi⁷³⁻⁷⁵, Daniel H. Lowenstein⁷⁶, Colin H.T. Lui⁷⁷, Francesca Madia¹, Stefania Magri⁷⁸, Louis Maillard⁷⁹, Lorella Manna⁸⁰, Paula Marques², Thomas Mayer⁸¹, Christopher M. McGraw⁸², Kimford J. Meador⁸³, Davide Mei⁷, Raffaella Minardi¹⁷, Barbara Mostacci¹⁷, Lorenzo Muccioli¹⁶, Karen Müller-Schlüter⁸⁴, Wassim Nasreddine¹⁵, Bernd A. Neubauer⁸⁵, Savvas S. Papacostas⁵⁶, Elena Parrini^{7,86}, Manuela Pendziwiat^{87,88}, Slavé Petrovski^{60,89}, William O. Pickrell^{27,90}, Robert H.W. Powell^{27,90}, Francesca Ragona⁴¹, Mark I. Rees^{26, 27}, Sylvain Rheims^{91, 92}, Antonella Riva^{1, 4}, Felix Rosenow⁵³⁻⁵⁵, Philippe Ryvlin⁹³, Lynette G. Sadleir³⁶, Barış Salman¹¹, Andrea Salmon⁴⁸, Ilaria Sammarra³, Marcello Scala^{1,4}, Ingrid E. Scheffer^{14, 94, 95}, Susanne Schubert-Bast^{53, 54, 96}, Andreas Schulze-Bonhage⁹⁷, Beth R. Shiedley⁹⁸, Sanjay M. Sisodiya^{5, 6}, Michael R. Sperling⁹⁹, Bernhard J. Steinhoff¹⁰⁰, Ulrich Stephani⁸⁷, Pasquale Striano^{1, 4}, Adam Strzelczyk⁵³⁻⁵⁵, Rainer Surges⁸, Toshimitsu Suzuki^{101, 102}, Mariagrazia Talarico³, Randip S. Taneja⁴⁴, George A. Tanteles⁵⁶, Meng-Han Tsai⁷², Birute Tumiene¹⁰³, ¹⁰⁴, Dilsad Turkdogan¹⁰⁵, Luc Valton¹⁰⁶, Andreas van Baalen⁸⁷, Annalisa Vetro⁷, Ryan G. Wagner¹⁰⁷⁻¹⁰⁹, Yvonne G. Weber^{12,110}, Sarah Weckhuysen¹¹¹⁻¹¹³, Peter Widdess-Walsh^{32, 34, 64}, Samuel Wiebe^{48, 49, 51, 114, 115}, Stefan Wolking^{12, 110}, Randi von Wrede⁸, Kazuhiro Yamakawa^{101, 102}, Zuhal Yapıcı¹⁰, Felix Zahnert^{54, 55}, Federico Zara^{1, 4}, Milena Zizovic⁵⁷, Gábor Zsurka^{8, 58}, Quratulain Zulfigar Ali², Benjamin M. Neale^{43, 69, 70}, Samuel F. Berkovic¹⁴

Affiliations

- 1. IRCCS Istituto Giannina Gaslini, Genova, Italy.
- 2. University Health Network, University of Toronto, Toronto, ON, Canada.
- 3. Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy.
- 4. Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy.
- 5. Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG UK
- 6. Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK. .
- 7. Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy.
- 8. Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany.
- 9. Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
- 10. Department of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
- 11. Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.

- 12. Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany.
- 13. Department of Neurology, University of Ulm, Ulm 89081, Germany.
- 14. Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia.
- 15. Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon.
- 16. Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
- 17. IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies EpiCARE), Bologna, Italy.
- 18. Department of Pediatric Neurology, Dr von Hauner Children's Hospital, Ludwig Maximilians University, Munchen, Germany.
- 19. Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
- 20. Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
- 21. Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
- 22. Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy.
- 23. Unit of Medical Genetics and Neurogenetics, Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta Milano, Italy.
- 24. Department of Pediatric Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- 25. Kids Research, Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.
- 26. Brain & Mind Centre, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia.
- 27. Swansea University Medical School, Swansea University, Swansea, Wales, UK.
- 28. Yale School of Medicine, New Haven, CT 06510, USA.
- 29. Department of Neurology, New York University/Langone Health, New York NY, USA.
- 30. Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA.
- 31. Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- 32. The FutureNeuro Research Centre, Dublin, Ireland.
- 33. Neurology Department, St. James's Hospital, Dublin D03 VX82, Ireland.
- 34. Department of Neurology, Beaumont Hospital, Dublin D09 FT51, Ireland.
- 35. Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA.
- 36. Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.
- 37. Department of Biomedical Sciences, Cooper Medical School of Rowan University Camden, NJ 08103, USA.
- 38. Department of Pharmacology and Psychiatry, University of Pennsylvania Perlman School of Medicine, Philadelphia, PA 19104, USA.
- 39. The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA.
- 40. Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy.
- 41. Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
- 42. Department of Neurology, Baylor College of Medicine.
- 43. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- 44. Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- 45. General Medical Research Center, School of Medicine, Fukuoka University, Japan.
- 46. Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK.
- 47. Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.
- 48. Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- 49. Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- 50. Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- 51. Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

- 52. Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
- 53. Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany.
- 54. LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany.
- 55. Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany.
- 56. Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
- 57. Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg.
- 58. Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany.
- 59. Department of Neurology, Hofstra-Northwell Medical School, New York, NY, USA.
- 60. Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia.
- 61. Department of Neuroscience, The School of Translational Medicine, Alfred Health, Monash University, Melbourne 3004, Australia.
- 62. Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China.
- 63. Neurophysiopatology and Movement Disorders Clinic, University of Messina, Messina, Italy.
- 64. School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland.
- 65. Neurology Department, Aneurin Bevan University Health Board, Newport, Wales, UK.
- 66. Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA.
- 67. Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.
- 68. Department of Clinical Neurosciences, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK.
- 69. Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
- 70. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- 71. Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- 72. Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- 73. Child Neurology, New Children's Hospital, Helsinki, Finland.
- 74. Pediatric Research Center, University of Helsinki, Helsinki, Finland.
- 75. Helsinki University Hospital, Helsinki, Finland.
- 76. Department of Neurology, University of California, San Francisco, CA 94143, USA.
- 77. Department of Medicine, Tseung Kwan O Hospital, Hong Kong.
- 78. Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
- 79. Neurology Department, University Hospital of Nancy, UMR 7039, CNRS, Lorraine University, Nancy, France.
- 80. Institute of Molecular Bioimaging and Physiology, CNR, Section of Germaneto, Catanzaro, Italy.
- 81. Epilepsy Center Kleinwachau, Radeberg 01454, Germany. .
- 82. Neurology, Massachusetts General Hospital, Boston, MA, USA.
- 83. Stanford University, Palo Alto, CA, USA.
- 84. Epilepsy Center for Children, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany.
- 85. Pediatric Neurology, University of Giessen, Germany.
- 86. Department of NEUROFARBA, University of Florence, Florence, Italy.
- 87. Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany.
- 88. Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.
- 89. Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK.
- 90. Department of Neurology, Morriston Hospital, Swansea Bay University Bay Health Board, Swansea, Wales, UK.

