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Abstract

Respiratory motion is a significant general problem in Positron Emission Tomography

(PET) imaging, affecting both image quality and quantitative accuracy. Respiratory mo-

tion not only blurs lesions and other anatomical features in the lungs, but also complicates

the application of attenuation correction to the acquired PET data. While respiratory

gating can help reduce motion artefacts, it extends acquisition time and reduces effective

counts. A further challenge arises from the temporal mismatch between the attenuation

map and the emission scan, as patients are typically instructed to hold their breath during

the Computed Tomography (CT) acquisition but breathe freely during the PET scan of

a combined PET/CT. As a result, the static Attenuation Map (µ-Map) often does not

correspond to any specific respiratory phase of the PET data, introducing misalignment

that degrades both qualitative and quantitative image accuracy.

Motion correction methods exist which incorporate registration in order to attempt to

improve upon non-motion corrected results. Often these methods involve separating the

PET data into bins, where the respiratory motion is minimal within each bin. However,

because of the high level of noise and low spatial resolution of PET data, few bins are

often used, leading to a not insignificant amount of respiratory motion still being present

in the resultant images. Additionally, this approach does not solve the mismatch of the

µ-Map. Logically, the bin closest to the µ-Map could be used as the reference bin for

registration but it is not guaranteed that this bin will be close to the position of the µ-Map

and as such artefacts will remain in the final image. Furthermore, registration fails when

used on dynamic PET data, where the signal from the aorta, at early time points, often

leads to mis-registration. More complex motion correction methods exist, however, these

methods, in general, tend to be more resource intensive in both the sense of computation

time and computational resources.



Abstract

This thesis focuses on the development of a motion correction method, which seeks

to rectify some of the issues above by using respiratory gated data in combination with

motion modelling. Firstly, this thesis presents preliminary results, where the bounds

of the problem were found. This includes experiments to discover the effectiveness of

different motion correction techniques (focusing on motion modelling) in the case of Time

of Flight (TOF) vs Non-Time of Flight (Non-TOF) PET data, especially where a high

number of bins are used. Then, the thesis explores work related to attempting to solve the

mismatch of the µ-Map by deforming it to the position during the gates. Furthermore,

a comparison between the effects of the reconstruction and Motion Model (MM) fitting

process is presented, including using Maximum Likelihood Activity and Attenuation

Correction Factors Estimation (MLACF), to approximate attenuation correction, as well

as fitting a MM on coarsely binned data and applying it to finely binned data.

Finally, this thesis also presents work on the problems of Data Driven (DD) Surrog-

ate Signal (SS) extraction methods applied to dynamic PET. A SS is imperative to the

effectiveness of binning data as well as to MM fitting. By presenting work relevant to SS

extraction from dynamic PET this work potentially opens the motion correction methods

presented previously to the application of dynamic PET.

The thesis concludes by critically reflecting on the work presented, highlighting both

methodological advancements and areas for further refinement. By outlining key future

directions, it sets the stage for continued development of clinically viable respiratory

motion correction approaches for both static and dynamic PET imaging.
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The work presented in this thesis constitutes a methodological advancement

in the domain of respiratory motion correction for PET/CT imaging. The

proposed framework was developed to address key limitations of existing

techniques, particularly the challenge of aligning attenuation maps with dy-

namic anatomical motion, and the difficulty of applying motion correction in

dynamic PET acquisitions, where conventional gating is often infeasible.

By focusing on DD solutions that operate on data already available in stand-

ard clinical protocols, this research aims to enable motion correction that

is both technically robust and clinically practical. The integration of dif-

feomorphic registration, motion modelling, warping to a µ-Map reference

position, and SS extraction directly from (dynamic) PET data represents a

novel contribution at the interface between motion correction and reconstruc-

tion.

While the methods developed are currently at the stage of technical and

simulation-based validation, they are designed with eventual clinical integra-

tion in mind. The SS extraction strategies, in particular, offer a viable path

toward extending respiratory motion correction to dynamic PET, a domain

where limited signal and variable tracer kinetics have historically impeded

progress.

From an academic perspective, the research has been conducted with a strong

commitment to transparency, reproducibility, and open scientific practice.

The work has been disseminated through international conferences and peer-

reviewed publications, and future research directions have been clearly out-
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lined, including avenues for clinical validation and integration into joint re-

construction frameworks.

In this context, the impact of the thesis lies in providing a solid methodo-

logical foundation for future clinical applications, while contributing to the

broader academic discourse on motion correction in medical imaging.
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updating the common reference and iteratively registering again for a set

number of iterations (as seen in figure 2.29). . . . . . . . . . . . . . . . 116
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2.29 Graphical representation of one method of implementing group-wise re-

gistration. The sub-images one through four show the initial setup used

for this implementation and the sub-images five through 10 show the sub-

sequent iterations of the group-wise algorithm. Sub-image one shows

an initial pair-wise registration of one image to the rest of the images in

the series. Sub-image two shows how to find the mean position of all

images by taking the mean of the deformations from the previous step.

Sub-image three shows the inverse of the deformation from sub-image

two. Sub-image four shows the deformations from sub-image one being

composed with the deformation from sub-image three, thus there is now

a deformation from each image to the mean position. Sub-image five

shows the resultant deformations from the composition in sub-image four.

Sub-image six shows the target images resampled using the deformations

from sub-image five to form a reference image at the mean position. Sub-

images seven through 10 show incremental improvements to the reference

image from subsequent iterations of registration and resampling. . . . . . 117

2.30 Graphical representation of the process of motion modelling. On the

left of the figure the input data of both the image data and the SS can

be seen. Then in the centre of the image the image data is taken and

registration is applied to it. Then on the right of the image a Respiratory

Correspondence Model (RCM) is fit on the Deformation Vector Fields

(DVFs) from the registration step and the input SS. In the top right of the

figure a naive example of the 2D regression result can be seen. In this

case the regression appears to be polynomial. . . . . . . . . . . . . . . . 119

2.31 Graphical representation of the types of RCM. At the top of the figure is

a SS which has been discretised into specific values. On the bottom left

of the figure is a linear RCM, fit on a single SS, showing how the points

from the discretised SS would be mapped to itself. On the bottom middle

of the figure is a RCM fit on SS reflecting the phase of the respiration

and on the bottom right of the figure is an RCM where inhalation and

exhalation are modelled separately using two RCM (or a 2D SS). . . . . 122
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3.1 Coronal images illustrating results from the estimation of RCMs on NAC

images. All volumes correspond to the end inhalation gate. First row

from left to right: Four Dimensional Extended Cardiac Torso (XCAT)

PET ground truth image, NAC Non-TOF reconstructed data, and NAC

TOF reconstructed data. Second row, RCMs applied to mean position

XCAT data with RCMs derived from XCAT PET data (left), NAC Non-

TOF (middle), and NAC TOF (right) volumes. Colour map ranges are

consistent for all images on this row. The third row from left to right,

difference between the estimated volumes from the second row with the

XCAT end inhalation volume. Colour map ranges are consistent for all

images on this row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.2 The path of the Centre of Mass (COM) of the lesion, in voxel indices. Ho-

rizontal (respectively vertical) axis corresponds to motion in the Anterior

Posterior (AP) (respectively Superior Inferior (SI)) direction over the six

gates. Different curves denote COM displacement for ground truth data,

the estimated data from the XCAT based RCM, the estimated data from

the NAC Non-TOF based RCM, and the estimated data from the NAC

TOF based RCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.3 The path of the COM of the lesion, in voxel indices. Horizontal (respect-

ively vertical) axis corresponds to motion in the SI (respectively AP).

Different curves denote COM displacement for ground truth data, the

estimated data from the NAC based MM, and the estimated data from the

AC based MM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.4 Ground truth and reconstructions using ungated (CINE-CT), ungated

(static CT), NAC MM, and AC MM. Colour map ranges are consistent

for all images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3.5 A profile across the lesion for ungated (CINE-CT), ungated (static CT),

NAC MM, and AC MM. . . . . . . . . . . . . . . . . . . . . . . . . . . 143
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3.6 Coronal slices for various methods. First column contains AC motion

corrected reconstructions and the second column contains the result of

applying the final motion correction on the original XCAT images (for

easier assessment of the accuracy of the estimated DVFs). This is for

ungated static CT, ungated averaged CINE-CT, pair-wise, pair-wise MM,

group-wise, and group-wise MM. Colour map ranges are consistent for

all images in each column. . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.7 A profile across the lesion for ungated static CT, ungated averaged CINE-

CT, pair-wise, pair-wise MM, group-wise, and group-wise MM. . . . . . 152

4.1 This figure shows an example of the amplitude and gradient 2D SS gat-

ing technique as compared to examples of the pseudo-phase based gating

technique. On the right of this image is a more traditional gating tech-

nique, here using 10 amplitude gates and three gradient gates. The next

four images show the pseudo-phase based gating with two, three, four,

and eight radial bins, plus an example of how a circular separation can be

used for deep and shallow breaths. . . . . . . . . . . . . . . . . . . . . . 164

4.2 First row contains, AC motion corrected reconstructions (plus Structural

Similarity Index Measure (SSIM) to the ground truth). Second row con-

tains the results of applying the final MM on the original XCAT volumes.

This is using a MM fit on four and 30 gate binned data applied to 30 gate

binned data, a MM fit on noiseless four and 30 gate binned data applied

to 30 gate binned data, and ungated data AC with a static µ-Map at end

inhalation and all µ-Maps summed. Colour map ranges are consistent for

all images in each row. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.3 A profile through the lesion in the SI direction, summed over a window in

the AP and Lateral Medial (LM) directions, with median smoothing, for

the ground truth XCAT data, a MM fit on four and 30 gate binned data

applied to 30 gate binned data, a MM fit on noiseless four and 30 gate

binned data applied to 30 gate binned data, and ungated data AC with a

static µ-Map at end inhalation and all µ-Maps summed. . . . . . . . . . 168
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4.4 A visual analysis which shows the results of performing different recon-

struction methods on XCAT data with a 12 mm lesion placed into the base

of the right lung (the left of this image). Where noise is present then this

data represents a 60 s acquisition on a GE Discovery 710 (roughly equi-

valent to one gate from a clinical acquisition). At the top of this image

is the Ground Truth image (without motion or reconstruction artifacts),

second from the top of this image is a NAC OSEM reconstruction, third

from the top of this image is a AC OSEM reconstruction using a µ-Map at

a different respiratory position than the Ground Truth, fourth from the top

of this image is a MLACF reconstruction following the literature (Nuyts

et al. 2012). From the fifth image from the top to the bottom of this im-

age all images represent adding additional processing steps to attempt to

make the reconstructions better for motion correction. Fifth from the top

of this image is the result of initialising MLACF with a misaligned AC

OSEM reconstruction, using sinogram mashing, and fixing the scale of

the image to the scale of the misaligned AC OSEM reconstruction. Sixth

from the top of this image is the result of applying a median smoothing

(with a kernel size of three) after each activity update (and before every

attenuation update). Seventh from the top of this image is the result of

interpolating any value outside three times the Inter Quartile Range (IQR)

of the image after each activity update using a linear interpolation. The

bottom of this image is the result of heavily smoothing the endplanes.

All reconstructed images include scatter and random events. All OSEM

reconstructions follow standard clinical practise (see chapter 3). For the

NAC OSEM and MLACF following the literature (Nuyts et al. 2012) the

output was rescaled to the AC OSEM. Colour map ranges are consistent

for all images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
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4.5 AC motion corrected reconstructions (plus Perception Based Image Qual-

ity Evaluator (PIQE)), where different data was used to fit the MM and the

final MM was applied to 30 gate binned data. The data used to fit the MM

was as follows. ‘Phase’ gated and MLACF reconstructed data with three,

four, eight and 12 bins respectively. A MM was also fit using a single bin,

which is practically the equivalent of doing no motion correction. Colour

map ranges are consistent for all images in each row. . . . . . . . . . . . 178

4.6 AC motion corrected reconstructions (plus PIQE), where different data

was used to fit the MM and the final MM was applied to 30 gate binned

data. The data used to fit the MM was as follows. Amplitude gated data

with five bins reconstructed using MLACF, AC OSEM, and NAC OSEM.

A MM was also fit using a single bin, which is practically the equivalent

of doing no motion correction. Colour map ranges are consistent for all

images in each row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.7 AC motion corrected reconstructions (plus PIQE), where different data

was used to fit the MM and the final MM was applied to 30 gate binned

data. The data used to fit the MM was as follows. Amplitude gated data

with five bins reconstructed using MLACF. Here, in the 2D case a 2D SS

and in the One Dimensional (1D) case a 1D SS were used. A MM was

also fit using a single bin, which is practically the equivalent of doing no

motion correction. Colour map ranges are consistent for all images in

each row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.8 AC motion corrected reconstructions (plus PIQE), where different data

was used to fit the MM and the final MM was applied to 30 gate binned

data. The data used to fit the MM was as follows. Amplitude gated data

with 30 bins reconstructed using MLACF, AC OSEM, and NAC OSEM.

A MM was also fit using a single bin, which is practically the equivalent

of doing no motion correction. Colour map ranges are consistent for all

images in each row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
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4.9 AC motion corrected reconstructions (plus PIQE), where different data

was used to fit the MM and the final MM was applied to 30 gate binned

data. The methods presented here are a combination of the best one

method from figure 4.5, figure 4.6, and figure 4.8. A MM was also fit

using a single bin, which is practically the equivalent of doing no motion

correction. Colour map ranges are consistent for all images in each row. . 179

4.10 AC motion corrected reconstructions (plus PIQE), where different data

was used to fit the MM and the final MM was applied to 30 gate binned

data. The data used to fit the MM was as follows. ‘Phase’ gated and

MLACF reconstructed data with three, four, eight and 12 bins respectively.

A MM was also fit using a single bin, which is practically the equivalent of

doing no motion correction. Here, results are shown applied to volumes

without noise. This is due to it potentially being easier to see smaller

differences between motion correction methods when noise is removed.

However, noise is still used during the motion correction process. Colour

map ranges are consistent for all images in each row. . . . . . . . . . . . 180

4.11 AC motion corrected reconstructions (plus PIQE), where different data

was used to fit the MM and the final MM was applied to 30 gate binned

data. The data used to fit the MM was as follows. Amplitude gated

data with five bins reconstructed using MLACF, AC OSEM, and NAC

OSEM. A MM was also fit using a single bin, which is practically the

equivalent of doing no motion correction. Here, results are shown applied

to volumes without noise. This is due to it potentially being easier to

see smaller differences between motion correction methods when noise

is removed. However, noise is still used during the motion correction

process. Colour map ranges are consistent for all images in each row. . . 180
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4.12 AC motion corrected reconstructions (plus PIQE), where different data

was used to fit the MM and the final MM was applied to 30 gate binned

data. The data used to fit the MM was as follows. Amplitude gated data

with five bins reconstructed using MLACF. Here, in the 2D case a 2D SS

and in the 1D case a 1D SS were used. A MM was also fit using a single

bin, which is practically the equivalent of doing no motion correction.

Here, results are shown applied to volumes without noise. This is due

to it potentially being easier to see smaller differences between motion

correction methods when noise is removed. However, noise is still used

during the motion correction process. Colour map ranges are consistent

for all images in each row. . . . . . . . . . . . . . . . . . . . . . . . . . 180

4.13 AC motion corrected reconstructions (plus PIQE), where different data

was used to fit the MM and the final MM was applied to 30 gate binned

data. The data used to fit the MM was as follows. Amplitude gated data

with 30 bins reconstructed using MLACF, AC OSEM, and NAC OSEM.

A MM was also fit using a single bin, which is practically the equivalent of

doing no motion correction. Here, results are shown applied to volumes

without noise. This is due to it potentially being easier to see smaller

differences between motion correction methods when noise is removed.

However, noise is still used during the motion correction process. Colour

map ranges are consistent for all images in each row. . . . . . . . . . . . 181

4.14 AC motion corrected reconstructions (plus PIQE), where different data

was used to fit the MM and the final MM was applied to 30 gate binned

data. The methods presented here are a combination of the best one

method from figure 4.10, figure 4.11, and figure 4.13. Here, results are

shown applied to volumes without noise. This is due to it potentially be-

ing easier to see smaller differences between motion correction methods

when noise is removed. However, noise is still used during the motion

correction process. Colour map ranges are consistent for all images in

each row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
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4.15 A profile through the lesion, in the SI direction, summed over a window

in the AP and LM directions, with median smoothing. This is for where

different data was used to fit the MM and the final MM was applied to

30 gate binned data. The data used to fit the MM was as follows. ‘Phase’

gated and MLACF reconstructed data with three, four, eight and 12 bins

respectively. A MM was also fit using a single bin, this is practically the

equivalent of doing no motion correction. . . . . . . . . . . . . . . . . . 182

4.16 A profile through the lesion, in the SI direction, summed over a window

in the AP and LM directions, with median smoothing. This is for where

different data was used to fit the MM and the final MM was applied to 30

gate binned data. The data used to fit the MM was as follows. Amplitude

gated data with five bins reconstructed using MLACF, AC OSEM, and

NAC OSEM. A MM was also fit using a single bin, which is practically

the equivalent of doing no motion correction. . . . . . . . . . . . . . . . 182

4.17 A profile through the lesion, in the SI direction, summed over a window

in the AP and LM directions, with median smoothing. This is for where

different data was used to fit the MM and the final MM was applied to 30

gate binned data. The data used to fit the MM was as follows. Amplitude

gated data with five bins reconstructed using MLACF. Here, in the 2D

case a 2D SS was used and in the 1D case a 1D SS was used. A MM was

also fit using a single bin, this is practically the equivalent of doing no

motion correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.18 A profile through the lesion, in the SI direction, summed over a window

in the AP and LM directions, with median smoothing. This is where

different data was used to fit the MM and the final MM was applied to 30

gate binned data. The data used to fit the MM was as follows. Amplitude

gated data with 30 bins reconstructed using MLACF, AC OSEM, and

NAC OSEM. A MM was also fit using a single bin, which is practically

the equivalent of doing no motion correction. . . . . . . . . . . . . . . . 183
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4.19 A profile through the lesion, in the SI direction, summed over a window

in the AP and LM directions, with median smoothing. This is where

different data was used to fit the MM and the final MM was applied to 30

gate binned data. The methods presented here are a combination of the

best one method from figure 4.15, figure 4.16, and figure 4.18. A MM

was also fit using a single bin, which is practically the equivalent of doing

no motion correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.20 A visual analysis which shows the results of performing the method on

XCAT data with a 12 mm, 10 mm, 8 mm, or 6 mm lesion placed into the

base of the right lung (the left of this image). On the left of each row

is the Ground Truth image (without motion or reconstruction artifacts),

in the centre of each row are the results of applying a motion correction

fit on reconstructed data to noiseless data, and on the right of each row

is the result of applying the motion correction to data which has been

reconstructed. The top row is where a 12 mm lesion was used, the second

row down is where a 10 mm lesion was used, the third row down is where

a 8 mm lesion was used, and the bottom row is where a 6 mm lesion was

used. In this case the input to the motion correction was the 4 Phase

MLACF reconstructions and the motion correction has been applied to

the 30 bin OSEM reconstructed images. Colour map ranges are consistent

for all images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
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4.21 A visual analysis which shows the results of performing the method on

XCAT data with a 8 mm lesion placed into the base of the right lung (the

left of this image). At the top of this image is the Ground Truth image

(without motion or reconstruction artifacts), second from the top of this

image is where no motion correction has been applied to noiseless data,

third from the top of this image is the results of applying a motion cor-

rection fit on reconstructed data to noiseless data, fourth from the top of

this image is the result of reconstructing an image without motion which

has been reconstructed, fifth from the top of this image is the result of

reconstructing an image with motion which has been reconstructed, and

at the bottom of this image is the result of applying the motion correction

to data which has been reconstructed. In this case the input to the mo-

tion correction was the 4 Phase MLACF reconstructions and the motion

correction has been applied to the 30 bin OSEM reconstructed images.

Colour map ranges are consistent for all images. . . . . . . . . . . . . . 199

4.22 A profile through the 12 mm, 10 mm, 8 mm, or 6 mm lesion, in the SI

direction, summed over a window in the AP and LM directions, with

median smoothing. The blue line shows the profile from the Ground Truth

image with a 12 mm, 10 mm, 8 mm, or 6 mm lesion and the dashed orange

line shows the result of applying a motion correction on reconstructed

data with a 12 mm, 10 mm, 8 mm, or 6 mm lesion. The top left of this

image is where a 12 mm lesion was used, the top right of this image is

where a 10 mm lesion was used, the bottom left of this image is where

a 8 mm lesion was used, and the bottom right of this image is where a

6 mm lesion was used. In this case the input to the motion correction was

the 4 Phase MLACF reconstruction and the motion correction has been

applied to the 30 bin noiseless images. . . . . . . . . . . . . . . . . . . 200
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4.23 A profile through the 8 mm lesion, in the SI direction, summed over a

window in the AP and LM directions, with median smoothing. The blue

line shows the profile from the Ground Truth image with a 8 mm lesion,

the dashed orange line shows the result of not applying motion correction,

and the dashed green line shows the result of applying a motion correction

on reconstructed data with a 8 mm lesion. In this case the input to the

motion correction was the 4 Phase MLACF reconstruction and the motion

correction has been applied to the 30 bin noiseless images. . . . . . . . . 201

5.1 This diagram shows the potential workflows for the different methods ex-

amined here. The path on the left shows only the signal (or signals) being

extracted without any further processing (until the next steps). The path

in the middle shows the process for extracting a signal using windows.

The path on the right shows how one would extract a signal using a PC

from a point in the data where it could be considered to be static. . . . . 211

5.2 A plot showing the moving window size optimisation for the PCA method.

For different fixed window sizes, the correlation of the extracted signal

to the RPM is shown for the windows sliding over the whole acquisition

(taken for the first acquisition of patient one). Note that 0.5 s time frames

were used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

5.3 A plot showing the moving window size optimisation for the Spectral

Analysis Method (SAM) method. For different fixed window sizes, the

correlation of the extracted signal to the RPM is shown for the windows
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one). Note that 0.5 s time frames were used. . . . . . . . . . . . . . . . . 212
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5.8 A diagram showing the post-processing performed. . . . . . . . . . . . . 226

5.9 Output of each method compared to the RPM for the first usable 120 s

(between 20 s and 140 s) (taken for the first acquisition of patient one).

This is for Conventional PCA, Moving Window PCA, Late Time Interval

PC, Score, Select, and Combine using frequency and NN scoring, and the

Moving Window SAM method. . . . . . . . . . . . . . . . . . . . . . . 228

5.10 Output of each method compared to the RPM for the first usable 120 s
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acquisitions). This is for Conventional PCA, Moving Window PCA, Late
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5.14 RPM signals for the first usable 120 s (between 20 s and 140 s) (for the

seven test acquisitions). Notice that only the first acquisition of patient
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5.15 The result of applying Fast Fourier Transform (FFT) to the RPM signals

for the first usable 120 s (between 0.05 Hz and 0.45 Hz) (for the seven

test acquisitions). Notice that four of the seven have peaks very close to

or outside the lower boundary of the resiratory window. Also notice that

two of the seven have very wide frequency responses, which would be

difficult for the automatic selection of a respiratory frequency window. . 232

5.16 Correlation coefficients to the RPM for the first 120 s in 20 s intervals

(between 20 s and 140 s) (taken as a mean for all data sets). This is for

Conventional PCA, Moving Window PCA, Late Time Interval PC, Score,

Select, and Combine using frequency and NN scoring, and the Moving

Window SAM method. The stair plots are staggered for the different

methods for visual clarity. . . . . . . . . . . . . . . . . . . . . . . . . . 232

5.17 A plot showing a single ‘view’ of the original PET data (top) as well
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B.1 Graphical representation of dropout. On the left of this figure a NN

which is experiencing a large degree of dropout can be seen. Here, nodes

which have been dropped are represented with a cross through it and their

outgoing/incoming connections are remove. On the right of this figure

the same network can be seen without dropout and will all nodes active

and fully connected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

B.2 Graphical representation of a number of activation functions. In the top

left of this figure can be seen the sigmoid function. In the top right of

this figure the tanh activation function can be seen. In the middle left of

this figure the Rectified Linear Unit (ReLU) activation can be seen. In the

bottom right of this figure the Exponential Linear Unit (ELU) activation

can be seen. In the bottom right of this figure the leaky ReLU can be seen. 256
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B.3 Graphical representation of the Scaled Exponential Linear Unit (SELU)

activation function. This figure shows a scaled version of the ELU activa-

tion function showed in figure B.2. The same advantages and disadvant-

ages as with ELU are apparent here. However, as an additional advantage

if the input data to this activation are normalised then the output of the

activation will also be normalised. . . . . . . . . . . . . . . . . . . . . . 257

B.4 Graphical representation of the process of convolution. This figure shows

a 3× 3 convolution kernel operating on a padded image at the bottom

of the figure to create the new image at the top of the figure. For a Con-

volutional Neural Network (CNN) each value in the convolution kernel

is determined using weights and biases, like in a fully connected NN.

However, rather than there being a weight and bias for every element in

the input data there is only one for the kernel. Therefore, the number of

parameters is significantly reduced and if the NN is fully convolutional

then the input size does not have to be fixed. . . . . . . . . . . . . . . . 258

B.5 First column contains, a visual analysis between the ground truth and

denoised results (taken for the last time point, plus SSIM to the ground

truth), and the second column contains, the Ki results (all voxels in a

coronal view) of a Patlak reconstruction of all time points (plus SSIM to

the ground truth), for the ground truth, and data denoised using, Total Vari-

ation (TV), the implementation of Deep Image Prior (DIP) from (Gong

et al. 2019), and our new implementation of DIP, trained sequentially and

combined (taken for the lung Field of View (FOV)). Last row contains,

uncertainty volumes, for the data denoised using our new implementation

of DIP, trained sequentially and combined (taken for the last time point

of the lung FOV). Colour map ranges are consistent for all images in each

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

B.6 Ki results (single voxel) of a Patlak reconstruction of all time points, plus

uncertainty where applicable, for the ground truth, and data denoised

using, TV, the implementation of DIP from (Gong et al. 2019), and our
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Chapter 1

Introduction

1.1 Introduction
An overview of the topics to be covered is given in this chapter, in order to motivate

the work performed. This includes introducing the data used, the potential problems

anticipated to be encountered, reasons why this problem was chosen to be tackled, and

also a small insight into previous work performed in a similar vein (with more detail

given in subsequent chapters). This chapter will then move onto covering the intended

objectives of this work before outlining the further structure of this report.

1.2 Motivation
Positron Emission Tomography (PET)/Computed Tomography (CT) is a hybrid medical

imaging modality. It combines PET (a functional imaging technique used to capture data

related to internal metabolic processes of a subject) with an anatomical imaging modality

called CT. Every year in the United Kingdom (UK) just over 150,000 PET/CT scans

are performed, the majority of these scans are used in the diagnosis and treatment of

cancer (NHS England 2020).

PET operates by quantifying the distribution of a radioactive tracer that is admin-

istered to the patient. This is based on the detection of pairs of γ-photons using rings

of detectors. These opposing γ-photons are created by the annihilation of positrons,

produced by the (decay of the) radioactive tracer, with electrons. The measurement of

these opposing γ-photons gives what is called a Line of Response (LOR) upon which

the annihilation may have taken place. Image reconstruction attempts to find from this
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measurement space the image space which would reflect the distribution of the radio-

active tracer in the patient. This is an inverse problem, meaning that from a number of

measurements the underlying cause or system is found or approximated.

The CT and PET acquisitions of a combined PET/CT scan take place temporally

apart from one another by a few minutes. Any movement during or between the ac-

quisition of CT and PET data will lead to the occurrence of artefacts and blurring, or

the reduction of resolution of the final image. A single bed position PET scan can take

upwards of a few minutes to complete (usually between 90 s and 150 s). Clinical PET

acquisitions are usually made up of multiple bed positions. A single fast CT scan (lasting

approximately between 5 s and 10 s) is usually used to correct for the attenuation of the

signal of the radioactive tracer by the matter of the patient. Inter-acquisition artefacts are

caused by a misalignment of the CT and PET volumes, leading to attenuation being cor-

rected for where it should not and vice versa. The misalignment of the Attenuation Map

(µ-Map) can also introduce bias in the scatter correction. For intra-acquisition blurring,

these artefacts are formed in a similar way to how blurring may appear during a long

exposure photograph. This is where counts from one specific location are spread about

amongst multiple voxels (or pixels in the Two Dimensional (2D) case) in the final image

or volume. These errors lead, for instance, to difficulty in the detection and location of

lesions. Some sources of movement include head motion, cardiac motion, and respiratory

motion from patient breathing.

In clinical practice, it is currently still often the case to forego motion correction.

This is because of the, usually, high computational expense and a lack of confidence

in the motion correction algorithms (and any evaluation techniques used to prove the

effectiveness of motion correction algorithms).

Previous motion correction solutions have mainly focused on binning PET data into

separate volumes (where the intra-gate motion is low). Then co-registering these gated

volumes and summing the result together, this will be discussed further in chapter 2. PET

data is usually binned into a histogram based on a Surrogate Signal (SS), which reflects

the position that the patient was in during that part of the acquisition. However, if a single

CT is used for attenuation correction, the misalignment problem may still exist. It is

unlikely and not guaranteed for the position of this CT to match any one PET bin never
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mind all of them.

One way to resolve the issue of having no spatially matching CT and PET volumes

is to use CINE-CT or Four Dimensional (4D)-CT. These types of CT acquisition are

taken continuously with free breathing of the patient, and thus are more likely to have

matching data for each position in the respiratory cycle. This type of data can be replayed

sequentially like the frames of a video, hence the CINE-CT or cinema and 4D names.

However, this requires a higher dose to the patient. In addition, this CT data would not be

simultaneously acquired with the PET data so registration and misalignment issues will

still be apparent albeit reduced.

More recent research on motion correction has begun to look into methods known

as motion modelling. Here, rather than directly co-registering each individual volume, a

Respiratory Correspondence Model (RCM) is formed by fitting a model that relates a SS

and the data. This means that the RCM, once fit, can be used like a function where values

of a SS (potentially other than the ones used to fit the RCM) can be input and the output

would be a Deformation Vector Field (DVF). These DVFs could then be used to motion

correct the data from which the SS was obtained. An advantage of motion modelling is

that it is less susceptible to noise when compared to co-registering. This is because the

RCM is fit over all of the data simultaneously and as such any outliers in the data have

less of an effect on the overall result. A further advantage would be what was mentioned

earlier, which is that a RCM can be fit on less coarsely gated data and then applied to

more coarsely gated data. This means that potentially more robust data could be used to

fit the model, leading to a more robust model. Motion Models (MMs) offer the option to

tailor the coarseness of the data used to fit the model and apply the model independently,

which direct co-registering does not.

SSs can be derived from a multitude of sources, including from an external device

(which measures the position of the patient) or through a Data Driven (DD) method

(where the value of the SS is derived solely from the data of the acquisition). External

equipment for estimation of the SS are not desirable. This due to the large impact on

clinical workflow, from having to affix the external device to the patient. Furthermore, they

cannot be applied retrospectively. PET data can already be gated using DD techniques

(including retrospectively) without need for external equipment. However, DD methods
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struggle on dynamic acquisitions due to variation caused by tracer kinetics.

This work will specifically focus on correcting for respiratory motion. Some reasons

for this include the following.

• Head motion is mostly comprised of rigid deformations. This means that while the

object may, for instance, translate or rotate, the space between the points contained

within the object do not change. This is in comparison to non-rigid deformations

(where the distance between the points contained within the object can change).

This concept could be simplified by thinking of a solid and a malleable object. The

solid object can be transformed by translating every point of it uniformly but it

cannot be deformed, whereas with the malleable object not only can it be translated

as a whole but the object itself can be deformed. Respiratory motion is a non-

rigid deformation. There is already a large amount of research in the field of rigid

deformation motion correction and to a certain degree it could be considered a

solved problem (Hill et al. 2001).

• When a PET acquisition is taken of the head, usually measures are taken to immob-

ilise the patient. It is not possible to immobilise the respiratory or cardiac motion

of a patient. While it may be true that patients can usually hold their breath during

a short CT acquisition, it is not possible for them to hold their breath during a much

longer PET acquisition. Thus it is more necessary to correct for these types of

inevitable motion.

• Cardiac motion is an autonomous cyclical motion which the patient doesn’t have

conscious control over. Respiratory motion, in contrast, is mostly autonomous.

However, patients can breath at vastly different rates and depths, and can change

these parameters over time or completely cease breathing for a period, sometimes

leading to unpredictable motion patterns. Thus the impact of a method that can

model non-cyclical unpredictable motion would be greater in the case of respiratory

motion.

The problems, mentioned above, delay the use of advanced motion management

strategies in the clinic. However, further improvements to the method are needed for
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small lesions at the boundary between the liver, diaphragm and lung. This is because

motion in this region is significant and without motion correction it is difficult to quantify

or visually assess these lesions. Moreover, a preliminary method to align a single breath

hold CT and respiratory gated PET has been developed (Bousse et al. 2016b), (Bousse

et al. 2016a). However, this method is likely to be too slow for clinical applications and

challenges may arise with larger magnitude or complex motion. This is the case due to

this method still relying on co-registration of each gate, which is sensitive to noise. The

performance, or susceptibility to noise, and ideally computation time, could be improved

by incorporating motion modelling.

1.2.1 Objectives of this Work

The aim of this project is to formulate a method which produces PET/CT images that

are corrected for respiratory motion and automatically aligned between PET and CT data.

This will be achieved through Data Driven Gating (DDG) and motion modelling with

minimal impact on the patient and clinical environment, without increased dose, and

without increasing scanning time. Ideally the work flow of the method is that of one

which is transparent to both the patient and the clinicians, increasing the likelihood of

clinical adoption. Evaluation will be performed on simulated and patient data with a

comparison to current academic and industry methods.

1.3 Overview of this Thesis
The overview of the physics underlying the work is given in Chapter 2, of this thesis.

Firstly through an introduction to the physics of PET before moving onto describing how

the distribution of the radiotracer is quantified by the scanner. After which the different

types of scans which can be performed in this manner and the problem of attenuation

(why and how it is solved) are expanded upon. Finally, the manner in which the quantified

raw data is processed and output is highlighted. This chapter then moves onto discussing

the advantages of combined PET/CT scanners, and the method through which the raw

data from this are taken and processed in order to give an anatomical or functional image

of the patient. Furthermore, the problem of motion is touched upon before introducing

the ways in which it can be corrected for, including registration, respiratory gating, and

finally covering motion modelling.
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Chapter 3 (Whitehead et al. 2019), (Whitehead et al. 2020), (Whitehead et al.

2021) and Chapter 4 (Whitehead et al. 2022c) of this thesis present the development

and evaluation of respiratory motion correction methods for PET/CT imaging. Chapter 3

investigates the feasibility of using motion modelling for motion correction, with a par-

ticular focus on the impact of Time of Flight (TOF) information on the accuracy of DVF

derived from Non-Attenuation Corrected (NAC) data. Simplified simulations are used

to explore the effectiveness of various strategies under controlled conditions. Chapter 4

expands upon this by applying the proposed framework to more realistic Four Dimen-

sional Extended Cardiac Torso (XCAT)-based simulations that incorporate variability in

respiratory motion, noise, and mismatched µ-Maps. This chapter also examines the use of

Maximum Likelihood Activity and Attenuation Correction Factors Estimation (MLACF)

reconstruction and complex gating schemes to address limitations identified in the earlier

feasibility study.

Chapter 5 (Whitehead et al. 2022b), (Whitehead et al. 2024) extends the motion cor-

rection framework developed in the previous chapters to dynamic PET data. Specifically,

it focuses on the development and evaluation of DD methods for extracting respiratory

SSs directly from dynamic acquisitions, which is essential for enabling motion correction

in settings where external hardware or conventional gating is impractical. As with earlier

chapters, the structure includes an introduction to the problem, a detailed description of

the methods, presentation of the results, and their evaluation.

Chapter 6 synthesises the findings from the preceding chapters, offering a critical

reflection on the work presented. It highlights the methodological contributions of the

thesis, discusses current limitations, and outlines key directions for future research aimed

at advancing the clinical translation of the proposed motion correction framework.

Additional work conducted during the writing of this thesis is presented in Ap-

pendix B (Whitehead et al. 2022a) and Appendix F (Whitehead et al. 2023a). These pro-

jects contributed to ongoing collaborations and helped shape the development of related

methodologies in PET image analysis and kinetic modelling, broadening the scope of this

thesis and its applications. One piece of work explores the use of Deep Image Prior (DIP)

denoising as a preprocessing step for improving kinetic modelling in dynamic PET, while

the other investigates pseudo-Bayesian Neural Network (NN)-based approaches for ex-
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tracting a metabolite-corrected Arterial Input Function (AIF) in dynamic [11C]-Peripheral

Benzodiazepine Receptor ([11C]-PBR28) PET studies. Although these projects focus on

different challenges within the broader field of PET imaging, they helped broaden the

methodological foundation that supported the main work of this thesis.
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Chapter 2

Background

2.1 Introduction
This chapter of the thesis contains the background to the thesis and a literature review of

the current state-of-the-art methods, which are to be expanded in later chapters. The first

subsection of this chapter introduces a general background to the PET scanner, the physics

of its operation, its use, and its combination with other medical imaging modalities.

The second section of this chapter highlights inverse problems in general, before the

third section moves on to show how inverse problems are related to the reconstruction of

PET acquisition data into a volume representing changes in metabolic processes inside

the body of the patient.

The fourth section introduces the problem of respiratory motion in PET and how

this can have a significant negative impact on the volumes mentioned in the previous

sections. The fifth section proposes methods to address the aforementioned challenge.

For instance, the concepts of registration, SS extraction, respiratory gating, and motion

modelling (which will be of paramount importance in the following chapters).

The final section brings together the information from the previous sections to high-

light a summary of the challenges present in the field and to motivate the rest of the work

conducted in the thesis.

2.2 PET
The physics of PET is introduced in this section. First a general overview of PET is

given, including what and how it images (in basic terms), and the use of this clinically.
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This general overview is followed by a description of a PET scan, from the compounds

which are administrated (to the patient and detected by the scanner) up to how these

compounds ‘break down’ (decay) in the patient and the interaction of the by-products of

this annihilation with matter. Along the way, common clinical scanning procedures will

be highlighted, as well as issues related to the Field of View (FOV) of the scanner and

how these are approached when larger regions of a patient are to imaged.

Secondly, a subsection of the thesis deals with the physical way in which the PET

scanner detects individual events. Including, discussing the programmatic ways in which

events are determined to be associated. For instance, the timing and energy windows of

the scanner, as well as introducing the concept of TOF and how this can affect the data

acquired. Next, this subsection covers the expected output data format from the scanner,

as well as the effects which determine the maximum resolution of this output.

The final subsection of this section addresses the combined PET/CT scanner. Here,

the physics of CT are briefly discussed. Then, methods of Attenuation Corrected (AC) are

introduced and CT derived µ-Maps are covered. Advantages of AC are supplied before

potential pitfalls are highlighted and competing solutions are listed.

2.2.1 The Physics of PET

PET is an example of a type of modality known as functional imaging. It is functional

because rather than directly capturing images of anatomy (for instance the structure and

density of bones, as in CT) it images the metabolic processes. Phantoms can also be

imaged which have no metabolic process, this is because it is the radiotracer which is

being detected and not the metabolic process itself. This metabolic function is exemplified

by how blood flows through and into parts of the body (perfusion) or how glucose is

transported to and metabolised by certain cells (using Fluorodeoxyglucose (FDG)). This

is useful because, in the case of imaging glucose metabolism, it is possible to quantify

the amount of energy that a tissue is using (how much metabolic energy it is demanding).

Some cancerous tissues make use of far more energy than non-cancerous tissues. For

this reason, PET imaging can be used to diagnose and stage some types of cancers.

Moreover, some cancerous tissues are difficult to observe anatomically. For instance,

they may have a similar density to the surrounding healthy tissue and therefore may not
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be easily detectable on CT. This would be a case where functional imaging could aid

with diagnosis. Functional modalities are also useful to highlight increased or decreased

metabolic demand or blood flow, which relate to the underlying brain activity.

2.2.1.1 Radiotracers

The process through which a PET scan takes place is as follows. Firstly, a patient is

injected with a chemical compound called a radiotracer. This is a biologically active

molecule which has been labelled with a positron emitting radionuclide. The molecule

will have been selected knowing that it has significant uptake in the Region of Interest

(ROI), depending on the target tissue.

Some examples of common radionuclides used in radiotracers include fluorine-18,

gallium-68, and rubidium-82. The rate at which a radionuclide decays is measured in

terms of its half-life. The half-life is defined as the amount of time in which the number

of atoms of a radioactive material reduces by half, on average. Half-lives for various

radioisotopes can range from a few microseconds to billions of years. For the examples

above, these half-lives are approximately 110 min, 66 min, and 66 s respectively (Delbeke

et al. 2006).

An example of the use of some of these radionuclides are as follows.

• Glucose molecules (specifically FDG) can be labelled with fluorine-18 and thus

called Fluorine-18 Fludeoxyglucose ([18F]-FDG). Glucose is used by cells, through

glycolosis, in the carbohydrate metabolisation process to produce Adenosine Tri-

phosphate (ATP), which makes energy available to a cell. When a cell requires

more energy it also requires more glucose and as such uptake of [18F]-FDG is in-

creased in these regions. The concentration of fluorine-18 intra-cellularly increases

in certain areas over time because [18F]-FDG cannot be fully metabolised. Thus the

distribution of fluorine-18 is a good reflection of glucose metabolisation and uptake

over time. [18F]-FDG is by far the most commonly used radiotracer in PET (Weiss

2016), (Delbeke et al. 2006).

• Gallium-68 is often used to label a radiotracer that targets Prostate Specific Mem-

brane Antigen (PSMA), and can be used in the detection of prostate cancer. PSMA

is a protein which is present in prostate cancer cells (Afshar-Oromieh et al. 2013).
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Figure 2.1: Graphical example of β+-decay. Here in the top left of the figure a nucleus can be
seen which is unstable as it has an imbalance of protons and neutrons. A positron can
be seen exiting the nucleus as a by-product of β+-decay converting a proton into a
neutron. In the bottom right of the figure a closer example of this can be seen. Here
it directly shows a specific proton and the neutron, positron, and neutrino which are
produced by β+-decay.

• Rubidium-82 can be used to image the heart in a scan targeting myocardial perfu-

sion (Selwyn et al. 1982).

2.2.1.2 Decay and Annihilation

Radionuclides used in PET undergo a type of decay called β+-decay (Conti and Eriksson

2016). This is due to an instability of the radionuclide, because of an imbalance in the

number of neutrons to protons in the nucleus. As a consequence, a proton in the atoms

nucleus is converted into a neutron, subsequently releasing a positron and a neutrino. This

can be seen in figure 2.1. The emitted positron travels with some decreasing velocity,

because of sequential collisions, through the body of the patient, for a distance called

its positron range. When the positron has dissipated part of its kinetic energy, it will

eventually collide with and annihilate its antiparticle the electron. This can be seen in

figure 2.2 (Ishkhanov 2012).

The annihilation of positron and electron causes the emission of two 511.0 keV γ-

photons at an angle of ≈ 180.0° apart from one another (thus travelling in approximately
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Figure 2.2: Graphical example of positron range. Here on the right of the figure an atom can be
seen travelling with some velocity, a positron is emitted from the nucleus of the atom
by β+-decay. The path that this positron takes can be seen in the centre of the figure
represented by a blue line, this path is the positron range. On the left of the figure the
annihilation of the positron with an electron occurs and the γ-photons emitted 180.0°
apart are shown.

opposite directions). However, because the positron-electron pair may not be at rest at

the moment of their annihilation, the two emitted photons can show a certain degree of

non-collinearity, according to the laws of conservation of momentum. This means that

the γ-photons are almost never exactly 180.0° apart (Khalil 2016).

A PET scanner thus does not image directly the emission of the positron, but in fact

more closely images the approximate location of its annihilation.

2.2.1.3 Static and Dynamic Acquisition

There are two main types of PET scan useful for determining separate processes. These

types of scans and uses are as follows.

• The first and most common type of PET scan is a static PET scan (Muzi et al.
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Figure 2.3: Graphical representation of the difference between a total body PET scanner and a
standard PET scanner. On the left of the figure a total body PET scanner can be seen,
where the rings of detectors completely engulf the patient. However, on the right of
the figure a standard PET scanner can be seen where the rings of detectors only cover
a portion of the patient. For the case on the right of the figure, in order to take a scan
over the entire body, either individual acquisitions will be needed and concatenated,
or the bed would have to move while the acquisition was ongoing.

2012). The patient is scanned only when the injected radiotracer has distributed

throughout their body and eventually approximately stabilised.The time elapsed

between injection and acquisition depends on the half-life and metabolisation of

the radiotracer. For [18F]-FDG a delay of about 60 min is used.

• The second type of PET scan is a dynamic scan. The acquisition of data for this

scan begins before the radiotracer is injected into the patient. The injection of the

radiotracer during the acquisition allows for the kinetics of the radiotracer to be

observed and quantified with the use of compartmental modelling (Lammertsma

2017). For example, from dynamic PET myocardial perfusion imaging in-vivo stud-

ies used in conjunction with radiotracer kinetic modelling enables the quantification

of myocardial blood flow, often measured using rubidium-82.

2.2.1.4 PET Field of View

The FOV of the scanner is the area in which γ-photons can be detected. Current clinical

PET scanners, usually, have a cylindrical FOV with a length of between 15.0 cm and

25.0 cm and a diameter of between 50.0 cm and 70.0 cm (Pan et al. 2019).

There are multiple ways to acquire data over more than the axial length of the scanner,
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three of these methods are as follows.

• The most simple and widely used method is to take acquisitions over multiple bed

positions and concatenate them.

