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ABSTRACT. Significance: Hyperspectral imaging (HSI) is a promising real-time, non-invasive,
non-ionizing optical imaging technique. In surgical oncology, HSI can capture both
structural and functional tissue information, allowing the characterization of tumor
lesions both intraoperatively and on a histopathological level.

Aim: We review the latest technological and clinical advancements of HSI as a guid-
ance tool for tumor resection.

Approach: Following the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses guidelines, we systematically searched MEDLINE, Embase, and
Web of Science using logical keyword combinations related to “hyperspectral imag-
ing” and “surgical oncology.” Eighty-five articles published between January 1, 2014,
and April 30, 2024, were selected based on predefined inclusion and exclusion cri-
teria. Technical and clinical data were extracted and analyzed.

Results: The reviewed studies include preclinical and clinical investigations involv-
ing various tumor models and 2163 patients, including 24 pediatric cases. HSI has
demonstrated broad applicability across various anatomical regions in both ex vivo
and in vivo settings, with its most valuable application being tumor tissue delineation.

Conclusions: HSI remains in its early technological stages, requiring high-quality
evidence and multidisciplinary collaboration to support clinical adoption. A deeper
understanding and improved characterization of biological tissue hyperspectral
properties are essential to better inform and orient future hardware and software
designs.
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1 Introduction
Hyperspectral imaging (HSI) is an advanced optical imaging technique that captures spectro-
scopic data across multiple wavelengths for every point within the field of view (FOV) of
an imaging device. This technology provides spatially resolved chemical and physical informa-
tion, enabling the detection of subtle variations in tissue composition that are not visible to the
human eye or conventional red-green-blue (RGB) cameras.1,2 Thanks to unprecedented progress
in hardware and software, HSI is emerging as a cutting-edge, non-invasive medical imaging
technique with numerous clinical applications.1,3–6 For instance, in surgical guidance, HSI can
provide critical information about the malignancy risk of the tissue under investigation7,8 or assist
with anatomical guidance by distinguishing vital structures, such as the nerves and vessels.9,10

The tissue’s spectral characteristics offer key insights into perfusion, oxygenation, and metabo-
lism, making HSI particularly valuable for assessing flap viability11,12 and gastrointestinal anas-
tomosis,13–15 potentially improving functional outcomes and reducing surgical complications.
HSI can also be applied on a microscopic scale, providing an innovative method for capturing
detailed physicochemical properties from tissue slides by measuring a wide range of spectral
bands.16,17 In addition, HSI can potentially accelerate the histological diagnostic process by
designing specialized pipelines that bypass some labor-intensive steps, such as staining, enabling
faster clinical decision-making.18 Fu et al.19 have proposed using HSI for real-time assessment of
hemodynamic and brain tissue changes in stroke. Since then, similar studies have extended
this imaging approach to other neurological conditions, such as Alzheimer’s disease, where
in vivo retinal HSI was investigated to predict brain amyloid-beta load.20–22 Other promising
medical applications include early diagnosis of skin lesions,23 monitoring wound healing,24,25

endoscopic exploration,26,27 cardiovascular plaque characterization,28–30 and supporting drug
development.5,6,31,32

This systematic review aims to collect and present preclinical and clinical studies that have
used HSI to guide the visualization, characterization, and removal of tumors. We will explore the
insights HSI can provide to surgeons and present an overview of the current state of research,
development, and clinical application of HSI in surgical oncology, focusing on its effectiveness
in surgical guidance. In addition, we will address existing limitations in HSI hardware, software,
and scientific evidence, highlighting areas for improvement to support the optimization and
implementation of this technology in clinical practice.

To ensure clarity, we begin with an overview of the relevant technical aspects, providing the
necessary context for the subsequent discussion.

1.1 Hypercube
The fundamental data acquired by a hyperspectral camera are referred to as the hypercube
[Fig. 1(a)], a three-dimensional vector where the x and y axes represent spatial coordinates, and
the z axis corresponds to the wavelength dimension. Generally speaking, HSI differs from multi-
spectral imaging as the former implies data acquisition in a continuous or near-continuous range
of wavelengths, eventually discretized in a large number of spectral bands, whereas multispectral
imaging usually captures less than ten spectral bands [Fig. 1(b)]. Nonetheless, the rationale of
hyperspectral and multispectral remains similar, and the two modalities can somehow comple-
ment each other, as we will explore further in Sec. 3.2.

1.2 Hyperspectral Imaging Acquisition Pipeline
During the acquisition of a hyperspectral image [Fig. 1(c)], the sample is illuminated by a spe-
cific light source, depending on the measurement mode (reflectance, fluorescence, and Raman).
For reflectance acquisitions, a broadband (white) light source, such as a halogen, xenon, or light-
emitting diode (LED) lamp, is used to ensure comprehensive spectral coverage. For fluorescence
imaging, a narrow-band light source, coupled with specific excitation and emission filters, is
generally preferred to target the excitation wavelength of specific fluorophores, minimizing
background fluorescence from other endogenous or exogenous fluorophores.33,34 Examples
of narrow-band light sources include LEDs, lasers, or broadband light sources combined with
narrow bandpass filters. In contrast, Raman hyperspectral imaging uses a monochromatic laser to
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excite molecular vibrations within a tissue sample and detects the resulting inelastic scattering of
incident photons, which causes wavelength shifts. However, this signal is inherently weak and
prone to noise.35–38 Although Raman scattering is an analytical technique due to its chemical
specificity, it can hardly be applied in real time, unless advanced techniques such as stimulated
Raman are employed.

As the light interacts with a tissue, it is either reflected, absorbed, or transmitted, depending
on the tissue’s optical properties, which are modeled by two wavelength-dependent coefficients,
i.e., the absorption coefficient μaðλÞ and the reduced scattering coefficient μsðλÞ. Considering a
simplified corpuscular model for light, the first coefficient accounts for the absorption of photons
by endogenous or exogenous chromophores within the tissue. The second is used to model the
random walk of photons because of microscopic inhomogeneities that lead to local variations in
the refractive index of the tissue. The measured signal is typically diffuse reflectance, which
consists of incident photons that are backscattered by the tissue after penetrating to a depth deter-
mined by its optical properties. However, for thin tissue samples, such as histological sections,
diffuse transmittance is also measured. Regardless of the parameter being detected, the detector
captures a signal, known as radiance, across different wavelengths. The radiance Lðx; y; θ;φ, and
λ) describes the light emitted by a sample, capturing its spatial distribution (x and y) and angular
spread (θ and φ) at any wavelength (λ).

Fig. 1 (a) Graphical representation of the hypercube, where x and y denote the spatial coordi-
nates of the image frame, and z represents the measured wavelengths. Each image frame
(dashed square) represents the signal intensity at a specific wavelength. (b) Two pictorial spectra
are depicted to show the different wavelength acquisition depths (or sampling rates) in hyperspec-
tral versus multispectral imaging. (c) Flow diagram of the hyperspectral imaging acquisition proc-
ess of a biomedical sample.
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To improve data quality and simplify the downstream analysis, a preprocessing chain is
applied to the raw hypercube, as detailed in the sources.35,36 These pipelines may include steps
such as reflectance calibration, data normalization, filtering, dimensionality reduction, data aug-
mentation, feature extraction, feature selection, and image registration (e.g., alignment with
ground-truth data). Following preprocessing, the signal goes through a data-processing pipeline,
which often involves machine learning algorithms to extract useful information or generate data
predictions. For example, an algorithm may classify a pixel’s signal as resembling either tumor or
healthy tissue or predict whether a specific portion of a hypercube represents a nerve, vessel, or
muscle. Alternatively, the signal may be decomposed into elementary spectra through unmixing
algorithms, which can identify and localize specific molecular species of interest.37,38

These algorithms can vary significantly based on the input they receive and the output they
are designed to deliver. For instance, spectral classification focuses on processing the spectral
data from a single pixel to identify tissue type, whereas spectral-spatial classification considers
both the pixel’s spectral data and its spatial relationships with neighboring pixels.8,39

1.3 Light-Tissue Interactions
The hypercube spectral information (z-axis) and spatial data (x-y axes) generate a detailed topo-
graphic map of the tissue’s molecular composition, providing insights into its morphology and
metabolic processes.40,41 The optical properties of the sample are closely related to the presence
and distribution of endogenous absorbers, scatterers, and fluorophores such as nicotinamide
adenine dinucleotide phosphate hydrogen (NADPH), porphyrins, flavins, and collagen, among
others.34,42,43 These components vary according to the tissue’s health or disease state, evolving in
ways that reflect underlying pathological changes.40,44 A more detailed description of endog-
enous tissue fluorophores can be found in the review article by Croce and Bottiroli.45

1.4 Surgical Guidance for Tumor Resection
A major challenge in tumor resection is the risk of leaving behind residual tumor cells in the
surgical bed, which can lead to disease recurrence and the need for additional interventions.46–49

Although recent efforts have expanded intraoperative tools for assessing tumor margins, each
approach presents unique challenges related to surgical integration and clinical utility.

