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Abstract

Despite being one of the largest intrauterine tissues in surface area, the fetal membrane that lines
the intrauterine cavity is often overlooked, forgotten, or misidentified in clinical and basic science
research. The feto-maternal interface is comprised of the fetal membrane (fetal component) and
decidua parietalis (maternal component), which lines the intrauterine cavity and provides essential
mechanical, immune, hormonal, and transport support to maintain pregnancy. Fetal membrane
plays an important role in triggering and regulating labor via complex signaling cascades. Whilst

several researchers have investigated the membranes world-wide, nomenclature remains
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inconsistent, leading to widespread ambiguity across inter-disciplinary disciplines involving
science, bioengineering, and reproductive medicine. The ongoing confusion regarding its
terminology, origins, structure, and function has resulted in several significant issues, including
diagnostic errors and misrepresentation clinically, limitations and inaccuracies in scientific
research, and regulatory and clinical miscommunication. Therefore, the Fetal Membrane Society
(FMS) calls upon the field to standardize fetal membrane nomenclature, define its architecture,
and summarize its region-specific differences to facilitate understanding of its biological role.
Clear and consistent identification of the fetal membrane is essential in improving research
accuracy, clinical outcomes, and effective communication within and between the medical and

scientific communities.

Purpose — The need to standardize fetal membrane nomenclature
The majority of intrauterine tissues have been extensively studied for their role in

implantation, embryogenesis, pregnancy, and parturition. Yet the fetal membrane remains
comparatively understudied and forms the innermost lining adjacent to the uterine decidua and
placenta’. Recognition of the human fetal membrane as a distinct anatomical structure, separate
from the placenta, has evolved gradually through centuries of medical observation and scientific
research. Furthermore, it was not until the 19th and 20th centuries, through advancements in
modern embryology and obstetrics, that the amnion and chorion were clearly delineated as
separate structures within the fetal membrane, each with unique origins and functions®>.
Throughout the period since its initial identification, the fetal membrane has had many names

such as: placental membrane*®, embryonic membrane, amniochorionic (or chorioamniotic)

10-12 14-16

membrane’®, gestational membrane'®'?, gestational sac', and feto-maternal interface®,

reflecting both the complexity of its structure and the diversity of scientific perspectives. This

17,18 and

varied nomenclature spans multiple disciplines, including reproductive biology
regenerative medicine'®?°, further underscoring the need for a unified understanding and
terminology.

Although the fetal membrane has traditionally been considered an appendage of the

placenta, modern embryological, histological, and imaging tools like OCT, MRI, and ultrasound
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demonstrate that the membranes are structurally different from the placenta®’. The fetal
membranes consist of the amnion and chorion, which originate independently during early
embryogenesis: the amnion arises from the epiblast, while the chorion develops from the
trophoblast and extraembryonic mesoderm. The fusion of the amnion and chorion at the end of
the first trimester (approximately 12-14 weeks gestation)?'** forms the fetal membranes which
serve as a protective barrier, maintains the amniotic fluid environment, and plays a crucial role in
immune modulation. In contrast, the placenta proper—specifically the placental disk—is
composed of chorionic villi embedded in maternal decidua and is specialized for maternal-fetal
exchange of gases, nutrients, and waste products. Unlike the placenta, the fetal membrane is
avascular and lacks the villous architecture necessary for direct exchange between maternal and
fetal blood. Therefore, while the fetal membrane is closely associated with the placenta and
umbilical cord, it is an anatomically, developmentally, and functionally distinct structure and
should not be considered an extension of the placenta (Figure 1).

In this white paper, the Fetal Membrane Society (FMS) calls upon the field to standardize
fetal membrane nomenclature, define its architecture, and summarize its region-specific
differences to facilitate understanding of its biological role. This call to standardization is essential
to 1) avoid heterogeneity in discussing this tissue, 2) avoid ambiguity in interpretation, function,
and clinical relevance, 3) encourage collaboration between researchers and 4) to coordinate and
highlight the importance of the fetal membrane. Understanding the fetal membrane is incredibly
important in the context of preterm birth and preterm premature rupture of membrane prevention

but also in the normal physiology of amniotic fluid circulation and the timing of parturition.

