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Abstract
Biophysical processes within living systems rely on encounters and interactions between molecules
in complex environments such as cells. They are often described by anomalous diffusion transport.
Recent advances in single-molecule microscopy and particle-tracking techniques have yielded an
abundance of data in the form of videos and trajectories that contain critical information about
these biologically significant processes. However, standard approaches for characterizing
anomalous diffusion from these measurements often struggle in cases of practical interest, e.g. due
to short, noisy trajectories. Fully exploiting this data therefore requires the development of
advanced analysis methods—a core goal at the heart of the recent international Anomalous
Diffusion (AnDi) Challenges. Here, we introduce a novel machine-learning framework, U-net 3+
for anomalous diffusion analysis enhanced with mixture estimates (U-AnD-ME), that applies a
U-Net 3+ based neural network alongside Gaussian mixture models to enable highly accurate
characterisation of single-particle tracking data. In the 2024 AnDi challenge, U-AnD-ME
outperformed all other participating methods for the analysis of two-dimensional anomalous
diffusion trajectories at both single-trajectory and ensemble levels. Using a large dataset inspired by
the Challenge and experimental trajectories, we further characterize the performance of
U-AnD-ME in segmenting trajectories and inferring anomalous diffusion properties.

1. Introduction

Due to its ubiquity across a broad range of fields spanning the natural sciences and beyond, diffusion has
been widely studied since its first observations by Robert Brown [1]. According to Einstein’s relation, the
mean squared displacement (MSD) of Brownian motion grows linear with time t: MSD(t)∼ Dt, where D is
the diffusion coefficient [2]. Many natural and human processes show deviations from Brownian motion
known as anomalous diffusion [3, 4], which exhibit non-linear relationships between MSD and time:
MSD(t)∼ Ktα, where K is the generalised diffusion coefficient and α ̸= 1 is the anomalous diffusion
exponent [5]. A process is subdiffusive when α< 1, and superdiffusive when α> 1 [5]. Subdiffusion, which
can occur due to crowding or interactions with boundaries, has been repeatedly observed in living cells
including within cytoplasms [6], nuclei [7], and cell membranes [8]. Superdiffusion appears in active and
directed systems [9–11], such as molecular motors on DNA [12]. Various approaches have been recently
put forward for the characterization of these processes [13, 14], also with machine-learning-based
methods [15–24].

Within the life sciences, advances in live-cell single-molecule imaging and particle-tracking techniques
offer new insights into crucial cellular processes [25, 26]. However, fully leveraging these technical advances
requires further development of methods for data analysis. Often, experimental data are extracted in the
form of particles’ trajectories, and standard analysis methods struggle when these trajectories are, e.g. short,
noisy and irregularly sampled [4, 27]. Additionally, there is a need for reliable methods to identify switches
between different diffusion behaviours in these trajectories, as these changes are valuable indicators of
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biophysical interactions within a system [27]. Examples include variations in the generalized diffusion
coefficients K due to conformational changes [28], dimerization (DI) events [29] and ligand binding [30].
Dynamics can also change due to transient immobilization [31] and confinement effects [32].

With live-cell single-molecule experiments in mind, three particularly informative properties for
characterizing anomalous diffusion in trajectories are α, K, and the phenomenological behaviour of the
diffusing particles (diffusion type, DT), which can be classified as immobilized, confined, freely diffusing, or
directed [27]. The international Anomalous Diffusion (AnDi) Challenges aimed to quantitatively assess the
quality of existing methods for the difficult, yet important, task of identifying these properties and to spur
the creation of new methods [4, 27]. The last AnDi Challenge took place in 2024 and was designed
specifically with biological applications in mind, focusing on two-dimensional heterogeneous diffusion in
the cellular environment [27]. Specifically, the Challenge aimed to evaluate methods for detecting and
quantifying changes in single-particle motion, focusing on trajectory segmentation and the inference of
diffusion properties at both single-trajectory and ensemble levels [27]. The Challenge was divided into four
tasks (two ensemble-level and two single-trajectory tasks) across two tracks based either on the analysis of
trajectories or of videos directly.

Here we introduce our novel machine-learning framework for the highly accurate characterisation of
anomalous diffusion properties in single-particle trajectories. We developed our framework, called U-net 3+
for anomalous diffusion analysis enhanced with mixture estimates (U-AnD-ME), to compete in the 2024
AnDi Challenge. U-AnD-ME obtained 1st place for both tasks in the Challenge’s Trajectory Track. After
briefly introducing the anomalous diffusion models and metrics used for training and performance
evaluation, we describe U-AnD-ME’s architecture and training, followed by an ablation study (section 2).
Next, we benchmark our framework’s performance in terms of analysing anomalous diffusion trajectories on
both synthetic and experimental data (section 3). Finally, we conclude, discussing possible future
improvements and applications for U-AnD-ME (section 4).