• A method available on some standard axial length scanners is to continually move

the bed through the rings of the scanner while acquiring data. This is advantageous

as it is more comfortable for the patient and provides potentially less movement

of the patient. A disadvantage of this though, is that it introduces another source

of motion to the acquisition from moving the bed. This makes standard motion

correction much more difficult.

• Alternatively, total body PET scanners are becoming more viable for research. Total

body PET scanners have an axial FOV which contains most of the patients body

(making multiple acquisitions less necessary) while also increasing the sensitivity

of the scanner, this can be seen in figure 2.3 (Cherry et al. 2018). However, the

increased price and size constitute a limitation.

2.2.1.5 Attenuation

Attenuation is the process or effect through which counts are ‘lost’ (from annihilation to

detection by the scanner), some become scatter events, while the photons are traversing

through the body of the patient. Attenuation can amount to a loss of up to 95.0 % of the

total initial signal and can cause increased issues in larger bariatric patients (Bailey et al.

2006), (Mettler and Guiberteau 2012).

There are three main ways through which the photon signal can be ‘lost’ (Khalil

2016), these are in ascending order of magnitude as follows.

• Rayleigh scattering is the elastic scattering of photons, without loss of significant

energy, by particles which are much smaller than the wavelength of the photon.

A common example of Rayleigh scattering is the scattering of sunlight in the at-

mosphere, which causes the blue colour of the sky during the day and the red

colour of the sky at sunset. Because the wavelength of γ-photons are comparably

small, compared to most particles, the probability of Rayleigh scattering occurring

is negligible and thus it is normally ignored in PET.

69



2.2. PET

Figure 2.4: Graphical representation of a γ-photon scattering off of a particle. The γ-photon can
be seen entering the figure on the left hand side, before scattering off of a particle
in the centre of the figure by an angle θ and exiting the figure on the top right hand
corner. The electron exits the scatter event with some velocity represented by the
arrow towards the bottom right.

• Absorption through the photoelectric effect is the process through which a high

energy γ-photon hits and transfers its energy to a material, causing the emission

of a lower energy electron. The likelihood of the photoelectric effect is inversely

proportional to the cube of the photon energy. It also increases as the atomic

number of the attenuating material increases. In the matter of the patient, the

photoelectric effect is most prevalent at photon energies below 100.0 keV and as

such the probability of the photoelectric effect occurring for the PET γ-photons is

minimal (Bailey et al. 2006). Attenuation through the photoelectric effect occurs

mostly in the detectors of the scanner (it’s the principle underlying the function of

scintillator crystals).

• Compton scattering comprises the majority of interactions between the photon and

matter in PET. It occurs where the photon interacts with an electron in a close by

atom. The recoiling electron causes the photon to be deflected along another path,

transferring energy from photon to electron, this can be seen in figure 2.4. Compton

scattering is also known as incoherent scattering. The probability of Compton
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Figure 2.5: Graphical representation of the different types of coincidences possible in PET. On
the left of the figure a true coincidence can be seen, this is where the γ-photons from
one annihilation are both detected without scattering. In the middle of the figure a
scattered coincidence can be seen, this is where the γ-photons from one annihilation
are both detected, however in this case one of them has scattered. On the right of
the figure a random coincidence can be seen, this is where the γ-photons from two
unrelated annihilations are detected.

scattering is indirectly proportional to the energy of the photon (Bailey et al. 2006).

The relationship between the attenuation of the signal and the material through which

it is travelling is given by the Beer-Lambert law. Given I0 incident photons travelling

across a path D, the number of non-scattered photons ID is given by

ID = I0 · exp

(∫
D
−µE(r)dr

)
(2.1)

where in equation 2.1 µE(r) is the attenuation coefficient of the media crossed by photons

of energy E.

2.2.2 Data acquisition

As discussed in section 2.2.1.4, the structure of a PET scanner is that of concentric rings of

detectors offset along a central axis. These rings detect each incident photon and attempt

to temporally and spatially link opposing photons along a LOR through the scanner. A

LOR being a line through the FOV of the scanner linking two detectors. The methods

through which the scanner attempts to link related photons together will be discussed in

the following section 2.2.2.1.

Because of the photons interaction in matter shown in section 2.2.1.5, there are four

different types of event or coincidences that can be detected by the scanner. These are as

follows.
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• Firstly, the coincidences that originate from the same annihilation event and pass

through the body of the patient to the detector without being scattered or attenuated.

These coincidences are called true coincidences as they approximately accurately

reflect the position of the originating annihilation and thus the underlying activity

distribution.

• Secondly, there are coincidences which may have originated from the same anni-

hilation event, but from which one or more of the incident photons has undergone

Compton scattering before detection. These coincidences are called scattered co-

incidences. Scattered coincidences can attempt to be corrected for if an accurate

µ-Map is given. The density of the matter through which the photons must have

travelled indicate the likelihood of scattering.

• Thirdly, there are coincidences where the LOR is determined from two photons

from two distinct annihilation events (thus the LOR does not reflect an actual

annihilation in reality). This could occur because one or more of the photons, from

the original pair of photons, may have been attenuated or scattered, so that it does

not arrive at the detector within a reasonable time of its photon pair or that its LOR

doesn’t go through one of the detectors. These are called random coincidences.

Random coincidences can be corrected for if acquisition data of this background

level of the scan exists.

• Fourthly, there could be a situation where three or more photons are detected within

close temporal proximity to one another. Because of the close time of detection,

in this case it is not possible to determine which photons reflect an actual annihil-

ation and which are random coincidences. These coincidences are called multiple

coincidences. In normal procedures this is rare.

An example of some of the types of coincidences from above can be seen in fig-

ure 2.5.

The total prompts detected during a PET acquisition P can be expressed as

P = T +S+R (2.2)
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where in equation 2.2 T is the number of true coincidences, S is the number of scattered

coincidences and R is the number of random coincidences.

2.2.2.1 Coincidence Processing

In order to form coincidences, the incident photons must be paired together to an annihil-

ation event. First, before forming coincidences, the photons are filtered by selecting ones

which only fall within an energy window of the scanner. For the General Electric (GE)

Discovery 690/710 PET/CT this energy window falls approximately between 425.0 keV

and 600.0 keV (Bettinardi et al. 2011). Additionally, to attempt to determine temporally if

two detected photons belong to the same annihilation event a timing coincidence window

is used. If the events arrive more than the time of the coincidence window apart then

they are determined to be unrelated. A standard coincidence window size would be about

5.0 ns.

2.2.2.2 Time of Flight PET

As stated above in section 2.2.2.1, in order for the coincidence window based method to

determine which specific detected photons represent LORs, the scanner must be able to

asses the difference in arrival time of each photon. It had been hypothesised for some

time (since the 1960s) that given the speed of light and the difference in arrival time

at each detector, for each photon that makes a specific LOR, then it should be possible

to approximately calculate the position upon the LOR at which a given annihilation

occurred (Surti 2015), (Spanoudaki and Levin 2010). This can be seen in figure 2.6.

The reason for the uncertainty of the position along the LOR is because of the

relatively course timing resolution of each given scanner. Generally modern PET/CT

scanners have a timing resolution ranging between 200.0 ps and 600.0 ps. This represents

an approximate spatial uncertainty of between 30.0 mm and 90.0 mm. The uncertainty

within these TOF bins is usually modelled using a Gaussian distribution centred around

the estimated position of annihilation by the scanner, with standard deviation dependent

on the time resolution.

Currently, TOF is a focus for research because of the drastic improvements that it

can have on the Signal to Noise Ratio (SNR) (Lecoq 2017), (Cates and Levin 2018).

An example of some NAC Non-TOF and NAC TOF data can be seen in figure 2.7 and
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Figure 2.6: Graphical representation of the concept of TOF. The top middle of this figure shows
the position where a hypothetical annihilation has occurred (plus the γ-photos from
this annihilation which have then gone on to be detected by the scanner). The bottom
left of this figure shows a traditional Non-Time of Flight (Non-TOF) acquisition,
where the probability of the position of the annihilation along the LOR is constant.
The bottom right of this figure shows a TOF acquisition, where the probability of
the position of the annihilation along the LOR can be approximated with a Gaussian
based upon the difference in arrival time of both photons.

Figure 2.7: Example of some NAC Non-TOF data, with noise, with no motion, randoms or
scatters, of the thorax with a spherical lesion in the lungs. Coronal view.
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Figure 2.8: Example of some NAC TOF data, with noise, with no motion, randoms or scatters, of
the thorax with a spherical lesion in the lungs. Coronal view.

figure 2.8 respectively. Notice the difference in distribution of counts in the centre of the

thorax and lungs. In the Non-TOF case, counts have been disproportionately placed at

the periphery of the patient. However, in the TOF case, counts can be seen more evenly

distributed throughout the patient.

The current (as of 2021) PET/CT scanner with the highest TOF resolution, which is

commercially available, is the Siemens Vision with an approximate Full Width at Half

Maximum (FWHM) of 210.0 ps or 31.5 mm (Van Sluis et al. 2019). The PET/Magnetic

Resonance (MR) scanner with the highest TOF resolution, which is commercially avail-

able, is the GE Signa with an approximate FWHM that is sub 400.0 ps or 60.0 mm (Grant

et al. 2016), (Hsu et al. 2017), (Caribé et al. 2019).

2.2.2.3 Data Output

The output from a PET scanner must be stored in a file format in order to be of any

use. This file format will usually contain information related to the prompts from the

acquisition, discussed above in section 2.2.2. Each prompt stored represents a LOR

connecting the centre of two detectors. Where TOF information is available it is stored

as an extra dimension in this file. This file can then be taken and reconstructed in order

to estimate the original distribution of the radiotracer, this will be discussed later in

section 2.4.

There are two main formats in which this information is stored from the scanner.

• The most common way, that is used in clinical practise (as of 2023), is a format

called a sinogram. During acquisition, if a sinogram output is specified, then the
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Figure 2.9: Example of some simulated sinogram data, with no motion, noise, randoms or scatters,
of the thorax with a spherical lesion in one of the lungs.

Figure 2.10: Example of some simulated viewgram data, with no motion, noise, randoms or
scatters, of the thorax with a spherical lesion in one of the lungs.
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coincidences detected by the scanner are binned into a histogram which represents

their plane orthogonal to the scanner, their orientation angle, their average axial

location, and their distance from the centre of the gantry. TOF can be added as an

additional dimension if it is used. If a single point source were imaged it would

produce a sinusoid when binned into a sinogram, hence the name. An example of

sinogram (where the LOR are in a given transaxial plane) and viewgram (where

the LOR are along a given view, parallel to each other) data, with no noise, can be

seen in figure 2.9 and figure 2.10 respectively. Because data is being binned into

a histogram with this method, information is lost, it could be considered a lossy

compression method.

• A less common method, but one which is becoming more prevalent, is a format

called listmode data. Here each coincidence is recorded sequentially in a file. The

information stored for each coincidence includes its arrival time, the coordinates

of the detector and its detected energy. TOF information can also be stored if it is

used. A listmode file can be directly reconstructed or first unlisted into a sinogram

post acquisition.

2.2.2.4 PET resolution

There are five main effects which impact the resolution of a PET acquisition, these are as

follows.

• Firstly, there is, as has been discussed above in section 2.2.1.2, the effect of positron

range. Because the positron travels a small distance before undergoing annihilation

the PET scanner will always, at best, be measuring the position of the annihilation

rather than the position of the decay and as such not directly measuring the position

of the radiotracer (Levin and Hoffman 1999).

• Secondly, again as discussed above in section 2.2.1.5, acollinearity of the γ-photons

introduces errors which affect the resolution of PET. This is because the positron

will almost always enter the annihilation event with some velocity then the γ-

photons produced will exit with the same additional velocity.This effect is exacer-

bated by the amount of time that the photons are allowed to travel, thus the larger
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the bore of the PET scanner the larger this effect will have on the resolution. The

effect of acollinearity on [18F]-FDG gives an error of approximately 0.54° (Shibuya

et al. 2007)

• Thirdly, the size and number of detectors in each ring and the thickness of each

ring dictates the maximum resolution of the reconstruction before voxels begin to

potentially have zero LORs pass through them.

• Fourthly, the block construction of each detector negatively impacts the resolution.

This is because a number of scintillation crystals is paired with, usually, fewer pho-

todetectors This means if a photon interacts with one crystal it may incorrectly be

attributed to another crystal (Nieman et al. 2015). So called digital PET scanners

are beginning to be seen which use a one to one ratio of photodetectors to scintil-

lation crystal, effectively removing issues related to block construction (Schillaci

and Urbano 2019).

• Finallya scintillation crystal has a stopping power. This power describes the approx-

imate depth at which photons will undergo attenuation by the photoelectric effect.

In some instances, depending upon the position and angle at which the incident

photon hits the scintillation crystal, it is possible for the photon to travel through

the crystal and into an adjacent crystal before being detected. This means that

the photon is incorrectly positioned and will result in blurring of the reconstructed

volume (Nieman et al. 2015).

2.2.3 Combined PET/CT

A CT scanner consists of two devices which sit one on either side of the bore of the scanner.

One device is an X-ray emitter and the other is an X-ray detector. If the X-ray emitter were

to operate in one fixed position the result would be similar to a standard diagnostic X-ray.

The difference here comes from the fact that for CT, during a continuous acquisition,

the device moves around the axis of the scanner taking continuous measurements. This

allows for an X-ray image at every angular position. While the CT is acquiring, the bed of

the scanner travels along the axis of the scanner, this allows for the collection of data over

a Three Dimensional (3D) volume (similar as to what PET collects over). This method
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of acquiring 3D data by taking measurements at a number of angles, or section, around a

subject using a penetrating wave is known as tomography and is a similar concept to the

tomography of PET.

When the X-ray beam intersects with the body of a patient, it is possible for the

beam to be attenuated by the photoelectric effect or scattered, similarly to discussed in

section 2.2.1.5. The intensity of the detected X-ray correlates with the density of the

material between the emitter and the detector. Where the intensity of the beam detected is

less then expected, it can be assumed that there is a higher density object attenuating more

of the beam between it and the emitter. If this information is collected over a 3D volume it

allows, for instance, for the generation of a 3D volume that reflects the attenuation of the

body of the patient. This attenuation is normally expressed in Hounsfield Units (HUs).

The energy of the X-ray used in CT consists of many different wavelengths, hence

it is polychromatic. The wavelength range usually used in a PET/CT acquisition is

between 40.0 keV and 140.0 keV (Alvarez and MacOvski 1976). The wavelength range

is determined by the settings of the scanner, these mainly consist of the peak kV used and

the electric current applied, in mA.

In a standard PET/CT acquisition the CT component comes first before the PET.

In modern PET/CT scanners the CT and PET are inline with the same bed. However,

the first PET/CT acquisitions were taken on different machines entirely and as such the

position of the patient differed more drastically between acquisitions. A standard CT scan

(as part of a combined PET/CT acquisition) over the thoracic region specifically will last

approximately between 2.0 s and 3.0 s (Goerres et al. 2003).

2.2.3.1 Attenuation Correction

As discussed previously in section 2.2.1.5 attenuation represents the loss of coincidences

by photon interactions in matter. Attenuation is an issue in PET as it causes the loss of

signal and a degradation in image quality. The opposite is true for CT where the modality

itself relies on attenuation in order to differentiate anatomical structure. In order to find

reasonable quantitative results the attenuation of the patient must be taken into account

in PET. An example of a µ-Map can be seen in figure 2.11. An example of some NAC

Non-TOF and AC Non-TOF reconstructed data can be seen in figure 2.12 and figure 2.13
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Figure 2.11: Example of a simulated µ-Map, with no motion or noise, of the thorax with a
spherical lesion in the lungs. Coronal view.

Figure 2.12: Example of simulated NAC Non-TOF reconstructed data, with motion, with no noise
randoms or scatters, of the thorax with a spherical lesion in the lungs. Transverse
view.
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Figure 2.13: Example of simulated AC Non-TOF reconstructed data, with motion, with no noise,
randoms or scatters, of the thorax with a spherical lesion in the lungs. Transverse
view.
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respectively. Similarly to as seen previously in figure 2.7, in figure 2.12 without AC the

counts present in the data are placed by reconstruction at the periphery of the patient (the

counts that remain within the patient are still misquantified). However, in figure 2.13,

similarly to as seen previously in figure 2.8, with AC the counts are better distribution

throughout the patient. However, in contrast to in figure 2.8, in figure 2.13 this time rather

than the change being the addition of TOF it is instead the addition of AC.

There are multiple methods to acquire a µ-Map for AC. One method would be to

take a transmission scan of a known point source rotated around the body of the patient

prior to the injection of the radiotracer. This allows for the estimation of the attenuation

for each angle (Bailey 1998). Another method involves the use of the known attenuation

from the CT scan.

In order to apply the CT based µ-Map to AC in PET, first it must undergo either

bilinear or trilinear conversion to asses the Attenuation Correction Factors (ACFs). This

is because of the relative energy difference of the two modalities (Carney et al. 2006). As

discussed above in section 2.2.2.1 and section 2.2.3 PET and CT operate at two different

energy levels, of between 425.0 keV and 600.0 keV and between 40.0 keV and 140.0 keV

respectively (Bettinardi et al. 2011), (Alvarez and MacOvski 1976).

Issues with CT based AC include the following: Firstly, as mentioned above in

section 2.2.3, CT is acquired sequentially to PET rather than simultaneously (like MR

and PET in a combined PET/MR) meaning that there can be mismatches in anatomy

between the scans. Secondly, the propagation of any artefacts from the CT volume into

the PET volume. Regardless of these issues CT is currently considered to be the gold

standard for µ-Map estimation for AC. Transmission scans are now very rarely used for

many reasons, including, because of the necessity of an additional external source, their

significant increase in scan time, and low image quality compared to CT.

Recently a method to jointly estimate both the activity and attenuation distributions

from PET data only has been proposed called Maximum Likelihood Reconstruction of

Activity and Attenuation (MLAA) (Nuyts et al. 2013). This method attempts to recon-

struct both distributions by iteratively estimating one distribution while keeping the other

one fixed. This can be considered as at each step performing either emission or trans-

mission tomography depending on the distribution being optimised for (Fuin et al. 2017),
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(Brusaferri et al. 2020). A disadvantage of this solution is that without TOF information

it is a highly ill-posed problem and even with TOF data the solution can only be found up

to an arbitrary scaling factor. It is also possible for there to be significant cross-talk arte-

facts between the activity and attenuation estimate (Salomon et al. 2011), (Defrise et al.

2012). Additionally, optimising for the attenuation distribution increases the complexity

and computational effort required of a reconstruction algorithm.

A variation of MLAA called MLACF has also been developed. Here, rather than

optimising for the µ-Map instead during the transmission optimisation step the ACFs are

updated (Nuyts et al. 2012), (Rezaei et al. 2012). This offers a significant speed improve-

ment over MLAA, without impacting the quality of reconstructed output. However, if

the ACFs are found rather than the µ-Map, then if a µ-Map is required for subsequent

computation this method is inappropriate. Furthermore, this method still suffers from the

other disadvantages of MLAA.

More details about MLAA and MLACF are given in the image reconstruction section

below in section 2.4.3

2.3 Inverse Problems and Optimisation
This section of the thesis introduces the concept of inverse problems. First, a definition of

an inverse problem is given, including where these may be applicable to the field of PET.

Next, the definition of an inverse problem is expanded upon by highlighting the difficulty

of solving them analytically and how this is usually overcome or addressed. The general

form of an iterative approach to solving an inverse problem is presented.

The second subsection expands upon the approach given previously to solving in-

verse problems. This Includes defining what optimisation is, applications of optimisation

(for instance, PET reconstruction) and listing the requirements of a simple optimisation

problem. Next, this subsection moves onto addressing the components of an optimisation,

including the objective function. The purpose of an objective function in optimisation is

presented before a number of common and robust similarity measures are introduced, the

merits of different functions are discussed and common applications of specific instances

are given. Regularisation is then briefly mentioned before moving onto the optimiser. As

with the previous subsection, here, the purpose of an optimiser is initially introduced be-

83



2.3. Inverse Problems and Optimisation

fore families of optimisation algorithms are compared and variations of these families, as

well as their applications, are addressed. Finally bounds or constraints upon optimisation

are mentioned, as well as providing examples of optimisers which can incorporate such

functionality.

2.3.1 Inverse Problem Concepts

An inverse problem is one where the original conditions of a system are estimated from

its effects. For instance, the data from a PET scanner represents the observations of the

distribution of the radiotracer, reconstruction is an attempt to find the distribution from

these observations.

However, direct inversion is often not feasible due to the complexity, noise, or ill-

posed nature of the problem. As a result, solutions are typically obtained through iterative

optimisation methods that gradually approximate the best-fit reconstruction. In order

to attempt to find the solution to an inverse problem there are two things which are

required. First, the forward operator, second, ideally, a model of the noise present in the

system (Brusaferri 2020), (Emond 2020).

2.3.2 Optimisation Concepts

Optimisation means to find values that best parametrise a given function based on some

criteria or objective. For instance, in image reconstruction an optimisation could be to

find the image that when the forward operator is applied to it, the result best matches

the measured data. Another example of an optimisation would be to find the motion

parameters that when applied to a given image most closely deform that image to match

another image. Optimisation is also used in fields such as deep learning to train NNs,

here the optimisation is used to find parameters for a model that maps one set of values

to another.

In order to perform a basic optimisation four components are required. Firstly, an

objective function (which returns the goodness of the current estimate) and a method

to update the estimate based on this function are paramount. Additionally, an initial

estimate (the closer this is to the ideal estimate then the less computation time is required

overall) and a method to determine when optimisation should cease (for instance when

the current objective function value or the number of iterations exceeds a threshold) are
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also necessary. These will be discussed in the following sections in section 2.3.2.1 and

section 2.3.2.2 respectively.

2.3.2.1 Objective Function

Optimisation of some values requires a function that represents, for instance, the similarity

of two measures or the likelihood of a measure. This function is necessary as its output

reflects the accuracy of the current estimate. The gradient of the objective function

describes the direction in which the optimiser should update the estimate. The optimiser

attempts to find a solution by either maximising or minimising the result of applying the

objective function and updating the estimate iteratively.

An example of an objective function would be Mean Absolute Error (MAE). For

a vector of some values, MAE subtracts the estimated value from the true value, finds

the absolute value of this and takes the means of all values in the vector. The absolute

value is taken because the error should be the distance to the true value regardless of if

the estimated value is greater or less than the true value. If the estimated values approach

the true values then the value of the MAE will approach zero. MAE suffers from the

disadvantage that its gradient is undefined at zero, hence it is not differentiable at all points,

which is a problem for some optimisation strategies. If Mean Squared Error (MSE) is

used then the square of the error is taken rather than the absolute value, taking the square

causes the error to increase quadratically as it becomes larger. This can be advantageous

as it penalises large errors more than smaller ones, which can lead to a better result in

some circumstances. Additionally, the square is differentiable at all points.

More complex objective functions include Root Mean Square Error (RMSE). Here,

the square root of MSE is taken, which scales the value of the error back to the units of the

original estimate. Median Absolute Difference (MAD) is similar to MAE, however, rather

than taking the mean of all error values the median is taken instead. This would give an

objective function which is less sensitive to noise or more robust as outliers are diminished

or ignored by the median. An objective function which differs more significantly would

be correlation coefficient. Here, the correlation of the values in the estimate are compared

to the measured data, thus if correlation coefficient was used in an optimisation then it

is not guaranteed that the estimate will have the same scale as the measured data (but its
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shape should be similar). Correlation coefficient can be used on very noisy data as it is

less sensitive to this noise. MAE, MSE, RMSE, and correlation coefficient are usually

used in regression-like problems where a line is fit though a data set. However, correlation

coefficient is more often used as an accuracy measure rather than an objective function.

Normalised Mutual Information (NMI) is an example of another type of objective

function. NMI is the normalised version of Mutual Information (MI). This is a clustering

objective function. Here, values in both the estimate as well as the target are binned into a

given number of bins and the clusters and locations of clusters are compared between the

estimate and the target. This objective function is useful when the estimate and target are

not necessarily in the same scale or units. For instance, this objective function is useful

when performing registration of two different imaging modalities. This is because their

units are different but it could be expected that they would represent similar underling

structure. This will be expanded upon in section 2.6.1.

Another example of an objective function would be likelihood. This function for

any given sample of data computes the goodness of fit to a statistical model. Strictly

speaking, the likelihood is related to the inverse of the goodness of fit. The likelihood

function describes a planes whose peak, if there is one distinct peak, represents the

combination of model parameter values that maximise the probability of drawing the

sample obtained (Myung 2003). Poisson log likelihood is often used as the objective

function in PET reconstruction, this can be seen in section 2.4.

As an additional term to the objective function a regularisation term is often added,

summed to the objective function value (after being scaled by an ε). Regularisation terms

are used in order to decrease the optimisers sensitivity to noise. Inverse problems are often

ill posed, this means they are not well posed. A well posed problem is one for which the

following properties hold. Firstly, the problem has a solution. Secondly, the solution is

unique. Finally, the solution’s behaviour changes continuously with the initial conditions.

An ill posed problem breaks at least one of these properties and as such often the problem

is highly sensitive to changes in its conditions. An example of a regularisation term is

Relative Difference Prior (RDP) used by GE in Q.Clear (Ross 2014). Another example is

bending or linear energy which are used in registration to penalise against rapid changes

in the DVF (Modersitzki 2009). L1 and L2 are common regularisation methods which can
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Figure 2.14: Graphical representation of a 2D solution space and an optimiser stepping through
this space. In the bottom left of this figure the initial estimate for some optimisation
can be seen at x0, the subsequent iterations 1 through 4 can then be seen taking this
estimate closer to the centre of the contour plot. Here the contour plot could either
be showing a maximisation or a minimisation depending on how it is visualised.

be used in almost any optimisation problem. Here, the L1 is the mean absolute value and

L2 is the mean squared value of the model parameters. These methods try to encourage

small model parameters. Large model parameters are often associated with over-fitting.

2.3.2.2 Optimiser

An optimiser takes an estimate of the solution and an objective function and returns

an update of the estimate based on the current objective function value, as seen in sec-
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tion 2.3.2.1. The direction in which the optimiser updates the estimate is based on the

gradient of the objective function. The gradient can be determined through three meth-

ods. Firstly, if the estimate is permuted slightly the gradient can be approximated, this

method is extremely slow due to having to calculate the objective function multiple times

(this is the finite differences method). Secondly, a hand crafted gradient function can be

provided for each objective function. This method is almost always the fastest to execute

but takes the most work to implement. Finally, an automatic differentiation algorithm

can be used. Automatic differentiation, as the name suggests, automatically differentiates

the objective function to find the gradient function. Automatic differentiation has a slight

overhead when compared to a hand crafted gradient function. However, the time saved

in implementation is often worth the overhead. NNs are often trained with the help of

robust auto differentiation packages, otherwise every time a model was changed at all a

new hand crafted gradient function would be needed.

The method by which the optimiser updates the estimate is what differentiates op-

timisation algorithms. Gradient descent is a commonly used family of optimisation al-

gorithms. Gradient descent itself takes the gradient of the objective function at the current

estimate and takes steps, of a given size, in the direction calculated from the gradient. The

step size of gradient descent can be set to a fixed value or found using a line search which

optimises the step size. Momentum can be used as an improvement of gradient descent

where the current update direction is a linear combination, with a predefined weighting,

of the current gradient and the previous update direction.

Stochastic Gradient Descent (SGD) is an extension of gradient descent where the

current update is calculated using the gradients of a randomly selected subset of the data,

this is significantly more computationally efficient than gradient descent as it reduces the

number of calculations needed for each update.

Conjugate gradient is another extension of Gradient descent. Here the direction

of subsequent updates are confined so that they are orthogonal to the previous update

direction, this can decrease convergence time (Tustison et al. 2009).

Broyden Fletcher Goldfarb Shanno (BFGS) and Low memory Broyden Fletcher

Goldfarb Shanno (L-BFGS) are second order optimisers in that they take the second

order partial derivatives of the objective function. BFGS and its derivatives determine the
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descent direction by preconditioning the gradient with curvature information. L-BFGS

is differentiated from BFGS in that BFGS stores a dense approximation of the inverse

Hessian, whereas L-BFGS stores a history of a past window of updates. Thus L-BFGS

uses less memory than BFGS and can therefore converge faster (Fletcher 2000).

An optimiser can also be provided with bounds or constraints, a simple bound would

be a box bound where the values of the estimate cannot exceed a threshold. Low memory

Broyden Fletcher Goldfarb Shanno Bounded (L-BFGS-B) is an implementation of L-

BFGS which accepts box bounds. This can be useful, for instance, in PET reconstruction,

where it is not expected that negative values should exist, so they could be constrained.

A different family of optimisers would be exemplified by the Adam optim-

iser (Kingma and Ba 2014). These optimisers are commonly used to train NNs and

are an alternative to SGD. BFGS and its derivatives, which are second order optimisers,

are often too memory intensive to train large NNs. Adam uses estimations of the first

and second moments of the gradient to adapt the learning rate for each parameter of the

model. AdamW is an extension of Adam which incorporates weight decay. Weight decay

has a similar effect to L2 regularisation (Loshchilov and Hutter 2019).

2.4 PET Image Reconstruction

This section of the thesis follows on from the previous section in that it focuses on the

inverse problem of PET reconstructions specifically. First it shows how PET reconstruc-

tion is an inverse problem, by likening aspects of the reconstruction problem to those

presented previously, before elaborating on the two general families of reconstruction

algorithm. Analytical and numerical approaches to PET reconstruction are discussed and

finally a common output scale from this process is highlighted.

The first subsection expands upon the numerical approach (or optimisation) to PET

reconstruction given previously. Initially the advantages and disadvantages of iterative

PET reconstruction in general are introduced. Then common algorithms are described

and their operation, advantages and disadvantages are compared.

The second subsection
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2.4.1 Introduction

PET image reconstruction is an inverse problem, as stated in section 2.3.1. This means that

a PET reconstruction algorithm takes as an argument the effects of the PET acquisition

system and attempts to determine its initial conditions, for instance the distribution of the

radiotracer.

There are two main types of methods through which a PET reconstruction can be

performed. First there are analytical PET reconstruction algorithms, an analytical solution

attempts to calculate the exact solution. Secondly there are numerical solutions, for

instance, iterative PET reconstruction. Numerical approaches to solving inverse problems

in general are discussed in section 2.3.1 and iterative PET reconstruction algorithms are

discussed in section 2.4.2.

The data output from a PET acquisition are usually expressed in Kilo Becquerel per

Millilitre (KBq/mL). However, for pseudo quantitative analysis the values are usually

normalised to Standard Uptake Value (SUV) by dividing the activity by, for instance, the

mass of the patient and the injected activity.

2.4.2 Iterative Image Reconstruction

An iterative method has the advantage that the model which is used can take into account

the noise properties of the data and also the physical properties of the scanner (The noise

associated with PET is often assumed to be Poisson distributed). However, iterative meth-

ods have the disadvantage that they require substantial computational effort to execute

when compared to analytical reconstruction.

Maximum likelihood is often combined with the expectation maximisation algorithm

for the optimisation of the model parameters and in this case is called Maximum Like-

lihood Expectation Maximisation (MLEM) (Dempster et al. 1977), (Shepp and Vardi

1982), (Lange and Carson 1984). When maximising the likelihood the natural logarithm

of the likelihood, also known as the log-likelihood, is taken for computational efficiency.

Here the goal is to reconstruct the emission distribution λ . The image estimate is updated

as follows.

λ
t+1
j =

λ t
j

∑i aici j
∑

i

ci jgi

bt
i

(2.3)
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Figure 2.15: Example of a simulated AC Non-TOF Ordered Subset Expectation Maximisation
(OSEM) reconstruction, with motion and noise, with no randoms or scatters, of the
thorax with a spherical lesion in the lungs. Transverse view.
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where in equation 2.3 t is the iteration number, bt
i = ∑k cikλ t

k is the total activity along

the i-th LOR, ci j is the detector sensitivity, and ai = exp(−∑k likµk) (Brusaferri 2020).

The output from MLEM commonly has a Gaussian blur applied in order to smooth

noise (Llacer et al. 1993). Disadvantages associated with MLEM include, for noisy data

iterating for too long can cause the output to accentuate the noise present in the data.

One way to avoid this is to purposefully cease iterating early before the noise can take

over the image (Johnson 1994). Another solution to this problem is to incorporate a

regularisation term, into the objective function, which penalises rapid local changes in

magnitude. Another issue is that MLEM is exceptionally slow even when compared to

other iterative algorithms.

To combat the slow execution speed of MLEM OSEM was developed. In OSEM

the LOR or detector pairs of the scanner are binned into a number of subsets. This is

in contrast to MLEM where there is logically one subset, MLEM would be applied to

all LOR or detector pairs simultaneously. However, in OSEM the LOR or detector pairs

could be binned into at least two subsets. MLEM is then applied to each subset, in

a specific order, sequentially (Hudson and Larkin 1994). Because the image is updated

after each iteration of MLEM on each subset of OSEM then the execution speed of OSEM

is increased by the number of subsets used. However, if subsets are used then OSEM will

converge to a limit cycle around true convergence (Mettivier et al. 2011). OSEM is to

MLEM as SGD is to gradient descent (except for how the subsets are sampled, ordered

or stochastic). If a reasonable number (commonly between two to 32 or potentially 64,

24 for the GE Discovery 710) of subsets are used it has been found that OSEM will

accelerate MLEM without affecting the accuracy of quantification too drastically (Morey

and Kadrmas 2013). An example of an OSEM reconstructed image can be seen in

figure 2.15.

2.4.3 MLAA and MLACF Methods for Attenuation and Activity Re-

construction in PET

In PET imaging, accurate attenuation correction is essential for both qualitative and

quantitative analysis. Traditionally, this relies on external anatomical imaging, such as

CT or MR, to provide a µ-Map. However, several methods have been proposed to derive
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attenuation information directly from the PET emission data, most notably MLAA and

its variant, MLACF (Nuyts et al. 2013), (Nuyts et al. 2012), (Rezaei et al. 2012).

2.4.3.1 MLAA

MLAA aims to reconstruct both the activity distribution λ and the attenuation map µ

directly from the PET emission data by alternately updating each component (Nuyts et al.

2013).

The algorithm maximises the joint log-likelihood function:

L (y;λ ,µ) = ∑
i
[yi ln ȳi(λ ,µ)− ȳi(λ ,µ)] , (2.4)

where in equation 2.4 yi denotes the measured sinogram data, and ȳi(λ ,µ) represents

the predicted data, computed as a function of both the activity λ and the attenuation µ .

Typically, the predicted data is calculated via:

ȳi(λ ,µ) = ni exp
(
−∑

k
lik µk

)
∑

j
ci jλ j (2.5)

where in equation 2.5 ni is the detector-pair sensitivity, li j is the intersection length

of LOR i with voxel j, µ j is the linear attenuation coefficient map in voxel j, ci j is the

probability that an event in voxel j is detected along LOR i, and λ j is the activity in voxel

j.

In practice, MLAA alternates between:

• Updating λ using fixed µ via an expectation-maximisation step.

• Updating µ by holding λ constant, treating the problem similarly to transmission

tomography.

A key advantage of MLAA is its potential to recover both activity and attenuation

information from emission data alone, which is particularly attractive in PET/MR where

CT-based µ-Maps are unavailable. However, since µ is not explicitly reconstructed,

MLACF is unsuitable in workflows that require µ-Maps for further processing (for in-

stance, in MR-based attenuation correction pipelines or hybrid imaging involving multiple

modalities).
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2.4.3.2 MLACF

MLACF offers an alternative strategy by reconstructing ACFs along each LOR rather than

a full µ-Map. In this formulation, the attenuation component of the system matrix ai j is

treated as a set of parameters to be estimated directly. The benefit of this approach is that

it avoids reconstructing a full image of µ , thereby significantly reducing computational

load while maintaining good image quality (Nuyts et al. 2012), (Rezaei et al. 2012).

The forward model in this case becomes:

ȳi(λ ,a) = ni ai ∑
j

ci j λ j (2.6)

where in equation 2.6 ni is the detector pair i sensitivity, ai is the attenuation correc-

tion factor for LOR i, ci j is the probability that an activity in voxel j is detected along

LOR i, and λ j is the activity in voxel j.

The update equations alternate between estimating the activity λ and the ACFs, typ-

ically using maximum-likelihood estimation steps adapted to this decoupled formulation.

Although this formulation provides significant computational savings, a key limita-

tion is that since µ is not explicitly reconstructed, the method is not suitable when µ-Maps

are needed for other purposes (for instance, PET/MR co-registration or quantitative multi-

modal analysis).

Additionally, although MLACF is less sensitive to cross-talk artefacts, it still inherits

some of the ill-posedness of MLAA in Non-TOF scenarios.

2.4.3.3 Incorporation of TOF

TOF information can be incorporated into both MLAA and MLACF frameworks. TOF

narrows the spatial uncertainty along each LOR, thereby improving identifiability and

reducing cross-talk. This results in more stable and accurate estimation of both activity

and attenuation or ACFs.

2.5 Respiratory Motion in PET
This section of the thesis introduces the problem of respiratory motion in PET/CT. First

it addresses how respiratory motion presents, specifically in reconstructed PET volumes,

and what this can mean for clinical diagnosis. Next the issue of respiratory motion in
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Figure 2.16: Example of a simulated CINE-CT AC Non-TOF OSEM reconstruction, with motion,
with no noise, randoms or scatters, of the thorax with a spherical lesion in the lungs.
Coronal view.

Figure 2.17: Example of a simulated single static µ-Map AC Non-TOF OSEM reconstruction,
with motion, with no noise, randoms or scatters, of the thorax with a spherical lesion
in the lungs. Coronal view.

combined PET/CT is highlighted and the challenges associated with the misalignment of

the data between modalities is addressed. Including how this could negatively impact the

AC reconstructed PET volume (issues introduced by the PET/CT workflow in the clinic

are also presented).

The second subsection expands upon the challenges introduced by respiratory mo-

tion in the combined PET/CT workflow and lists some methods from the clinic and the

literature which have been developed to combat this.

2.5.1 Respiratory Motion Artefacts

A static single bed position acquisition on a conventional PET scanner takes, on aver-

age, approximately 120 s. This means that, because the patient is in respiratory motion

throughout the acquisition, then the result of the scan will contain data from different

respiratory states. During the different respiratory states the position and volume of the

lungs, diaphragm, and any lesion will change. If the data is reconstructed without account-
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ing for this, there will be the presence of blurring artefacts (especially prevalent around

the anatomy that is moving the most, such as the diaphragm). An example of a PET recon-

struction with motion artefacts can be seen in figure 2.16, notice the blurring above the

diaphragm on the right side of the figure. Artefacts originating from the moving anatomy

pose the largest challenge in imaging of the thorax (Beyer et al. 2003), (Sureshbabu and

Mawlawi 2005).

Artifacts caused by respiratory motion lead to clinical issues with cancer staging

and follow-up. This is because the size of the lesion is often overestimated and the

activity underestimated (the activity in the lesion is spread over more voxels). Thus,

respiratory motion has the capacity to cause lesions to potentially be missed due to reduced

detectability (Erdi et al. 2004).

If AC is used then the position of the µ-Map in relation to the PET data also poses

an issue. Where the µ-Map does not match the position of the anatomy then it will

cause either under- or over-correction of the attenuation. This can cause a type of artefact

often referred to as a ‘banana’ artefact due to the shape of the shadow that it causes to

appear above the diaphragm (Bai and Brady 2011). An example of this can be seen in

figure 2.17. Notice the black arc shaped artefact over the diaphragm and on the heart.

The mismatch of the µ-Map and PET data does not just cause this artefact but it can also

change the expectation and thus the quantification of the reconstructed image. To combat

intra-µ-Map motion the patient will often be asked to hold their breath, if they can, as the

CT acquisition can last for only between 2.0 s and 3.0 s (as part of a combined PET/CT

acquisition) (Nyflot et al. 2015). An issue with this is, that often the breath hold CT will

be taken at full inspiration. If this µ-Map is then used to correct for attenuation in data

that is in a respiratory phase other than full inspiration then a lot of this anatomy will have

been moved into the FOV (it is not present in the µ-Map). Furthermore, when a patient is

asked to hold their breath they often inhale deeper than they otherwise would, meaning

that this µ-Map can be in an unrealistic respiratory state that will not be represented in

the PET data taken during free breathing.
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2.5.2 Respiratory Motion Challenges in Combined PET/CT Ima-

ging

To overcome the issues mentioned in section 2.5.1, specifically related to the mismatch

between µ-Map and PET data a number of solutions have been proposed.

• Firstly, a method which acquires PET data over a prolonged acquisition and discards

any data where the patient is in a respiratory position other than the one that corres-

ponds most closely to the breath hold CT µ-Map. For this all data which is not at

full inspiration would be removed (Liu et al. 2010), (Grootjans et al. 2014). The

breath hold CT µ-Map could then be deformed to this data (Nehmeh et al. 2007).

An advantage of this approach is that it would not only correct for the misalignment

of µ-Map and PET data but it could also eradicate most blurring associated with

averaging over respiratory phases. A disadvantage is that, either there would be

substantially more noise in the reconstructed data (if the acquisition was the same

length as a standard one) or the acquisition could take significantly longer (to ac-

quire an equivalent number of counts), as so much data is being removed (Nehmeh

and Erdi 2008). Additionally, dynamic scans would not be possible with this cor-

rection method. This is because the radiotracer kinetics could be shorter than one

respiratory cycle and thus would be lost when those parts of the acquisition are

removed.

• Secondly, a variation of the previous method has been proposed, where the PET

data is separated into individual images representing the separate respiratory phases

and warped to a common respiratory phase (seen in section 2.6.1). The breath hold

CT µ-Map could then be warped to the same common respiratory phase. This

method provides the advantage over the first in that it uses all of the data from the

PET acquisition and provides a more robust reconstruction (Bai and Brady 2009).

A disadvantage is, that the reconstruction of each respiratory phase is likely to

contain more noise than if all of the PET data was reconstructed simultaneously.

This is because the iterative reconstruction algorithm (seen in section 2.4.2) is non-

linear (analytical reconstructions are linear but are not used clinically any more)

and summing reconstructed volumes is not equivalent to summing projection data,
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reconstructing and then summing again. In addition, the higher levels of noise in

the reconstructed data can pose a problem when attempting to deform the µ-Map

to them.

• Finally, a method where the reconstruction and motion parameters can be estimated

simultaneously, directly from the PET data, for one breath hold CT µ-Map has been

recently proposed (Jacobson and Fessler 2003), (Rezaei et al. 2018), (Bousse et al.

2016b). Here, the PET data is split into the respiratory phases, as above. Then the

method iterates between a reconstruction step (seen in section 2.4.2) and a motion

parameter estimation step (seen in section 2.6.1) where the same parameters are

used to deform both the PET data and the µ-Map for each respiratory position. Thus

the µ-Map does not have to correspond to any one respiratory phase as each set of

PET data will be reconstructed at the position of the µ-Map. This method works

especially well when TOF data is available (Bousse et al. 2016a). A disadvantage

of this method is that it takes more computation than the above methods and that it

has not been as extensively evaluated.

2.6 Motion Correction for PET
This section of the thesis discusses motion correction (specifically when applied to PET).

The first subsection introduces the concept of registration. This section initially high-

lights how motion correction can have some similarity to PET reconstruction (in the sense

that they are both optimisation problems), before moving on to discussing the classi-

fication of motion types and how they can be corrected. Types of deformation are then

introduced, including rigid deformation (also affine transformation) and non-rigid deform-

ation. Classic approaches to motion correction are next highlighted. Including parametric

and non-parametric registration and regularisation terms used with these methods.

The second subsection moves on to introduce the concept of respiratory gating, in-

cluding both amplitude and phase gating. The third subsection explains how the SSs,

which are used in respiratory gating, are acquired. Firstly, methods incorporating external

devices to extract SSs are highlighted (including using the Real Time Position Manage-

ment (RPM)) before DD methods are introduced. Principal Component Analysis (PCA)

is explained generally (as a dimensionality reduction technique) and then its application
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Figure 2.18: A graphical representation of the concepts of push and pull interpolation. On the left
of the figure, under section A, push interpolation can be seen. Here, arrows showing
the ‘pushing’ of the value from the source to the target image can be seen. The blue
highlighted pixels in the target image show where holes would be. On the right of
the figure, under section B, pull interpolation can be seen. Here, arrows showing
the location of the coordinates of the pixels from the target image deformed into the
source image space can be seen (Akintonde 2021).

specifically for acquiring SSs directly from PET acquisition data is provided.

The fourth subsection gives examples of how to combine registration and respiratory

gating. This subsection specifically contrasts pair- and group-wise registration, before

the next subsection introduces an extension to these methods by incorporating motion

modelling. Here, both iterative and simultaneously with registration MMs are explained.

Types of MM including simple motion modelling (for instance, a linear regression of

DVFs and SS) as well as more complex motion modelling approaches are highlighted.

Furthermore, different types of RCM and their formation, advantages, and disadvantages

are addressed briefly.

The fifth subsection is related to the actual application of motion correction. For

instance, how and where it is applied. This includes highlighting the benefits of both a

post reconstruction and iterative with reconstruction schema.

The final subsection provides a summary highlight of some recent motion correction

literature in order to, in one place, demonstrait the research landscape that the rest of this

thesis fits into.
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2.6.1 Image Registration

There are different classes of deformation. These include rigid deformations and non-

rigid deformations, which will be discussed in the following sections, in section 2.6.1.1

and section 2.6.1.2 respectively. The images used for registration do not necessarily need

to be from the same modality and as such CT data can be registered to PET data or vice

versa. A common use for registration in medical imaging is to aid in the process of motion

correction.

