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 A B S T R A C T

The effect of strut-buckling on the fracture toughness of elastic-brittle triangular lattices is investigated using 
the finite element method. Buckling of struts in the vicinity of a crack-tip is shown to precede fracture 
contingent on the relative density and strut material. Under idealised 𝐾-field conditions, it was found that 
the buckling struts act as a toughening mechanism in Mode I loading and lead to a knockdown in fracture 
toughness in Mode II. Linear perturbation analyses reveal the transition relative density below which strut-
buckling precedes fracture, and its dependence upon the fracture strain of the strut material. A power-law 
scaling relationship between fracture toughness and relative density is proposed for the regime where buckling 
of constituent struts can occur before fracture. It will be shown that strut-buckling can lead to elastic crack-
tip blunting and to the development of compliant layers of cells with reduced stiffness. Subsequently, the 
effects of mode mixity and T -stress on the transition relative density and deviation from the traditional 
fracture toughness scaling law are addressed. Buckling struts act as a toughening mechanism in modes with 
predominantly Mode I influence and lead to a knockdown in toughness for modes with more than 25% Mode 
II contribution. The inclusion of negative T -stress leads to an increase in the transition relative density and to 
significant toughness knockdown after the onset of buckling in Mode I.
1. Introduction

Micro-architected lattices have attracted significant interest as
lightweight and energy-efficient structural materials owing to their 
excellent mechanical properties. Of particular promise is their high 
weight-specific fracture toughness. Previous studies have shown that 
the fracture toughness (𝐾c) of a lattice obeys a power-law relationship 
of the form 𝐾c = 𝐷𝜌𝑑𝜎0

√

𝑙0, where 𝜎0 is the failure strength of the 
cell wall material, 𝑙0 is the characteristic cell size and 𝜌 is the relative 
density (Schmidt and Fleck, 2001; Fleck and Qiu, 2006; Romijn and 
Fleck, 2007; Cui et al., 2011; Tankasala et al., 2015; Gu et al., 2018). 
In general, 𝐾c depends on the microarchitecture of a lattice (whether 
it is stretch- or bending- dominated), its cell wall material properties, 
loading conditions (relative contributions of Mode I and/or Mode II 
loading), and higher-order deformation terms (such as T -stress). The 
aforementioned scaling law has been validated by experiments; see, 
for example, Huang and Gibson (1991), Quintana-Alonso et al. (2010) 
and Gu et al. (2018). However, others have reported divergences. For 
instance, Tankasala et al. (2015) showed that the fracture toughness of 
lattices are affected by finite strut(s) displacements.

Lattices can undergo elastic buckling under several loading condi-
tions: in uniaxial compression (Chuang and Huang, 2002; Yang and 
Huang, 2005; Latture et al., 2018; He et al., 2018; Werner et al., 2022), 
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biaxial compression (Guo and Gibson, 1999; Okumura et al., 2004; 
Ohno et al., 2004), tensile loading (Fan et al., 2009; Tankasala et al., 
2017), or shear (Haghpanah et al., 2014). Buckling has been observed 
locally, in single-cells or struts, and/or globally, affecting a large num-
ber of cells. Hitherto, there have been limited studies on the effects of 
geometric nonlinearities, viz. the elastic buckling of constituent struts, 
on the fracture toughness of lattice materials. In Quintana-Alonso 
and Fleck (2009), the possibility of strut-buckling was considered in 
compressively loaded diamond lattices containing a pre-crack. It was 
shown that strut buckling could occur before crack propagation due 
to the compressive components of the crack-tip field. The interactions 
between the finite deformations of buckled struts and the crack-tip 
displacement field are not yet well understood in lattices subjected 
to conventional Mode I or II loading, and the mechanisms that affect 
fracture in the post-buckling regime have not been investigated to date.

The focus of this paper is on triangular lattices, where the dominant 
deformation of its constituent struts is either axial stretch or compres-
sion. Depending on the relative density and whether the compressive 
force in a constituent strut is sufficiently high, elastic buckling can 
be triggered locally. The latter may cause geometric disruptions to its 
regular lattice frame-work, leading to changes in the local effective 
properties which, in turn, induces a change in the crack-tip asymptotic 
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stress field. The consequence of this is deviations from the fracture 
toughness predicted by traditional scaling law.

This paper is organised as follows. First, the issue of whether con-
stituent strut-buckling can occur in a triangular lattice before fracture 
is addressed and the range of relative densities over which this occurs is 
determined. Next, the influence of strut-buckling on the Mode I and II 
fracture toughness is quantified, and their effect on the crack opening 
displacement and local stiffness of the cells is addressed. Finally, the 
influence of mixed-mode loading and higher-order deformation terms 
(such as T -stress) on the fracture toughness are established.

2. Method

2.1. Background theory

The in-plane stress field around the crack-tip of an isotropic and 
homogenous linear-elastic body is given by (Williams, 1957) 

𝜎𝑖𝑗 = 𝐴1

𝑔(1)𝑖𝑗 (𝜃)
√

𝑟
+ 𝐴2𝑔

(2)
𝑖𝑗 (𝜃) +

∞
∑

𝑛=3
𝐴𝑛𝑔

(𝑛)
𝑖𝑗 (𝜃)𝑟(𝑛−2)∕2 (1)

where 𝜎𝑖𝑗 is the stress tensor; 𝑟 and 𝜃 are the polar coordinates centered 
at the crack-tip; 𝑔𝑛𝑖𝑗 (𝜃) are dimensionless functions of 𝜃; and, 𝐴𝑛 is the 
stress amplitude corresponding to the 𝑛th term. The first and second 
terms of Eq. (1) correspond to the 𝐾-field and 𝑇 -stress, respectively.