2. Methods

2.1. Anomalous diffusion data
To benchmark our method against data of a known ground-truth, we simulated two-dimensional fractional
Brownian motion trajectories [33], similar to those of the 2024 AnDi Challenge [27], with the
andi-datasets Python package [34]. Simulations used generalized units (i.e. pixels and frames). The
Challenge considered five different physical models of particles’ motion and interaction with the
environment (figure 1(a)): single-state diffusion (SS) - particles have a single diffusion state [35]; multi-state
diffusion (MS) - particles spontaneously switch between two or more diffusion states with different K and/or
α [28, 36, 37]; dimerization (DI) - particles diffuse according to a two-state model, with switching induced
by random encounters with other particles [29, 30, 38]; transient confinement (TC) - particles diffuse
according to a space-dependant two-state model, being in one state when outside confined regions and the
other while inside them [32, 39]; and quenched trap (QT) - particles diffuse according to a space-dependant
two-state model, switching between motion and immobilization by traps [31, 40]. Trajectories are at most
200 frames with the minimum segment length being 3 (minimum number of time steps before a change of
state or end of trajectory).

Our dataset uses a balanced composition of the same nine numerical experiments of the 2024 AnDi
Challenge [27], where the values of the diffusion properties (table 1) were selected to assess the participating
methods while representing biologically relevant scenarios [27]. Experiment 1 mimics the multi-state
diffusion found in membrane proteins, with simulation parameters reproducing the three fastest states
reported for the diffusion of the α2A-adrenergic receptor [41]. Experiment 2 reproduces changes in diffusion
due to protein dimerization, as has been reported for the epidermal growth factor receptor ErbB-1 [30].
Experiments 3, 4, and 5 were designed to evaluate the methods’ ability to detect changes from a free diffusion
state to subdiffusion caused by traps, confinement regions, and dimerization, respectively. Experiments 6
and 7 model dimerization and multi-state diffusion respectively, with both experiments using the same
diffusion parameters. Experiment 8 serves as negative control and contains only single-state diffusion
trajectories with incredibly broad distributions of α and K, allowing us to test U-AnD-ME performance
when diffusion properties vary significantly from its initial training distribution. Experiment 9 is a
quenched-trap simulation with very short trapping times and superdiffusion in the free state. In the
Challenge, for a given diffusion state, the values of the anomalous-diffusion exponent α and the generalised
diffusion coefficient K were randomly drawn from state-specific Gaussian distributions with bounds
α ∈ (0,2) and K ∈ [10−12,106] pixel2/frame, parametrized by their means (µα and µK) and standard
deviations (σα and σK) (table 1).
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Figure 1. Overview of the 2024 AnDi Challenge. (a) The 2024 AnDi Challenge considered five physical models of diffusion [27]
(left to right): single-state diffusion (SS) without change in properties; multi-state diffusion (MS) spontaneously alternating
between two states (red and blue); dimerization (DI) of two particles (light and dark blue) interacting and transiently co-diffusing
(red); the transient-confinement model (TC) with particles diffusing differently outside (blue) and inside (red) compartments
(green) with osmotic boundaries; and the quenched-trap model (QT) with particles (blue) transiently immobilised (red) by traps
(green). (b) In the Challenge [27], a field of view (FOV) is composed of several trajectories (left). In the Trajectory Track, these
trajectories can be analysed individually (Single-Trajectory Task) or as an ensemble (Ensemble Task). In the Single-Trajectory
Task (top right), each trajectory is analysed by detecting change points (green crosses), and, for each segment they demarcate, by
inferring the anomalous-diffusion exponent α, the generalised diffusion coefficient K, and the diffusion type (DT). In the
Ensemble Task (bottom right), analysis of an ensemble of trajectories returns the distributions for α and K, P(α) and P(K).

Table 1. Simulated experimental properties. Columns show the diffusion model of each numerical experiment, along with the diffusion
properties (mean µ and standard deviation σ of the anomalous-diffusion exponent α and the generalized diffusion coefficient K) and
weights of each diffusion state.