The current gold standard for intraoperative tumor margin assessment is frozen section
analysis (FSA),50–52 which typically requires 30 to 45 min, resulting in significant workflow
delays.53–55 In addition, FSA is susceptible to sampling errors and generally provides lower diag-
nostic quality than traditional pathology.56,57 Imaging-based alternatives such as intraoperative
magnetic resonance imaging (MRI) and computed tomography (CT) offer excellent spatial res-
olution but lack real-time feedback.58 Intraoperative ultrasound, on the other hand, provides real-
time information on tissue location, size, and shape.59 It also enables Doppler imaging to evaluate
vascular structures and elastosonography to assess tissue stiffness.60,61 However, it remains
highly operator-dependent, requires direct tissue contact, and often yields images that are diffi-
cult to orient within the surgical field.62 It may also produce artifacts, struggle to differentiate
certain tumor subtypes,63 and show reduced sensitivity in detecting small residual tumors, par-
ticularly in brain surgery.64 Fluorescence-guided surgery (FGS) is a promising alternative that
uses injectable fluorophores to illuminate and differentiate tumor tissue from surrounding healthy
structures. Fluorescent contrast agents fall into two broad categories: untargeted agents (e.g.,
indocyanine green and methylene blue), which lack tumor specificity, and targeted agents con-
jugated to antibodies, peptides, or nanoparticles that bind tumor-specific markers.65 An exception
is 5-aminolevulinic acid (5-ALA), which, though unconjugated, is selectively metabolized to
protoporphyrin IX (PpIX) in gliomas, enabling tumor-specific fluorescence. Although several
studies have shown that FGS improves the completeness of tumor resection,65–67 limitations
remain. Not all tumors demonstrate adequate uptake of fluorescent agents,68 some agents pose
toxicity risks,68–70 and most fluorescence signals are assessed qualitatively rather than quanti-
tatively, introducing variability in interpretation71 and reducing diagnostic accuracy.65

HSI is emerging as a promising tool in this space, offering a relatively fast, non-invasive,
non-ionizing, and potentially contrast-free approach, depending on its mode of operation. The
same HSI system can acquire both reflectance and fluorescence data with minimal hardware and
software modification,3 making it highly adaptable, particularly as new molecular probes are
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introduced.72 Moreover, HSI allows for a more detailed characterization of fluorescence signals,
including the ability to distinguish autofluorescence and other spectral noise sources. As Mieog
et al.65 noted, quantitative fluorescence imaging requires assessing local tissue optical proper-
ties,73 measuring the distance of every pixel in the image, and providing a perfectly flat illumi-
nation field (or calibrating for illumination heterogeneities). Although HSI does not meet all
these requirements alone, it excels at characterizing tissue optical properties, providing essential
data to support accurate fluorescence quantification.

HSI can be virtually applied to any anatomical region in both adult and pediatric
patients.38,74,75 Over the years, various HSI designs have been developed to meet the needs
of different medical and surgical applications. The most common are camera-based systems,
which provide a wide-field view of the observed area and can be integrated with surgical or
laboratory microscopes for microscopic hyperspectral imaging, enabling detailed tissue
analysis.75,76 In addition, probe-based HSI systems have been developed, particularly for min-
imally invasive surgery or endoscopic exploration.1,9

The increasing predictive power of artificial intelligence algorithms could significantly enhance
HSI’s capabilities by uncovering critical tumor information and identifying novel biomarkers.4,77

For instance, advanced artificial intelligence algorithms can help detect tumor margins, assess
vascularization, metabolism, and tissue oxygenation; determine histologic type and grade; and
quantify the concentration of specific clinically relevant biomolecules, including fluorophores.

2 Methods

2.1 Search Strategy
This review was conducted in accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines78 (Fig. 2). A systematic search was carried
out using MEDLINE, Embase, and Web of Science databases, covering the period from January
1, 2014, to April 30, 2024, with an automatic de-duplication filter applied. We decided to focus
on the literature from the past decade, building on the foundational work done by Lu and Fei79

and Clancy et al.1 A search string was developed and adapted to each database (see Table S1 in
the Supplementary Material) by logically combining keywords around the field of HSI-guided
surgical resection of low-depth cancerous lesions. The initial search was conducted on October 9,
2023, and subsequently updated on May 10, 2024, following the same search strategy across all
three databases. In total, 2828 records were identified.

2.2 Study Selection
The titles and abstracts were independently screened by two authors (A.C. and L.P.) against a set
of predefined inclusion and exclusion criteria (see Table S2 in the Supplementary Material). Any
disagreements were resolved through full-text revision and consultation with five senior
reviewers (S.G., K.A., G.V., C.M., and M.R.). We initially removed duplicate articles not caught
by the automatic de-duplicator and excluded articles that were not in English, lacked sufficient
information on experimental conditions, were unrelated to the tumor characterization for resec-
tion guidance, and were in the form of commentaries, reviews, case reports, technical reports,
letters to the editor, or abstract-only publications. At this stage, 117 reports were sought for
retrieval. Three reports could not be retrieved, and four additional reports were identified from
reference lists. In total, 118 reports were assessed for eligibility through full-text reading, with 33
subsequently excluded based on the exclusion criteria. We excluded studies involving Raman
imaging due to their small number (n ¼ 4) and the intrinsically different setup and acquired data,
which would require a separate review. A total of 85 studies were included in this review (see
Table S3 in the Supplementary Material).

2.3 Data Extraction
Data were extracted across two categories of variables. The first category focused on the tech-
nical specifications of the hyperspectral imaging system, data processing, and analysis. These
variables include specifications such as manufacturer, model, sensor, acquisition method, wave-
length range, number of spectral bands, FOV, dispersive element, spectral resolution, spatial
resolution, temporal resolution, data cube acquisition time, light source, and data analysis
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method. The second category focused on clinical data and experimental settings. This included
information on whether image acquisition was intra- or extra-operative, the number of patients
involved, population type, sample type, whether samples were in vivo or ex vivo, tissue prepa-
ration methods, fluorescence or reflectance mode, and the clinical application. For each study, we
also collected the performance metric associated with the data analysis methods used for specific
predictive tasks, such as binary tumor classification.

3 Results

3.1 Overview of Selected Studies
Among the selected studies, HSI was employed in various applications, including tumor seg-
mentation, fluorescence analysis, tumor characterization (e.g., predicting tumor grade or type),
tissue identification, and augmented reality. A summary of these applications is provided in
Table 1.

Our literature search identified 16 preclinical studies conducted on phantoms, animals, or
both, emphasizing the early-stage development of HSI in surgical oncology (Table 2). These
studies provide invaluable insights to guide future research and support the clinical implemen-
tation of HSI. In addition, 74 clinical studies were identified, all focusing on the use of HSI in
surgical oncology. These studies involved a total of 2163 patients, of whom only 24 were pedi-
atric patients from 3 neurosurgical studies on pediatric brain tumors.38,74,75 However, patient
numbers may be inaccurate due to incomplete reporting and potential overlaps among patients
across studies that could not be unequivocally identified. In terms of experimental settings,
39 clinical studies were conducted in an extra-operative environment, 29 were performed

Fig. 2 PRISMA flow diagram for the study selection.
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intraoperatively, 1 involved both intra- and extra-operative settings, and 5 did not specify the
setting. Most protocols tested HSI technology on ex vivo tissue samples (n ¼ 53), with fewer
studies focusing on in vivo samples (n ¼ 23).

The clinical studies reviewed research applied HSI to a diverse range of tissues (Fig. 3),
demonstrating its versatility across different histologic profiles and anatomical regions.
Tissue samples included both healthy tissue parenchyma and tumor sites in both in vivo and
ex vivo applications. Neurosurgery accounted for the largest portion of these studies (n ¼ 30),
focusing on adult and pediatric brain tumors such as glioblastoma multiforme, low-grade glioma,
grade III astrocytoma, meningioma, pituitary adenoma, medulloblastoma, anaplastic ependy-
moma, and pilocytic astrocytoma. Another 22 studies focused on the head and neck region, pri-
marily investigating squamous cell carcinoma affecting sites such as the pharynx (nasopharynx,
oropharynx, and hypopharynx), larynx, maxillary sinus, and oral and nasal cavities. Two studies
examined tumors of the parotid and other salivary glands, whereas seven articles focused on
thyroid lesions, including papillary thyroid carcinoma, medullary thyroid carcinoma, and follicu-
lar adenoma. Twelve studies investigated breast tissue, including conditions such as invasive
ductal carcinoma (IDC) and ductal carcinoma in situ (DCIS). Eight studies focused on colorectal
cancer, whereas seven explored gastroesophageal tumors. Pancreatic cancer was investigated in
three studies, whereas hepatocellular carcinoma was studied in two. In addition, only one study
was identified for each malignancy: kidney, small intestine, omentum, uterus, ovary, and fallo-
pian tube.

3.2 Summary of the Technical Specifications
The technical specifications of the reviewed HSI systems were compiled in a spreadsheet and
compared across studies. A key focus was on the range of wavelengths analyzed, as different
spectral regions can provide distinct biological insights and may be influenced by various noise
sources. For each study, Fig. 4 presents the analyzed wavelength range, which may have been
narrowed following pre-processing or band selection steps. For example, in some cases, hyper-
spectral camera sensors exhibit reduced sensitivity at the extreme ends of the measurable spec-
trum, leading to the exclusion of those regions.7,9,70,92 In other cases, optimization algorithms
were employed to select the most predictive wavelengths for specific classification tasks, thereby
reducing computational complexity and processing time. For instance, Martinez et al.93 inves-
tigated the impact of different sampling strategies to reduce the number of spectral bands used in
brain tumor classification. They found that certain wavelengths primarily contained noise and
exhibited data redundancy. By applying a genetic algorithm-based optimization methodology,

Table 1 Distribution of selected studies and the corresponding number of patients, categorized by
the applications of hyperspectral imaging in surgical oncology.

Clinical application

Number of studies reporting the application

Number of
patientsPreclinical Clinical Mixeda Total

Tumor segmentation 8 64 2 74 1569

Fluorescence analysisb 3 7 3 13 550

Tumor characterization
(grade/type prediction)

0 4 0 4 139

Tissue identification 0 4 0 4 88

Augmented reality 1 1 0 2 0

Total 11c 69c 5c 85c 2163c

aMixed refers to those studies that included both preclinical and clinical components.
bIncludes both autofluorescence (endogenous) and exogenous fluorescence (e.g., contrast agents such as 5-
ALA and proflavine).

cFrequency value is corrected for possible overlapping studies (i.e., if one study involves both a tumor seg-
mentation and augmented reality application, these are counted as a single study in total—the same holds for
the number of patients).
Note: Bold values represent the total number of studies and patients for each respective category.
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Fig. 4 Graph illustrating the wavelength ranges analyzed in each of the 85 studies included in this
review. The VIS is represented between 350 and 700 nm, the NIR region spans from 700 to
1500 nm, and the SWIR extends from 1500 to ∼2500 nm. It should be noted that these ranges
are not fixed, as varying conventions exist for defining these spectral boundaries. *The lower wave-
length bound for the SWIR region is indicated here as 1500 nm by convention, although some
definitions begin at 900 nm. This ambiguity arises from the lack of a universally accepted standard,
often resulting in overlap between the NIR and SWIR regions.