In the immediate vicinity of the crack-tip, the singular stress field 
given by the leading term in Eq. (1) can be additively decomposed 
into contributions from the remote tensile (Mode I) and in-plane shear 
(Mode II) loadings as follows (Kanninen and Popelar, 1985) 

𝜎𝑖𝑗 =
𝐾I

√

2𝜋𝑟
𝜎̂I𝑖𝑗 +

𝐾II
√

2𝜋𝑟
𝜎̂II𝑖𝑗 (2)

where 𝐾I and 𝐾II are the Mode I and Mode II stress intensity factors 
(SIF), respectively. For mixed-mode loading, the relative composition of 
𝐾I and 𝐾II is controlled by means of an elastic mode mixity parameter 
𝑀 given by (Sih, 1974) 

𝑀 = 2
𝜋
tan−1

(

𝐾II
𝐾I

)

and 0 ≤ 𝑀 < 1 (3)

where the limiting values of 𝑀 = 0 and 𝑀 → 1− correspond to the 
Mode I and Mode II fracture toughness, respectively.

The displacement (𝑢1, 𝑢2) and rotation (𝜔) fields associated with 
the leading-order term in Eq. (1) in an elastic body in plane strain 
are (Kanninen and Popelar, 1985; Fleck and Qiu, 2006) 

𝑢1 =
𝐾I
2𝐺∗

√

𝑟
2𝜋

cos 𝜃
2
(𝜅−1+2 sin2 𝜃

2
)+

𝐾II
2𝐺∗

√

𝑟
2𝜋

sin 𝜃
2
(𝜅+1+2 cos2 𝜃

2
) ,

(4a)

𝑢2 =
𝐾I
2𝐺∗

√

𝑟
2𝜋

sin 𝜃
2
(𝜅+1−2 cos2 𝜃

2
)−

𝐾II
2𝐺∗

√

𝑟
2𝜋

cos 𝜃
2
(𝜅−1−2 sin2 𝜃

2
) and

(4b)

𝜔 = −1 + 𝜅
4𝐺∗

(

𝐾I
√

2𝜋𝑟
sin 𝜃

2
+

𝐾II
√

2𝜋𝑟
cos 𝜃

2

)

(4c)

where 𝐺∗ and 𝜈∗𝑝𝑠 are the effective shear modulus and plane-strain 
Poisson’s ratio of the lattice, and 𝜅 = (3− 𝜈∗𝑝𝑠)∕(1 + 𝜈∗𝑝𝑠). Eq. (4) is easily 
modified to include the contributions of T -stress by adding the follow-
ing additional terms to the respective displacement field (Christodoulou 
and Tan, 2013): 

𝑢1 =
(1 − 𝜈∗ps)

2𝐺∗ 𝑇 𝑟 cos 𝜃 and (5a)

𝑢 = −
𝜈∗ps 𝑇 𝑟 sin 𝜃 . (5b)
2 2𝐺∗

2 
The magnitude of the T -stress is typically expressed as a stress biaxiality 
ratio given by (Leevers and Radon, 1982) 

𝐵 =
𝑇
√

𝜋𝑎
𝐾eff

(6)

where 𝑎 is the crack length. 𝐾eff is the effective Stress Intensity Factor
(SIF) as follows 

𝐾eff =
√

𝐾2
I +𝐾2

II . (7)

2.2. Boundary-layer method and finite element model

The Boundary-Layer Method (or BLM for brevity), used previously 
by Schmidt and Fleck (2001), is employed here to determine the 
fracture toughness of planar triangular lattices. It involves imposing the 
displacement and rotation fields in Eqs. (4) and (5), to the boundary 
of a Representative Volume Element (RVE), shown schematically in 
Fig.  1a, with the crack-tip located at the geometric centre of the RVE. 
The applied fields are increased incrementally (through increasing 𝐾I
and/or 𝑇  in Eqs. (4) and (5)), and the fracture toughness of the lattice 
corresponds to the applied fields when any of the constituent struts 
reach their fracture strain 𝜀0. The choice of the first strut failure cri-
terion to define fracture toughness is consistent with the methodology 
employed in previous studies in literature (Fleck and Qiu, 2006; Romijn 
and Fleck, 2007; Gu et al., 2019a; Christodoulou and Tan, 2013), and 
is grounded on the observation of typically unstable crack propagation 
that follows the initial strut failure in brittle lattices (Tankasala and 
Fleck, 2020; Hsieh et al., 2020).

The Finite Element Analysis (using ABAQUS/Standard) is performed 
to solve the aforementioned boundary value problem. Large displace-
ment formulations are used throughout and the post-buckling analyses 
are conducted without relying on initial deformations to trigger buck-
ling. Timoshenko beam elements (B22) with 5 section points were used 
to mesh the constituent struts, and convergence studies showed that at 
least 8 elements/strut are needed to accurately capture the geometric 
nonlinearity associated with strut buckling. A simplified Local Tensile 
Strain (LTS) criterion, identical to the one employed by Tankasala et al. 
(2015), is adopted here. Note that the BLM requires a sufficiently large 
RVE size to avoid interference between the crack-tip field and the 
displacement and rotation boundary conditions, and there must be no 
interactions between the buckled cells and the boundary of the RVE. 
A size convergence study is employed to satisfy the criteria above. 
The RVE is considered sufficiently large when the normalised fracture 
toughness, 𝐾Ic∕(𝜌𝜎0

√

𝑙0), varies less than 1% between consecutive size 
increments. Fig.  1(b) shows the typical RVE size convergence for a 
lattice of relative density 𝜌 = 0.1 loaded in Mode I. In this paper, RVE 
sizes ranging from 100 × 100 cells for 𝜌 = 0.3 to 1800 × 1800 cells for 
𝜌 = 0.02 were used.