Exp. Model µα σα µK σK Weight

1 MS 1.00 0.0001 0.15 0.01 0.30
1.00 0.01 0.33 0.001 0.49
1.00 0.01 0.95 0.01 0.21

2 DI 1.00 0.1 0.28 0.001 0.76
1.10 0.01 0.0035 0.0001 0.24

3 QT 0.00 0.0 0.0 0.0 0.15
1.00 0.005 1.0 0.1 0.85

4 TC 0.20 0.001 0.01 0.001 0.56
1.00 0.005 1.0 0.1 0.44

5 DI 0.20 0.001 0.01 0.001 0.31
1.00 0.005 1.0 0.1 0.69

6 DI 0.70 0.1 0.1 0.1 0.86
1.20 0.001 1.0 0.01 0.14

7 MS 0.70 0.1 0.1 0.1 0.74
1.20 0.01 1.0 0.01 0.26

8 SS 1.00 10 1.0 100 1.00
9 QT 0.00 0.0 0.0 0.0 0.58

1.99 0.01 1.0 0.01 0.42

As in the Challenge, the structure of our dataset mirrors that of typical experimental data [27]. Each
simulated experiment is composed of three hundred fields of views (FOVs), ten times more than in the
Challenge dataset. Each FOV represents a 128× 128 pixel2 region where trajectory recording takes place, and
encompasses approximately eighty trajectories on average. To better represent measurements from real
tracking experiments, the trajectories are corrupted using Gaussian noise with zero mean and a standard
deviation σ = 0.12 pixels. Particles within the same FOV can interact with one another and/or with the
FOV’s environment.
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In the Trajectory Track of the Challenge, experiments could be analysed in two distinct ways [27], based
on predictions at either single-trajectory (Single-Trajectory Task) or ensemble level (Ensemble Task)
(figure 1(b)). Our framework allows for both types of predictions. Single-trajectory predictions involve the
detection of all the change points (CPs) within a trajectory and, for each segment these CPs demarcate, the
inference of K, α and DT – an identifier of what kind of constraint is imposed by the environment:
immobile= 0, confined= 1, free= 2 (unconstrained, 0.05⩽ α < 1.9), directed= 3 (1.9⩽ α < 2.0).
Ensemble predictions describe each experiment collectively, capturing the distributions of α and K across all
of its trajectories.

2.2. Evaluationmetrics
Single-trajectory predictions used two different metrics to assess the detection of CPs [27]: The Jaccard
similarity coefficient (JSCCP, equation (1)) and the root mean squared error (RMSECP, equation (2)). Given a
ground-truth CP at location tGT,i (with i an integer) and a detection at location tP,j (with j an integer), a gated
absolute distance is defined as di,j =min(|tGT,i − tP,j|,εCP), where εCP = 10 is a fixed penalty for CPs more
than εCP apart. The number of detected CPs may not always match the number of true ones. In these cases,
CPs were assigned as a rectangular assignment problem using the Hungarian algorithm [42] by minimising
the sum of distances between paired CPs, dCP =minpaired CP

(∑
di,j

)
. After this assignment, we calculated the

number of true positive (TP), false positive (FP) and false negative (FN) detections. A detection was
considered a TP if it was within εCP of its paired ground-truth value. Predictions not associated with any
ground-truth values or more than εCP away from their assigned value were considered FP. Ground-truth CPs
with no assigned detection within εCP were considered FN. The overall number of TP, FP and FN was used to
calculate the Jaccard similarity coefficient for the change-point detections over an experiment:

JSCCP =
TP

TP+ FN+ FP
(1)

JSCCP takes values between 0 and 1, with 1 being a perfect score. The root mean squared error of the TP
detections was also calculated:

RMSECP =

√
1

N

∑
TP

(
tGT,i − tP,j

)2
(2)

where N is the number of TPs. Lower RMSECP values indicate detection with lower localization error.
Together, the two metrics quantified the quality of CP predictions in terms of both accuracy and
resolution [27].

After identifying CPs, inference of α, K and DT can be made for each segment they delineate. For the N
paired segments, inference of the anomalous-diffusion exponent α was evaluated via a mean absolute error
(MAE):

MAEα =
1

N

∑
seg

|αGT,i −αP,j| (3)

where αGT,i and αP,j are the ground-truth and predicted values of α, respectively. Evaluation of the
generalised diffusion coefficient K used the mean squared logarithmic error (MSLE):

MSLEK =
1

N

∑
seg

[
log(KGT,i + 1)− log

(
KP,j + 1

)]2
(4)

where KGT,i and KP,j are the ground-truth and predicted values of K, respectively.
Lower values of MAEα and MSLEK indicate better predictions. The DT was evaluated using the F1-score:

F1 =
2TPc

2TPc + FPc + FNc
(5)

where TPc, FPc and FNc are the TPs, FPs, and FNs with respect to segment classification. Due to the presence
of class imbalance, this metric is calculated as a micro-average which aggregates the contributions of all
classes [27]. F1-score takes values between 0 and 1, with 1 being the best possible score.