Fig. 3 Bar plot showing the number of clinical studies applying HSI on the listed tissue types (in
vivo and ex vivo).
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they were able to eliminate such bands, improving tumor identification accuracy by ∼5%. This
improvement was achieved using only 48 spectral bands, compared with the original 128 bands.
Among the 85 studies reviewed, 20 explicitly reported reducing the number of spectral bands for
similar purposes.

Most studies focus on the visible spectrum (VIS) and the lower portion of the near-infrared
spectrum (NIR), typically up to 900 nm. Only a small proportion (16%) explore wavelengths in
the upper NIR and short-wave infrared region (SWIR) regions, typically up to 1700 nm, with two
studies extending to 2350 nm. For instance, Mitsui et al.94 utilized NIR-HSI beyond 1000 nm to
assess gastrectomy margins in gastric cancer. Because white light has limited penetration depth,
detecting residual disease endoscopically in areas not exposed to the mucosal surface is chal-
lenging. Using longer wavelengths, which penetrate deeper into the mucosa due to reduced
absorption and scattering, the authors collected surgical specimens of healthy and tumor tissues,
including non-exposed cancer samples. Their support vector machine (SVM) classifier achieved
an average accuracy of 77.2%, successfully identifying unexposed cancer areas when the tumor
was 2 mm or greater. In general, studies that acquire data across broad wavelength ranges often
use multiple sensor materials, each tailored for a specific portion of the electromagnetic spec-
trum. Silicon-based sensors, such as charge-coupled devices (CCDs) and complementary metal-
oxide-semiconductor (CMOS) detectors, are typically used for measuring radiation in the visible
and lower NIR regions (∼400 to 900 nm) due to their affordability and availability. In contrast,
indium gallium arsenide (InGaAs) sensors, which are considerably more expensive, enable
detection in the SWIR region (∼900 to 1700 nm). For example, Baltussen et al.9 combined two
hyperspectral cameras - one with a CMOS sensor for the VIS to the lower NIR range and another
with an InGaAs sensor for the SWIR range - covering a total spectral range of 400 to 1700 nm.
Among the studies reviewed, CCD sensors were the most commonly used (n ¼ 42), followed by
CMOS sensors (n ¼ 32) and InGaAs sensors (n ¼ 12). Regarding illumination sources, halogen
lights were the most frequently employed (n ¼ 40), followed by xenon lights (n ¼ 15) and LEDs
(n ¼ 9). These findings reflect the diversity in technical setups and highlight the importance of
tailoring HSI systems to specific applications.

3.3 Tumor Segmentation (Reflectance)
In image-guided surgery, “tumor segmentation” refers to creating a spatial map that delineates the
tumor’s boundaries from the surrounding tissues. These maps, generated by advanced computer
vision algorithms, help surgeons achieve more precise tumor resection by highlighting tumor
regions that may not be visible to the naked eye or conventional instruments. HSI enables the
delineation of tumor contours by identifying pixels corresponding to tumor tissue through reflec-
tance measurements or the characteristic fluorescence signal, which may be enhanced using fluo-
rescent contrast agents. This section focuses on studies investigating tumor segmentation based
on reflectance measurements. Fluorescence-based methods will be discussed in Sec. 3.4.

3.3.1 Preclinical studies on tumor segmentation (reflectance)
Preclinical studies represent a fundamental step in the clinical translation of novel intraoperative
imaging modalities, enabling the assessment of their safety, feasibility, and efficacy. As detailed
in Table 2, typical experimental setups in this context include liquid, gel, or solid phantoms;
mouse models bearing tumor xenografts of various histologies; and/or animal ex vivo specimens.

Evaluating the efficacy of HSI in segmenting tumor tissue crucially begins with its com-
parison to a ground-truth map, typically derived from a gold-standard technique such as histo-
pathology. Lu et al.82 demonstrated the feasibility of registering in vivo surgical hyperspectral
“macro” images with ex vivo histological “micro” images, which served as the ground truth for
tumor segmentation [Fig. 5(a)]. The raw hyperspectral data were fed into a dimensionality reduc-
tion algorithm using principal component analysis and combined with the histological data
through affine registration and B-spline free-form deformation. The proposed method achieved
a high overlap accuracy (Dice similarity coefficient >98%) and low target registration error
(below 0.21 mm).

A substantial body of work has focused on employing HSI for the in vivo detection of tumors
in mouse models. Stewart et al.85 assessed 12 mice inoculated with patient-derived breast and
lung tumor xenografts, generating six hypercubes (spectral range: 400 to 1100 nm, 5-nm
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intervals) from both tumor-bearing and tumor-free mice. The spectra from the tumor and healthy
tissue were pre-processed, and tumor segmentation was obtained using either partial least squares
discriminant analysis (PLS-DA) or a ratiometric approach. PLS-DA is a robust multivariate stat-
istical tool that analyzes a broader region of the acquired electromagnetic spectrum, offering
greater accuracy but more processing time. In contrast, the simpler and faster ratiometric
approach relies on the ratio of two spectral bands to maximize contrast between tumor and
healthy tissues. PLS-DA demonstrated high effectiveness in distinguishing in vivo tumor spectra
from healthy tissue (sensitivity: 100%, specificity: 83.3%, accuracy: 88.9%, and area under the
receiver operating characteristic curve (AUROC): 0.917). Although the ratiometric approach is
much faster, it resulted in a significantly poorer signal-to-noise ratio. Furthermore, the utility of
coupling HSI with a ratiometric method remains questionable, as this approach inherently
excludes all wavelengths not specifically selected for the ratio from subsequent analysis. This
limitation suggests that the ratiometric method might be a more suitable alternative for multi-
spectral imaging, where data acquisition is inherently restricted to a discrete set of pre-selected,
highly informative wavelengths, and their ratios could effectively enhance tissue contrast. The
analyzed spectral signatures revealed the key differences between tumor and non-tumor tissues
[Figs. 5(b) and 5(c)]. Non-tumor tissues showed prominent water absorption peaks at 965 nm and
oxygenated hemoglobin peaks at 545 and 575 nm, reflecting their high-water content and vas-
cularity. In contrast, tumor spectra showed a higher contribution of deoxygenated hemoglobin,
peaking at 755 nm, reflecting the hypoxic tumor microenvironment. The study also noted weaker
absorption peaks for water and hemoglobin in ex vivo samples compared with in vivo ones, likely
due to reduced blood flow, lower oxygen levels, and decreased water content. Nonetheless, high-
lighting the similarities between in vivo and ex vivo spectra could also be valuable. These poten-
tial common spectral features might identify components within ex vivo HSI data that could

Fig. 5 (a) Registration of hyperspectral and histological images. Reproduced with permission,
courtesy of Lu et al.82 (b) PLS-DAmodel for tumor in vivo. Average absorption spectra representing
in vivo and ex vivo tumor and in vivo nontumor tissues. Reproduced with permission, courtesy of
Stewart et al.85 (c) Molecular chemical imaging (MCI) score images of breast and lung cancer in
mice in vivo. (1) Annotated RGB images of mice with (positive) and without (negative) xenografts.
The tumors, located on the exposed skin flap (subcutis) near the flank, are annotated in yellow.
(2) Ratiometric score images for the lung cancer model (735/975) and the breast cancer model
(1035/625). (3) Tumor detections (in green) from ratiometric score images overlaid onto RGB
images. Reproduced with permission, courtesy of Stewart et al.85
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benefit the training or calibration of in vivo hyperspectral classification algorithms, particularly
given the difficulty in creating large in vivo HSI databases.

Notably, the algorithms discussed so far have relied solely on spectral information for pre-
diction, thus ignoring image spatial nuances that could aid in differentiating tumor from healthy
tissue. In conventional spectral approaches, the hypercube is often vectorized into a two-dimen-
sional matrix, which results in the loss of spatial information. To overcome this limitation, Lu
et al.8 transformed the hypercube into a spectral - spatial tensor representation, preserving the
spatial relationships. Tensor decomposition was used to extract important features and reduce
dimensionality, followed by an SVM classifier to create a tissue prediction map, reaching a sen-
sitivity of 93.7% and a specificity of 91.3%. Lu et al.35 also proposed a wavelength optimization
technique called maximal relevance and minimal redundancy to select the most informative
wavelengths for differentiating tumors from healthy tissues. This wavelength selection step
is applied before the classification algorithm to help mitigate the Hughes phenomenon,95 where
an excessive number of input features reduces overall classification accuracy. Although reducing
the number of selected wavelengths led to higher error rates, it significantly decreased processing
time and storage requirements, highlighting the potential for optimizing the trade-off between
accuracy and efficiency.

Currently, spectral-spatial classification is commonly implemented using various algorith-
mic approaches, including traditional machine learning methods combined with spatial feature
extraction (as exemplified by Lu et al.8), deep learning techniques, and hybrid frameworks.
Among these, convolutional neural networks (CNNs) are perhaps the most prevalent due to the
inherent suitability of their convolutional filters for extracting meaningful spectral - spatial fea-
tures from image data. The intrinsically high-dimensional nature of hyperspectral data is driving
a transition in feature extraction from handcrafted methods, such as first- and second-order deriv-
atives of spectral curves, Fourier coefficients, and mean/total reflectance, toward CNN-derived
features. These learned features are reported to be faster to compute, more precise, and
discriminative.84 In this context, Ma et al.84 employed CNNs to extract features from hyperspec-
tral reflectance images of 12 mice bearing GFP-positive head and neck squamous cell carcinoma
xenografts, using GFP fluorescence as the ground truth. Subsequent work further advanced the
classification algorithm through the implementation of an unsupervised adaptive auto-encoder
network. This network progressively refined its accuracy by adjusting weights based on initial
detection results, prioritizing the most relevant features for cancer detection.83 This optimized
approach yielded average performance metrics of 92.32% sensitivity, 91.31% specificity, and
91.33% accuracy.