A linear perturbation analysis (LPA) is used to obtain initial esti-
mates of transition relative densities. The method involves solving an 
eigenvalue problem representing the buckling load factors. The Linear 
Perturbation Analysis (LPA) gives the eigenvalue, 𝜆, associated with 
the first (fundamental) mode, representing the minimum multiplier 
of the imposed SIF, 𝐾, in Eq. (4), needed to activate strut buckling. 
As such, the SIF that activates buckling, 𝐾𝜆 is given by 𝐾𝜆 = 𝜆𝐾. 
The geometry and boundary conditions used in the LPA are identical 
to those of the conventional BLM, with the displacement field of the 
Williams expansion imposed on the edges of a Representative Volume 
Element.

The in-plane elastic modulus of the triangular lattice is 𝐸∗ = 1
3𝜌𝐸s, 

and in the out-of-plane direction the elastic modulus is 𝐸∗
33 = 𝜌𝐸s, while 

the Poisson’s ratio is 𝜈∗31 = 𝜈∗32 = 𝜈s (Gibson and Ashby, 1997). Note 
that the elastic properties of the lattice were obtained under plane-
stress conditions and they must be modified to give their plane-strain 
equivalents before they can be used in Eq. (4). Under plane-strain 
conditions, where 𝜀∗ = 0 and 𝜎∗ = 𝜈∗ 𝜎∗ + 𝜈∗ 𝜎∗ = 𝜈 (𝜎∗ + 𝜎∗ ), 
33 33 31 11 32 22 s 11 22
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Fig. 1. The Boundary-Layer Method (BLM): (a) joint displacements 𝑢𝑖(𝑟, 𝜃) (𝑖 = 1 or 2) and rotation 𝜔, given in Eq. (4), prescribed around the boundary of a RVE; 
and, (b) variation of the normalised Mode I fracture toughness versus size of RVE for 𝜌 = 0.1. Solid red line indicates the pre-crack.
the modified elastic moduli and Poisson’s ratio become (Romijn and 
Fleck, 2007) 

𝐸∗
ps =

3𝐸∗

3 − 𝜈2s
, 𝜈∗ps =

1 + 𝜈2s
3 − 𝜈2s

and 𝐺∗ =
𝐸∗
ps

2(1 + 𝜈∗ps)
. (8)

3. Strut buckling under Mode I and II loading

The fracture toughness of a triangular lattice scales with relative 
density according to a power-law relationship given by (Fleck and Qiu, 
2006) 
𝐾c∕

√

𝑙0𝜎0 = 𝐷𝜌𝑑 (9)

where 𝑑 = 1 and 𝐷 = 0.50 in Mode I and 𝐷 = 0.38 in Mode II, for 
a triangular lattices, and the terms 𝜎0 and 𝜀0 refer to the failure stress 
and strain of the cell wall material, respectively. It must be emphasised 
that Eq. (9) does not take geometric nonlinearity into account. In 
this section, the possibility of strut buckling before fracture will be 
considered and its effects on the fracture toughness of a triangular 
lattice is quantified.

3.1. Linear perturbation analysis

A LPA is first performed to quantify the SIF that activates strut 
buckling. The purpose is to compare the 𝐾𝜆 results to the theoretical 
fracture toughness of the lattice and establish a critical relative density 
below which buckling can precede fracture. Eigenvalues are estimated 
for triangular lattices with relative density in the range 0.05 < 𝜌 < 0.2
and the value of 𝐾𝜆 was fit against 𝑙0, 𝐸𝑆 and 𝜌, as follows: 
𝐾I𝜆 = 0.794

√

𝑙0𝐸𝑆𝜌
3 and (10a)

𝐾II𝜆 = 0.075
√

𝑙0𝐸𝑆𝜌
3 . (10b)

Fig.  2 shows the scaling of the normalised fracture toughness, 
𝐾c∕

√

𝑙0𝜎0, and the SIF that activates buckling, expressed as
𝐾𝜆∕

√

𝑙0𝐸𝑆𝜀0, for three choices of 𝜀0. Buckling may be activated when 
𝐾𝜆 is smaller than the theoretical 𝐾Ic or 𝐾IIc. The transition relative 
density, 𝜌𝑇 , corresponds to the intersection of the fracture toughness 
and buckling initiation curves. A general expression of the transition 
relative density, for any 𝜀0, can be obtained by equating 𝐾c and 𝐾𝜆, 
resulting in an expression of the form 
𝜌 = 𝑄

√

𝜀 (11)
𝑇 0

3 
where 𝑄 = 0.79 in Mode I and 𝑄 = 2.24 in Mode II. This expression 
encapsulates all the geometric and material parameters that affect 
buckling initiation in brittle linear elastic struts, and can be used to 
estimate the range of relative densities where buckling can occur before 
tensile fracture in Mode I and Mode II. For 18Ni-300 Steel, with its 
typical fracture strain of 𝜀0 = 0.012 (Kempen et al., 2011), a transition 
relative density of 𝜌𝑇 = 0.08 and 𝜌𝑇 = 0.2 may be expected in Mode I 
and II, indicating that strut buckling may precede fracture for relative 
densities that are encountered in practice. The normalised fracture 
toughness follows a linear scaling, while the buckling initiation curve is 
proportional to the cube of the relative density. The transition relative 
density follows the square root of the failure strain of the base mate-
rial. Similar scaling relationships for buckling initiation and transition 
relative density have been observed for triangular and Kagome lattices 
without a crack in Mane et al. (2024). Exploring the impact of strut 
buckling on the fracture toughness of other stretch-dominated lattices 
may be of interest for future research.

The fracture toughness results in Sections 3.2, 3.3, 3.4 and 4 refer 
to a material with 𝜀0 = 0.01. Examples of other materials are provided 
in Section 4.1.