Finally, ensemble predictions were evaluated using the estimated mean, standard deviation, and relative
weight of each state’s α and K to define the multimodal distributions P(α) and P(K) (figure 1(b)). The
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Figure 2. U-AnD-ME workflow. (a) A network inspired by U-Net 3+ processes each trajectory of an experiment. For each time
step, it predicts the probability of it being a change point (CP), α, K, diffusion type (DT), and the likelihood of belonging to each
of the five diffusion models (p̂SS, p̂MS, p̂DI, p̂TC, p̂QT). These time-step predictions are processed to produce trajectory-level
predictions (not pictured). All diffusion model predictions in an experiment are averaged to predict its most likely model, here
dimerization. Additionally, all the α, K and DT predictions in an experiment are used to create a Gaussian mixture model
(GMM) and estimate the probability distributions P(α) and P(K). These ensemble predictions inform the training of a second
U-Net 3+ inspired network, making it experiment-specific and thereby more accurate. (b) Schematic of a U-Net 3+ architecture.
Each Xd (Xu) is a node in the downsampling (upsampling) branch. X6 is the bridge between the two branches. Solid downwards
(upwards) black arrows represent downsampling (upsampling). Dashed grey arrows show standard skip connections. Dashed
downwards (upwards) coloured arrows represent downsampling (upsampling) skip connections. The colour of these arrows
indicates their output shape based on their end-point node: for example, each green arrow reshapes its input to match the size of
X3
u. (c) The predictions of α, K and DT for each time step of every trajectory in an experiment inform the creation of a three

dimensional GMM (using diagonal covariance only). The parameters of each component of the GMM (weight w, mean µ and
standard deviations σ) represent a different diffusion state, and, collectively, capture that experiment’s ensemble properties. In the
example, three components are identified.

similarity of these distributions to the ground-truth distributions Q(α) and Q(K) (table 1) was assessed
using the first Wasserstein distance [27]:

W1 (P,Q) =

ˆ
supp(Q)

|CDFP (x)−CDFQ (x) |dx (6)

where CDF refers to a distribution’s cumulative distribution function and supp(Q) is the support, i.e.
α ∈ (0,2) or K ∈ [10−12,106] pixel2/frame.W1(P,Q) approaches 0 as the accuracy of the predictions
improves. Henceforth, we refer to the first Wasserstein distance of α asWα and of K asWK .

2.3. U-AnD-ME framework
U-AnD-ME (figure 2(a)) processing begins by using a neural network based on U-Net 3+ [43] (figure 2(b))
to make predictions for each time step in a trajectory (section 2.3.1), similar to other pointwise inference
methods, such as STEP [44]. Before being passed to this network, trajectories must be preprocessed
(section 2.3.2). The initial neural network is trained to handle a broad range of experimental conditions, and
so we refer to it as the generalist network (section 2.3.3). For each time step, this network predicts the
likelihood of it being a CP, estimates its α, K, and DT, and its likelihood of belonging to each of the five
possible diffusion models. These time-step predictions are used to segment each trajectory and label the
properties of each segment (section 2.3.4), solving the single trajectory task of the 2024 AnDi Challenge.
Additionally, to make ensemble predictions (section 2.3.5), the combined time-step predictions from all the
trajectories in an experiment can be used to infer the most likely diffusion model behind that experiment
and for the creation of a Gaussian mixture model (GMM) capturing the experiment’s α- and K-distributions
(figure 2(c)). This ensemble information can be leveraged to further refine U-AnD-ME predictions
(section 2.3.6). Ensemble predictions are used to generate trajectories representative of each experiment,
enabling training of a new, more accurate experiment-specific network, also based on U-Net 3+ [43]
(figure 2(b)). We implemented our framework in Python 3 using TensorFlow 2 and NumPy. All codes
pertaining to U-AnD-ME are freely available under an MIT licence [45]. We chose all parameters of our
architecture by optimizing the metrics of the 2024 AnDi Challenge. All computations used the same node on
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the Gekko cluster of Nanyang Technology University with an Intel Skylake Xeon Gold 6150 processor and
Nvidia V100 GPU for network training.

2.3.1. Architecture
U-Net 3+ (figure 2(b)) is the inspiration behind U-AnD-ME’s central neural network (for both generalist
and experiment-specific cases). It is a convolutional architecture, originally developed for biomedical image
segmentation, consisting of an encoding/downsampling branch (figure 2(b), left) followed by a
decoding/upsampling branch (figure 2(b), right), with complex skip connections interlinking the two [43].

Although U-Net architectures were originally formulated for image-segmentation tasks, their hierarchical
approach to feature extraction has since been applied to time series analysis [46, 47], including to the analysis
of anomalous diffusion data [48]. To adapt the architecture to time series, we replaced the two-dimensional
convolutions of the original architecture with one-dimensional convolutions. The downsampling branch
compresses the input and extracts coarse-grained semantic information, while the upsampling branch
combines this semantic information with fine-grained details from the skip connections, enabling
context-aware processing of the input. Both branches are roughly symmetric leading to its eponymous ‘U’
shape. As the shape of the data changes at each step, the nodes X of both branches are sometimes referred to
as scales [43, 49]. In figure 2(b), the node X1

d (X
1
u) is the largest scale of the downsampling (upsampling)

branch, while X5
d (X

5
u) is the smallest scale. X6 is the bridge between the two branches. We implement six

scales in total, as this is the maximum possible with our input length. In fact, our network accepts 224× 2
(time steps× dimensions) matrices as input, with any shorter trajectories padded to this length as it allows
up to Nd = 5 downsampling operations, thus enabling deeper and more expressive networks.