Definitions

Though there are many names to describe the fetal membrane in the literature or even
discrepancies in the field regarding which cell types should be included in this tissue definition,
the FMS has reached a majority consensus as a Society and provides the following definitions for
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future use (Table 1-2). The fetal membrane feto-maternal interface is comprised of two main
components: the fetal membrane itself and the decidua parietalis. The fetal membrane is the fetal
component of this interface and is formed by the fusion of the amnion membrane (AM) and the
chorion membrane (CM). The FMS proposes that post-fusion of the AM and CM, the fetal

membrane is a singular unit and should be referred to in the singular form (“it” rather than “their”).

The fetal membrane contains distinct cell types; present in the AM are amnion epithelial cells
(AECs), which form the innermost lining facing the amniotic cavity, and amnion mesenchymal
cells (AMCs), which reside within the underlying mesenchymal layer. The CM contains chorion
mesenchymal cells (CMC) within the connective tissue matrix and chorion trophoblast cells
(CTC). The decidua parietalis, the maternal component of the fetal membrane feto-maternal
interface, lines the intrauterine cavity and provides essential mechanical, immune, hormonal, and
transport support necessary for maintaining pregnancy. Additionally, the fetal membrane and
decidua parietalis are the main drivers of labor signaling, both at term and preterm. Together, the
connection between the fetal membrane and the decidua parietalis constitutes one of the primary
feto-maternal interfaces during pregnancy. When referring to this structure as a whole, the FMS

proposes that it is most accurate to use the term “fetal membrane feto-maternal interface”.

Consequences of mixed nomenclature

Impacts in the field of obstetrics: One of the-main sources of ambiguity in the nomenclature
of the fetal membrane arises from obstetricians, neonatologists, epidemiologists, and basic
scientists misinterpreting placental pathologic evaluation of the placenta, fetal membrane, and
umbilical cord following adverse pregnancy outcomes, such as spontaneous preterm birth (sPTB)
or preterm premature rupture of the membrane (PPROM). Fetal membrane pathologies often
include complications arising from retromembranous hemorrhage, diffuse chorioamniotic

hemosiderosis, meconium-related changes, isolated amnion rupture, amniochorionic dehiscence,
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and noninfectious chronic chorioamnionitis, clinical chorioamnionitis, or histologic
chorioamnionitis. In these scenarios, pathological analysis typically includes assessment of the
umbilical cord insertion site and identification of the placental infarcts. However, a critical focus of
the evaluation is often the fetal membrane itself, particularly for the diagnosis of histological
chorioamnionitis. Histologic chorioamnionitis is characterized by a maternal and or fetal
inflammatory response®, the presence of infiltration of > 3-5 polymorphonuclear (PMNs)
leukocytes?®, monocytes and macrophages into the chorion or amnion layers. The ongoing debate
is regarding the necessity of grading and staging? of inflammation in placental pathology
reports®®. This diagnosis is clinically important, as it is indicative of fetal exposure to intrauterine
inflammation, and is associated with a fetal inflammatory response, and correlates with increased

risks for neonatal morbidity®®*°

compared to a maternal inflammatory response. Pathologists will
distinguish acute chorioamnionitis involving the fetal membrane, chorionic plate, and umbilical
cord from other forms of placentitis (i.e., villitis, intervillous abscess formation, acute or chronic
intervillositis, and isolated chronic deciduaitis). The use of ‘maternal inflammatory
response’ and ‘fetal inflammatory response’ in pathological reports®® needs to be defined better.
Differences in reporting strategies and generalization of placental pathology report results in a
dilemma among the obstetrical community about the pathological contributions of the fetal
membranes vs. the placenta. As a result, it has been challenging to identify biomarkers or
intervention targets to address the membrane pathology and rupture. Therefore, this manuscript
underscores the importance of defining the fetal membrane and distinguishing it from the
placenta.

Impacts in the field of regenerative medicine: The fetal membrane has become a valuable
resource in regenerative medicine, with investigators increasingly isolating human cells, or

extracellular vesicles for in vitro mechanobiology studies or preserved intact membranes (i.e.,

lyophilized, frozen, dehydrated) for a variety of clinical applications. This is due to the fetal
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membrane's unique cellular composition, which includes pluripotent stem cells that produce a
variety of growth factors ideal for cell differentiation, tissue regeneration and wound healing.