3.2. Effects of buckling struts on 𝐾Ic and 𝐾IIc

Fig.  3 shows the deformed mesh at the instant of failure in lattices 
with relative densities below and above the transition relative density 
in Mode I (a, b) and Mode II (c, d). The first struts to buckle and 
fracture are marked 𝐵 and 𝐹 , respectively. At low relative densities, 
several struts can buckle before fracture, forming a compliant layer of 
cells propagating perpendicularly to the pre-crack in Mode I and at 
a 30-degree angle in Mode II. Fracture occurs ahead of the crack-tip 
for lattices with relative density above the transition relative density. 
Below the transition relative density, the fracture location remains at 
the same strut in Mode I, but shifts to the location of the first buckled 
strut in Mode II.

An insight into the sequence of deformation mechanisms that lead 
to fracture can be obtained by examining the strain evolution in struts 
with the maximum tensile and compressive stresses (’T’ and ‘C’ re-
spectively). Fig.  4 shows the axial strain, 𝜀𝑥, evolution up to fracture 
(𝜀0 = 0.010) at two opposing surfaces of the compressive strut (ABAQUS 
section points: SP1 and SP5), and at the tensile strut, plotted against the 
normalised axial force in the local coordinate system, 𝐹 ∕𝐹 , where 
𝑥 𝑐𝑟
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Fig. 2. Scaling of normalised fracture toughness, 𝐾c∕
√

𝑙0𝜎0, and buckling initiation, 𝐾𝜆∕
√

𝑙0𝐸𝑆𝜀0, in Mode I (a) and Mode II (b) with the relative density, 𝜌.

Fig. 3. Deformed mesh in a lattice with 𝜀0 = 0.01 under Mode I (a, b) and Mode II (c, d) loading, for relative densities below (a, c) and above (b, d) the transition 
relative density. The relative densities are 𝜌 = 0.04 (a), 𝜌 = 0.1 (b), 𝜌 = 0.085 (c) and 𝜌 = 0.25 (d). Solid red lines indicate the pre-crack. Figures truncated to the 
vicinity of the crack-tip for the purpose of comparison.
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Fig. 4. Strain evolution in tensile, T, and compressive struts, C (at two opposing surfaces: SP1 and SP5), plotted against the normalised axial force in the local 
coordinate system, 𝐹𝑥∕𝐹𝑐𝑟 for relative densities below (a, c) and above (b, d) the buckling transition relative density, in Mode I (a, b) and Mode II (c, d).
𝐹𝑐𝑟 is the expected maximum tensile load at the instant of fracture, as 
derived from the fracture toughness scaling law, and given by 

𝐹𝑐𝑟 =
𝐾c𝐴𝑆

𝐷𝜌𝑑
√

𝑙0
(12)

where 𝐴𝑆 is the cross-sectional area of the strut. In the absence of strut 
buckling (Fig.  4b and d), the strain evolution is linear in compressive 
and tensile struts. The tensile strain increases towards 𝜀0, which is 
registered in the strut ahead of the crack-tip, as mentioned above. 
Conversely, at relative densities below the buckling transition relative 
densities (Fig.  4a and c), the strain evolution in the compressive struts 
indicates the typical post-buckling strain path bifurcation of columns 
in compression (Shanley, 1947): both edges initially develop negative 
strains, followed by strain bifurcation and reversal after the onset of 
buckling. In Mode II, after buckling, the strain path reaches the fracture 
strain in the buckled strut before achieving this condition in the tensile 
strut, and fracture occurs before the scaling law prediction. In Mode I, 
in spite of the existence of buckled struts, the tensile strut reaches the 
fracture strain first.

The effect of strut-buckling on the normalised 𝐾c scaling is shown in 
Fig.  5. A transition distinguishes two fracture regimes: one where buck-
ling does not occur before fracture and a second where strut buckling 
occurs before fracture, and the fracture toughness deviates from the 
original scaling law. Both regimes follow a power-law scaling of the 
form given in Eq. (9), with the pre-exponents 𝐷 (above the buckling 
transition relative density) and 𝐷(𝑏) (below the buckling transition 
relative density) shown in Table  1, and exponent 𝑑 = 1.
5 
Fig. 5. The predicted normalised fracture toughness, 𝐾c∕(𝜎0
√

𝑙0), as a function 
of relative density, 𝜌, under Mode I and II loading (𝜀0 = 0.010). Solid and 
dashed lines represent the power law fits to the normalised fracture toughness 
in the absence of buckling and after the onset of buckling, respectively.
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Table 1
Values of fracture toughness scaling law pre-exponents, 𝐷 and 𝐷(𝑏), in the 
absence of strut-buckling and for fracture after the onset of strut-buckling, 
respectively, and transition relative density coefficients, 𝑄, under different load 
mixities, 𝑀 .
 M 0 0.25 0.50 0.75 1  
 𝐷 0.50 0.50 0.47 0.43 0.38 
 𝐷(𝑏) 0.57 0.47 0.22 0.14 0.12 
 𝑄 0.79 0.98 1.52 1.95 2.24 

The scaling relationship shows that the divergence from the estab-
lished relationship is significant for Mode II loading. The deviation 
starts between 0.2 < 𝜌 < 0.25 (note: LPA prediction 𝜌𝐼𝐼𝑇 = 0.212), 
and settles to a new scaling relationship at 𝜌 = 0.075. The knockdown 
factor in the pre-exponent of the scaling law is 𝐷(𝑏)∕𝐷 = 0.32. In 
Mode I the deviation starts between 0.06 < 𝜌 < 0.075 (note: LPA 
prediction 𝜌𝐼𝑇 = 0.075), and settles to a new scaling relationship 
when 𝜌 < 0.05. In this loading mode, strut buckling provides a slight 
toughening mechanism, with 𝐷(𝑏)∕𝐷 = 1.14. At even lower relative 
densities (𝜌 < 0.02) the fracture toughness drops below the scaling law, 
and the fracture location switches to that of the buckled strut.