- 91. Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, France.
- 92. Lyon's Neuroscience Research Center, INSERM U1028 / CNRS UMR 5292, Lyon, France.
- 93. Department of Clinical Neurosciences, Centre Hospitalo-Universitaire Vaudois, Lausanne, Switzerland.
- 94. Florey and Murdoch Children's Research Institutes, Parkville, Victoria 3052, Australia.
- 95. Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
- 96. Department of Neuropediatrics, Children's Hospital, Goethe University Frankfurt, Frankfurt, Germany.
- 97. Department of Epileptology, University Hospital Freiburg, Freiburg, Germany.
- 98. Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- 99. Department of Neurology and Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
- 100. Epilepsy Center Kork, Kehl-Kork 77694, Germany.
- 101. Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan.
- 102. Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, Japan.
- 103. Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.
- 104. Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
- 105. Department of Child Neurology, Medical School, Marmara University, Istanbul, Turkey.
- 106. Department of Neurology, UMR 5549, CNRS, Toulouse University Hospital, University of Toulouse, Toulouse, France.
- 107. MRC/Wits Rural Public Health & Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- 108. Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden.
- 109. Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden.
- 110. Department of Neurology and Epileptology, University of Aachen, Aachen 52074, Germany.
- 111. Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- 112. Department of Neurology, Antwerp University Hospital, Edegem 2650, Belgium.
- 113. Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium.
- 114. O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada.
- 115. Clinical Research Unit, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- 116. Department of Neurology, McGovern Medical School, UTHealth Houston, Houston, TX, USA.
- 117. Center of Neurogenetics, UTHealth Houston, Houston, TX, USA.

3. URLs

EpiPGX Consortium: https://cordis.europa.eu/project/id/279062

Epi25 Collaborative: https://epi-25.org

STRUCTURE: https://web.stanford.edu/group/pritchardlab/structure.html

SHAPEIT: https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html

IMPUTE v2: https://mathgen.stats.ox.ac.uk/impute/impute v2.1.0.html

GTOOL, https://hpc.nih.gov/apps/IMPUTE.html

Will Rayner imputation preparation and checking scripts, https://www.well.ox.ac.uk/~wrayner/tools

Cksum script, https://personal.broadinstitute.org/sripke/share_links/checksums_download/

Epilepsy Genetic Association Database (epiGAD) database, https://www.epigad.org

Eagle v2.4: https://alkesgroup.broadinstitute.org/Eagle Minimac4, https://genome.sph.umich.edu/wiki/Minimac4

Michigan Imputation Server, https://imputationserver.sph.umich.edu/index.html SNPTEST v2, https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html

KING, https://www.kingrelatedness.com

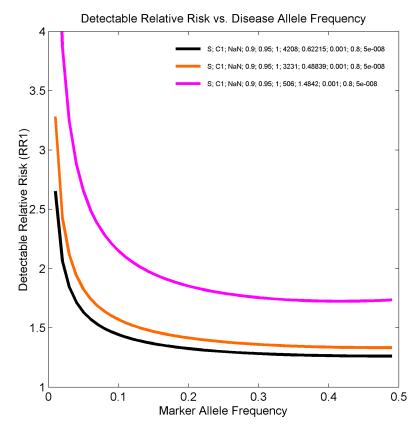
PLINK-v1.9: https://www.cog-genomics.org/plink GCTA: https://yanglab.westlake.edu.cn/software/gcta

GWAMA: https://genomics.ut.ee/en/tools

FUMA, https://fuma.ctglab.nl/ LocusZoom, http://locuszoom.org/

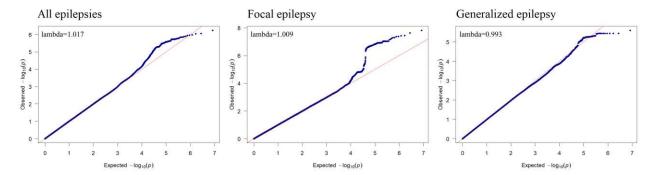
Haploview: https://www.broadinstitute.org/haploview/haploview

LDSC: https://github.com/bulik/ldsc

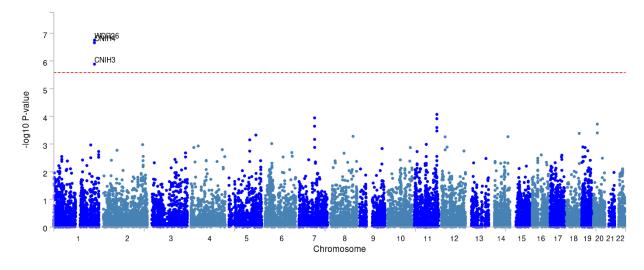

PrediXcan/S-MultiXcan, https://github.com/hakyimlab/MetaXcan PGA Power Calculator: https://dceg.cancer.gov/tools/design/pga

4. Supplementary Results

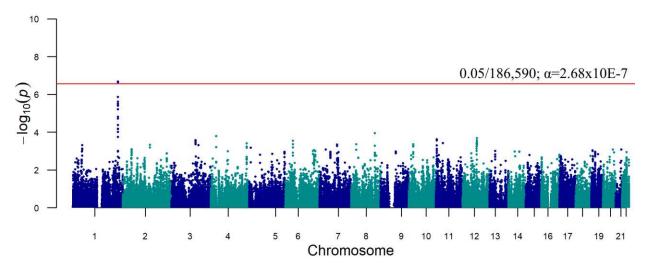
4.1. Power analysis


The GWA meta-analysis in DRE had 80% power to detect a genetic predictor of relative risk ≥ 1.33 (which can be approximated to odds ratio for rare disorders²) with MAF \geq 20% at α =5x10⁻⁸, assuming a disease prevalence of 0.1%, an additive genetic model, and a linkage disequilibrium r²=0.9 between the causal variant and the genotyped marker (Supplementary Figure 1). However, no genome-wide signal was found in the 'all epilepsies' group (Supplementary Figure 2). The GWA meta-analysis in individuals with FE had 80% power at α =5x10⁻⁸ to detect genome-wide significant SNPs with MAF \geq 20% and relative risk \geq 1.42.