Utilizing the fetal membrane after delivery for such purposes provides an innovative and
sustainable approach to treating wound-related or inflammatory conditions with a clinical sample
that is otherwise disposed of. Numerous companies market fetal membrane-derived products;
however, there is significant inconsistency in how these products are described. Common issues
include: 1) the use of non-standardized nomenclature, 2) lack of information on labor status of
samples, 3) unspecified anatomical region of where the samples are collected from, and 4)
unspecified distinction of whether the product is composed of the whole fetal membrane, AM, or
CM. These inconsistencies contribute to heterogeneity in both clinical and research settings,
complicating the interpretation and comparison of results. Additionally, many pre-clinical trials
employ fetal membrane derivatives without clear definitions or standardized terminology which
can: 1) confuse clinicians and patients regarding the origin of the biologic product they are using,
2) complicate FDA (or other health agency) approval of said products due to the ambiguous
nomenclature within the field, sample type, collection methods, and cellular composition, 3)

propagate biologically inaccurate information that “placentas” contain healing properties and

physiological factors that are not native to that tissue and 4), create a missed opportunity to
understand the true biological context or mechanism of these biologics for potential clinical
applications. Standardizing the nomenclature in both obstetrics and regenerative medicine fields,
will enable more effective communication across the fields, enhancing reproducibility,
synchronizing biological context, and enhancing clinical and scientific advancements in the field.

Ethical and regulatory considerations: The increasing use of fetal membrane-derived
products in regenerative medicine raises important ethical and regulatory considerations that
necessitate precise and transparent terminology. These tissues, often obtained after delivery, are

widely used for their anti-inflammatory, anti-scarring, and stem cell-like properties. However,
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inconsistency in labeling, such as describing products as “placental” or “stem cell-based” without
an apparent anatomical reference, can lead to public misunderstanding, regulatory ambiguity,
and ethical concerns. Accurate nomenclature is critical to ensure informed consent, product
traceability, and compliance with tissue handling and usage guidelines across jurisdictions.
Furthermore, clear identification of the tissue source (e.g., amnion vs. chorion, region of
membrane, labor status) is essential for institutional review boards, biobanks, and health
regulatory agencies when evaluating the scientific validity, safety, and ethical appropriateness of
fetal membrane-derived therapies. The FMS acknowledges the ongoing societal and legal
discourse surrounding the use of human fetal tissues®'. The fetal membranes are typically
obtained postnatally and are genetically similar to the fetus but they are ethically distinct from
embryonic or aborted fetal tissues. However, public perception and policy frameworks vary
globally. Thus, harmonized nomenclature not only supports scientific rigor but also promotes
ethical transparency and reinforces trust among patients, clinicians, regulators, and the general
public.

To facilitate the adoption of standardized fetal membrane nomenclature, the FMS
proposes several actionable strategies. First, academic journals can encourage consistent
terminology by incorporating standardized nomenclature guidelines into author instructions and
peer review checklists. Second, funding agencies and regulatory bodies such as NIH and FDA
can require applicants to adhere to defined tissue terminology in grant submissions and product
labeling. Third, the FMS plans to conduct targeted educational outreach through webinars,
position statements, and guideline publications. Finally, integration of fetal membrane terminology
into medical and graduate education curricula will ensure that trainees across disciplines adopt a
shared language early in their careers. Together, these efforts aim to build a unified framework
for fetal membrane research and clinical translation, reducing ambiguity and improving scientific

communication across fields.
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Below is a summary of the life cycle, collection documentation, anatomical regions, and cellularity

of the fetal membrane that should be used going forward to define fetal membrane specimens.