The downsampling branch follows a standard architecture for convolution networks, being composed of
scales implementing repeated (valid) one-dimensional convolutions with a kernel size of 3 and stride of 1,
each followed by a rectified linear unit activation function and a one-dimensional max-pooling operation.
The latter operates along the time axis with a pooling size of 2 and a stride of 2, thus halving the data
dimensionality at each downsampling step. After each of these downsampling steps the number of feature
channels (i.e. vectors abstractly encoding extracted information) increases. We set the number of channels
for X1

d, X
2
d, X

3
d, X

4
d, X

5
d and X6 to 16, 32, 64, 64, 128 and 128, respectively (figure 2(b)). Every scale in the

upsampling branch consists of a 1D transposed convolution along the time axis with a kernel size of 2 and a
stride of 2; this operation doubles the data dimensionality, inverting the shape changes caused by the
downsampling operations. Each transposed convolution in our upsampling branch uses 512 channels. Skip
connections allow the output of each up-convolution to be combined with features from the downsampling
branch. Every node of the upsampling branch incorporates information from its same-scale counterpart
from the downsampling branch and, additionally, from all larger-scale downsampling nodes, and from all
smaller-scale upsampling nodes including the bridge (figure 2(b)). This means that the skip connections
must also include downsampling and upsampling operations as appropriate, reshaping their input to match
the shape of the upsampling branch they connect to. Incorporating skip connections that combine scales in
this way enhances the integration of coarse-grained semantic information with finely detailed information,
allowing the network to better understand the context of the input.

Finally, a 1× 1 convolution operates on the output X1
u to ensure that the number of features matches the

desired number of outputs: in our case, this convolution reduces the number of channels from 512 to 9,
making the shape of the final output 224× 9 and encoding the nine predicted feature channels for each of
the 224 time steps. The first channel undergoes a sigmoid activation and represents the presence of CPs. The
next three have no activation function and represent K, α and DT. The remaining five channels undergo a
five-way softmax activation, and represent the probability of a time step to belong to each of the five possible
phenomenological diffusion models. Experiment-specific networks can also be created once experimental
ensemble properties have been predicted once (figure 2(a)). As the diffusion model is fixed for each
experiment, these networks do not need to make any further model prediction, so that the 1× 1 convolution
after X1

u reduces the number of channels to just 4 instead of 9 (presence of CP, α, K and DT).

2.3.2. Trajectory pre-processing
Before being fed into a network, trajectories (of maximum 200 frames) were preprocessed to simplify
learning and ensure appropriate tensor sizes. Raw trajectories consist of explicit time-step labels t, with
position values (x and y) for each time step (figure 3(a)). They may not span from 1 to 200, as particles may
enter a FOV after t= 1 and leave before t= 200. These trajectories are first differenced in time to yield
increments (∆xt,∆yt) = (xt+1,yt+1)− (xt,yt). Processed trajectories do not contain explicit time labels t,
but their index i implicitly captures this information, i.e. (∆xi,∆yi)≡ (∆xt,∆yt). Missing values are padded
with zeros to a fixed length of 224 time steps (section 2.3.1).

6
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Figure 3. Trajectories pre-processing. (a) Raw trajectories (left) consist of time-step labels t and positions, x and y, for each time
step. They are differenced in time to yield the increments (∆xt,∆yt) = (xt+1,yt+1)− (xt,yt). Processed trajectories (right) do
not contain explicit time labels t, but their index i implicitly captures this information, i.e. (∆xi,∆yi)≡ (∆xt,∆yt). Missing
values are padded with zeros (grey) to a fixed length of 224 time steps. In the example, the original trajectory spans t= 12 to
t= 18 (time when it was within the FOV). The increments (∆xt,∆yt) are therefore defined for i= 12 to i= 17, while zeros are
used to fill the otherwise undefined values, from i= 1 to i= 11 and from i= 18 to i= 224. (b) Corresponding raw labels (left)
consist of the same time-step labels t, with the respective values of α, K, and DT. Additionally, a label describes the diffusion
model of the trajectory, here ‘transient confinement’. For both generalist and experiment-specific networks, raw labels are
processed (right) by adding explicit CP labels (set to one for the start of a new segment and zero otherwise) for each time step. As
for trajectories, the indices i of the new matrix captures time information. Moreover, for generalist networks (as in the depicted
example), the diffusion model is one-hot encoded and also forms part of the label through the probabilities pSS, pMS, pDI, pTC and
pQT. In the example, for each original time step (i= 12 to i= 18), the probability of belonging to the TC mode, pTC, is set to one,
while all other probabilities are set to zero. CP, α, K, and DT values are padded with zeros (grey). In generalist networks, model
labels are padded with zeros too bar the probability of being in a quenched trap, pQT, which is set to one. This padding mimics an
immobilizing trap at the FOV edge.