5. Supplementary Figures


Supplementary Figure 1: Power analysis for the genome-wide association meta-analysis in DRE and subphenotypes ${\bf P}$

Shown are the detectable relative risks with 80% power at $\alpha = 5 \times 10^{-8}$, assuming a disease prevalence of 0.1%, an additive risk model, and a linkage disequilibrium $r^2 = 0.9$ between a causal variant and a genotyped marker for all individuals with DRE (black curve), drug-resistant focal epilepsy (orange curve), and drug-resistant generalised epilepsy (purple curve). Power calculations were performed using the PGA Power Calculator³.



Supplementary Figure 2. Quantile-quantile plots of all three genome-wide meta-analyses of drug resistance in epilepsy, focal epilepsy, and generalised epilepsy

The observed $-\log_{10}(P\text{-values})$ [logistic regression] are plotted as a function of the expected $-\log_{10}(P\text{-values})$ for the genome-wide meta-analyses of drug resistance in epilepsy (DRE), focal epilepsy (DR-FE), and generalised epilepsy (DR-GE). The lambda inflation values were: lambda_{DR-E}=1.017, lambda_{DR-FE}=1.009, and lambda_{DR-GE}=0.993.

Supplementary Figure 3. MAGMA gene-based association study in drug-resistant vs. drug-responsive FE Manhattan plot of the MAGMA gene-based association analysis. The chromosomes and positions of the analysed genes are displayed on the x-axis, and $-\log_{10}(P\text{-values})$ [multiple regression with F-test] are displayed on the y-axis. The red line shows the Bonferroni-corrected threshold for genome-wide significance (19,005 tested genes, α =2.63x10⁻⁶).

Supplementary Figure 4. Single-tissue transcriptome-wide association study (TWAS) in drug-resistant vs. drug-responsive ${\rm FE}$

Manhattan plot of the single-tissue TWAS results in drug-resistant vs. drug-responsive FE. Shown are all predicted S-PrediXcan single-tissue expression level associations ($-\log_{10}(P\text{-values})$ [linear regression] on the y-axis) in each of the 13 brain-specific GTEx tissues before integration across tissues with S-MulTiXcan⁴. The red line shows the Bonferroni-corrected threshold for genome-wide significance (186,590 tested genes, α =2.68x10⁻⁶).

6. Supplementary Tables

Supplementary Table 1: Gene-based association analysis in drug-resistant FE

Gene	Chr	Start (hg19)	Stop (hg19)	NSNPS	NPARAM	N	Z-score	P-value
WDR26	1	224562845	224634735	68	2	4800	5.0907	1.78E-07
CNIH4	1	224534552	224577161	48	4	4791	5.051	2.20E-07
CNIH3	1	224612362	224938251	527	24	4799	4.7001	1.30E-06
OR6T1	11	123803492	123824580	63	9	4791	3.7592	8.52E-05
RUNDC3B	7	87246864	87471611	222	9	4805	3.685	1.14E-04
OR4D5	11	123800250	123821344	64	8	4794	3.668	1.22E-04
XRN2	20	21273942	21380463	133	9	4798	3.5509	1.92E-04
ABCB1	7	87123175	87352611	315	26	4802	3.5051	2.28E-04
OR10S1	11	123837368	123858488	60	10	4795	3.4757	2.55E-04
TMEM225	11	123743633	123766349	64	9	4803	3.3988	3.38E-04
NKX2-4	20	21366005	21388666	26	5	4801	3.3542	3.98E-04
FAM69C	18	72092963	72135179	38	9	4794	3.3428	4.15E-04
PDE6A	5	149227519	149334356	97	14	4792	3.3033	4.78E-04
TMEM65	8	125314231	125394933	129	9	4796	3.274	5.30E-04
SERPINA12	14	94943611	94994181	112	20	4792	3.2653	5.47E-04
IAPP	12	21497893	21542912	104	14	4792	3.2617	5.54E-04
SLC25A40	7	87452883	87515672	77	5	4803	3.2014	6.84E-04
AP3S1	5	115167178	115259778	49	8	4781	3.1902	7.11E-04
ZFAND3	6	37777275	38132400	680	17	4798	3.0991	9.70E-04

Gene-based P-values were calculated using MAGMA⁵ as implemented in FUMA⁶. Shown are all genes with $P<10^{-3}$ [multiple regression with F-test] in the gene-based association analysis for drug-resistant FE. The thresholds for a significant association after Bonferroni correction was set to $\alpha=2.63 \times 10^{-6}$ (19,005 tested protein-coding genes). Significant associations are highlighted in bold. Legend: NSNPS: number of SNPs annotated to a gene after internal SNP quality control, NPARAM: number of relevant parameters used in the model, N: sample size used when analysing a gene.

Supplementary Table 2: ILAE epilepsy GWAS¹ P-values of the drug resistance meta-analysis top hits in FE

					drug-resistant vs. iduals with FE		ILAE GWAS 2023			
SNP	CHR	BP (hg19)	A1	A2	OR (95%-CI)	P-value	ʻall EPI' <i>P</i> - value	FE P-value	GE P-value	
rs35031726	1	224562410	C	T	0.75 (0.68-0.83)	8.87E-08	0.063	0.015	0.26	
rs1544196	1	224632782	Α	G	0.75 (0.67-0.83)	5.48E-08	0.078	0.022	0.30	
rs12743200	1	224644060	Α	G	0.75 (0.68-0.83)	9.13E-08	0.039	9.22E-03	0.27	
rs12758579	1	224644167	T	C	0.75 (0.68-0.83)	9.13E-08	0.039	9.22E-03	0.27	
rs6663522	1	224646328	T	C	0.75 (0.68-0.83)	9.13E-08	0.064	0.017	0.29	
rs35067427	1	224647230	G	T	0.75 (0.68-0.83)	9.13E-08	0.063	0.017	0.28	
rs2185684	1	224647741	G	T	0.75 (0.68-0.83)	9.13E-08	0.063	0.017	0.28	
rs12731630	1	224650947	C	T	0.75 (0.68-0.83)	9.13E-08	0.067	0.017	0.29	
rs7365151	1	224651782	C	T	0.75 (0.67-0.83)	6.54E-08	0.090	0.026	0.28	
rs11577170	1	224652687	G	A	0.75 (0.67-0.83)	5.03E-08	0.063	0.016	0.29	
rs11800613	1	224653213	G	A	0.75 (0.67-0.83)	4.96E-08	0.054	0.015	0.26	
rs10753468	1	224653388	C	T	0.74 (0.67-0.83)	3.50E-08	0.064	0.018	0.25	
rs12062871	1	224653597	G	T	0.75 (0.67-0.83)	7.03E-08	0.055	0.017	0.24	
rs35915186	1	224654623	C	T	0.74 (0.66-0.82)	1.51E-08	0.061	0.022	0.28	
rs7536608	1	224657092	A	C	0.74 (0.67-0.82)	2.28E-08	0.044	9.63E-03	0.34	
rs35804313	1	224667102	T	C	0.75 (0.67-0.83)	4.11E-08	0.071	0.024	0.32	
rs11578709	1	224667131	G	C	0.75 (0.67-0.83)	3.65E-08	0.070	0.022	0.33	
rs6698343	1	224680332	C	T	0.75 (0.67-0.83)	4.27E-08	0.043	0.011	0.26	
rs17570292	1	224681894	G	T	0.75 (0.68-0.83)	8.96E-08	0.045	0.012	0.26	
rs11584057	1	224685350	Α	T	0.75 (0.68-0.83)	9.13E-08	0.076	0.032	0.24	