3.3. Influence of strut-buckling on crack opening displacement and local 
stiffness of the cells

Several mechanisms can affect the fracture toughness in solid ma-
terials with compliant zones, such as crack-deflection, crack-bridging, 
crack-branching, microcracking, plasticity induced crack-closure, and 
material heterogeneity (Hossain et al., 2014). In this paper, two fea-
tures that may lead to the reported knockdown and increase in frac-
ture toughness are addressed: crack-tip blunting in Mode I, and local 
knockdown in the modulus of the lattice.

Crack blunting is a well-known toughening mechanism in elasto-
plastic materials. The blunting magnitude and Crack Opening Displace-
ment (COD) are associated to an increase in fracture toughness, as 
shown by Irwin (1957) and Dugdale–Barenblatt strip yield model (Dug-
dale, 1960; Barenblatt, 1962). In lattices, crack blunting can be ac-
tivated in an elastic crack-tip stress field through bending layers in 
globally stretch-dominated geometries (Fleck and Qiu, 2006). A tough-
ening effect has been reported in kagome lattices, where the reduced 
stiffness in the locally bending-dominated cells results in an elastic 
crack blunting phenomenon (Fleck and Qiu, 2006).

For the triangular lattices examined here, Fig.  6 shows the nor-
malised COD at the instant of fracture (𝛿𝑦𝐸∗

ps∕𝐾Ic
√

𝑙0, where 𝛿𝑦 is 
the vertical displacement 𝑢2 of nodes in the crack plane) against the 
normalised distance from the crack-tip along the crack-plane, 𝑥∕𝑙0. 
Three relative densities, in the presence (𝜌 = 0.040, 0.030) and absence 
(𝜌 = 0.075) of strut buckling are considered. The analytical prediction 
obtained from the 𝐾-displacement field (Eq. (4b)) is shown for refer-
ence. At 𝜌 = 0.075, the COD follows the theoretical prediction closely; 
however, at relative densities where strut-buckling precedes fracture 
(𝜌 = 0.030 and 𝜌 = 0.040), the COD shapes indicate that elastic crack-
blunting will occur and its magnitude increases with decreasing relative 
density. These results indicate that the development of compliant layers 
due to strut-buckling lead to crack-tip blunting and may be responsible 
for the slight toughening observed in Mode I loading.

Stretch-dominated lattices may be subject to bending boundary-
layers that locally affect the stiffness of the lattice due to the reduced 
connectivity at free surfaces (Phani and Fleck, 2008). Next, the pos-
sibility of bending layers existing in the interior of the lattice in the 
post-buckled state and their effect on the stiffness of the constituent 
triangular cells are addressed.

Conventionally a unit-cell analysis is employed to obtain the elastic 
modulus of the lattice (e.g. Wang and McDowell, 2014). However, this 
analysis does not account for any edge effects or finite displacements of 
6 
Fig. 6. Mode I normalised crack opening displacement, 𝛿𝑦𝐸∗
ps∕𝐾Ic

√

𝑙0, at 
the instant of failure. Nodal coordinates along the 𝑋-axis normalised to 
the characteristic unit-cell length, 𝑙0. The solid line represents the analytic 
prediction obtained from the 𝐾-field in Eq. (4b).

the struts. To illustrate the effect of buckling on the local elastic mod-
ulus, 𝐸∗

𝑙𝑜𝑐,𝑥, the deformed lattice geometry at the instance of fracture is 
used. The FE mesh at that instant is divided into individual single-cell 
blocks and each cell is loaded in compression with boundary conditions 
that imply periodicity and hexagonal symmetry, as illustrated in Fig.  7. 
The local moduli are obtained through the following equation 

𝐸∗
𝑙𝑜𝑐,𝑥 =

𝐹𝐿𝑥
𝑑𝐿𝑦

(13)

where 𝐹  is the applied force per unit depth of the struts, 𝐿𝑥 and 𝐿𝑦
are the cell dimensions in the X and Y direction, and 𝑑 is the resultant 
displacement.

Fig.  7 shows contour maps of the stiffness knockdown, 𝐸∗
𝑙𝑜𝑐,𝑥∕𝐸

∗
ps at 

relative densities of 0.075, 0.05 and 0.04 in Mode I and 0.1, 0.075 and 
0.05 in Mode II. A minimal knockdown in local stiffness is observed 
for lattices above the critical relative density. By contrast, zones with 
reduced stiffness are developed after the onset of buckling, at 90-
degrees to the crack surface in Mode I and 30-degrees in Mode II. The 
magnitude of stiffness degradation and the number of affected cells 
increase with decreasing 𝜌. At the lowest relative density, the stiffness 
degradation area extends to regions more than ten cells from the crack-
tip and the stiffness reaches as low as 60% and 20% of the value of 
the undeformed lattice in Mode I and II, respectively. The reduction of 
effective stiffness due to buckling had also been observed in Mane et al. 
(2021).

The stiffness degradation area corresponds to the location of buck-
led cells in Fig.  3. In Mode II, the first strut failure location also occurs 
within the cells with reduced properties. In Tankasala and Fleck (2020), 
the Mode II crack-propagation follows a similar path (30-degree angle) 
to the buckling propagation and stiffness degradation zones shown 
here.

It should be noted that the non-homogeneous stiffness violates the 
BLM assumption of uniform material properties. However, the frac-
ture toughness increase in Mode I agrees with the reported effect of 
heterogeneous material properties on the fracture toughness of solid 
materials with compliant layers. In these materials, the heterogeneous 
media increases the fracture toughness relative to the medium’s bulk 
fracture toughness (Hossain et al., 2014), and the stress singularity near 
the crack-tip continues to be described by the singular term habitual 
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Fig. 7. Distribution of effective stiffness of the cells, 𝐸∗
𝑙𝑜𝑐,𝑥∕𝐸

∗
𝑝𝑠, in Mode I and Mode II, where 𝑥∕𝑙0 and 𝑦∕𝑙0 are the normalised coordinates relative to the crack-tip. 

