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Summary

Background: Epilepsy is one of the most common neurological disorders, affecting over 50
million people worldwide. One-third of people with epilepsy do not respond to currently available
anti-seizure medications, constituting one of the most important problems in epilepsy. Little is
known about the molecular pathology of drug resistance in epilepsy, in particular, possible

underlying genetic factors are largely unknown.

Methods: We performed a genome-wide association study (GWAS) in two epilepsy cohorts of
European ancestry, comparing drug-resistant (N=4,208) to drug-responsive individuals (N=2,618)
followed by meta-analyses across the studies. Next, we performed subanalyses split into two broad

subtypes: acquired or non-acquired focal and genetic generalized epilepsy.

Findings: Our drug-resistant versus drug-responsive epilepsy GWAS meta-analysis showed no
significant loci when combining all epilepsy types. Sub-analyses on individuals with focal epilepsy
(FE) identified a significant locus on chromosome 1q42.11-q42.12 (lead SNP: rs35915186,
P=1-51x10"%, OR[C]=0-74). This locus was not associated with any epilepsy subtype in the latest
epilepsy GWAS (lowest uncorrected P=0-009 for FE vs healthy controls), and drug resistance in
FE was not genetically correlated with susceptibility to FE itself. Seven genome-wide significant
SNPs within this locus, encompassing the genes CNIH4, WDR26, and CNIH3, were identified to
protect against drug-resistant FE. Further transcriptome-wide association studies (TWAS) imply
significantly higher expression levels of CNIH3 and WDR?26 in drug-resistant FE than in drug-
responsive FE. CNIH3 is implicated in AMPA receptor assembly and function, while WDR26
haploinsufficiency is linked to intellectual disability and seizures. These findings suggest that

CNIH3 and WDR26 may play a role in mediating drug response in focal epilepsy.

Interpretation: We identified a contribution of common genetic variation to drug-resistant focal
epilepsy. These findings provide insights into possible mechanisms underlying drug response

variability in epilepsy, offering potential targets for personalised treatment approaches.
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Research in context

Evidence before this study

The causes of drug resistance in epilepsy are not well understood, leading to a stagnation of drug
therapy in epilepsy in the last 40 years. We searched PubMed with the terms 1.) “epilepsy” and
“common variants”, 2.) “seizure outcomes” and “genetics”, 3.) “drug-resistant epilepsy” and
“genetics” OR “association” OR “GWAS” for reports published before 1st July 2024, with no
language restrictions. While rare genetic variants have been established as causal factors in
epilepsy, and evidence suggests their potential overlap with drug resistance, this primarily applies
to rare/monogenic epilepsy syndromes. These syndromes represent only a small fraction of all
epilepsy cases. The majority of epilepsy cases exhibit a complex/polygenic genetic architecture,
well-characterized by numerous successful genome-wide association and polygenic risk-scoring
studies. However, to date, no study has successfully identified genome-wide significant common

genetic factors influencing drug response in all forms of epilepsy.

Added value of this study

Prior studies, although inconclusive, suggested the involvement of common genetic variants in
drug response and a potential heritable component to drug resistance in epilepsy. This study
provides evidence for common genetic variants associated with drug response in focal epilepsy,
confirming these earlier suggestions. To investigate the genetic basis of drug resistance, we
leveraged data from two large-scale initiatives: EpiPGX, an international multicenter research
project on epilepsy pharmacogenetics, and Epi25, the largest sequencing study in epilepsy. In the
combined cohort of 6,826 individuals with drug-resistant and -responsive epilepsy, we identified
a locus on chromosome 1q42.11-q42.12, encompassing the genes CNIH4, WDR26, and CNIH3,

associated with protection against drug resistance in focal epilepsy. Additionally, we observed



significantly higher predicted expression levels of CNIH3 and WDR26 in individuals with drug-

resistant focal epilepsy compared to those with drug-responsive focal epilepsy.

Implications of all the available evidence

The present study provides two key insights into understanding drug resistance in epilepsy. First,
we demonstrate that drug resistance in focal epilepsy has a common genetic component, which
may enable quantification of each individual’s polygenic risk for drug resistance in (focal) epilepsy
and, thus, inform treatment strategies. The common genetic basis of drug resistance also suggests
a future need to target multiple pathways rather than single molecules/genes. Second, fine-
mapping of the association signal for drug response in focal epilepsy implicates three candidate
genes: CNIH4, WDR26, and CNIH3. Pathogenic variants in WDR26 have been shown to cause a
drug-responsive seizure phenotype consistent with the protective effect observed in our meta-
analysis and the higher expression levels in drug-resistant cases suggested by our transcriptome-
wide association study. CNIH3 acts as an auxiliary subunit that regulates AMPA receptor gating
and trafficking, and abnormal AMPA receptor trafficking could contribute to seizure activity. The
findings of this study provide a foundation for future research exploring the common genetic

origins of drug resistance in epilepsy.
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Introduction

Epilepsy is a burdensome neurological disorder affecting over 50 million people worldwide.! One-
third of people with epilepsy experience ongoing seizures despite treatment with appropriate
antiseizure medications (ASMs). The standard operational definition of drug resistance in epilepsy,
formulated by the International League Against Epilepsy (ILAE), is “failure of adequate trials of
two tolerated, appropriately chosen and used ASM schedules (whether as monotherapies or in
combination) to achieve sustained seizure freedom”.? Drug-resistant epilepsy (DRE) is associated
with reduced quality of life, treatment side effects, comorbidities, lowered socioeconomic status,
stigmatisation, and premature mortality.>® Despite the availability of more than 25 registered
ASMs, the proportion of people with DRE has remained steady over time.!” A single-centre 30-
year longitudinal cohort study found a similar proportion of people with DRE over the study period
despite a marked increase in the use of newer ASMs.!!

The causes of DRE are unknown. Evidence suggests the existence of general mechanisms
of drug resistance that act regardless of epilepsy syndrome or specific drug.'?> Several hypotheses
have arisen as putative explanations for DRE, including the target,13 multidrug transportelr,14
intrinsic severity,'> epigenetic,'¢ network,!” and others.'® However, evidence for these hypotheses
remains limited.!> While genetic factors have been suspected to play a role in drug resistance,
definitive evidence has been limited. Only one epilepsy GWAS on drug response has been
published (N=889), which did not find any genome-wide significant loci.!® More recently, a
familial aggregation of a history of uncontrolled seizures (>4 tonic-clonic seizures per year) was
demonstrated, suggesting a genetic component of seizure outcomes.?

We hypothesised a common-variant genetic component to DRE. We performed genome-
wide SNP-based association studies (GWAS) in two independent international epilepsy cohorts
(EpiPGX and Epi25) with drug response phenotypes, followed by meta-analyses. Given existing
evidence that focal and generalised epilepsies have distinctive biologies and that DRE is more
common in focal than generalised epilepsies, we hypothesised that any genetic basis for DRE
would differ between these two categories’! and performed subanalyses in focal and generalised

epilepsies.

Methods
Ethics



All individuals from the EpiPGX Consortium and Epi25 Collaborative gave written informed
consent. Each centre's ethics committees/institutional review boards approved data collection and
use. For the EpiPGX consortium, all participants provided written informed consent for
appropriately coded use of their clinical data. Ethical approval for this study was obtained from
the Camden and Kings Cross Research Ethics Committee (reference number: 11/L0O/2016).
Consent from parents or legal guardians was obtained from those unable to consent. For the Epi25
cohort, patients or their legal guardians provided signed informed consent/assent according to local
IRB mquirements;22 as samples had been collected over 20 years in some centres, forms reflected
standards at the time of collection. For Epi25 Collaborative samples collected after 25th January

2015, forms required specific language according to the NIH Genomic Data Sharing Policy.?

Study cohorts
Individuals were recruited from EpiPGX, an international multicenter research project on epilepsy
pharmacogenetics, and Epi25, the largest sequencing study in epilepsy.??

The EpiPGX database contains coded demographic and clinical details of about 10,000
individuals with a diagnosis of epilepsy confirmed by an epilepsy specialist. The database includes
detailed data on >39,000 treatment regimens collected retrospectively from contemporary records.
Participants were recruited mainly from tertiary referral centres in the UK, Ireland, Belgium, the
Netherlands, Germany, and Italy. Data collection spanned from 2012-2016. All individuals were
classified for treatment response, following a modification of the International League Against
Epilepsy (ILAE) definition? of DRE. According to the ILAE definition of DRE, individuals with
very rare seizures (for example, one seizure in 12 months) may be classified as drug-resistant>*
and preclude the identification of clinically meaningful DRE phenotypes. Therefore, this study
adopted a threshold of four or more seizures per year, consistent with established practice in
pharmacogenetic and pharmacogenomic investigations. This modified DRE definition was:
"seizures occurring at a frequency of >4/year during the year preceding the latest data entry, despite
adequate trials of >2 tolerated and appropriately chosen (and used) ASM schedules, whether as
monotherapies or in combination." It is important to note that the ILAE study advises adaptation
of the definitions for particular circumstances and studies. Given that the phenotypic data for this
study were collected retrospectively and that pre-intervention inter-seizure intervals were not

consistently documented, drug-responsive epilepsy was defined as freedom from seizures for >12