Finally, Mun et al.86 presented another interesting preclinical study detailing the develop-
ment of an endoscopic HSI system. They validated this system on fresh pork tissue phantoms and
orthotopic pancreatic tumor models in mice (KPC and Pan02 cell lines), acquiring hyperspectral
images across a wavelength range of 420 to 730 nm, with 10-nm intervals. Among the various
tumor classification algorithms evaluated, the light gradient boosting machine yielded the best
performance on the KPC cell line (precision: 89.6%, recall: 61.7%, and F1-score: 73.1%),
whereas the support vector machine classifier achieved the highest performance on the
Pan02 cell line (precision: 83.0%, recall: 50.9%, and F1-score: 63.1%). A significant strength
of the described setup lies in its potential to investigate deep-seated organs that may be inac-
cessible to external surgical cameras. The application of HSI in surgical endoscopy remains a
comparatively underdeveloped field compared with its use with external imaging systems.
However, we contend that dedicated research and development in endoscopic HSI are crucial,
given the paramount importance and routine utilization of endoscopes in surgery.

3.3.2 Clinical studies on tumor segmentation (reflectance)
Clinical studies investigating the application of HSI for tumor segmentation can be broadly clas-
sified into ex vivo and in vivo studies. Ex vivo studies typically involve imaging-excised tumor
specimens, whereas in vivo studies focus on intraoperative imaging during surgery.

Ex vivo (reflectance): an example from breast surgery. There are two main reasons for
imaging ex vivo tissue samples. First, the intended use of HSI may be limited to scanning the
resected specimen to evaluate resection quality. Second, even when the ultimate goal of HSI is
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real-time intraoperative imaging, ex vivo samples closely mimic the optical properties of in vivo
tissue, despite exhibiting some differences, primarily due to reduced blood flow, lower oxygen
levels, and decreased water content, as previously discussed in Sec. 3.3.1.

For instance, Kho et al.96 employed HSI in breast-conserving surgery by acquiring diffuse
reflectance images (900 to 1700 nm) of fresh breast specimens from 18 patients [Fig. 6(a)].
The spectra from various tissue types, including invasive carcinoma (IC), DCIS, adipose tissue,
connective tissue, and healthy glandular ducts, were used to train a linear SVM classifier. Samples
were divided into two datasets: the first comprised tissue slices obtained after gross sectioning of
the resected specimens, annotated and registered with histopathological data; the second dataset
contained lumpectomy specimens, imaged across six planes to mimic the resection surfaces of the
lesion, as shown in Fig. 6(a). The SVM classifier was trained using the slice dataset and then tested
on both datasets, yielding classification accuracies of 93% for IC, 84% for DCIS, 70% for con-
nective tissue, and 99% for adipose tissue. The most significant differences in normalized reflec-
tance spectra occurred around the absorption bands of dominant chromophores in the SWIR, such
as water and collagen, which were key for differentiating connective tissue from malignant tissue.
However, this approach only utilized spectral data without considering spatial relationships, leading
to inaccuracies at tissue transition zones, which are key for margin assessment. In the lumpectomy
specimen dataset, each resection side was imaged within 20 s and analyzed in 40 s, suggesting that
HSI could outperform frozen section analysis and touch preparation cytology in terms of turn-
around time. Moreover, the classification accuracy of IC and DCIS was higher than ultrasound
and specimen radiography, approaching the accuracy of frozen section analysis and touch prepa-
ration cytology. In a follow-up study, Kho et al.97 improved performance using two hyperspectral
cameras covering a broadband spectrum (from 450 to 1650 nm) instead of relying on individual
visible or near-infrared cameras. They also implemented a spectral–spatial classification algorithm
based on a modified U-Net architecture, achieving superior tumor classification performances (sen-
sitivity: 98% and specificity: 99%), even in tissue transition zones. Jong et al.98 addressed an impor-
tant limitation anticipated by Kho et al., demonstrating that a classification algorithm developed for
tissue slices performs poorly when applied to lumpectomy specimen surfaces. Although lumpec-
tomy specimens closely resemble tumor tissue during resection, developing a classification algo-
rithm directly from the lumpectomy dataset is challenging because histopathological margin
assessment only covers a small fraction of the specimen, leading to insufficiently labeled training
data. To overcome this, the researchers used domain adaptation, a transfer learning technique. They
developed a spectral - spatial CNN trained on the tissue slice dataset (source domain) and then fine
tuned it on the lumpectomy resection surfaces dataset (target domain) to enhance prediction accu-
racy. They also introduced a partial differential equation loss function to handle label uncertainty,
and instead of assigning a single predicted label per pixel, the pixel classification output was deliv-
ered in tissue percentages. The proposed method achieved sensitivity, specificity, and accuracy of
91%, 100%, and 96%, respectively.

A fundamental concept in the supervised classification of hyperspectral images is the quality
of the ground-truth labels used during training. A typical pipeline for tissue label assignment is
shown in Fig. 6(c). In this study by Jong et al.,7 hyperspectral images were first acquired, and
reference markers (ink) were placed on the specimens to facilitate the association among a patch
of pixels in the HSI with the corresponding area on the digitized histopathology slide. This proc-
ess, known as ground-truth label assignment, can be performed in different ways. For example, if
the ink-marked region corresponds to tumor tissue, a “tumor” label can be assigned to either the
central pixel’s spectrum or the averaged spectra of all pixels in the patch. These methods, how-
ever, are prone to inaccuracies. During pathological processing, it is nearly impossible to per-
fectly align the center of the tissue slide with the central pixel in the HSI patch due to mechanical
distortions. Moreover, a patch offer contains multiple tissue types, making the average spectrum
unrepresentative of any single type. An innovative label assignment solution was proposed by
Jong et al.7 using hyperspectral unmixing, a technique used to decompose each pixel’s signal into
its elementary spectral signatures. A tumor probability map is computed from the unmixing proc-
ess, where each pixel spectrum has a given probability of being positive for the tumor class. The
tumor histopathological label is then assigned to the pixel with the highest tumor probability
within each patch, reducing the risk of mislabeling. When comparing the normalized diffuse
reflectance spectra generated by the three presented label assignment strategies [Fig. 6(b)],
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Fig. 6 (a) Representative example of HS analysis on resection surface. Both white light (WL) (1)
and HS images were taken from six sides so that the entire resection surface was imaged.
(2) Classification result of the HS images using the SVM algorithm, developed with the tissue sli-
ces. The specimen was sliced according to standard pathology protocol, and six H&E sections
were processed for further analysis. (3) The orientation of these sections with respect to the
3D representation of the HS classified specimen. H&E sections 1 and 6 were taken parallel to
the resection surface and hence do not provide information on the margin width. Therefore, these
sections were excluded from the analysis. (4) In H&E sections 2 to 5, an experienced pathologist
annotated the tumor so that the resection margin width could be assessed. Reproduced with per-
mission, courtesy of Kho et al.96 (b) Standard normal variate (SNV)-normalized diffuse reflectance
spectra of three different approaches for selecting pixels to assign ground-truth labels. There is a
distinct difference in the SNV-normalized spectrum obtained with hyperspectral unmixing (pixel
with the highest tumor value in the prediction map) compared with the center pixel and the average
of all pixels in the patch. Reproduced with permission, courtesy of Jong et al.7 (c) Pipeline to train a
tissue classification algorithm where ground-truth labels are assigned to the training set based on
hyperspectral unmixing. (1) First, the hyperspectral images of the specimen are acquired.
Subsequently, black ink marks are placed on the specimen, and a reference image (2) is captured
to correlate the hyperspectral images to the histology slides. The upper pipeline shows the his-
topathological workflow, where (3) the lumpectomy specimen is gross-sectioned into tissue blocks
of a few millimeters thick; (4) a slice of �4 μm thick is sliced from this block and (5) stained with
H&E, digitized and inspected by a pathologist who delineates the malignant tissue region in red up
to a depth of 2 mm below the inked surface. The lower pipeline shows the workflow to determine
which pixel covered by the ink mark should be assigned to this ground-truth label. (6) A patch of 10
by 10 pixels is extracted for each ink mark; (7) based on hyperspectral unmixing, a tumor prediction
map is created for this patch. (8) This map is then used to select the spectrum from the pixel that
most likely corresponds to the ground-truth label, which is used to (9) train the classification algo-
rithm. Reproduced with permission, courtesy of Jong et al.7
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hyperspectral unmixing approach had the overall best results with a sensitivity of 94%, speci-
ficity of 85%, and accuracy of 87%. In addition, the time of acquisition and analysis of the entire
resection surface of the breast lumpectomy specimen was below 10 min (less than 1.5 min per
resection side).

In vivo (reflectance): an example from brain surgery. All in vivo clinical studies included in
this review focused exclusively on neurosurgery, involving both adult and pediatric patients. This
focus may be linked to the significant collaborative European research initiative, HypErspectraL
Imaging Cancer Detection (HELiCoiD, 2016 to 2021), which advanced the use of HSI for brain
tumor segmentation during surgery. The HELiCoiD project developed a standalone hyperspec-
tral imager and explored various statistical, machine learning, and deep learning strategies to
classify tissues.

Puustinen et al.,10 Leon et al.,39 and Kotwal et al.138 recently reviewed several in vivo HSI
studies in neurosurgery. Key points highlighted by the authors include the following: (i) the
studies were non-randomized and mainly comparatives, focusing on different HSI data analysis
methods, cameras, or imaging modalities; (ii) inconsistency in study designs and limited datasets
restricted performance comparisons to a qualitative level; (iii) different hyperspectral setups were
developed for neurosurgery, ranging from standalone systems to cameras integrated into the
operating microscope, with the latter offering better integration into the surgical workflow
field;75,76 and (iv) the HELiCoiD project released the first open in vivo hyperspectral brain
database, which includes over 300,000 labeled spectral signatures from 36 images of 22
patients.99–101

To illustrate the impact of such resources, an extended version of the HELiCoiD database
allowed the development and validation of a neurosurgical intraoperative HSI system by Leon
et al.39 This dataset included 62 hyperspectral images from 34 patients affected by a wide range
of brain tumors, including primary tumors, from low- to high-grade (WHO grades I to IV), as
well as secondary lesions from breast, lung, and kidney cancers. The study first involved the
exposure of brain tissue for hyperspectral image acquisition of the cortical surface. Given that
image acquisition could extend up to 60 s, additional images were captured during lesion resec-
tion exclusively when feasible within the surgical workflow - i.e., if imaging did not introduce
significant delays or compromise patient safety. This remains a significant technological limi-
tation, impeding the development of large intraoperative HSI databases due to potential increases
in surgical time. Preprocessing of the hyperspectral data corrected for uneven brain surfaces,
illumination inconsistencies, spectral noise, and sensor dark current. In addition, data decimation
was applied to reduce computational costs. A preliminary evaluation using a paired two-sided
Wilcoxon rank sum test (with a 5% significance level) demonstrated significant spectral distinc-
tions between tumor and normal tissue, blood vessels, primary and secondary tumors, and high-
and low-grade tumors, as well as among tumor stages. Notably, tumor tissue showed a prominent
absorbance contribution from deoxygenated hemoglobin, absent in normal tissue, reflecting the
hypoxic tumor environment.