Registration is an optimisation problem which attempts to deform one image (often

called the floating image) to another image (often called the reference image). The

process through which one image is deformed to another image is by the use of a DVF

transformation (or a transformation parametrised by a DVF) and a re-sampler. The re-

sampler takes the floating image and the DVF (a transformation can be parametrised by a

DVF) and uses interpolation to resample the floating image with regard to the DVF. There

are two types of interpolation which can be used. The first is push interpolation. Here,

the values from the source image are ‘pushed’ into the target image space and then new

values for each regular pixel or voxel are interpolated. However, if no values are ‘pushed’

into the space of a given pixel or voxel then it is undefined what value these spaces should

be. As such, with push interpolation there can be holes in the target image. The second

is pull interpolation. Here, the coordinates of the pixels or voxels in the target image are

transformed to the source image space, new values are interpolated from the source image

and they are ‘pulled’ back into the target image space. This method has the advantage

over push interpolation because it is guaranteed that there are no holes in the target image.

A graphical representation of the above concepts can be seen in figure 2.18.

As discussed in section 2.3.2 an optimisation requires an objective function. In the

case of registration the most common objective functions are MSE (or Sum of Squared

Differences (SSD)) and NMI. MSE is discussed in section 2.3.2.1 but simply assumes that

once the floating image has been deformed to the reference image then the images should

be close to identical. Thus MSE is best used when the only difference between the two

images is from, for instance, motion and not from a change in modality. NMI is less reliant

on the specific intensity values of an image and instead look for relationships between
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Figure 2.19: Graphical representation of a rigid deformation. On the left of this figure a triangle
with vertices A, B and C can be seen. This triangle undergoes a rigid deformation
(a translation down and to the right) to a triangle, on the right of this figure, with
vertices A′, B′ and C′.

intensities. Thus they are more suitable to registering between different modalities than

MSE (Hill et al. 2001), (Oliveira and Tavares 2014).

2.6.1.1 Rigid Deformation

A rigid deformation could be a rotation or a translation of the entire contents of an image

where the same rotation or translation is applied at every point. A rigid deformation is one

where the euclidean distance between every pair of points in the image is consistent before
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Figure 2.20: Graphical representation of an affine transformation. In the centre of this figure a
cyan leaf can be seen which undergoes an affine transformation (a translation down
and to the left, a rotation anticlockwise and a scale down) to a red leaf, on the left
of this figure. The cyan leaf also undergoes an affine transformation (a translation
down and to the right, a rotation clockwise, a scale down and a mirroring) to a blue
leaf, on the right of this figure.
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and after the deformation is applied, this can be seen in figure 2.19. Rigid deformations are

a subset of a type of deformation called an affine transformation. A 3D rigid deformation

has six degrees of freedom, being rotation and translation in every axis, whereas a 3D

affine transformation has 12 degrees of freedom, rotation, translation, scaling and sheering

in every axis. An affine transformation does not guarantee that the euclidean distance

between pairs of points are maintained but it does guarantee that sets of parallel lines

remain parallel after they are transformed. This can be seen in figure 2.20.

Rigid deformations are often seen (or used as part of image registration) in medical

imaging where the anatomy which is being registered is not expected to undergo indi-

vidual internal motion. For instance, rigid deformations are often used in the registration

of patient head motion (Hill et al. 2001). Affine transformations are not often used in

medical imaging as anatomy does not usually deform in ways that affine transformations

can capture but rigid deformations cannot. Although, an affine transformation can be used

as an initial estimate for image registration when subsequently fitting a more complex

non-rigid deformation.

The output from a rigid deformation or affine transformation is usually the values

from the approximately six, or 12, value transformation matrix respectively. As such they

do not take up much computational memory or storage. However, there is no reason that

a rigid deformation or affine transformation could not be parametrised differently, for

instance as a DVF, it is just not necessary. However, a non-rigid deformation could not

be parametrised completely using a transformation matrix.

2.6.1.2 Non-Rigid Deformation

A non-rigid deformation is one where the euclidean distance between pairs of points is

not maintained, this can be seen in figure 2.21. Notice that the euclidean distance between

where the lines of the grids intersect changes between the grid on the left of the figure

and the grid on the right of the figure. Non-rigid deformations (as an motion artifact and

as a class of image registration) are commonly seen in medical imaging in respiratory

motion. This is due to the diaphragm and lungs being displaced and displacing parts of

the anatomy by different amounts.

A non-rigid deformation is often parametrised by a DVF. A DVF could be represen-
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Figure 2.21: Graphical representation of a non-rigid deformation. On the left a grid can be seen,
this grid undergoes a non-rigid deformation to the grid on the right.

ted by deformation vectors for all voxels in a volume. A deformation vector could specify

the position of a voxel in reference to a source position. In the same way that there are

push and pull interpolation re-samplers, a DVF can also be defined in both directions.

However, for reasons of computational efficiency (and usually to regularise the re-

gistration optimisation) a DVF can be parametrised using fewer parameters. One para-

metrisation could be to use control points on a Control Point Grid (CPG). Here, there

are usually fewer control points than pixels or voxels in the original DVF, often these

control points are spaced evenly on a regular grid called the CPG. To get a DVF back

from this CPG, values are interpolated using, for instance, linear or B-spline interpolation

to find the vector to be applied at each voxel (Bardinet et al. 1996), (Rueckert 1999),

(Mattes et al. 2003), (Jacobson and Fessler 2003). There are also registration methods

which forego further parametrisation and instead directly fit the DVF. These registration

methods often use another form of regularisation, for instance a regularisation which pen-

alises rapid local changes in the DVF. An example of such a registration method would

be Daemon registration (also known as non-parametric registration) (Vercauteren et al.

2009). For completeness, it is possible to treat a parametrised registration method as a

non-parametric registration method by setting the number of control points equal to the

number of voxels in the DVF.

Regularisation terms are often employed for non-rigid deformation registration. This
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is because otherwise, with a high enough resolution CPG, it is possible for the optim-

isation to fit the noise present in the data rather than fitting the motion, as discussed in

section 2.3.2. One common form of regularisation is a smoothness penalty, for instance

bending or linear energy. Here, simply, the term is calculated as the integral of the square

of the second derivative of the DVF. This term is multiplied by some value ε (representing

the weighting of this penalty term) and then the scaled term is summed to the current value

of the objective function. This regularisation term attempts to enforce that adjacent con-

trol points should not rapidly change, with regards to one another, as this type of motion is

unlikely physically (Duchon 1977). Or in other words this regularisation term attempts to

encourage a smooth DVF. In the case of non-parametric registration, a Gaussian smooth-

ing of the input data (or DVF) is sometimes used for regularisation (Vercauteren et al.

2009).

A further parametrisation of a DVF would be a velocity field parametrisation. This

can be applied on top of an already parametrised method or a non-parametric method.

Here, the aim is to generate a diffeomorphic DVF, or in other words a DVF free from

folding. Folding would be where the deformation vectors of a DVF cross. Not only is

this non-anatomical but it also prevents the DVF from being inverted. In simple terms,

for a velocity field parametrised DVF it is expected that the DVF will be integrated over

multiple times. The number of times the DVF is integrated over is determined by the

minimum number of integration steps necessary to ensure that none of the deformation

vectors in the DVF cross. If during optimisation two or more of the deformation vectors

cross then the optimisation can revert an iteration and increase the number of integration

steps (Modat et al. 2012).

Another method to help to ensure that is registration is diffeomorphic would be

to treat a registration as a symmetric registration, rather than a asymmetric registration.

A asymmetric registration is as described above, the floating image is registered to the

reference image. However, in a symmetric registration the floating image is registered

to the reference image and the reference image is registered to the floating image. This

helps to ensure that the DVFs generated are invertible (Modat et al. 2014).
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Figure 2.22: Graphical representation of amplitude gating. Here the pseudo sinusoidal signal
represents the SS and the horizontal lines, colour coded differently, represent the
amplitude gates that the data upon the SS would be binned into.

Figure 2.23: Graphical representation of phase gating. Here the pseudo sinusoidal signal repres-
ents the SS and the vertical lines, colour coded differently, represent the phase gates
that the data upon the SS would be binned into.

2.6.2 Respiratory Gating

Methods of respiratory gating were briefly addressed on previously in section 2.5.2. Here,

the process of specifically how respiratory gating works will be addressed. In order to

separate PET acquisition data (so that counts only in a certain window or respiratory

phase are combined into specific gates or bins), a SS which reflects the respiratory state

of the patient over time must be acquired. This SS can either directly reflect the amplitude

of the patient’s breathing, or can be a percentage of the phase through which the patient

is in the respiratory cycle at any one time (Kitamura et al. 2017). These two types of

SSs directly influence the type of gating that will be performed. These two types are as

follows.

• Firstly, amplitude gating takes the maximum and minimum value of the SS and

splits the values between them into a number of gates. This can be seen in fig-

ure 2.22. The gates can be chosen so that they are either equally spaced apart or

so that each gate has a similar number of counts binned into them. The acquisition

data is gated by taking its relevant SS value and summing the acquisition data into
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the bin where its SS value falls between the maximum and minimum threshold of

the bin.

• Secondly, phase gating works exactly the same as amplitude gating but rather than

splitting the data up along the SS it can be conceptualised as splitting the data by

the phase of the respiratory cycle. This can be seen in figure 2.23.

Both types of respiratory gating can be augmented by incorporating additional respir-

atory signals. For instance, amplitude gating can be refined by also sorting events based

on the gradient of the respiratory SS. This effectively bins data separately for inspiration

and expiration portions of the cycle (Low et al. 2005). Similarly, gating schemes that

combine both the phase of the respiratory cycle and the amplitude of the motion have

been proposed in the last decade (Manber et al. 2015), (Manber et al. 2016), (Manber

et al. 2018). In such phase/amplitude gating, the respiratory signal is partitioned, not

only by amplitude, but also by its phase within each cycle. The primary motivation for

these hybrid strategies is to avoid mixing different motion states (expanding lungs during

inhale vs. contracting lungs during exhale) in the same gate. By separating data in this

manner, the breathing hysteresis can be accounted for, rather than blurring the two direc-

tions together. A practical limitation of any 2D (or higher dimensionality) gating is that

it increases the number of gates, which reduces the counts per gate and can lead to high

noise in each gated image (Lamare et al. 2022).

2.6.3 Respiratory Signal Detection

As mentioned in section 2.6.2, it is necessary to acquire a signal which represents the

position in the respiratory cycle that the patient is in, over the acquisition. This is the case

not only for respiratory gating but also for motion modelling (as will be discussed in sec-

tion 2.6.5). There are two types of methods through which a SSs can be obtained. These

are from external mechanical or electrical devices (which directly physically measure the

patient) or through DD algorithms (which attempt to extract the SS from the data of the

acquisition itself).
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Figure 2.24: Photograph of the RPM. On the bottom of this figure is the infrared camera and
infrared Light Emitting Diodes (LEDs) used to locate and track an infrared reflecting
marker. On the top of this figure is the infrared reflecting marker which is placed
onto the chest or stomach of the patient in order to track the respiratory amplitude
of the patient. Four reflective points are used to track the marker in 3D.
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Figure 2.25: Example of a point cloud acquired on a Microsoft Kinect camera.

2.6.3.1 External Devices

There are numerous external device methods used to track the patient and acquire a SS.

Four example devices are as follows.

• Firstly, the oldest method of SS tracking (presented here) is the use of a spiro-

meter (Voscopoulos et al. 2013). A spirometer is a device with a tube which is

inserted into the mouth of the patient, through which they breath. The spirometer

measures the volume of air and the velocity with which the patient inhales or ex-

hales (Guivarc’h et al. 2004). Some disadvantages of this method include because

spirometers are not designed for highly accurate measurement, over time, they are
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susceptible to value drift. This is where the mean position of the respiratory cycle

is not consistent between cycles (Hoisak et al. 2004).

• Secondly, a methods borrowed from radiotherapy for SS tracking, is through the

use of the Varian RPM (Bettinardi et al. 2013). The RPM was designed to be used

in radiotherapy to turn on and off the beam of a linear accelerator (when the beam

is estimated to target and not target the appropriate part of the patient). This would

work by using the infrared camera of the RPM to track a reflective marker placed

on the stomach or chest of the patient (tracking the displacement of the chest wall

over time). This can be seen in figure 2.24. The Anzai AZ-733V system attempts to

acquire the displacement of the abdomen, similarly to the RPM, but uses a pressure

belt wrapped around the patient (Yu et al. 2016). In radiotherapy, as the patient

moves, the target of the linear accelerator also moves so the beam is only turned on

when the target is within a set range. In PET the RPM has been modified to output

a clock tick to the computer acquiring the PET data. This computer will record

timing information into the PET data in order to align the RPM SS post acquisition.

This method has the advantage over the spirometer in that it is significantly less

susceptible to drift. However, the use of the RPM increases scan time (and often

has problems with failing) and as such experiences resistance from radiographers.

• Finally, depth sensing, optical, or laser based cameras, such as the Microsoft Kin-

ect (Silverstein and Snyder 2018), (Xia and Siochi 2012). These depth sensing

cameras (using the TOF of lasers, for instance, to determine depth) can be used to

acquire a point cloud of the patient at each time point. An example of a point cloud

acquired on a Microsoft Kinect camera can be seen in figure 2.25. A point cloud

is a collection of coordinates measured as points on the surface of the object being

scanned at some displacement. A SS can be acquired by finding the difference in

these point clouds over time (Miranda et al. 2017). Advantages of this solution

include that it doesn’t make use of a reflective marker placed on the patient, like the

RPM, and as such shouldn’t increase scan time. Additionally, an optical or laser

based camera can track motion over a larger FOV than the RPM. For instance, an

optical or laser based camera could conceivably simultaneously track both respirat-
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Figure 2.26: Graphical representation of PCA applied to 2D data (blue circles). PCA finds the 2
eigenvectors indicated in green

ory and head motion, producing directly a DVF or a separate SSs. A disadvantage

is that it is much more difficult to spatially and temporally align the acquisition

of both a PET scanner and a stand alone optical or laser based camera without

direct manufacturer support. Furthermore, these methods requiring a constant line

of sight (Noonan et al. 2012), (Noonan et al. 2015), (Whitehead 2018).

Further limitations of the methods presented above include, most external device

methods can only track the surface deformations of the patient, as opposed to the internal

ones and such methods require the use of additional equipment, a change to clinical

practise, and must be acquired alongside any other data, not retrospectively.

2.6.3.2 Data Driven

There are numerous DD methods used to extract a SS directly from static PET data (Kes-

ner et al. 2014). Some methods require that the PET data be reconstructed first and then

markers, possibly inserted into the patient, are tracked over time. Methods requiring

111



2.6. Motion Correction for PET

Figure 2.27: Graphical representation of the frequency spectrum for signals correspond to three
Principal Components (PCs), together with a frequency window between 0.1 Hz and
0.4 Hz. In this example, the first signal has the highest peak within this window.

reconstruction are mostly inferior to methods which work on PET acquisition data. This

is because requiring that reconstruction be performed takes significant time and the SS,

itself, is usually required for most motion correction methods so the initial reconstruc-

tions will be poor. DD methods include, but are not limited to, those which attempt to

spatially track aspects of the acquisition data, be that reconstructed or not, or ones which

use methods such as dimensionality reduction (Lamare et al. 2022).

Some DD solutions make use of aspects of the image acquisition itself, by recon-

structing short time frame images and tracking aspects of them over time. Such as, an

external or inserted radioactive fiducial marker (Büther et al. 2013), (Zimmermann et al.

2003), a tumour (Bundschuh et al. 2007), or a combination of patterns from different

voxels (Kesner et al. 2009). Some methods make use of MR information (tracking the

position of the diaphragm using a pencil shaped navigator) (Taylor et al. 1997), (Fürst

et al. 2015). A disadvantage of image space based methods is computation time and

potential poor quality due to low count statistics. Obviously methods which require the

insertion of objects into a patient have the unnecessary side effect of causing harm to the
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patient. Furthermore, to make use of MR information requires a combined PET/MR.

Alternatively, aspects of the data in sinogram space can be individually tracked

directly from the list mode data, such as the Centroid of Distribution (COD) or Centre

of Mass (COM) (Klein et al. 2001), (Bruyant et al. 2002), (Ren et al. 2017), (Feng

et al. 2018). A potential disadvantage, is that these methods require structures with high

contrast in sinogram space. A final class of methods uses short time frame sinograms

(often at low spatial resolution) and detects motion patterns in the whole sinogram. Such

methods rely on the fact that, in static PET, the main cause of (non-stochastic) change in

the data is motion. The main sinogram-based methods are the Spectral Analysis Method

(SAM) method (Schleyer et al. 2009), (Schleyer et al. 2011), (Schleyer et al. 2018), the

Sinogram Region Fluctuation (SRF) method (Kesner and Kuntner 2010) and a method

based on PCA (Thielemans et al. 2011), (Bertolli 2018), briefly described below.

• SAM identifies regions in sinograms which are likely to be experiencing respiratory

motion. This is achieved by analysing the frequency spectrum of the result of

applying a Fast Fourier Transform (FFT) to each bin in the sinogram. A bin which

is experiencing respiratory motion will have a peak in the frequency spectrum at the

frequency of the respiratory motion. Through this, areas in the sinogram which are

experiencing respiratory motion are determined and the total number of counts in

these regions, over time, is used to estimate a SS (Schleyer et al. 2009), (Schleyer

et al. 2011), (Schleyer et al. 2018).

• SRF proposes to recursively combine signals from sinogram bin Time Activity

Curves (TACs). This is performed using a score based on the ratio between res-

piratory and non-respiratory content (with a positive and negative sign) in order to

maximise its Standard Deviation (STD) (Kesner and Kuntner 2010). However, a

disadvantage of the use of STD, as the objective, would be that there are many ways

to increase STD, which are not acquiring a better respiratory trace. For instance,

noise may increase the STD of a signal.

• PCA works similarly to Singular Value Decomposition (SVD), in fact most imple-

mentations of PCA use SVD. The goal of this method is to find linear transforms

of the data, such that it is projected to a space along which its axis point in the
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direction of greatest variance (and then second greatest variance and so on) (Pear-

son 1901). PCA produces, for the data, a series of eigenvectors and weights. Here,

the eigenvectors (called PCs) are the orthogonal vectors of descending variance

through the data (usually normalised) and the weights are the magnitude of the

contribution of the components to the data. Thus, the first eigenvector from PCA

will represent the vector of greatest variance through the data. For SS extraction

PCA is applied across a time series of sinograms. The weighting of each PC for

each time point would be the signal. Generally multiple PCs are extracted, and

the one which contains the most respiratory information (determined using FFT)

is selected, as will be discussed further below (Thielemans et al. 2011), (Bertolli

2018).

Focussing on PCA, when applied specifically to PET acquisition data (follow-

ing (Thielemans et al. 2011)) PCA is often used on either sinograms (or unlisted listmode

data). The input sinograms are usually spatially downsampled. This is beneficial for a

number of reasons including that the noise present in the full data would obscure the

motion. Additionally, the large size of the PET sinograms introduce issues when it comes

to storing the number needed in memory (and the computational expense necessary) to

apply PCA. Furthermore, the non-downsampled sinograms contain more than enough

information than is required for PCA to be able to extract the relevant variation. Thus if

all the data was used, then time would be wasted processing all of this data. Generally,

additional filtering (or smoothing) can be applied and in most cases will, in fact, improve

results, see section 5.3. Usually when used to extract respiratory variation the sampling

rate of the PET sinograms is chosen as 0.5 s. This sampling rate is chosen so as to attempt

to mitigate cardiac motion (by averaging most of it in each frame) while still allowing for

respiratory motion between frames (Bertolli 2018).

The PC which contains the variation present in the data caused by respiratory motion

must be identified, as discussed briefly above. One method to do this is to compute a

‘score’ for every PC and select the one with the highest score. Here, we will describe the

original method developed in (Thielemans et al. 2011), but also see additional methods

described in Chapter 5.

First, the frequency spectrum of the weight of each PC is computed. Then a fre-
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quency window is determined, this is usually between 0.1 Hz and 0.4 Hz (so as to coincide

with the approximate frequency of respiration). The max value (or peak) in the frequency

spectrum is then found for each PC in this window. The PC which has the greatest peak in

the window is determined to be the one best representing variance caused by respiratory

motion. This can be seen in figure 2.27 (Thielemans et al. 2011).

To-date, evaluations of these methods have been almost exclusively performed on

static PET data, mostly using [18F]-FDG. They include comparisons with external devices

(such as the RPM), MR navigator based SSs (Manber et al. 2015), as well as image

quality (Büther et al. 2020), (Walker et al. 2019). Preliminary investigations indicated that

many sinogram-based methods all perform similarly. Specifically Data Driven Principal

Component Analysis Surrogate Signal Extraction (DD-PCA) showed a correlation of 0.89

(over nine patients) when compared to the MR navigator based SSs (Thielemans et al.

2013), (Manber et al. 2015), (Walker et al. 2018), (Walker et al. 2019), (Büther et al.

2020), (Sigfridsson et al. 2021).

An advantage of DD SS extraction methods over an external device based SS tracking

method is that they allow for retrospective extraction of the SS. DD methods can be

applied automatically without the intervention of a clinician, nor radiographer. Thus not

affecting acquisition time or inserting additional complex steps into clinical practise. DD

methods are also more comfortable for the patient as there is no need to be either strapped

into or otherwise have to interact with an additional device. Additionally, DD-PCA does

not require any other modality, like the MR navigator does. This is all the while, as

discussed above, providing accurate results when compared to the external devices. As

such, DD methods are universally appropriate wherever PET acquisition data is available.

However, an issue with DD-PCA, and most DD methods, when applied to dynamic

PET is that it is sensitive to dynamic radiotracer kinetics from dynamic PET scans, this is

similar to as discussed in section 2.2.1.3. This means that wherever radiotracer kinetics

are apparent in the data, they can mask the respiratory SS derived via DD-PCA. This will

be investigated further in chapter 5.
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Figure 2.28: Graphical representation of the difference in methodology of pair- and group-wise
registration. At the top of this figure pair-wise registration is shown. Here, the
floating image is directly registered to the reference image. This process will be
repeated independently for the number of images which are to be registered. At the
bottom of this figure group-wise registration is shown. Here, a common reference
to all floating images is chosen (for instance a weighted sum of the target images).
This ensures the reference image is located closer on average to all floating images
than if a single floating image was chosen. Pair-wise registration is complete after
one iteration of registration. Group-wise registration would involve updating the
common reference and iteratively registering again for a set number of iterations (as
seen in figure 2.29).
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Figure 2.29: Graphical representation of one method of implementing group-wise registration.
The sub-images one through four show the initial setup used for this implementation
and the sub-images five through 10 show the subsequent iterations of the group-wise
algorithm. Sub-image one shows an initial pair-wise registration of one image to
the rest of the images in the series. Sub-image two shows how to find the mean
position of all images by taking the mean of the deformations from the previous step.
Sub-image three shows the inverse of the deformation from sub-image two. Sub-
image four shows the deformations from sub-image one being composed with the
deformation from sub-image three, thus there is now a deformation from each image
to the mean position. Sub-image five shows the resultant deformations from the
composition in sub-image four. Sub-image six shows the target images resampled
using the deformations from sub-image five to form a reference image at the mean
position. Sub-images seven through 10 show incremental improvements to the
reference image from subsequent iterations of registration and resampling.
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2.6.4 Applying Image Registration

While there are multiple ways to motion correct a series of respiratory gated PET volumes

using registration the two most common approaches are reported below:

• First, pair-wise registration. Here, one of the gates is selected and all other gates are

registered to it. Usually the gate with the highest number of counts is selected, due

to it having the highest SNR. Once registration is complete, each gate is resampled

using the corresponding DVF and summed to form the final motion compensated

image. An advantage of this algorithm is that it is relatively simple, usually only

one pass of registration is required and thus it could be considered relatively quick.

However, the accuracy of the motion correction entirely hinges on the quality of

the volume selected as the reference, if it is low quality then it would be difficult

to accurately register the gates. Additionally, the reference gate may be far from a

number of the other gates if the reference is close to max inhalation or exhalation

(compounded with a large amount of the anatomy possibly being outside the FOV

if the reference is close to max inhalation) again hindering the ease of registration.

• Second, group-wise registration. Here, all gates are summed to form a reference

volume. Gates are registered to the reference, resampled and summed once more to

form a new reference volume. This process is repeated a set number of iterations,

with the quality of the reference, ideally, increasing each time. As an additional step

the inverse mean of all DVFs can be composed with each DVF before resampling

the gates to ensure that the reference gate is at the mean respiratory position. Com-

posing the inverse mean DVF offers a significant advantage in the sense that it

ensures that the reference image is ‘centred’ with respect to the floating gates. This

means that the reference image is as ‘close’ as it can be, on average, to all floating

gates. Therefore the deformation, on average, from each gate is as small as it could

possibly be. A graphical representation of group-wise registration can be seen in

figure 2.29. A further advantage of this algorithm is, it has the capacity to provide

better registration results due to the higher SNR of the reference volume. However,

it takes longer to perform due to the multiple full iterations of registration.

A graphical comparison of pair- and group-wise registration can be seen in fig-
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Figure 2.30: Graphical representation of the process of motion modelling. On the left of the
figure the input data of both the image data and the SS can be seen. Then in the
centre of the image the image data is taken and registration is applied to it. Then on
the right of the image a RCM is fit on the DVFs from the registration step and the
input SS. In the top right of the figure a naive example of the 2D regression result
can be seen. In this case the regression appears to be polynomial.

ure 2.28.

2.6.5 Motion Modelling

MMs offer an alternative solution to motion correction when compared to direct co-

registration of respiratory gated PET. MMs, similarly to the RPM discussed in sec-

tion 2.6.3.1, is a technique borrowed from radiotherapy. In radiotherapy the MM would be

used to help predict the respiratory position of the patient in real time. MMs themselves

attempt to relate the DVFs or B-spline parametrised CPGs from, for instance, registration

to the SS acquired for the data used to generate the DVFs. In this case a RCM would

be generated which is fit on the DVFs and SS, this can be seen in figure 2.30. In its

simplest form a post registration MM could be a linear regression of both the DVFs and

the SS (Kim et al. 1997). In the case described previously the DVFs are found first before

fitting the RCM. However, in more recent research a method to simultaneously fit both the

B-spline parametrised CPGs and the RCM has been presented (McClelland et al. 2006),

(McClelland et al. 2013), (McClelland et al. 2014), (McClelland et al. 2017). RCMs are

discussed in more detail in section 2.6.5.1.

In the most common case, there are four components required to fit a MM. The
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data itself which is to be motion corrected, a SS with a value representing the respiratory

position at each data point (the SS can be n-dimensional), a model (such as B-spline) for

the deformations, and the RCM linking the DVFs or B-spline parametrised CPGs and SS.

In some cases the SS can be replaced with other features of the acquisition or data.

An advantage of MMs over direct co-registration is that it allows for prediction

of data not used to fit the RCM. This advantage is particularly useful for radiotherapy.

Here, some data is acquired on the machine used to perform radiotherapy (usually on

the patient on the day of therapy). This allows for a RCM to be fit (pre-therapy) on the

data acquired with a SS from, for instance, the RPM. Then, as a dose is administered to

the patient, from a linear accelerator, SSs values can continue to be acquired and DVFs

calculated using the RCM (fit previously). This is done in order to, in real time, change

the trajectory of the linear accelerator to apply a dose taking the movement into account.

The new SS values need not match any of the SS values used to generate the RCM as

the RCM is a continuous model. This advantage could provide the ability in PET to fit a

RCM while acquisition is still ongoing. This could be used for motion correction during

reconstruction (or indeed for a RCM to be fit on a subset of the data to improve motion

correction speed). An additional advantage this could provide would be that the MM

could be fit on more coarsely gated data and then applied to less coarsely gated data. If

the RCM is One Dimensional (1D) the minimum number of gates required is two. This

is because the 1D RCM would be fitting a line. If the RCM is 2D the minimum number

of gates requires is three. This is because the 2D RCM would be fitting a plane. If the

minimum number of gates is used there may be a higher degree of motion artefacts in the

image but there would also be a lot less noise. Thus there is a potential to tune the number

of gates used for RCM fitting specifically to find the cross over between where motion

artefacts and noise impact the registration more. This MM could then be used to motion

correct any number of gates.

An additional advantage of MMs is that compared to direct co-registration it is more

robust to noise. This is because direct co-registration will register each individual volume

together (regardless of how well that registration fits the underlying motion of the patient).

In comparison, a MM would then be fit on top of (or be applied simultaneously with)

registration using the SS, this could regularise the effect of outlying data points and noise
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in general.

In summary, registration literature contains many examples of spatial regularisers,

however there are few temporal regularisers. MMs can act as such a temporal regulariser,

as well as allowing for the interpolation of unseen motion correction results. MMs

parametrise DVFs in terms of a SS. They could be considered as an addition to a standard

spatially regularised motion correction technique, as they impose a degree of temporal or

gate-wise regularisation. In addition, they also allow obtaining DVFs for time points/gates,

not used to fit the model (as long as a relevant SS exists (McClelland et al. 2013)).

2.6.5.1 Respiratory Correspondence Model

The type of RCM fit depends mostly upon the number and types of SS given to the MM

algorithm and the number of models fit. Some of the different types of RCM can be seen

in figure 2.31.

Three examples of types of RCM are as follows.

• The most simple form of RCM would be to fit a linear model using a single SS

(initially a SS directly representing the amplitude of respiration, over time, could

be given). A disadvantage of this approach would be that inhalation and exhalation

are treated alike when in reality they differ. For instance the gradient of the SS is

not taken into account. This can be seen in figure 2.31, in the bottom right of the

figure where mid-inhalation and mid-exhalation fall on the same point.

• To combat the disadvantage of the previous model a RCM could be fit instead on

the phase of respiration from the initial displacement SS. A disadvantage of this

type of RCM is that it treats every breath as if it is exactly the same regardless of

the max displacement of the breath. This can be seen in figure 2.31, in the bottom

middle of the figure where the two end exhalation and end inhalation points fall on

the same point.

• A final, more complex, RCM is one where a separate model is fit for both the

inhalation and exhalation portion of the data. This would mean that combined

the RCMs can model both inhalation and exhalation separately, meaning that both

inter- and intra-respiratory variation can be maintained. Alternatively, a 2D SS
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Figure 2.31: Graphical representation of the types of RCM. At the top of the figure is a SS which
has been discretised into specific values. On the bottom left of the figure is a linear
RCM, fit on a single SS, showing how the points from the discretised SS would be
mapped to itself. On the bottom middle of the figure is a RCM fit on SS reflecting
the phase of the respiration and on the bottom right of the figure is an RCM where
inhalation and exhalation are modelled separately using two RCM (or a 2D SS).

could be given to one RCM where the additional dimension is the gradient of the

displacement (or using amplitude and phase simultaniously, as discussed in 2.6.3).

This would allow the RCM to fit a plane which can account for the difference in

inhalation and exhalation. However, moving from inhalation to exhalation may

incur a ‘jump’ in the output from the RCM (McClelland et al. 2013). Although the

RCM fit with a 2D SS can forego the ‘jump’ associated with fitting two RCMs, it

does suffer with an additional disadvantage. The additional disadvantage of this

method is that if gating of the input data is employed then each gate would have

far less data within it when compared to where a single SS and single RCM is used.
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For more detail on this final type of 2D RCM see chapter 3 and chapter 4.

Furthermore, although it has not been explored here, the RCM does not have to be

linear. As an example, if a post-registration RCM is fit as a linear regression, then there

is no reason that a polynomial regression or a type of non-linear regression could not be

used. As an extreme example, a NN could be used as a RCM.

The reference position of the SS with regards to the RCM can be defined in two

ways.

• One, the reference position is defined as the mean respiratory position. This is

similar to how the reference position is defined for group-wise registration, as

discussed in section 2.6.4. A value of zero for the SS would correspond to the

respiratory position which is in the ‘centre’ of all the input data or is at the mean

respiratory position. In other words, it is equally ‘close’ to all input data or time

weighted average position.

• Two, if an additional dimension is added to the SS that does not vary, it allows the

intercept of the RCM to be fit. Thus the reference position does not need to sit

at the mean respiratory position, which may in some applications be useful. For

instance, if the reference position was set as the position of the µ-Map.

As an example, fitting a RCM using two SSs (for instance, the displacement and

gradient, as mentioned previously) would be as follows. 3D B-spline can be used to

model spatial deformations with the corresponding warping operation denoted as W (αt),

with αt a vector with B-spline coefficients at time t. The respiratory SSs s contained two

components. Following (McClelland et al. 2013) a direct correspondence MM could be

used where the B-spline coefficients at time t are expressed as a linear combination of the

two SSs, s1,t and s2,t :

∀t ∈ [[1,nt ]],αk,t = R1,ks1,t +R2,ks2,t +R3,k (2.7)

where in equation 2.7 αk,t is the 3D B-spline coefficient for motion parameter k at time

point t, and Ri,k are the model parameters.
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2.6.6 Applying Motion Correction

As discussed throughout this chapter (in section 2.5.2 and section 2.6.2) there are a number

of methods through which the DVFs (found from direct co-registration or MMs) can be

applied to the task of motion correction. These methods mostly fit into three different

classes, these are as follows.

• Post-reconstruction motion correction: DVFs are used to register and fuse

already reconstructed gated images into a single corrected volume Polycarpou et al.

2012. Motion correction is performed independently after reconstruction. However,

it suffers from noise amplification due to the lower counts in individual gates and

does not modify the forward model, limiting its effectiveness.

• Motion-compensated iterative reconstruction: DVFs are incorporated directly

into the forward and/or backward projection steps during iterative reconstruction.

This allows the entire gated dataset to contribute to a single image reconstruction,

improving both spatial resolution and quantitative accuracy Kyme and Fulton 2021.

In some implementations, such as those by Bousse et al. Bousse et al. 2016b;

Bousse et al. 2016a, DVFs are iteratively updated alongside the reconstruction in

an alternating optimisation framework.

• Joint motion-estimation and reconstruction: Rather than alternating between

reconstruction and motion estimation, this approach jointly optimises both compon-

ents via a unified objective function Kalantari et al. 2016. While this has shown

improved performance, it introduces challenges in balancing terms in the cost func-

tion and increases computational complexity.

Early strategies for motion correction in PET/CT were after reconstruction methods.

In such methods, one acquires the PET data in multiple gates corresponding to different

motion states, this was introduced in section 2.6.2. Each gate is reconstructed separately,

yielding a series of images. The motion is then estimated by applying non-rigid registra-

tion on all floating images to a reference image, this was explained in section 2.6.4, and

fusing them into a single motion corrected image by summing (Fayad et al. 2015). This

post-reconstruction registration approach can reduce blurring, but it has drawbacks. The
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gated images have lower counts (higher noise) and any error in registration (due to noise)

will propagate into the final image (Kyme and Fulton 2021).

More advanced methods therefore move the motion compensation inside the re-

construction algorithm itself. In a Motion Compensated Image Reconstruction (MCIR)

approach, all gated data contribute directly to forming one final image during reconstruc-

tion. Incorporating motion into the iterative reconstruction is conceptually achieved by

modifying the forward-projection operation, effectively deforming the projectors accord-

ing to the DVF. This means that for each gate the system model accounts for where the

event originated in the reference image space. In practical terms, the estimated DVFs

are used to map each gate to the reference image coordinates during reconstruction. By

accounting for the DVF at each forward-projection, the algorithm uses all the PET data

and aligns them in the image update step. In summary, the forward-projection operation

is dynamically deformed according to the DVF, so that the reconstruction process itself

produces a motion corrected image from all the raw data (Kyme and Fulton 2021).

2.6.7 Summary of Motion Correction Methods

Respiratory gated CT has been historically been regarded as the definitive method for ac-

curately estimating respiratory DVFs. This is achieved by using CINE-CT synchronized

with the PET acquisition (Pan et al. 2004), (Pan et al. 2006), (Li et al. 2006), (Manjesh-

war et al. 2006), (Qiao et al. 2006), (Lamare et al. 2007). However, CINE-CT incurs

significantly higher radiation doses, rendering it impractical for clinical PET. Addition-

ally, variations between the PET and CINE-CT acquisitions introduce discrepancies in

DVFs, as discussed in 2.2.3.1 (Lamare et al. 2022).

To circumvent the challenges mentioned above, alternative approaches were pro-

posed which suggest estimating DVFs directly from gated, NAC PET reconstructions (Jin

et al. 2005), (Dawood et al. 2008b), (Liu et al. 2011), (Fayad et al. 2013), (Chan et al.

2013). These methods simplify acquisition by requiring only gated PET. Regardless,

motion estimation from NAC PET suffers from low image contrast (Lamare et al. 2022).

It has been demonstrated that mismatched µ-Maps introduce errors into DVFs es-

timation, subsequently compromising the quality of MCIR (Lu et al. 2018). Furthermore,

it has been noted that DVFs derived from NAC PET are unreliable in central anatomical
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regions such as the spine. Therefore, optimal motion correction requires matched AC

volumes (for each respiratory gate) to ensure accurate motion estimation (Lu et al. 2018),

(Lamare et al. 2022).

Methods like MLAA and MLACF, as presented in section 2.2.1.5 and section 2.4.3,

can now jointly estimate both the activity volume and the µ-Map directly from the PET

data alone, with the integration of TOF. This can bypass CT potentially eliminating

mismatch issues (Defrise et al. 2012), (Rezaei et al. 2012), (Panin et al. 2013). How-

ever, MLAA derived µ-Maps (and MLACF derived ACFs) tend to exhibit high noise

levels, which is particularly problematic when applied to gated data with fewer counts per

gate (Lamare et al. 2022).

In (Rezaei et al. 2016) a method which simultaneously reconstructs the activity

volumes and computes DVFs that deform the µ-Map to the position of the reconstructed

activity volumes is presented. A similar concept was also applied in (Bousse et al. 2016a),

(Lamare et al. 2022).

In (Chan et al. 2018) a method is presented to correct for both inter- and intra-

respiratory cycle motion. This approach involves two main components: Firstly, continu-

ous DVFs are estimated using the internal-external motion correlation method (Chan et al.

2013). Secondly, these DVFs are then integrated into a MCIR framework, deforming the

PET system matrix to align to a reference phase matching the µ-Map.

In (Lu et al. 2018) a method is proposed where phase gated PET images are recon-

structed using MLACF (producing AC images at each respiratory gate) on which DVFs

are obtained by registration of these volumes (Joshi et al. 2011). A linear MM is then fit

on the DVFs and a SS acquired using a belt.

2.7 Summary of Challenges and Motivation for This

Work

In summary, while numerous techniques have been developed to mitigate respiratory

motion in PET/CT imaging, major challenges remain unresolved. In the context of static

PET, methods such as respiratory gating and image registration, have been employed

to reduce motion artefacts. However, these approaches often rely on coarse binning of
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data, which limits temporal resolution and allows residual motion to persist. Additionally,

they typically use a static µ-Map acquired separately from the emission data, which may

not correspond to any specific respiratory phase in the PET acquisition. This mismatch

introduces significant quantification errors, further degrading image accuracy.

Extending motion correction to dynamic PET is even more challenging. Conven-

tional gating methods are difficult to apply due to the low SNR in early time frames, and

because tracer kinetics confound signal extraction. Moreover, many existing approaches

depend on external hardware to provide respiratory SSs, which limits their clinical prac-

ticality. As a result, motion correction is often poorly implemented or entirely absent in

dynamic imaging protocols.

To address these limitations, this thesis proposes a motion correction framework

initially developed for static PET, combining respiratory gating with motion modelling

to estimate DVF across the respiratory cycle. These DVF are used to correct both the

emission data and the misaligned µ-Maps, thereby improving image quality and quanti-

fication.

Building on this foundation, the framework is then extended to the more complex

setting of dynamic PET, where conventional gating is often impractical due to low signal

levels and the confounding effects of tracer kinetics. To enable motion correction in this

context, a novel DD approach is introduced for extracting respiratory SSs directly from

the PET data itself. This method removes the need for external monitoring devices and

enables robust motion modelling even in challenging dynamic acquisitions. Overall, this

thesis presents a clinically feasible solution for respiratory motion correction across both

static and dynamic PET/CT workflows.
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Chapter 3

Feasibility Studies for Motion

Correction Utilising Motion Models on

Simple Data

3.1 Overview
This chapter investigates the feasibility of performing respiratory motion correction using

simulated PET data, with a particular focus on estimating deformation fields directly

from NAC images. Simplified simulation data is used in this early-stage study to allow

precise control over motion and anatomy, enabling systematic evaluation of key factors

such as TOF information and reconstruction accuracy. The central question addressed

here is whether motion models derived solely from NAC PET, particularly TOF PET, are

sufficient to enable effective motion correction. This work serves as a stepping stone for

more complex and clinically realistic studies in the following chapter.

The first section of this chapter introduces preliminary work on the feasibility of

motion correction when attenuation correction is not applied, both with and without

TOF (Whitehead et al. 2019).

The second section of this chapter underlines the work needed to incorporate attenu-

ation correction into the methods from the first section. Here, methods to deform a single

CT derived µ-Map to position at each gate using a MM are introduced. In addition, the

advantage of fitting another MM on the newly AC data is evaluated (Whitehead et al.

2020).



3.2. Introduction

The third section of this chapter introduces a comparison between different motion

correction methods, both with and without MMs. This section introduces a modular

framework for the comparison of different aspects of the motion correction pipeline, for

instance, the use of pair- and group-wise registration. Here, the data used is of lower

count rate than in the previous two sections and uses a µ-Map at end inhalation (close to

a breath hold µ-Map), rather than one at the mean respiratory position (Whitehead et al.

2021).

The final section chapter discusses the problems or limitations of the work performed

in the previous three sections, leading to the next chapter.

3.2 Introduction
As discussed in section 2.6, many methods have been proposed to correct for respiratory

motion in PET. These methods usually involve direct co-registration between a reference

volume and a set of volumes in different positions in the respiratory cycle obtained by

gating (floating volumes) (Oliveira and Tavares 2014). However, such pair-wise registra-

tion is sensitive to noise and intra-gate motion. Another problem specific to PET (and

Single-photon Emission Computed Tomography (SPECT)) is that motion affects both the

location of the emission and the attenuation of the photons. The impact of attenuation is

particularly important as the µ-Map is often static. This chapter investigates the feasib-

ility of various motion correcting techniques. For instance, is it necessary to use AC for

the reconstruction of the gated images used for motion estimation and will TOF alone

provide an adequate NAC reconstruction to forego AC? If AC is required then any mis-

alignment of the µ-Map will severely hinder the motion estimation and another approach

will have to be taken, for instance MLACF or MLAA could utilise the TOF information

to provide higher quality reconstructions. However, these methods are more complex and

time consuming.

This chapter will investigate this on XCAT simulations, where the realism of the

simulations is gradually increased. The work in this chapter was conducted under the

hypothesis that access to a PET scanner with higher TOF resolution than the GE Discovery

710 would be available. This assumption was made to explore the potential benefits of

improved TOF performance for motion correction, and to better understand whether
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future scanner technologies with enhanced TOF resolution might be necessary to fully

realise the advantages of the proposed methods.

A linear model was selected in this feasibility study. While real respiratory motion

is often non-linear and more complex, the linear model provides a baseline for evaluating

the core feasibility of PET-based MM estimation.

3.3 Impact of TOF on Respiratory Motion Model Estim-

ation Using Pre-Gated No Intra-Cycle Motion NAC

PET
This section investigates the possibility of estimating MMs for respiratory motion from

NAC reconstructed images. In particular this section evaluates the impact of incorpor-

ating TOF information on the accuracy of the MMs derived from NAC reconstructed

images (Whitehead et al. 2019).

3.3.1 Introduction

To avoid misregistration due to attenuation mismatches in the gated images used for

motion estimation, most existing methods rely on pair-wise registration of NAC recon-

structions (Bai and Brady 2011), (Kalantari and Wang 2017), (Dawood et al. 2008a),

(Dawood et al. 2006). However, for PET/CT of the lung, this is a challenging problem

due to the low contrast and high noise of these volumes. The use of MMs as opposed to

pair-wise registration could overcome these challenges.

In the absence of TOF, there is no information on the activity position along the

LOR. NAC Non-TOF reconstructions therefore have high intensity near the surface and

low contrast in the internal part of the body. In TOF, the time information constrains

the activity position along the LOR. This changes the nature and extent of the artefacts

associated with NAC PET (as well as changing noise properties) (Ter-Pogossian et al.

1981).

The aim of this section is to investigate whether accurate MM can be estimated from

NAC images, and if TOF is needed to sufficiently increase the contrast and lower the

noise of NAC images to facilitate this.
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3.3.2 Methods

Table 3.1: This table shows a short summary of the highlights of the methods used in section 3.3.
This table is useful for quickly referencing the changes between sections. To see the
development of the method throughout the thesis please see table A.1 in appendix A.

Method
Details

Data Reconstruction Motion Estimation

Section 3.3
• XCAT:

– 40.0 mm lesion

– 1D XCAT respiratory
traces

– No hysteresis

– 6 volumes

– No intra-gate motion

• Simulation:

– 2D Simulation

– 120 s simulation

– American clinical count
rate (True 60 Kilo Counts
Per Second (KCPS))

– Non-TOF and TOF

– 375.0 ps TOF resolution

– No scatter or random events

• Gating:

– XCAT SS

– 6 respiratory bins

• NAC OSEM (2 iterations, 24
subsets)

• Gaussian post-smoothing
(6.4 mm FWHM)

• Jointly estimating registration
and MM

• Non-diffeomorphic

• 1D SS

• SSD objective function

• Default parameters (CPG
spacing 5 times voxel
size, 5e−3 bending energy
weight)

Ground truth PET images of one bed position, with a FOV including the base of the lungs

and the diaphragm, are obtained using the XCAT software, section 3.3.2.1. These are

then used to simulate PET data, section 3.3.2.2, and TOF and Non-TOF volumes are

reconstructed using OSEM, section 3.3.2.3. These volumes are used as input for MM

estimation,section 3.3.2.4.

The TOF output is evaluated against the Non-TOF output from the method both

visually, using a profile, as well as with SUV analysis, section 3.3.2.5.