months up to the latest recorded visit.!! Consequently, individuals with 1-3 seizures in the 12
months preceding the latest data entry were excluded from the study. This usage is within the ILAE
definition,? which categorises a treatment outcome as "seizure-free" (Category 1 response) if “the
treatment results in seizure freedom for 12 months, or for a minimum of three times the longest
pre-intervention inter-seizure interval, whichever is longer”.? Our usage aligns with the seizure-
free interval that often actually leads to changes in daily life (e.g., permitting reinstatement of
driving privileges) and ensures that those who are considered drug-responsive have experienced a
seizure-free interval of at least 12 months. Of note, none of the individuals classified as drug-
responsive were seizure-free without medication (Table 1; an average of 1-9 adequate ASM trials).
An AED trial was considered adequate if administered at an appropriate dose for a sufficient
duration. Appropriateness was determined by prior evidence of efficacy, ideally from randomised
controlled trials. Minimum therapeutic doses for adults were established by a panel of EpiPGX
principal investigators (SMS, JC, ND, CD, HL, AGM, JWS, GJS), informed by World Health
Organization (WHO) defined daily doses (DDD) (atcddd.thi.no/atc_ddd_index/). It is important
to note that the agreed appropriate AED daily doses only apply to monotherapy trials and that the
list was used as guidance rather than a set of strict rules. Clinical judgment was required to evaluate
the adequacy of AED trials in the context of polytherapy, extremely low or high body weight, and
for AED trials taking place in an individual’s childhood. Laboratory reports of AED levels were
taken into account if available. If the AED levels were below the local reference range while the
individual was taking a stable dose of the AED and there were no signs indicating CNS toxicity,
the AED trial was considered inadequate. Individuals with non-epileptic seizures or known non-
adherence were excluded from the study. Individuals who underwent epilepsy surgery were
classified as drug-resistant if they met the DRE criteria before surgery and excluded from analysis
if they achieved remission following epilepsy surgery. This classification approach required
substantial efforts and resources. Of the ~10,000 individuals in the EpiPGX database, only those
who could be robustly classified in one of the two response groups were included. We note that
this level of phenotyping depth requires significant time and effort and is not generally feasible.
The EpiPGX cohort thus represents a deeply-phenotyped group nested within the broader
framework of the Epi25 cohort. The deep phenotyping used for EpiPGX, designed as a
pharmacogenomics study, was not undertaken for the second cohort from the Epi25 Collaborative,

the primary purpose of which was gene discovery. Overall, the joint cohort achieves robust and



aligned classification of seizure freedom (and thus drug responsiveness, as all patients achieving
seizure freedom were on ASMs) and real-world usages for response to individual ASMs. This
approach will facilitate both ease of independent replication and enlargement of the cohort in our
own future work.

For the Epi25 Collaborative, the unmodified ILAE definitions of DRE (failure of adequate
trials of two tolerated, appropriately chosen, and used ASM schedules)? and drug responsiveness
(“seizure-free for a minimum of three times the longest pretreatment inter-seizure interval, or 12
months, whichever is longer”) were used. This, too, ensures that individuals were seizure-free for
at least 12 months (or longer). Across both cohorts, therefore, those deemed drug-responsive had
been seizure-free for at least 12 months, a meaningful and consequential period of seizure freedom
aligned across the two cohorts. Because detailed drug response data was only provided in a
minority of Epi25 participants, we could only include a fraction of the whole Epi25 study. The
study cohorts are detailed in Table 1. Both cohorts displayed similar demographics, apart from the
mean age at epilepsy onset of drug-responsive individuals, which was higher in the EpiPGX
compared to the Epi25 cohort. Age is, however, not considered a factor in the development of drug
resistance.'? The EpiPGX and Epi25 GWAS cohorts included individuals with possible genetic
causes (EpiPGX: 3-7% of the drug-resistant and 5-9% of the drug-responsive individuals; Epi25:
17% of the drug-resistant and 13% of the drug-responsive individuals; Supplementary Tables 6
and 7), without a significant enrichment of individuals with a possible genetic cause in either of
the drug response groups across both cohorts (P=0-083 [Cochran-Mantel Haenszel test stratified
for the two cohorts]). These individuals were included in the analyses following evidence that
common genetic risk variants are enriched in individuals with a family history of the phenotype or
unique causal variants.”>>° Epilepsy type and epilepsy sub-syndromes were diagnosed in all
cohorts based on the primary mode of seizure onset (generalised vs focal), taking into account
clinical interview data, neurological examination, EEG, and imaging data, following ILAE

schemata.?”

Single nucleotide polymorphism genotyping

All EpiPGX samples were genotyped at deCODE Genetics (Reykjavik, Iceland) using Illumina
single nucleotide polymorphism (SNP) arrays (OmniExpress-12 v1.1, OmniExpress-24 v1.1,
Human610-Quad, HumanHap550v3). SNP genotypes were called with the Genotyping Module of
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the GenomeStudio Software (Illumina, CA, USA). Epi25 samples were genotyped at the Broad
Institute of Harvard and MIT (Cambridge, MA, USA) using the Illumina Global Screening Array
with Multi-disease drop-in (GSA-MD v1.0). SNP genotypes were called using Illumina’s
genotyping analysis software Autocall. Rare SNPs (minor allele frequency, MAF<0.1) were called

with the zCall software’! into the Autocall output.

Data quality control and imputation - EpiPGX cohort

For the EpiPGX samples, data quality control (QC) and imputation were performed separately for
each chip type and genotyping batch. Before imputation, we excluded genotyped individuals based
on the following criteria: (1) genotyping call rate (CR) <0-98; (2) heterozygosity rate outliers with
>5 standard deviations (SD) from the median of the whole sample, using a subset of uncorrelated
SNPs (pairwise r?<0-1 in 100 Kbp sliding windows with a step size of 25 SNPs); (3) missing,
ambiguous, or sex mismatch between X-chromosome genotype and reported sex; (4) one
individual from each pair of closely related individuals with >0-9 identity by state; (5) individuals
with <90% European ancestry, as identified using STRUCTURE-v2.2,3? with HapMap European
samples as the reference population and 2,766 ethnicity-sensitive SNPs. We then excluded SNPs
based on the following criteria: (1) SNP-CR<0-95; (2) MAF<0-01; (3) deviation from the Hardy-
Weinberg equilibrium (HWE) with P<10°. We applied pre-imputation checks according to scripts
available on the website of Will Rayner of the Wellcome Trust Centre for Human Genetics
(Supplementary material, URLs) to align the QC-filtered dataset to the imputation reference
(variant name, variant position, and strand orientation), remove all A/T and C/G SNPs to avoid
strand issues, and to remove SNPs with allele frequencies deviating >20% from the frequency in
the 1000 Genomes phase 3 reference.®* We then split genotypes up according to chromosome arms
(and in the case of chromosome X, we split additionally into pseudo-autosomal regions, PAR, and
non-PAR) and created phased haplotypes using SHAPEIT-v215** with recommended effective
size setting (HapMap2 European, N=11,418), and using the 1000 Genomes phase 1 integrated (v3)
map files as reference. Following haplotype phasing, we imputed genotypes into our dataset using
IMPUTE-v2.3.0% with recommended effective population size settings (20,000) and 1000
Genomes phase 1 integrated (v3) genotypes as reference.*® The haplotype phasing and imputation

were performed in separate batches for each genotyping dataset.
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Post-imputation QC filters were applied first separately for every imputation batch to
remove genotyped variants with low concordance between the observed genotype and masked,
imputed genotype (IMPUTE2 r2_typeO score <0-90, concordance_type0<0-90). We then
performed further QCs on the merged datasets for GWAS cases and controls separately, removing
variants based on the following criteria: (1) SNPtest v2*7 imputation quality info score <0-97; (2)
SNPtest average_maximum_posterior_call<0-90; (3) MAF<0.01; (4) deviation from HWE with
P<10® in controls only. QC-filtered imputed genotypes were converted for subsequent analyses to
hard calls using GTOOL (Supplementary material, URLs). At the individual level, we removed

duplicate samples across imputation batches (using the same parameter as in the pre-imputation

step).

Data quality control and imputation - Epi25 cohort

Before imputation, genotyped Epi25 individuals were excluded based on the following sample-
level QC filters: (1) heterozygous/homozygous SNP ratio outliers with >4 SD from the mean of
the whole sample; (2) individuals with missing, ambiguous, or mismatch between genetically
inferred and reported sex; (3) one individual from each pair of closely related individuals with
>0-2 proportion of identity by descent; (4) population outliers not clustering with the 1000
Genomes Project®® European samples in a principal component analysis (PCA). SNPs were filtered
out with the following criteria: (1) SNP-CR<0-98; (2) monomorphic SNPs; (3) SNPs with batch
association (P<10™#); (4) deviation from HWE with P<10"'°. The resulting QC-filtered SNPs were
used for imputation to the Haplotype Reference Consortium reference r1.1°® using Minimac4>’
and reference-based phasing with Eagle-v2.4,*0 as implemented on the Michigan Imputation
Server.** All Epi25 samples were imputed as one single batch.

Post-imputation, we randomly removed one individual from each pair of individuals with
3rd-degree relationships and higher (kinship coefficient >0-0442) using KING.*' Imputed
genotypes were converted to hard calls using PLINK-v1.9*? and filtered for high quality based on
the following criteria: (1) Minimac4 imputation quality score, R*>0-3; (2) Minimac4 squared
correlation value between masked genotypes of genotyped SNPs and the imputed dosages, Emp-

R?>>0-3.

Detection of overlapping individuals across the EpiPGX and Epi25 cohorts

12



To identify individuals that were ascertained in the EpiPGX and the Epi25 study without sharing
individual-level data between sites, we used a protocol inspired by the one-way cryptographic hash
function.*’ One-way cryptographic hashes are a security algorithm form that alters input data so
that the resulting output data cannot be reverted feasibly to the original form. We first generated
ten batches of SNPs, which did not have missing genotypes in any of the studies. We then
computed hash values (checksums) for each of the ten batches for each individual, using the Linux
“cksum” command. The “cksum” command will always generate the same unique hash value
when using the same SNPs, with the same information (same non-missing genotype), and in the
same order (sorted by physical position). We then marked every pair of individuals with one or
more identical hash values (out of the ten) as duplicate and excluded the corresponding individual
from the Epi25 cohort. The procedure is implemented in Perl and is freely available
(Supplementary material, URLs). We removed 22 samples from the Epi25 cohort duplicated
between the EpiPGX and Epi25 cohorts before generating the GWAS statistics.