Unique life cycle of fetal membrane

The formation of the fetal membrane begins in early embryogenesis. During the second
week of development, the amniotic cavity arises within the inner cells mass of the blastocyst.
Here, the epiblast layer of the embryonic disc separates from the overlying cytotrophoblasts,
giving rise to the distinct layer called the amniotic ectoderm. This layer surrounds the amniotic
cavity and as embryonic development progresses, it expands to surround the fetus and ultimately
form the AM*? (Figure 1A). Simultaneously, the maternal endometrium undergoes decidualization
and the syncytiotrophoblasts layer invades into the decidua, facilitating nutrient and gas
exchange. Further differentiation leads to the formation of cytotrophoblast and amnion cells
(Figure 1B). At approximately 15 days gestation, the placental cytotrophoblasts differentiate into
CTC forming a unique cellular layer that lines the outer surface of the developing embryo and
the amniotic cavity (Figure 1C)*. The amnion is filled with amniotic fluid, providing protection and
cushioning for the developing embryo and fetus throughout gestation. At approximately 12-14
weeks gestations®'?*, the basal chorion trophoblast layer fuses with the AM, forming the fetal
membrane (Figure 1D). The fused fetal membrane undergoes rapid expansion and remodeling
during the second trimester to accommodate the growing fetus and increasing volume of amniotic
fluid, thereby maintaining a robust protective barrier (Figure 1E). Nutrient and hormonal support
is partially derived from maternal blood vessels in the decidua, which is integrated into the chorion
trophoblasts' basal side®, as well as from constituents of the amniotic fluid. Throughout gestation,
the fetal membrane is dynamically maintained,; its cellular and collagen layers are constantly shed,

replaced, and remodeled to maintain structural integrity®*. Approaching term, a combination of

37,38 39,40)

fetal (i.e., placental hypoxia®>®, fetal maturation markers®*, increased metabolic demands

and maternal signals (i.e., suppression of antioxidants such as a lack of the oxidative stress

10
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induced transcription factor Nrf2*') induce oxidative stress within the amniotic cavity. This
oxidative stress drives the maturation (i.e., aging) of the fetal membrane through a process of

cellular senescence*?#8

, resulting in progressive weakening (Figure 1F). Additionally, oxidative
stress also induces the transition of amnion epithelial cells to a more proinflammatory
mesenchymal phenotype and impairs autophagic processes. The culmination of these changes
— cellular senescence, inflammation and activation of signaling cascades contributes to the
physiological weakening and eventual rupture of the fetal membrane, a key event in the initiation
of labor (Figure 1G).

At the end of its life cycle, the fetal membrane is collected after delivery of the baby and
the following information should be documented regarding its collection: 1) inclusion/exclusion
criteria relevant to collection, 2) gestational age (i.e., term [237 weeks] or preterm [<37 weeks]),
3) delivery classification (i.e., scheduled cesarean section or vaginal delivery), 4) labor status (i.e.,
in labor or not in labor), and 5) anatomical region of collection. If the sex of the baby is available,

this should be documented as well. This information should be included in every method section

utilizing the fetal membrane or its biological components.

Macroscopic Anatomical Regions of the Fetal Membrane

The fetal membrane is divided into regions based on interaction(s) and proximity to
maternal tissues and/or the placenta. In general, it is divided into the membrane overlying the
placenta, termed the placental membrane (i.e., the region lining the fetal-facing side of the
placenta - composed of just the AM) or the reflective membranes (i.e., the region lining the
intrauterine cavity) (Figure 2). Although termed "placental" membrane, the region of the fetal
membrane that lines the placenta is functionally and anatomically distinct from the placenta itself.
While the placental and reflective membranes have similar AEC and stromal architecture, the
placental membrane contains a condensed extracellular matrix and no chorion layer. The

placental membrane only comprises a small portion (~17%)* of the overall surface area of the
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fetal membrane. The reflective membrane can be further divided into the peri-placental zone (i.e.,
2-3 inches from the placenta), mid-zone (i.e., middle and largest region), and cervical zone (i.e.,
overlapping the cervix); this nomenclature is dependent on its proximity to the placenta or the
cervix (Figure 2). However, it is important to note that there is a wide variety of overlap between
these areas based on individual and pregnancy-specific anatomy and gestational age. In
preparation for parturition, a specific region of the fetal membrane within the cervical zone —
known as the zone of altered morphology (ZAM) -undergoes significant structural and
morphological changes®°%*3. Within the ZAM, swelling occurs in the spongy layer of the AM and
thickening of collagen fibers within the underlying connective tissue. These changes are
accompanied by thinning of the cellular layers, specifically the trophoblast layer of the CM.
Collectively, these morphological changes result in a localized area of structural weakness in the
fetal membrane, which is hypothesized to serve as the primary site for membrane rupture during

labor or in cases of PPROM®*.