Corresponding raw labels (figure 3(b)) consist of the same time steps t, along with values of α, K, and
DT. Additionally, a label describes the diffusion model behind the trajectory. For both generalist and
experiment-specific networks, the labels for α, K and DT are used without any additional processing. As DT
is an ordinal category, we simply treat it as a float variable. As for trajectories, the label index i implicitly
encodes the original time information t. Padding sets the missing values of α, K and DT to zero up to the
fixed length of 224 time steps of the processed trajectories. Processed labels include explicit CP information
too, which is set to one for the start of any segment and for the first time step after the end of the raw
trajectory; it is set to zero otherwise. Unlike experiment-specific networks, generalist networks also require
information about the diffusion model. As this information is not ordinal, we apply one-hot-encoding: each
time step has five labels encoding whether it belongs to each of the five diffusion models; the label for the
true model is set to 1 while all others are 0. For padded time steps, the diffusion model is set as a QT, i.e.
pQT = 1 while pSS = pMS = pDI = pTC = 0. This padding scheme essentially treats the boundary of every FOV
as an immobilizing trap, preventing the padding from adding any physically unrealistic behaviour to the
training data.

2.3.3. Network training
We simulated fractional Brownian motion trajectories for training using the andi-datasets Python
package [34]. For generalist networks, we simulated trajectories corresponding to all five diffusion models,
with all their parameters randomly selected from a predefined range informed by the 2024 AnDi Challenge
pilot dataset [27]. Due to the negative control nature of Experiment 8, K-values can purposely span a very
broad range. Training a network over such a large range would be computationally expensive and result in
generally poor performance. We therefore limited the range for training the generalist networks to the values
more represented in the Challenge dataset (table 1) [27]. Trajectories were therefore simulated for each
diffusion state in an experiment with values of α and K sampled from Gaussian distributions with means,
µα ∼ U(0,1.999) and µK ∼ U(10−12,15), and standard deviations, σα = 0.01µα and σK = 0.01µK. SS
diffusion requires only one state. For MS diffusion, we simulated a maximum of five states, as this was
comfortably larger than the maximum of three found in the pilot dataset [27]. MS diffusion also requires the
definition of a transition matrixM [27]. At any time step, the transition probability from a state i to a state j
is given byMij. The probability of remaining in the same state i is given byMii, which we set to a single value
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Figure 4. Training and validation loss curves. Exemplary training (black line) and validation (blue line) loss curves for
U-AnD-ME. At the start of each training and validation loop (green vertical lines), 50 000 new trajectories are generated and used
with a 4:1 random split between training (40 000 trajectories) and validation (10 000 trajectories). In each loop, training proceeds
until validation loss (blue line) stagnates for five consecutive epochs. Following this, the parameters from the minimum loss over
this loop (red crosses) are restored, new trajectories are generated, and another training loop commences. Training comes to a
final stop when the validation minimum loss per loop stops improving between loops. The final network parameters are those
from the overall validation loss minimum (filled red cross). The performance of the final networks was evaluated against the
unseen dataset of the AnDi Challenge composed of 30 000 trajectories, with ground-truth unknown to the participants.

Mii ∼ U(0.9,0.999) for all states. The values for all other transition probabilities are then
Mij = (1−Mii)/(s− 1), where s is the number of states. The DI model requires two states and the definition
of the number of diffusing particles N, their radius r, the probability Pb that two particles bind when at a
distance d< 2r, and the probability Pu of a dimer unbinding. We generated experiments for this model using
N∼ U(50,150), r∼ U(0.1,2.0), Pb = 1, and Pu ∼ U(0,0.1). The TC model also requires two states and the
definition of the number of confinement regions Nc, their radius rc, and the transmittance probability of the
boundary T. We used Nc ∼ U(10,100), rc ∼ U(1,15), and T∼ U(0,0.5). Finally, the QT model requires only
the definition of one state, as the other is complete immobilization (µα = µK = σα = σK = 0). It also
requires the number of traps Nt, their radius rt, the trap binding probability Pt when at a distance d< rt, and
the unbinding probability Pu. We used Nt ∼ U(100,500), rt ∼ U(0.1,2.0), Pb = 1, and Pu ∼ U(0,0.1).

The training of both generalist and experiment-specific networks followed the same procedure (depicted
in figure 4), but the simulation parameters used for experiment-specific training came directly from the
ensemble predictions of the generalist network for that experiment (see also section 2.3.6). As the networks’
output is multimodal, we used several different loss functions in unison for training: a binary cross-entropy
loss for the binary classification task of detecting CPs; mean squared error losses for the regression tasks of
inferring α, K and DT; and, only for generalist networks, categorical cross-entropy for the multi-class
classification task of predicting the diffusion model.