Genetic correlation analyses

We used LDSC to calculate the genetic correlation (Rg) of the drug response phenotype in focal
epilepsy with epilepsy and the two main subtypes (focal and generalised epilepsy) (Supplementary
Table 5). The summary statistics for epilepsy vs. (healthy) controls were obtained from the most
recent GWAS in epilepsy.** We used pre-computed LD scores suitable for GWASs based on

European individuals, generated as described in Bulik-Sullivan et al. (2015).%

Genome-wide association and meta-analysis

We used logistic regression adjusted for sex and the first ten principal components of ancestry in
PLINK-v1.9* to perform separate GWASs in the EpiPGX and Epi25 cohorts. We did not adjust
our analysis for potential non-genetic predictors of drug resistance. We performed three GWASs
for each cohort in drug-resistant vs. drug-responsive individuals with (1) any type of epilepsy, ‘all-
EPI’; (2) non-acquired or lesional focal epilepsy, ‘FE’; or (3) generalised epilepsy, ‘GE’. SNPs for
GWAS:s were selected based on the following criteria: (1) CR>0-98 in the combined case/control
dataset; (2) MAF>0-01; (3) deviation from HWE with P>107. Sample and SNP QC procedures
were performed using PLINK-v1.9.4 To minimise confounding due to population stratification,

we performed a stringent, post-imputation selection of individuals clustering exclusively with
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Western European and British individuals from the 1000 Genomes Project® in a PCA using
GCTA.* Of note, as well as excluding individuals with Finnish ancestry, as is standard (best)
practice for GWASs in the European population, we also excluded European individuals that
clustered with Tuscan*’ and Iberian*® individuals to avoid population stratification within the
largely Western and Central European GWAS cohort.

Next, we performed P-value-based fixed-effects meta-analyses with GWAMA® for each
of the three epilepsy phenotypes (all-EPI, FE, and GE). The threshold for genome-wide
significance in the meta-analyses was set to the commonly used a=5x10%. Fine-mapping of the
meta-analysis association signals was performed using FUMA,*® LocusZoom,’!' and Haploview.>?
Gene-based association analyses were performed using MAGMA?>* as implemented in FUMA.
The Bonferroni-corrected threshold for a significant association in the MAGMA analysis was set
to 0=2-63x10° (19,005 tested protein-coding genes).

Transcriptome-wide association analysis (TWAS) was performed using the S-MultiXcan
framework® on all available brain-specific GTEx v8 transcriptome datasets (N=13). S-
MultiXcan> leverages the substantial sharing of quantitative trait loci (QTL) across tissues to
increase the power of identifying associated gene expression or alternative splicing variation.>
Expression and splicing predictions were generated using multivariate adaptive shrinkage (mash)
models®® for GTEx v8 expression QTL (eQTL) and splicing QTL (sQTL) data.’’” We then applied
the S-MultiXcan framework on all brain-specific GTEx v8 transcriptome datasets (N=13). The
Bonferroni-corrected thresholds for a significant association were set to a=2-69x10¢ (18,562
tested genes) in the eQTL-based TWAS and a=3-78x107 (132,272 tested splicing events) in the
sQTL-based TWAS. Power calculations were performed post hoc using the PGA Power

8

Calculator,” assuming a disease prevalence of 0-1%, an additive risk model, and linkage

disequilibrium (LD) r?=0-9 between a causal variant and a genotyped marker.

Role of funders
The funding institutions had no role in the design and conduct of the study, including data
collection, analysis, and interpretation of results, or the preparation, review, and decision to submit

the manuscript for publication.

Results
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Genome-wide association meta-analysis reveals one locus associated with drug
resistance in focal epilepsy

To test for a possible genetic basis of DRE, we performed European ancestry-focused genome-
wide association (GWA) meta-analyses in 4,208 individuals with DRE vs. 2,618 individuals with
drug-responsive epilepsy. We did not identify any genome-wide significant loci in the all-EPI
analysis (Figure 1) despite 80% power to detect a genetic predictor of relative risk >1-33
(Supplementary Figures 1 and 2). Subanalyses were performed in drug-resistant vs. drug-
responsive individuals with FE or GE (see cohorts in Table 1). The sample size for drug-resistant
GE was underpowered to detect common risk factors and SNPs showing association trends not
overlapping with ‘all-EPI” or FE associatiation signals (Figure 1, Supplementary Figure 1). Fixed-
effects GWA meta-analysis for drug resistance in FE identified seven genome-wide significant
SNPs in a region of strong linkage disequilibrium on chromosome 1q42.11-q42.12 encompassing
CNIH4, WDR26, and CNIH3 (lead SNP: rs35915186, P=1-51x10® [logistic regression], odds ratio
OR[C]=0-74, 95% confidence interval [95%-CI]:0-66-0-82) (Figure 1). Interestingly, all
associated SNPs at the identified locus had OR<I1, indicating that the minor allele (MAF=0-14)
protects against drug resistance. This locus was not significantly associated with any epilepsy
subtype in the most recent epilepsy GWAS* (lowest uncorrected P=0-009 [linear mixed model]
for FE vs healthy controls, Supplementary Tables 2 and 3). The GWAS Catalog listed 86
associations with P<5x10® within +/-500Kb of the lead SNP, of which 33 were in strong LD with
135915186 (r*>0-8), but none were related to neurological or psychiatric traits (Supplementary
Table 4). Notably, we did not find any genetic correlation between drug resistance in FE and
susceptibility to FE itself, based on genetic correlation analyses with the ILAE 2023 GWAS for
FE* (linkage disequilibrium score regression genetic heritability=-0-22, standard error=0-38,

P=0-28 [regression]; Supplementary Table 5).

WDR26, CNIH3, and CNIH4 are candidate drivers of drug response in focal epilepsy
Fine-mapping of the region associated with drug response in FE narrowed down the critical region
to a 161Kb LD block of 106 SNPs in high LD with at least one of the seven genome-wide
significant SNPs (r>>0-8 using 1000g Phase 3 EUR data, Figure 2). The identified LD block
featured three genes: CNIH4, WDR26, and the first two exons of a CNIH3 transcript variant
(ENST00000471578.5). All three genes emerged as genome-wide significant after Bonferroni
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correction for multiple testing (P<2-63x10® [multiple regression with F-test]) in a MAGMA?
gene-based association analysis of drug-resistant FE (Supplementary Table 1, Supplementary
Figure 3).

We then performed two multi-tissue TWASs for eQTL and sQTL GTEx v8 data using S-
MultiXcan® to identify expression or splicing events associated with drug response in FE. eQTL-
based TWAS across 13 GTEx v8 brain tissues implied significantly higher expression levels of
CNIH3 and WDR26 in drug-resistant compared to drug-responsive FE (Pcnmz=1-10x10,
ZMEAN=3-55; Pwpr26=1-60x10"°, Zmean=3-44; multivariate regression with F-test; Table 2) at a
Bonferroni-corrected significance threshold a=2-69x10°. sQTL-based TWAS across the same
brain tissues revealed 18 unique splicing events associated with drug response in FE, mapping
exclusively to the three candidate genes at a Bonferroni-corrected significance threshold
a=3-78x10"7 (CNIH3, WDR26, and CNIH4, Supplementary Table 9).

CNIH3 1s one of two members of the cornichon family of transmembrane proteins
coassembled with AMPA receptors (along with CNIH2)> and a brain-specific expressed gene that
shows the highest expression in the frontal cortex (BA9).®° Upon successful assembly, CNIH3
increases the surface expression of AMPA receptors and slows deactivation and desensitisation
kinetics.>*%! Cnih3 knock-out in mice depresses AMPA receptor synaptic transmission only when
combined with Cnih2 knock-out, suggesting that CNIH2 can compensate for the lack of CNIH3.5
All four genes encoding AMPA receptors have been reported to cause monogenic autosomal
dominant neurodevelopmental disorders with seizures (GRIAI,®> GRIA2,%* GRIA3,% GRIA4%).
CNIH4 is a brain-expressed but not brain-specific gene that shows the highest expression in
cultured fibroblasts®® and is a distantly related member of the cornichon family,®” which lacks key
residues responsible for binding to AMPA receptors.® Cnih4 knock-out mice were reported as
viable without any “overt” developmental abnormalities.®® WDR26 is a brain-expressed but not
brain-specific gene with the highest expression levels in the skin.®® WDR26 haploinsufficiency is
known to cause an (ultra-rare) distinct clinical phenotype characterised by intellectual disability
and seizures (WDR26-related intellectual disability / Skraban-Deardorff syndrome).®” The exact
biological function of WDR26 is not established; studies suggest roles in MAPK signalling,”
PI3K/AKT signalling,”' and the negative regulation of B-catenin degradation within the Wnt
signalling pathway’? (among other possible functions’®’®). Notably, the seizure types described in

affected individuals were self-limited or responded well to standard treatments.”” Upon screening
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samples that also had whole-exome sequencing, we identified 10 individuals with FE, eight
individuals with GE and one individual with DEE who carried rare variants in the candidate genes
(Nwpr26=10, Ncwnimz=7, and Ncewnvirga=2). Only one of these variants was classified as likely
pathogenic according to ACMG criteria (without considering gene-disease relationships), while
all others were classified as variants of uncertain significance. There was no clear over-
representation of rare variant carriers in either group (drug-resistant or drug-responsive)

(Supplementary Table 8).