Figures truncated to the vicinity of the crack-tip for the purpose of comparison.
of linear elastic fracture mechanics (Eischen, 1987). For heterogeneous 
materials the stress-field (Eq. (1)), is a function of the local variations in 
Modulus (Erdogan, 1995; Rousseau and Tippur, 2002). For this reason, 
a sufficiently sizeable RVE that entirely envelops the buckling-affected 
zone is necessary for the remote boundary condition presumed by the 
deformation state at the crack-tip to be valid. In some cases, the RVE 
size may become too large for practical computation; for example, to 
obtain the elimination of edge effects at 𝜌 = 0.02 in Mode I a RVE of 
1800 × 1800 cells is necessary. The full effect of buckling on fracture 
toughness and the effect of the finite-size needs to be validated using 
standardised experimental specimens, which is left to a later study.

An alternative method to the crack-tip field-based fracture tough-
ness approach discussed in this study is the energy-based approach, as 
explored in the works of Luan et al. (2022) and Mane et al. (2024). Strut 
buckling can affect the estimated energy release, and future research 
should account for this by incorporating the distributed damage or non-
local energy dissipation (Mane et al., 2024; Deng et al., 2023). The 
effects of strut buckling on the damage distribution can be summarised 
7 
as follows. Firstly, the field of buckled struts can extend to regions 
far from the crack tip, thus dissipating the elastic energy over a large 
area. This deformation mechanism, in turn, creates regions with a lower 
local effective stiffness, and leads to crack blunting, which effectively 
increases the total energy required for crack propagation. Secondly, 
strut buckling can cause sudden, non-recoverable energy dissipation 
through the abrupt failure of buckled struts, potentially reducing the 
predicted fracture toughness. In the presence of strut buckling, an 
energy-based approach should incorporate both of these possibilities.

3.4. Effects of crack orientation on the post-buckling fracture

The crack orientation and arrangement of the struts at the crack 
tip discussed thus far represent a crack traversing through nodes and 
vertical struts. However, the fracture toughness of the triangular lattice 
is anisotropic, depending on both the crack orientation relative to the 
lattice and the specific arrangement of the struts at the crack tip. 
The preceding and other possible configurations are presented in Fig. 
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Fig. 8. Crack configurations for triangular lattices and deformation mesh in a lattice with 𝜌 = 0.04. Solid red lines indicate the pre-crack. Figures truncated to 
the vicinity of the crack-tip for the purpose of comparison.
Table 2
Fracture toughness scaling pre-exponent before, 𝐷, and after, 𝐷(𝑏), buckling, 
obtained for crack configurations A, B and C.
 Crack configuration 𝐷 (No buckling) 𝐷(𝑏) (Post-buckling) 
 A 0.50 0.53  
 B 0.56 0.59  
 C 0.64 0.63  

8(a). The BLA was employed to determine the fracture toughness of 
crack configurations A, B and C across a range of relative density of 
0.04 ≤ 𝜌 ≤ 0.3. The deformation, strut buckling patterns, and fracture 
locations of a lattice with 𝜌 = 0.04 are shown in Fig.  8 (b), (c) and 
(d). All three lattice configurations exhibit crack-tip blunting, and the 
deviation of their fracture toughness from the unbuckled scaling occurs 
at 𝜌 ≈ 0.075. Their fracture toughness scales with exponent 𝑑 = 1 and 
their pre-exponents are presented in Table  2.

Configuration A exhibits the lowest fracture toughness across all 
relative densities. In contrast, configuration B results in an increase 
in fracture toughness of up to 12% relative to configuration A. The 
post-buckling fracture behaviour of lattices in configuration B follows 
a trend similar to that of configuration A, including similar buckling 
patterns perpendicular to the crack, crack-blunting, and an increase in 
the fracture toughness relative to the unbuckled state (𝐷(𝑏)∕𝐷 = 1.05). 
The higher fracture toughness in configuration B can be attributed to 
the presence of two oblique struts ahead of the crack tip.

The nucleation of cracks passing through oblique struts from an 
initial flaw, forming crack configuration C, has been observed in the 
works of Cherkaev and Ryvkin (2019), and may be more prevalent 
in practice. This configuration gives the highest fracture toughness at 
8 
the relevant range of relative density studied in this work, regardless 
of the occurrence of buckling. The increased fracture toughness aligns 
with findings from Lipperman et al. (2007) and Gu et al. (2018). The 
post-buckling behaviour in this configuration exhibits some differences 
relative to configurations A and B: the field of buckling struts is no 
longer predominantly perpendicular but favours a 60-degree angle 
backward from the crack plane, the fracture location occurs at buck-
led struts, and the post-buckling fracture toughness is slightly lower 
compared to the unbuckled scaling law (𝐷(𝑏)∕𝐷 = 0.98). In this crack 
orientation, the toughening effects of crack blunting are counteracted 
by increased compressive loading at the struts surrounding the crack 
tip, leading to the earlier strut fracture in a buckled strut.

Finally, it is important to note that this work analysed a linear 
crack path. However, other initial crack patterns are possible (e.g., as 
discussed in Cherkaev and Ryvkin, 2019) and could lead to distinct 
fracture behaviour if, for example, the pattern induces fracture in a 
buckled strut.

4. Effects of mixed-mode loading and T  -stress

4.1. Effects of mode mixity

In this section, the effect of the relative contribution of Mode I 
and Mode II loading on 𝐾c is addressed. Similarly to above, a LPA 
is first employed to obtain the transition relative densities, and the 
BLM to predict the fracture toughness knockdown in selected mode 
mixities. The mode mixity parameter 𝑀 is used to quantify the relative 
composition of Modes I and II.