Fetal membrane histology

The fetal membrane is a composite tissue consisting of two epithelial layers, the amnion
and the chorion, separated by collagen-rich layers that contain AMCs**°*%¢ (Figure 3). The fetal
membrane can be manually separated at the spongy layer, resulting in two distinct components:
the AM, which consists of AECs and the fibrous ECM layer with stromal cells; and the CM, which
contains the reticular ECM layer connected to the CTC. If the maternal decidua remains attached
to the CM, the structure is referred to as the choriodecidua membrane.

The fetal membrane plays a vital role in maintaining pregnancy. It acts as a barrier against
infections due to its abundance of antimicrobial factors, facilitates nutrient exchange through

57-60

transporter proteins similar to those expressed in the placenta, and provides essential

structural support resulting from its diverse collagen and elastin®'®2

content. The specialized,
multi-layered architecture of the fetal membrane - including collagen-rich ECM and fetal-derived

12
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cells adjacent to the maternal decidua — underpins its notable tensile strength and functional
capacity throughout gestation. The fetal membrane forms the critical interface between the fetal
and maternal environments, contributing to the overall function and integrity of the fetal membrane
feto-maternal interface®*®*. Defining the fetal membrane as part of the feto-maternal interface is

insufficient to comprehensively characterize this tissue.

Fetal membrane ’cellular and collagen components

The amnion epithelial layer: AECs form the outermost layer of the fetal membrane. Like
other epithelial cells, AECs derive their barrier function from their cuboidal shape, tight junctions
with neighboring cells and strong adhesion to the underlying basement membrane (Figure 3)*>
®7_ Furthermore, AECs possess microvilli that enable them to sense the in utero environment, a
feature common to many epithelial monolayers. The apical surface of these cells are bathed in
amniotic fluid*, positioning the AECs ideally to facilitate communication between the fetus and
the maternal uterus. This communication occurs through the secretion of cellular products into
the amniotic fluid and the response to solutes present in the amniotic fluid. These signals can
then be transmitted to maternal tissues via a ‘chain reaction ’of signaling through the tissue® or

through exosome trafficking®7°.

66,71 9,66,71-73

AECs are dynamic, undergoing constant turnover, shedding and gap formation

— processes that are repaired by cellular transitions such as epithelial-to-mesenchymal transition
(EMT) or mesenchymal-to-epithelial transition (MET)"""*"°. These remodeling mechanisms are
essential for the maintenance of the structural integrity of the fetal membrane as it expands and
matures’""®#% Although epithelial in nature, AECs are also considered pluripotent stem cells.
They express stemness markers such as OCT4, SOX2, NANOG?®'® in addition to unique

71,74-76

cytoskeletal markers indicative of metastate , including co-expression of both epithelial and

mesenchymal intermediate filaments (vimentin and cytokeratin). Furthermore, AECs have the

)68,85

ability to produce paracrine (i.e., progesterone and cytokines and endocrine signals (i.e.,
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exosomes, prostaglandins), thereby regulating their microenvironment. Through their basal
surface, AECs secrete various types of collagen (Type I, lll, IV, and VII) and glycoproteins,

contributing to the formation of a robust interface with the ECM via the basement membrane®®.

The ECM-rich layers of the fetal membrane: The amnion basement membrane is
predominantly composed of Type IV collagen, but it also contains small amounts of Type Ill and

V collagen, as well as laminin, fibronectin, and nidogen® 8%’

. The expression of these
components is regulated by matrix metalloproteinases (MMPs), specifically MMP9 and MMP2,
which are produced by both AECs and AMCs. The basement membrane is anchored to the
underlying compact layer that contains Types |, Ill, V, and VI collagens, which connects to the
next ECM layer, the fibrous (i.e., fibroblast) layer. Within the fetal membrane, the three distinct
ECM layers, the fibrous, spongy, and reticular layers, each contain unique compositions of
collagen, elastin, and microfibrils (Figure 3). These specialized structures contribute to the
viscoelastic properties of the fetal membrane, enabling it to withstand stresses associated with
fetal growth, movement, and uterine contractions prior to labor. Additional ECM components, such
as fibronectin, laminins, proteoglycans, and hyaluronan, also contribute significant structural and
functional roles in the development and remodeling of fetal membrane ECM.