3.3.2.1 XCAT Image Generation

XCAT (Segars et al. 2010) was used to generate six volumes over a 5.0 s second breathing

cycle. The volumes were generated with one at full expiration (beginning of the cycle)

and one at full inspiration (end of the cycle), this corresponds to the time in the respiratory
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cycle (which is roughly equivalent to phase gating). Settings used for generation were the

default XCAT settings for the extent of Anterior Posterior (AP) and Superior Inferior (SI)

motion (default XCAT settings being a single generic breathing trace) of2.0 cm respiratory

motion displacement over 5.0 s. Activity concentrations were derived from a static [18F]-

FDG patient scan. The FOV included the base of the lungs, diaphragm, and the top of the

liver with a 40.0 mm diameter spherical lesion placed in the right lung.

3.3.2.2 PET Data Simulation

PET acquisitions were simulated using Software for Tomographic Image Reconstruction

(STIR) (Thielemans et al. 2012) through Synergistic Image Reconstruction Framework

(SIRF) (Ovtchinnikov et al. 2020) to forward project the input data to sinograms using the

geometry of a GE Discovery 710 (0.21306 cm pixel width and 0.327 cm slice width, a

image matrix size of 256 by 256 by 47, and 11 timing positions, 23 segments, 288 views,

and 381 tangential coordinates). Attenuation for every LOR was computed based on the

mu-maps generated by XCAT. 2D simulations were used to reduce computation time

(meaning the sinogram used now had 11 timing positions, one segment, 288 views, and

381 tangential coordinates). Where relevant, a TOF resolution of 375.0 ps (similar to the

GE Signa PET/MR) was used (meaning the sinogram used now had 25 timing positions,

one segment, 288 views, and 381 tangential coordinates). TOF mashing was incorporated

to reduce computation time, resulting in 13 TOF time bins of size 376.5 ps. Attenuation

was included in the simulation using the relevant µ-Map generated by XCAT. Scatter

and randoms were not taken into account in this section. Poisson noise realisations were

generated to simulate an acquisition as if it had been gated into six bins over an acquisition

of 120 s, with a true count rate of 60 KCPS (so 1,200,000 counts per bin). This emulates

a standard single bed position acquisition but ignores any intra-gate motion.

3.3.2.3 Image Reconstruction

Data were reconstructed with SIRF without attenuation correction using OSEM with

two full iterations and 24 subsets (Hudson and Larkin 1994), see section 2.4 for more

information. Volumes were post-filtered using a 3D Gaussian blurring with a kernel size

of 6.4 mm FWHM.
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3.3.2.4 Motion Model Estimation

Following on from what is presented in section 2.6.5.1, a generalised framework unify-

ing registration and MM estimation, NiftyRegResp (now named Surrogate Parametrised

Respiratory Motion Modelling (SuPReMo)), was used to estimate the RCM, here using

SSD as the objective function. The RCM was a linear 1D RCM fit on the SS values taken

directly from XCAT. The default parameters of NiftyRegResp (SuPReMo) were used.

3.3.2.5 Evaluation

Three RCMs were compared. These three RCMs were calculated from the PET XCAT

volumes (gold standard), Non-TOF NAC reconstructions, and TOF NAC reconstructions.

To test the accuracy of the RCMs, while avoiding issues with incorporating the motion

into the reconstruction, the three models were used to deform the PET volume generated

by XCAT at the mean breathing position, to the position at each gate. The mean breathing

position XCAT volume was generated by calculating the mean SS value and using this as

an input to XCAT. A mean position volume was used because the RCM was fit with this as

the reference position for the SS, as discussed in section 2.6.5. These estimated volumes

were then compared to the original XCAT input volumes. Difference volumes were

obtained by subtracting the original XCAT volume ft and deformed volumes W (αt) fref

at the same gate. Mean Absolute Percentage Error (MAPE) was computed from these

difference imagesas follows:

M =
1
n ∑n | en−gn |

1
n ∑n gn

×100 (3.1)

where in equation 3.1 n is the number of volumes, en are the estimated volumes and gn

are the ground truth volumes.

In addition, the COM of the lesion was tracked over the six gates. This was achieved

by deforming a volume only including the lesion in the reference position, as above,

and then computing the COM. The COM along each dimension is calculated using the

following equation:

C = ∑
v

rven,v/sumven,v (3.2)
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Figure 3.1: Coronal images illustrating results from the estimation of RCMs on NAC images. All
volumes correspond to the end inhalation gate. First row from left to right: XCAT PET
ground truth image, NAC Non-TOF reconstructed data, and NAC TOF reconstructed
data. Second row, RCMs applied to mean position XCAT data with RCMs derived
from XCAT PET data (left), NAC Non-TOF (middle), and NAC TOF (right) volumes.
Colour map ranges are consistent for all images on this row. The third row from left to
right, difference between the estimated volumes from the second row with the XCAT
end inhalation volume. Colour map ranges are consistent for all images on this row.

Table 3.2: Comparison of the MAPE between the ground truth data and the volumes estimated
from the XCAT based RCMs, the volumes estimated from the NAC Non-TOF based
RCM, and the volumes estimated from the NAC TOF based RCM.

MAPE XCAT Non-TOF TOF
1 1.95 8.35 4.18
2 1.59 1.61 1.84
3 2.06 9.91 5.23
4 1.97 6.15 3.68
5 1.65 4.45 2.52
6 1.95 8.35 4.18

Mean 1.86 6.47 3.60

where in equation 3.2 v indexes all voxels, rv the coordinate of the voxel, and en,v the

value of voxel v in en.

3.3.3 Results

The reconstructed data, estimated and difference volumes can be seen in figure 3.1 and

MAPE are in table 3.2. The mean MAPE was found to be lower for the NAC TOF data

than for the NAC Non-TOF.

COM results can be seen in figure 3.2. The path of the NAC TOF data follows the

ground truth path much closer than the NAC Non-TOF data, and is quite close to the gold

standard XCAT-derived motion.
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Figure 3.2: The path of the COM of the lesion, in voxel indices. Horizontal (respectively vertical)
axis corresponds to motion in the AP (respectively SI) direction over the six gates.
Different curves denote COM displacement for ground truth data, the estimated data
from the XCAT based RCM, the estimated data from the NAC Non-TOF based RCM,
and the estimated data from the NAC TOF based RCM.

3.3.4 Discussion

MMs derived from NAC TOF volumes were found to be more robust than when using

NAC Non-TOF, both visually and when comparing MAPE and COM. This was noticeable

for the lung lesion in the thoracic cavity but also for other parts of the anatomy such as

the liver. This is likely due to the improved image contrast of NAC TOF images.

A limitation of the work presented here is that it only evaluates the feasibility of per-

forming a motion correction and makes no effort to apply this to an attenuation corrected

reconstruction. This is addressed in the next section 3.4.

A further limitation of the work presented in this section (and more generally the

chapter as a whole) is that the data and acquisition simulation used are quite naive,

simplistic, and make some unrealistic choices. For instance, the lesion is quite big at
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40.0 mm in diameter, it is unlikely that motion correction is necessary to locate such a

large lesion. The motion used during data generation is more simple, it is driven by one

signal and contains no hysteresis. There was no intra-gate motion and the SS used for

fitting the MM was taken directly from XCAT.

These findings support the use of NAC TOF images for MM estimation in the re-

mainder of this thesis (where the TOF resolution used in this section is maintained). As

the motion correction pipeline becomes more complex and is tested under more realistic

conditions in later chapters, maintaining robust motion estimation becomes increasingly

important. The insights gained here directly inform the choice of reconstruction approach

and motivate further investigation into the effect of noise levels, lesion size, and acquisi-

tion duration on MM performance, as discussed in Section 3.6.

3.4 PET/CT Respiratory Motion Correction With a

Single Attenuation Map Using NAC Derived De-

formation Fields
This section investigates the possibility of using MMs for inter-respiratory cycle motion

correction in PET/CT, taking attenuation into account. It is not enough to fit a MM alone,

some kind of motion compensated reconstruction should take place, as was discussed

in section 2.6.6. In addition, this section explores whether iterative estimation of both

the motion parameters and warping of a single µ-Map, from any respiratory position,

increases the accuracy of AC reconstruction. This section largely follows (Whitehead

et al. 2020).

3.4.1 Introduction

There are different strategies for handling attenuation correction in conjunction with mo-

tion correction. In clinical practice, usually a single µ-Map is available, derived from CT

in one respiratory state. This can introduce an unwanted bias (through misaligned ana-

tomy) into the reconstructed images, even after motion correction, unless the deformation

of the attenuation is taken into account. Other motion correction methods can incorporate,

directly, both motion correction and µ-Maps estimation into reconstruction. However,
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this can be computationally expensive (Bousse et al. 2016b), (Bousse et al. 2016a).

This section expands upon the previous section 3.2 by addressing the problem of

the misaligned µ-Map in the final reconstruction. It uses the estimated MM to deform

a coincidentally located µ-Map (at the location of the reference position for the motion

correction) to the position of the gates for attenuation correction. This then allows for

a AC OSEM reconstruction of the original data with the deformed µ-Map, hopefully

with less artifacts as when using a static misaligned µ-Map. This section then goes on to

establish if it is worthwhile to fit a further MM on this new data or if there is no further

improvement to the accuracy of the fit (on NAC data) MM.

3.4.2 Methods

Table 3.3: This table shows a short summary of the highlights of the methods used in section 3.3
and section 3.4. This table is useful for quickly referencing the changes between
sections. To see the development of the method throughout the thesis please see
table A.1 in appendix A.

Method
Details

Data Reconstruction Motion Estimation

Section 3.3
• XCAT:

– 40.0 mm lesion

– 1D XCAT respiratory
traces

– No hysteresis

– 6 volumes

– No intra-gate motion

• Simulation:

– 2D Simulation

– 120 s simulation

– American clinical count
rate (True 60 KCPS)

– Non-TOF and TOF

– 375.0 ps TOF resolution

– No scatter or random events

• Gating:

– XCAT SS

– 6 respiratory bins

• NAC OSEM (2 iterations, 24
subsets)

• Gaussian post-smoothing
(6.4 mm FWHM)

• Jointly estimating registration
and MM

• Non-diffeomorphic

• 1D SS

• SSD objective function

• Default parameters (CPG
spacing 5 times voxel
size, 5e−3 bending energy
weight)
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Method
Details

Data Reconstruction Motion Estimation

Section 3.4
• XCAT:

– 20.0 mm lesion

– 1D RPM respiratory traces

– No hysteresis

– 240 volumes

– Intra-gate motion

• Simulation:

– 2D Simulation

– 120 s simulation

– American clinical count
rate (True 60 KCPS)

– 375.0 ps TOF resolution

– No scatter or random events

• Gating:

– 1D PCA respiratory SS

– 10 respiratory bins

• Reconstruction for motion es-
timation:

– NAC OSEM (2 iterations,
24 subsets)

– Gaussian post-smoothing
(6.4 mm FWHM)

• Motion compensated recon-
struction:

– AC OSEM (2 iterations, 24
subsets)

– Gaussian post-smoothing
(6.4 mm FWHM)

• Activity MM:

– Jointly estimating registra-
tion and MM

– Non-diffeomorphic

– 1D respiratory SS

– SSD objective function

– Tuned CPG spacing (12
times voxel size) and
bending energy weight
(9e−6)

• Attenuation to activity regis-
tration:

– Non-diffeomorphic

– NMI objective function

– Tuned CPG spacing (5
times voxel size) and
bending energy weight
(9e−2)

– Multi-resolution registra-
tion (4 levels)

• Attenuation deformed twice

The method proceeds as follows: NAC TOF volumes are reconstructed using OSEM,

section 3.4.2.3. These volumes are used as input for MM estimation, section 3.4.2.4. A

single µ-Map is then warped to the volumes, using the MM, and the volumes are AC,

section 3.4.2.5. Following on from this, another motion estimation and correction cycle

is performed, section 3.4.2.7.

For evaluation, XCAT simulations are used, for one bed position, with a FOV in-

cluding the base of the lungs and the diaphragm. Compared to the previous section, the

simulations were more realistic by taking intra-cycle variations into account, as described

in section 3.4.2.1 and 3.4.2.2. The output from the proposed method is evaluated against

a non-motion corrected reconstruction of the same data both visually, using a profile, as

well as with SUV analysis, seen in section 3.4.2.7.

3.4.2.1 XCAT Volume Generation

Volume generation follows the same basic procedure as presented in section 3.3.2.1.

However, here 240 volumes were generated over a 120 s respiratory trace (with inter-
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respiratory cycle variation) derived from data captured using a RPM. The max displace-

ment of AP and SI motion was set to 1.2 cm and 2.0 cm respectively. The FOV included

the base of the lungs, diaphragm, and the top of the liver with a 20 mm diameter spherical

lesion placed into the centre of the right lung.

3.4.2.2 PET Acquisition Simulation

The PET simulation (and reconstruction) follows the procedure described in sec-

tion 3.3.2.2. However, here the 240 volumes were forward projection (including at-

tenuation). Noise realisations were used to simulate an overall acquisition over 120 s,

emulating a standard single bed position acquisition.

A respiratory SS was then generated using PCA (Thielemans et al. 2011), for more

information see section 2.6.3. This was used to gate the data into 10 respiratory bins using

displacement gating. For the purpose of the MM fitting, SS values were obtained for the

post-gated data by taking an average of the SS values of the data in each bin.

3.4.2.3 Non-Attenuation Corrected Image Reconstruction

As before, data were reconstructed, without attenuation correction using OSEM with two

full iterations and 24 subsets (Hudson and Larkin 1994). Volumes were post-filtered using

a 3D Gaussian blur with a kernel size of 6.4 mm full width half maximum.

3.4.2.4 Motion Model Estimation

This section improved on the method described in section 3.3.2.4. SSD was used as the

similarity measure and bending energy was used as a penalty. The CPG spacing and

penalty weight (bending energy) were tuned using a grid search.

3.4.2.5 Attenuation Map Warping

A µ-Map close to the mean respiratory position was selected from the µ-Maps generated

by XCAT. This µ-Map was then registered (using NMI) to the mean position NAC motion

compensated image (generated using the MM). In order to ensure that the selected µ-Map

is as close as possible to the mean respiratory position the SS value of the selected µ-

Map was subtracted from all SS values, effectively biasing the MM to the position of the

selected µ-Map. The MM was then used to generate DVFs for the SS values of each bin,

which were then used to warp the µ-Map from the mean respiratory position to each bin.
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Table 3.4: Comparison of SUVmax, SUVmedian and SUVpeak between ungated (CINE-CT), un-
gated (static CT), NAC MM, and AC MM.

SUV Max Median Peak
Ungated (CINE-CT) 4.63 2.73 3.39
Ungated (static CT) 4.66 3.05 3.54

NAC MM 5.56 3.18 4.07
AC MM 5.43 3.18 4.00

3.4.2.6 Motion Corrected Image Reconstruction with Attenuation Cor-

rection

Data were re-reconstructed, with attenuation correction, using the µ-Maps from sec-

tion 3.4.2.5. The same reconstruction parameters as in section 3.4.2.6 were used. These

data were then either motion corrected using the original NAC MM or a new MM was fit

on the AC volumes as in section 3.4.2.4.

3.4.2.7 Evaluation

To evaluate the validity of the MM results, the COM of the lesion, over time, was tracked

for both NAC and AC reconstructions as in section 3.3.2.5.

In addition to the reconstructions performed in section 3.4.2.6, data were also recon-

structed after simply summing all gates together. This was done using either a sum of all

µ-Maps (to emulate an averaged CINE-CT) or one µ-Map, positioned close to the mean

respiratory position. This process matches current clinical practice.

Comparisons used included a profile over the lesion and SUVmax, SUVmedian, and

SUVpeak. SUVpeak here was defined following European Association of Nuclear Medicine

(EANM) guidelines (Boellaard et al. 2015).

3.4.3 Results

COM results can be seen in figure 3.3. The slope of the line of the COM of both the NAC

and AC matches closely the ground truth COM. However, both results appear to be biased

slightly by approximately the same value. This is potentially caused by the subtraction of

the µ-Map SS value from all SS values. Furthermore, attention should be paid to the fact

that the minimum resolution of this figure is the size of one voxel, thus small variations

could be discretised to a whole voxel away.
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Figure 3.3: The path of the COM of the lesion, in voxel indices. Horizontal (respectively vertical)
axis corresponds to motion in the SI (respectively AP). Different curves denote COM
displacement for ground truth data, the estimated data from the NAC based MM, and
the estimated data from the AC based MM.
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Figure 3.4: Ground truth and reconstructions using ungated (CINE-CT), ungated (static CT),
NAC MM, and AC MM. Colour map ranges are consistent for all images.
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Figure 3.5: A profile across the lesion for ungated (CINE-CT), ungated (static CT), NAC MM,
and AC MM.

The ungated and the MM results for a visual analysis can be seen in figure 3.4. When

compared visually structures can be seen, less blurred, in the MM data that cannot be

seen in the ungated data. For instance, structures at the boundary between the diaphragm

and the lung. The different levels of blurring in the ungated (CINE-CT) and static CT

could be attributed to the constraint put on the reconstruction by having a sharp µ-Map

in one respiratory position in the static CT case. Additionally the lesion itself can be seen

to be more homogeneous, this can be further observed in the profile across the lesion in

figure 3.5.

SUV results can be seen in table 3.4 and consistently show that SUVs are greater for

the MM over the ungated method.

3.4.4 Discussion

Results from both a visual analysis, a comparison of profiles and SUVs show that the MM

provides volumes more free from blurring and less susceptible to artefacts when compared

to the ungated data. Results also indicate that the NAC MM provides similar results as

when re-estimating the motion from the AC volumes, while not requiring the additional

computation of the AC MM. MMs fit on either the NAC or MLACF reconstruction are

used for the remainder of the thesis. Results indicate that motion correction of inter-

respiratory cycle motion is possible with this method, while accounting for attenuation
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deformation. However, the work presented here has many limitations, as will be discussed

below.

Compared to the previous section, the work presented here improves the data and

the acquisition simulations applied to this data to be more realistic. The size of the lesion

is reduced by half, a realistic respiratory signal is used to drive the motion of XCAT, and

the data is actually gated into respiratory bins using a PCA derived SS (rather than being

simulated at a respiratory bin without intra-bin motion).

A limitation of the work presented in this section (and more generally the chapter as

a whole) is that the data and acquisition simulation continues to make some unrealistic

choices. For computational purposes the acquisition is still simulated as a 2D acquisition.

Although an RPM signal is used to drive the XCAT motion it is still very simple and

continues to be driven by one signal and thus contains no hysteresis.

A major limitation of the work here is the position of the µ-Map used for attenuation

registration. It is not likely that the available µ-Map from CT is coincidentally located

close to the mean respiratory position. This assumption was made here to give the method

the best chance of working. It is more likely that a µ-Map from CT will be located more

closely to max inhalation, due to the breath hold procedure used in common clinical

practise. This work also deforms the µ-Map twice, once via a registration to the mean

respiratory position and once to the position of each gate (by inverting the deformation

from the MM for each gate). This is suboptimal as there is the potential for artifacts to be

introduced by deforming twice. This is addressed in the next section.

A further limitation of the work presented here (and by extension the work presented

in section 3.3) is that no comparison with other motion estimation is provided. MM based

methods are common in CT but not in PET, therefore an evaluation of the improvement

gained by forgoing straight pair- or group-wise and applying a MM based approach is

necessary. This will be presented in the next section.
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3.5 Comparison of Motion Correction Methods Incor-

porating Motion Modelling for PET/CT Using a

Single Breath Hold Attenuation Map
This section completes the feasibility study in this chapter by comparing different motion

correction techniques, with and without incorporating MMs. Compared to the previous

section, lower count data are simulated. In addition, the µ-Maps used are at end inhalation,

to better reflect clinical practice. The work is this section is based on (Whitehead et al.

2021).

3.5.1 Introduction

Previously in this chapter no evaluation of the benefits of including a MM has been

provided. This section seeks to demonstrate the regularisation benefit of using a MM,

where the registration and MM are not jointly fit. The reason for not using the same joint

estimation of deformations and MM as previous sections (section 3.2 and section 3.4) is

twofold. Firstly, it is not fair to demonstrate a difference between a straight registration

and a registration augmented with a MM unless the only change in the second case is

the inclusion of a MM. Secondly, by swapping to a more modular framework it allows

for all aspects of the motion correction to be easily changed. For instance, in this section

we also examine pair- and group-wise registration strategies. This modular framework

also allows for the easy use of NMI for all registrations (and therefore the sharing of

parameters between the activity and attenuation registration). To not fit the MM and the

registration jointly means that rather than fitting directly a MM which parametrises the

DVFs we iteratively swap between fitting the DVFs and the MM (on the DVFs).

Furthermore, the simulation used in this section is again an improvement of the data

used in the previous section. Here, the count rate is lowered to an approximate European

clinical count rate, pseudo-scatter and random events are included in the simulation, and

the size of the lesion is reduced.

A method incorporating MMs for dynamic PET/CT, was proposed and tested on clin-

ical data in (Chan et al. 2018). The work presented here differentiates itself, specifically

from previous work in motion modelling for PET/CT (Chan et al. 2018), by firstly using a
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2D SS, rather than a 1D SS. Thus both irregular breathing and hysteresis can be included

in the model, at the expense that each gate contains fewer counts, for more information

see section 2.6.5. Additionally, the group-wise method, presented here, makes use of an

iterative motion correction algorithm rather than using only a pair-wise method.

3.5.2 Methods

Table 3.5: This table shows a short summary of the highlights of the methods used in section 3.4
and section 3.5. This table is useful for quickly referencing the changes between
sections. To see the development of the method throughout the thesis please see
table A.1 in appendix A.

Method
Details

Data Reconstruction Motion Estimation

Section 3.4
• XCAT:

– 20.0 mm lesion

– 1D RPM respiratory traces

– No hysteresis

– 240 volumes

– Intra-gate motion

• Simulation:

– 2D Simulation

– 120 s simulation

– American clinical count
rate (True 60 KCPS)

– 375.0 ps TOF resolution

– No scatter or random events

• Gating:

– 1D PCA respiratory SS

– 10 respiratory bins

• Reconstruction for motion es-
timation:

– NAC OSEM (2 iterations,
24 subsets)

– Gaussian post-smoothing
(6.4 mm FWHM)

• Motion compensated recon-
struction:

– AC OSEM (2 iterations, 24
subsets)

– Gaussian post-smoothing
(6.4 mm FWHM)

• Activity MM:

– Jointly estimating registra-
tion and MM

– Non-diffeomorphic

– 1D respiratory SS

– SSD objective function

– Tuned CPG spacing (12
times voxel size) and
bending energy weight
(9e−6)

• Attenuation to activity regis-
tration:

– Non-diffeomorphic

– NMI objective function

– Tuned CPG spacing (5
times voxel size) and
bending energy weight
(9e−2)

– Multi-resolution registra-
tion (4 levels)

• Attenuation deformed twice
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Method
Details

Data Reconstruction Motion Estimation

Section 3.5
• XCAT:

– 12.0 mm lesion

– 2D MR respiratory traces

– Hysteresis

– 240 volumes

– Intra-gate motion

• Simulation:

– 2D Simulation

– 120 s simulation

– European clinical count
rate (True 48 KCPS)

– 375.0 ps TOF resolution

– Pseudo scatter (triangle fil-
ter 22 voxels, 39 KCPS)
and random (56 KCPS)
events

• Gating:

– 2D PCA respiratory SS

– 30 respiratory bins (10 dis-
placement, 3 gradient)

• Reconstruction for motion es-
timation:

– NAC OSEM (2 iterations,
24 subsets)

– Replication of end slices to
size of µ-Map

– Gaussian post-smoothing
(2 times voxel size)

• Motion compensated recon-
struction:

– AC OSEM (2 iterations, 24
subsets)

– Gaussian post-smoothing
(6.39 mm FWHM trans-
verse, 3.27 mm axial)

• Registration:

– Non-diffeomorphic

– NMI objective function

– Tuned CPG spacing (12
times voxel size), bend-
ing energy (1e−4 activ-
ity, 1e−2 attenuation),
and number of iterations
(8)

– Multi-resolution registra-
tion (4 levels)

– Pair- and group-wise regis-
tration

– Activity and attenuation
DVF composed

• MM:

– With and without MM

– MM fit only at highest res-
olution level

– Weighted (counts) linear re-
gression MM

– 2D respiratory SS

As before, XCAT ground truth volumes were generated but now with more realistic res-

piratory motion input, section 3.5.2.1, used as input for the simulation and reconstructed

without AC, section 3.5.2.2. These volumes are used as input for registration (both pair-

and group-wise) and MM estimation, section 3.5.2.3 and section 3.5.2.4. The reference

PET volume from the previous step, is then registered to the single µ-Map, at end in-

halation. The resultant MM and its inverse are used to perform a motion compensated

AC reconstruction, section 3.4.2.5 and section 3.5.2.6. This process continues iterat-

ively: performing an activity registration, resampling a reference volume, performing an

attenuation registration, composing the DVFs, fitting a MM fitting a MM.

The output for pair- and group-wise registration (both with and without an additional

MM fitting step) is evaluated against a non-motion corrected reconstruction of the same

data (using a single static µ-Map and a µ-Map average from CINE-CT for attenuation

correction): visually, using a profile, as well as with SUV analysis, section 3.4.2.7.
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3.5.2.1 XCAT Volume Generation

Volume generation follows the same basic procedure as presented in section 3.3.2.1.

However, to increase realism, the SS used to drive XCAT was derived from MR navigator

patient data. To acquire this signal a pencil shaped bar is placed over an edge which

undergoes motion in the AP direction and another in the SI direction. The location of

the edge along the pencil shaped bar is determined using an edge detection algorithm

(looking for sudden changes in the value along the pencil shaped bar). The position of

this edge is then tracked over the frames and the position is used as a SS by taking it’s

absolute position. Moreover, a smaller spherical lesion of 12 mm diameter (smaller than

the max displacement due to respiratory motion) was placed into the base of the right

lung (within the max displacement, due to respiratory motion, of the diaphragm).

3.5.2.2 PET Acquisition Simulation and Non-Attenuation Corrected Im-

age Reconstruction

Simulation procedure was similar as in section 3.4.2.2. Pseudo-randoms and scatter were

added. Randoms were added by summing the scaled mean value to each voxel of each

volume prior to forward projection. Pseudo-scatter was added by summing the scaled

and smoothed mean µ-Map prior to forward projection. The smoothing parameter was

optimised to give scatter which tapered at the same rate as in clinical data. A full scatter

simulation was not performed due to software limitations.

Noise was simulated, such that data matched an acquisition over 120 s, emulating a

standard single bed position acquisition. The count rate was lower here than in the sec-

tion 3.3 and section 3.4 (48 KCPS compared to 60 KCPS). This count rate was determined

from a static clinical acquisition on the GE Discovery 710.

A respiratory SS was generated using PCA (Thielemans et al. 2011). The magnitude

of this signal and its gradient, was used to gate data into 30 respiratory bins using displace-

ment gating (10 amplitude and three gradient bins), this was as discussed in section 2.6.2.

Gates with fewer than 0.42 % of the counts were discarded. For the purpose of the MM

fitting, SS values were determined for the post-gated data by taking an average of the SS

values of data in each bin.

Data were reconstructed without attenuation correction, using OSEM with two full
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iterations and 24 subsets as before.

3.5.2.3 Registration

Before being registered, each volume underwent pre-processing, including replication of

end-slices, transformation to be approximately normally distributed histograms (Johnson

et al. 2013) and post-smoothing. This pre-processing was only applied to intermediate

data and was not used for the final output of the method. Because a breath hold µ-Map is

the final target position for the motion correction, 10 repeating slices are added to the top

and bottom of each volume to allow space for the volumes to be registered into.

Two registration methods were examined in this work. Firstly, pair-wise registration,

where the reference position was selected as the gate with the highest number of counts.

All other gates were registered to it. Secondly, group-wise registration, where after an

initial pair-wise registration step, the DVFs generated had the inverse mean of all DVFs

composed with them, before a new reference volume was resampled. Registration to

the new reference volume, followed by the inverse mean composition and resample,

continued for a set number of iterations. NiftyReg (Modat et al. 2010) was used to

perform registrations using a B-spline parametrisation, a multi-resolution registration was

used with four levels. The Gaussian smoothing FWHM, CPG spacing of the B-spline

coefficients, bending energy regularisation term weight, and number of iterations were

tuned using a grid search.

3.5.2.4 Motion Model Estimation

When using a MM for motion estimation, it was fit as a direct RCM on the DVFs from

section 3.5.2.3 and the SS from section 3.5.2.2. A weighted linear regression was used,

where the weighting was taken based on the number of counts in each gate. Note that this

functionality was not available in the NiftyRegResp/SuPReMo software used in previous

sections. Once a MM was fit, new DVFs were generated for each gate, using the SS values

used to fit the MM. For group-wise registration, MM fitting occurred between iterations,

the DVFs generated by the MM were used to resample the new target volume at each

iteration.
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3.5.2.5 Attenuation Map Warping

A µ-Map at end inhalation was selected from the µ-Maps generated by XCAT. The PET

volume from the previous step was then registered to this µ-Map. The resulting DVFs

were composed with the DVFs from the last iteration of the motion estimation method,

and a new volume resampled. The inverse of these DVFs were then used to warp the

µ-Map to each gate.

3.5.2.6 Motion Corrected Image Reconstruction with Attenuation Cor-

rection

Data were re-reconstructed with attenuation correction, using the µ-Maps from sec-

tion 3.5.2.5. The same reconstruction parameters as in section 3.5.2.6 were used. Motion

correction was then applied to data following section 3.5.2.3, section 3.5.2.4, and sec-

tion 3.5.2.5. Volumes were post-filtered using a Gaussian smoothing, with a FWHM of

6.39 mm in the transverse plane (equivalent to three voxels) and 3.27 mm (equivalent to

one voxel) in the axial direction. The target of applying the method like this is to have a

single motion corrected volume at the position of the µ-Map, where motion estimation

was from NAC volumes. MCIR was implemented by deforming the post-reconstructed

image and summing.

3.5.2.7 Evaluation

In addition to the reconstructions performed in section 3.5.2.6, data were also reconstruc-

ted without motion correction, using either a sum of all µ-Maps (to emulate an averaged

CINE-CT), or the end inhalation µ-Map. For the present evaluation, the volumes without

motion correction were then registered to the position of the end inhalation µ-Map. Ad-

ditionally, DVFs generated by each method were also applied to noiseless data for visual

analysis.

Comparisons used included the following. A visual analysis, a profile over the lesion,

and SUVmax and SUVpeak (defined following EANM guidelines (Boellaard et al. 2015)).

3.5.3 Results

A visual comparison of the reconstructed images (see figure 3.6) shows that the motion

makes the lesion almost disappear in the ungated reconstruction. Motion of the diaphragm
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Figure 3.6: Coronal slices for various methods. First column contains AC motion corrected
reconstructions and the second column contains the result of applying the final motion
correction on the original XCAT images (for easier assessment of the accuracy of
the estimated DVFs). This is for ungated static CT, ungated averaged CINE-CT,
pair-wise, pair-wise MM, group-wise, and group-wise MM. Colour map ranges are
consistent for all images in each column.
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Figure 3.7: A profile across the lesion for ungated static CT, ungated averaged CINE-CT, pair-
wise, pair-wise MM, group-wise, and group-wise MM.

Table 3.6: Comparison of SUVmax and SUVpeak between ungated static CT, ungated averaged
CINE-CT, pair-wise, pair-wise MM, group-wise, and group-wise MM.

SUV Max Peak
No Motion 9.50 9.06

Ungated Static CT 5.25 5.15
Ungated averaged CINE-CT 5.38 5.07

Pair-wise 4.21 3.92
Pair-wise MM 6.63 6.07

Group-wise 4.42 4.21
Group-wise MM 7.64 7.03

is somewhat recovered in the registration methods. However, the methods that incorporate

a MM visually outperform the other methods, with the lesion recovered best by the group-

wise MM method.

Similar conclusions can be drawn from the profiles through the lesion (see figure 3.7).

The peak of is greater for MM methods than for MM-free methods. However, the latter

still have a larger peak than the ungated methods.

SUV results consistently show that including MMs increases the SUV when com-

pared to when one is not used (see table 3.6).
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3.5.4 Discussion

Results from a visual analysis, a comparison of profiles, and SUV, shows that adding

a MM to any motion correction method (tested here) improved the quality of volumes

produced. This indicates that for very noisy data, MMs are almost required.

An advantage of the modular framework for motion correction presented here, when

compared to the joint estimation as was used in section 3.3 and section 3.4, is that it allows

for the easy incorporation of the µ-Map alignment. In NiftyRegResp/SuPReMo (McCle-

lland et al. 2017) the input is a series of floating images and one static image (plus SS),

natively the framework would perform a pair-wise registration/MM (if the framework

was run multiple times where the static image was replaced with a resampled image then

it would be a group-wise version of the same). However, it doesn’t seem obvious how

to then incorporate the registration to the µ-Map and the composition (giving one MM

which parametrises DVFs from the floating images to the µ-Map). It may be possible to

use the µ-Map as the static input image to NiftyRegResp/SuPReMo. However, it is not

expected that this registration would perform well, for one the only objective function

available in the software package is SSD, which would fail for different modalities with

different scales and distributions. Furthermore, the work presented in this section uses

a weighted MM, where more weighting is given to volumes which contain more counts,

which also does not exist in NiftyRegResp/SuPReMo. To only enforce the µ-Map as the

reference position for the MM by using its SS value (as was done in section 3.4) was

shown to be insufficient by the bias noticeable in figure 3.3 of section 3.4.3 (furthermore,

it is not obvious how to extract the SS of a CT volume from clinical data). While it may

be technically possible to implement a joint estimation of DVFs and MM, simultaneously

for both the registration of the activity volumes and the registration to the position of

the µ-Map, it is not a straightforward endeavour (and would need to change drastically

if any part of the motion correction pipeline was to change). Therefore, where we want

to provide an extensive evaluation of different combinations of aspects of the motion

correction framework (as will appear in chapter 4) we will not jointly estimate the DVFs

and MM.

A major disadvantage of the implementation used in this section is that a diffeo-
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morphic registration method was not used. By using NiftyReg (Modat et al. 2010) through

SIRF (Ovtchinnikov et al. 2020) (or through NiftyRegResp/SuPReMo (McClelland et

al. 2017) as in section 3.3 and section 3.4) diffeomorphic registration was not possible

due to software limitations. This is a major disadvantage as non-diffeomorphic registra-

tions can cause folding, which is non-anatomical and makes inverting the resulting DVF

problematic, while inverting the DVF is a core aspect of the methods presented here.

While this section used more realistic simulations than the previous ones, see

table 3.5, the data and acquisition simulation continues to make some unrealistic choices.

For computational purposes the acquisition is still simulated as a 2D acquisition. The TOF

resolution is higher than the simulated GE Discovery 710 (although PET/CT scanners

with even higher TOF resolution do exist). This will be rectified in chapter 4.

Despite these limitations, the findings from this section validate the potential of

MMs-based motion correction and establish a foundation for extending these methods to

more realistic and clinically relevant scenarios.

3.6 Discussion and Conclusion
The methods implemented in this chapter ignore the existence of methods such as MLAA

and MLACF, as discussed previously in section 2.2.3.1 and section 2.4.3. Relatively sat-

isfactory results were obtained on the data as simulated here. This does not mean though

that motion correction would not benefit from an improved reconstruction, especially in

situations where the quality of the data are worse. This will be further investigated in the

next chapter.

Furthermore, the SS used during the XCAT simulation, for most of this work, is

identical (but flipped) for both the AP and SI motion (where the XCAT and RPM respirat-

ory traces are used in section 3.3.4 and section 3.4). This means that there is no hysteresis

in the motion, which is unrealistic. This could be solved by giving separate signals (a 2D

signal, for instance as in section 3.5 where a 2D respiratory trace was acquired from MR)

for both the AP and SI motion, which are captured using an MR scanner, rather than a

1D signal captured from a RPM. This has begun to be addressed by using an MR derived

signal in section 3.5.

The lesion used to demonstrate the improvement by the motion correction method
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was unreasonably large. Because of the size of the lesion motion correction wouldn’t be

needed to identify and locate it. In order to better highlight the advantage of the motion

correction method a smaller lesion placed closer to the diaphragm should be used. This

also has begun to be addressed in section 3.5.

The method to simulate the PET acquisition in this chapter has some limitations.

Firstly, in the work presented here, a relatively high count rate is used for the noise caused

by the PET acquisition physics. In the next chapter we will examine how the motion

correction methods perform under more strenuous circumstance, for instance, research

scan count rate levels. Additionally, in both section 3.3.2.2 and section 3.4.2.2, no random

or scatter simulation were used, while in section 3.5 pseudo-random and scatter were used.

The reason for a lack of random or scatter simulation was because the software available

did not provide this functionality when using TOF simulations.

Furthermore, as discussed in section 3.5.4, the TOF resolution used in this work, so

far, does not reflect any current scanner. This will be addressed in the following chapter.

In the initial experiments, the registrations performed as part of the motion modelling

were fit using SSD. This objective function is sensitive to differences in the magnitude

of the input. If gates are registered to a mean volume, as in group-wise registration

seen earlier in section 2.6.4, then the magnitude of the inputs will almost never be equal,

although this problem could be solved by preprocessing the data. Additionally, if SSD

was used to register a PET activity distribution to a CT µ-Map, it would also fail. This

was addressed in section 3.5 where NMI was used. However, the method used did not fit

the motion correction and MM simultaneously.

Alternatively, because a MM does not need to be fit on the data it is applied to,

the MM could be fit on coarsely gated data and applied to finely gated data. This is an

advantage unique to MMs and is also something that, as far as we know, has not yet

been attempted in PET. This is advantageous because for a 1D MM technically only two

data points are required to fit it (as it is fitting a line), for a 2D MM three data points

are required to fit is (as it is fitting a plane). Using 30 data points, as in section 3.5,

is redundant an could actually lower the quality of the MM due to the noise in the

reconstructions. However, more gates are advantageous when forming a final motion

compensated reconstruction. In an ideal world, the maximum number of gates should
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be used during the motion compensated reconstruction such that all motion, which can

be differentiated based on the resolution of the scanner, is accounted for. MMs hold the

unique advantage that they can be fit on and applied to different numbers of data points,

the only requirement is that the SS values remain consistent.

There are many different variations on motion correction, we have shown in this

chapter that we have comparable results to other motion correction work, as presented in

section 2.6.7. We will go on to demonstrate in the next chapter that we have continued

development of the general modular framework, first presented in section 3.5. This will

allows for the fair comparison of aspects of different motion correction methods.

Further limitations and future developments are discussed in chapter 6.
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Chapter 4

Applying Motion Correction Utilising

Motion Modelling to Realistic

Simulations

4.1 Overview
This chapter presents the next stage in the development of motion correction methods

for PET/CT, building on the feasibility study introduced in Chapter 3. That preliminary

study was valuable for testing core components of the framework-such as DVF estimation

and MM fitting-but relied on simplified simulation data. At the beginning of the previous

chapter these idealised conditions did not reflect the complexity of real clinical scenarios,

overlooking key challenges such as variability, noise, TOF resolution, and (to a degree)

µ-Map mismatch. Advances were made towards the end of the previous chapter but there

was still room for improvement.

To address these limitations, this chapter presents an enhanced evaluation of the

motion correction framework under more realistic settings. While still based on synthetic

data, simulations are designed to better reflect patient-like conditions by incorporating

realistic respiratory motion, attenuation effects, and scanner-specific characteristics. Fur-

thermore, this chapter introduces the use of MLACF reconstruction in conjunction with

the existing MM. This enables joint estimation of activity and attenuation in the presence

of motion, allowing the framework to be assessed under conditions that more closely

resemble real-world PET/CT imaging.



4.2. Introduction

The first section of this chapter introduces work to investigate the impact of using

MMs to allow for motion correction to be performed on coarsely gated data and then

applied to finely gated data. This addresses a practical constraint in clinical workflows,

where high gating resolution is often limited by count statistics. This is also a novel

approach that to our knowledge has not been attempted in PET/CT (Whitehead et al.

2022c).

The second section of this chapter highlights an evaluation of the impact of 2D and

1D gating as well as showing the impact of using MLACF or OSEM for reconstruction

prior to motion correction. These comparisons help assess how reconstruction method

and gating strategy affect the accuracy and robustness of motion correction under more

realistic conditions.

The third section of this chapter utilises the same framework as the second section

of this chapter, however it seeks to evaluate the method further. Specifically, this section

investigates the impact of lesion size on motion correction capabilities. Here we attempt

to find if the motion correction fails for much smaller lesions and what impact this has on

the final reconstructed image.

Finally, the fourth section of this chapter discusses the problems or limitations of

the work performed in the previous three sections with reference to where problems and

limitations highlighted in section 3.6 have been addressed.

4.2 Introduction
In the previous chapter, a flexible framework for motion correction of high TOF resolution

PET data was introduced, where the reference was set to the position of a breath hold µ-

Map. Preliminary experiments indicated that the combination of both the MM and TOF,

allowed to estimate the motion on volumes reconstructed without AC, while obtaining

good alignment with the µ-Map, increasing resolution and quantification accuracy (for

simulations with high TOF resolution and count levels). However, in preliminary invest-

igations of situations with low contrast lung tumours, we observed that the registration of

the NAC volumes was very challenging. This chapter therefore seeks to extend upon the

previous chapter by incorporating an approach suggested by (Lu et al. 2018): as opposed

to estimating the motion on NAC OSEM volumes, Lu et al. used MLACF reconstructions
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for the motion estimation. MLACF (Nuyts et al. 2012) provides volumes with greater

contrast than NAC, without introducing bias due to misalignment with a fixed µ-Map,

see section 2.2.3.1, section 2.4.3, and section 3.5.4, while still offering relatively fast

computation time.

However, as MLACF attempts to find an ACF for every sinogram bin, it requires

data with more counts to function. To avoid intra-gate blurring, it is advantageous to use a

high number of gates (e.g., 30). When using MLACF, a majority of the gates would have

too few counts to produce meaningful reconstructions. This is where a further benefit of

the MM method shines. As discussed in section 2.2.3.1 and in section 4.1, it is possible to

fit a MM on different data to which it is applied to (as long as the SS remains consistent).

Therefore, it may be possible to fit a MM on data which has been coarsely gated into few

bins, and then apply this MM to data which has been finely gated.

This chapter extends the method of the previous chapter in several ways. Firstly, by

incorporating MLACF as an initialisation technique (for the motion estimation). Secondly,

low noise low temporal/gate resolution data is used to fit the MM, while high noise

high temporal/gate resolution data is used for the output. This potentially allows for

reduced mis-registration, as well as improving computation time. Thirdly, a diffeomorphic

symmetric velocity field parameterised registration was used, which provided DVFs free

from folding. In addition, the methods are tested on realistic simulations and count levels

(similar to patient data from research study performed at our institution)..

A method incorporating MMs for dynamic PET/CT, was proposed in (Chan et al.

2018). Additionally, a method incorporating MLACF for PET/CT, was presented in (Lu

et al. 2018). The work displayed here, differentiates itself, not only by the ways mentioned

above (for instance, course fitting of the MM, fine application of the MM), but also by

using a 2D SS (rather than a 1D SS). Thus, allowing more general parametrisation of the

motion (here in terms of both displacement and velocity). Additionally, the group-wise

method, presented here, makes use of an iterative motion correction algorithm, rather than

relying only on a pair-wise method, as was used in the work mentioned above.
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4.3 PET/CT Motion Correction Exploiting Motion Mod-

els Fit on Coarsely Gated Data Applied to Finely

Gated Data

4.3.1 Introduction

As discussed above, it is desirable to use a motion estimation method which uses MLACF

reconstructions as part of the MM fitting (Whitehead et al. 2022c), but this exacerbates

problems with low count data. This section investigates the impact of gating coarseness

on motion estimation performance, with respect to the noise present in each gate.

In preparation for a more complete evaluation in the next section, this section also

addresses some of the limitations highlighted in section 3.5.4 and section 3.6.

Firstly, the data used in this work is made more realistic and challenging by compar-

ing to the late time point of the dynamic PET research data used in chapter 5. Therefore,

the count rates (trues, scatter and randoms) are taken as an average of the count rates for

the patients used in chapter 5. Furthermore, the pseudo-scatter simulation was improved

such that the profile of the scatter is matched as closely as possible to the patient data.

This is achieved by smoothing the µ-Map using a Gaussian smoothing with a 128.0 mm

FWHM and forward projecting.

Secondly, the software was improved such that a fully diffeomorphic (velocity field

parametrised and fit symmetrically, from floating to reference frame and from reference

to floating frame) registration method is used throughout.

4.3.2 Methods
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Table 4.1: This table shows a short summary of the highlights of the methods used in section 3.5
and section 4.3. This table is useful for quickly referencing the changes between
sections. To see the development of the method throughout the thesis please see
table A.1 in appendix A.