Listed are the top association signals with $P<10^{-7}$ [logistic regression] in the GWA meta-analysis in 3,231 drug-resistant vs. 1,578 drug-responsive individuals with focal epilepsy. The threshold for genome-wide significance was set to $P<5x10^{-8}$. Significant associations are highlighted in bold. The association P-values [linear mixed model] in the ILAE epilepsy GWAS¹ are stated for each top hit. Legend: BP: physical position, A1: effect allele, A2: non-effect allele, 'all EPI': any type of epilepsy, FE: focal epilepsy, GE: generalised epilepsy.

Supplementary Table 3: Effect allele frequencies of the FE drug resistance meta-analysis top hits in external datasets

		a-analysis top nentary Table		FE		Frequency of the	e effect allele (A1)	
SNP	CHR	BP (hg19)	A1	A2	Meta-analysis FE cases (drug- resistant)	Meta-analysis FE controls (drug- responsive)	ILAE GWAS 2023 cohort (cases and controls) ¹	gnomAD v4.0 (European, non- Finnish)
rs35031726	1	224562410	C	T	0.2064	0.2494	0.2259	0.2259
rs1544196	1	224632782	Α	G	0.203	0.2457	0.2252	0.2278
rs12743200	1	224644060	A	G	0.2057	0.2481	0.2251	0.2253
rs12758579	1	224644167	T	С	0.2057	0.2481	0.2251	0.2251
rs6663522	1	224646328	T	C	0.2057	0.2481	0.2253	0.2251
rs35067427	1	224647230	G	T	0.2057	0.2481	0.2253	0.2268
rs2185684	1	224647741	G	T	0.2057	0.2481	0.2253	0.2252
rs12731630	1	224650947	C	T	0.2057	0.2481	0.2253	0.2253
rs7365151	1	224651782	C	T	0.2053	0.2484	0.23	0.2249
rs11577170	1	224652687	G	Α	0.2049	0.2484	0.2253	0.2255
rs11800613	1	224653213	G	A	0.2053	0.2487	0.2253	0.2254
rs10753468	1	224653388	C	T	0.2062	0.2503	0.2315	0.2271
rs12062871	1	224653597	G	T	0.2057	0.2487	0.225	0.2254
rs35915186	1	224654623	C	T	0.2053	0.2505	0.2231	0.2241
rs7536608	1	224657092	A	C	0.2061	0.2508	0.2251	0.2255
rs35804313	1	224667102	T	C	0.2082	0.2521	0.2258	0.2262
rs11578709	1	224667131	G	C	0.2076	0.2517	0.2251	0.2251
rs6698343	1	224680332	C	T	0.2079	0.2517	0.2256	0.2261
rs17570292	1	224681894	G	T	0.2089	0.2519	0.226	0.2264
rs11584057	1	224685350	Α	T	0.2075	0.2503	0.2237	0.2245

Listed are the effect allele frequencies of the top association signals (Supplementary Table 2) in the GWA metaanalysis in 3,231 drug-resistant vs. 1,578 drug-responsive individuals with focal epilepsy. Significant associations are highlighted in bold. Legend: BP: physical position, A1: effect allele, A2: non-effect allele, FE: focal epilepsy. Supplementary Table 4: Associations with $P < 5 \times 10^{-8}$ within +/-500Kb of the lead SNP rs35915186 listed in the NHGRI-EBI GWAS Catalog

SNP	P-value	Mapped genes	GWAS trait	PMID	r ² with rs35915186
rs10916619	3.00E-169	CNIH3	Height	36224396	0.966
rs7542507	6.00E-34	CNIH3	Height	36224396	0.049
rs10916606	2.00E-29	WDR26,CNIH4	Height	30595370	0.944
rs35571080	1.00E-28	CNIH3	White blood cell count	32888493	0.966
rs12062871	5.00E-27	CNIH3	White blood cell count	32888493	0.987
rs35571080	1.00E-25	CNIH3	Neutrophil count	32888493	0.966
rs7536608	7.00E-25	CNIH3	Neutrophil count	32888493	0.996
rs10916617	8.00E-25	CNIH3	Neutrophil count	32888494	0.966
rs35571080	4.00E-24	CNIH3	White blood cell count	32888494	0.966
rs28434172	2.00E-21	WDR26	White blood cell count	30595370	0.953
rs145934561	2.00E-19	WDR26	Neutrophil count	34594039	
rs2051105	4.00E-19	DEGS1,FBXO28	Mean platelet volume	32888493	0.021
rs145934561	7.00E-19	WDR26	White blood cell count	34594039	
rs2051105	2.00E-18	DEGS1,FBXO28	Mean platelet volume	32888493	0.021
rs7519734	8.00E-18	CNIH4	Total cholesterol levels	34887591	0.941
rs11586729	4.00E-17	CNIH4	Height	36224396	0.956
rs12756984	4.00E-16	NVL,DEGS1	Total Dihydroceramide levels	35668104	0.014
rs12756984	6.00E-16	NVL,DEGS1	Dihydroceramide (d18:0/24:0) levels	35668104	0.014
rs12076788	1.00E-15	FBXO28,DEGS1	Mean spheric corpuscular volume	32888494	0.010
rs56105022	6.00E-15	CNIH4	Smoking initiation	36477530	0.013
rs7517754	6.00E-15	NVL,CNIH4	Height (standard GWA)	37106081	0.940
rs12125241	1.00E-14	CNIH3	Smoking initiation	36477530	0.014
rs35913393	1.00E-14	CNIH4	Reticulocyte fraction of red cells	32888494	
rs6682551	1.00E-14	DEGS1,FBXO28	Sphingomyelin (d18:0/20:0, d16:0/22:0) levels	36635386	0.016
rs12756984	3.00E-14	NVL,DEGS1	Dihydroceramide (d18:0/22:0) levels	35668104	0.014
rs752521494	3.00E-14	DEGS1	Palmitoyl dihydrosphingomyelin (d18:0/16:0) levels	35347128	
rs12062871	2.00E-13	CNIH3	Red cell distribution width	32888493	0.987
rs35767322	2.00E-13	CNIH3	Neutrophil count	34469753	0.880
rs61732863	2.00E-13	DEGS1	Behenoyl dihydrosphingomyelin (d18:0/22:0) levels	36635386	0.008
rs11452219	3.00E-13	WDR26	Monocyte percentage of white cells	32888494	
rs7519734	3.00E-13	CNIH4	Total cholesterol levels	34887591	0.941
rs6673347	4.00E-13	DEGS1	Dihydroceramide (d18:0/24:1) levels	35668104	0.020
rs6675858	7.00E-13	CNIH4	Mean corpuscular hemoglobin	32888493	0.955
rs12062871	1.00E-12	CNIH3	Red cell distribution width	32888493	0.987
rs6673347	1.00E-12	DEGS1	Red blood cell count	32888494	0.020
rs35913393	5.00E-12	CNIH4	High light scatter reticulocyte percentage of red cells	32888494	
rs6675858	5.00E-12	CNIH4	Total cholesterol levels	33462484	0.955
rs7365151	5.00E-12	CNIH3	Mean corpuscular hemoglobin	32888494	0.987
rs56105022	9.00E-12	CNIH4	High density lipoprotein cholesterol levels	34887591	0.013
rs12751807	1.00E-11	NVL,CNIH4	Red cell distribution width	32888494	0.707