The authors proposed a sophisticated algorithmic pipeline [Fig. 7(a)] to integrate spatial
information into the classification process because preliminary attempts based solely on spectral
information provided many false positives. Pre-processed data were first subjected to dimension-
ality reduction and supervised classification, to then be further processed through a spatial filter
(K-nearest neighbors), introducing spatial information into the predictions. Finally, majority vot-
ing is used to combine the results from the spectral-spatial supervised classification and the unsu-
pervised segmentation. The authors reported promising tissue class prediction maps [Fig. 7(b)],
with the deep neural network achieving the highest median macro F1-score of 70.2� 6.3%.
Classification inaccuracies were observed in images affected by poor focus or blood contami-
nation in the FOV. Notably, blood contamination is a documented cause of false-positive results
in algorithmic tumor margin assessment,39 possibly owing to hemoglobin absorption. Given that
blood in the FOV is almost inevitable during intraoperative HSI scans, developing strategies for
better handling its presence is crucial. This could involve a more comprehensive understanding
of blood’s spectral behavior or the agnostic training of more robust algorithms with expanded
datasets.
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Fig. 7 (a) Patient/image flow scheme of this work and data partition. n, number of HS images; m,
number of patients. (b) Proposed processing framework to generate the density maps for intraoper-
ative pathology-assisted surgery. Reproduced with permission, courtesy of Leon et al.39 (b) (1)
Boxplots of the macro F1-score of the test set using the eight different classifiers at the three different
stages. In the plot, the center line, the box limits, and the whiskers represent the median, the upper
and lower quartiles, and the 1.5× interquartile range, respectively. Two medians are significantly dif-
ferent at the 5% significance level if their intervals (shaded color areas) do not overlap. (2) Average
overall accuracy (OA), sensitivity, and specificity results of the test set from the fivefolds using the
spatial/spectral approach (error bars represent the standard deviation). (3) Examples of synthetic red,
green, blue images (SRGB) images, ground-truth (GT) maps, and three maximum density (TMD)
maps from different tumor types (based on the deep neural network (DNN) as a supervised algorithm
using the optimal hyperparameters). Reproduced with permission, courtesy of Leon et al.39
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Leon et al.39 emphasized improving algorithm interpretability through the utilization of the
local interpretable model-agnostic explanations (LIME) algorithm. This aspect was frequently
overlooked in the majority of reviewed studies, despite being a primary priority in medicine for
enhancing the transparency of predictions and thereby increasing machine learning acceptance in
the clinical field. Furthermore, integrating an interpretability step into the algorithmic pipeline
can also inform designers about the most informative wavelengths contributing to classification
decisions. Indeed, LIME enabled Leon et al. to identify the absorbance peaks of hemoglobin and
deoxygenated hemoglobin as crucial wavelengths for tissue classification. The recurring spectral
evidence of hypoxia in tumor tissue102–104 warrants special attention, a feature often overlooked
or only partially considered by many classification algorithms. Given the promising results
from spectral–spatial classification, investigating the integration of a full oxygenation map into
predictive algorithms, rather than relying solely on pixel-wise hemoglobin spectral intensity,
represents a valuable research direction. This approach is motivated by the potential for
tumor-specific hypoxia patterns to provide highly discriminative information for classification.
Naturally, these hypotheses require rigorous verification.

In a separate study, MacCormac et al.76 developed a handheld system that employs a novel
HSI acquisition method called lightfield hyperspectral imaging, which enables real-time acquis-
itions while maintaining high spectral resolution. The system design [Figs. 8(a) and 8(d)] incor-
porates a microarray of lenslets combined with either specific spectral band-pass filters or a
single, large, continuously variable spectral filter. These lenslets capture images from multiple
angles, which are computationally combined to generate a complete hypercube. The camera used
(Cubert Ultris × 50) extracted 155 spectral bands (350 to 1000 nm) using the 66 lenslets images.
The system was developed following the surgical device framework outlined by the idea, devel-
opment, exploration, assessment, and long-term follow-up (IDEAL) collaboration,105,106 encom-
passing both a preclinical phase (IDEAL-0) for device development and a clinical phase
(IDEAL-1) for validation during a posterior fossa meningioma resection. System performance
was initially assessed using a Macbeth ColorChecker with known sRGB/CIEXYZ values and
reference gold-standard spectral measurements, yielding satisfactory results. The system was
then validated on a cadaveric porcine brain, successfully discriminating vessels and cortical brain
spectra. Finally, a single-patient validation was conducted during a posterior fossa meningioma
resection. Hyperspectral images were acquired under optimal conditions, ensuring the tumor was
not obscured by blood or cerebrospinal fluid. These images were then annotated at the pixel level
into (i) patty, (ii) meningioma, or (iii) cerebellum using ImFusion Labels software [Fig. 8(b)].
The analysis revealed clear spectral differences, particularly in the 400- to 600-nm wavelength
range, where hemoglobin is the dominant chromophore [Fig. 8(c)].

Kifle et al.75 applied HSI in a cohort of pediatric patients, integrating a snapshot hyperspec-
tral camera into the neurosurgical microscope to collect a total of 139 RGB, 279 visible, and 85
infrared in vivo hyperspectral datasets of pathological brain matter (epileptic or malignant neo-
plasm). Although the tumor segmentation by a random forest achieved high specificity (99.6%),
the average Intersection over Union, which quantifies the overlap between predicted and ground-
truth tumor areas, was substantially lower (10%). This finding highlights the need for larger
datasets and further algorithm refinement. For the future, the authors plan to integrate surface
images with deeper acquisitions from a hyperspectral endoscope, which will address “blind
spots” inaccessible to external cameras.

As the final point on the persistent challenge of limited in vivo training data, it is important to
recognize that although preclinical and ex vivo datasets offer some compensation, additional
promising strategies warrant exploration. For instance, generative artificial intelligence models
present an emerging method for augmenting limited medical imaging datasets by synthesizing
highly realistic and diverse images that mimic clinical scenarios.107,108 Although research in
remote sensing has demonstrated the ability of such algorithms to generate accurate hyperspec-
tral images,91,109–111 their direct applicability to the medical domain and capacity to generate
reliably annotated HSI datasets remains to be fully determined. Separately, Clancy et al.1

reviewed similar generative machine learning methods aimed at estimating tissue spectral proper-
ties from regular RGB images. Given the acute data scarcity in pediatric cohorts, addressing the
generalizability of in vivo adult hyperspectral data for training pediatric classification algorithms
is crucial. Although age-specific histologies may intrinsically exhibit distinct spectral profiles,
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exploring commonalities in the surgical field for which adult training data could prove beneficial
remains important.

3.4 Fluorescence Analysis
HSI can quantify and characterize the fluorescence spectrum of endogenous fluorophores [e.g.,
reduced nicotinamide adenine dinucleotide (NADH), lipofuscin, and flavin] or exogenously
administered fluorescent contrast agents such as ICG, 5-ALA, and targeted fluorophores.

3.4.1 Preclinical studies on fluorescence analysis
Among preclinical fluorescence studies, neurosurgery-related research was the most represented
(n ¼ 4) (Table 2), primarily focusing on the use of 5-ALA, which leads to the selective accu-
mulation of PpIX in glioma tissue.66 For instance, Bravo et al.3 employed wide-field HSI to
analyze liquid phantoms with varying concentrations of PpIX, lipid, and blood [Fig. 9(a)].
They applied spectral fitting algorithms to generate PpIX fluorescence maps, differentiating

Fig. 8 (a) Micro-array of lenslets permits light from a single object to pass through the filters at
different angles, creating different spatial and spectral perspectives of the same object.
Reproduced with permission, courtesy of MacCormac et al.76 (b) Annotated regions of interest
on sRGB image reconstructed from HSI data. Computed distance to target: 27 cm. Reproduced
with permission, courtesy of MacCormac et al.76 (c) L1-normalized spectral curves of annotated
structures as shown in panel (b). Reproduced with permission, courtesy of MacCormac et al.76

(d) Intra-operative use of lightfield HSI system, draped with Leica 221-88H surgical microscope
drape to maintain sterility. (1) Low-resolution “viewfinder” mode. (2) All lenslet images. (3)
Draped lightfield HSI system. Reproduced with permission, courtesy of MacCormac et al.76
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Fig. 9 (a) Panels of composite images constructed from experimentally measured phantom data
with different processing of PpIX emissions. Within each panel, composite images represent eight
PpIX concentrations (left to right, see upper legend far right) mixed with increasing blood volume
fraction, constant 1.5% lipid volume fraction (LVF), increasing LVF, and constant 2% blood volume
fraction (top to bottom). The background in each row represents a liquid phantom containing no
PpIX. Small variations in the color of each phantom are due primarily to minute differences in blood
concentration. (1) Reflectance image; pixels were sampled from the white-light images captured by
the built-in Zeiss camera. (2) Visible fluorescence image; pixels were sampled from Zeiss fluores-
cence images. (3) Integrated fluorescence image; integrated fluorescence intensities were con-
verted to concentration units (see lower legend far right) based on assumed phantom optical
properties and overlaid onto the reflectance image in (1) using a transparency based on integrated
intensity. (4) Spectrally fit image; concentration estimates (SF PpIX) based on the same assumed
phantom optical properties were overlaid onto the reflectance image in (1) using a transparency
based on concentration. (5) Confidence ratio filtered image; concentration estimates (SF PpIX)
were overlaid onto the reflectance image in (1) using a transparency based on the confidence
ratio (CR). (6) Optical property corrected image; concentration estimates (C PpIX) based on optical
properties specific to each individual phantom were overlaid onto the reflectance image in (1) using
a transparency based on the CR. Reproduced with permission, courtesy of Bravo et al.3