Method
Details

Data Reconstruction Motion Estimation

Section 3.5
• XCAT:

– 12.0 mm lesion

– 2D MR respiratory traces

– Hysteresis

– 240 volumes

– Intra-gate motion

• Simulation:

– 2D Simulation

– 120 s simulation

– European clinical count
rate (True 48 KCPS)

– 375.0 ps TOF resolution

– Pseudo scatter (triangle fil-
ter 22 voxels, 39 KCPS)
and random (56 KCPS)
events

• Gating:

– 2D PCA respiratory SS

– 30 respiratory bins (10 dis-
placement, 3 gradient)

• Reconstruction for motion es-
timation:

– NAC OSEM (2 iterations,
24 subsets)

– Replication of end slices to
size of µ-Map

– Gaussian post-smoothing
(2 times voxel size)

• Motion compensated recon-
struction:

– AC OSEM (2 iterations, 24
subsets)

– Gaussian post-smoothing
(6.39 mm FWHM trans-
verse, 3.27 mm axial)

• Registration:

– Non-diffeomorphic

– NMI objective function

– Tuned CPG spacing (12
times voxel size), bend-
ing energy (1e−4 activ-
ity, 1e−2 attenuation),
and number of iterations
(8)

– Multi-resolution registra-
tion (4 levels)

– Pair- and group-wise regis-
tration

– Activity and attenuation
DVF composed

• MM:

– With and without MM

– MM fit only at highest res-
olution level

– Weighted (counts) linear re-
gression MM

– 2D respiratory SS
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Method
Details

Data Reconstruction Motion Estimation

Section 4.3
• XCAT:

– 12.0 mm lesion

– 2D MR respiratory traces

– Hysteresis

– 480 volumes

– Intra-gate motion

• Simulation:

– 2D Simulation

– 240 s simulation

– European (late dynamic)
research count rate
(41 KCPS)

– 375.0 ps TOF resolution

– Pseudo scatter (Gaussian
smoothing 128.0 mm
FWHM, 29 KCPS)
and random events
(57 KCPS)

• Gating for motion estimation:

– 2D PCA respiratory SS

– 30 respiratory bins (10 dis-
placement, 3 gradient) or

– 4 radial pseudo-phase gates

• Gating for motion com-
pensated reconstruction:

– 2D PCA respiratory SS

– 30 respiratory bins (10 dis-
placement, 3 gradient)

• Reconstruction for motion es-
timation:

– AC MLEM initialisation (1
iteration)

– MLACF (7 activity itera-
tions, 24 subsets, 9 atten-
uation iterations)

– Quadratic prior (1.0)

– ACF initialised with ones

– Activity volume and ACF
standardised between it-
erations

– Replication of end slices to
size of µ-Map

– Gaussian post-smoothing
transverse (6.4 mm
FWHM)

– ‘Normal’ Z-filter axially
(1.0, 4.0, 1.0 convolu-
tion)

• Motion compensated recon-
struction:

– AC OSEM (2 iterations, 24
subsets)

– Gaussian post-smoothing
transverse (6.4 mm
FWHM)

– ‘Normal’ Z-filter axially
(1.0, 4.0, 1.0 convolu-
tion)

• Registration:

– Diffeomorphic (velocity
field parametrised,
symmetric)

– NMI objective function

– Tuned CPG spacing
(8 times voxel size),
bending energy (1e−4
activity, 1e−2 attenu-
ation), and number of
iterations (5)

– Multi-resolution registra-
tion (5 levels)

– Pair-wise registration ini-
tialisation

– Group-wise registration

– Activity and attenuation
DVF composed

• MM:

– MM fit between each resol-
ution level

– Weighted (counts) linear re-
gression MM

– 1D or 2D respiratory SS

General overview of the method: MLACF (coarsely gated), motion estimation and align-

ment of µ-Map, final AC OSEM reconstruction incorporating motion and µ-Map align-

ment (finely gated).

AC volumes are reconstructed using MLACF (both ‘phase’ gated into four and amp-

litude gated into 30 bins), as seen in section 4.3.2.1, section 4.3.2.2, and section 4.3.2.3.

These volumes are used as input for group-wise registration and MM estimation, as seen

in section 4.3.2.4. The reference PET volume, from the previous step, is then registered to

a single µ-Map, at end inhalation. The resultant MM and its inverse are used to perform

a motion compensated AC reconstruction, as seen in section 4.3.2.5.

For validation, XCAT simulations are used, for one bed position, with a FOV includ-
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ing the base of the lungs and the diaphragm. The output for data ‘phase’ gated into four

and amplitude gated into 30 bins is evaluated against the following. Firstly, the above pro-

cedure was additionally performed (for both data ‘phase’ gated into four and amplitude

gated into 30 bins) where the registration and MM fitting was performed on noiseless data.

Secondly, a non-motion corrected reconstruction of the same data (using a single static

µ-Map and a µ-Map averaged from CINE-CT for attenuation correction). Evaluations

performed included a visual analysis (Structural Similarity Index Measure (SSIM) (Wang

et al. 2004)), an examination of profile, and SUV analysis, seen in section 4.3.2.6.

4.3.2.1 XCAT Volume Generation

XCAT (Segars et al. 2010) was used to generate 480 volumes over a 240 s period, using

respiratory traces, derived from 2D MR patient data, as was previously discussed in

section 3.5.4 and section 3.6. This means that because the XCAT receives two different

signals for the AP and SI motion then they can move independently from one another (in

a realistic way), which introduces hysteresis into the data. The maximum displacement

of AP and SI motion, was set to 1.2 cm and 2.0 cm respectively. Activity concentrations

were derived from a static [18F]-FDG patient scan. The FOV included the base of the

lungs, diaphragm, and the top of the liver. A 12 mm diameter spherical lesion (smaller

than the max displacement due to respiratory motion) was placed into the base of the right

lung (within the maximum displacement due to respiratory motion of the diaphragm).

4.3.2.2 PET Acquisition Simulation

PET acquisitions were simulated (and reconstructed), using STIR (Thielemans et al.

2012), (Efthimiou et al. 2019b) through SIRF (Ovtchinnikov et al. 2020), to forward

project data using the geometry of a GE Discovery 710. 2D simulations were used to

reduce computation time. TOF mashing was incorporated to reduce computation time,

resulting in 13 TOF time bins of size 376.5 ps. Attenuation was included using the relev-

ant µ-Maps generated by XCAT. For information related to the geometry of the scanner

and the specifics of the volumes and sinograms used please see section 3.3.2.2.

Pseudo-randoms and scatter were added. Randoms were added by summing a scaled

uniform forward projection to the simulation sinogram to obtain the same randoms-to-

trues ratio as observed in the clinical data. Pseudo-scatter was added by summing a
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Figure 4.1: This figure shows an example of the amplitude and gradient 2D SS gating technique
as compared to examples of the pseudo-phase based gating technique. On the right of
this image is a more traditional gating technique, here using 10 amplitude gates and
three gradient gates. The next four images show the pseudo-phase based gating with
two, three, four, and eight radial bins, plus an example of how a circular separation
can be used for deep and shallow breaths.

scaled and smoothed forward projection of the activity data at each time point to the

simulation sinogram. The smoothing parameter was optimised to give scatter with a

similar distribution to a late time point dynamic PET data. A full scatter simulation was

not performed due to software limitations.

Noise was simulated, such that data matched a single bed position acquisition over

240 s. The count rate was selected to match that of research scans (41 KCPS true counts),

below that of diagnostic clinical scans. This count rate was selected as a ‘worst case

scenario’.

A respiratory SS was generated using PCA (Thielemans et al. 2011). The value of

this signal, and its gradient, was used for gating. For MM estimation, data were initially

pseudo-phase gated. The data was displacement and gradient gated into four bins, where

each bin was a quadrant centred on the maximum or minimum of the displacement or

gradient. This is useful as it gives a small number of gates while allowing to fit a 2D

MM (a plane). For the purpose of the MM fitting, SS values were determined for the

post-gated data by taking an average of the SS values in each bin.

The ‘phase’ gating mentioned above differs from traditional phase gating (assigning

a percentage from end-inhalation to end-inhalation, for instance, as discussed in sec-

tion 2.6.2). The inspiration for this method was, when plotting the 2D SS it was noted that

it follows a circular path, where the width of this path is the breath to breath variability.

If using a more traditional 2D gating technique, like in section 3.5, this is like imposing a
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regular grid over the circular 2D SS. Therefore, it seems natural to use a gating technique

based on bisecting this circle. The gates can be described by the angle of the circle that

they cover, for instance if two gates are used they cover 180.0° each, three cover 120.0°

each, four cover 90.0° each, and eight cover 45.0° each. It is also possible to extend this

method to differentiate deep and shallow breaths by bisecting the circle of the SS with

one or more additional circles. A graphical example of these concepts can be seen in

figure 4.1

4.3.2.3 MLACF Image Reconstruction

Data were reconstructed using MLACF (described in section 2.4.3), with seven full it-

erations and 24 subsets for the activity update, and nine iterations for the attenuation

update (Nuyts et al. 2012). MLACF was initialised using one iteration of MLEM, where

the breath hold CT was used for attenuation correction (the ACF were still initialised with

all ones), this gave a small improvement to results without introducing bias. Between

iterations, the activity volume and ACF sinogram were normalised (scaled to the same

magnitude as an equivalent volume/sinogram filled with ones), and a small value (epsilon)

was added to each voxel, this was to aid with stabilising the reconstruction. A quadratic

prior was included in the reconstruction (this is as was discussed in section 2.4.2), to

promote smoothness of the ACF sinogram.

4.3.2.4 Registration and Motion Model Estimation

Before being registered, each volume underwent pre-processing, including replication

of end-slices, smoothing, and standardisation. This pre-processing was only applied to

intermediate data, and was not used for the final output of the method.

Group-wise registration was used, where after an initial pair-wise registration step

(the reference volume for pair-wise registration was selected as the one which most data

was binned into), a new reference volume was resampled. Registration to the new ref-

erence volume, followed by another resample, continued for a set number of iterations.

NiftyReg (Modat et al. 2010) was used to perform registrations, using a diffeomorphic

symmetric velocity field B-spline parametrisation. CPG spacing of the B-spline coeffi-

cients, bending energy regularisation term weight, and number of iterations were tuned

using a grid search.
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Between each iteration, the resampled volume was registered to the position of

the µ-Map. The DVFs for both the group-wise registration, and µ-Map registration

were composed together to form one final DVF. With the diffeomorphic nature of the

registration, this would give a MM (after the MM is fit) which could generate DVFs to

and from the gates to the µ-Map.

MMs were fit as a direct RCM on the DVFs, from section 4.3.2.4 and the SS from

section 4.3.2.2. A weighted linear regression was used, where the weighting was taken

based on the number of counts in each gate. Once a MM was fit, new DVFs were

generated for each gate, using the SS values that were used to fit the MM. MM fitting

occurred between iterations, the DVFs generated by the MM were used to resample the

new target volume at each iteration.

A multi-resolution approach to registration is common (Modat et al. 2010). This is

where the images are downsampled and a registration is applied to these low resolution

images, then the resolution of both the images and the DVF are increased until they return

to their original resolution. This is beneficial as it allows for the macro elements of the

image to be aligned before focussing on higher frequency information. This provides

benefits in situations where there is noise and also where there are flat regions of the

image. Previously, in section 3.5 the MM was only fit on the highest level resolution DVF.

Here however, the MM is fit at every resolution level of the registration.

4.3.2.5 Motion Corrected Image Reconstruction with Attenuation Cor-

rection

Data were re-gated, using the value of SS, and its gradient, to gate data into 30 respiratory

bins (10 displacement and three gradient bins).

Data were re-reconstructed with attenuation correction, deforming the µ-Maps, using

the inverse of the DVFs determined by the MM from section 4.3.2.4. For reconstruction,

OSEM was utilised, with two full iterations and 24 subsets (as in clinical practice) (Hud-

son and Larkin 1994). Motion correction was then applied, using DVFs determined by

the MM from section 4.3.2.4. This is a standard method once motion and AC position is

known (Kyme and Fulton 2021), (Fayad et al. 2015), (Meng et al. 2023), (Pösse et al.

2020), see section 2.6.6. Volumes were post-filtered as in clinical practice, employing
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Figure 4.2: First row contains, AC motion corrected reconstructions (plus SSIM to the ground
truth). Second row contains the results of applying the final MM on the original
XCAT volumes. This is using a MM fit on four and 30 gate binned data applied to 30
gate binned data, a MM fit on noiseless four and 30 gate binned data applied to 30
gate binned data, and ungated data AC with a static µ-Map at end inhalation and all
µ-Maps summed. Colour map ranges are consistent for all images in each row.

a Gaussian smoothing, with a FWHM of 6.4 mm in the transverse plane, and a ‘normal’

Z-filter, a GE specific post-processing step where the image is convolved in the axial

direction with a kernel containing 1,4,1 (normalised).

4.3.2.6 Evaluation

The motion estimation was evaluated on both noiseless and noisy data. This results in

six cases to be evaluated: where data has been pseudo ‘phase’ gated into four bins or 30

bins (10 displacement and three gradient), both with and without noise, where gating (and

therefore motion correction) has not been applied and AC has been applied with a static

µ-Map at end inhalation, and where gating (and therefore motion correction) has not been

applied and AC has been applied with a µ-Map which is an average of all µ-Maps (to

emulate an averaged CINE-CT). For the present evaluation, the volumes without motion

correction were registered to the position of the end inhalation µ-Map.

As in the previous chapter, DVFs generated by each method were also applied to the

original XCAT volumes, for visual analysis. Other comparisons made included SSIM to

the ground truth (Wang et al. 2004), (Wang and Bovik 2009), a profile over the lesion,

and SUVmax and SUVpeak (defined following EANM guidelines (Boellaard et al. 2015)).

4.3.3 Results

A visual comparison of the reconstructed images (see figure 4.2) shows that the high noise

high temporal/gate resolution method performs quite poorly, most probably due to the

high level of noise apparent in the volumes. Conversely, the low noise low temporal/gate

resolution data method appears to be able to motion correct the data without being too
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Figure 4.3: A profile through the lesion in the SI direction, summed over a window in the AP
and Lateral Medial (LM) directions, with median smoothing, for the ground truth
XCAT data, a MM fit on four and 30 gate binned data applied to 30 gate binned data,
a MM fit on noiseless four and 30 gate binned data applied to 30 gate binned data,
and ungated data AC with a static µ-Map at end inhalation and all µ-Maps summed.

Table 4.2: Comparison of SUVmax and SUVpeak, for the ground truth XCAT data, a MM fit on
four and 30 gate binned data applied to 30 gate binned data, a MM fit on noiseless four
and 30 gate binned data applied to 30 gate binned data, and ungated data AC with a
static µ-Map at end inhalation and all µ-Maps summed.

SUV Max Peak
Ground Truth 8.76 7.96
Four Gate MM 8.04 6.18

30 Gate MM 1.77 1.32
Four Gate Noiseless MM 8.05 6.24

30 Gate Noiseless MM 7.96 5.99
Ungated, Static CT 6.61 5.08

Ungated, averaged CINE-CT 5.65 4.44
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adversely affected by the noise level.

The peak of the profile (see figure 4.3) for the four gate MM results is comparable

to the noiseless results. In contrast, the 30 gate MM method fails on the noisy data. For

all other motion correction methods, the peak is greater than without motion correction.

SUV (and SSIM) results confirm the above (see table 4.2).

4.3.4 Discussion

Results show that using a low number of gates for MM fitting drastically improves motion

correction when there is a high level of noise in the gates, while having minimal impact

at low noise. In addition, the execution time using a reduced number of gates is lower.

A key limitation of this section, as well as the preceding ones, stems from two

principal issues related to the simulated data and acquisition process. Firstly, although

the simulations were configured with a count rate and scanner geometry consistent with

the GE Discovery 710 system, they employed an enhanced TOF resolution representative

of a more modern PET/MR scanner. For the evaluation presented here to reliably inform

the method’s application to clinical data, the simulation conditions must accurately reflect

the characteristics of the target system. Therefore, it is essential that the method be tested

using data that incorporates the actual TOF resolution of the GE Discovery 710.

Secondly, all simulations conducted thus far have used 2D PET acquisition models.

While this decision may be justified by the considerable computational cost of 3D simula-

tion (particularly when MLACF is included), it is nevertheless important to demonstrate

that the method remains valid under more realistic 3D conditions. Ensuring that the ap-

proach performs robustly in such settings is critical for supporting its eventual clinical

translation.

A secondary limitation of the work so far is that there has been no example of the

affect of the number of gates used or the dimensionality of the SS. Previously 30 bins (10

amplitude and three gradient) were selected because 10 amplitude bins are sufficient to

cover the range of motion present in the data based on the resolution of the scanner, and

three gradient bins cover where the signal is increasing in value, decreasing in value, and

is stationary. Four pseudo-phase bins were selected as they were a convenient number for

both the pseudo-phase gating and the MM fitting. However, it has not been demonstrated
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if this is a sensible assumption. Furthermore, it has been claimed that a 2D SS is necessary

to model hysteresis in the MM, however it has not been shown what impact this has on

the motion correction and the reconstruction.

These limitations will be addressed in the next section.

4.4 Evaluation of PET/CT Motion Correction Incorpor-

ating Motion Models Using MLACF and Complex

Gating Schemes

4.4.1 Introduction

This section evaluates the method presented in section 4.3 on simulation data that are

made as similar as possible to GE Discovery 710 patient data mentioned in section 4.3.2,

specifically by using a 3D PET simulation and the TOF resolution of the GE Discovery

710 (550.0 ps) (as opposed to the higher resolution used in previous results).

Where not otherwise stated, the methods used here followed section 4.3. However,

to be able to handle 3D PET data, the MLACF and registration methods were made more

robust and stable, compared to what was used in section 4.3. The improvements made

to MLACF here are specifically tailored to motion correction and were evaluated by the

improvement they afforded to the registration.

The section presents an evaluation of the impact of including MLACF (vs NAC or

AC OSEM) as well as various gating schemes (including the use of 2D SSs).

4.4.2 Methods
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Table 4.3: This table shows a short summary of the highlights of the methods used in section 4.3
and section 4.4. This table is useful for quickly referencing the changes between
sections. To see the development of the method throughout the thesis please see
table A.1 in appendix A.

Method
Details

Data Reconstruction Motion Estimation

Section 4.3
• XCAT:

– 12.0 mm lesion

– 2D MR respiratory traces

– Hysteresis

– 480 volumes

– Intra-gate motion

• Simulation:

– 2D Simulation

– 240 s simulation

– European (late dynamic)
research count rate
(41 KCPS)

– 375.0 ps TOF resolution

– Pseudo scatter (Gaussian
smoothing 128.0 mm
FWHM, 29 KCPS)
and random events
(57 KCPS)

• Gating for motion estimation:

– 2D PCA respiratory SS

– 30 respiratory bins (10 dis-
placement, 3 gradient) or

– 4 radial pseudo-phase gates

• Gating for motion com-
pensated reconstruction:

– 2D PCA respiratory SS

– 30 respiratory bins (10 dis-
placement, 3 gradient)

• Reconstruction for motion es-
timation:

– AC MLEM initialisation (1
iteration)

– MLACF (7 activity itera-
tions, 24 subsets, 9 atten-
uation iterations)

– Quadratic prior (1.0)

– ACF initialised with ones

– Activity volume and ACF
standardised between it-
erations

– Replication of end slices to
size of µ-Map

– Gaussian post-smoothing
transverse (6.4 mm
FWHM)

– ‘Normal’ Z-filter axially
(1.0, 4.0, 1.0 convolu-
tion)

• Motion compensated recon-
struction:

– AC OSEM (2 iterations, 24
subsets)

– Gaussian post-smoothing
transverse (6.4 mm
FWHM)

– ‘Normal’ Z-filter axially
(1.0, 4.0, 1.0 convolu-
tion)

• Registration:

– Diffeomorphic (velocity
field parametrised,
symmetric)

– NMI objective function

– Tuned CPG spacing
(8 times voxel size),
bending energy (1e−4
activity, 1e−2 attenu-
ation), and number of
iterations (5)

– Multi-resolution registra-
tion (5 levels)

– Pair-wise registration ini-
tialisation

– Group-wise registration

– Activity and attenuation
DVF composed

• MM:

– MM fit between each resol-
ution level

– Weighted (counts) linear re-
gression MM

– 1D or 2D respiratory SS
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Method
Details

Data Reconstruction Motion Estimation

Section 4.4
• XCAT:

– 12.0 mm lesion

– 2D MR respiratory traces

– Hysteresis

– 480 volumes

– Intra-gate motion

• Simulation:

– 3D Simulation

– 240 s simulation

– European (late dynamic)
research count rate
(41 KCPS)

– 550.0 ps TOF resolution

– Pseudo scatter (Gaussian
smoothing 128.0 mm
FWHM, 29 KCPS)
and random events
(57 KCPS)

• Gating for motion estimation:

– 1D or 2D PCA respiratory
SS

– 30 respiratory bins (10 dis-
placement, 3 gradient) or

– 5 respiratory bins (5 dis-
placement, 1 gradient) or

– 3, 4, 8, or 12 radial pseudo-
phase gates

• Gating for motion com-
pensated reconstruction:

– 1D or 2D PCA respiratory
SS

– 30 respiratory bins (10 dis-
placement, 3 gradient)

• Reconstruction for motion es-
timation:

– AC OSEM initialisation (2
iterations, 24 subsets)

– MLACF (3 activity itera-
tions, 24 subsets, 1 atten-
uation iterations)

– ACF initialised with µ-Map

– Activity volume scale set
to OSEM reconstruction
and

– ACF scale set to µ-Map
between iterations

– Re-interpolation of outliers
between iterations

– Smoothing of endplanes
between iterations

– Median smoothing (kernel
size 3) between iterations

– Sinogram mashing in atten-
uation update (1, 7, 2,
3 mashing factor respect-
ively)

– Filled with Not a Numbers
(NaNs) to size of µ-Map

• Motion compensated recon-
struction:

– AC OSEM (2 iterations, 24
subsets)

– Gaussian post-smoothing
transverse (6.4 mm
FWHM)

– ‘Normal’ Z-filter axially
(1.0, 4.0, 1.0 convolu-
tion)

• Registration:

– Diffeomorphic (velocity
field parametrised,
symmetric)

– NMI objective function

– Tuned CPG spacing (13
times voxel size) and
bending energy (1e−1 at-
tenuation)

– Multi-resolution registra-
tion (4 levels)

– Iterations used at resolution
level: 2, 2, 2, 5

– Pair-wise registration ini-
tialisation

– Group-wise registration

– Activity and attenuation
DVF composed

• MM:

– MM fit between each resol-
ution level

– Weighted (counts) linear re-
gression MM

– 1D or 2D respiratory SS

General overview of the method: MLACF (coarsely gated), motion estimation and align-

ment of µ-Map, final AC OSEM reconstruction incorporating motion and µ-Map align-

ment (finely gated). A high level overview of the method as well as pseudocode will be

presented with the final evaluation of the method in section 4.5.

AC volumes are reconstructed using MLACF (as well as using AC and NAC OSEM

for comparison) with improvements for stability (‘phase’ gated into three, four, eight,

and 12 bins and amplitude gated into five and 30 bins), as seen in section 4.4.2.1 and
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section 4.4.2.2. These volumes are taken as input for a multi-resolution group-wise

registration and MM estimation. The reference PET volume, from the previous step, is

registered at each iteration to a single µ-Map, at end inhalation. The resultant MM and

its inverse are used to perform a motion compensated AC reconstruction, all as seen in

section 4.4.2.3.

For validation, XCAT simulations are used, for one bed position, with a FOV in-

cluding the base of the lungs and the diaphragm. The output for data ‘phase’ gated into

three, four, eight, and 12 and amplitude gated into five and 30 bins are evaluated against

the following. Firstly, a ground truth XCAT volume. Secondly, a non-motion corrected

reconstruction of the same data (using a single static µ-Map for attenuation correction).

Evaluations performed included a visual analysis (Perception Based Image Quality Eval-

uator (PIQE) (Venkatanath et al. 2015)), an examination of profile, and SUV analysis,

shown in section 4.4.2.4.

4.4.2.1 XCAT Volume Generation and PET Acquisition Simulation

XCAT volumes were acquired in the same way as in section 4.3.2.1.

PET acquisitions were simulated (and reconstructed) similarly to in section 4.3.2.2.

However, a great deal of care was taken to ensure the simulated data matched real GE

Discovery 710 patient data as closely as possible. Count levels were set to those from a

research study (which used the GE Discovery 710, the same data discussed in section 4.3.2

and used in chapter 5). The TOF resolution used for simulation was the same as the GE

Discovery 710 PET/CT (550.0 ps), rather than the improved TOF resolution from the GE

Signa PET/MR (375.0 ps, as was used in all previous work). Pseudo-randoms and scatter

were added in a similar way as in section 4.3.2.2. Furthermore, for the first time, 3D

acquisition data was used rather than 2D. The change to 3D acquisition data may seem

negligible for the evaluation of a motion correction algorithm, however, when MLACF is

introduced, the change to 3D data becomes more significant. Previously, 2D simulations

and reconstruction were used purely for computational efficiency. Beyond the importance

of aligning the simulations with real GE Discovery 710 patient data, ensuring that the

simulated conditions closely reflect those of the scanner increases the likelihood that the

method will generalise effectively to clinical data.
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A respiratory SS was generated employing PCA (Thielemans et al. 2011). The value

of this signal, and its gradient was used for gating (where appropriate). Multiple gating

schemes were utilised for MM estimation. These gating schemes were as follows.

• ‘Phase’ gating follows the same scheme as used in section 4.3.2.2. In the case of

Four Phase, the data was displacement and gradient gated into four bins, where

each bin was a quadrant centred on the maximum or minimum of the displacement

or gradient. However, there do not necessarily have to be exactly four bins. Thus,

for Eight Phase and Twelve Phase it is as if each quadrant from Four Phase is split

equally into two or three further bins respectively. For Three Phase the ‘circle’ of

the 2D SS is instead split into three one third sectors (or 120.0° sectors).

• Amplitude gating follows the same scheme as used in section 3.5.2.2. In the case of

Thirty Amplitude, the magnitude of the SS and its gradient, was used to gate data

into 30 respiratory bins using displacement gating (10 amplitude and three gradient

bins). In the case of Five Amplitude, five respiratory bins were used (five amplitude

and one gradient bin). For Five Amplitude both a 2D and 1D SS was used. The 2D

SS was utilised to mimic Thirty Amplitude. However, in the Five Amplitude case,

only one gradient bin was used. Thus, the mean value for the gradient bin was used

for each displacement bin in the Five Amplitude 2D case. In the Five Amplitude 1D

case, the gradient value was set to zero for each displacement bin (for both fitting

and during use). This is the most simple and fair way to implement a 1D SS (so

as not to change the gating and MM fitting code too drastically). However, this

does mean that the MM regression has an additional degree of freedom (the linear

regression uses an extra parameter which is always the same value).

4.4.2.2 Image Reconstruction

MLACF reconstruction mainly followed section 4.3.2.3. Three full iterations and 24 sub-

sets for the activity update, and one iteration for the attenuation update were used (Nuyts

et al. 2012). One iteration for the attenuation update was found to be sufficient. This

is the case because the first update of the ACFs was large and subsequent updates were

small. More joint iterations of activity and attenuation could be performed, in equal or
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Figure 4.4: A visual analysis which shows the results of performing different reconstruction
methods on XCAT data with a 12 mm lesion placed into the base of the right lung (the
left of this image). Where noise is present then this data represents a 60 s acquisition
on a GE Discovery 710 (roughly equivalent to one gate from a clinical acquisition).
At the top of this image is the Ground Truth image (without motion or reconstruction
artifacts), second from the top of this image is a NAC OSEM reconstruction, third
from the top of this image is a AC OSEM reconstruction using a µ-Map at a different
respiratory position than the Ground Truth, fourth from the top of this image is a
MLACF reconstruction following the literature (Nuyts et al. 2012). From the fifth
image from the top to the bottom of this image all images represent adding additional
processing steps to attempt to make the reconstructions better for motion correction.
Fifth from the top of this image is the result of initialising MLACF with a misaligned
AC OSEM reconstruction, using sinogram mashing, and fixing the scale of the image
to the scale of the misaligned AC OSEM reconstruction. Sixth from the top of this
image is the result of applying a median smoothing (with a kernel size of three) after
each activity update (and before every attenuation update). Seventh from the top of
this image is the result of interpolating any value outside three times the Inter Quartile
Range (IQR) of the image after each activity update using a linear interpolation.
The bottom of this image is the result of heavily smoothing the endplanes. All
reconstructed images include scatter and random events. All OSEM reconstructions
follow standard clinical practise (see chapter 3). For the NAC OSEM and MLACF
following the literature (Nuyts et al. 2012) the output was rescaled to the AC OSEM.
Colour map ranges are consistent for all images.
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less time, if fewer updates of the ACFs were used for each activity iteration (the updates

of the ACFs are quite time consuming).

The activity volume was initialised from a AC OSEM reconstruction (two iterations,

24 subsets) and the ACFs were initialised using the breath hold CT. Both of these initial-

isations gave a small improvement to results, compared to either initialising with a MLEM

iteration or without initialising, without introducing bias as can be seen in figure 4.4.

Between iterations, the scale of the ACF sinogram was set to the scale of the original

breath hold CT ACF, this is in order to aid with stabilising the reconstruction. This is

similar to work which (was performed simultaneously with this work) where two ACFs

were used. Here, ACFs were estimated as a correction of the CT derived ACF (Jolivet

et al. 2022). In this other work a regularisation term was also used to keep the scale of

the corrected ACFs close to the original ACFs while allowing some variation (Jolivet

et al. 2022). Although the other implementation allowed the scale of the ACFs to vary

slightly, while the work here constrained it, this is not necessarily an advantage. The

activity volume would experience cross talk from the ACFs and as such could compensate

for the fact that the scale of the ACFs was fixed. Additionally, fixing the scale of the

ACFs removes a hyperparameter (and a regularisation term) which could otherwise cause

instability. Regardless, the inclusion of this step, in both works, attempts to address the

scale issue of the original implementation of MLACF.

To aid in situations of high noise sinogram mashing was using during the attenuation

update, the mashing factors used were one, seven, two, and three in the radial positions,

angles, transaxial plane, and TOF dimensions respectively.

To further combat the instability of the MLACF algorithm (specifically when applied

to motion correction), processing of the activity volume was performed between each

iteration:

• The first step of this processing was the removal and re-interpolation of outlying

values. This is due to the fact that outlying values were seen, between iterations,

which caused the optimisation to fail. Outliers were defined as being any value

outside three times the IQR of the data. New values were interpolated using linear

interpolation.
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• The second step was to smooth the endplanes of the activity volume, due to the

endplanes exhibiting significantly more noise and outlying values than any other

slice of the volume. This noise in the endplanes was most likely caused by the

reduced sensitivity of the scanner in these areas. To aid in smoothing the endplanes

an ‘endplanes’ volume was created (this was a copy of the activity volume). Outliers

were removed from the ‘endplanes’ volume (in the same way as previously but using

only one times the IQR) before a max filter was applied across each slice (with a

kernel size of three). The ‘endplanes’ volume was then summed with the activity

volume using a ramp filter for the first and last five slices.

• The final step of the processing was to apply median filtering (with a kernel size of

three), in order to promote smoothness of the activity volume.

Reconstructions were also performed in the same way as in chapter 3 for comparison

purposes. AC and NAC OSEM (using the breath hold CT) were used with two full

iterations and 24 subsets (Hudson and Larkin 1994). For the ‘phase’ gated methods only

MLACF was used. However, for the amplitude gated methods both MLACF and OSEM

were utilised.

4.4.2.3 Registration, Motion Model Estimation, and Motion Corrected

Image Reconstruction with Attenuation Correction

Registrations performed was almost identical to section 4.3.2.4. However, in this work

without replication of the endplanes, smoothing, or standardisation. Instead the volume

was expanded with slices filled with NaNs. NaNs were used, rather than replication of the

endslice, because voxels filled with NaNs would not contribute to the objective function

calculation. Pre-smoothing was found to be detrimental to the accuracy of the registration

(regularisation of the optimisation was found to be sufficient). Standardisation provided

no benefit (as NMI was used as the objective function).

Group-wise registration was also used with a pair-wise initialisation. However, in

contrast to in section 4.3.2.4, the reference volume for pair-wise registration was selected

by finding the minimum NMI to the breath hold CT. This method for selecting the initial

reference volume was chosen as it should give both (or either, depending on the noise

levels of the input) the volume which is closest (in its respiratory position) to the µ-Map,
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Figure 4.5: AC motion corrected reconstructions (plus PIQE), where different data was used to
fit the MM and the final MM was applied to 30 gate binned data. The data used to
fit the MM was as follows. ‘Phase’ gated and MLACF reconstructed data with three,
four, eight and 12 bins respectively. A MM was also fit using a single bin, which
is practically the equivalent of doing no motion correction. Colour map ranges are
consistent for all images in each row.

or it will give the volume with the least amount of noise. Both of these properties are

beneficial for achieving a high quality end result.

The MM was applied to the task of the final motion correction in exactly the same

way as in section 4.3.2.5.

4.4.2.4 Evaluation

In addition to the reconstructions performed in section 4.4.2.3, data were also reconstruc-

ted without motion correction, using the end inhalation µ-Map. For the present evaluation,

the volume without motion correction was registered to the position of the end inhalation

µ-Map. Additionally, DVFs generated by each method were also applied to the original

XCAT volumes, for visual analysis.

Comparisons made included a visual analysis, PIQE (Venkatanath et al. 2015),

(Chan and Goldsmith 2000), a profile over the lesion, and SUVmax, SUVmedian, and

SUVpeak (defined following EANM guidelines (Boellaard et al. 2015)). PIQE is a no-

reference image quality score, which is correlated to the perceptual quality of the image.

A high score value indicates high perceptual quality and a low score value indicates low

perceptual quality (Venkatanath et al. 2015).

4.4.3 Results

A visual analysis of the ‘phase’ gated results with noise can be seen in figure 4.5 and

without noise in figure 4.10. The ‘phase’ based gating approaches using MLACF univer-

sally provided high quality results. The lesion appears more homogeneous and circular

in all motion corrected results than in the non-motion corrected result. The Three Phase

and Four Phase results are comparable and superior to the Eight Phase and Twelve Phase

results. From what was observed in section 4.3, it is to be expected that with fewer gates
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Figure 4.6: AC motion corrected reconstructions (plus PIQE), where different data was used to
fit the MM and the final MM was applied to 30 gate binned data. The data used to
fit the MM was as follows. Amplitude gated data with five bins reconstructed using
MLACF, AC OSEM, and NAC OSEM. A MM was also fit using a single bin, which
is practically the equivalent of doing no motion correction. Colour map ranges are
consistent for all images in each row.

Figure 4.7: AC motion corrected reconstructions (plus PIQE), where different data was used to
fit the MM and the final MM was applied to 30 gate binned data. The data used to
fit the MM was as follows. Amplitude gated data with five bins reconstructed using
MLACF. Here, in the 2D case a 2D SS and in the 1D case a 1D SS were used. A MM
was also fit using a single bin, which is practically the equivalent of doing no motion
correction. Colour map ranges are consistent for all images in each row.

Figure 4.8: AC motion corrected reconstructions (plus PIQE), where different data was used to
fit the MM and the final MM was applied to 30 gate binned data. The data used to
fit the MM was as follows. Amplitude gated data with 30 bins reconstructed using
MLACF, AC OSEM, and NAC OSEM. A MM was also fit using a single bin, which
is practically the equivalent of doing no motion correction. Colour map ranges are
consistent for all images in each row.

Figure 4.9: AC motion corrected reconstructions (plus PIQE), where different data was used to fit
the MM and the final MM was applied to 30 gate binned data. The methods presen-
ted here are a combination of the best one method from figure 4.5, figure 4.6, and
figure 4.8. A MM was also fit using a single bin, which is practically the equivalent
of doing no motion correction. Colour map ranges are consistent for all images in
each row.
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Figure 4.10: AC motion corrected reconstructions (plus PIQE), where different data was used to
fit the MM and the final MM was applied to 30 gate binned data. The data used
to fit the MM was as follows. ‘Phase’ gated and MLACF reconstructed data with
three, four, eight and 12 bins respectively. A MM was also fit using a single bin,
which is practically the equivalent of doing no motion correction. Here, results are
shown applied to volumes without noise. This is due to it potentially being easier to
see smaller differences between motion correction methods when noise is removed.
However, noise is still used during the motion correction process. Colour map ranges
are consistent for all images in each row.

Figure 4.11: AC motion corrected reconstructions (plus PIQE), where different data was used to
fit the MM and the final MM was applied to 30 gate binned data. The data used
to fit the MM was as follows. Amplitude gated data with five bins reconstructed
using MLACF, AC OSEM, and NAC OSEM. A MM was also fit using a single bin,
which is practically the equivalent of doing no motion correction. Here, results are
shown applied to volumes without noise. This is due to it potentially being easier to
see smaller differences between motion correction methods when noise is removed.
However, noise is still used during the motion correction process. Colour map ranges
are consistent for all images in each row.

Figure 4.12: AC motion corrected reconstructions (plus PIQE), where different data was used to
fit the MM and the final MM was applied to 30 gate binned data. The data used
to fit the MM was as follows. Amplitude gated data with five bins reconstructed
using MLACF. Here, in the 2D case a 2D SS and in the 1D case a 1D SS were used.
A MM was also fit using a single bin, which is practically the equivalent of doing
no motion correction. Here, results are shown applied to volumes without noise.
This is due to it potentially being easier to see smaller differences between motion
correction methods when noise is removed. However, noise is still used during the
motion correction process. Colour map ranges are consistent for all images in each
row.
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Figure 4.13: AC motion corrected reconstructions (plus PIQE), where different data was used to
fit the MM and the final MM was applied to 30 gate binned data. The data used
to fit the MM was as follows. Amplitude gated data with 30 bins reconstructed
using MLACF, AC OSEM, and NAC OSEM. A MM was also fit using a single bin,
which is practically the equivalent of doing no motion correction. Here, results are
shown applied to volumes without noise. This is due to it potentially being easier to
see smaller differences between motion correction methods when noise is removed.
However, noise is still used during the motion correction process. Colour map ranges
are consistent for all images in each row.

Figure 4.14: AC motion corrected reconstructions (plus PIQE), where different data was used
to fit the MM and the final MM was applied to 30 gate binned data. The methods
presented here are a combination of the best one method from figure 4.10, figure 4.11,
and figure 4.13. Here, results are shown applied to volumes without noise. This is
due to it potentially being easier to see smaller differences between motion correction
methods when noise is removed. However, noise is still used during the motion
correction process. Colour map ranges are consistent for all images in each row.

lead to better motion correction. The PIQE results support this, the values for the Three

Phase and Four Phase methods are greater than the Eight Phase and Twelve Phase meth-

ods. The PIQE values for the Three Phase and Four Phase are also greater than where no

motion correction is used and are closest to the ground truth PIQE values.

A visual analysis of the amplitude gated results using five bins with noise are shown

in figure 4.6 and without noise in figure 4.11. Here, it can be seen that MLACF (when

used with amplitude gating of five bins) significantly improves results when compared

to AC and NAC OSEM. The lesion in the MLACF example is comparable to the lesions

present in the ‘phase’ based results. However, for both the AC and NAC OSEM results

the lesion does not appear in the same location as in the ground truth and also looks very

non-homogeneous. The results from both OSEM methods actually seem to be worse than

doing no motion correction at all. The PIQE values somewhat support this, however PIQE

appears to have scored the NAC OSEM results highly. This scoring could be attributed to
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Figure 4.15: A profile through the lesion, in the SI direction, summed over a window in the AP
and LM directions, with median smoothing. This is for where different data was
used to fit the MM and the final MM was applied to 30 gate binned data. The data
used to fit the MM was as follows. ‘Phase’ gated and MLACF reconstructed data
with three, four, eight and 12 bins respectively. A MM was also fit using a single
bin, this is practically the equivalent of doing no motion correction.

Figure 4.16: A profile through the lesion, in the SI direction, summed over a window in the AP
and LM directions, with median smoothing. This is for where different data was
used to fit the MM and the final MM was applied to 30 gate binned data. The data
used to fit the MM was as follows. Amplitude gated data with five bins reconstructed
using MLACF, AC OSEM, and NAC OSEM. A MM was also fit using a single bin,
which is practically the equivalent of doing no motion correction.
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Figure 4.17: A profile through the lesion, in the SI direction, summed over a window in the AP
and LM directions, with median smoothing. This is for where different data was
used to fit the MM and the final MM was applied to 30 gate binned data. The data
used to fit the MM was as follows. Amplitude gated data with five bins reconstructed
using MLACF. Here, in the 2D case a 2D SS was used and in the 1D case a 1D SS
was used. A MM was also fit using a single bin, this is practically the equivalent of
doing no motion correction.

Figure 4.18: A profile through the lesion, in the SI direction, summed over a window in the AP
and LM directions, with median smoothing. This is where different data was used
to fit the MM and the final MM was applied to 30 gate binned data. The data used to
fit the MM was as follows. Amplitude gated data with 30 bins reconstructed using
MLACF, AC OSEM, and NAC OSEM. A MM was also fit using a single bin, which
is practically the equivalent of doing no motion correction.
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Figure 4.19: A profile through the lesion, in the SI direction, summed over a window in the AP
and LM directions, with median smoothing. This is where different data was used
to fit the MM and the final MM was applied to 30 gate binned data. The methods
presented here are a combination of the best one method from figure 4.15, figure 4.16,
and figure 4.18. A MM was also fit using a single bin, which is practically the
equivalent of doing no motion correction.

Table 4.4: Comparison of SUVmax, SUVmedian, and SUVpeak, where different data was used to fit
the MM and the final MM was applied to 30 gate binned data. The data used to fit the
MM was as follows. ‘Phase’ gated and MLACF reconstructed data with three, four,
eight and 12 bins respectively. Amplitude gated data with five bins reconstructed using
MLACF, AC OSEM, and NAC OSEM (Here, in the 2D case a 2D SS was used and
in the 1D case a 1D SS was used.). Amplitude gated data with 30 bins reconstructed
using MLACF, AC OSEM, and NAC OSEM. A MM was also fit using a single bin,
which is practically the equivalent of doing no motion correction.

SUV Max Median Peak
Ground Truth 9.03 2.47 8.20

No Motion Correction 5.69 2.12 4.31
Three Phase 8.09 2.62 5.78
Four Phase 7.48 2.65 5.75
Eight Phase 7.76 1.42 5.60

12 Phase 7.68 1.30 4.53
Five Amplitude MLACF 2D 4.06 1.75 3.33
Five Amplitude MLACF 1D 8.50 2.31 6.63
Five Amplitude OSEM 1D 4.16 1.40 2.16

Five Amplitude NAC OSEM 1D 2.64 1.34 2.24
30 Amplitude MLACF 1D 3.41 1.21 1.71
30 Amplitude OSEM 1D 2.43 1.38 1.86

30 Amplitude NAC OSEM 1D 5.64 1.28 3.37
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this image being smoother and thus potentially more perceptually pleasing.

A visual analysis of the difference between the amplitude gated results with five

bins using a 2D and a 1D SS with noise can be seen in figure 4.7 and without noise in

figure 4.12. The 2D SS was detrimental to motion correction when compared to a 1D

SS. This could be by a lack of constraint along the gradient dimension, as the 2D SS is

used for all ‘phase’ based methods, which show good results. There does not appear to

be a fair way to compare where a 1D and a 2D SS are used. In order to incorporate the

2D SS it would mean making fundamental changes to the gating of the 1D SS. If the

second dimension of the SS was only gated into two bins then it means the counts in

each bin approximately half (five amplitude bins and one gradient bin compared to five

amplitude bins and two gradient bins, five total bins compared to 10 total bins). However,

if the number of amplitude bins was halved to compensate for this then it also means

a fundamental change to the amplitude gating (six amplitude bins and one gradient bin

compared to three amplitude bins and two gradient bins).

A visual analysis of the amplitude gated results using 30 bins with noise can be seen

in figure 4.8 and without noise in figure 4.13. All methods which utilised 30 bins failed,

as in section 4.3. As with the PIQE values for the five bin methods, the PIQE values

here are high. This again could be caused by the smoothness of the images where motion

correction has failed (perceptually pleasant natural images are smooth, PIQE was not

designed for use with medical images).

A visual analysis of the best results from the previous analysis with noise can be

seen in figure 4.9 and without noise in figure 4.14. In this case, the Four Phase and

Five Amplitude methods perform relatively comparably (and significantly better than the

Thirty Amplitude results where motion correction has failed). The lesion and diaphragm

in the Four Phase and Five Amplitude cases both show a significant improvement over

where no motion correction is used. The Four Phase and Five Amplitude methods both

contain a lesion in the same location, and of a similar shape, when compared to the ground

truth. The results potentially lead to the conclusion that, with the data used here, it is more

important to use fewer bins when gating than it is to use a 2D SS (the XCAT potentially

does not have adequately complex motion to highlight the benefit of a 2D SS, for instance

lacking sliding motion). PIQE values appear potentially inconclusive when the values
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from the Thirty Amplitude method are taken into account.

A profile across the lesion for the ‘phase’ gated results are presented in figure 4.15.

Here, again it can be seen that the Three Phase and Four Phase methods provide profiles

with the highest peaks and which most closely match the ground truth. When compared to

the visual analysis, it is more obvious that there is a degradation in quality as the number

of bins used increases. The Twelve Phase method has a much lower peak which is shifted

to the left.

A profile across the lesion for the amplitude gated results using five bins is shown in

figure 4.16. The MLACF based method provides an exceptionally good profile. More spe-

cifically, the MLACF based method has a profile where the peak almost exactly matches

the ground truth. However, the width of the peak for the MLACF method is much greater

than the ground truth. The other methods shown here appear to have completely failed,

their peak is heavily shifted to the right and is much lower than the MLACF based method.

A profile across the lesion showing the difference between the amplitude gated

results with five bins using a 2D and a 1D SS can be seen in figure 4.17, confirming that

the 2D SS method failed. Although the peak of the 2D SS method is in the same place as

in the ground truth, there is an additional erroneous peak to its right.

A profile across the lesion for the amplitude gated results using 30 bins is presented

in figure 4.18, confirming that all methods utilising a large number of bins have failed

entirely. If there is a peak in the profile, then it does not match the scale or location of the

ground truth at all.

A profile across the lesion showing best results from the previous profiles can be

seen in figure 4.19. This shows that the Four Phase and Five Amplitude methods provide

very similar profiles. Although the peak of the Five Amplitude method may be greater

than the peak of the Four Phase method, the width of the peak for the Four Phase method

is less than that of the Five Amplitude method. Additionally, the Four Phase method very

slightly matches the ground truth more closely outside the peak, for instance, where the

diaphragm is.

SUVmax, SUVmedian, and SUVpeak results can be seen for all methods in table 4.4.

An analysis of SUV results shows the following.