Discussion

We performed case-case GWAS meta-analyses for drug response in the EpiPGX Consortium and
the Epi25 Collaborative cohorts. Following evidence from previous studies that showed significant

differences between the genetic architectures of epilepsy sub-syndromes,’”

we performed
additional GWAS meta-analyses for drug resistance in focal (FE) and generalised epilepsy (GE).
We found a genome-wide significant locus at 1q42.11-q42.12 associated with protection against
drug resistance in FE. This common risk locus driving drug response in FE was not previously
reported as a risk factor for FE itself or any other epilepsy type.** We had insufficient power to
identify genetic factors associated with drug-resistant GE. In line with our hypothesis that different
mechanisms drive drug response in FE compared to GE, we found no significant risk factors when
combining FE and GE in an ‘all epilepsies’ (all-EPI) analysis. This study and one of our previous
GWAS studies in mesial temporal lobe epilepsy with febrile seizures®® demonstrate the value of
focusing on more narrowly defined subtypes to identify common risk factors for traits of interest
in FE.

Fine-mapping the association signal for drug response in FE revealed three candidate
genes: CNIH4, WDR26, and CNIH3. Among these, pathogenic variation in WDR26 has been
shown to cause a drug-responsive seizure phenotype’’ consistent with the protective effect from
drug-resistant epilepsy we observed from the meta-analysis, and the higher expression levels for
CNIH3 and WDR26 in drug-resistant cases suggested by the TWAS. Although CNIH3 has not
been identified as a monogenic epilepsy gene, common CNIH3 variants could plausibly act as a
modifier of drug response. CNIH3 acts as an auxiliary subunit that regulates AMPA receptor

59,61,81

gating and trafficking, and abnormal AMPA receptor trafficking could contribute to seizure

activity.®? Our result should spark further research to uncover novel therapies, as no drug-gene
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interactions are currently reported for the three candidate genes.®> Our eQTL- and sQTL-based
TWAS framework could not conclusively prioritise between the three candidate genes. However,
as the underlying gene expression and splicing variation predictions are based on GTEx post-
mortem bulk transcriptomics data, our analyses may suffer from sensitivity limitations and not
fully capture cell-type-specific expression and transcriptional patterns of living tissues or under
disease-specific conditions.®*

While we identified common variants predicting drug response in FE, additional genetic
(and environmental) factors are likely to play a role in DRE. There is accumulating evidence that
rare genetic variation is important in epilepsy causation, and such variation can overlap with poor
response to ASMs.*> Rare variants known to cause monogenic forms of epilepsy can also influence
drug response. For example, sodium channel blockers aggravate seizures in most people with
Dravet syndrome due to loss-of-function SCNIA% mutations or epilepsy due to loss-of-function
variants in SCN2A®" or SCN8A.®® Conversely, sodium channel blockers are an effective treatment
for people with epilepsy due to gain-of-function variants in SCNIA,%® SCN2A,%” or SCNSA.®

Further research in larger cohorts is needed to detect the causal genes and mechanisms for
drug resistance in epilepsy. Our GWA meta-analyses were underpowered to capture significant
single-SNP associations with drug-resistant GE. We focused on overall drug resistance in large
epilepsy subgroups. Testing in larger cohorts that allow drug-specific sub-analyses, drug-matched
control usage, and stratification for comorbid disorders may help uncover biomarkers for drug-
specific resistance in epilepsy. For example, a recent study suggested rare variants underlie
resistance to two common ASMs:® rare variants in ADME (absorption, distribution, metabolism,
and excretion) genes were associated with resistance to valproic acid and rare variants in drug
target genes were associated with resistance to levetiracetam. We opted for a very stringent
selection of individuals with Western and Central European-like ancestry to reduce potential
confounding of association statistics by population sub-structure.”® Therefore, the generalizability
of these results to individuals beyond European-like ancestry remains to be determined.
Operational definitions, typically applied at a single point in time to define drug-resistant and drug-
responsive cases, cause additional challenges in drug-resistance research in epilepsy. Such
definitions do not consider the dynamic relationship between drug resistance and seizure remission
and recurrence. Most people with epilepsy attain remission early, later in their disease history, or

never, with only a minority fluctuating between periods of seizure freedom and relapse.”! Because
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a dynamic course is more common in individuals with infrequent seizures,”? the EpiPGX definition
of DRE (which requires a minimum of four seizures in the past 12 months) partially addresses this
issue. Continued efforts are needed in the field to reach a consensus on addressing the temporal
course of drug resistance in epilepsy for research purposes. Finally, phenotyping and clinical
information collection for the EpiPGX cohort was completed over a decade ago, utilising
terminology and classifications predating the current definition of Developmental and Epileptic
Encephalopathies (DEEs).”® Consequently, the presence of individuals with DEE within the FE
GWAS meta-analyses cannot be entirely ruled out. However, we note that even if there were an
over-representation of individuals with DEE in the drug-resistant cohorts, and even if these
individuals have a monogenic basis for their epilepsy and the drug-resistant nature of that epilepsy,
this would serve only to reduce the power of our current analysis. The same applies to the
possibility that any focal epilepsies might have been monogenic.

In conclusion, we show that drug resistance in focal epilepsy has a common genetic
component. More large-scale projects are needed to identify biomarkers for drug resistance in
epilepsy. Potentially, such work could provide new clues to the aetiology and pathophysiology of
drug-resistant epilepsy, especially focal epilepsy. The common polygenic nature of the genetic
contribution to drug resistance could inform treatment strategies and may point to the need for

alternative approaches focused broadly on pathways rather than single molecular targets.
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Table 1: GWA meta-analysis cohorts after quality control.

Study cohorts of individuals with drug-resistant or drug-responsive epilepsy. Epilepsy and epilepsy sub-syndromes
were diagnosed in all cohorts according to clinical criteria (clinical interview, neurological examination, EEG,
imaging data), following ILAE classifications.>® Abbreviations: All-EPI: all epilepsies; FE: focal epilepsy; GE:
generalised epilepsy; DEE: developmental and epileptic encephalopathy; Epilepsy-NOS: epilepsy, not otherwise
specified. *Due to ethical restrictions at the time of data collection, the average age at epilepsy onset was based on
only 32% of the EpiPGX GWAS sample size.

Table 2: Gene-based TWAS in drug-resistant vs. drug-responsive FE.

TWAS P-values were calculated using S-MultiXcan>* with MASHR models for GTEx v8 eQTLs across 13 brain-
specific tissues. Shown are all genes with P<1073 [multivariate regression with F-test] in a TWAS in drug-resistant vs.
drug-responsive FE. The threshold for significant associations after Bonferroni correction was set to a=2-69x10
(18,562 tested genes). Significant associations are highlighted in bold. Legend: N: number of "tissues" available for
this gene, P_i_best: best p-value of single-tissue S-PrediXcan association (plotted in Supplementary Figure 4),
T_i_best: name of best GTEx v8 single-tissue S-PrediXcan association, Zyean: mean z-score among single-tissue S-
PrediXcan associations.
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Fig. 1: Manhattan plot of the GWAS meta-analyses in drug-resistant vs drug-responsive individuals with
epilepsy.

The red line shows the threshold for genome-wide significance (P<5x10®). Chromosome and position are displayed
on the x-axis and -log;o(P-values) [logistic regression] on the y-axis. a: GWAS meta-analysis in 3,231 drug-resistant
vs. 1,578 drug-responsive individuals with focal epilepsy (FE). Annotated genes were tagged by SNPs in high linkage
disequilibrium with the lead SNP 135915186 (r>>0-8). b: GWAS meta-analysis in 4,208 drug-resistant vs. 2,618 drug-
responsive individuals with epilepsy (all-EPI). ¢: GWAS meta-analysis in 506 drug-resistant vs. 751 drug-responsive
individuals with generalised epilepsy (GE).

Fig. 2: Chromosome 1q42.11-q42.12 locus associated with drug response in FE.

The SNPs in the upper plot are coloured according to their linkage disequilibrium (LD) r? value with the lead SNP
r$35915186. The linkage disequilibrium pattern with corresponding LD blocks (black triangles) is shown in the lower
plot. The pairwise LD values are displayed in shades of grey, with black representing SNP pairs in full LD (r?=1).
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Mean age at Mean number
Epilepsy] Males epilepsy Mean age at of
Cohort name All-EPI FE GE DEE P last follow-up
NOS (%) onset (years) (years) (SD) adequate ASM
(SD) Y trials
D@g— 2,105 1,802 179 0 124 47-5% | 15-5(SD 13-6)* | 45-6 (SD 13-4) | 4-3(SD2-3)
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EpiPGX
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responsive
Meta- | co26 | 4800 | 1257 | 444 316
analysis

Study cohorts of individuals with drug-resistant or drug-responsive epilepsy. Epilepsy and epilepsy sub-syndromes
were diagnosed in all cohorts according to clinical criteria (clinical interview, neurological examination, EEG,
imaging data), following ILAE classifications.” Abbreviations: All-EPI: all epilepsies; FE: focal epilepsy; GE:
generalised epilepsy; DEE: developmental and epileptic encephalopathy; Epilepsy-NOS: epilepsy, not otherwise
specified. *Due to ethical restrictions at the time of data collection, the average age at epilepsy onset was based on
only 32% of the EpiPGX GWAS sample size.