(b) Porphyrin basis spectra for unmixing tests. CpIII and the new PpIX634 are based on pig brain
phantoms. The old PpIX spectra (labeled PpIX620 and PpIX634) are from Black et al.34 The new
and old PpIX634 match very well, so the new PpIX634 and the CpIII should be directly applicable
to our existing human data. Reproduced with permission, courtesy of Suero Molina et al.90

(c) Representative specimen images after topical staining/washing for all four staining conditions
investigated. Columns labeled “untargeted” and “targeted” represent images of the tissue after
pixel-by-pixel spectral fitting of the hyperspectral data and normalization to the calibration volume
and thus show the fluorescence of the targeted and untargeted quantum dot-labeled antibody com-
plexes (QDAC) channels. The DDSI column shows the processed DDSI images. “N” and “T” refer
to normal and tumor tissue, respectively. Each panel presents four specimen samples from each
staining condition: (1) Incubation in a 10-nM stain solution at 37°C and (2) incubation in a 10-nM
stain solution at 22°C. Reproduced with permission, courtesy of Meng et al.88
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fluorescence from background signals. This approach improved PpIX sensitivity, lowering the
camera’s detection limit from 0.37 μg∕mL (naked eye) to a range spanning from 0.014 to
0.041 μg∕mL. The enhanced sensitivity helps reduce inter-operator variability and increases the
detection of tumors with low fluorescence uptake, particularly in low-density tumor regions. For
instance, a minimum tumor cell density of 20% to 30% in malignant glioma is typically required
to detect visible fluorescence.112,113

Lehtonen et al.33 found that PpIX concentrations in low-grade gliomas and glioblastoma
infiltration zones were below the naked-eye detection threshold (0.6 to 1.8 μmol∕L in their liquid
phantom tests) but were detectable using HSI at concentrations as low as 0.03 to 0.15 μmol∕L.

Walke et al.89 tested different phantom designs to optimize HSI system calibration for glioma
imaging. Initially, they used liquid phantoms containing known PpIX concentrations and variable
optical properties (e.g., intralipid for scattering and yellow dye for absorption). However, these
phantoms had limitations: (i) a lower pH compared with gliomas, which affected PpIX fluores-
cence intensity; (ii) provided only one PpIX photostate (PpIX634); and (iii) contained only PpIX
as the fluorophore, unlike biological tissues, which contain multiple fluorophores and autofluor-
escence sources. To address these issues, Walke et al.89 proposed using pig brain homogenates
for system calibration and validation, as they better replicate the optical properties of biological
tissue, including endogenous fluorophores and multiple photostats. However, this method still
does not accurately reproduce the physiological pH range of tumor samples (pH 6 to 8), affecting
the PpIX fluorescence measurements. For example, they found that PpIX levels were six times
higher at pH 8.8 compared with pH 5.1 in reference tissue homogenates. This innovative phan-
tom design, combining animal homogenates with standard models, enhances HSI algorithms by
accounting for varying optical properties, biochemical microenvironments, and multiple auto-
fluorescence sources, crucial for real-time surgical fluorescence characterization.

Literature evidence shows that PpIX fluorescence emission consists of two main peaks at
634 nm (PpIX634) and 620 nm (PpIX620).114 Building on this, Suero Molina et al.90 employed
HSI to investigate the molecular origins of the 620-nm peak, hypothesizing it might represent a
different fluorophore rather than a second PpIX photostate. This assumption is significant as
other porphyrin precursors in the heme synthesis pathway, such as coproporphyrin III
(CpIII) and uroporphyrin (Up) or alternative autofluorescence sources, may artificially enhance
the 620-nm peak. Using a phantom design similar to Walke et al.,89 the authors combined cer-
ebrum tissue homogenates with PpIX or CpIII stock solutions. HSI acquisitions revealed that
CpIII shares spectral characteristics with PpIX620 [Fig. 9(b)], suggesting that the 620-nm peak
may originate from other molecular species. These studies demonstrate that HSI, coupled with
accurate spectral unmixing algorithms, can better characterize the spectral properties of tumor
tissue and contrast agents. However, caution is necessary when quantifying fluorescence to min-
imize false negatives and positives. This approach offers valuable insights into tumor biology and
holds potential for improving tumor segmentation algorithms for surgical resection.

In a proof-of-concept study, De Landro et al.87 used HSI to detect a fluorescently labeled
antibody targeting high mobility group protein B1, a marker overexpressed in various neoplastic
cells associated with tumorigenesis and inflammation-related immunosuppression. The authors
found a significant correlation between relative absorbance at 640 nm and antibody concentra-
tion, demonstrating the potential of HSI for detecting fluorescent antibodies in image-guided
surgery and preoperative diagnosis during endoscopic examinations. Meng et al.88 further
expanded on this application by employing HSI for dual-probe difference specimen imaging
(DDSI) on freshly excised specimens of normal tissue and human tumor xenografts overexpress-
ing the HER2 marker [Fig. 9(c)]. DDSI utilized two quantum dot-labeled antibody complexes:
one targeting the HER2 tumor biomarker and the other serving as an untargeted isotype control.
A shared excitation source illuminated both probes, generating spectrally distinct fluorescence
emissions captured by the hyperspectral camera. This approach enabled tissue segmentation
based on label binding specificity, facilitating differential imaging of tumor and normal tissue.
However, the diagnostic performance of DDSI was temperature-dependent: at body temperature
(37°C), diagnostic performance was robust with an area under the curve (AUC) greater than 0.81.
At room temperature (22°C), the AUC dropped to 0.61, highlighting the importance of main-
taining physiological conditions during imaging. Notably, increasing the concentration of the
staining solution did not enhance diagnostic performance, suggesting that factors other than
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concentration influence performance. These findings emphasize the need for optimized tissue
processing time and workflow efficiency to facilitate the translation of DDSI into rapid intra-
operative diagnostics of excised specimens.

3.4.2 Clinical studies on fluorescence analysis
The use of HSI for fluorescence analysis has been extensively validated in a cohort of ∼550
patients, demonstrating its clinical potential. Remarkably, all clinical fluorescence studies in this
review were related to neurosurgery, likely due to the critical need to resolve the fluorescence
signal of 5-ALA from overlapping autofluorescence and other spectral artifacts inherent to the
fluorophore emission spectrum.115

Walke et al.89 evaluated 240 high-grade glioma biopsies to compare PpIX fluorescence visu-
alized through either the KINEVO 900 surgical microscope (SM) (equipped with the BLUE 400
filter) or a wide-field hyperspectral camera (Fig. 10). For each biopsy, fluorescence emission was
captured between 421 and 730 nm in 3-nm increments, with an excitation wavelength of 405 nm.
The acquisition of each sample took ∼3 min. PpIX fluorescence contributions were calculated at
every pixel, and these values were then averaged to generate a single PpIX concentration for the
entire biopsy. Only pixels with contributions greater than 0.1 μg∕mL were included in the aver-
age calculation, as this threshold reliably distinguished background signals from actual PpIX

Fig. 10 Hyperspectral images of biopsies. Average PpIX contribution (μg∕ml) and the evaluated
tissue area size are given. (1) Infiltration zone (IZ) biopsy with no visible fluorescence in the micro-
scope; hyperspectral measurement visualizes PpIX fluorescence and residual blood. (2) Solid
tumor (ST) biopsy of small size with pixels of high reflectance and underestimated PpIX contri-
bution. Microscope fluorescence rating was “none,” whereas in hyperspectral imaging, weak fluo-
rescence was visible (2-BLUE 400). (3) and (4) Reactively altered brain tissue (RABT) samples of
middle size, fluorescence quality “weak” in the microscope. Both showed heterogeneous PpIX
distribution. (5) Tiny ST biopsy showing strong fluorescence in the surgical microscope and an
artificially high PpIX contribution in the hyperspectral measurement of up to 164 μg∕ml.
Reproduced with permission, courtesy of Walke et al.89
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fluorescence. Such a threshold was particularly useful for analyzing heterogeneous biopsies, which
may have fluorescent hotspots surrounded by regions of low signal that could be due to low tumor
cell density (observed in 17 of 96 biopsies), low proliferation rates (noted in 70 of 96 biopsies),
or healthy tissue. The study found that HSI outperformed the surgical microscope for biopsy
diagnosis when compared with neuropathological assessments as the gold standard (AUC ½HSI� ¼
0.845� 0.024 versus AUC ½SM� ¼ 0.710� 0.035). Furthermore, the diagnostic cutoff for PpIX
concentration was lower with HSI (0.75 μg∕mL) than with the surgical microscope (0.99 μg∕mL)
(Fig. 10). The study highlighted that the fluorescence assessment with the surgical microscope is
highly subjective, whereas HSI provides objective and quantifiable analysis.

As introduced in the preclinical section of fluorescence studies, Suero Molina et al.90

hypothesized that 5-ALA-induced PpIX fluorescence visualization could be influenced by other
autofluorescence sources, potentially amplifying the secondary peak at 620 nm and leading to
overestimation of fluorescence. After validating this hypothesis in preclinical experiments, the
authors analyzed over 200,000 spectra from ∼600 tumor biopsies collected from 130 patients.
Using spectral unmixing techniques, the authors identified the elementary sources of the spectral
signatures, including PpIX634, PpIX620, lipofuscin, flavin, and NADH. They then investigated
the correlation of these components with various tumor characteristics, including isocitrate dehy-
drogenase (IDH) mutation status (mutated versus wildtype), fluorescence visibility during sur-
gery (graded as none, weak, or strong), 5-ALA dosage (single or double), and tumor margin type
(solid tumor, infiltration zone, or reactive altered brain tissue). The results indicated that PpIX634
was significantly more informative in all classifications compared with PpIX620. For instance,
PpIX634 strongly correlated with isocitrate dehydrogenase mutation status and fluorescence vis-
ibility, whereas PpIX620 remained relatively constant across the different classes. These findings
suggest that device optimization should prioritize certain spectral signals, such as PpIX634, to
improve diagnostic accuracy. In addition, the study revealed that different tumor histologies
exhibited varying levels of autofluorescence, further demonstrating that HSI provides a more
quantitative assessment than non-spectroscopic methods.