AMCs secrete Type |, lll, and VI collagen within the compact and fibroblast layers,
contributing to the elasticity and tensile strength of the AM. The fibrous layer of the stromal region
primarily contains AMCs® , in addition to a smaller number of immune cells such as macrophages
and, under certain conditions, neutrophils).2* These cells play an important role in modulating
inflammation and tissue remodeling by secreting both pro-inflammatory mediators (including
cytokines such as IL-1B, IL-6, and TNFa) and MMPs as well as anti-inflammatory and
immunosuppressive mediators (such as IL-10, TGFB, and prostaglandins). Through these
secretions, AMCs communicate with other cellular layers and actively participate in fetal

membrane remodeling”®9°%.
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AMCs, characterized by their elongated mesenchymal morphology and expression of
vimentin, are the most prevalent cell type found in the fibroblast layer of the AM. (Table 1-2)
(Figure 3). AMCs are well known to undergo MET to seal AEC gaps®®’ in the mesenchymal
network, thereby maintaining fetal membrane integrity throughout gestation”'. Recent studies
suggest that AMCs may not be a permanent population within the ECM, but rather are transient
forms of AECs or CTCs that are recycled back to their parent cell type”"76-%,

AMCs have been shown to be more susceptible to apoptosis towards the end of
pregnancy, and their loss may compromise the AM’s ability to maintain its ECM in the fibrous
layer®. As previously described, the processes of cell recycling and remodeling are necessary
for accommodating the rapid growth of the membrane during gestation and for repairing and
remodeling areas affected by cell shedding and death. Furthermore, during intrauterine infection,
AMCs become activated and express innate immune markers, highlighting their important role in
host defense'%-1%,

The fibrous layer of the AM is connected to an underlying spongy layer, which serves as
an intermediate layer between the AM and CM. This layer is rich in glycosaminoglycans,
proteoglycans (i.e., décorin, biglycan), glycoproteins (i.e., laminin, fibronectin), elastin, and Type
I, 1ll, and 1V collagen®'31941%% Thjs intermediary layer maintains distinct populations of cells in
the AM (AMCs in the fibroblast layer) and CM (CMCs in the reticular layer) by preventing the
movement of cells across the layers (Figure 3)'%¢1%7,

The reticular layer of the CM consists of fibrillar bundles of Type |, Ill, IV, V and VI
collagens. It is positioned between the apical spongy layer and the CM basement membrane that
is anchored to the CTCs (Figure 3). The CM basement membrane is made up of Type VI
collagen, fibronectin, and laminin and is degraded by MMPs produced by CMCs and CTCs. CMCs
are derived from CTCs and, similar to AMCs, can undergo EMT and MET facilitating tissue

107,108

remodeling CMCs exhibit the classic elongated, spindle-shaped morphology of
mesenchymal cells and express cytoskeletal proteins such as vimentin and N-cadherin), much
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like AMCs. However, CMCs also secrete hormones such as progesterone, at levels comparable

to CTCs'%"2,

The chorion trophoblast layer: Though derived from the same origin, the CTCs of the fetal
membrane are functionally distinct from the cytotrophoblasts, syncytiotrophoblasts, and
extravillous trophoblasts found in the placenta'’*'"*. The CM, often referred to as the "great wall"
of the fetal membrane, forms a critical barrier at the feto-maternal interface, providing essential
protection against external stressors and pro-inflammatory mediators''>""®. Multiple layers of
CTCs are anchored to the basement membrane of the CM. These CTCs exhibit a cuboidal
epithelial morphology similar to that of AECs. However, recent studies suggest that, unlike AECs,
CTCs are notably resistant to stress-induced EMT mediated by p38 mitogen-activated kinases'"”.
This resistance is likely crucial for maintaining the barrier function of the CM, as EMT within this
layer could otherwise lead to localized inflammation and compromise the CM'’s ability to shield
the more vulnerable AM'"""8 Whilst the predominant cell type within the CM are CTCs, there are

a small number of laeve cells around the basement membrane'"® (

Figure 3). Laeve cells, derived
from the placental trophoblasts, are distinguished from CTCs by their large vacuoles.