• For SUVmax results, the Three Phase and Five Amplitude (using MLACF) methods
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have values which most closely match the ground truth when compared to other

methods. All Thirty Gate and OSEM methods have a very low SUVmax value.

Strangely, the Four Phase method has a lower SUVmax than the Eight Phase and

Twelve Phase methods. This could be attributed to the fact that SUVmax is very

susceptible to noise.

• For SUVmedian results, the Three Phase and Four Phase methods have exceptionally

high values. These values are even higher than the ground truth, potentially leading

to the conclusion that the ‘phase’ based methods have shrunk the size of the lesion

when compared to the ground truth. The Five Amplitude method (using MLACF)

has a lower SUVmedian but one which is close to the ground truth.

• For SUVpeak results, the Five Amplitude (using MLACF) method has a very good

score which is closest to the ground truth. The Three Phase and Four Phase meth-

ods have values which are very close to each other but they lag behind the Five

amplitude (using MLACF) method.

4.4.4 Discussion

The analysis of the results indicates that the Four Phase and Five Amplitude (using

MLACF) methods provided the best results, with little differentiation between those two

methods. It should be noted that both methods significantly outperformed other methods.

For instance, all OSEM and all methods with a large number of bins unanimously failed.

When compared to the methods which failed, it is more interesting to highlight what

the two best methods share in common, rather than what separates them. The two best

methods both used MLACF and a small number of bins for the estimation of the MM

(30 total bins, 10 amplitude and three gradient, were used for MCIR regardless of gating

method for the MM fitting). It appears from experiments here, but also when comparing

results from this chapter and chapter 3 that when low count data, or a lower resolution for

TOF is used, MLACF is almost a necessity for accurate motion correction. Furthermore,

the fact that a low number of bins is beneficial when applying motion correction shows

a benefit for MMs. This is because using a low number of bins for motion correction

but then applying this motion correction to a high number of bins would not be possible

without motion modelling.
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However, when it comes to the benefits of 2D gating, results here are inconclusive.

It could be argued that the simulated data used here was not complex enough to show

this (the XCAT does not contain sliding motion and other complex motion that would

highlight the benefits of 2D gating).

While PIQE was introduced in an attempt to provide an objective measure of im-

provement in image quality without the need for ground truth data, results shown here

appeared to be not helpful. As was discussed briefly in section 4.4.3, PIQE is a method

designed for use in natural images (and not medical images) where smoother images are

often more perceptually pleasing. When evaluating patient data a ground truth does not

exist for which to use most scoring metrics against, therefore it is imperative to a quality

evaluation to develop a metric which does not require a ground truth image. One potential

way to achieve this would be to use a NN trained to detect good images. However, a

problem with this approach would be that it would be very time consuming to acquire

data on which to train and additionally it’s not guaranteed that this method would work

with different scanners, tracers, or even when using different a FOV.

One limitation of the evaluation performed here is that the size of the lesion remains

consistent across all data shown. This is addressed in the next section.

4.5 Evaluation of the Effect of Lesion Size on the Quality

of Motion Correction

4.5.1 Introduction

This section aims to further evaluate the methods presented in section 4.3 and section 4.4.

Here, the exact same method as in section 4.4 is used. However, the input data is different.

To establish the effect that variable lesion size has on the performance of the method, in

addition to the 12.0 mm spherical lesion used in the previous section, we used a 10.0 mm,

8.0 mm, and a 6.0 mm spherical lesion. Smaller lesion sizes were not considered due the

resolution of the scanner.

The location of the lesion remains consistent, this is because it is more fair to compare

only the difference in the size of the lesion without also changing its location. Also, the

location chosen previously is a region which experiences the largest amount of motion in
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the lung, and as such is a challenging location for the legion to be in. Therefore, if the

method works here then it could be assumed that it will work similarly in other locations

in the lung for respiratory motion.

As well as showing the results of the method applied to data with a 12.0 mm,

10.0 mm, 8.0 mm, and a 6.0 mm spherical lesion lesion (with noise and motion), we

will also demonstrate for the 8.0 mm lesion the effect of motion (without correction) and

what a perfectly motion corrected volume would look like. This is useful as it shows

the benefit of applying our motion correction clearly. 8.0 mm was selected for this as it

proved to be an exceptionally challenging case, but where it may still be possible to detect

the lesion, even with noise.

To evaluate the results a visual analysis is presented, for all lesion sizes, both where

the method has been applied to reconstructed data as well as where the MM fit on the

reconstructions is applied to noiseless data (to better show only the benefit of the motion

correction, unadulterated by artifacts of noise). Furthermore, a profile across the lesion is

shown as well as SUVmax and SUVpeak values.

4.5.2 Methods
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Table 4.5: This table shows a short summary of the highlights of the methods used in section 4.4
and section 4.5. This table is useful for quickly referencing the changes between
sections. To see the development of the method throughout the thesis please see
table A.1 in appendix A.

Method
Details

Data Reconstruction Motion Estimation

Section 4.4
• XCAT:

– 12.0 mm lesion

– 2D MR respiratory traces

– Hysteresis

– 480 volumes

– Intra-gate motion

• Simulation:

– 3D Simulation

– 240 s simulation

– European (late dynamic)
research count rate
(41 KCPS)

– 550.0 ps TOF resolution

– Pseudo scatter (Gaussian
smoothing 128.0 mm
FWHM, 29 KCPS)
and random events
(57 KCPS)

• Gating for motion estimation:

– 1D or 2D PCA respiratory
SS

– 30 respiratory bins (10 dis-
placement, 3 gradient) or

– 5 respiratory bins (5 dis-
placement, 1 gradient) or

– 3, 4, 8, or 12 radial pseudo-
phase gates

• Gating for motion com-
pensated reconstruction:

– 1D or 2D PCA respiratory
SS

– 30 respiratory bins (10 dis-
placement, 3 gradient)

• Reconstruction for motion es-
timation:

– AC OSEM initialisation (2
iterations, 24 subsets)

– MLACF (3 activity itera-
tions, 24 subsets, 1 atten-
uation iterations)

– ACF initialised with µ-Map

– Activity volume scale set
to OSEM reconstruction
and

– ACF scale set to µ-Map
between iterations

– Re-interpolation of outliers
between iterations

– Smoothing of endplanes
between iterations

– Median smoothing (kernel
size 3) between iterations

– Sinogram mashing in atten-
uation update (1, 7, 2,
3 mashing factor respect-
ively)

– Filled with NaNs to size of
µ-Map

• Motion compensated recon-
struction:

– AC OSEM (2 iterations, 24
subsets)

– Gaussian post-smoothing
transverse (6.4 mm
FWHM)

– ‘Normal’ Z-filter axially
(1.0, 4.0, 1.0 convolu-
tion)

• Registration:

– Diffeomorphic (velocity
field parametrised,
symmetric)

– NMI objective function

– Tuned CPG spacing (13
times voxel size) and
bending energy (1e−1 at-
tenuation)

– Multi-resolution registra-
tion (4 levels)

– Iterations used at resolution
level: 2, 2, 2, 5

– Pair-wise registration ini-
tialisation

– Group-wise registration

– Activity and attenuation
DVF composed

• MM:

– MM fit between each resol-
ution level

– Weighted (counts) linear re-
gression MM

– 1D or 2D respiratory SS
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Method
Details

Data Reconstruction Motion Estimation

Section 4.5
• XCAT:

– 12.0 mm, 10.0 mm, 8.0 mm,
or 6.0 mm lesion

– 2D MR respiratory traces

– Hysteresis

– 480 volumes

– Intra-gate motion

• Simulation:

– 3D Simulation

– 240 s simulation

– European (late dynamic)
research count rate
(41 KCPS)

– 550.0 ps TOF resolution

– Pseudo scatter (Gaussian
smoothing 128.0 mm
FWHM, 29 KCPS)
and random events
(57 KCPS)

• Gating for motion estimation:

– 2D PCA respiratory SS

– 4 radial pseudo-phase gates

• Gating for motion com-
pensated reconstruction:

– 2D PCA respiratory SS

– 30 respiratory bins (10 dis-
placement, 3 gradient)

• Reconstruction for motion es-
timation:

– AC OSEM initialisation (2
iterations, 24 subsets)

– MLACF (3 activity itera-
tions, 24 subsets, 1 atten-
uation iterations)

– ACF initialised with µ-Map

– Activity volume scale set
to OSEM reconstruction
and

– ACF scale set to µ-Map
between iterations

– Re-interpolation of outliers
between iterations

– Smoothing of endplanes
between iterations

– Median smoothing (kernel
size 3) between iterations

– Sinogram mashing in atten-
uation update (1, 7, 2,
3 mashing factor respect-
ively)

– Filled with NaNs to size of
µ-Map

• Motion compensated recon-
struction:

– AC OSEM (2 iterations, 24
subsets)

– Gaussian post-smoothing
transverse (6.4 mm
FWHM)

– ‘Normal’ Z-filter axially
(1.0, 4.0, 1.0 convolu-
tion)

• Registration:

– Diffeomorphic (velocity
field parametrised,
symmetric)

– NMI objective function

– Tuned CPG spacing (13
times voxel size) and
bending energy (1e−1 at-
tenuation)

– Multi-resolution registra-
tion (4 levels)

– Iterations used at resolution
level: 2, 2, 2, 5

– Pair-wise registration ini-
tialisation

– Group-wise registration

– Activity and attenuation
DVF composed

• MM:

– MM fit between each resol-
ution level

– Weighted (counts) linear re-
gression MM

– 2D respiratory SS

The exact same method is used here as was used in section 4.4, except for the difference

in input data, as was discussed in section 4.5.1. Therefore, this section will act as a final

full high level overview of the method used in order to clarify in one section the exact

procedure used.

• XCAT is used to generate input volumes for the method. The volumes use the

geometry of the GE Discovery 710. The FOV includes the top and base of the

lung, including some of the liver. Either a 12.0 mm, 10.0 mm, 8.0 mm, or a 6.0 mm
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Algorithm 1: Re-interpolate Outliers
Data: outlierVolume, iqrMultiplier
Result: outlierVolume

1 interQuartileRange = IQR of outlierVolume
2

3 for currentValue in outlierVolume do
4 if currentValue >median of outlierVolume +

interQuartileRange× iqrMultiplier
2.0

then
5 currentValue in outlierVolume = NaN
6

7 if currentValue <median of outlierVolume -
interQuartileRange× iqrMultiplier

2.0
then

8 currentValue in outlierVolume = NaN
9 end

10

11 whileBool = true
12

13 while whileBool do
14 for currentValue in outlierVolume do
15 if currentValue is NaN then
16 if values surrounding currentValue is not NaN then
17 currentValue in outlierVolume = linear interpolation of values

surrounding currentValue
18 end
19

20 if all currentValue in outlierVolume is not NaN then
21 whileBool = false
22 end

spherical lesion is placed into the base of the right lung, close to the liver (so as

to experience maximum respiratory motion and also so that the liver makes the

registration more difficult). A 2D respiratory trace is used to drive the motion of the

XCAT, derived from MR navigator data. Because two signals are used then there

is hysteresis present in the data. 480 volumes are produced over 240 s (sampling at

2.0 Hz). µ-Maps were also generated at the position of all 480 volumes, these were

used to add attenuation during the simulation step. The µ-Map with the maximum

respiratory value from the MR respiratory trace was selected to be used as the

misaligned µ-Map for the rest of the method.
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Algorithm 2: Smooth Endplanes
Data: smoothEndplanesVolume
Result: outputVolume

1 outputVolume = smoothEndplanesVolume
2

3 smoothEndplanesVolume = Re-interpolate Outliers of smoothEndplanesVolume
with iqrMultiplier = 1.0

4

5 smoothEndplanesVolume = max filter kernel size 3 of smoothEndplanesVolume
6

7 rampFilter = 1.0, 0.8, 0.6, 0.4, 0.2
8 inverseRampFilter = 0.0, 0.2, 0.4, 0.6, 0.8
9

10 for sliceIndex in 0, 1, 2, 3, 4 do
11 smoothEndplanesSlice = smoothEndplanesVolume axial slice at sliceIndex

× rampFilter at sliceIndex
12 outputVolumeSlice = outputVolume axial slice at sliceIndex ×

inverseRampFilter at sliceIndex
13

14 outputVolume axial slice at sliceIndex = smoothEndplanesSlice +
outputVolumeSlice

15

16 endSliceIndex = end slice index of outputVolume - sliceIndex
17

18 smoothEndplanesSlice = smoothEndplanesVolume axial slice at
endSliceIndex × rampFilter at sliceIndex

19 outputVolumeSlice = outputVolume axial slice at endSliceIndex ×
inverseRampFilter at sliceIndex

20

21 outputVolume axial slice at endSliceIndex = smoothEndplanesSlice +
outputVolumeSlice

22 end
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Algorithm 3: MLACF for Motion Correction
Data: sinogram, attenuationVolume
Result: activityVolume

1 attenuationVolumeACF = forward project attenuationVolume
2 mlacfACF = attenuationVolumeACF
3

4 osemActivityVolume = AC OSEM on sinogram with
attenuationCorrectionFactors = attenuationVolumeACF and iterations = 2 and
subsets = 24

5 activityVolume = osemActivityVolume
6

7 for mlacfIterations in 0, 1, 2 do
8 activityVolume = Re-interpolate Outliers of activityVolume with

iqrMultiplier = 3.0
9 activityVolume = Smooth Endplanes of activityVolume

10 activityVolume = median filter kernel size 3 of activityVolume
11 activityVolume = rescale activityVolume to scale of osemActivityVolume
12

13 mlacfACF = attenuation update on mlacfACF with sinogram = sinogram and
activityVolume = activityVolume

14 mlacfACF = rescale mlacfACF to scale of attenuationVolumeACF
15

16 ctivityVolume = AC OSEM on sinogram with attenuationCorrectionFactors
= mlacfACF and iterations = 1 and subsets = 24

17 end
18

19 activityVolume = Re-interpolate Outliers of activityVolume with iqrMultiplier =
3.0

20 activityVolume = Smooth Endplanes of activityVolume
21 activityVolume = median filter kernel size 3 of activityVolume
22 activityVolume = rescale activityVolume to scale of osemActivityVolume

• STIR (Thielemans et al. 2012), (Efthimiou et al. 2019b) through SIRF (Ovtchin-

nikov et al. 2020) is used to perform a 3D TOF (550.0 ps) PET simulation. The

count rate was established from the last two minutes of a dynamic scan (the data

from chapter 5). 127 KCPS total counts were used, 41 KCPS true counts, 29 KCPS

scatter counts, and 57 KCPS random counts. A full scatter simulation could not

be performed due to software limitations so a forward projection of the smoothed

(Gaussian 128.0 mm FWHM) µ-Map was used instead.

• A 2D SS was acquired using PCA to be used during gating and MM fitting. Two
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Algorithm 4: Motion Modelling
Data: activityVolumes, surrogateSignals, attenuationVolume
Result: motionModel, motionCorrectedActivityVolume, attenuationVolumes

1 for volume in activityVolumes do
2 currentNMI = NMI between volume and attenuationVolume
3

4 if currentNMI <currentMinNMI then
5 currentMinNMI = currentNMI
6 motionCorrectedActivityVolume = volume
7 end
8

9 for level in 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 3 do
10 for volume in activityVolumes do
11 activityDVFs = register volume to motionCorrectedActivityVolume with

and cpgVoxels = 13 and bendingEnergyWeight = 0.0 and
registrationLevel = level and initialisation = activityDVFs

12 end
13

14 motionModel = weighted linear regression on activityDVFs and
surrogateSignals with weighting = counts in activityVolumes

15 activityDVFs = motionModel on surrogateSignals
16

17 motionCorrectedActivityVolume = resample activityVolumes with
activityDVFs

18

19 attenuationDVF = register motionCorrectedActivityVolume to
attenuationVolume and cpgVoxels = 13 and bendingEnergyWeight = 1e−1
and registrationLevel = level and initialisation = attenuationDVF

20

21 for dvf in activityDVFs do
22 dvf = compose dvf with attenuationDVF
23 end
24

25 motionModel = weighted linear regression on activityDVFs and
surrogateSignals with weighting = counts in activityVolumes

26 activityDVFs = motionModel on surrogateSignals
27

28 motionCorrectedActivityVolume = resample activityVolumes with
activityDVFs

29 end
30

31 for attenuationDVF in inverse of activityDVFs do
32 attenuationVolumes append resample attenuationVolume with

attenuationDVF
33 end
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gating schemes were used, one for the motion correction and one for the motion

compensated reconstruction:

– For the motion correction, four radial pseudo-phase gates were used, as dis-

cussed in section 4.3.2.2.

– For the motion compensated reconstruction, 30 respiratory bins were used (10

displacement and three gradient bins). This number was selected due to the

resolution of the scanner.

• A modified version of MLACF was used as the initial reconstruction method for the

volumes to be motion corrected. First the data was reconstructed using AC OSEM

(two iterations, 24 subsets), using the misaligned µ-Map from end inhalation. The

result of the AC OSEM reconstruction was input to MLACF, after every activity

update the new activity volume was rescaled to the AC OSEM volume. MLACF

used three iterations, 24 subsets, and one attenuation update for each activity update.

The misaligned µ-Map was used to initialise the ACF and the scale of the ACF

was rescaled to the misaligned µ-Map ACF following every attenuation update.

Sinogram mashing was used in the attenuation update with a mashing factor of

one, seven, two, and three in the radial positions, angles, transaxial plane, and

TOF dimensions respectively. Three aditional processing steps were performed on

the activity volume after every update, these were added specifically to ensure the

volume was smooth for motion correction and were as follows:

– Firstly, values outside three times the IQR are re-interpolated, using a linear

interpolation, as can be seen in algorithm 1.

– Secondly, the endplanes of the volume were extremely noise and as such re-

quired extensive smoothing if they are to register without artifacts. To achieve

this the current activity volume was copied into another volume, known as the

endplanes volume. This endplanes volume has outlying values re-interpolated

where they fall outside the IQR, this can be seen in algorithm 1. A max filter

is then applied with a kernel size of three. This endplanes volume is then

summed with the activity volume using a ramp filter. The ramp filter starts at
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one and linearly reduces to zero over five values, the same ramp filter can be

used at the top and the bottom of the volume if it is flipped so that the value

of one is always along the edge of the volume. If the the endplanes volume

is multiplied by the ramp filter and the activity volume is multiplied by the

inverse of the ramp filter then when they are summed their scale remains

consistent. This process can be seen in algorithm 2.

– Finally, a median smoothing with a kernel size of three is applied.

Pseudocode for the modified version of MLACF can be seen in algorithm 3.

• Between the reconstruction and motion correction stages the activity volumes have

their axial size expanded to the size of the µ-Map by appending whole slices filled

with NaNs. Often the FOV of the µ-Map is greater than any one bed position of the

PET. Furthermore, by appending with NaNs we allow the activity volumes to be

registered outside of the FOV of the original acquisition, this could be important if

the activity volumes and µ-Map are extremely misaligned. NaNs are used as they

will not affect the objective function calculation of the registration.

• For registration NiftyReg (Modat et al. 2010) was used with a symmetric velocity

field parametrised diffeomorphic implementation. The initial reference frame for

registration was selected as the one with the highest NMI to the misaligned µ-Map.

Registration of the activity volumes came first (in a group-wise manor) before the

reference volume was resampled. This new reference volume was then registered

to the misaligned µ-Map. DVFs were composed from the two registrations. For

registration, four resolution levels were used, a weighted linear regression (weighted

on the counts in each activity volume) MM was fit after each iteration, each iteration

was initialised with the DVFs from the previous iteration. Three iterations of the

lowest resolution level were used, two of the next, two of the next, and five of

the highest resolution level (three of the lowest level were used as the first one

substituted a pair-wise initialisation). A NMI objective function was used for all

iterations. The CPG was spaced 13 voxels apart and bending energy was used for

the attenuation registration with a weighting of 1e−1. Pseudocode for the motion

correction method can be seen in algorithm 4.
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Figure 4.20: A visual analysis which shows the results of performing the method on XCAT
data with a 12 mm, 10 mm, 8 mm, or 6 mm lesion placed into the base of the right
lung (the left of this image). On the left of each row is the Ground Truth image
(without motion or reconstruction artifacts), in the centre of each row are the results
of applying a motion correction fit on reconstructed data to noiseless data, and on
the right of each row is the result of applying the motion correction to data which has
been reconstructed. The top row is where a 12 mm lesion was used, the second row
down is where a 10 mm lesion was used, the third row down is where a 8 mm lesion
was used, and the bottom row is where a 6 mm lesion was used. In this case the input
to the motion correction was the 4 Phase MLACF reconstructions and the motion
correction has been applied to the 30 bin OSEM reconstructed images. Colour map
ranges are consistent for all images.

• A final motion compensated reconstruction is performed using the method whereby

the activity volumes are reconstructed, deformed using the DVF, and then summed

together. Here the data gated into 30 respiratory bins were used (10 displacement

and three gradient bins) is used. AC OSEM with two iterations and 24 subsets

is performed using the deformed µ-Map from the registration step. The usual

Gaussian post-smoothing (with a 6.4 mm FWHM) is used transverse and a ‘normal’

Z-filter is used axially (a convolution with a kernel containing 1.0, 4.0, 1.0).

4.5.3 Results

Figure 4.20 shows the results from data using a different lesion size. From the second

column it can be seen clearly that the method is capable of correctly estimating the motion

198



4.5. Evaluation of the Effect of Lesion Size on the Quality of Motion Correction

Figure 4.21: A visual analysis which shows the results of performing the method on XCAT data
with a 8 mm lesion placed into the base of the right lung (the left of this image). At
the top of this image is the Ground Truth image (without motion or reconstruction
artifacts), second from the top of this image is where no motion correction has been
applied to noiseless data, third from the top of this image is the results of applying a
motion correction fit on reconstructed data to noiseless data, fourth from the top of
this image is the result of reconstructing an image without motion which has been
reconstructed, fifth from the top of this image is the result of reconstructing an image
with motion which has been reconstructed, and at the bottom of this image is the
result of applying the motion correction to data which has been reconstructed. In this
case the input to the motion correction was the 4 Phase MLACF reconstructions and
the motion correction has been applied to the 30 bin OSEM reconstructed images.
Colour map ranges are consistent for all images.
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Figure 4.22: A profile through the 12 mm, 10 mm, 8 mm, or 6 mm lesion, in the SI direction,
summed over a window in the AP and LM directions, with median smoothing. The
blue line shows the profile from the Ground Truth image with a 12 mm, 10 mm,
8 mm, or 6 mm lesion and the dashed orange line shows the result of applying a
motion correction on reconstructed data with a 12 mm, 10 mm, 8 mm, or 6 mm
lesion. The top left of this image is where a 12 mm lesion was used, the top right of
this image is where a 10 mm lesion was used, the bottom left of this image is where
a 8 mm lesion was used, and the bottom right of this image is where a 6 mm lesion
was used. In this case the input to the motion correction was the 4 Phase MLACF
reconstruction and the motion correction has been applied to the 30 bin noiseless
images.

Table 4.6: Comparison of SUVmax and SUVpeak over the lesion, where different lesion sizes were
used for the XCAT simulation. The different lesion sizes used were 12 mm, 10 mm,
8 mm, and 6 mm. In the case of the 8 mm lesion the results without motion correction
are also reported.

SUV Max Peak
12 mm Ground Truth 9.08 8.24

12 mm Motion Corrected 7.85 6.25
10 mm Ground Truth 9.08 7.61

10 mm Motion Corrected 7.73 5.86
8 mm Ground Truth 9.08 5.18

8 mm Motion 1.97 1.29
8 mm Motion Corrected 5.48 3.87

6 mm Ground Truth 9.08 3.80
6 mm Motion Corrected 3.65 2.14
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Figure 4.23: A profile through the 8 mm lesion, in the SI direction, summed over a window in
the AP and LM directions, with median smoothing. The blue line shows the profile
from the Ground Truth image with a 8 mm lesion, the dashed orange line shows the
result of not applying motion correction, and the dashed green line shows the result
of applying a motion correction on reconstructed data with a 8 mm lesion. In this
case the input to the motion correction was the 4 Phase MLACF reconstruction and
the motion correction has been applied to the 30 bin noiseless images.

of the liver and the lesion even when the size of the lesion is reduced. Obviously, the

motion correction appears to struggle more in the case where the lesion is 6 mm than

it does where it is 12 mm, but the motion correction does not fail and the position of

the liver and the lesion matches closely what is shown in the ground truth column. The

third column generally corroborates the interpretation of the second column. However,

in the third column it becomes difficult to make out the lesion in the 8 mm case and the

6 mm case (it is clearly possible to identify the lesion in the 12 mm case and the 10 mm

case). This is potentially caused by the noise present in the reconstruction as well as

partial volume effects due to the scanner resolution. It must be stressed that, for the GE

Discovery 710, an 8 mm diameter spherical lesion is just less than two voxels across.

A further visual analysis of the 8 mm data can be seen in figure 4.21. The top image

shows the ground truth image. The second image shows the 480 input volumes to the

method for the 8 mm averaged together, illustrating the extent of the motion in the input

data. The third image shows the final MM from the motion estimation method applied
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to data without artifacts from simulation and reconstruction (the data has however been

gated). The fourth image shows the result of the reconstruction of the noisy data if no

motion is present, giving an indication of the best possible motion correction. The lesion

can just be seen in this image, however it has much less contrast than in the ground truth

image, as expected. The fifth image shows the result of the reconstruction of the noisy

data without applying any motion correction. The lesion cannot be seen at all in this

image. The final image shows the output of the method. The lesion can just be made out

in the same position as in the first image.

A profile over the lesion for each lesion size can be seen in figure 4.22. It should be

highlighted that for each axial position values in a region have been averaged together,

to eliminate noise. This region was kept consistent for each sub-figure and represented

a 12 mm bounding box around the lesion. This explains why as the size of the lesion

decreases so does the size of the peak in the profile. For each lesion size both the ground

truth (in blue) and the results of the method are shown (in broken orange). All profiles

appear to match the ground truth well, the peak of all profiles coincides with the peak of

the ground truth, as does the position of the liver. The height of the peak is consistently

lower for the motion correction, but not significantly. The difference in the height of the

peak appears increases slightly as the size of the lesion decreases.

As for the visual analysis above so too is this analysis performed in more detail for

the 8 mm lesion, in figure 4.23. Here, not only is the ground truth (in blue) and the result of

the method (in broken green) shown but also the result of not applying motion correction

is shown (in broken orange). Here it can be seen that the position of the lesion without

motion correction is entirely different from the position of the lesion in the ground truth

(and motion corrected example). The profile of the lesion where no motion correction

has occurred is almost fully outside where the lesion appears in the ground truth case.

Without motion correction, the lesion almost overlaps with the edge of the liver of the

volume, highlighting the difficulty of motion correcting the data with the lesion in this

position, of this size, and with this extent of motion.

The SUVmax and SUVpeak for a region containing the lesion is shown for all results

(from above) in table 4.6. The SUVmax of the ground truth compared to the SUVmax of

the motion corrected results represents a 1.16, a 1.17, a 1.66, and a 2.49 times reduction
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for the data containing the 12 mm, the 10 mm, the 8 mm, and the 6 mm lesion respectively.

To put this into context, the SUVmax of the ground truth compared to the SUVmax of the

non motion corrected result represents a 4.61 times reduction for the data containing the

the 8 mm lesion. Similar observations can be seen in the SUVpeak values. There is a

noticeable drop off in the SUV values for lesion of size 8 mm and below. This is likely

caused by less accurate motion correction as well as partial volume effects. However,

the SUV results without motion correction for the 8 mm lesion are much lower than with

motino correction.

4.5.4 Discussion

Results from visual analysis, comparison of profiles, and SUV on realistic and challenging

data, both with and without noise, and with and without motion correction for lesions

of size 12 mm, 10 mm, 8 mm, and 6 mm diameter shows that the method presented both

here and in 4.4 both works well and is robust.

For a further discussion and conclusion of the method presented in this section please

see section 4.4.4 and section 4.6.

4.6 Discussion and Conclusion
The results of the previous chapter demonstrated proof-of-concept performance. However,

it relied on idealised assumptions that limited its clinical relevance. The work presented in

this chapter addresses several of those limitations by introducing more realistic simulation

conditions, closely matching data late time frame data from a research study performed at

our institution (see the next chapter), including variable respiratory patterns, lower TOF

resolution, pseudo-random and scatter components, lower counts than in routine clinical

practice and different lesion sizes.

Notably, this chapter also marks a significant step forward in integrating attenuation

correction into the motion correction workflow. The mismatch between emission and

attenuation data, previously a major limitation, was mitigated through deformation of the

µ-Map using DVFs estimated by the MM. This improvement brings the framework closer

to applicability in real clinical scenarios.

These developments represent a meaningful step toward applying the motion correc-

tion framework to real patient data. The simulation and reconstruction pipelines have been
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refined to support this transition, with adaptations for increased realism and complexity.

Several technical hurdles emerged during preliminary attempts to apply the method

to these challenging simulation data. The transition from 2D to 3D simulation, lower

counts and reduced TOF resolution introduced new complexities. Additionally, the recon-

struction pipeline had not previously been validated with realistic inputs such as randoms,

scatter, and normalisation sinograms, which further exposed limitations in robustness.

These challenges underscore the need for continued refinement of the implementation to

ensure stable and accurate performance under clinical conditions.

The modifications introduced in Section 4.4 enabled the method to run end-to-end

using real patient data acquired on a GE Discovery 710 scanner. The primary remaining

barrier to full patient data evaluation in the current implementation is the need to divide

the acquisition into 0.5 Hz sinograms. While this straightforward in principle, it raises

practical issues as generating such a large number of sinograms, particularly in dynamic

studies, requires substantial storage and processing capacity. However, this could be

addressed by using the gating capabilities available in STIR, which have not yet been

ported to SIRF, the software used in our current implementation, at the time of writing).

Nevertheless, the framework has approached readiness for clinical testing.

The XCAT simulations used in this chapter uniformly use SSs derived from MR to

drive the respiratory model. This addresses the limitation mentioned previously where

there was no breath to breath variability present in the data.

Compared to the previous chapter, the lesion was made much smaller. The lesion was

small enough that from the minimum displacement to the maximum displacement, due to

respiration, the lesion would not overlap with itself. Furthermore, the lesion was placed

close enough to the diaphragm that from the minimum displacement to the maximum

displacement, due to respiration, the lesion is fully within the area where the diaphragm

was at the opposite respiratory state.

As was discussed in section 4.4.2.1, the method to simulate the PET acquisition

is now significantly more realistic. A relatively low number of counts are used, at the

level of a research scan count rate (41 KCPS true counts). A pseudo-random and scatter

simulation was used to emulate the randoms and scatter profile seen in patient data.

This is not a true random and scatter simulation, due to software limitations when using
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TOF. However, care was taken to make the simulations as realistic as possible given the

constraints.

Again, as was discussed in section 4.4.2.1, the TOF resolution for the PET acquisition

simulation was reduced to that of the GE Discovery 710. This did have a noticeable effect

on the quality of the reconstructed and motion corrected volumes. However, the method

was improved so that similar performance was seen as before the resolution was reduced.

The registrations used universally in this chapter employed NMI as an objective

function. This even included the pair-wise registration to the reference volume in sec-

tion 4.4.2.3. In the current application, NMI appears to be superior to SSD or MSE,

especially when performing registration between two modalities (like PET and CT). If

NMI is used for all registrations, including where the same modality is used, it makes

the hyperparameter tuning easier due to the parameters being similar for both types of

registration.

Furthermore, although the work in this chapter continued to fit the registration and

MM separately, it never appeared to be the limiting factor for the quality of the motion

correction.

The MMs used in this chapter continued to be fit as a weighted linear regression.

It would be possible to consider non-linear regression. However, this would only be

possible when more bins are used for the fitting, which would need careful treatment of

the increased noise.

The work presented in this chapter demonstrated that motion correction of PET/CT

data with a single CT using a fitted motion model is feasible under increasingly complex

imaging conditions, even without having an external measurement of the respiration

available, making the method attractive for clinical translation. However, these methods

were tested within the context of static PET acquisitions. In dynamic PET, where SNR

ratios are lower and the underlying activity distribution changes over time, a new challenge

arises: how to extract a reliable respiratory SS directly from the PET data itself. The next

chapter addresses this by introducing a DD approach for SS extraction, enabling the

extension of motion correction techniques to dynamic imaging protocols in the future.

Furthermore, please see appendix B for work which was inspired by the methods

here (Whitehead et al. 2022a). In appendix B (Whitehead et al. 2022a) a NN DIP (Uly-
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anov et al. 2020) based method for the de-noising of dynamic PET frames is presented.

The preprocessing of the data during the MLACF reconstruction used in this section is

complex, what is required is a smooth and high contrast input image for motion correction.

Therefore, this method was developed and tested as a preprocessing step for dynamic PET

to be used with kinetic modelling. It stands to reason that it may be possible to replace

the preprocessing of the data for MLACF, and motion correction, with this method. This

is especially true if this motion correction method is used on dynamic PET, where the

de-noising method has already been evaluated.

Further limitations and future developments are discussed in chapter 6.
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Chapter 5

Data Driven Surrogate Signal

Extraction for Dynamic PET

5.1 Overview

This chapter presents work on the extraction of respiratory surrogate signals from dynamic

PET data. In previous chapters, respiratory motion correction was developed for static

PET data, for instance, assuming that the tracer metabolism is stabilised. The focus

was on model-based deformation fields and gated reconstructions. However, dynamic

PET acquisitions introduce additional challenges, particularly due to time-varying tracer

kinetics and lower signal levels in early frames. A particular example is the extraction of

a SS for the motion from the PET data. In previous chapters, PCA was used, which was

based on the assumption that motion is the main cause for change in the data, which is no

longer true for dynamic PET.

To address this limitation, this chapter investigates DD methods for extracting sur-

rogate signals for the respiratory motion directly from the PET data itself, a critical step

towards enabling motion correction in dynamic imaging without reliance on external

hardware. In particular, this section will introduce novel methods using PCA, with sev-

eral approaches. to improve its robustness to variation caused by radiotracer kinetics. It

also includes a comparison to another methods from the literature which uses SAM. The

chapter is based on (Whitehead et al. 2022b), (Whitehead et al. 2024).



5.2. Introduction

5.2 Introduction

Methods of motion correction are commonly based on a respiratory trace. To acquire these

respiratory traces, an external device, like the RPM, or a DD method based directly on the

PET data can be used. DD methods have the advantage that they are non-invasive, requite

no set-up time during the acquisition and can be performed post-acquisition. However,

current DD methods have the disadvantage that they are adversely affected by the tracer

kinetics of a dynamic acquisition. For a full description of the background of respiratory

SS extraction (especially in static PET) please see section 2.6.3.

Current DD methods are adversely affected by the radiotracer kinetics of a dynamic

acquisition, where the tracer is injected after the beginning of the scan. As an example,

methods that use dimensionality reduction (such as PCA) are hampered by the fact that

at the start of the scan, rapid redistribution of the radiotracer (rather than the respiratory

motion) causes more variance in the data. Previously, work was performed to extend the

SAM method to be robust to radiotracer kinetics. This work proposed the use of Short

Time Fourier Transform (STFT) to generate masks for SAM (rather than a static mask

for all time intervals), this was called Kinetic Respiratory Gating (KRG) (Schleyer et al.

2014). STFT operates by splitting the data into windows, and applying a FFT on them

independently. However, this method was unable to extract a usable signal at very early

time intervals (after tracer injection).

The aim of the current chapter is to propose several adaptions of the PCA method,

with which it can be used with dynamic data, and compare their performance with a

method based on KRG. The methods explored in this section include; the use of a moving

window, re-use of the PCs from a later time interval to estimate the SS for earlier time

points, and automatic scoring, selection, and combination of multiple PCs, akin to SRF.

Firstly, in section 5.3, the data (including train and test splits) will be introduced,

before moving on to the methods which are being proposed or compared. Next, in

section 5.4, a more thorough description of the data, including how it is prepared, and

the evaluation methods used to compare the methods are presented. In this section we

also introduce potential post-processing techniques, which can be performed to SSs, to

improve results generally. This is followed by section 5.5 which presents a comparison
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of the methods defined in the previous section. The advantages and disadvantages of the

methodology are discussed in section 5.6. Finally, in section 5.7, the arguments put forth

are drawn together, before briefly pointing out the potential future directions for the work.

5.3 Methods
Here, we briefly describe the data acquisition, before describing methods that are either

simple modifications of the conventional methods (based on KRG) or use a novel method

to score, select, and combine signals. These methods can be used with SAM, but for

simplicity, we will refer specifically to PCA.

The following subsections will address the method with respect to the diagram seen

in figure C.1.

5.3.1 Data Acquisition and Train/Test Split

Data used was acquired from a research study with patients suffering from Idiopathic

Pulmonary Fibrosis (IPF) (Emond et al. 2020). 22 dynamic [18F]-FDG acquisitions, with

a FOV covering the upper lung and heart, were acquired on a GE Discovery 710 in list-

mode. Data used in this study was from the first 14 min with the acquisition starting

roughly 20 s before injection of the radiotracer. An external SS was acquired in parallel

using an RPM (Oh et al. 2019).

These 22 acquisitions comprised of two scans each of 11 subjects. One scan was

performed before and one scan was performed some time after an intervention was per-

formed. In this case, the intervention was the administration of an anticoagulant drug.

The first acquisition of each patient is called the baseline scan and the second acquisition

is called the post treatment scan (Emond et al. 2020). Of these 22 acquisitions only 10

were suitable to be used as either part of the training or testing process. Five of the acquis-

itions could not be used as the list-mode itself could not be loaded by the software. The

remaining acquisitions could not be used for either training or testing due to issues with

the acquisition of the RPM. For instance, the acquired RPM could not be synced with the

list-mode. These data without RPM could be used with the subsequent methods, just not

evaluated, as can be seen in figure 5.13.

To form a train and test split the data was randomly split into three training data

points and eight testing data points. More than one training data point was selected to
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attempt to prevent over-fitting on a single data point. Data points from both baseline

and post treatment acquisitions were added to prevent over-fitting on type of acquisition.

Train data points were selected such that the same patient did not appear in both the train

and test dataset, to attempt to mitigate data leakage. A validation dataset was not utilised

due to the low number of data points.

For selection of hyper-parameters, the method was applied to the train dataset, and

the correlation coefficients with RPM were computed. The mean of the three resulting

correlation coefficients was maximised while varying a hyper-parameter.

5.3.2 Conventional PCA

Algorithm 5: Conventional Score
Data: timeSeriesSinograms, PC, respiratoryFrequencyWindow
Result: respiratoryScore

1 for sinogram in timeSeriesSinograms do
2 respiratorySignal append sinogram × PC
3 end
4

5 PSD = absolute of FFT on respiratorySignal
6

7 respiratoryScore = mean value of PSD within respiratoryFrequencyWindow

In this method, the “standard”PCA is applied to the entire data set in one go as it

would be if the data were from a static acquisition.

As discussed in 5.1, the conventional method includes a selection mechanism using

a score that maximises a signal with the appropriate respiratory features (for instance,

a frequency matching the common human breathing). In this chapter, the score will be

computed according to algorithm 5 (Bertolli et al. 2017b) .

The generic equation for calculating the weights (or signal) from the PC and data is

W = PC×D (5.1)

where in equation 5.1 PC represents the PC (which in this case is the shape of one sino-

gram) and S represents a time series of sinograms. × denotes element-wise multiplication

of the arrays (in this case multiplication of the one PC by each sinogram in the time series

S), followed by summing. In fact, a similar equation is used by SAM, where a ‘signed
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Figure 5.1: This diagram shows the potential workflows for the different methods examined here.
The path on the left shows only the signal (or signals) being extracted without any
further processing (until the next steps). The path in the middle shows the process
for extracting a signal using windows. The path on the right shows how one would
extract a signal using a PC from a point in the data where it could be considered to be
static.
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Figure 5.2: A plot showing the moving window size optimisation for the PCA method. For differ-
ent fixed window sizes, the correlation of the extracted signal to the RPM is shown
for the windows sliding over the whole acquisition (taken for the first acquisition of
patient one). Note that 0.5 s time frames were used.

Figure 5.3: A plot showing the moving window size optimisation for the SAM method. For dif-
ferent fixed window sizes, the correlation of the extracted signal to the RPM is shown
for the windows sliding over the whole acquisition (taken for the first acquisition of
patient one). Note that 0.5 s time frames were used.

mask’ is multiplied with the data and summed.
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Algorithm 6: Moving Window Method
Data: timeSeriesSinograms, windowSizes
Result: respiratorySignal

1 index = 0
2 whileBool = true
3

4 while whileBool do
5 if index >length of timeSeriesSinograms then
6 index = length of timeSeriesSinograms - windowSize
7 whileBool = false
8

9 set windowSize to value at index of windowSizes
10

11 windowSignal = fill with NaNs to index
12 windowSignal append compute PC weight with PCA for data between index

and index + windowSize
13 windowSignal append NaNs to length of timeSeriesSinograms
14

15 if windowSignal correlation with last signal in signals <0.0 then
16 windowSignal = windowSignal ×−1.0
17

18 signals append windowSignal
19

20 index = index +
windowSize

2
21

22 end
23

24 respiratorySignal = mean of signals ignoring NaNs

5.3.3 Moving Window Method

As shown in the algorithm 6, the data is split into a series of windows, where each

subsequent window overlaps with the previous window by half its length. The motivation

for attempting the Moving Window method is to increase the relative importance of

motion vs kinetics. This is achieved through small windows being used at early time

intervals, where the radiotracer kinetics are at their most severe, and longer windows can

be used at later time intervals to reduce noise. If SAM is used rather than PCA, then the

method approximates KRG (Schleyer et al. 2014).

The size of each window was predetermined on a small training data set. The PCA

method was first run with a number of fixed window sizes. The window size which

213



5.3. Methods

gave the best signal (defined as the highest correlation coefficient with the RPM within

each window) at each time interval was selected and recorded. Example results for this

optimisation method for the moving window size can be seen in figure 5.2 and figure 5.3

for the PCA and SAM methods respectively.

For this method PCA (or SAM) is applied independently on each window, and the

results are averaged together after sign correction. The latter is required as the sign of the

signal from each window is arbitrary. The overlapping allows for a common sign to be

found, by comparing the correlation coefficient of neighbouring windows, and flipping

windows where the correlation coefficient have opposite sign. Other methods for sign

correction are possible, for example see (Bertolli et al. 2017b), (Feng et al. 2018), as well

as the sign choice in the algorithm 10.

5.3.4 Late Time Interval Method

Algorithm 7: Late Time Interval Method
Data: timeSeriesSinograms, lateTimeIntervalCutoff
Result: respiratorySignal

1 lateTimeIntervalSeriesSinograms = split timeSeriesSinograms from
lateTimeIntervalCutoff to end

2 lateTimeIntervalPC = PC from PCA for lateTimeIntervalSeriesSinograms
3

4 for sinogram in timeSeriesSinograms do
5 respiratorySignal append sinogram × lateTimeIntervalPC
6 end

Here, a PC from a late time interval is taken, and used with all data from all time inter-

vals, which to our knowledge is a novel approach. The motivation behind this method was

the hypothesis that; because the respiratory motion should be semi-consistent throughout

the acquisition, then if a PC is capturing the respiratory motion at late time intervals, it

should do the same at early time intervals as well. Indeed, we observed that PCs from

late time interval data did not vary significantly when different windows were selected.

However, this was not true for early time interval data.

The Late Time Interval PC method, as seen in the algorithm 7, splits the data into

two channels, one which only contains later time interval data, where the radiotracer

kinetics have diminished, and one which contains all the data. PCA is applied to the later
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time interval data only. The PC from the later time interval data can then be taken and

multiplied by the channel containing all of the data, to give the weights contributing to

that PC for all time points.

The cut-off between early and later time interval data was determined on training

data, by varying the cut-off point, and maximising the correlation coefficient between the

output and RPM signal, for the first 120 s interval (between 20 s and 140 s). The cut-off

determined here was 62 % or approximately 520 s from the start of the acquisition. It was

noted however that later cut-offs gave similar results.

A flowchart of the above can be seen in figure 5.1.

5.3.5 Score, Select, and Combine Method

In this section, we describe a novel method based on a combination of previous work.

The use of this method was inspired by the observation that signals with sizeable power

in the frequency window of respiratory motion could be seen outside of the first few PCs.

Additionally, a significant number of these had far less of a frequency contribution in

a frequency window of the radiotracer kinetics. However, the information contained in

these PCs is ignored if only one PC is used, as in (Thielemans et al. 2011), and (Bertolli

2018). This could lead to a reduced SNR. The method therefore uses a ‘respiratory score’,

and orders and combines PCs to maximise this score. A flowchart of this can be seen in

figure 5.4.

5.3.5.1

Score and Select

In this step, the signals from each PC are scored and sorted. Signals with a too low

score are rejected. Pseudo-code is in algorithm 8.

We developed several ways to calculate a score.

5.3.5.1.1 Frequency Based

As seen in the algorithm 9, Power Spectral Density (PSD) analysis (Thielemans et al.

2011) used the PSD of the weights for each PC, to select for the PC with the highest

contribution in the respiratory window. We extended this method to account for kinetic in-

formation. In our current implementation, these PSDs contain the frequency contribution
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Figure 5.4: A diagram showing how PCs can be selected and combined.