Intraoperative real-time imaging faces distinct challenges compared with controlled laboratory
biopsy imaging. Critical requirements for its successful implementation include rapid fluorescence
data processing and robust calibration methodologies to mitigate the effects of dynamic biochemical
microenvironments, autofluorescence, and endogenous absorbers such as blood.89,116 To address
these challenges, the authors proposed combining tissue homogenates with standard phantoms for
system calibration to better account for the target tissue’s endogenous spectral properties.89 We
believe this solution could potentially be useful in other surgical specialties employing fluorescent
dyes, especially those emitting in the visible range (such as fluorescein) that are most affected by
endogenous chromophores, whereas this issue is less relevant for NIR probes owing to the less
significant autofluorescence in this spectral region. These hypotheses, however, necessitate verifi-
cation via high-quality research studies, similar to those presented herein for neurosurgery. Finally,
Suero Molina’s research group is actively advancing fluorescence data processing pipelines and
intraoperative tumor classification through the employment of innovative machine learning strate-
gies. These algorithms, interpreting fluorophore abundance, offer the surgeon the potential for rapid
and enhanced fluorescence visualization.77,117,118

Hyperspectral fluorescence analysis was also explored in pediatric brain tumor resection
by Schwake et al.74 Eleven children (aged 1 to 16 years) with various brain tumors underwent
surgery after receiving oral 5-ALA administration (4 h before the procedure). Consistent with
earlier case reports and studies, higher PpIX concentrations were detected in the four malignant
astrocytomas (WHO grade III). In contrast, no fluorescence was observed in the two grade II
astrocytomas or three medulloblastomas. Fluorescence was also detected in both cases of pilo-
cytic astrocytomas. No significant side effects were reported, aside from a mild increase in liver
transaminases, indicating that 5-ALAwas generally well-tolerated. Nonetheless, the study under-
scores the need for prospective controlled trials to establish the feasibility of 5-ALA use in
pediatric brain surgery.

3.5 Tumor Characterization (Grade/Type Prediction)
HSI holds promise for predicting tumor grade or type intra- or post-operatively. This is typically
performed within a multi-class classification framework, where each class represents a distinct
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tumor grade or histology. Studies of this kind have been conducted on both fresh surgical spec-
imens and H&E-stained tissue slides, though a lack of in vivo studies was observed. It must be
noted that the body of research in this area is much more limited compared with tumor segmen-
tation studies.

For what concerns fresh surgical specimens, Edwards et al.119 utilized HSI combined with
multiparametric radiomic features to predict tumor aggressiveness in 72 fresh ex vivo surgical
specimens from 44 patients with papillary thyroid cancer. Hyperspectral images were processed
using the PyRadiomics package, from which 67 radiomic features (e.g., shape-based, gray-level
dependence matrix) were selected. By testing various combinations of feature selection algo-
rithms and classification methods, the study achieved a maximum accuracy of 83.3% for pre-
dicting tumor aggressiveness. Among the features, gray-level dependence matrix variance was
the most influential in distinguishing aggressive from non-aggressive tumor tissue. Follow-up
work on the same dataset by Leitch et al.120 incorporated an HSI pixel dilation to highlight the
tumor-normal tissue interface, which is particularly indicative of tumor aggressiveness. In this
analysis, the shape feature “least axis length” emerged as the most predictive for classification.

In the setting of post-operative diagnosis, Liu et al.121 used a microscope with a built-in
pushbroom hyperspectral camera to scan H&E-stained pathological sections of gastric cancer
from 30 patients. The study aims to automatically classify cancer grades (low, intermediate, and
high) and healthy tissue using a shallow residual network, yielding an average classification
accuracy of 91.44%, surpassing RGB image analysis by 13.87%.

Hyperspectral fluorescence imaging has also been reported to aid in distinguishing tumor
type and grade in recent studies by Black and Suero Molina et al.,77,115,118 as summarized in a
dedicated book chapter.117 One such study by the same group77 involved analyzing hyperspectral
fluorescence data from biopsy specimens, acquired after 5-ALA administration, to classify
(i) tumor types (e.g., glioblastoma and meningioma), (ii) WHO grades, (iii) margin types, and
(iv) IDH-mutant versus IDH-wildtype glioma. Random forest and multilayer perceptron classi-
fiers, applied to unmixed spectra, achieved average test accuracies of 84 to 87%, 96.1%, 86%,
and 91%. This research demonstrates how varying fluorophore abundances correlate with differ-
ent tumor grades and histologic profiles. Although this example pertained to brain samples, a
similar behavior would be expected in other organ systems.

The studies presented in this section employ diverse methodologies and sample types, which
preclude direct performance comparisons. Nevertheless, they collectively highlight feasible ave-
nues for advancing HSI’s predictive ability in estimating tumor grade and type, diagnostic infor-
mation fundamental to surgical decision-making and prognosis.

3.6 Tissue Identification
HSI has the potential to differentiate the intrinsic spectral characteristics of various tissue types,
providing real-time guidance to surgeons in identifying critical structures during surgical pro-
cedures. Although the primary focus of this review is tumor analysis, HSI has also been exten-
sively studied for its ability to identify non-pathological tissues, aiding the identification of
essential anatomical structures, such as the nerves and blood vessels, which are crucial for sur-
gical navigation and preservation.

For example, Puustinen et al.10 conducted a multi-tissue classification study, in which hyper-
spectral data from a single patient were processed using various machine learning algorithms for
pixel-wise classification into six tissue types: (i) blood, (ii) compact bone, (iii) dura mater internal
leaf, (iv) gray matter with pia, (v) superficial vein, and (vi) glioma. The two best-performing
classifiers were the light gradient boosting machine, which achieved the highest accuracy of
98.3% with a classification time of 4.68 s, and the convolutional neural network, which achieved
a classification time of 2.79 s and demonstrated high accuracy, although the exact value was
not reported.

3.7 Augmented Reality
Huang et al.80 developed an HSI-augmented reality (AR) integrated system capable of projecting
tissue segmentation - distinguishing tumors, blood vessels, and healthy brain tissue - directly
onto the surgeon’s FOV. Validated using a brain tumor phantom, the system integrates an HSI
device that captures spectral data across 150 wavelength bands, with a shallow neural network
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for pixel-wise tissue classification. The resulting classification is then displayed on an augmented
reality visor (Microsoft HoloLens) worn by the surgeon. The optical phantom used for validation
consisted of colorless gelatin to represent healthy brain tissue, yellow-dyed gelatin to simulate
tumors, and porcine blood to mimic blood vessels. Although the system produced accurate seg-
mentation maps, an important technological limitation highlighted in the study was the lengthy
processing time, which was too slow for real-time surgical use. Other limitations in the AR
headset included insufficient memory, stability, and image capture quality.80

Sancho et al.122 introduced SLIMBRAIN, an intraoperative AR system leveraging HSI to
present a freely navigable three-dimensional (3D) point cloud video of the tumor prediction map.
The system setup included a light source, a snapshot hyperspectral camera, a light detection and
ranging (LiDAR) system with a Time-of-Flight camera, an RGB camera, and a graphics process-
ing unit - accelerated processing station to reduce computation delays and enable real-time visu-
alization. As shown in Fig. 11, the final output allows the neurosurgeon to interactively navigate
the 3D model in real-time, whereas the data are continuously recorded. The system achieved a
maximum frame rate of∼21 fps (33 ms for LiDAR capture and 14 ms for processing), though the

Fig. 11 Point cloud results in real operations. Each row refers to a different tumor operation,
whereas each column refers to a type of visualization. From left to right: RGB point cloud,
RGB point cloud with HS classification information, and RGB point cloud with HS classification
information and depth correction. (For the interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.) Reproduced with permission, cour-
tesy of Sancho et al.122
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hyperspectral camera limited the frame rate to 14 fps due to exposure time requirements. Tumor
prediction was performed using an SVM classifier, achieving a global AUC and tumor-specific
AUC of ∼95% when compared with the ground truth annotated by neurosurgeons.

4 Discussion and Conclusion
This review examined preclinical and clinical studies exploring HSI for image-guided surgery in
tumor resection. HSI can assist tumor resection in two key ways: (i) real-time intraoperative
imaging of the surgical site (in vivo)39 and (ii) imaging of resected specimens for rapid optical
biopsy (ex vivo).45,121 This study highlights the broad applicability of HSI across diverse tissue
types and anatomical regions in both adult and pediatric populations, with neurosurgery emerg-
ing as the most extensively studied field to date. HSI remains in its early stages of development,
as evidenced by the predominance of proof-of-concept and feasibility studies, which often pro-
vide qualitative rather than quantitative performance assessments.39 Consequently, the superior-
ity of HSI over intraoperative ultrasound and other emerging real-time intraoperative imaging
modalities - such as confocal laser endomicroscopy, optical coherence tomography, and photo-
acoustic imaging - has yet to be definitively established.