Table 1: GWA meta-analysis cohorts after quality control
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TWAS P-values were calculated using S-MultiXcan®® with MASHR models for GTEx v8 eQTLs
across 13 brain-specific tissues. Shown are all genes with P<10-3 [multivariate regression with F-test]
in a TWAS in drug-resistant vs. drug-responsive FE. The threshold for significant associations after
Bonferroni correction was set to 0=2-69x10 (18,562 tested genes). Significant associations are
highlighted in bold. Legend: N: number of "tissues" available for this gene, P_i_best: best p-value of
single-tissue S-PrediXcan association (plotted in Supplementary Figure 4), T_i_best: name of best
GTEXx v8 single-tissue S-PrediXcan association, Zygan: mean z-score among single-tissue S-PrediXcan

Table 2: Gene-based TWAS in drug-resistant vs. drug-responsive FE
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3. URLs

EpiPGX Consortium: https://cordis.europa.eu/project/id/279062

Epi25 Collaborative: https://epi-25.org

STRUCTURE: https://web.stanford.edu/group/pritchardlab/structure.html
SHAPEIT: https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html
IMPUTE v2: https://mathgen.stats.ox.ac.uk/impute/impute_v2.1.0.html

GTOOL, https://hpc.nih.gov/apps/IMPUTE.html

Will Rayner imputation preparation and checking scripts, https://www.well.ox.ac.uk/~wrayner/tools
Cksum script, https://personal.broadinstitute.org/sripke/share_links/checksums_download/
Epilepsy Genetic Association Database (epiGAD) database, https://www.epigad.org
Eagle v2.4: https://alkesgroup.broadinstitute.org/Eagle

Minimac4, https://genome.sph.umich.edu/wiki/Minimac4

Michigan Imputation Server, https://imputationserver.sph.umich.edu/index.html
SNPTEST v2, https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html
KING, https://www kingrelatedness.com

PLINK-v1.9: https://www.cog-genomics.org/plink

GCTA: https://yanglab.westlake.edu.cn/software/gcta

GWAMA: https://genomics.ut.ee/en/tools

FUMA, https://fuma.ctglab.nl/

LocusZoom, http://locuszoom.org/

Haploview: https://www.broadinstitute.org/haploview/haploview

LDSC: https://github.com/bulik/ldsc

PrediXcan/S-MultiXcan, https://github.com/hakyimlab/MetaXcan

PGA Power Calculator: https://dceg.cancer.gov/tools/design/pga

4. Supplementary Results

4.1. Power analysis

The GWA meta-analysis in DRE had 80% power to detect a genetic predictor of relative risk >1.33 (which can be
approximated to odds ratio for rare disorders?) with MAF>20% at a=5x10"%, assuming a disease prevalence of 0.1%,
an additive genetic model, and a linkage disequilibrium r?>=0.9 between the causal variant and the genotyped marker
(Supplementary Figure 1). However, no genome-wide signal was found in the ‘all epilepsies’ group (Supplementary
Figure 2). The GWA meta-analysis in individuals with FE had 80% power at a=5x1078 to detect genome-wide

significant SNPs with MAF>20% and relative risk >1.42.



5. Supplementary Figures
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Supplementary Figure 1: Power analysis for the genome-wide association meta-analysis in DRE and
subphenotypes

Shown are the detectable relative risks with 80% power at 0. = 5 x 1078, assuming a disease prevalence of 0.1%, an
additive risk model, and a linkage disequilibrium r?> = 0.9 between a causal variant and a genotyped marker for all
individuals with DRE (black curve), drug-resistant focal epilepsy (orange curve), and drug-resistant generalised
epilepsy (purple curve). Power calculations were performed using the PGA Power Calculator®.
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Supplementary Figure 2. Quantile-quantile plots of all three genome-wide meta-analyses of drug resistance in
epilepsy, focal epilepsy, and generalised epilepsy

The observed -logio(P-values) [logistic regression] are plotted as a function of the expected -logio(P-values) for the
genome-wide meta-analyses of drug resistance in epilepsy (DRE), focal epilepsy (DR-FE), and generalised epilepsy
(DR-GE). The lambda inflation values were: lambdaprg=1.017, lambdapr-rs=1.009, and lambdapr.cg=0.993.
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Supplementary Figure 3. MAGMA gene-based association study in drug-resistant vs. drug-responsive FE

Manhattan plot of the MAGMA gene-based association analysis. The chromosomes and positions of the analysed
genes are displayed on the x-axis, and -logio(P-values) [multiple regression with F-test] are displayed on the y-axis.
The red line shows the Bonferroni-corrected threshold for genome-wide significance (19,005 tested genes, a=2.63x10

6).
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Supplementary Figure 4. Single-tissue transcriptome-wide association study (TWAS) in drug-resistant vs.
drug-responsive FE

Manhattan plot of the single-tissue TWAS results in drug-resistant vs. drug-responsive FE. Shown are all predicted
S-PrediXcan single-tissue expression level associations (-logio(P-values) [linear regression] on the y-axis) in each of
the 13 brain-specific GTEX tissues before integration across tissues with S-MulTiXcan*. The red line shows the
Bonferroni-corrected threshold for genome-wide significance (186,590 tested genes, 0=2.68x1079).



6. Supplementary Tables

Supplementary Table 1: Gene-based association analysis in drug-resistant FE

Gene Chr Start (hgl9) Stop (hg19) NSNPS NPARAM N Z-score P-value

WDR26 1 224562845 224634735 68 2 4800 5.0907 1.78E-07
CNIH4 1 224534552 224577161 48 4 4791 5.051 2.20E-07
CNIH3 1 224612362 224938251 527 24 4799 4.7001 1.30E-06
OR6T1 11 123803492 123824580 63 9 4791 3.7592 8.52E-05
RUNDC3B 7 87246864 87471611 222 9 4805 3.685 1.14E-04
OR4DS5 11 123800250 123821344 64 8 4794 | 3.668 1.22E-04
XRN2 20 21273942 21380463 133 9 4798 3.5509 1.92E-04
ABCB1 7 87123175 87352611 315 26 4802 3.5051 2.28E-04
OR10S1 11 123837368 123858488 60 10 4795 3.4757 2.55E-04
TMEM?225 11 123743633 123766349 64 9 4803 3.3988 3.38E-04
NKX2-4 20 21366005 21388666 26 5 4801 3.3542 3.98E-04
FAM69C 18 72092963 72135179 38 9 4794 3.3428 4.15E-04
PDE6A 5 149227519 149334356 97 14 4792 3.3033 4.78E-04
TMEMG65 8 125314231 125394933 129 9 4796 3.274 5.30E-04
SERPINA12 14 94943611 94994181 112 20 4792 | 3.2653 5.47E-04
IAPP 12 21497893 21542912 104 14 4792 3.2617 5.54E-04
SLC25A40 7 87452883 87515672 77 5 4803 3.2014 6.84E-04
AP3S1 5 115167178 115259778 49 8 4781 3.1902 7.11E-04
ZFAND3 6 37777275 38132400 680 17 4798 3.0991 9.70E-04

Gene-based P-values were calculated using MAGMA? as implemented in FUMA®. Shown are all genes with P<1073
[multiple regression with F-test] in the gene-based association analysis for drug-resistant FE. The thresholds for a
significant association after Bonferroni correction was set to o = 2.63 x 10 (19,005 tested protein-coding genes).
Significant associations are highlighted in bold. Legend: NSNPS: number of SNPs annotated to a gene after internal
SNP quality control, NPARAM: number of relevant parameters used in the model, N: sample size used when analysing

a gene.
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Supplementary Table 2: ILAE epilepsy GWAS' P-values of the drug resistance meta-analysis top hits in FE

GWAS meta-analysis in 3,231 drug-resistant vs.
1,578 drug-res, yonsive i’ndividufls with FE ILAE GWAS 2023
SNP CHR | BP(hgl9) | A1 | A2 | OR(95%-CI) P-value ‘allvl;ll; Ie P- | FE P-value | GE P-value
1535031726 | 1 | 224562410 | C | T | 0.75(0.68-0.83) 8.87E-08 0.063 0.015 0.26
151544196 1| 224632782 | A | G | 0.75(0.67-0.83) 5.48E-08 0.078 0.022 0.30
1512743200 | 1 | 224644060 | A | G | 0.75(0.68-0.83) 9.13E-08 0.039 9.22E-03 0.27
1512758579 | 1 | 224644167 | T | C | 0.75(0.68-0.83) 9.13E-08 0.039 9.22E-03 0.27
156663522 || 224646328 | T | C | 0.5 (0.68-0.83) 9.13E-08 0.064 0.017 0.29
1535067427 | 1 | 224647230 | G | T | 0.75(0.68-0.83) 9.13E-08 0.063 0.017 0.28
152185684 1| 224647741 | G | T | 0.75 (0.68-0.83) 9.13E-08 0.063 0.017 0.28
1512731630 | 1 | 224650947 | C | T | 0.75(0.68-0.83) 9.13E-08 0.067 0.017 0.29
157365151 1 | 224651782 | C | T | 0.75(0.67-0.83) 6.54E-08 0.090 0.026 0.28
11577170 | 1 | 224652687 | G | A | 0.75(0.67-0.83) 5.03E-08 0.063 0.016 0.29
11800613 | 1 | 224653213 | G | A | 0.75 (0.67-0.83) 4.96E-08 0.054 0.015 0.26
10753468 | 1 | 224653388 | C | T | 0.74 (0.67-0.83) 3.50E-08 0.064 0.018 0.25
1512062871 | 1 | 224653597 | G | T | 0.75(0.67-0.83) 7.03E-08 0.055 0.017 0.24
1535915186 | 1 | 224654623 | C | T | 0.74 (0.66-0.82) 1.51E-08 0.061 0.022 0.28
157536608 | 1 | 224657092 | A | C | 0.74 (0.67-0.82) 2.28E-08 0.044 9.63E-03 0.34
1535804313 | 1 | 224667102 | T | C | 0.75 (0.67-0.83) 4.11E-08 0.071 0.024 0.32
11578709 | 1 | 224667131 | G | C | 0.75 (0.67-0.83) 3.65E-08 0.070 0.022 0.33
6698343 | 1 | 224680332 | C | T | 0.75(0.67-0.83) 4.27E-08 0.043 0.011 0.26
1517570202 | 1 | 224681894 | G | T | 0.75(0.68-0.83) 8.96E-08 0.045 0.012 0.26
1511584057 | 1 | 224685350 | A | T | 0.75(0.68-0.83) 9.13E-08 0.076 0.032 0.24