The transition relative density constants, 𝑄, under different mode-
mixity, are obtained and given in Table  1. Fig.  9(a) shows the critical 
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Fig. 9. Critical transition relative density, 𝜌𝑇 , as a function of material fracture strain, 𝜀0, for five indicative mode mixities, 𝑀 (a); and normalised fracture 
toughness as a function of mode mixity for a lattice with 𝜀0 = 0.01 at three relative densities (shown as crosses in Figure (a)) (b).
transition relative densities from Eq. (11), as a function of the strain at 
failure, 𝜀0. The relationships obtained under Mode I and II provide the 
boundaries of the transition relative density envelope, and lattices of 
materials with a higher 𝜀0 are likely to buckle before fracture at larger 
relative densities. For illustration purposes, four elastic-brittle materials 
are indicated: laser-cut PMMA, 𝜀0 = 0.015 ± 0.007 (Seiler et al., 2019); 
18Ni-300 steel (SLM produced), 𝜀0 = 0.012 ± 0.001 (Kempen et al., 
2011); Ti-6Al-4V, 𝜀0 = 0.008 ± 0.001 (Li et al., 2008; Xiao et al., 2015) 
and Zirconia (partially stabilised), 𝜀0 = 0.004 (Noguchi et al., 1989).

The effect of buckling on 𝐾eff,c (defined in Eq. (7)) is now anal-
ysed using the BLM. In Fig.  9(b) the effect of mixed-mode loading is 
examined in three relative density regimes of a lattice with 𝜀0 = 0.01
(marked with crosses in Fig.  9(a)): 𝜌 = 0.25 (above the transition 
relative density in all modes), 𝜌 = 0.125 (above the transition relative 
density in 𝑀 = 0, 0.25), and 𝜌 = 0.050 (below the transition relative 
density in all modes). Here, the fracture toughness is further normalised 
by 𝜌𝑑 , such that at 𝜌 = 0.25 and 𝜌 = 0.050, 𝐾eff,c∕(𝜌𝑑𝜎0

√

𝑙0) represents 
the pre-exponent 𝐷 and 𝐷(𝑏) of the scaling law.

The results indicate that in mode mixities where buckling does 
not precede fracture (e.g. 𝑀 = 0, 0.25 for 𝜌 = 0.125), the fracture 
toughness remains unchanged from the conventional scaling laws, as 
expected. In other mode mixities, where fracture occurs after strut-
buckling, three regimes of influence are observed: (i) strut buckling 
induces a toughening mechanism when the initial strut fracture occurs 
at a tensile-loaded strut near the crack front (𝑀 < 0.25), (ii) strut 
buckling has a minimal effect on fracture toughness (𝑀 = 0.25), and 
(iii) a reduction of fracture toughness when the first strut to fracture is 
a buckled strut (𝑀 > 0.25). In the latter regime, the fracture toughness 
knockdown becomes more severe at mode mixities that contain a larger 
proportion of Mode II loading.

4.2. Effects of  T  -stress

In experimental fracture toughness tests, T -stress and higher-order 
stress terms in the Williams expansion commonly present. Typical val-
ues of the T -stress term, quantified by the biaxiality ratio, 𝐵, in Eq. (6), 
are −0.5 < 𝐵 < −0.1 for Single Edge Notched Tension specimens, 
−0.5 < 𝐵 < 0.3 for Single Edge Notched Bending specimens, 𝐵 = −0.5
for Double Edge Notched Tension specimens and 𝐵 = −1 for Compact 
Tension specimens (Leevers and Radon, 1982; Anderson, 1995). In 
lattices where strut buckling is not present the T -stress term does not 
significantly affect the fracture toughness measurements (Gu et al., 
2019a). However, its influence on 𝐾c after the onset of strut-buckling 
is unknown.
9 
Table 3
Value of buckling transition relative density coefficients in pure Mode I, 𝑄𝐼 , 
at different normalised T -stress.
 𝑇√𝑙0∕𝐾𝑒𝑓𝑓 −0.1 −0.075 −0.05 −0.025 0 0.025 0.05 0.075 0.1  
 𝑄𝐼 0.91 0.87 0.83 0.80 0.75 0.71 0.65 0.63 0.67 

As previously, the LPA is employed to obtain the transition relative 
density constants, 𝑄, in Eq. (11), given in Table  3 for several levels 
of T -stress. The remote boundary conditions were modified to account 
for the presence of T -stress, following Eqs. (4) and (5). The normalised 
values of T -stress are −0.1 ≤ 𝑇

√

𝑙0∕𝐾𝑒𝑓𝑓 ≤ 0.1, corresponding to −1 ≤
𝐵 ≤ 1 and 𝑎 = 40𝑙0. For Mode I loading with negative T -stress, the onset 
of buckling can start at a larger relative density, e.g. for a lattice with 
fracture strain 𝜀0 = 0.01 the transition relative density increases from 
0.075 (𝑇 = 0) to 0.091 (𝑇√𝑙0∕𝐾𝑒𝑓𝑓 = −0.1). For positive biaxiality 
regimes, the transition relative density is not significantly affected by 
the presence of the T -stress term.

The modified BLM is used to analyse the effects of the presence of
T -stress on fracture toughness under Mode I loading. The deformation 
of the lattice in the vicinity of the pre-crack is shown in Fig.  10 for 
𝑇
√

𝑙0∕𝐾𝑒𝑓𝑓 = {−0.1, 0, 0.1}, below the transition relative density (𝜌 =
0.04). ‘F’ shows the location of fracture and ‘B’ the first buckling strut. 
At 𝑇 = 0 and 𝑇√𝑙0∕𝐾𝑒𝑓𝑓 = 0.1, fracture occurs ahead of the crack-tip 
in all examined relative densities; conversely, at 𝑇√𝑙0∕𝐾𝑒𝑓𝑓 = −0.1, 
fracture occurs at the first buckling strut.