rs56105022	1.00E-11	CNIH4	Apolipoprotein A1 levels	32203549	0.013
rs6675858	2.00E-11	CNIH4	Mean corpuscular hemoglobin	32888493	0.955
rs6675858	2.00E-11	CNIH4	Mean corpuscular hemoglobin	30595370	0.955
rs12756984	6.00E-11	NVL,DEGS1	Sphingomyelin (d18:0/22:0) levels	35668104	0.014
rs10707541	7.00E-11	WDR26	Hemoglobin A1c levels	34594039	0.586
rs10707541	1.00E-10	WDR26	Glycated hemoglobin levels	33462484	0.586
rs11803981	1.00E-10	CNIH4	Low density lipoprotein cholesterol levels	34887591	0.941
rs35913393	1.00E-10	CNIH4	Reticulocyte count	32888494	
rs4653568	1.00E-10	DEGS1,NVL	Phosphatidylcholine (36:0) levels	35668104	0.013
rs11388086	2.00E-10	CNIH4	Neutrophil side scatter	37596262	
rs12089565	2.00E-10	CNIH3	Drinks per week	36477530	0.062
rs34791963	2.00E-10	CNIH3	Neutrophil percentage of white cells	32888494	0.001
rs4653568	2.00E-10	DEGS1,NVL	Ceramide [N(24)S(19)] product-precursor ratio	33437986	0.013
rs6675858	2.00E-10	CNIH4	Low density lipoprotein cholesterol levels	33462484	0.955
rs10916619	3.00E-10	CNIH3	Height	36224396	0.966
rs12117480	3.00E-10	NVL	Mean corpuscular hemoglobin	32888494	0.013
rs34119581	3.00E-10	CNIH3	Red cell distribution width	30595370	0.516
rs28434172	4.00E-10	WDR26	Basophil percentage of white cells	32888494	0.953
rs56105022	4.00E-10	CNIH4	HDL cholesterol levels	32203549	0.013
rs6663522	5.00E-10	CNIH3	Non-HDL cholesterol levels	34887591	0.965
rs7527044	5.00E-10	WDR26	Lung function (forced vital capacity)	36914875	0.954
rs12130576	6.00E-10	DNAH14	Smoking initiation	36477530	0.002
rs16851979	6.00E-10	CNIH3	Protein quantitative trait loci (liver)	32778093	0.008
rs12129540	8.00E-10	CNIH3	Apolipoprotein A1 levels	33462484	0.016
rs12751807	1.00E-09	NVL,CNIH4	Low density lipoprotein cholesterol levels	32154731	0.707
rs6673347	1.00E-09	DEGS1	Red blood cell count	30595370	0.020
rs35913393	2.00E-09	CNIH4	High light scatter reticulocyte count	32888494	
rs4653568	2.00E-09	DEGS1,NVL	Sphingomyelin (41:0) levels	35668104	0.013
rs73115953	3.00E-09	CNIH3	Drinks per week	36477530	0.059
rs7517754	3.00E-09	NVL,CNIH4	Height (weighted GWA)	37106081	0.940
rs10799590	4.00E-09	CNIH3	Opioid dependence	26239289	0.0004
rs34687215	4.00E-09	WDR26	White blood cell count	27863252	0.930
rs16844823	5.00E-09	DEGS1,FBXO28	Mini-mental state examination / Folstein test (baseline)	35086473	0.004
rs56105022	5.00E-09	CNIH4	High density lipoprotein cholesterol levels	34887591	0.013
rs116524503	6.00E-09	DNAH14	Heel bone mineral density x serum urate levels interaction	34046847	0.000
rs7519734	8.00E-09	CNIH4	Low density lipoprotein cholesterol levels	34887591	0.941
rs16844823	2.00E-08	DEGS1,FBXO28	Mini-mental state examination / Folstein test (baseline)(adjusted for APOE e4 dosage)	35086473	0.004
rs2897048	2.00E-08	WDR26	Lung function (FVC)	30595370	0.959
rs56105022	2.00E-08	CNIH4	HDL cholesterol	34594039	0.013
rs7517754	2.00E-08	NVL,CNIH4	Total cholesterol levels	34594039	0.940
rs7519734	2.00E-08	CNIH4	Non-HDL cholesterol levels	34887591	0.941
rs1533589	3.00E-08	NVL; NVL; NVL; NVL	Core binding factor acute myeloid leukemia	27903959	0.00004

rs145916104	4.00E-08	DNAH14	Metabolonic lactone sulfate levels	34563731	0.001
rs6426153	4.00E-08	CNIH3,CNIH3-AS1	Sphingomyelin (d42:0) levels	35393526	0.012
rs1533589	5.00E-08	NVL; NVL; NVL; NVL	Core binding factor acute myeloid leukemia	27903959	0.00004
rs6662242	5.00E-08	DNAH14,LINC02813	Principal component-derived dietary pattern 42	32193382	0.005

Shown are all association signals with $P \le 5 \times 10^{-8}$ listed in the NHGRI-EBI GWAS Catalog for chr1:224154623-225154623 (hg19). Linkage disequilibrium (LD) r^2 values are indicated where available, showing 33 of all association signals in strong LD with rs35915186, the lead SNP of GWA meta-analysis in FE.