Listed are the top association signals with P<107 [logistic regression] in the GWA meta-analysis in 3,231 drug-
resistant vs. 1,578 drug-responsive individuals with focal epilepsy. The threshold for genome-wide significance was
set to P<5x10°8. Significant associations are highlighted in bold. The association P-values [linear mixed model] in the
ILAE epilepsy GWAS! are stated for each top hit. Legend: BP: physical position, Al: effect allele, A2: non-effect
allele, “all EPI’: any type of epilepsy, FE: focal epilepsy, GE: generalised epilepsy.
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Supplementary Table 3: Effect allele frequencies of the FE drug resistance meta-analysis top hits in external

datasets
Drug r?;lss:ﬁnscspl:f;s;s:f; Z;lrsr:l))}l)ehzlzs in FE Frequency of the effect allele (A1)
Meta-analysis FE Meta-analysis FE ILAE GWAS 2023 gnomAD v4.0
SNP CHR | BP (hgl9) | A1 | A2 cases (drug- controls (drug- cohort (cases and (European, non-

resistant) responsive) controls)’ Finnish)
rs35031726 1 224562410 | C T 0.2064 0.2494 0.2259 0.2259
rs1544196 1 224632782 | A G 0.203 0.2457 0.2252 0.2278
rs12743200 1 224644060 | A G 0.2057 0.2481 0.2251 0.2253
rs12758579 1 224644167 | T C 0.2057 0.2481 0.2251 0.2251
16663522 1 224646328 | T C 0.2057 0.2481 0.2253 0.2251
rs35067427 1 224647230 | G T 0.2057 0.2481 0.2253 0.2268
rs2185684 1 224647741 | G T 0.2057 0.2481 0.2253 0.2252
rs12731630 1 224650947 | C T 0.2057 0.2481 0.2253 0.2253
rs7365151 1 224651782 | C T 0.2053 0.2484 0.23 0.2249
rs11577170 1 224652687 | G A 0.2049 0.2484 0.2253 0.2255
rs11800613 1 224653213 | G A 0.2053 0.2487 0.2253 0.2254
rs10753468 1 224653388 | C T 0.2062 0.2503 0.2315 0.2271
rs12062871 1 224653597 | G T 0.2057 0.2487 0.225 0.2254
rs35915186 1 224654623 | C T 0.2053 0.2505 0.2231 0.2241
rs7536608 1 224657092 | A C 0.2061 0.2508 0.2251 0.2255
rs35804313 1 224667102 | T C 0.2082 0.2521 0.2258 0.2262
rs11578709 1 224667131 | G C 0.2076 0.2517 0.2251 0.2251
rs6698343 1 224680332 | C T 0.2079 0.2517 0.2256 0.2261
rs17570292 1 224681894 | G T 0.2089 0.2519 0.226 0.2264
rs11584057 1 224685350 | A T 0.2075 0.2503 0.2237 0.2245

Listed are the effect allele frequencies of the top association signals (Supplementary Table 2) in the GWA meta-
analysis in 3,231 drug-resistant vs. 1,578 drug-responsive individuals with focal epilepsy. Significant associations are
highlighted in bold. Legend: BP: physical position, Al: effect allele, A2: non-effect allele, FE: focal epilepsy.
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Supplementary Table 4: Associations with P<5x10® within +/-500KDb of the lead SNP rs35915186 listed in the

NHGRI-EBI GWAS Catalog

SNP P-value Mapped genes GWAS trait PMID ::;Yslgﬂlls 186
rs10916619 3.00E-169 | CNIH3 Height 36224396 0.966
17542507 6.00E-34 | CNIH3 Height 36224396 0.049
rs10916606 2.00E-29 | WDR26,CNIH4 Height 30595370 0.944
rs35571080 1.00E-28 | CNIH3 White blood cell count 32888493 0.966
1512062871 5.00E-27 | CNIH3 White blood cell count 32888493 0.987
rs35571080 1.00E-25 | CNIH3 Neutrophil count 32888493 0.966
rs7536608 7.00E-25 | CNIH3 Neutrophil count 32888493 0.996
rs10916617 8.00E-25 | CNIH3 Neutrophil count 32888494 0.966
135571080 4.00E-24 | CNIH3 White blood cell count 32888494 0.966
1528434172 2.00E-21 | WDR26 White blood cell count 30595370 0.953
rs145934561 2.00E-19 | WDR26 Neutrophil count 34594039

rs2051105 4.00E-19 | DEGS1,FBX028 Mean platelet volume 32888493 0.021
rs145934561 7.00E-19 | WDR26 White blood cell count 34594039

rs2051105 2.00E-18 | DEGS1,FBX028 Mean platelet volume 32888493 0.021
rs7519734 8.00E-18 | CNIH4 Total cholesterol levels 34887591 0.941
rs11586729 4.00E-17 | CNIH4 Height 36224396 0.956
rs12756984 4.00E-16 | NVL,DEGS1 Total Dihydroceramide levels 35668104 0.014
rs12756984 6.00E-16 | NVL,DEGS1 Dihydroceramide (d18:0/24:0) levels 35668104 0.014
rs12076788 1.00E-15 | FBX028,DEGS1 Mean spheric corpuscular volume 32888494 0.010
1rs56105022 6.00E-15 | CNIH4 Smoking initiation 36477530 0.013
157517754 6.00E-15 | NVL,CNIH4 Height (standard GWA) 37106081 0.940
rs12125241 1.00E-14 | CNIH3 Smoking initiation 36477530 0.014
rs35913393 1.00E-14 | CNIH4 Reticulocyte fraction of red cells 32888494

1s6682551 1.00E-14 | DEGS1,FBX028 Sphingomyelin (d18:0/20:0, d16:0/22:0) levels 36635386 0.016
rs12756984 3.00E-14 | NVL,DEGS1 Dihydroceramide (d18:0/22:0) levels 35668104 0.014
15752521494 3.00E-14 | DEGSI f:ﬂ;‘;‘oyl dihydrosphingomyelin (d18:0/16:0) 35347128

rs12062871 2.00E-13 | CNIH3 Red cell distribution width 32888493 0.987
rs35767322 2.00E-13 | CNIH3 Neutrophil count 34469753 0.880
1561732863 2.00E-13 | DEGSI pehenoyl dibydrosphingomyelin (d18:0/22:0) 36635386 0.008
rs11452219 3.00E-13 | WDR26 Monocyte percentage of white cells 32888494

187519734 3.00E-13 | CNIH4 Total cholesterol levels 34887591 0.941
156673347 4.00E-13 | DEGSI1 Dihydroceramide (d18:0/24:1) levels 35668104 0.020
156675858 7.00E-13 | CNIH4 Mean corpuscular hemoglobin 32888493 0.955
rs12062871 1.00E-12 | CNIH3 Red cell distribution width 32888493 0.987
186673347 1.00E-12 | DEGSI1 Red blood cell count 32888494 0.020
35913393 5 00E-12 | CNIH4 g:ﬁil light scatter reticulocyte percentage of red 30888494

rs6675858 5.00E-12 | CNIH4 Total cholesterol levels 33462484 0.955
1s7365151 5.00E-12 | CNIH3 Mean corpuscular hemoglobin 32888494 0.987
rs56105022 9.00E-12 | CNIH4 High density lipoprotein cholesterol levels 34887591 0.013
rs12751807 1.00E-11 | NVL,CNIH4 Red cell distribution width 32888494 0.707
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rs56105022 1.00E-11 | CNIH4 Apolipoprotein Al levels 32203549 0.013
16675858 2.00E-11 | CNIH4 Mean corpuscular hemoglobin 32888493 0.955
rs6675858 2.00E-11 | CNIH4 Mean corpuscular hemoglobin 30595370 0.955
rs12756984 6.00E-11 | NVL,DEGS1 Sphingomyelin (d18:0/22:0) levels 35668104 0.014
rs10707541 7.00E-11 | WDR26 Hemoglobin Alc levels 34594039 0.586
rs10707541 1.00E-10 | WDR26 Glycated hemoglobin levels 33462484 0.586
rs11803981 1.00E-10 | CNIH4 Low density lipoprotein cholesterol levels 34887591 0.941
1s35913393 1.00E-10 | CNIH4 Reticulocyte count 32888494

rs4653568 1.00E-10 | DEGS1,NVL Phosphatidylcholine (36:0) levels 35668104 0.013
rs11388086 2.00E-10 | CNIH4 Neutrophil side scatter 37596262