The magnitude of T -stress affects the lattice deformation in two ad-
ditional ways. First, the extent of the bending layers: for 𝑇√𝑙0∕𝐾𝑒𝑓𝑓 =
−0.1, 𝑇 = 0 and 𝑇√𝑙0∕𝐾𝑒𝑓𝑓 = 0.1, the compliant layer of buckled 
cells extends more than 150, 20 and 75 characteristic cell lengths (𝑙0), 
respectively, from the crack-tip at the instant of fracture. Second, the 
direction of propagation of the compliant layer: negative T -stress shows 
buckling in the perpendicular direction, similar to 𝑇 = 0, and positive
T -stress leads to buckling propagating backwards from the crack-tip at 
a 30-degree angle. Alongside the biaxial crack-tip fields, an increased 
likelihood of strut buckling with negative (compressive) 𝑇 -stress is 
expected. In like manner, positive 𝑇 -stress can promote tension induced 
buckling (Mane et al., 2021), leading to the reported extensive range 
of buckled struts.

The fracture toughness relative to the 𝑇√𝑙0∕𝐾𝑒𝑓𝑓 = 0 case,
𝐾c∕𝐾c, B=0, is shown in Fig.  11 for relative densities below and above 
the critical value, and T -stress range −0.1 ≤ 𝑇

√

𝑙0∕𝐾𝑒𝑓𝑓 ≤ 0.1. The 
fracture toughness of lattices that do not exhibit strut buckling is not 
significantly influenced by the presence of T -stress. However, T -stress 
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Fig. 10. Deformation mesh in a lattice with 𝜌 = 0.04 (below the transition relative density), at 𝑇√𝑙0∕𝐾𝑒𝑓𝑓 = −0.1 (a), 𝑇 = 0 (b) and 𝑇√𝑙0∕𝐾𝑒𝑓𝑓 = 0.1 (c) under 
Mode I loading. Solid red lines indicate the pre-crack. Figures truncated to the vicinity of the crack-tip for the purpose of comparison.
Fig. 11. Influence of T -stress on fracture toughness, relative to the fracture 
toughness in the absence of T -stress (𝐵 = 0), below (red) and above (green) 
the buckling transition relative density.

can have a significant effect on the fracture of lattices after the onset 
of strut buckling: 𝐾Ic decreases up to 41% relative to the 𝑇 = 0 case 
for negative T -stress, but remains unaffected for positive T -stress. The 
cases with significant knockdown in fracture toughness correspond to 
the range where the T -stress leads to fracture at the buckled strut.

To examine the effects of T -stress on the post-buckling fracture 
toughness scaling with 𝜌, the procedure from Section 3.2 is repeated 
for lattices with 𝑇√𝑙0∕𝐾𝑒𝑓𝑓 = −0.1 and 𝑇√𝑙0∕𝐾𝑒𝑓𝑓 = −0.05 in Mode I. 
The scaling is shown in Fig.  12. Above the transition relative density the 
effects of T -stress are minimal; however, below the buckling transition 
relative density a new scaling regime is visible in which the knockdown 
is more severe the lower the relative density. The post-buckling scaling 
follows a power-law scaling with 𝑑 ≈ 1.85.

In summary, T -stress has a threefold effect: it increases the transi-
tion relative density, affects the orientation and length of the compliant 
layer of buckled cells, and leads to a knockdown in fracture toughness 
that is far more significant than the toughening shown in Fig.  5, 
transitioning to a scaling law with exponent 𝑑 = 1.85. It is concluded 
that the presence of T -stress should not be neglected in the testing and 
fracture toughness evaluation of such lattices, since idealised conditions 
where only the first term from the Williams expansion is relevant are 
not always achievable; for example, in Gu et al. (2019b) T -stress was 
present for fracture test-specimens of considerably large sizes. As such, 
the perceived toughening in Mode I may not always be replicable in 
finite-sized lattices.
10 
Fig. 12. Influence of T -stress on the scaling of fracture toughness with relative 
density in Mode I at different biaxiality ratios.

5. Conclusions

This study explored the influence of buckling struts on the fracture 
toughness of elastic-brittle triangular lattices. The results show that 
strut buckling prior to fracture may occur in physically relevant relative 
densities, e.g. for an indicative material with a fracture strain 𝜀0 =
0.01, the transition relative densities in Mode I and II are 0.075 and 
0.212 respectively. When strut buckling precedes fracture, the scaling 
laws diverge from the currently established ones, showing a slight 
toughening in Mode I and a significant knockdown in Mode II. Fracture 
is activated prematurely in the buckled struts in Mode II.

The onset of buckling leads to the development of compliant layers 
of cells in the crack-tip vicinity which, in turn, influence fracture 
toughness. In Mode I, the compliant layers of cells result in crack-
tip blunting, and act as a toughening mechanism. Furthermore, the 
compliant cells introduce variations in the local stiffness of the lattice. 
The most notable effect was observed in Mode II, where a local stiffness 
reduction of as much as 80% is developed in the vicinity of the 
crack-tip, and in the direction of the predicted fracture propagation.

In mixed-mode loading, the envelope of transition relative densities 
was bound by those of Modes I and II. Three regimes of influence of 
strut-buckling on the fracture toughness of a triangular lattices were 
identified: toughening in mode mixities with predominantly Mode I 
influence, no effect in mode mixities with approximately 25% Mode 
II influence, and knockdown in fracture toughness for modes with 
predominantly Mode II influence. The effect of higher-order stress 
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terms (T -stress) was also evaluated. Its influence was notable only 
after the onset of buckling in Mode I loading with negative T -stress 
contribution. There, it produces three effects: it increases the transition 
relative density, increases the size of the compliant layer of cells, and 
results in a knockdown in fracture toughness. Finally, the effect of 
buckling and higher-order terms on fracture toughness in finite-sized 
specimens warrants further investigation.
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