We trained each network of U-AnD-ME through training loops (figure 4). For each loop, we generated
and used a total of 50 000 new trajectories of known ground-truth with a 4:1 split between training (40 000
new trajectories per network per loop) and validation (10 000 new trajectories per network per loop). Each
loop continued until the validation loss stagnated for five consecutive epochs. Training came to a final stop
when the minimum validation loss per loop stopped improving between loops. We finally selected the
network parameters from the overall validation minimum (figure 4). Both generalist and experiment-specific
networks reached their validation minimum after ca. 18 hours on our computational resources (typically
corresponding to two training loops per network). The final networks were tested against the unseen dataset
(30 000 trajectories) of the AnDi Challenge, with ground-truth unknown to the participants.

2.3.4. Single-trajectory predictions
The single-trajectory prediction procedure was identical for generalist and experiment-specific networks
(figure 5). For each trajectory, after removing padded time steps, CPs were detected first. We considered a
time step to be a CP if its CP label was at least 0.25 and a local maximum compared to its immediate
neighbours. CPs within two time steps of the start or end of the unpadded output were ignored, as the
minimum possible segment length was three. The output tensor was split into segments according to these
identified CPs (figure 5). The values of α, K and DT for each time step in a segment were averaged to
generate a singular prediction for that segment. This average used a parabolic weighting, where time steps
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Figure 5. U-AnD-ME single-trajectory prediction procedure. The network output consists of predictions of change point (CP)
probability, α, K, and diffusion type (DT) for each of the 224 time steps of the processed trajectories. This output includes padded
values (grey). After padding is reverted, the output is split into segments using the change point predictions (red boxes). Each
identified segment then undergoes a weighted average (blue shades), with its central time steps assigned higher weights, which
yields estimates for α, K, and DT. Finally, these values are rectified, being constrained and rounded as appropriate.

near the centre of the segment contributed more than those at its extremities as errors in the CP localisation
make them less reliable (figure 5). For a segment spanning istart to iend, each time step’s weighting wi is given
by wi =

3
10 (2− ĩ2), where ĩ= 2 i−istart

iend−istart
− 1 is a mapping of i from [istart, iend] to [−1,1] and the prefactor

3
10 = (

´ 1
−1 2− ĩ2 dĩ)−1 is a normalisation factor ensuring that

∑iend
i=istart

wi = 1. Finally, prediction of segment
properties were rectified (figure 5) by constraining all values to within physically possible/realistic ranges,
and ensuring that they were of an appropriate data type. Predictions for α and K were constrained to (0, 2)
and [10−12,106], while those for the DT were rounded to the nearest integer and then constrained to [0,3]
(section 2.1).

2.3.5. Ensemble predictions
Ensemble predictions aim at approximating each experiment’s multimodal distributions of α and K, Pα and
PK (table 1, figure 2(a)). Using standard expectation maximisation [50], we fitted a GMM to the joint
distribution of all values of α, K and DT predicted by our generalist network for all time steps of the
trajectories in an experiment (figure 2(c)). In our case, we used this GMM to approximate the multimodal
distributions of α, K, and DT as a sum of Gaussian components, where each component i is characterized by
means µα,i, µK,i, and µDT,i, standard deviations σα,i, σK,i, and σDT,i, and a weight wi. While the properties of
the DT distribution are not strictly necessary, considering them led to better separation between different
diffusion states, and, thus to a better accuracy for the captured distributions Pα and PK. Our GMM used
strictly diagonal covariance matrices, meaning the three variables (α, K and DT) are independent and have
different standard deviations. In the ideal case, the number of Gaussian components will match that of
diffusion states in an experiment exactly. In practice, this is rarely the case, yet we found that the overall
GMM distributions over α and K still closely approximate the experimental distributions. We created GMMs
with between one and ten components, and finally selected that with the lowest Bayesian information
criterion [51]. We set ten as the maximum number of components as this led to strong performance with
good efficiency. Finally, we also used the outputs of the generalist network to predict the probability of an
experiment to belong to each of the five possible diffusion models. We used this information to train our
experiment-specific networks together with the probabilities Pα and PK defined by the GMM (section 2.3.6).
To avoid error propagation from poor diffusion model predictions, we never used this information to decide
the number of GMM components.