Supplementary Table 5: Genetic correlations of the genome-wide meta-analyses of drug resistance in

epilepsy with the ILAE epilepsy GWAS¹

		ILAE 2023 GWAS (PMID: 37653029)					
Genetic correlations		All epilepsies [rg, SE]	Focal epilepsy [rg, SE]	Generalised epilepsy [rg, SE]			
	All epilepsies	-0.73 (0.89)	-0.40 (0.56)	-0.53 (0.61)			
Drug-resistance GWAS	Focal epilepsy	-0.06 (0.27)	-0.22 (0.38)	0.18 (0.31)			
	Generalised epilepsy	0.02 (0.36)	0.15 (0.67)	0.09 (0.35)			

Shown are the genetic correlations between drug-resistance epilepsy GWAS and the most recent case-control epilepsy GWAS for all, focal, and generalised epilepsy¹. Genetic correlation coefficients (rg), as calculated with LDSC, are displayed with standard errors (SE) in parentheses. None of the genetic correlations were significant (all P>0.05 [regression]).

Supplementary Table 6: EpiPGX cohort samples with a possible genetic cause

Cohort	Phenotype	N individuals with CNV / WES data	data tha possible	luals with at have a genetic use	Percent individuals that have a genetic cau individuals	with data possible use [% of	N unique individuals with CNV or WES data**	N unique individuals with data that have a possible genetic cause (CNV or SNV)	Percentage of individuals with data that have a possible genetic cause
			CNV	SNV*	CNV	SNV		(CITT OF SITT)	[76]
	FE	953 / 124	25	0	0.026	0	977	25	0.026
EpiPGX	GE	140 / 54	4	14	0.029	0.26	141	18	0.13
Drug- resistant	Epi-NOS	99 / 7	2	0	0.020	0	102	2	0.020
resistant	TOTAL	1192 / 185	31	14	0.026	0.08	1220	45	0.037
	FE	408 / 125	10	0	0.025	0	418	10	0.024
EpiPGX	GE	159 / 87	4	21	0.025	0.24	160	25	0.16
Drug- responsive	Epi-NOS	95 / 28	4	1	0.042	0.036	96	5	0.052
	TOTAL	662 / 240	18	22	0.027	0.092	674	40	0.059

The numbers of possible genetic cases in the EpiPGX cohort are shown by drug response and epilepsy subphenotype classification. Of the 3499 EpiPGX cohort samples, 1854 were screened for epilepsy/seizures-associated CNVs, and 425 had whole-exome sequencing (WES) to screen for rare variants. Rare variant calling from WES was detailed in our previous work⁷. CNVs were called with the Illumina Genome studio plugin cnvPartition⁸ with standard settings. After CNV calling, samples with >3 standard deviations in CNV count, log R ratio SD, B allele frequency mean, and waviness factor from the mean of the calling set were excluded. High-quality CNVs were retained using the following parameters: 1.) covered by >20 markers, 2.) CNV size >20000 bp, 3.) SNP density >0.0001 if size <1Mbp, and 4.) cnvPartition CNV confidence score ≥35. To identify possible genetic causes, we considered all CNVs identified as genome-wide significantly associated with seizures or epilepsy⁹. Rare variants were filtered to 1.) affect established epilepsy genes with an autosomal or X-linked dominant inheritance mode (N=102)¹⁰; 2.) lead to protein or canonical splice site change; 3.) have a maximal population allele frequency in RGC-ME¹¹, RGC-MCPS¹², GnomAD¹³ v4, UK Biobank¹⁴, TogoVar¹⁵, hrcr1¹⁶, GME¹⁷, ABraOM¹⁸, ≤ 10⁻⁵; 4.) a non-reference allele frequency in the sequenced EpiPGX cohort ≤10%; and 5.) have an in silico pathogenicity prediction score that satisfies at least a moderate ACMG PP3¹⁹ pathogenicity criterion (i.e., REVEL≥0.773 or BayesDel≥0.27)²⁰. Deleteriousness in silico prediction scores were annotated from the dbNSFP v4.7 database²¹ using ANNOVAR²². Legend: N: number; FE: focal epilepsy; GE: generalised epilepsy; Epi-NOS: epilepsy, not otherwise specified; VUS: variant of uncertain significance. *Individuals who were carrying an epilepsy-associated CNV and a possible pathogenic SNV were counted only once (in the CNV carrier group). **The union of all individuals with CNV or WES data was counted.

Supplementary Table 7: Epi25 cohort samples with a possible genetic cause

Cohort	Phenotype	N individuals		als that have enetic cause	with data	of individuals that have a tic cause [%]	N individuals with data that have a possible genetic cause (CNV or SNV)	Percentage of individuals that have a possible genetic cause [%]
			CNV	SNV*	CNV	SNV	(CIV of SIV)	
	DEE	337	29	38	0.086	0.11	67	0.20
Epi25	FE	1429	186	51	0.13	0.036	237	0.17
Drug-	GE	327	33	14	0.10	0.043	47	0.14
resistant	Epi-nos	10	1	1	0.10	0.10	2	0.20
	TOTAL	2103	249	104	0.12	0.049	353	0.17
	DEE	107	7	8	0.065	0.075	15	0.14
Epi25	FE	579	48	29	0.083	0.050	77	0.13
Drug-	GE	518	51	16	0.10	0.031	67	0.13
responsive	Epi-nos	20	0	1	0	0.050	1	0.05
	TOTAL	1224	106	54	0.087	0.044	160	0.13

The numbers of possible genetic cases in the Epi25 cohort are shown by drug response and epilepsy subphenotype classification. All 3327 Epi25 cohort samples had whole-exome sequencing and were screened for epilepsy/seizures-associated CNVs and rare pathogenic variants. CNV and rare variants calling for the Epi25 were detailed in our previous work^{9,23}. To identify possible genetic causes, we considered all CNVs identified as genome-wide significantly associated with seizures or epilepsy⁹. For rare variants, we performed additional filtering, as the scope of our previous study was not to identify monogenic causes but to identify rare variant-burdened genes²³. Rare variants were filtered to 1.) affect established epilepsy genes with an autosomal or X-linked dominant inheritance mode (N=102)¹⁰; 2.) lead to protein or canonical splice site change; 3.) have a maximal population allele frequency in RGC-ME¹¹, RGC-MCPS¹², GnomAD¹³ v4, UK Biobank¹⁴, TogoVar¹⁵, hrcr1¹⁶, GME¹⁷, ABraOM¹⁸, ≤ 10⁻⁵; 4.) a non-reference allele frequency in the Epi25 cohort ≤10%; and 5.) have an in silico pathogenicity prediction score that satisfies at least a moderate ACMG PP3¹⁹ pathogenicity criterion (i.e., REVEL≥0.773 or BayesDel≥0.27)²⁰. Deleteriousness *in silico* prediction scores were annotated from the dbNSFP v4.7 database²¹ using ANNOVAR²². Legend: N: number; DEE: developmental and epileptic encephalopathy; FE: focal epilepsy; GE: generalised epilepsy; Epi-NOS: epilepsy, not otherwise specified. *Individuals who were carrying an epilepsy-associated CNV and a possible pathogenic SNV were counted only once (in the CNV carrier group).