HSI captures a broader range of wavelengths than multispectral imaging, allowing for a
more comprehensive spectral characterization of the sample.79,123 However, the large dataset
it generates presents both advantages and challenges. Although HSI facilitates sophisticated pre-
dictions,39,90,94,98,122 its increased acquisition time and computational load hinder its real-time
application.89,124 To address such limitations, many studies have reduced the number of analyzed
spectral bands, demonstrating that this reduction does not compromise the classification perfor-
mance of HSI systems.35,93 The selective acquisition of relevant bands could streamline hardware
design, reduce processing time, and improve usability in operating room environments.93,125 In
addition, post-acquisition algorithms can be employed to optimize band selection. An example of
such an approach is the genetic algorithm-based optimization proposed by Martinez et al.93

The most common HSI applications in surgical oncology involve tissue reflectance and fluo-
rescence. Although HSI can provide detailed spectral data without the use of exogenous contrast
agents, it can also enhance sensitivity for fluorescence probes, allowing a lower detection threshold,
enabling more sensitive detection compared with traditional surgical visualizations (e.g., surgical
microscopes), and potentially reducing morbidity associated with contrast administration.3,33,34,77

The high spectral resolution of HSI was also found to be advantageous in precisely characterizing
the spectrum of administered fluorescent agents, such as 5-ALA, and in effectively distinguishing
them from autofluorescence signals arising from heterogeneous biological tissues.90 For example,
HSI has been shown to lower the detection threshold for PpIX fluorescence, providing a quanti-
tative advantage over subjective visual assessments.34,77,90

A key strength of HSI in tumor resection is its ability to segment tissues based on distinct
spectral signatures. Although the exact reasons remain unclear, tumor spectra are generally distinct
from those of healthy tissues.7,75,101,126 This phenomenon is due to the intrinsic chemical character-
istics of tumor tissue, which are reflected in the measured spectra. One important example is the
strong deoxyhemoglobin absorption associated with the tumor’s hypoxic environment.39,85 A
recent study by Giannoni et al.125 introduced two “spectral biomarkers” for distinguishing
high-grade from low-grade gliomas. The first biomarker reflects changes in the oxidation state
of cytochrome c oxidase, indicative of the metabolic rewiring in tumor tissue.127,128 The second
biomarker relates to the lipid spectral profile of tumor tissues, which reflects structural and meta-
bolic modifications in glioblastoma, leading to substantial lipid storage.129,130 New spectral bio-
markers are continually emerging in the literature, highlighting the need to explore the causal
relationships behind these associations to enhance the predictive process. Avalid approach involves
analyzing the contributions of multiple spectral biomarkers (chromophores and fluorophores) iso-
lated from measured spectra using sophisticated spectral unmixing algorithms. This task has been
facilitated by the availability of application-specific spectral libraries, such as the one recently pub-
lished by Black et al.,115 which includes endmember spectra for PpIX (620 and 634 nm photo-
states), NADH, FAD, flavins, lipofuscin, melanin, elastin, and collagen. Such a comprehensive
study of tumor spectral sources may enable the establishment of more robust spectral associations
while accounting for the significant tumor heterogeneity. Recent advances have demonstrated the
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potential of machine learning to automate the spectral unmixing process.118 However, further work
is needed to make the endmember spectra estimation process more interpretable, which is essential
for ethical acceptance.

Pre-processing of HSI data remains critical to improve signal quality before the generation
of classification maps through machine learning algorithms. The information conveyed by these
classification maps varies depending on the prediction task. For instance, binary classification
maps distinguish between tumor and healthy tissue, whereas multi-class maps differentiate
among multiple tumor histologic types or grades.119,121,131 However, the current pipelines for
generating these maps have limited domain knowledge of light–tissue interactions and
tumor biology, relying heavily on the algorithm itself as a “black box.”39 Although this approach
simplifies the classification conceptually, it can result in inconsistent and unpredictable
performance.39 For instance, errors that are easily recognized by a scientist reviewing the maps,
such as misclassifying blood as tumor tissue, are frequently overlooked by algorithms. A more
detailed spectral characterization of tissues, including blood, in controlled experimental settings
could provide valuable insights to improve and educate these algorithms. Spectral - spatial tumor
classification outperformed purely spectral classification in most studies,8,39,132,133 often
achieving sensitivity and specificity rates exceeding 90%. However, these results should be inter-
preted with caution, as the validation datasets in the reviewed studies were often too small to
support reliable conclusions. Expanding these datasets and incorporating more robust domain
knowledge into algorithm design could enhance the accuracy and reliability of HSI-based tumor
segmentation.

One of the most critical aspects of developing and reliably implementing HSI guidance in
surgical settings is establishing a robust methodology for ground-truth training and validation of
tissue predictions generated from hyperspectral data.7,96 In this context, ground-truth data refer to
tissue samples precisely labeled by expert pathologists using gold-standard techniques, such as
histopathology, or by the surgeon’s visual assessment, particularly for in vivo data. These data
serve as a reference standard for training and validating machine learning models. There is no
universally “best” ground-truth sample; instead, the protocol should align with the type of tissue
being imaged (e.g., in vivo or ex vivo) and the intended classification output. Significant spectral
differences exist between in vivo and ex vivo tissue samples, likely due to reduced blood flow,
lower oxygen levels, and decreased water content in ex vivo samples. Although fresh ex vivo
ground-truth validation samples may be sufficient for validating the HSI of resected surgical
specimens, they may not adequately represent in vivo surgical images. Alternatively, in vitro
or in vivo tumor models can also serve as ground-truth sources. A promising yet underexplored
example is the tumor-on-chip platform, which closely mimics the complexity of the tumor
microenvironment134,135 while providing a highly controlled experimental setting suitable for
detailed spectral characterization experiments. Finally, an intriguing area of exploration for
HSI ground-truth labeling involves fusing MRI data - a well-established imaging modality for
tumor staging - with hyperspectral images, as demonstrated by the pioneering work of Villa
et al.136,137 It remains to be determined whether MRI data fusion can improve label accuracy,
especially in challenging cases such as infiltrative tumors,77,138 and help automate the labeling
process.138

Several initiatives have significantly contributed to addressing the need for accessible
ground-truth data. Fabelo et al.39,101,139,140 launched the first public database comprising three
datasets of in vivo hyperspectral brain and tumor images, accessible through a dedicated online
portal. Ortega et al. published a dataset containing 469 annotated hyperspectral images derived
from histological slides of glioblastoma obtained from 13 patients.141 Similarly, Giannoni
et al.125,142 released a publicly available dataset of 14 fresh surgical biopsies of glioma tissue
imaged using a custom-built HSI system. As part of the SLIMBRAIN initiative122 (discussed
in Sec. 3.7), two additional datasets were published,136,137,143,144 one of which also included cor-
responding MRI scans registered to the hyperspectral images.136,137 The SLIMBRAIN research
group also developed a high-quality, dedicated online portal featuring extensive learning resour-
ces and detailed instructions to facilitate navigation of the dataset.122,123

Publicly available data from other surgical oncology specialties and fluorescence studies
are notably scarce, as the reviewed studies restricted data access. Puustinen et al.145 highlighted
a critical gap in available reports, pointing out the frequent absence of essential clinical
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information, such as precise anatomical annotations, locational details, and corresponding MRI
scans. They therefore proposed a systematic framework for a neuro-microsurgical hyperspectral
database,145 which could be extended to other medical specialties. This framework should
include comprehensive elements such as patient information, raw hyperspectral data, RGB
reconstructions, imaging parameters, manual annotations, pre-operative MRI scans, regions
of interest, calibration standards, and labeled classes.138,145 Building on these recommendations,
whenever possible, databases should also include samples from both healthy and tumor tissues,
along with detailed descriptions of sample preparation methods and reagents used. The creation
of additional freely accessible HSI databases would allow for a better representation of tumor
tissues’ diverse microstructural and metabolic characteristics. Such resources would facilitate
more effective data fusion, support the optimization and benchmarking of machine learning algo-
rithms, and ultimately advance the field of HSI in surgical oncology.

A key limitation of optical imaging methods, including HSI, is their restricted penetration
depth into biological tissues.44,146,147 Computational approaches, such as Monte Carlo simu-
lations, can model and quantify HSI penetration depth across different spectral bands by sim-
ulating photon transport within a 3D model with arbitrary optical properties. Generally,
penetration depth is limited to a few millimeters (≤10 mm) and varies depending on the im-
aging wavelengths and the tissue’s optical properties. A recent study by Giannoni et al.125

estimated penetration depths using the Monte Carlo method, finding values of 0.5 to 0.75 mm
for visible light and up to nearly 5 mm for near-infrared light. One promising approach to
enhance the imaging depth limitation is to combine HSI with complementary real-time
intraoperative imaging modalities capable of deeper acquisitions, such as photoacoustic
imaging148,149 or ultrasound.149–151

There are only a few commercially available fully integrated HSI surgical systems. One
example is the TIVITA® 2.0 from Diaspective Vision GmbH, which has been used in some
of the reviewed studies. This device provides information on the relative oxygen saturation
of blood in the microcirculatory system, with penetration depths ranging from ∼1 to 6 mm into
superficial and deeper tissue layers. It also generates indices related to water and fat distribution
in tissues. Another commercial system, the Quest Spectrum® (Quest Medical Imaging B.V.),
enables intraoperative hyperspectral fluorescence imaging. However, neither system is currently
optimized for the complex tumor segmentation tasks required in surgical oncology. In addition to
hardware limitations, there is a notable lack of dedicated and validated software for hyperspectral
data analysis, which further hinders the advancement of human clinical trials. Addressing these
gaps will require collaborative efforts among companies (through joint ventures), hospitals, aca-
demia, policymakers, and funders. At the current stage of HSI technology development, estimat-
ing the total cost of implementation is difficult, as most systems are still experimental. In the
future, a deeper understanding of the spectral characteristics of tissues, particularly tumors, could
guide the development of more cost-effective systems and software solutions.125 HSI holds sig-
nificant promise for improving the time and cost-efficiency of surgical workflows by reducing
uncertainty around tumor boundaries in real-time. This could lead to safer surgeries with fewer
complications, reduced recurrence rates, and shorter hospital stays. If such clinical benefits are
validated, the initial investment in HSI could be offset by long-term savings through enhanced
surgical precision and overall healthcare efficiency, supporting its feasibility for broader clinical
adoption.

In conclusion, HSI shows great potential as a guidance technology in surgical oncology,
offering valuable intraoperative insights for tissue segmentation, fluorescence analysis, optical
biopsy, and more. However, HSI is still in its early stages of development, requiring significant
advancements in both software and hardware for its full integration into surgical practice. Robust
study designs, including randomized controlled trials, are essential to objectively evaluate the
effectiveness of HSI-guided tumor resection compared with other intraoperative imaging modal-
ities. Although HSI is unlikely to replace traditional histopathological processing, which remains
the gold standard for diagnosis, it can serve as a powerful supplementary tool to support real-time
surgical decision-making. As clinical guidelines increasingly emphasize histological type for
determining resection extent, multi-class classification tasks are likely to become essential, mov-
ing beyond the current binary tumor segmentation approaches. The integration of optimized
hardware, advanced machine learning algorithms, and precise biological characterization of
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tissue spectra will be crucial for addressing current limitations and facilitating the broader clinical
adoption of HSI in the near future.
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