CTCs are not only structurally important but also immunologically active. CTCs produce a
range of immunomodulatory molecules, including progesterone, non-classical major
histocompatibility complex (MHC) class | antigens (HLA-E, HLA-F, and HLA-G)'®° and pro- and
anti-inflammatory cytokines such as IL-10'%°-112.121122 These mediators enable the CM to directly
modulate the decidual immune microenvironment. This immunological interface is crucial in
preventing excessive inflammation, which could trigger premature labor in response to maternal
exposure to exogenous factors.

In addition to immunomodulatory molecules, CTCs secrete hormones (i.e., progesterone,
estrogen), growth factors (i.e., phosphatidylinositol glycan anchor biosynthesis class F, insulin-

like growth factor, epidermal growth factor, fibroblast growth factor), and a range of prostaglandins

16



441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464
465
466

(i.e., prostaglandin E2, prostaglandin F2alpha, prostaglandin E1, prostaglandin E3, prostaglandin
12) that support the maintenance and function of the fetal membrane. The CM'’s dual role in
maintaining the structural integrity of the fetal membrane and modulating immune responses
highlights its importance in protecting the developing fetus. Disruption to this barrier can lead to

adverse pregnancy outcomes, such as intra-amniotic infections and inflammation.

Summary

The fetal membrane forms a crucial feto-maternal interface with the maternal decidua parietalis
that is functionally and anatomically distinct from the placenta. Formed by the fusion of the AM
and CM by 15 weeks of gestation, it provides a large surface area for communication between
mother and fetus throughout the pregnancy. Enveloping the developing fetus, the fetal membrane
lines both the intrauterine cavity (as the reflective membrane) and the placenta (as the placental
membrane), giving rise to anatomically and structurally specialized regions. The reflective and
placental membranes contain multiple fetal cell layers and collagen-rich extracellular matrices,
together forming a dynamic barrier that separates the maternal circulation from the fetal amniotic
environment. This barrier is actively maintained by coordinated cellular turnover, collagen
remodeling, hormonal signaling, and immune regulation, processes that are not only essential for
fetal protection but also play a role in the onset of labor.

A clear understanding of the origins, organization and regional differences of fetal membrane cells
is critical for accurately modeling these tissues in vitro and advancing regenerative medicine..
Standardizing fetal membrane nomenclature and precisely defining tissue collection and
anatomical regions will help unify research efforts, reduce clinical confusion and advance the
scientific and therapeutic potential of this amazing tissue.
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Table 1: Fetal Membrane Nomenclature

Table 2: Fetal Membrane Feto-Maternal Interface Nomenclature

Figure 1: Life cycle of the fetal membrane during gestation

Graphic schematic of fetal membrane formation, maturation, and fetal delivery.

A) During implantation of the blastocyst into the endometrium, the differentiates into trophoblast
cells (later forming the chorion) (purple), and the inner cell mass (orange) begins to form the
amniotic cavity (grey). B) As implantation continues, the trophoblast layer differentiates into the
syncytiotrophoblast (grey with dark grey dots) that connects to the maternal vasculature and the
cytotrophoblast (purple) that connects to the amniotic cavity (grey). The amniotic cavity now
contains amnion epithelial cells (blue) that line its border. C) Close to 15 days gestation, the
formation of the chorion (yellow/orange) occurs as cytotrophoblast (purple) differentiates to create
the chorion cavity lining the amniotic cavity (grey). D) These layers continue to differentiate to
form the villous structure of the placenta (orange outlined in purple) and the chorion trophoblast
(yellow) and amnion (blue) of the fetal membrane. Around 15 weeks of gestation, the amnion
(blue) and chorion (yellow) layers fuse to form the fetal membranes. The membranes line the

intrauterine cavity, providing structural, mechanical, and immune support during pregnancy. E-F)

20



567
568
569
570
571
572
573
574
575

576

577

578

579

580

581

582

583

584
585

586
587
588
589
590
591
592
593

594

The fetal membrane (black line) grows, expands, and matures alongside the fetus during the
second trimester. G) During the third trimester, changes in the inflammatory status of the
intrauterine cavity induce senescence (i.e., aging) that contributes to fetal membrane weakening
(dashed lines). H) At approximately 40 weeks of gestation, a combination of both fetal and
maternal-derived signaling initiates fetal membrane (black line) weakening and rupture,
myometrial contractions, cervical ripening, and delivery of the fetus and intrauterine tissues.