rs12089565 2.00E-10 | CNIH3 Drinks per week 36477530 0.062
1s34791963 2.00E-10 | CNIH3 Neutrophil percentage of white cells 32888494 0.001
rs4653568 2.00E-10 | DEGS1,NVL Ceramide [N(24)S(19)] product-precursor ratio 33437986 0.013
rs6675858 2.00E-10 | CNIH4 Low density lipoprotein cholesterol levels 33462484 0.955
rs10916619 3.00E-10 | CNIH3 Height 36224396 0.966
rs12117480 3.00E-10 | NVL Mean corpuscular hemoglobin 32888494 0.013
rs34119581 3.00E-10 | CNIH3 Red cell distribution width 30595370 0.516
1s28434172 4.00E-10 | WDR26 Basophil percentage of white cells 32888494 0.953
1556105022 4.00E-10 | CNIH4 HDL cholesterol levels 32203549 0.013
1s6663522 5.00E-10 | CNIH3 Non-HDL cholesterol levels 34887591 0.965
157527044 5.00E-10 | WDR26 Lung function (forced vital capacity) 36914875 0.954
rs12130576 6.00E-10 | DNAH14 Smoking initiation 36477530 0.002
rs16851979 6.00E-10 | CNIH3 Protein quantitative trait loci (liver) 32778093 0.008
rs12129540 8.00E-10 | CNIH3 Apolipoprotein Al levels 33462484 0.016
rs12751807 1.00E-09 | NVL,CNIH4 Low density lipoprotein cholesterol levels 32154731 0.707
1s6673347 1.00E-09 | DEGSI1 Red blood cell count 30595370 0.020
rs35913393 2.00E-09 | CNIH4 High light scatter reticulocyte count 32888494

rs4653568 2.00E-09 | DEGS1,NVL Sphingomyelin (41:0) levels 35668104 0.013
rs73115953 3.00E-09 | CNIH3 Drinks per week 36477530 0.059
rs7517754 3.00E-09 | NVL,CNIH4 Height (weighted GWA) 37106081 0.940
1rs10799590 4.00E-09 | CNIH3 Opioid dependence 26239289 0.0004
rs34687215 4.00E-09 | WDR26 White blood cell count 27863252 0.930
rs16844823 5.00E-09 | DEGS1,FBX028 ?g;‘;‘elrl‘::)“al state examination / Folstein test 35086473 0.004
1s56105022 5.00E-09 | CNIH4 High density lipoprotein cholesterol levels 34887591 0.013
1116524503 |  6.00E-09 | DNAHI4 pheel bone mincral density x serum urate levels 34046847 0.000
157519734 8.00E-09 | CNIH4 Low density lipoprotein cholesterol levels 34887591 0.941
rs16844823 2.00E-08 | DEGS1,FBX028 ?g:;;lrl‘;z‘)‘gibsflii;’f‘gf‘;\‘;f‘gg‘eﬂ‘g:;:; test 35086473 0.004
152897048 2.00E-08 | WDR26 Lung function (FVC) 30595370 0.959
1556105022 2.00E-08 | CNIH4 HDL cholesterol 34594039 0.013
187517754 2.00E-08 | NVL,CNIH4 Total cholesterol levels 34594039 0.940
1s7519734 2.00E-08 | CNIH4 Non-HDL cholesterol levels 34887591 0.941
rs1533589 3.00E-08 | NVL; NVL; NVL; NVL Core binding factor acute myeloid leukemia 27903959 0.00004
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1s145916104 4.00E-08 | DNAH14 Metabolonic lactone sulfate levels 34563731 0.001
rs6426153 4.00E-08 | CNIH3,CNIH3-AS1 Sphingomyelin (d42:0) levels 35393526 0.012
rs1533589 5.00E-08 | NVL; NVL; NVL; NVL Core binding factor acute myeloid leukemia 27903959 0.00004
156662242 5.00E-08 | DNAH14,LINC02813 Principal component-derived dietary pattern 42 32193382 0.005

Shown are all association signals with P<5x10°8 listed in the NHGRI-EBI GWAS Catalog for chr1:224154623-
225154623 (hg19). Linkage disequilibrium (LD) 12 values are indicated where available, showing 33 of all association
signals in strong LD with rs35915186, the lead SNP of GWA meta-analysis in FE.

Supplementary Table 5: Genetic correlations of the genome-wide meta-analyses of drug resistance in
epilepsy with the ILAE epilepsy GWAS'

ILAE 2023 GWAS (PMID: 37653029)
Genetic correlations
o Focal epilepsy [rg, Generalised epilepsy
All epilepsies [rg, SE] SE] [re, SE]
All epilepsies -0.73 (0.89) -0.40 (0.56) -0.53 (0.61)
Drug-resistance GWAS Focal epilepsy -0.06 (0.27) -0.22 (0.38) 0.18 (0.31)
Generalised epilepsy 0.02 (0.36) 0.15 (0.67) 0.09 (0.35)

Shown are the genetic correlations between drug-resistance epilepsy GWAS and the most recent case-control epilepsy
GWAS for all, focal, and generalised epilepsy'. Genetic correlation coefficients (rg), as calculated with LDSC, are
displayed with standard errors (SE) in parentheses. None of the genetic correlations were significant (all P>0.05

[regression]).

15




Supplementary Table 6: EpiPGX cohort samples with a possible genetic cause

T : Percentage of N unique Percentage of
Nindividuals with | . . A N unique umq .
| i it | S| |
Cohort Phenotype n IIIVIC;:,S/ possible genetic enetic cause [% of with CNV l:V 'th daia 'l?l l:v 'th data 'l?l
wit] cause . g ne ¢ or WES ave a.p0s51 e ave a.poss1 e
WES data individuals with data] data®* genetic cause | genetic cause
CNV SNV# CNV SNV (CNV or SNV) %1
. FE 953 /124 25 0 0.026 0 977 25 0.026
E]I;‘PGX GE 140/54 4 14 0.029 0.26 141 18 0.13
Tug-
resistint Epi-NOS 99/7 2 0 0.020 0 102 2 0.020
TOTAL 1192/ 185 31 14 0.026 0.08 1220 45 0.037
FE 408 / 125 10 0 0.025 0 418 10 0.024
EgPGX GE 159/ 87 4 21 0.025 0.24 160 25 0.16
rug- R
responsive |_EPINOS | 95/28 4 1 0.042 0.036 9 5 0.052
TOTAL 662 / 240 18 22 0.027 0.092 674 40 0.059

The numbers of possible genetic cases in the EpiPGX cohort are shown by drug response and epilepsy subphenotype
classification. Of the 3499 EpiPGX cohort samples, 1854 were screened for epilepsy/seizures-associated CNVs, and
425 had whole-exome sequencing (WES) to screen for rare variants. Rare variant calling from WES was detailed in
our previous work’. CNVs were called with the Illumina Genome studio plugin cnvPartition® with standard settings.
After CNV calling, samples with >3 standard deviations in CNV count, log R ratio SD, B allele frequency mean, and
waviness factor from the mean of the calling set were excluded. High-quality CNVs were retained using the following
parameters: 1.) covered by >20 markers, 2.) CNV size >20000 bp, 3.) SNP density >0.0001 if size <1Mbp, and 4.)
cnvPartition CNV confidence score >35. To identify possible genetic causes, we considered all CNVs identified as
genome-wide significantly associated with seizures or epilepsy’. Rare variants were filtered to 1.) affect established
epilepsy genes with an autosomal or X-linked dominant inheritance mode (N=102)'°; 2.) lead to protein or canonical
splice site change; 3.) have a maximal population allele frequency in RGC-ME!!, RGC-MCPS'2, GnomAD"? v4, UK
Biobank!4, TogoVar!'®, hrcr1'®, GME!, ABraOM!®, < 107%; 4.) a non-reference allele frequency in the sequenced
EpiPGX cohort <10%; and 5.) have an in silico pathogenicity prediction score that satisfies at least a moderate ACMG
PP3!° pathogenicity criterion (i.e., REVEL>0.773 or BayesDel>0.27)?°. Deleteriousness in silico prediction scores
were annotated from the dbNSFP v4.7 database®! using ANNOVAR?2 Legend: N: number; FE: focal epilepsy; GE:
generalised epilepsy; Epi-NOS: epilepsy, not otherwise specified; VUS: variant of uncertain significance. *Individuals
who were carrying an epilepsy-associated CNV and a possible pathogenic SNV were counted only once (in the CNV
carrier group). **The union of all individuals with CNV or WES data was counted.
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Supplementary Table 7: Epi25 cohort samples with a possible genetic cause

o e . N individuals
N individuals that have | Tereentage of individuals | o o o \pa¢ | Percentage of
N . . with data that have a . individuals that
Cohort Phenotype | . ... a possible genetic cause . . have a possible .
individuals possible genetic cause [%] . have a possible
genetic cause genetic cause [%]
CNV SNV* CNV SNV (CNV or SNV)
DEE 337 29 38 0.086 0.11 67 0.20
Epi25 FE 1429 186 51 0.13 0.036 237 0.17
Drug- GE 327 33 14 0.10 0.043 47 0.14
resistant Epi-nos 10 1 1 0.10 0.10 2 0.20
TOTAL 2103 249 104 0.12 0.049 353 0.17
DEE 107 7 8 0.065 0.075 15 0.14
Epi25 FE 579 48 29 0.083 0.050 77 0.13
Drug- GE 518 51 16 0.10 0.031 67 0.13
TESpONSIVE | Epi-nos 20 0 1 0 0.050 1 0.05
TOTAL 1224 106 54 0.087 0.044 160 0.13