216



5.3. Methods

Algorithm 8: Score and Select PCs
Data: timeSeriesSinograms, PCs, scoreThreshold
Result: PCs

1 for PC in PCs do
2 respiratoryScore = get respiratory score from PC and timeSeriesSinograms
3

4 if respiratoryScore >scoreThreshold then
5 respiratoryScoreList append respiratoryScore
6 else
7 remove PC from PCs
8 end
9 end

10

11 sort PCs by respiratoryScoreList

Algorithm 9: Frequency Score
Data: timeSeriesSinograms, PC, kineticFrequencyWindow,

respiratoryFrequencyWindow, noiseFrequencyWindow
Result: respiratoryScore

1 for sinogram in timeSeriesSinograms do
2 respiratorySignal append sinogram × PC
3 end
4

5 PSD = absolute of FFT on respiratorySignal
6

7 kineticContribution = mean value of PSD within kineticFrequencyWindow
8 respiratoryContribution = mean value of PSD within

respiratoryFrequencyWindow
9 noiseContribution = mean value of PSD within noiseFrequencyWindow

10

11 respiratoryKineticRatio =
respiratoryContribution

kineticContribution
12

13 respiratoryNoiseRatio =
respiratoryContribution

noiseContribution
14

15 respiratoryScore = respiratoryKineticRatio × respiratoryNoiseRatio
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of each signal, between the frequencies of 0.0 Hz and 1.0 Hz (due to sampling the input

data at 2.0 Hz and the Nyquist theorem (Whittaker 1915), (Nyquist 1928), (Shannon

1949)). Frequency windows representing the content of information related to radiotracer

kinetics, respiratory motion, and noise are defined.

In an initial implementation they were defined as 0.0 Hz to 0.1 Hz, 0.1 Hz to 0.4 Hz,

and above 0.4 Hz respectively (Bertolli et al. 2017b). However, it was found that the

choice of respiratory window boundaries was limiting, it was both too wide (so as to

encourage the mislabelling of noise), and not low enough (so as to fail on slow breathers).

Thus, in the current implementation, the respiratory window is determined by first apply-

ing the Late Time Interval PC method, to acquire an initial estimate of the signal, and

using this to estimate the window boundaries. A PSD of the initial estimate is acquired.

The frequency which is at the mean value of the PSD is determined to be the centre of

the window, and the boundaries are selected as being half the standard deviation of the

PSD from this point. Half a standard deviation is used such that there is a full standard

deviation between the upper and lower bounds of the window.

The contribution within each window is determined for each PC by finding the

mean magnitude within the windows. Ratios are then calculated between the respiratory

window and the kinetic window, and the respiratory window and the noise window, and a

score determined by the product of these two values.

5.3.5.1.2 Neural Network Based

A NN based scoring metric that was previously developed (Walker et al. 2020), and was

tested here to remove complexity and increase robustness when compared to the frequency

scoring method. The NN of (Walker et al. 2020) is a pre-trained model, designed to accept

a signal as input and return a score between 0.0 and 1.0. Here a higher score indicates

a more respiratory like signal. To achieve this, to avoid issues with signals of different

lengths, features of the signal were extracted and used as input to the NN (rather than

directly inputting the signal itself). For example, one potential feature could be the PSD

of the signal. The network was trained on scores predetermined by clinicians. Specifically,

two clinicians scored the signals used to train this model as either being a score of 0.0, 0.5,

or 1.0, the mean of the scores from the two clinicians was used as target values. Examples
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Figure 5.5: An example of the output for the NN can be seen here testing signals extracted from
the first acquisition of patient one using PCA.
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of the output of the NN can be seen in figure 5.5.

5.3.5.2

Combine

Algorithm 10: Combining PCs
Data: timeSeriesSinograms, PCs
Result: respiratoryPC

1 respiratoryPC = first PC in PCs
2 remove respiratoryPC from PCs
3 respiratoryScore = get score from respiratoryPC and timeSeriesSinograms
4

5 for PC in PCs do
6 currentRespiratoryScore = get score from PC and timeSeriesSinograms
7

8 scaledRespiratoryPC = respiratoryPC × respiratoryScore
9 scaledCurrentPC = PC × currentRespiratoryScore

10

11 sumPC = scaledRespiratoryPC + scaledCurrentPC
12 subtractPC = scaledRespiratoryPC - scaledCurrentPC
13

14 sumRespiratoryScore = get score from sumPC and timeSeriesSinograms
15 subtractRespiratoryScore = get score from subtractPC and

timeSeriesSinograms
16

17 if sumRespiratoryScore >respiratoryScore then
18 respiratoryPC = sumPC
19 respiratoryScore = sumRespiratoryScore
20 else
21 if subtractRespiratoryScore >respiratoryScore then
22 respiratoryPC = subtractPC
23 respiratoryScore = subtractRespiratoryScore
24 end
25 end

After the PCs are sorted from a high to low score, they are then iterated over, both

being summed and subtracted (with a weighting, the score), and a new score is found for

both resulting signals. If one of the signals increases this score, then it becomes the new

best PC, and goes forward to the next iteration. PCs are both summed and subtracted to

handle the arbitrary sign problem mentioned earlier in section 5.3.3 (Bertolli et al. 2017b).

A similar method of combining signals can be seen in (Kesner and Kuntner 2010).

However, the method presented here, attempts to improve on this by using a scoring
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Table 5.1: This table shows the correlation coefficient between the result of the Score, Select, and
Combine using NN scoring and the RPM for the train dataset where a number of pre-
and post-processing methods have been applied to the data. Each new line represents
the addition of this method, therefore the last element includes all previous pre- and
post-processing. This is for the Freeman-Tukey transform, the Yeo-Johnson transform,
the incorporation of a mask to remove low count areas of the sinogram, smoothing and
downsampling the sinogram and smoothing the signal, and parallel compression.

Correlation Coefficient with RPM 20 s-840 s 20 s-140 s
Freeman-Tukey 0.783 0.703

Yeo-Johnson 0.790 0.747
Mask 0.826 0.824

Smoothing and Downsampling 0.826 0.825
Parallel Compression 0.830 0.839

metric whose behaviour better reflects the qualities of a ‘good’ signal, while in (Kesner

and Kuntner 2010), the standard deviation is maximised. In addition, the proposed method

compute the metric based on signals derived from PCs, as opposed to a single voxel or

sinogram bin value (Kesner and Kuntner 2010), which should lead to noise reduction.

Please note that the algorithm 10 is described in terms of PCs. In fact, a simpler

version just sums and subtracts the corresponding signals, this will give the same final

signal.

In the current implementation, this method is applied on all time intervals at once. It

is possible to integrate this method with the Late Time Interval method in section 5.3.4 or

the Moving Window method. However, this has not been demonstrated here.

5.4 Evaluation
Here, we discuss how the data was prepared for evaluation. We also present a suite of

methods which can be applied generally to SSs (both from dynamic as well as potentially

static acquisitions), in order to combat issues such as noise and outliers. Finally, in this

section, we highlight how the methods in section 5.3 will be evaluated in section 5.5.

5.4.1 Data Preparation

TOF data were unlisted into low spatial resolution sinograms, each with a time frame

duration of 500 ms, using the GE PetToolbox, following (Bertolli et al. 2017a), resulting

in sinograms with dimensions 95× 16× 47× 11 (radial positions×angles×transaxial

plane×TOF). To extract respiratory variation, the sampling rate of the PET sinograms
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Figure 5.6: A diagram showing pre-processing performed.

was chosen as 2 Hz, so as to attempt to mitigate the effect of cardiac motion (Bertolli

2018).

Data was pre-processed element-wise by first applying a Freeman-Tukey transform-

ation (Freeman and Tukey 1950), followed by a Yeo-Johnson power transformation (Yeo

and Johnson 2000), to transform the Poisson distributed data to be more Gaussian-like.

In the current implementation, these transformations are applied element-wise on

the (Poisson distributed) TOF sinogram Sp

Sg = YJλ (FT(Sp)) (5.2)
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The Freeman-Tukey transformation is defined as

FT(X) =
√

X +1+
√

X (5.3)

The Yeo-Johnson power transformation is defined as

YJλ (X) =



((X +1)λ −1)/λ if λ 6= 0, X ≥ 0

log(X +1) if λ = 0, X ≥ 0

−[(−X +1)(2−λ )−1)]/(2−λ ) if λ 6= 2, X < 0

− log(−X +1) if λ = 2, X < 0

(5.4)

The λ parameter is determined by minimising the Kullback Leibler Deviation (KLD)

between normal distributions and the transformed distribution (Yeo and Johnson 2000).

In this paper a single λ was determined from all of the data, although it would be feasible

to find different λ values for every element in the sinogram.

The Yeo-Johnson power transformation was not included in previous papers. Its

impact can be seen in table 5.1.

It was previously found through experimentation, that Gaussian smoothing of the

resulting sinograms can improve results, especially in the case of the SAM method (Thiele-

mans et al. 2013). In the current implementation, further downsampling was performed

post-smoothing to reduce memory usage and increase computational speed. Linear in-

terpolation was used as it was shown in a preliminary investigation to give satisfactory

results at little computational cost. We use linear interpolation here to reduce the matrix

size to a size necessary to represent the highest (spatial) frequency information present in

the data post-smoothing. The effect this inclusion makes on the end result can be seen in

table 5.1.

Finally, it has been found that the introduction of a mask to further aid in the re-

duction of noise is beneficial (Thielemans et al. 2011). The mask itself is defined as

being true for any value, in the sinogram, above a predetermined threshold. Values not

in the mask are removed prior to further execution, this is because these values can be

assumed to mostly be noise. Note that a mask can also be used to eliminate parts of the

data potentially affected by non-respiratory movement (Bertolli 2018), but this has not
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been implemented in the current work. Again, the impact of this inclusion can be seen in

table 5.1.

Values for the Gaussian smoothing, and the threshold of the mask, were determined

using a grid search on a randomly selected subset of the data (specifically three patients).

This data was then not used as part of any final evaluation, as was stated in section 5.3.1.

The Gaussian smoothing sigma for the PCA based methods were 1.0, 0.5, and 2.0, for

SAM based methods they were 1.0, 3.0, and 1.0 (this is for the sinogram radial positions,

angles, and transaxial planes respectively). The mask threshold is selected such that it

removes the bottom 5 % of values. The same mask is used for every time point. From an

examination of the masks used for the test dataset, because a threshold value as low as

5 % is used, it appears that the mask is only removing parts of the background.

A flowchart of the pre-processing steps can be seen in figure 5.6.

5.4.2 Post-Processing

A flowchart of the method can be seen in figure 5.7 and figure 5.8.

Regardless of the method used, there are still some effects of the radiotracer kinetics

to be expected at early time intervals, and noise throughout. Thus, a method is proposed

here to aid with the remaining radiotracer kinetics, and smoothing to help with noise in

the extracted SS. The same post-processing is used regardless of the method to extract the

SS.

5.4.2.1 Parallel Compression

Firstly there is, what shall be referred to as “parallel compression”. This is a method

borrowed from audio engineering (appearing notably in Dolby A noise reduction). The

signal is split into two channels, one has its dynamic range reduced (through a process

such as compression), while the other passes unchanged, before they are averaged back

together (Izhaki 2012). This has the effect of reducing large differences in the dynamic

range of the signal (for instance caused by tracer kinetics or some kind of drift), without

losing a lot of breath to breath variability, compared to directly using the phase of the

signal (if applied to respiratory SSs) (Lamare et al. 2022). For a more detailed explanation

of the implementation please see the appendix E.
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Figure 5.7: A diagram showing the parallel compression method.
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Figure 5.8: A diagram showing the post-processing performed.

5.4.2.2 Outlier Removal

Even though most of the large changes in intensity are remedied by parallel compression,

some momentary spikes are still apparent. Thus, outliers are removed where they are

outside a threshold of the quartile of the signal, and new values are interpolated.

5.4.2.3 Smoothing

Finally, smoothing is applied through the use of a bandpass filter (specifically a sinc

filter), followed by a Savitzky-Golay filter (Savitzky and Golay 1964). A bandpass filter

is used to remove frequencies in the signal outside of the respiratory window, and the

Savitzky-Golay filter is used to promote local smoothness.

The bandpass filter is defined as

hBPF(t) = 2BHsinc(2BHt)−2BLsinc(2BLt) (5.5)

where hBPF is the bandpass function, t is the time distributed variable, BH is the upper

bound and BL is the lower bound of the bandpass filter. The bandpass filter is implemented

using a truncated sinc kernel. A polynomial order of three and a window length of five

was used with the Savitzky-Golay filter, determined through a grid search on the training
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Table 5.2: This table shows the p-values acquired as part of a statistical analysis of the test dataset
using a mixed-effects model. Before applying the mixed-effects model the signals
were first transformed to frequency space using FFT. One values between 0.05 Hz and
0.45 Hz were used. This is for Conventional PCA, Moving Window PCA, Late Time
Interval PC, Score, Select, and Combine using frequency and NN scoring, and the
Moving Window SAM method.

Mixed-Effects Model p-value
Static PCA 0.183

Moving Window PCA 0.483
Late Time Interval PCA 0.548

Score, Select, and Combine PCA PSD 0.649
Score, Select, and Combine PCA NN 0.908

Moving Window SAM 0.373

dataset.

The impact of the inclusion of the above methods on the correlation of the Score, Se-

lect, and Combine method with NN based scoring with the RPM can be seen in table 5.1.

5.4.3 Evaluation Methods

For evaluation of the results, the correlation coefficient of each SS between each method

and the RPM, for all acquisitions in the test dataset, has been calculated. The correlation

coefficient has been calculated for both the first 120 s (ignoring the first 20 s), and also the

entire acquisition (between 20 s and 840 s). A statistical analysis using a mixed effects

model has also been included.

All methods were compared to conventional PCA. We also included results for the

Moving Window SAM method as this approximates KRG. While the Conventional and

Late Time Interval methods can also be implemented using SAM, corresponding results

are not shown here.

As stated earlier in section 5.3.1, parameters for the methods have been selected

using a grid search on a randomly selected subset of the data (specifically three patients).

This data was then not used as part of any final evaluation. The parameters were optimised

by maximising the correlation coefficient between the SS and the RPM for the first 120 s

of usable data (between 20 s and 140 s), due to there being initially no counts in the FOV.
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Figure 5.9: Output of each method compared to the RPM for the first usable 120 s (between 20 s
and 140 s) (taken for the first acquisition of patient one). This is for Conventional
PCA, Moving Window PCA, Late Time Interval PC, Score, Select, and Combine
using frequency and NN scoring, and the Moving Window SAM method.

Figure 5.10: Output of each method compared to the RPM for the first usable 120 s (between 20 s
and 140 s) (taken for the first acquisition of patient eight). This is for Conventional
PCA, Moving Window PCA, Late Time Interval PC, Score, Select, and Combine
using frequency and NN scoring, and the Moving Window SAM method.
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Figure 5.11: A box plot showing for each method its correlation coefficient to the RPM for the
first usable 120 s (between 20 s and 140 s) (taken for the seven test acquisitions).
This is for Conventional PCA, Moving Window PCA, Late Time Interval PC, Score,
Select, and Combine using frequency and NN scoring, and the Moving Window
SAM method.

Figure 5.12: A box plot showing for each method its correlation coefficient to the RPM for the
entire acquisition (taken for the seven test acquisitions). This is for Conventional
PCA, Moving Window PCA, Late Time Interval PC, Score, Select, and Combine
using frequency and NN scoring, and the Moving Window SAM method.
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Figure 5.13: Signals for the first usable 120 s (between 20 s and 140 s) generated using the Select,
Score, and Combine NN based scoring method. This is for the five acquisitions
which did not have a usable RPM signal and as such could not be used for training
or testing.

5.5 Results

A plot showing for each method its output, compared to the RPM, for the first 120 s

(between 20 s and 140 s) (taken for the first acquisition of patient one), can be seen in

figure 5.9. From a visual analysis, it can be observed that the Conventional PCA method

has failed, post normalisation, it appears almost as if there is no variation in the signal at

early time intervals. Both moving window methods show, towards the end of the plot, that

they can extract a signal. However, it takes until between 60 s and 80 s for both methods

to begin to pick up the signal. For the SAM based method, it appears as if the sign

determination method has failed before 80 s, regardless though the method still cannot

extract a signal before 60 s. The Late Time Interval PC, Score, Select, and Combine using

frequency and NN scoring methods, all appear to be able to extract a usable signal right

down to 20 s (around when counts begin to appear in the FOV). The magnitude of the

signal post 80 s more closely matches the RPM (or in comparison to before 80 s) for both

Score, Select, and Combine methods than for the Late Time Interval PC method.

A plot showing for each method its output, compared to the RPM, for the first 120 s

(between 20 s and 140 s) (taken for the first acquisition of patient eight) can be seen in
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Figure 5.14: RPM signals for the first usable 120 s (between 20 s and 140 s) (for the seven test
acquisitions). Notice that only the first acquisition of patient one and patient six
shows a steady trace with an average frequency, every other trace shows variable
breathing or artefacts.
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Figure 5.15: The result of applying FFT to the RPM signals for the first usable 120 s (between
0.05 Hz and 0.45 Hz) (for the seven test acquisitions). Notice that four of the seven
have peaks very close to or outside the lower boundary of the resiratory window.
Also notice that two of the seven have very wide frequency responses, which would
be difficult for the automatic selection of a respiratory frequency window.

Figure 5.16: Correlation coefficients to the RPM for the first 120 s in 20 s intervals (between
20 s and 140 s) (taken as a mean for all data sets). This is for Conventional PCA,
Moving Window PCA, Late Time Interval PC, Score, Select, and Combine using
frequency and NN scoring, and the Moving Window SAM method. The stair plots
are staggered for the different methods for visual clarity.
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Figure 5.17: A plot showing a single ‘view’ of the original PET data (top) as well as the PCs used
to generate the output signal for the Conventional, Late Time Interval and the two
Score, Select, and Combine methods (taken for the first acquisition of patient one).
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figure 5.10. Similar results as for in figure 5.9 are repeated in figure 5.10, (although all

methods match the RPM worse than in figure 5.9). This acquisition was selected to be

shown due to it being a difficult trace to extract. Regardless, the Late Time Interval PC

and Score, Select, and Combine methods appear to have extracted a signal early into the

acquisition (from about 35 s on this patient and acquisition).

A box plot showing for each method its correlation coefficient to the RPM for both

the first 120 s (between 20 s and 140 s), and also for the entire acquisition (taken for seven

acquisitions), can be seen in figure 5.11 and figure 5.12. The correlation coefficient for

the Conventional PCA method is low and the method is not usable. The correlation

coefficients for both the moving window methods are roughly around 0.5, indicating that

the Moving Window method is beneficial regardless of the method used to extract the

signal for each window. However, again here, the correlation coefficient is lower than is

acceptable. The results from the Late Time Interval PC, Score, Select, and Combine using

frequency and NN scoring methods, all show correlation coefficients around 0.6 or higher,

for both the early time interval as well as for all data. The Score, Select, and Combine

methods show marginally higher correlation coefficient than the Late Time Interval PC

method, and the NN shows slightly higher correlation coefficient than the frequency based

scoring.

A plot showing for each method the evolution of the correlation coefficient with

the RPM over time, for the first 120 s, by computing it in 20 s intervals, can be seen in

figure 5.16. It can be observed, that on average across all data sets all methods struggle to

produce usable results at the very beginning of the acquisition (around when counts begin

to appear in the FOV). However, it is also apparent that on average both Score, Select,

and Combine methods robustly begin to produce results, which closely match the RPM,

as evidenced by a reasonable correlation past the first 40 s, on most acquisitions. The

Moving Window method appears to perform well in the first interval.

A plot showing the components (or their combination) used to generate the output

signal, can be seen in figure 5.17. One advantage of the sinogram-based methods is that

the PC (or signed mask for SAM) can be visualised to see how it corresponds to anatomy

and tracer uptake. In figure 5.17 it can be seen that the Conventional PCA method returns

a PC which closely resembles the input data, leading to the conclusion that the variation
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in the selected PC is dominated by the kinetics. The other methods produce a PC which

is more related to edges of internal structures, where respiratory movement occurs. A

visual inspection indicates that the least confounding variation, and noise, is included

in the Score, Select, and Combine using the NN scoring method. Curiously, it appears

that the Late Time Interval, and the Score, Select, and Combine using the NN scoring

method return very similar distributions. However, the Score, Select, and Combine using

the frequency scoring method also returns a high value region in tissue at the top of the

image.

We utilised a mixed-effects model to analyse the differences between various meth-

ods and RPM measurements across all subjects. This model incorporated ‘method’ as a

fixed effect and treated subjects as a random effect, to account for inter-subject variability.

We found that the comparisons between each method and RPM were not statistically

significant, with all p-values > 0.05, see table 5.2. While this may suggests that, within

the constraints of our analysis and available data, there was no evidence to support signi-

ficant differences between any methods in comparison to RPM measurements, given the

small number of subjects, it’s important to consider that this analysis may be considerably

underpowered.

It is noteworthy to mention that we observed that the Late Time Interval PC and

Score, Select, and Combine using frequency and NN scoring methods exhibited the

highest p-values. This may suggest a lesser degree of difference from RPM. However,

such interpretations should be approached with caution and not be taken as conclusive

evidence of similarity.

Plots showing a comparison of results achieved with and without pre- and post-

processing can be seen in appendix D.

Finally, results of applying the Score, Select, and Combine using NN scoring method

to data where the RPM could not by synced with the list mode data can be seen in 5.13.

5.6 Discussion
This chapter introduces several methods for DD extraction of a respiratory signal from

dynamic PET data. To the best of our knowledge, this appears to have only been attempted

in (Schleyer et al. 2014). Data used here are from a [18F]-FDG study on patients with IPF,
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while in the latter paper, Nitrogen-13 Ammonia ([13N]-NH3) data was used to evaluate

the proposed KRG method. These tracers have different uptake patterns.

The work presented has several limitations. Firstly, the data used all originates from

the same study, using the same procedure, the same radiotracer, and acquired on the same

scanner. In order to better validate the generalisability of the method it would be positive

to test on data acquired on different scanners and using different radiotracers. Additionally,

from the data acquired, only a subset of this data is usable due to issues during acquisition.

It would be beneficial to test the methods on a larger sample of patients. Furthermore,

it would be beneficial for the data to include both a larger number of non-complex and

complex breathers to better test the limitations of the methods.

An additional concern is the point at which the methods may fail, for patients who

exhibit abnormal breathing patterns. For instance, extremely slow breathers will breathe

at a rate less than 0.1 Hz, which in the case of the Score, Select, and Combine method

using the frequency scoring method and a fixed frequency respiratory window would be

considered to be radiotracer kinetics. Furthermore, when using a non-fixed respiratory

window this method struggles with patients who breathe less regularly, as the window is

expanded to include parts of the kinetics and noise (this is shown in figure 5.15). The

discrepancy between the results for the SAM Moving Window method, presented here,

and the KRG ones, shown in (Schleyer et al. 2014) , could also be attributed to this

complexity. Many of the patients breathed at varying rates, stopped breathing during

acquisition, or breathed unusually fast or slow (this is shown in figure 5.14). This was

probably due to the data being acquired for an IPF study.

The presented method includes several pre- and post-processing steps. Although

these have been shown to be beneficial on the train data, table 5.1, the impact of some

steps is relatively small. It remains to be determined on a larger dataset if some of these

steps could be removed.

Furthermore, please see appendix F for work which was inspired by the methods

here (Whitehead et al. 2023a), (Ferrante et al. 2022), (Ferrante et al. 2024). In ap-

pendix F (Whitehead et al. 2023a) a method to extract a TAC from dynamic PET is

presented. In the work presented here we are attempting to extract a SS from dynamic

data, the main other signal which is interfering with this is simply the TAC. Therefore,
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in the work in appendix F conceptually we are attempting to perform the inverse of what

is presented in this section. Which from the point of view of the method itself is quite a

similar problem. However, in appendix F the TAC is extracted directly using a NN rather

than using a NN scoring method to inform a more traditional signal processing.

In the future, research will focus on further development of the methods, including

optimisation of the NN scoring method. In the next stage, these methods will be applied

to the task of implementing advanced respiratory motion correction on dynamic PET data.

5.7 Conclusion
We have presented and evaluated several methods for extraction of a respiratory signal

from dynamic PET data. Results from a visual comparison of early time interval output

signals compared to the RPM, quality of PC, and correlation coefficient of the output

signals to the RPM, indicates that the Late Time Interval PC and both Score, Select, and

Combine methods are more robust and afford higher quality signals than moving window

methods. The results also indicate that both Score, Select, and Combine methods can give

a higher correlation coefficient earlier than the Late Time Interval PC method. Scoring

using the NN shows slightly higher correlation coefficients than the frequency based

scoring.

These findings represent a significant step toward enabling fully DD respiratory

motion correction in dynamic PET.
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Chapter 6

Discussion and Conclusion

6.1 Overview

This chapter summarises the key findings from each stage of the work and outlines direc-

tions for future research.

Respiratory motion is a major challenge in PET imaging, with the potential to com-

promise diagnostic accuracy and clinical outcomes. In response, this thesis has developed

and evaluated a motion correction framework aimed at reducing the impact of respiratory

motion in both static and dynamic PET/CT imaging. A central focus of the work has

been to ensure that the proposed methods are compatible with existing clinical practice,

using a single CT, minimising the need for additional hardware, avoiding reliance on

external surrogate signals, and maintaining manageable computational demands. The

motion correction method (developed in Chapters 3 and 4) was developed by investigat-

ing several components of the framework on simulated data, using increasingly realistic

data. Furthermore, a DD SS extraction method for dynamic PET (presented in Chapter 5)

was developed and evaluated on patient data. Although the motion correction framework

and the DD SS extraction method for dynamic PET were evaluated separately, they have

not yet been fully integrated and tested as a single end-to-end pipeline. Nevertheless,

the progress made in each area paves the way towards supporting motion correction in

dynamic PET imaging.



6.2. Main Results

6.2 Main Results
• Section 3.3 evaluated the impact of the introduction of TOF PET on the quality of

motion estimation possible with NAC PET. This work was performed in order to

assess if it was feasible to further develop a motion correction method which was

unbiased by a static CT µ-Map. If a static CT µ-Map was used for AC, prior to

motion correction, then it is likely that the artefacts added would cause the motion

correction to fail. However, if NAC PET is used, it is likely that there is not enough

contrast in the reconstructed NAC volumes within the lungs and with the diaphragm

for motion correction to be possible. Preliminary experiments showed that TOF

in the absence of a µ-Map significantly improved the distribution of the signal in

the NAC volumes. This work indicated that it was in fact possible to perform an

adequate motion correction using NAC TOF PET. However, the simulations used

in this section were simplified to enable an initial exploration. They excluded intra-

gate respiratory motion, randoms, and scatter, and assumed a high TOF resolution.

While this allowed focused testing of key algorithmic components, later studies

showed that such assumptions limit the effectiveness of NAC TOF OSEM when

applied to more realistic data.

• Section 3.4 introduced a motion correction approach aimed at addressing the chal-

lenge posed by the use of a single static µ-Map in the presence of respiratory

motion. For accurate motion correction, each gated bin ideally requires attenuation

correction using a µ-Map that matches its corresponding respiratory position. This

section evaluated whether deformation of a single static µ-Map to the position of

each bin is sufficient, and whether fitting a new MM on AC data offers any improve-

ment. The results demonstrated that deforming the static µ-Map to match each gate

produced motion-corrected images without introducing noticeable misalignment

artefacts. Moreover, fitting a second MM on the already AC data did not improve

the motion correction, suggesting that the additional computational burden of this

step is unnecessary. These findings validate a more efficient approach to attenuation

correction in motion-compensated PET. However, in addition to the still relatively

simplified simulations, it should be noted that the static µ-Map was positioned at
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the mean respiratory phase, arguably the most favourable condition for this method.

This is clinically impossible to guarantee.

• Section 3.5 introduced a significantly more realistic simulation setup compared to

previous sections. The SSs used to drive the XCAT phantom incorporated both

hysteresis and breath-to-breath variability, better reflecting true respiratory motion.

Additionally, the lesion model was reduced to a clinically realistic size. A back-

ground activity term was also introduced for the first time, further enhancing realism

of the noise level in the data. This section focused on evaluating the impact of in-

corporating a MM within a modular motion correction pipeline, and comparing the

performance of pair-wise versus group-wise registration schemes. Results demon-

strated that the inclusion of a MM consistently improved lesion depiction over more

traditional registration-based methods. Notably, the pair-wise registration approach

failed to perform adequately without the MM, while group-wise registration pro-

duced better results. Nevertheless, in both cases, the use of a MM led to improved

lesion homogeneity. Based on these findings, group-wise registration with MM

fitting was adopted for all subsequent experiments.

• Section 4.3 exploited an important practical advantage of motion modelling: the

ability to estimate motion fields from data gated at a different temporal resolution

than the data to which the correction is applied. This is feasible as long as the

space of the SS remains consistent. This was the first piece of work which made

use of significantly more complex simulations, and also introduced MLACF as the

reconstruction method (as opposed to NAC OSEM) for the initial volumes used for

the motion estimation. With the more complex simulations, and with MLACF, the

same gating scheme as was used in section 3.5 now resulted in a complete failure

of the motion correction. However, with the new coarse gating scheme (applied

to data binned in the same way) the results were significantly improved. With the

coarse gating scheme, motion estimation was successful even on noisy data, with

little detrimental impact observed on high count data. This section provided the

final components of a flexible framework for motion correction of (static) PET/CT

data.
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• Section 4.4 presented an evaluation of the framework on realistic simulated data,

together with some improvements to be able to handle such data. For instance, the

simulation was swapped from a 2D to a 3D acquisition. Moreover, the TOF resol-

ution was reduced to that one of the clinical scanners available at our institution.

These changes caused MLACF to underperform. Because of this, the MLACF al-

gorithm was adapted to make it more robust to the application of motion estimation.

This was mainly achieved by initialising and constraining the ACFs using the CT

µ-Map. The section then explored the impact of different gating schemes (phase vs

amplitude, 1D vs 2D SSs), bin numbers, and reconstruction algorithms (MLACF,

AC OSEM, and NAC OSEM). Results showed that for the MM estimation, using

fewer bins was more effective, and MLACF consistently outperformed both types

of OSEM when the same gating setup was used.

• Section 4.5 provided a thorough overview of the final method as well as further

evaluating the method with data making use of various lesion sizes. This provided

further evidence that the method is able to provide good results even for lesions of

8.0 mm diameter, which is almost as small as the resolution of the scanner, as well

as currently considered clinically relevant.

• Chapter 5, demonstrated work on DD SS extraction for dynamic PET. Here, a

multitude of methods were presented and evaluated against each other to extract

a respiratory SS from dynamic PET (where the tracer kinetics at the beginning of

the scan obscure the respiration). These methods were compared to an existing

method from the literature (Schleyer et al. 2014). Three methods proved to have

generally better and robust performance when compared to the literature. The

first method proposed taking a PC from a late time interval and applying it to the

whole data set. The second and third methods used a frequency and NN based

scoring metric to combine PCs. On the whole, the NN based method gave the best

performance. However, the NN used in this method is proprietary. Importantly, this

work establishes a pathway for extending motion correction techniques, previously

limited to static imaging, to dynamic PET, marking a significant step toward broader

clinical applicability.
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6.2.1 Main Contributions and Knowledge Advancement

This thesis demonstrates that effective respiratory motion correction in PET/CT can be

achieved using TOF PET data without reliance on a respiratory phase matched CT derived

µ-Map or external monitoring of the respiration. By leveraging TOF information and

deformation of a static (end inhalation) µ-Map, the need for multiple respiratory phase

µ-Map (or the artifacts associated with a misaligned static µ-Map) were eliminated. The

introduction of the MLACF reconstruction method, along with its tailored adaptation

for motion correction, improved the motion estimation and hence image quality and

outperformed conventional OSEM based approaches, especially under complex motion

and gating conditions when TOF resolution was low.

A flexible and modular motion correction framework was developed and validated

through increasingly realistic simulations. The framework incorporates a MM and sup-

ports the use of group-wise registration, which was shown to outperform pair-wise ap-

proaches, and uses a (count) weighted fitting. It incorporates alignment to a single CT.

It was shown to improve lesion depiction and homogeneity in simulated data in realistic

but challenging conditions. The method proved robust across a range of lesion sizes,

including those near the resolution limits of the scanner.

A key practical advancement was the demonstration that MMs can be derived from

coarsely gated data and applied to finely gated reconstructions, allowing for reduced noise

and improved DVF estimation. To our knowledge this is a specific advantage of the MM

method presented and has not been attempted before in PET/CT.

The extension of DD motion correction techniques to dynamic PET was enabled

through DD SS extraction methods that remained effective despite tracer uptake variability.

These advances pave the way for broader clinical translation of motion correction, with

clearly defined strategies for gating, attenuation correction, and model integration.

6.3 Outlook
Of the various motion correction strategies explored in this thesis, the method presented in

section 4.5 (which integrates gated PET based motion modelling with MLACF based at-

tenuation correction) represents the most promising candidate for clinical implementation.

In fact, as it offers a balance between robustness, quantitative accuracy, and computa-
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tional feasibility, it has the potential to significantly advance static or even dynamic PET

imaging and advance disease staging in clinical practice. However, for this method to be

validated for clinical use, several main challenges remain to be addressed.

6.3.1 Limitations

Despite the advances presented, there are several limitations of the work presented in this

thesis:

• Firstly, the biggest limitation of the results presented in chapter 3 and chapter 4 is

that the methods have only been tested on simulated data. The anatomy used for

the XCAT simulation did not vary, it was an average male anatomy. In order to

prove generalisability, and to avoid unnecessary bias, ideally the method should be

tested on a multitude of anatomies including both male and female, big and small.

The ground truth activity distributions were taken from XCAT simulated volumes

consisting of organs and structures that are homogeneous, which is unrealistic.

Note however that this actually poses a significant problem to most registration

algorithms, where there would be no gradient across a homogeneous region.

• An additional issue posed by the use of XCAT simulations would be that the MM

used to drive the simulation over time is rather simple, in particular it is a linear

MM. Whereas the motion present in patients will probably never be able to be

entirely represented by a linear system. The MM method used in the thesis also

uses a linear MM, meaning that all of the motion present in the data could be cap-

tured by the method (under ideal circumstances), possibly giving misleading results.

Nevertheless, the use of linear MMs is wide-spread in the literature, including for

modalities such as CT and MR which have considerably higher spatial resolution

than PET.

• The values used for the XCAT simulation were similar to the activity distribution of

[18F]-FDG. While this is the most commonly used radiotracer, other radiotracer are

of interest, for instance for cardiac imaging or prostate cancer. The results of the

registration and therefore motion correction will depend on the activity distribution,

which remains to be investigated.
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• The objective function used for the MM fitting also used SSD which is sensitive

to outliers and would cause a limitation during early iterations of the motion cor-

rection. This is when it is likely that the quality of the registration is poor and thus

the DVF is also less than ideal. This limitation may be compounded if the methods

were combined iteratively with PET reconstruction. This is because, at early time

points not only would the registration be unsatisfactory, but the volumes provided

to the registration by the reconstruction would also be poor. To mitigate this, an

objective function which is robust to outliers could be used, such as Huber (Ver-

ducci et al. 2007), or a regression method such as Random Sample Consensus

(RANSAC) (Fischler and Bolles 1981). Huber is defined as being equivalent to

squared error below a threshold and absolute error above it (Verducci et al. 2007).

• The final images were obtained by gating the data into 30 bins, reconstructing the

volumes (with attenuation matching), resampling the volumes to the reference po-

sition, and finally using a (weighted) average of the 30 images. It is also possible

to use motion incorporated image reconstruction, where a single volume is recon-

structed from all the gates by incorporating the DVFs into the forward model (Qiao

et al. 2006), (Manjeshwar et al. 2006). This has been shown to have better noise

properties as well as reduce bias due to the non-negativity constraint implied in

OSEM (Polycarpou et al. 2012).

• Another limitation and a possible future direction for research would be that the

objective function for the registration is currently calculated in image space. If

the objective function was shifted to sinogram space then it would be much more

likely that a combined iterative PET reconstruction and motion correction would

converge to a good solution. This is because both methods are using objective

functions calculated in the same space.

6.3.2 Future Work

There are a number of potential future avenues for work, these include the following:

• A clear next step for future work is the full evaluation of the motion correction

framework using patient data, as outlined in Section 4.6. The technical groundwork
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for this has already been established, but patient evaluation presents new chal-

lenges, including the absence of a definitive ground truth. As such, new evaluation

strategies will be required. One option is to incorporate expert clinical assessment

as part of a qualitative evaluation, although this alone will not suffice. Quantitat-

ive image quality metrics like PIQE were explored in Section 4.4.2.4 due to their

independence from a ground truth. However, results in Section 4.4.3 highlighted

potential reliability issues with PIQE in this context. A NN based no reference

image evaluation metric could be developed, if pairs of images and scores could be

acquired.

• Chapter 5 opens up the possibility for the motion correction methods to be applied

to dynamic PET. Aside from difficulties with low signal-to-noise ratios in this

data, the main difficulty is that at early time frames, determining the respiratory

motion will be difficult, as the tracer will still be mainly in the aorta. As a SS

was successfully obtained for these early time frames in this chapter MMs may be

useful to overcome this. If early time intervals are removed during the registration

and MM fitting steps, then the SS could be used to generate DVFs for these time

intervals from the MM (Emond et al. 2019).

• DIP, as seen in appendix B (Whitehead et al. 2022a), was presented in (Ulyanov

et al. 2020) as a NN based method to solve general inverse problems. DIP could

potentially aid in a NN based method to approximate a generalised framework

unifying registration and MM estimation, NiftyRegResp (now named SuPReMo). If

a NN was designed which took as input an n-dimensional SS and output a DVF then

it could be trained in the same manner as DIP. This would result in the production

of a NN model which is similar to a MM. If no activation functions were used

then conceptually the NN would be almost identical to the model in NiftyRegResp

(SuPReMo). However, if activation functions were added, the model would be non-

linear. In order to implement this, the most necessary step would be a re-sampler

written in the NN framework of choice. Parametrisation and regularisation (such as

those in NiftyReg) could be added as either an additional architectural requirement

or summed with the loss.

245



6.3. Outlook

• Appendix F (Whitehead et al. 2023a) presents a method using NNs to extract a

TAC corresponding to the blood concentration from dynamic brain PET. When the

FOV includes the thorax, then one of the signals which the method would be trying

to remove (or ignore) may be respiration. The method developed in chapter 5 could

be considered to be trying to remove the TACs from the respiratory SS (if the FOV

had covered the thorax). It might therefore be possible to combine the two works to

‘invert’ the purpose of the NN from appendix F. This would result in a NN which

can be used to extract respiratory SS from dynamic PET.

• Finally, there have been strides recently in the domain of DIP applied to the PET

reconstruction process. However, there has not been seen recently a method to

reconstruct 4D or dynamic PET using DIP. This would be a logical extension of

the methods presented in appendix B. The main limitation to implementing this is

that the forward model would be required to be implemented in the NN framework

of choice.
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Appendix A

Motion Correction Methods Table

Table A.1: This table shows a short summary of the highlights of all methods used in chapter 3
and chapter 4. This table is useful for quickly referencing the changes between sections
and the development of the method throughout the thesis.

Method
Details

Data Reconstruction Motion Estimation

Section 3.3
• Four Dimensional Extended

Cardiac Torso (XCAT):

– 40.0 mm lesion

– One Dimensional (1D)
XCAT respiratory traces

– No hysteresis

– 6 volumes

– No intra-gate motion

• Simulation:

– Two Dimensional (2D)
Simulation

– 120 s simulation

– American clinical count
rate (True 60 Kilo Counts
Per Second (KCPS))

– Non-Time of Flight (Non-
TOF) and Time of Flight
(TOF)

– 375.0 ps TOF resolution

– No scatter or random events

• Gating:

– XCAT Surrogate Signal
(SS)

– 6 respiratory bins

• Non-Attenuation Corrected
(NAC) Ordered Subset
Expectation Maximisation
(OSEM) (2 iterations, 24
subsets)

• Gaussian post-smoothing
(6.4 mm Full Width at Half
Maximum (FWHM))

• Jointly estimating registration
and Motion Model (MM)

• Non-diffeomorphic

• 1D SS

• Sum of Squared Differences
(SSD) objective function

• Default parameters (Control
Point Grid (CPG) spacing
5 times voxel size, 5e−3
bending energy weight)



Method
Details

Data Reconstruction Motion Estimation

Section 3.4
• XCAT:

– 20.0 mm lesion

– 1D Real Time Position
Management (RPM) res-
piratory traces

– No hysteresis

– 240 volumes

– Intra-gate motion

• Simulation:

– 2D Simulation

– 120 s simulation

– American clinical count
rate (True 60 KCPS)

– 375.0 ps TOF resolution

– No scatter or random events

• Gating:

– 1D Principal Component
Analysis (PCA) respirat-
ory SS

– 10 respiratory bins

• Reconstruction for motion es-
timation:

– NAC OSEM (2 iterations,
24 subsets)

– Gaussian post-smoothing
(6.4 mm FWHM)

• Motion compensated recon-
struction:

– Attenuation Corrected (AC)
OSEM (2 iterations, 24
subsets)

– Gaussian post-smoothing
(6.4 mm FWHM)

• Activity MM:

– Jointly estimating registra-
tion and MM

– Non-diffeomorphic

– 1D respiratory SS

– SSD objective function

– Tuned CPG spacing (12
times voxel size) and
bending energy weight
(9e−6)

• Attenuation to activity regis-
tration:

– Non-diffeomorphic

– Normalised Mutual Inform-
ation (NMI) objective
function

– Tuned CPG spacing (5
times voxel size) and
bending energy weight
(9e−2)

– Multi-resolution registra-
tion (4 levels)

• Attenuation deformed twice
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Details

Data Reconstruction Motion Estimation

Section 3.5
• XCAT:

– 12.0 mm lesion

– 2D Magnetic Resonance
(MR) respiratory traces

– Hysteresis

– 240 volumes

– Intra-gate motion

• Simulation:

– 2D Simulation

– 120 s simulation

– European clinical count
rate (True 48 KCPS)

– 375.0 ps TOF resolution

– Pseudo scatter (triangle fil-
ter 22 voxels, 39 KCPS)
and random (56 KCPS)
events

• Gating:

– 2D PCA respiratory SS

– 30 respiratory bins (10 dis-
placement, 3 gradient)

• Reconstruction for motion es-
timation:

– NAC OSEM (2 iterations,
24 subsets)

– Replication of end slices to
size of Attenuation Map
(µ-Map)

– Gaussian post-smoothing
(2 times voxel size)

• Motion compensated recon-
struction:

– AC OSEM (2 iterations, 24
subsets)

– Gaussian post-smoothing
(6.39 mm FWHM trans-
verse, 3.27 mm axial)

• Registration:

– Non-diffeomorphic

– NMI objective function

– Tuned CPG spacing (12
times voxel size), bend-
ing energy (1e−4 activ-
ity, 1e−2 attenuation),
and number of iterations
(8)

– Multi-resolution registra-
tion (4 levels)

– Pair- and group-wise regis-
tration

– Activity and attenuation De-
formation Vector Field
(DVF) composed

• MM:

– With and without MM

– MM fit only at highest res-
olution level

– Weighted (counts) linear re-
gression MM

– 2D respiratory SS
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Method
Details

Data Reconstruction Motion Estimation

Section 4.3
• XCAT:

– 12.0 mm lesion

– 2D MR respiratory traces

– Hysteresis

– 480 volumes

– Intra-gate motion

• Simulation:

– 2D Simulation

– 240 s simulation

– European (late dynamic)
research count rate
(41 KCPS)

– 375.0 ps TOF resolution

– Pseudo scatter (Gaussian
smoothing 128.0 mm
FWHM, 29 KCPS)
and random events
(57 KCPS)

• Gating for motion estimation:

– 2D PCA respiratory SS

– 30 respiratory bins (10 dis-
placement, 3 gradient) or

– 4 radial pseudo-phase gates

• Gating for motion com-
pensated reconstruction:

– 2D PCA respiratory SS

– 30 respiratory bins (10 dis-
placement, 3 gradient)

• Reconstruction for motion es-
timation:

– AC Maximum Like-
lihood Expectation
Maximisation (MLEM)
initialisation (1 iteration)

– Maximum Likelihood
Activity and Attenuation
Correction Factors Es-
timation (MLACF) (7
activity iterations, 24
subsets, 9 attenuation
iterations)

– Quadratic prior (1.0)

– Attenuation Correction
Factor (ACF) initialised
with ones

– Activity volume and ACF
standardised between it-
erations

– Replication of end slices to
size of µ-Map

– Gaussian post-smoothing
transverse (6.4 mm
FWHM)

– ‘Normal’ Z-filter axially
(1.0, 4.0, 1.0 convolu-
tion)

• Motion compensated recon-
struction:

– AC OSEM (2 iterations, 24
subsets)

– Gaussian post-smoothing
transverse (6.4 mm
FWHM)

– ‘Normal’ Z-filter axially
(1.0, 4.0, 1.0 convolu-
tion)

• Registration:

– Diffeomorphic (velocity
field parametrised,
symmetric)

– NMI objective function

– Tuned CPG spacing
(8 times voxel size),
bending energy (1e−4
activity, 1e−2 attenu-
ation), and number of
iterations (5)

– Multi-resolution registra-
tion (5 levels)

– Pair-wise registration ini-
tialisation

– Group-wise registration

– Activity and attenuation
DVF composed

• MM:

– MM fit between each resol-
ution level

– Weighted (counts) linear re-
gression MM

– 1D or 2D respiratory SS
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Method
Details

Data Reconstruction Motion Estimation

Section 4.4
• XCAT:

– 12.0 mm lesion

– 2D MR respiratory traces

– Hysteresis

– 480 volumes

– Intra-gate motion

• Simulation:

– Three Dimensional (3D)
Simulation

– 240 s simulation

– European (late dynamic)
research count rate
(41 KCPS)

– 550.0 ps TOF resolution

– Pseudo scatter (Gaussian
smoothing 128.0 mm
FWHM, 29 KCPS)
and random events
(57 KCPS)

• Gating for motion estimation:

– 1D or 2D PCA respiratory
SS

– 30 respiratory bins (10 dis-
placement, 3 gradient) or

– 5 respiratory bins (5 dis-
placement, 1 gradient) or

– 3, 4, 8, or 12 radial pseudo-
phase gates

• Gating for motion com-
pensated reconstruction:

– 1D or 2D PCA respiratory
SS

– 30 respiratory bins (10 dis-
placement, 3 gradient)

• Reconstruction for motion es-
timation:

– AC OSEM initialisation (2
iterations, 24 subsets)

– MLACF (3 activity itera-
tions, 24 subsets, 1 atten-
uation iterations)

– ACF initialised with µ-Map

– Activity volume scale set
to OSEM reconstruction
and

– ACF scale set to µ-Map
between iterations

– Re-interpolation of outliers
between iterations

– Smoothing of endplanes
between iterations

– Median smoothing (kernel
size 3) between iterations

– Sinogram mashing in atten-
uation update (1, 7, 2,
3 mashing factor respect-
ively)

– Filled with Not a Numbers
(NaNs) to size of µ-Map

• Motion compensated recon-
struction:

– AC OSEM (2 iterations, 24
subsets)

– Gaussian post-smoothing
transverse (6.4 mm
FWHM)

– ‘Normal’ Z-filter axially
(1.0, 4.0, 1.0 convolu-
tion)

• Registration:

– Diffeomorphic (velocity
field parametrised,
symmetric)

– NMI objective function

– Tuned CPG spacing (13
times voxel size) and
bending energy (1e−1 at-
tenuation)

– Multi-resolution registra-
tion (4 levels)

– Iterations used at resolution
level: 2, 2, 2, 5

– Pair-wise registration ini-
tialisation

– Group-wise registration

– Activity and attenuation
DVF composed

• MM:

– MM fit between each resol-
ution level

– Weighted (counts) linear re-
gression MM

– 1D or 2D respiratory SS
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Details

Data Reconstruction Motion Estimation

Section 4.5
• XCAT:

– 12.0 mm, 10.0 mm, 8.0 mm,
or 6.0 mm lesion

– 2D MR respiratory traces

– Hysteresis

– 480 volumes

– Intra-gate motion

• Simulation:

– 3D Simulation

– 240 s simulation

– European (late dynamic)
research count rate
(41 KCPS)

– 550.0 ps TOF resolution

– Pseudo scatter (Gaussian
smoothing 128.0 mm
FWHM, 29 KCPS)
and random events
(57 KCPS)

• Gating for motion estimation:

– 2D PCA respiratory SS

– 4 radial pseudo-phase gates

• Gating for motion com-
pensated reconstruction:

– 2D PCA respiratory SS

– 30 respiratory bins (10 dis-
placement, 3 gradient)

• Reconstruction for motion es-
timation:

– AC OSEM initialisation (2
iterations, 24 subsets)

– MLACF (3 activity itera-
tions, 24 subsets, 1 atten-
uation iterations)

– ACF initialised with µ-Map

– Activity volume scale set
to OSEM reconstruction
and

– ACF scale set to µ-Map
between iterations

– Re-interpolation of outliers
between iterations

– Smoothing of endplanes
between iterations

– Median smoothing (kernel
size 3) between iterations

– Sinogram mashing in atten-
uation update (1, 7, 2,
3 mashing factor respect-
ively)

– Filled with NaNs to size of
µ-Map

• Motion compensated recon-
struction:

– AC OSEM (2 iterations, 24
subsets)

– Gaussian post-smoothing
transverse (6.4 mm
FWHM)

– ‘Normal’ Z-filter axially
(1.0, 4.0, 1.0 convolu-
tion)

• Registration:

– Diffeomorphic (velocity
field parametrised,
symmetric)

– NMI objective function

– Tuned CPG spacing (13
times voxel size) and
bending energy (1e−1 at-
tenuation)

– Multi-resolution registra-
tion (4 levels)

– Iterations used at resolution
level: 2, 2, 2, 5

– Pair-wise registration ini-
tialisation

– Group-wise registration

– Activity and attenuation
DVF composed

• MM:

– MM fit between each resol-
ution level

– Weighted (counts) linear re-
gression MM

– 2D respiratory SS
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Appendix B

Pseudo-Bayesian DIP Denoising as a

Preprocessing Step for Kinetic

Modelling in Dynamic PET

B.1 Abstract
Noise (among other artefacts) could be considered to be the bane of Positron Emission

Tomography (PET). Often, it causes what could otherwise be a more simple problem to

explode in complexity. Many methods have been proposed to alleviate the worst annoy-

ances of noise, however, not many take into account the temporal nature of dynamically

acquired PET. Here, we propose an adaption of a method, which has seen increasing

attention in more traditional imaging denoising circles. Deep Image Prior (DIP) exploits

the initialisation of a carefully designed Neural Network (NN), so as to treat it as a bank

of custom filters, which are to be trained and used afresh on each new image, independ-

ently. DIP has seen adaptation to PET previously (including dynamic PET), however,

many of these adaptations do not take into account the large memory requirements of the

method. Additionally, most previous work does not address the main weakness of the

DIP, its stopping criteria. Here, we propose a method which is both memory efficient,

and includes a smoothing regularisation. In addition, we provide uncertainty estimates by

incorporating a Bayesian approximation (using dropout), and prototype a training scheme

by which the model is fit on all data simultaneously. The denoised images are then used

as input for kinetic modelling. To evaluate the method, dynamic Four Dimensional Ex-



B.2. Introduction

tended Cardiac Torso (XCAT) simulations have been produced, with a Field of View

(FOV) of the lung and liver. The results of the new methods (along with Total Variation

(TV) and the old DIP) have been compared by a visual analysis, Structural Similarity

Index Measure (SSIM), and Ki values. Results indicate that the new methods potentially

outperform the old methods, without increasing computation time, while reducing system

requirements (Whitehead et al. 2022a).