Supplementary Table 8: Rare variants in WDR26, CNIH3, and CNIH4 observed in the GWAS samples

which also had whole-exome sequencing

which als	o had who	ole-exom	e sequencing				
De- identified variant carrier ID	Phenotype	Drug- resistant	AAChange.refGene	GnomAD v4.1 AF exome / genome	REVEL score ²⁴	BayesDel (addAF) score ²⁵	ACMG classification
Epi25 1	DEE	Yes	WDR26:NM_001379403.1:c.C1267T:p.L423F	7.53E-06 / 6.57E-06	0.233	-0.08528	VUS
Epi25 2	FE	Yes	CNIH3:NM_001322303.2:c.G122C:p.R41T	4.58E-05 / 3.94E-05	0.174	-0.15321	VUS
Epi25 3	FE	Yes	CNIH3:NM_001322303.2:c.G190C:p.E64Q	2.60E-05 / 3.29E-05	0.249	-0.00306	VUS
Epi25 4	FE	Yes	CNIH3:NM_001322303.2:c.G190C:p.E64Q	2.60E-05 / 3.29E-05	0.249	-0.00306	VUS
Epi25 5	FE	Yes	CNIH3:NM_001322303.2:c.G428A:p.C143Y	6.84E-07 / NA	0.51	0.24683	VUS
Epi25 6	FE	Yes	CNIH4:NM_001277199.2:c.C61T:p.R21X	1.07E-05 / 6.58E-06	0.378	-0.05004	VUS
Epi25 7	FE	Yes	WDR26:NM_001379403.1:c.C1192G:p.P398A	1.37E-06 / NA	0.483	0.14187	VUS
Epi25 8	FE	Yes	WDR26:NM_001379403.1:c.G1097A:p.R366H	2.05E-06 / 6.57E-06	0.126	0.01533	VUS
Epi25 9	FE	Yes	WDR26:NM_001379403.1:c.G580T:p.A194S	NA	0.062	-0.12765	VUS
Epi25 10	GE	Yes	CNIH4:NM_001277199.2:c.G214A:p.A72T	5.82E-05 / 4.60E-05	0.22	0.00773	VUS
Epi25 11	GE	Yes	WDR26:NM_001379403.1:c.C1403G:p.T468S	6.84E-07 / NA	0.271	0.05827	VUS
EpiPGX 1	GE	Yes	WDR26:NM_001379403.1:c.174_176del:p.S67del	7.79E-06 / NA	NA	NA	VUS
Epi25 12	FE	No	CNIH3:NM_001322303.2:c.C163T:p.H55Y	4.11E-06 / NA	0.201	0.07147	VUS
Epi25 13	FE	No	WDR26:NM_001379403.1:c.C1085T:p.A362V	3.01E-05 / NA	0.207	-0.04492	VUS
Epi25 14	GE	No	CNIH3:NM_001322303.2:c.C287T:p.T96M	7.81E-06 / 1.97E-05	0.382	0.04988	VUS
Epi25 15	GE	No	CNIH3:NM_001322303.2:c.C287T:p.T96M	7.81E-06 / 1.97E-05	0.382	0.04988	VUS
Epi25 16	GE	No	WDR26:NM_001379403.1:c.A1505G:p.Y502C	6.84E-07 / NA	0.61	0.27853	VUS
Epi25 17	GE	No	WDR26:NM_001379403.1:c.G1196A:p.R399Q	NA	0.248	0.05563	Likely Pathogenic
Epi25 18	GE	No	WDR26:NM_001379403.1:c.G556A:p.A186T	2.17E-06 / NA	0.033	-0.17619	VUS

Shown are filtered variants in the genes *WDR26*, *CNIH3*, and *CNIH4* screened in 425 out of 3499 EpiPGX and 3327 out of 3327 Epi25 cohort samples who also had whole-exome sequencing. Variants were annotated using ANNOVAR²². Variants were filtered for: 1.) a maximal population allele frequency in RGC-ME¹¹, RGC-MCPS¹², GnomAD¹³ v4, UK Biobank¹⁴, TogoVar¹⁵, hrcr1¹⁶, GME¹⁷, ABraOM¹⁸, ≤ 10⁻⁴; 2.) protein changing or canonical splice site change; 3.) non-reference allele frequency in the sequenced cohort ≤10%. Deleteriousness *in silico* prediction scores were annotated from the dbNSFP v4.7 database²¹. As no variant displayed strong predictions for pathogenicity, we also generated American College of Medical Genetics (ACMG)¹⁹-level pathogenicity classification labels, with the caveat that none of the genes has established gene-disease relationships corresponding to the clinical phenotypes of the carriers. Legend: FE: focal epilepsy; GE: generalised epilepsy; DEE: developmental and epileptic encephalopathy; VUS: variant of uncertain significance.