Created with Motifolio.com.

Figure 2: Classification of fetal membrane regions

The fetal membrane is divided into two sections (dashed line): the placental membrane and the
reflective membrane. The placental membrane overlaps the basal side of the placenta and
contains a layer of AM (blue), while the reflective membrane lines the intrauterine cavity, and thus,
the CM (yellow) is in direct contact with the decidua. The reflective membrane is divided into three
zones based on its proximity to the placenta or the cervix. These zones are termed peri-placental,
mid, and cervical (outlined by black boxes). These reflective regions are used to clarify the location
of sample collection when the fetal membrane is used for ex vivo/in vitro research. The zone of

altered morphology over the cervix develops near term. Created with Motifolio.com.

Figure 3: Intrauterine and feto-maternal interface anatomy

Within the intrauterine cavity, there are a variety of maternal (i.e., myometrium and cervix) and
fetal (i.e., placenta, umbilical cord, an amniotic cavity containing amniotic fluid, and the fetal
membrane) derived organs that surround the fetus and contribute to pregnancy maintenance. The
fetal membrane (white) lines the cavity and forms a protective barrier around the fetus throughout
gestation. They are derived from multiple fetal and maternal cellular and collagen layers to form
the feto-maternal interface. The AECs (orange) are connected to the basement membrane (blue)
and compact layer (blue dashes) of the extracellular matrix (ECM), forming an amniotic fluid-tight
barrier. Within the first layer of the ECM (i.e., the fibrous layer), AMCs (pink) migrate and interact

with the collagen environment. Between the fibrous and reticular layers of the ECM is the spongy
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layer that separates the AM and CM (purple) portions of the fetal membrane. The reticular layer
of the ECM contains CMCs (dark blue) that are connected to the basement membrane of the CM.
The multi-layer of CTCs (purple) forms the second epithelial layer of the fetal membrane and is
critical for immune homeostasis. The fetal chorion layer is directly connected to the maternal
decidua layer (light teal), forming the feto-maternal interface of the membranes. Resident immune
cells (yellow) predominantly reside in the decidual layer but can migrate into the CM and AM
layers if stimulated. Maternal blood vessels (green endothelial and red blood cells) are also

present in the maternal decidua, providing nutrients to the fetal membrane layers.
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Table 1

[Term ||Definition

Fetal membrane

The fetal membrane, comprised of the amnion and chorion membranes, is the fetal component of the feto-maternal interface
(i.e., fetal membrane-decidua parietalis) that has no vascular connection to the fetus.

Cellular Membrane Cell type Abbreviations
components
) |Amni0n epithelial cells ||AEC |
Amnion membrane -
|Amn10n mesenchymal cells ||AMC |
) |Ch0ri0n mesenchymal cells ||CMC |
Chorion membrane -
|Ch0r10n trophoblast cells ||CTC |

Table 2

|Term |

[Definition

Fetal membrane
feto-maternal

The fetal membrane feto-maternal interface is comprised of the fetal membrane (fetal component) and decidua parietalis
(maternal component) that lines the intrauterine cavity and provides essential mechanical, immune, hormonal, and

Decidua

|Decidual vasculature

|Decidual immune cells

interface transport support to maintain pregnancy, while additionally being the main driver of labor signaling at term or preterm.
Cellular Membrane Cell type Abbreviations
components
Amni b |Amni0n epithelial cells ||AEC |
mnion membrane
|Amni0n mesenchymal cells ||AMC |
Chori b |Ch0ri0n mesenchymal cells ||CMC |
orion membrane
|Ch0ri0n trophoblast cells ||CTC |
Choriodecidua |Decidua parietalis ||DECP |
membrane |
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