The numbers of possible genetic cases in the Epi25 cohort are shown by drug response and epilepsy subphenotype
classification. All 3327 Epi25 cohort samples had whole-exome sequencing and were screened for epilepsy/seizures-
associated CNVs and rare pathogenic variants. CNV and rare variants calling for the Epi25 were detailed in our
previous work®?. To identify possible genetic causes, we considered all CNVs identified as genome-wide
significantly associated with seizures or epilepsy®. For rare variants, we performed additional filtering, as the scope of
our previous study was not to identify monogenic causes but to identify rare variant-burdened genes?. Rare variants
were filtered to 1.) affect established epilepsy genes with an autosomal or X-linked dominant inheritance mode
(N=102)'%; 2.) lead to protein or canonical splice site change; 3.) have a maximal population allele frequency in RGC-
ME!, RGC-MCPS'?, GnomAD" v4, UK Biobank'4, TogoVar", hrcr1'®, GME'’, ABraOM'8, < 107; 4.) a non-
reference allele frequency in the Epi25 cohort <10%; and 5.) have an in silico pathogenicity prediction score that
satisfies at least a moderate ACMG PP3!° pathogenicity criterion (i.e., REVEL>0.773 or BayesDel>0.27)%.
Deleteriousness in silico prediction scores were annotated from the dbNSFP v4.7 database®' using ANNOVARZ,
Legend: N: number; DEE: developmental and epileptic encephalopathy; FE: focal epilepsy; GE: generalised epilepsy;
Epi-NOS: epilepsy, not otherwise specified. *Individuals who were carrying an epilepsy-associated CNV and a
possible pathogenic SNV were counted only once (in the CNV carrier group).
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Supplementary Table 8: Rare variants in WDR26, CNIH3, and CNIH4 observed in the GWAS samples
which also had whole-exome sequencing

De-
. . GnomAD
identified BayesDel
variant | Phenotype Df‘ug- AAChange.refGene V4.1 AF REVE%{" (addAF) A(.:MG.
. resistant exome/ | score 25 classification
carrier nome score
D ge
. 7.53E-06 /
Epi25 1 DEE Yes WDR26:NM_001379403.1:c.C1267T:p.L423F 6.57E-06 0.233 -0.08528 vus
. 4.58E-05/
Epi252 FE Yes CNIH3:NM_001322303.2:c.G122C:p.R41T 3 04E-05 0.174 -0.15321 vus
. 2.60E-05 /
Epi25 3 FE Yes CNIH3:NM_001322303.2:c.G190C:p.E64Q 3.20E-05 0.249 -0.00306 vus
. 2.60E-05 /
Epi25 4 FE Yes CNIH3:NM_001322303.2:¢.G190C:p.E64Q 3.29E-05 0.249 -0.00306 VvUS
. 6.84E-07 /
Epi255 FE Yes CNIH3:NM_001322303.2:c.G428A:p.C143Y NA 0.51 0.24683 VvUS
] 1.07E-05/
Epi25 6 FE Yes CNIH4:NM_001277199.2:c.C61T:p.R21X 6.58E-06 0.378 -0.05004 VvUS
] 1.37E-06/
Epi257 FE Yes WDR26:NM_001379403.1:c.C1192G:p.P398A NA 0.483 0.14187 VUS
] 2.05E-06/
Epi25 8 FE Yes WDR26:NM_001379403.1:c.G1097A:p.R366H 6.57E-06 0.126 0.01533 Vvus
Epi259 FE Yes WDR26:NM_001379403.1:c.G580T:p.A194S NA 0.062 -0.12765 VUS
. 5.82E-05/
Epi25 10 GE Yes CNIH4:NM_001277199.2:c.G214A:p.A72T 4.60E-05 0.22 0.00773 vus
. 6.84E-07 /
Epi25 11 GE Yes WDR26:NM_001379403.1:c.C1403G:p.T468S NA 0.271 0.05827 vus
. 7.19E-06 /
EpiPGX 1 GE Yes WDR26:NM_001379403.1:c.174_176del:p.S67del NA NA NA VvUS
. 4.11E-06/
Epi25 12 FE No CNIH3:NM_001322303.2:c.C163T:p.H55Y NA 0.201 0.07147 Vvus
. 3.01E-05/
Epi25 13 FE No WDR26:NM_001379403.1:c.C1085T:p.A362V NA 0.207 -0.04492 Vvus
. 7.81E-06 /
Epi25 14 GE No CNIH3:NM_001322303.2:¢.C287T:p.T96M 1 97E-05 0.382 0.04988 Vvus
. 7.81E-06 /
Epi25 15 GE No CNIH3:NM_001322303.2:c.C287T:p.T96M 1.97E-05 0.382 0.04988 VUS
. 6.84E-07 /
Epi25 16 GE No WDR26:NM_001379403.1:c.A1505G:p.Y502C NA 0.61 0.27853 VUS
Epi25 17 GE No WDR26:NM_001379403.1:c.G1196A:p.R399Q NA 0.248 | 0.05563 Likely
Pathogenic
] 2.17E-06 /
Epi25 18 GE No WDR26:NM_001379403.1:c.G556A:p.A186T NA 0.033 -0.17619 Vvus

Shown are filtered variants in the genes WDR26, CNIH3, and CNIH4 screened in 425 out of 3499 EpiPGX and 3327
out of 3327 Epi25 cohort samples who also had whole-exome sequencing. Variants were annotated using
ANNOVARZ. Variants were filtered for: 1.) a maximal population allele frequency in RGC-ME!!, RGC-MCPS!?,
GnomAD" v4, UK Biobank!4, TogoVar!?, hrcr1'6, GME!, ABraOM '8, <10#; 2.) protein changing or canonical splice
site change; 3.) non-reference allele frequency in the sequenced cohort <10%. Deleteriousness in silico prediction
scores were annotated from the dbNSFP v4.7 database?'. As no variant displayed strong predictions for pathogenicity,
we also generated American College of Medical Genetics (ACMG)'*-level pathogenicity classification labels, with
the caveat that none of the genes has established gene-disease relationships corresponding to the clinical phenotypes
of the carriers. Legend: FE: focal epilepsy; GE: generalised epilepsy; DEE: developmental and epileptic
encephalopathy; VUS: variant of uncertain significance.
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Supplementary Table 9: sQTL-based TWAS in drug-resistant vs. drug-responsive FE

Gene
name

GTEx Intron ID (hg38 positions)
(Transcript)

P-value

N

P_i_best

T_i_best

VA% N

CNIH3

intron_1_224456921_224459124
(transcript with undefined CDS)

8.94E-08

8.94E-08

Brain_Cerebellum

5.35

WDR26

intron_1_224401069_224402004
(alternative transcript
ENST00000486652.5, intron 10)

1.13E-07

1.13E-07

Brain_Cerebellum

5.30

WDR26

intron_1_224401069_224404430
(canonical transcript ENST00000414423.9,
intron 8)

1.13E-07

1.13E-07

Brain_Cerebellum

-5.30

WDR26

intron_1_224389860_224393828
(canonical transcript ENST00000414423.9,
intron 13)

1.14E-07

1.14E-07

Brain_Cortex

-5.30

CNIH3

intron_1_224454343 224454449
(transcript with undefined CDS)

1.18E-07

9.26E-08

Brain_Cerebellar_Hemisphere

5.29

CNIH3

intron_1_224454343_224456859
(transcript with undefined CDS)

1.48E-07

8.94E-08

Brain_Nucleus_accumbens_basal_ganglia

5.25

WDR26

intron_1_224418416_224419518
(canonical transcript ENST00000414423.9,
intron 5)

1.86E-07

1.86E-07

Brain_Cerebellum

-5.21

CNIH3

intron_1_224456921_224459213
(transcript with undefined CDS)

1.95E-07

12

8.94E-08

Brain_Nucleus_accumbens_basal_ganglia

4.99

CNIH4

intron_1_224371423_224375795
(alternative transcript
ENST00000465271.6, intron 4)

2.05E-07

2.05E-07

Brain_Amygdala

-5.19

CNIH4

intron_1_224371423_224379069
(canonical transcript ENST00000366858.7,
intron 3)

2.05E-07

2.05E-07

Brain_Anterior_cingulate_cortex_BA24

-5.19

CNIH3

intron_1_224451208_224451871
(transcript with undefined CDS)

2.10E-07

2.10E-07

Brain_Cerebellar_Hemisphere

-5.19

CNIH3

intron_1_224566264_224583164
(transcript with undefined CDS)

2.10E-07

2.10E-07

Brain_Hippocampus

CNIH3

intron_1_224434862_224454278
(transcript with undefined CDS)

2.13E-07

2.13E-07

Brain_Caudate_basal_ganglia

CNIH3

intron_1_224434862_224439634
(transcript with undefined CDS)

2.13E-07

2.13E-07

Brain_Frontal_Cortex_BA9

CNIH3

intron_1_224456921_224459143
(transcript with undefined CDS)

2.33E-07

8.94E-08

Brain_Hippocampus

CNIH3

intron_1_224439774_224451871
(transcript with undefined CDS)

2.34E-07

2.34E-07

Brain_Cerebellum

CNIH4

intron_1_224356993_224360495
(canonical transcript ENST00000366858.7,
intron 1)

2.37E-07

2.37E-07

Brain_Putamen_basal_ganglia

CNIH4

intron_1_224356993_224364109
(alternative transcript
ENST00000366860.9, intron 1)

2.37E-07

7

2.37E-07

Brain_Anterior_cingulate_cortex_BA24

TWAS P-values were calculated using S-MultiXcan* with MASHR models for GTEx v8 sQTLs across 13 brain-
specific tissues. Shown are all splicing events found to be significantly associated with drug response in FE after
Bonferroni correction for 132,272 tested splicing events (0=3-78x107). Legend: P-value: significance p-value of S-
MultiXcan association [multivariate regression with F-test], N: number of "tissues" available for this gene, P_i_best:
best p-value of single-tissue S-PrediXcan association, T_i_best: name of best GTEx v8 single-tissue S-PrediXcan
association, Zmean: mean z-score among single-tissue S-PrediXcan associations.
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