Supplementary Table 9: sQTL-based TWAS in drug-resistant vs. drug-responsive FE

Gene name	GTEx Intron ID (hg38 positions) (Transcript)	P-value	N	P_i_best	T_i_best	Z _{MEAN}
СПІН3	intron_1_224456921_224459124 (transcript with undefined CDS)	8.94E-08	1	8.94E-08	Brain_Cerebellum	5.35
WDR26	intron_1_224401069_224402004 (alternative transcript ENST00000486652.5, intron 10)	1.13E-07	1	1.13E-07	Brain_Cerebellum	5.30
WDR26	intron_1_224401069_224404430 (canonical transcript ENST00000414423.9, intron 8)	1.13E-07	1	1.13E-07	Brain_Cerebellum	-5.30
WDR26	intron_1_224389860_224393828 (canonical transcript ENST00000414423.9, intron 13)	1.14E-07	3	1.14E-07	Brain_Cortex	-5.30
CNIH3	intron_1_224454343_224454449 (transcript with undefined CDS)	1.18E-07	2	9.26E-08	Brain_Cerebellar_Hemisphere	5.29
CNIH3	intron_1_224454343_224456859 (transcript with undefined CDS)	1.48E-07	5	8.94E-08	Brain_Nucleus_accumbens_basal_ganglia	5.25
WDR26	intron_1_224418416_224419518 (canonical transcript ENST00000414423.9, intron 5)	1.86E-07	3	1.86E-07	Brain_Cerebellum	-5.21
CNIH3	intron_1_224456921_224459213 (transcript with undefined CDS)	1.95E-07	12	8.94E-08	Brain_Nucleus_accumbens_basal_ganglia	4.99
CNIH4	intron_1_224371423_224375795 (alternative transcript ENST00000465271.6, intron 4)	2.05E-07	9	2.05E-07	Brain_Amygdala	-5.19
CNIH4	intron_1_224371423_224379069 (canonical transcript ENST00000366858.7, intron 3)	2.05E-07	9	2.05E-07	Brain_Anterior_cingulate_cortex_BA24	-5.19
CNIH3	intron_1_224451208_224451871 (transcript with undefined CDS)	2.10E-07	2	2.10E-07	Brain_Cerebellar_Hemisphere	-5.19
CNIH3	intron_1_224566264_224583164 (transcript with undefined CDS)	2.10E-07	1	2.10E-07	Brain_Hippocampus	5.19
CNIH3	intron_1_224434862_224454278 (transcript with undefined CDS)	2.13E-07	4	2.13E-07	Brain_Caudate_basal_ganglia	5.19
CNIH3	intron_1_224434862_224439634 (transcript with undefined CDS)	2.13E-07	2	2.13E-07	Brain_Frontal_Cortex_BA9	5.19
CNIH3	intron_1_224456921_224459143 (transcript with undefined CDS)	2.33E-07	12	8.94E-08	Brain_Hippocampus	4.77
CNIH3	intron_1_224439774_224451871 (transcript with undefined CDS)	2.34E-07	1	2.34E-07	Brain_Cerebellum	5.17
CNIH4	intron_1_224356993_224360495 (canonical transcript ENST00000366858.7, intron 1)	2.37E-07	7	2.37E-07	Brain_Putamen_basal_ganglia	-5.17
CNIH4	intron_1_224356993_224364109 (alternative transcript ENST00000366860.9, intron 1)	2.37E-07	7	2.37E-07	Brain_Anterior_cingulate_cortex_BA24	5.17

TWAS *P*-values were calculated using S-MultiXcan⁴ with MASHR models for GTEx v8 sQTLs across 13 brain-specific tissues. Shown are all splicing events found to be significantly associated with drug response in FE after Bonferroni correction for 132,272 tested splicing events (α =3·78x10⁻⁷). Legend: P-value: significance p-value of S-MultiXcan association [multivariate regression with F-test], N: number of "tissues" available for this gene, P_i_best: best p-value of single-tissue S-PrediXcan association, T_i_best: name of best GTEx v8 single-tissue S-PrediXcan association, Z_{MEAN}: mean z-score among single-tissue S-PrediXcan associations.

7. References

- 1. ILAE Consortium on Complex Epilepsies. GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture. Nat Genet. 2023 Sep;55(9):1471–82.
- 2. Knol MJ, Vandenbroucke JP, Scott P, Egger M. What do case-control studies estimate? Survey of methods and assumptions in published case-control research. Am J Epidemiol. 2008 Nov 1;168(9):1073–81.
- 3. Menashe I, Rosenberg PS, Chen BE. PGA: power calculator for case-control genetic association analyses. BMC Genet. 2008 May 13;9:36.
- 4. Barbeira AN, Pividori M, Zheng J, Wheeler HE, Nicolae DL, Im HK. Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet. 2019 Jan;15(1):e1007889.
- 5. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015 Apr;11(4):e1004219.
- 6. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017 28;8(1):1826.
- 7. May P, Girard S, Harrer M, Bobbili DR, Schubert J, Wolking S, et al. Rare coding variants in genes encoding GABAA receptors in genetic generalised epilepsies: an exome-based case-control study. Lancet Neurol. 2018;17(8):699–708.
- 8. Illumina. DNA Copy Number and Loss of Heterozygosity Analysis Algorithms [Internet]. 2017 [cited 2025 Jan 6]. Available from: https://www.illumina.com/documents/products/technotes/technote_cnv_algorithms.pdf
- 9. Montanucci L, Lewis-Smith D, Collins RL, Niestroj LM, Parthasarathy S, Xian J, et al. Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals. Nat Commun. 2023 Jul 20;14(1):4392.
- 10. Macnee M, Pérez-Palma E, López-Rivera JA, Ivaniuk A, May P, Møller RS, et al. Datadriven historical characterization of epilepsy-associated genes. Eur J Paediatr Neurol. 2023 Jan;42:82–7.
- 11. Sun KY, Bai X, Chen S, Bao S, Kapoor M, Zhang C, et al. A deep catalog of protein-coding variation in 985,830 individuals [Internet]. 2023 [cited 2024 Jul 1]. Available from: http://biorxiv.org/lookup/doi/10.1101/2023.05.09.539329
- 12. Ziyatdinov A, Torres J, Alegre-Díaz J, Backman J, Mbatchou J, Turner M, et al. Genotyping, sequencing and analysis of 140,000 adults from Mexico City. Nature. 2023 Oct;622(7984):784–93.

- 13. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020 May;581(7809):434–43.
- 14. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015 Mar;12(3):e1001779.
- 15. Mitsuhashi N, Toyo-Oka L, Katayama T, Kawashima M, Kawashima S, Miyazaki K, et al. TogoVar: A comprehensive Japanese genetic variation database. Hum Genome Var. 2022 Dec 12;9(1):44.
- 16. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48(10):1279–83.
- 17. Scott EM, Halees A, Itan Y, Spencer EG, He Y, Azab MA, et al. Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nat Genet. 2016;48(9):1071–6.
- 18. Naslavsky MS, Scliar MO, Yamamoto GL, Wang JYT, Zverinova S, Karp T, et al. Wholegenome sequencing of 1,171 elderly admixed individuals from São Paulo, Brazil. Nat Commun. 2022 Mar 4;13(1):1004.
- 19. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015 May;17(5):405–24.
- 20. Pejaver V, Byrne AB, Feng BJ, Pagel KA, Mooney SD, Karchin R, et al. Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria. Am J Hum Genet. 2022 Dec 1;109(12):2163–77.
- 21. Liu X, Li C, Mou C, Dong Y, Tu Y. dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med. 2020 Dec 2;12(1):103.
- 22. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010 Sep;38(16):e164.
- 23. Epi25 Collaborative, Chen S, Abou-Khalil BW, Afawi Z, Ali QZ, Amadori E, et al. Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes. Nat Neurosci. 2024 Oct;27(10):1864–79.
- 24. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am J Hum Genet. 2016 Oct 6;99(4):877–85.

25. Feng BJ. PERCH: A Unified Framework for Disease Gene Prioritization. Hum Mar;38(3):243–51.	Mutat. 2017