B.2 Introduction

Most machine learning or NN based methods, rely upon a workflow where a model is

designed, trained, validated, and deployed (Kröse et al. 1993). This is logical as the inten-

tion with NN based methods is to treat them as a general function approximator (Kröse

et al. 1993). This is where the function is determined by the relationship between the data

used and the objective or loss function. However, in the domain of image denoising, the

DIP method has received attention as training and inference are performed independently

on each new image (Ulyanov et al. 2020). The DIP method could be considered to be a

custom learnt bank of filters for each input. In order to prevent overfitting, the number of

iterations used is imperative. The authors of the original DIP paper argue that the method

could be considered to be used to solve many inverse problems (Ulyanov et al. 2020).

For PET, there have been a number of adaptations of DIP. (Gong et al. 2019)

used a U-Net with relatively high count/low motion brain scans (Weng and Zhu 2021).

In (Hashimoto et al. 2021) DIP is extended to Four Dimensional (4D) dynamic PET. To

do this, multiple output branches are grafted onto the NN, one for each dynamic time

point. (Hashimoto et al. 2019) uses the original or static PET acquisition as input to the

NN, rather than noise. (Yang and Huang 2022) represents a more recent extension, where

multiple NNs are used simultaneously.

This work seeks to extend or simplify previous work, in order to denoise 4D dynamic

PET data.
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B.3. Methods

Figure B.1: Graphical representation of dropout. On the left of this figure a NN which is experi-
encing a large degree of dropout can be seen. Here, nodes which have been dropped
are represented with a cross through it and their outgoing/incoming connections are
remove. On the right of this figure the same network can be seen without dropout
and will all nodes active and fully connected.

B.3 Methods

B.3.1 Network Design and Execution

Firstly, we reduced Graphics Processing Unit (GPU) memory requirements. Because DIP

requires training at inference, the full amount of memory is needed every time the method

is used. To aid in clinical adoption, a hard limit of 8.0 GB GPU memory was imposed.

Secondly, a more robust stopping criteria is required. The stopping criteria should be

flexible so as to allow the method to correct a wider variety of inputs. One method would

be, to look at a window of previous loss function values, and exit, when the gradient of

this drops below a tolerance. To aid in achieving this, as well as to address weaknesses

of the original DIP, regularisation must be added, so as to stop the NN fitting to noise,

similar to (Liu et al. 2019). Finally, because the output from this method is to be used

in a further kinetic model fitting, it may provide improved results to have a metric of the

uncertainty in the denoised images. We used dropout as in (Gal and Ghahramani 2016) to

approximate (more expensive) Bayesian inference. A graphical representation of dropout

can be seen in figure B.1. Furthermore, this work uses PET data with a FOV of the lung

and liver, whereas most previous work uses a FOV of the head.
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B.3. Methods

Figure B.2: Graphical representation of a number of activation functions. In the top left of this
figure can be seen the sigmoid function. In the top right of this figure the tanh
activation function can be seen. In the middle left of this figure the Rectified Linear
Unit (ReLU) activation can be seen. In the bottom right of this figure the Exponential
Linear Unit (ELU) activation can be seen. In the bottom right of this figure the leaky
ReLU can be seen.
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B.3. Methods

Figure B.3: Graphical representation of the Scaled Exponential Linear Unit (SELU) activation
function. This figure shows a scaled version of the ELU activation function showed
in figure B.2. The same advantages and disadvantages as with ELU are apparent here.
However, as an additional advantage if the input data to this activation are normalised
then the output of the activation will also be normalised.

The NN used was a modified U-Net (Weng and Zhu 2021), with seven

down/upsampling stages. Each down/upsampling stage consisted of two convolu-

tional layers (with two, four, eight, 16, 32, 64, or 128 channels, depending on depth).

Followed by, either a split strided convolution and maxpooling layer (with the result

concatenated), or a trilinear upsampling layer. Edge padding, group normalisation (Wu

and He 2020), MISH activation (Misra 2019), and spatial dropout, were used with every

convolutional layer. An example of some activation functions can be seen in figure B.2

and a self-regularising activation function, which was considered for this work, can be

seen in figure B.3. A graphical representation of the process of convolution can be seen

in figure B.4. Data was edge padded to the nearest power of two, and the input data had

Gaussian noise summed to it. Both input and label data were standardised. Mean Squared

Error (MSE) and TV were used as the loss function. AdamW (Loshchilov and Hutter

2019) was used as optimiser. Training continued for all methods until the gradient of the

loss function, over a window of previous results, reduced below a threshold. Parameters

were tuned using a grid search.
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B.3. Methods

Figure B.4: Graphical representation of the process of convolution. This figure shows a 3× 3
convolution kernel operating on a padded image at the bottom of the figure to create
the new image at the top of the figure. For a Convolutional Neural Network (CNN)
each value in the convolution kernel is determined using weights and biases, like in
a fully connected NN. However, rather than there being a weight and bias for every
element in the input data there is only one for the kernel. Therefore, the number of
parameters is significantly reduced and if the NN is fully convolutional then the input
size does not have to be fixed.
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B.3. Methods

Two training regimes were explored, one where each time point was treated inde-

pendently, and another, where the model weights were saved and then independently

updated on each time point (the mean of the new model’s weights was taken for the next

iteration).

As an aside, in order to justify further the selection of activation function, here are the

advantages and disadvantages of the activations seen in figure B.2. The sigmoid function

compresses the range of the input to be between zero and one. However, values which

are much outside of the range of zero to one can have the contrast between them signific-

antly reduced. For instance values with a magnitude of difference could become almost

indistinguishable once transformed. Furthermore, because this activation is bounded both

above and below the sigmoid function suffers with the vanish gradient problem (where

the gradient becomes so small that values are updated very slowly or not at all). However,

the sigmoid function does not suffer with the exploading gradient problem (where the

gradient becomes so large that optimisation is unstable). The ReLU activation is very

quick to compute. However, this activation function suffers when values become less than

zero, there is no gradient here and as such the values cannot change, this is the dead ReLU

problem. The ELU activation is similar to the ReLU activation, in contrast this activation

does not suffer from the dead ReLU problem. However, because of the exponent this

activation function is slow to compute. For leaky ReLU rather than setting all negative

values to zero the negative region of the activation function is set to a scaled version of

the input. This means that leaky ReLU does not suffer from the dead ReLU problem.

B.3.2 PET Acquisition Simulation and Image Reconstruction

A series of dynamic scans, following the clinical Dynamic Whole Body (DWB)-PET

protocol, were generated using the XCAT phantom (Segars et al. 2010). Patient-derived

kinetic parameters were assigned to 64 tissues, three tumours of 1.0 cm diameter in the

left lung, and three tumours of 2.5 cm, 2.0 cm, and 1.0 cm diameter in the liver. An input

function for Fluorine-18 Fludeoxyglucose ([18F]-FDG), taken from (Långsjö et al. 2004),

was used to simulate Time Activity Curves (TACs) to create dynamic images.

PET acquisitions were simulated (and reconstructed) using Software for Tomo-

graphic Image Reconstruction (STIR) (Thielemans et al. 2012) through Synergistic Im-
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age Reconstruction Framework (SIRF) (Ovtchinnikov et al. 2020). Non-Time of Flight

(Non-TOF) sinogram data were simulated, using resolution modelling (using a 6.0 cm

Full Width at Half Maximum (FWHM) Gaussian filter). Randoms and scatter were not

included. Poisson noise was added.

Finally, all data sets were reconstructed using 10 iterations with 17 subsets of Ordered

Subset Expectation Maximisation (OSEM) (Hudson and Larkin 1994).

B.3.3 Kinetic Modelling

Indirect Patlak estimation was used to generate Ki and intercept images (Patlak et al.

1983). Volume of Interests (VOIs) were defined for the three lesions and two background

regions (lung and liver), and the mean values of Ki and Vd were calculated in each VOI.

The uncertainties of the parameters were estimated as follows. Normally distributed noise

was added to the dynamic images, with standard deviation given by the DIP-uncertainty,

and Patlak analysis was performed. The procedure was repeated for 10 noise realisations,

and the standard deviation of the Ki and Vd parameters were calculated.

B.3.4 Evaluation

In addition to the denoising performed above in section B.3.1, data were also denoised

using TV, and the DIP method presented in (Gong et al. 2019).

Comparisons used included: A visual analysis, SSIM to the ground truth (Wang

and Bovik 2009), Ki values, a TAC through a lesion, a profile over a lesion, and Standard

Uptake Value (SUV)max and SUVpeak (defined following European Association of Nuclear

Medicine (EANM) guidelines (Boellaard et al. 2015)).

B.4 Results
A visual comparison of the reconstructed images (see figure B.5), shows that both of

the new DIP methods perform comparably, if not for a slight reduction in noise in the

combined case. Whereas, the TV and original DIP implementations appear to have

struggled with over smoothing, reducing the contrast of the lesions, and introducing some

edge artefacts. The uncertainty of the combined method can be seen reduced compared

to the sequential method.

A comparison of Ki values across multiple lesions (see figure B.6), shows that the
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B.4. Results

Figure B.5: First column contains, a visual analysis between the ground truth and denoised results
(taken for the last time point, plus SSIM to the ground truth), and the second column
contains, the Ki results (all voxels in a coronal view) of a Patlak reconstruction
of all time points (plus SSIM to the ground truth), for the ground truth, and data
denoised using, TV, the implementation of DIP from (Gong et al. 2019), and our
new implementation of DIP, trained sequentially and combined (taken for the lung
FOV). Last row contains, uncertainty volumes, for the data denoised using our new
implementation of DIP, trained sequentially and combined (taken for the last time
point of the lung FOV). Colour map ranges are consistent for all images in each
section.
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B.4. Results

Figure B.6: Ki results (single voxel) of a Patlak reconstruction of all time points, plus uncertainty
where applicable, for the ground truth, and data denoised using, TV, the implement-
ation of DIP from (Gong et al. 2019), and our new implementation of DIP, trained
sequentially and combined.

Table B.1: Comparison of SUVmax and SUVpeak, for the ground truth, the original noisy data, and
this data denoised using, TV, the implementation of DIP from (Gong et al. 2019), and
our new implementation of DIP, trained sequentially and combined (taken for the last
time point of the lung FOV).

SUV Max Peak
Ground Truth 12.3 9.53

Noisy 21.5 5.99
TV 3.28 6.24

Original DIP 3.90 6.93
New DIP Sequential 9.19 8.02
New DIP Combined 9.27 8.21
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B.4. Results

Figure B.7: A TAC through a lesion, fit as a third order polynomial regression, with weighting
using uncertainty (where available), for the ground truth, the original noisy data, and
this data denoised using, TV, the implementation of DIP from (Gong et al. 2019),
and our new implementation of DIP, trained sequentially and combined, both with
and without uncertainty (taken for the lung FOV).

Figure B.8: A profile through a lesion, in the Superior Inferior (SI) direction, for the ground truth,
the original noisy data, and this data denoised using, TV, the implementation of DIP
from (Gong et al. 2019), and our new implementation of DIP, trained sequentially
and combined (taken for the last time point of the lung FOV).
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B.5. Discussion and Conclusions

new DIP combined method most often estimates the greatest magnitude of Ki value, which

is usually closest to the ground truth. The new DIP sequential is slightly less accurate

(also with greater uncertainty), however, is more accurate than the TV and original DIP

implementations (which consistently significantly underestimate Ki).

The overall shape of the TAC (see figure B.7) for the new DIP combined method

appears, most similar to the ground truth, however, with a slight reduction in quantification.

The sequential method is less accurate, but still more so than both the original DIP and

TV methods. There is significant variation in the noise TAC, somewhat masked by the

regression, however, its shape is still least like the ground truth. Adding uncertainty

appears to have improved the TAC of the new DIP sequential method, however, the

uncertainty of the combined method is less, and as such, the inclusion of uncertainty has

not affected results significantly.

The peak of the profile (see figure B.8) for both new DIP methods is comparable,

and greater than both the original DIP and TV methods. The peak of the noise profile is

greater than all other methods, including the ground truth, however, this is not necessarily

beneficial, as can be seen by the rest of the profile not closely following the ground truth

(it undulates unpredictably). The profile for both new DIP methods are significantly

smoother, and more closely follow the ground truth.

SUV (and SSIM) results confirm the above (see table B.1).

B.5 Discussion and Conclusions
Evaluation indicated that the new DIP method, particularly when trained combined,

provided images with less noise and more quantitative accuracy than other methods.

The combined method had lower uncertainty.

Results presented here were obtained on a single bed position. Initial evaluation on a

bed position, centred on the liver, indicated that parameter fine-tuning, depending on the

distribution and count level, will be beneficial. Evaluation with patient data will follow.

The uncertainty estimates produced by the NN need to be validated by comparison

with results obtained from repeated noise realisations.

In the future, research will focus on the application of the method to domains other

than dynamic PET, where 4D data exists, such as motion correction.
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Appendix C

PCA Data Driven Surrogate Signal

Extraction Methods for Dynamic PET

Full Overview



Figure C.1: A diagram showing an overview of the possible ways in which the method could be
executed.
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Appendix D

PCA Data Driven Surrogate Signal

Extraction Methods for Dynamic PET

Results With and Without Pre- and

Figure D.1: A visual comparison between the Real Time Position Management (RPM) Surrogate
Signal (SS) and the SS from the static Principal Component Analysis (PCA) method
using only the first Principal Component (PC) for three patients between 20 s and
160 s. The three patients shown here are the ones on which parameters for the method
were optimised.



Figure D.2: A visual comparison between the RPM SS and the SS from the static PCA method
by combining the first 20 PCs for three patients between 20 s and 160 s. The three
patients shown here are the ones on which parameters for the method were optimised.
Here no pre- or post-processing is used.

Figure D.3: A box plot of the correlation coefficient between static PCA method both when using
only the first PC and by combining the first 20 PCs for all patients between 20 s and
160 s and for the entire acquisition. The parameters used here were optimised for and
frozen based on the results shown in other diagrams on three patients. Here no pre-
or post-processing is used.
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Figure D.4: A visual comparison between the RPM SS and the SS from the static PCA method
by combining the first 20 PCs for three patients between 20 s and 160 s. The three
patients shown here are the ones on which parameters for the method were optimised.
Here pre- and post-processing are used.

Figure D.5: A box plot of the correlation coefficient between static PCA method both when using
only the first PC and by combining the first 20 PCs for all patients between 20 s and
160 s and for the entire acquisition. The parameters used here were optimised for and
frozen based on the results shown in other diagrams on three patients. Here pre- and
post-processing are used.
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Post-Processing

Results presented here are only for the static PCA case. For results presented here para-

meters were selected on a subset of the data (specifically three randomly selected scans)

before being applied across the entire data set. A plot of the SS for static PCA using only

one PC for three patients at early time points can be seen in figure D.1. It can be observed

in this example that only using the static PCA method and one PC does not give satisfact-

ory results at early time points. A plot of the SS for static PCA using a combination of

the first 20 PCs for three patients at early time points can be seen in figure D.2, here no

pre- or post-processing is used. Here for all patients from very early in the acquisition it

can be seen that the method gives comparable results to the RPM. A plot of the SS for

static PCA using a combination of the first 20 PCs for three patients at early time points

can be seen in figure D.4, here pre- and post-processing are used. The parameters for

the processing were optimised solely to improve the correlation coefficient for early time

points, as such it can be seen that some inter-window variation has been removed (from

parallel compression).

A box plot of the correlation coefficient of the SS for static PCA using only one PC

compared to the RPM and the correlation coefficient of the SS for static PCA using a

combination of the first 20 PCs compared to the RPM for all patients at both early time

points and all time points and can be seen in figure D.3, here no pre- or post-processing

is used. Here the improvement by incorporating multiple PCs is most apparent. A box

plot of the correlation coefficient of the SS for static PCA using only one PC compared

to the RPM and the correlation coefficient of the SS for static PCA using a combination

of the first 20 PCs compared to the RPM for all patients at both early time points and all

time points and can be seen in figure D.5, here pre- and post-processing are used. The

parameters for the processing were optimised solely to improve the correlation coefficient

for early time points, as such it can be seen that the correlation coefficient drops from no

processing to processing for the entire acquisition, it can be assumed this effect is similar

to minimising variance at the expense of bias or vice versa.
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Appendix E

PCA Data Driven Surrogate Signal

Extraction Methods for Dynamic PET

Parallel Compression

This appendix contains a detailed description of what is presented briefly in section 5.4.2.1.

This method attempts to limit the dynamic range of a signal proportionally, in time, to

how much that signal is expected to be affected by artefacts. The signal is duplicated

Figure E.1: This figure shows an example of the processed count rate and processed gradient of
the processed count rate, between 0 s and 140 s, which are used as part of the parallel
compression post-processing step. These have been taken for the first acquisition of
patient one. Here the processed count rate is normalised between zero and one by
subtracting by the minimum and dividing by the maximum value of the signal.



Algorithm 11: Parallel Compression
Data: timeSeriesSinograms, respiratorySignal, windowSize
Result: respiratorySignal

1 for index in length of timeSeriesSinograms - windowSize do
2

3 currentRespiratorySignal = respiratorySignal for data between index and
index + windowSize

4

5 currentRespiratorySignal = currentRespiratorySignal - mean of
currentRespiratorySignal

6 currentRespiratorySignal =
currentRespiratorySignal

standard deviation of currentRespiratorySignal
7

8 windowSignal = fill with Not a Numbers (NaNs) to index
9 windowSignal append currentRespiratorySignal

10 windowSignal append NaNs to length of timeSeriesSinograms
11

12 respiratorySignals append windowSignal
13

14 end
15

16 lowDynamicRangeSignal = mean of signals ignoring NaNs
17

18 weighting = get weighting from timeSeriesSinograms
19

20 lowDynamicRangeSignal = lowDynamicRangeSignal × weighting
21 respiratorySignal = respiratorySignal × (1 - weighting)
22

23 respiratorySignal = respiratorySignal + lowDynamicRangeSignal

into two channels, one of these channels is then split temporally into a series of small

moving windows. These windows are 20 s in size and overlap by their length minus one

(the stride size is one). The values in each window are then standardised independently,

the windows are averaged back together, before being combined with the unadulterated

channel following the weighting seen in figure E.1. An example of the algorithm can be

seen in the algorithm 28.

The channels are combined following the gradient of the count rate. An example of

the signals involved can be seen in figure E.1, and an example of the algorithm can be

seen in the algorithm 28.

• Firstly, the count rate over time is found by summing all elements of each sinogram.
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Algorithm 12: Extract Parallel Compression Weighting
Data: timeSeriesSinograms
Result: processedGradientOfProcessedCountRate

1 for sinogram in timeSeriesSinograms do
2 countRate append sum of sinogram
3 end
4

5 processedCountRate = moving average of countRate
6

7 gradientOfProcessedCountRate = gradient of processedCountRate
8

9 processedGradientOfProcessedCountRate = absolute of
processedGradientOfProcessedCountRate

10

11 processedGradientOfProcessedCountRate = reverse of
processedGradientOfProcessedCountRate

12 currentMaximumValue = 0.0
13

14 for value in processedGradientOfProcessedCountRate do
15 if value >currentMaximumValue then
16 currentMaximumValue = value
17 else
18 value = NaN
19 end
20 end
21

22 processedGradientOfProcessedCountRate = reverse of
processedGradientOfProcessedCountRate

23 linear interpolate NaNs in processedGradientOfProcessedCountRate
24

25 processedGradientOfProcessedCountRate = centred moving average of
processedGradientOfProcessedCountRate

26

27 processedGradientOfProcessedCountRate =
processedGradientOfProcessedCountRate - minimum of
processedGradientOfProcessedCountRate

28 processedGradientOfProcessedCountRate =
processedGradientOfProcessedCountRate

maximum o f processedGradientOfProcessedCountRate
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A moving average smoothing is then applied to this processed count rate signal

with a size of 5 s.

• Secondly, the gradient of the processed count rate is taken. The absolute of this

signal is used, this is because we are interested in the change in gradient (but not

the direction). Next the processed gradient of the processed count rate signal is

iterated over from its last value to its first. If the value decreases, it is replaced

by interpolation, using the previous value and the next value that is larger than the

previous value. Finally a (centred) moving average smoothing is applied to the

signal with a size of 20 s, and the signal is normalised between zero and one by

subtracting by the minimum and dividing by the maximum value of the signal.

• Thirdly, the low and high dynamic range respiratory signals are summed, using

the magnitude of the processed gradient of the processed count rate signal as a

weighting. At time intervals where the magnitude of the processed count rate signal

is greater, more of the compressed/standardised signal is summed, compared to

the non-compressed/non-standardised signal. The total weighting is always equal

to one, to maintain the scale. To achieve this, the low dynamic range respiratory

signal is multiplied directly by the processed gradient of the processed count rate

signal, and the high dynamic range respiratory signal is multiplied by one minus the

processed count rate signal (before both respiratory signals are summed together).
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Appendix F

A Bayesian Neural Network-Based

Method for the Extraction of a

Metabolite Corrected Arterial Input

Function from Dynamic PBR28 PET

F.1 Abstract
In Positron Emission Tomography (PET), arterial sampling and metabolite correction are

prerequisites for the gold-standard measurement of values like the Volume of Distribution

(VT), often necessary for the full quantification of radioligand binding. However, the

invasiveness and technical demands of these procedures limit their application in both

research and clinical PET studies. Machine learning approaches have been explored

to predict VT from PET images, but their integration in clinical routine is limited by

their lack of transparency or thorough evaluation. Here we propose a Bayesian Neural

Network (NN) to estimate the Arterial Input Function (AIF), while also outputting its

prediction uncertainty, 1) directly from the entire dynamic PET images (Neural Network

Auto-Encoder Input Function (NN-AEIF)), 2) from an Image Derived Input Function

(IDIF) (Neural Network Image Derived Input Function (NN-IDIF)) and, as a sensitivity

measure, 3) from the un-corrected plasma curve (Neural Network Arterial Input Function

(NN-AIF)). All methods, applied on [11C]-Peripheral Benzodiazepine Receptor ([11C]-

PBR28) PET data, were compared to the metabolite-corrected AIF in terms of VT, and the



F.2. Introduction

prediction uncertainty was assessed in terms of Normalised Coefficient of Variance (nCV).

Overall, both NN-AEIF and NN-AIF were able to accurately predict VT, outperforming

the other methods, with NN-AEIF showing the lowest nCV (Whitehead et al. 2023a;

Brusaferri et al. 2025).

F.2 Introduction
The VT estimated with an AIF is utilised for quantification of many PET tracers, including

[11C]-PBR28. This, however, requires the concurrent measurement of the concentrations

of unchanged radioligand in arterial plasma. Although insertion of an arterial catheter

rarely results in clinically relevant adverse events, it is an invasive and laborious proced-

ure.

IDIF represents a promising alternative to arterial sampling (Zanotti-Fregonara et

al. 2011). However, its applicability in clinical research is hampered by several factors

including the inaccuracy in the estimation of both shape and amplitude of the input

function. Moreover, IDIF does not allow for radio-metabolites quantification (Sari et

al. 2018). The application of machine learning is expected to improve the accuracy of

predicting the AIF from PET images (Kuttner et al. 2020; Ferrante et al. 2022). While

these methods have shown promising results, the vast majority of these approaches have

been developed for PET tracers that do not produce radio-metabolites. Furthermore,

even if the developed model shows sufficient prediction accuracy for unseen data, its

applicability in the clinical setting remains questionable because of a lack of transparency

or thorough evaluation (Salahuddin et al. 2022). Bayesian networks offer the significant

advantage of making probabilistic predictions based on available evidence. Specifically, a

Bayesian network would output uncertainty estimates in addition to the model prediction.

For this reason, they have the potential to overcome the key barrier to the responsible

adoption of Artificial Intelligence (AI) in clinical practice (Prabhudesai et al. 2023).

Here, we propose a Bayesian NN-based method for predicting a metabolite corrected

AIF, while allowing for the estimation of uncertainty of the model’s output. Specifically

for the auto-encoder, although also present in the other networks, we try to enforce the low

dimensional representation of the input data as disentangled and continuous. Furthermore,

the network does not predict a single signal for each input. ather, it predicts a probability
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density function of potential signals, which allows for the estimation of uncertainty of the

model’s output.

F.3 Methods

F.3.1 Data Acquisition and Processing

Dynamic [11C]-PBR28 PET/Magnetic Resonance (MR) images from 52 individuals (Age

55±16 years. Sex 27 Male, 25 Female. Genotype 32 High Affinity Binders (HABs), 20

Mixed Affinity Binders (MABs). Clinical population 12 Healthy Controls, 40 Chronic

Pain patients. Injected Dose 14.16±1.3 Millicuries (mCis)) were acquired on a Siemens

Biograph mMR whole-body tomograph for a time-period of 0-90 minutes post-injection.

Data were pooled for multiple protocols (approved by the Partners Healthcare/Mass Gen-

eral Brigham Institutional Review Board) and reconstructed as in (Brusaferri et al. 2022a).

All subjects had a radial artery catheter placed during the scan. Uncorrected plasma

curves from blood samples were interpolated and metabolite-corrected to obtain the AIF.

To further validate the proposed method, IDIF was calculated by segmenting the arterial

carotid siphons using intensity thresholding of early dynamic PET frames. Data were

split using ten-fold cross-validation, ensuring maximum within-variance and minimum

between-variance in the training and testing sets.

All subjects received a radial artery catheter at the time of the scan. Uncorrected

plasma curves from the blood samples were interpolated and metabolite-corrected to

obtain the AIF. Uncorrected plasma curves were obtained from raw blood samples using

linear fitting. In 16 subjects, arterial blood processing was performed using a HyperSep

C18 solid extraction cartridge to separation of radio-metabolites. In 36 subjects, High

Performance Liquid Chromatography (HPLC) for separation of radio-metabolites from

parent radiotracer was used instead. Hill-fitted parent fractions were applied to the raw

data and a radio-metabolite-corrected AIF was obtained for each subject. Previous cross-

validation confirmed reliability of both pipelines allowing for the combination of both

data-sets to increase statistical power of the study (Brusaferri et al. 2022a).

For validation purposes, IDIF was also calculated by segmenting the arterial carotid

siphons via intensity thresholding of early dynamic PET frames. Data were split following

ten-fold cross validation. The split was specifically designated to maximise the within-

277



F.3. Methods

variance while minimising the between-variance in training and testing sets.

F.3.2 Neural Network Design

The method is comprised of three independent NNs. NN1 seeks to reduce the dimention-

ality of the input data (due to computational requirements) and extract the most relevant

features. NN2 aims to extract a non-metabolite corrected signal from the low-dimensional

representation output by the first network. NN3 metabolite corrects and reshapes/rescales

the non-metabolite corrected signal.

All models use a novel activation function, defined as PSo f t plus = log
(
ex +α2),

where x is the output from the previous layer and α is a learnt parameter which is ini-

tialised as α = 0. This activation function was designed as a fully differentiable drop-in

replacement for PReLU (Ciuparu et al. 2020). The initial value of α is selected such that

the activation is initially linear (thus making the model easier to train at early iterations)

and becomes non-linear as training progresses.

In order to try to enforce disentanglement and continuity of this layer, a regularisa-

tion term to enforce the orthogonality of its output was used. To promote stability of

the optimisation, a regularisation term which compares the area under the curve of the

prediction and true signals was used in each NN. Common to all NNs, each model was

optimised using AdaBelief (Zhuang et al. 2020) with the warm-up proportion equivalent

to one-tenth of the total number of epochs, after which it does not decrease. Weight decay

was used to regularise against large weights. Each model was trained initially using Root

Mean Square Error (RMSE), where the mean output of the model is penalised against the

expected value and the standard deviation output of the model is encouraged to be close

to 1. Subsequently, a second training regime was used where the negative log likelhood

function is used to fine-tune the parameters. Gradient accumulation was used to allow

for only one data-point to be loaded onto the Graphics Processing Unit (GPU) at any one

time and for any arbitrary batch-size to be used. The batch size starts at two and increases

to the size of total number of data points, where the batch size doubles as the current

epoch number quadruples.
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F.3.2.1 Neural Network One Autoencoder

This network features three blocks, the downsampling block, the latent layer, and the

upsampling block. The first block comprises three convolutions. The latent block is

flanked on either side by two convolutions, with a variational latent layer in the middle.

The upsampling block consists of a transposed convolution and two standard convolutions.

Here, two downsampling and two upsampling blocks are used. The number of filters

doubled or halved at each block respectively.

The input to the network is the dynamic PET images. Both the mean and standard

deviation of the latent layer and the final layer are output from the model and passed

onto NN2. Both input and target data were standardised separately, based on parameters

obtained from the training set. Each time frame was treated as an independent training

example.

The target images were smoothed using a Gaussian filter with a Full Width at Half

Maximum (FWHM) equal to three times the voxel size in each dimension. All images

were padded such that the size of each dimension was equal to the next larger power of

two. Both input and target images were standardised separately, based on parameters

obtained from the training set.

F.3.2.2 Neural Network Two Signal Extractor

This network consists of two blocks, the downsampling block and the fully connected

block. The downsampling block follows the same structure as in NN1. The fully con-

nected block consists solely of one fully connected layer. All time frames were used

simultaneously, where the same convolutions are applied independently on each time

frame before global average pooling and flattening. After flattening the clinical features

were concatenated with the flattened output. Here, four downsampling blocks and eight

fully connected blocks were used. The number of filters doubled and the number of units

halved at each block respectively.

Each element of the clinical features was either standardised or encoded using one

hot encoding depending on the nature of the feature. Because the autoencoder outputs

both a mean and a standard deviation, values were sampled at the input of the network

using the same reparametrisation-trick as for a variational autoencoder.
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F.3.2.3 Neural Network Three Metabolite Correction and Reshaping

This network contains solely fully connected layers. If the network is to metabolite-

correct a signal (e.g. from AIF or IDIF), it takes that signal as input together with the

clinical/demographic features (age, sex, genotype, injected dose, clinical population). If

the network is instead to correct a signal obtained with NN2, both the mean and the

standard deviation of the uncorrected signal are input to NN3, in addition to the latent

layer from NN2.

F.3.3 Evaluation

The model was sampled 32 times resulting in multiple realisations of the estimated sig-

nal. Then, VT ∈ Rr×s×b were computed via the Logan graphical method, where r is

the number of Region of Interests (ROIs) (r = 69), s is the number of subjects (s = 5)

and b is the number of model samples (b = 32). For both AIF and IDIF, b = 1. For

the NN-based methods, VT were computed for each model realisation and then used to

calculate the mean VT and its standard deviation. Moreover, the nCV was defined as

nCV = std(Pred VT)/True VT with nCV ∈ Rr×s, where VT is computed from the meas-

ured AIF. For each candidate signal, correlation analyses were performed on the VT

values (computed for all the ROIs and for all the subjects in the test-set) to the ones

obtained with the ground truth signal (TRUE-AIF, see section F.3.1). To measure the

accuracy of the prediction, the angle between the regression- and the identity-line was

also computed, defined as θ = 45− arctan(m) ∗ 180/π , with m being the slope of the

regression-line. Furthermore, nCVs were averaged across ROIs for each subject of the

test-set and compared via a paired t-test for each of the three NN-based methods.

F.3.3.1 Candidate Signals

• IDIF - generated as in section F.3.1.

• NN-IDIF - metabolite-corrected input function obtained from IDIF input to NN3.

• NN-AIF - metabolite-corrected AIF obtained from (uncorrected) arterial plasma

input to NN3.

• NN-AEIF - metabolite-corrected input function obtained from dynamic PET im-
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Figure F.1: Predicted VT ∈ Rr×s in the test-set subjects, with r = 69 and s = 5 estimated with
the four candidate signals, correlated to the True VT (obtained with TRUE-AIF).
Please note that for the NN-based methods, the displayed VTs were averaged over all
realisations.

ages input to NN1,2,3.

F.4 Results

Figure F.1 reports the correlation analyses between the predicted VT values (obtained by

the four candidate methods) and the true VT values. For all methods, predicted VT values

positively correlate with true VT values, with NN-AIF and IDIF showing the highest and

the lowest Pearson correlation coefficient (ρ), as well as the smallest and largest angular

distance to the identity line, respectively ρ = 0.97 & θ ≈ 4◦ vs ρ = 0.35 & θ ≈ 36◦.

Overall, NN-AEIF outperformed NN-IDIF in terms of Pearson correlation coefficient and

angular distance ρ = 0.93 & θ ≈ 4◦ vs ρ = 0.81 & θ ≈ 10◦. With regard to the variance

analysis, NN-AEIF outperforms both NN-AIF and NN-IDIF, showing the lowest nCV,

while NN-AIF and NN-IDIF do not differ in terms of nCV values (p> 0.05).
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Figure F.2: Graphical representation of an unrolled Long Short Term Memory (LSTM). This
figure shows from the left to the right the process of feeding a time series to an
LSTM. This figure also shows not only the output at a given time point but also how
information flows from the past to the future. In the centre of this figure an LSTM
node can be seen transforming Xt to ht . This transformation takes place taking into
account information passed from the transformation of xt−1 to ht−1 etc. The flow of
information is shown within the grey box. There are numerous gates which allow the
LSTM to selectively remember or forget information by controlling how this flows to
the transformation of Xt+1 to ht+1.

F.5 Discussion and Conclusions

This work presents an innovative Bayesian NN-based approach for estimating the AIF

from dynamic PET images and clinical variables. This approach shares similarities with

previous methods developed for PET tracers that do not produce radio-metabolites, such

as [18F]Fluorodeoxyglucose (FDG). In this study, additional efforts were devoted to

address [11C]-PBR28 radio-metabolite correction. One of the main advantages of the

proposed method is that it provides a measure of confidence in the generated signal for

unseen data. Additionally, the method’s modular design allows each part to be used

independently. For example, in this work, metabolite correction was applied to a signal

generated by a more traditional method (IDIF).

The four candidate signals were compared to the gold standard TRUE-AIF, obtained

from arterial blood sampling and metabolite correction. Overall, NN-AEIF demonstrated

comparable performance in terms of correlation and bias to NN-AIF, with the lowest

variance of the estimated VT, as measured by the nCV. This improved performance

can potentially be explained by the larger amount of input data and the consequently
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more complex model with additional parameters. Interestingly, the NN-IDIF method was

able to improve on the traditional IDIF approach, as evidenced by a higher correlation

coefficient and a lower angular distance from the identity line.

The proposed approach has some limitations, including the small training size, which

hindered the assessment of the prediction accuracy within subsets of clinical populations

in the test-set (i.e., patients vs healthy controls). In the future, the accuracy of the model

could be improved through the inclusion of an attention layer either before or after the

latent layer of the auto-encoder, validated through the use of an ablation study. As

well as the replacement of the fully connected layers with an LSTM or transformer

based approach. A graphical representation of the structure of an LSTM can be seen in

figure F.2.
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land, Anna Barnes, Simon Arridge, Sébastien Ourselin and David Atkinson. ‘Joint

PET-MR respiratory motion models for clinical PET motion correction’. In: Phys-

ics in Medicine and Biology 61.17 (Sept. 2016), pp. 6515–6530. I S S N: 13616560.

D O I: 10.1088/0031-9155/61/17/6515.

300

https://doi.org/10.48550/arxiv.1711.05101
https://doi.org/10.48550/arxiv.1711.05101
https://doi.org/10.1016/j.ijrobp.2005.03.070
https://doi.org/10.2967/jnumed.117.203000
https://doi.org/10.2967/jnumed.114.151779
https://doi.org/10.2967/jnumed.114.151779
https://doi.org/10.2967/JNUMED.117.191460,
https://doi.org/10.2967/JNUMED.117.191460,
https://doi.org/10.1088/0031-9155/61/17/6515


Bibliography

[111] Ravindra Manjeshwar, Xiaodong Tao, Evren Asma and Kris Thielemans. ‘Motion

compensated image reconstruction of respiratory gated PET/CT’. In: 2006 3rd

IEEE International Symposium on Biomedical Imaging: From Nano to Macro -

Proceedings. Vol. 2006. 2. IEEE, 2006, pp. 674–677. I S B N: 0780395778. D O I:

10.1109/isbi.2006.1625006.

[112] David Mattes, David R. Haynor, Hubert Vesselle, Thomas K. Lewellen and Wil-

liam Eubank. ‘PET-CT image registration in the chest using free-form deform-

ations’. In: IEEE Transactions on Medical Imaging 22.1 (2003), pp. 120–128.

I S S N: 02780062. D O I: 10.1109/TMI.2003.809072.

[113] J. R. McClelland, D. J. Hawkes, T. Schaeffter and A. P. King. ‘Respiratory motion

models: A review’. In: Medical Image Analysis 17.1 (Jan. 2013), pp. 19–42. I S S N:

13618415. D O I: 10.1016/j.media.2012.09.005.

[114] Jamie R. McClelland, Jane M. Blackall, Ségolène Tarte, Adam C. Chandler, Si-

mon Hughes, Shahreen Ahmad, David B. Landau and David J. Hawkes. ‘A con-

tinuous 4D motion model from multiple respiratory cycles for use in lung ra-

diotherapy’. In: Medical Physics 33.9 (2006), pp. 3348–3358. I S S N: 00942405.

D O I: 10.1118/1.2222079.

[115] Jamie R. McClelland, Benjamin A.S. Champion and David J. Hawkes. ‘Combin-

ing image registration, respiratory motion modelling, and motion compensated

image reconstruction’. In: Lecture Notes in Computer Science (including subser-

ies Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

8545 LNCS (2014), pp. 103–113. I S S N: 16113349. D O I: 10.1007/978-3-319-

08554-8{\_}11.

[116] Jamie R. McClelland, Marc Modat, Simon Arridge, Helen Grimes, Derek

D’Souza, David Thomas, Dylan O. Connell, Daniel A. Low, Evangelia Kaza,

David J. Collins, Martin O. Leach and David J. Hawkes. ‘A generalized frame-

work unifying image registration and respiratory motion models and incorporating

image reconstruction, for partial image data or full images’. In: Physics in Medi-

cine and Biology 62.11 (June 2017), pp. 4273–4292. I S S N: 13616560. D O I:

10.1088/1361-6560/aa6070.

301

https://doi.org/10.1109/isbi.2006.1625006
https://doi.org/10.1109/TMI.2003.809072
https://doi.org/10.1016/j.media.2012.09.005
https://doi.org/10.1118/1.2222079
https://doi.org/10.1007/978-3-319-08554-8{\_}11
https://doi.org/10.1007/978-3-319-08554-8{\_}11
https://doi.org/10.1088/1361-6560/aa6070


Bibliography

[117] Qing Le Meng, Rui Yang, Run Ze Wu, Lei Xu, Hao Liu, Gang Yang, Yun Dong,

Feng Wang, Zhengguo Chen and Hongbing Jiang. ‘Evaluation of a respiratory

motion-corrected image reconstruction algorithm in 2-[18F]FDG and [68Ga]Ga-

DOTA-NOC PET/CT: impacts on image quality and tumor quantification’. In:

Quantitative Imaging in Medicine and Surgery 13.1 (Jan. 2023), pp. 370–383.

I S S N: 22234306. D O I: 10.21037/QIMS-22-557/COIF.

[118] G. Mettivier, R. Salvati, M. Conti and P. Russo. ‘The effect of count statistics

on the convergence value in OSEM reconstruction in PET and TOF PET’. In:

IEEE Nuclear Science Symposium Conference Record. Institute of Electrical and

Electronics Engineers Inc., 2011, pp. 2400–2406. I S B N: 9781467301183. D O I:

10.1109/NSSMIC.2011.6152654.

[119] Fred A. Mettler and Milton J. Guiberteau. Essentials of nuclear medicine imaging:

Expert consult. Vol. 31. Elsevier, Jan. 2012, pp. 1–475. I S B N: 9781455701049.

D O I: 10.1016/C2016-0-00043-8.

[120] Alan Miranda, Steven Staelens, Sigrid Stroobants and Jeroen Verhaeghe. ‘Mark-

erless rat head motion tracking using structured light for brain PET imaging of

unrestrained awake small animals’. In: Physics in Medicine and Biology 62.5 (Mar.

2017), pp. 1744–1758. I S S N: 13616560. D O I: 10.1088/1361-6560/aa5a46.

[121] Diganta Misra. ‘Mish: A Self Regularized Non-Monotonic Activation Function’.

In: British Machine Vision Conference. Aug. 2019. D O I: 10.48550/arxiv.

1908.08681. U R L: http://arxiv.org/abs/1908.08681.

[122] Marc Modat, David M. Cash, Pankaj Daga, Gavin P. Winston, John S. Duncan and
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