2.3.6. Experiment-specific networks
Once approximate experimental properties were available from the predictions of generalist networks, we
trained and used experiment-specific networks to improve accuracy for both single-trajectory and ensemble
predictions. Training proceeded as outlined in section 2.3.3 but with new trajectories simulated in
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Table 2. Ablation study summary. Normalized metric scores ( ˜JSCCP, ˜RMSECP, ˜MAEα, ˜MSLEK, F̃1, W̃α and W̃K), mean inference time
per trajectory (t̃inf⟩), and normalized mean reciprocal rank (MRR) for the different variants of U-AnD-ME architecture tested in the
ablation study. We tested the following changes to U-AnD-ME basic architecture: not differencing the inputs in the preprocessing (‘No
differencing’), using a constant number of channels across scales (‘No taper’) as opposed to the reverse-tapered shape used in the
original network (number of channels for X1

d, X
2
d, X

3
d, X

4
d, X

5
d and X6 all set to 90, as opposed to 16, 32, 64, 64, 128 and 128 of the original

network), using a wider network (‘No taper+ wider’, using only 5 scales, all with 640 channels), using a network with a larger
convolutional kernel (‘Larger kernel’, kernel size of 5 instead of 3), as well as removing the parabolic weighting from the post-processing
(‘No weighting’). The metrics scores are normalized to the respective scores for the basic U-AnD-ME architecture.

˜JSCCP ˜RMSECP ˜MAEα
˜MSLEK F̃1 W̃α W̃K t̃inf MRR

U-AnD-ME 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.45
No differencing 0.65 0.53 1.15 1.20 0.24 0.50 1.08 1.00 0.37
No taper 0.66 1.73 0.76 1.12 1.04 0.55 0.74 1.00 0.44
No taper+ wider 0.61 2.65 1.35 1.59 0.04 0.41 1.35 1.00 0.31
Larger kernel 0.91 0.83 0.55 0.73 0.91 0.81 0.50 1.36 0.67
No weighting 1.00 1.00 0.99 1.08 0.99 1.00 1.00 1.00 0.42

accordance with the predicted diffusion model using ranges of α and K defined by the distributions
predicted by the generalist GMM (section 2.3.5).

Ideally, a single model will be predicted for the experiment with high confidence. However, often
multiple models show comparable probabilities, so it is important not to overcommit to just the most
probable one, as this risks training the network on the wrong model. Therefore, we trained
experiment-specific networks using trajectories from multiple models selected from the softmax output
{p̂SS, p̂MS, p̂DI, p̂TC, p̂QT} of the generalist network encoding the probability of the experiment being SS, MS,
DI, TC or QT, respectively. We sorted this set of probabilities into descending order and calculated the
difference between any two consecutive probabilities in the sorted list. Training used all models up to the first
where this difference exceeded the predefined threshold value of 0.1. We used this value because it stroke an
acceptable balance between accuracy (the generated set of diffusion models generally included the true
model) and specificity (the generated set of diffusion models was small) on a trial dataset.

Simulating trajectories of an experiment for training requires the definition of µα, µK , σα and σK for
each diffusion state in it (section 2.3.3). While the training of the generalist network uses random values for
these parameters, when training experiment-specific networks, these values come directly from the
components of the generalist GMM capturing the experiment’s α- and K-distributions (section 2.3.5). When
there were more predicted GMM components than experimental states in the model being considered, the
trajectory ensemble generated for training used random subsets of all the predicted components. For
example, in a DI experiment with exactly two states and a GMM with five predicted components, each FOV
generated for training would use a random set of two components from the five predicted.

2.4. Ablation study
We conducted ablation tests to isolate how individual architectural choices impact U-AnD-ME performance.
We tested the following changes to U-AnD-ME basic architecture: not differencing the inputs in the
preprocessing (‘No differencing’ in table 2), using a constant number of channels across scales (‘No taper’ in
table 2) as opposed to the reverse-tapered shape used in the original network (number of channels for X1

d,
X2
d, X

3
d, X

4
d, X

5
d and X6 all set to 90 for ‘No taper’, as opposed to 16, 32, 64, 64, 128 and 128 of the original

network), using a wider network (using only 5 scales, all with 640 channels, ‘No taper+ wider’ in table 2),
using a network with a larger convolutional kernel (kernel size of 5 instead of 3, ‘Larger kernel’ in table 2), as
well as removing the parabolic weighting in the post-processing (‘No weighting’ in table 2). For better
comparison between the variants, we maintained the number of trainable parameters approximately
constant apart from the ‘larger kernel’ network which had 45% more trainable parameters due to the larger
kernel size. To reduce the overall computational costs associated with running these tests, all variants were
trained using only one iteration of 50 000 trajectories (40 000 training, 10 000 validation), as opposed to the
iterative training procedure detailed in section 2.3.3. Evaluation used 30 simulated FOVs per experiment,
directly matching the AnDi Challenge evaluation, whereas our other results use 300 simulated FOVs per
experiment. Table 2 reports the scores of each scenario relative to the basic U-AnD-ME architecture,
evaluating the same metrics of the AnDi Challenge as well as the mean inference time per trajectory. The
different scenarios are then compared using the mean reciprocal rank (MRR, table 2). While individual tests
can outperform the basic U-AnD-ME architecture for specific metrics, this architecture ranks 2nd in terms of
MRR, striking a good balance between the overall metrics performance and the computational time needed
to train. The ‘no taper’ version ranks close to U-AnD-ME with better performance in inferring diffusion
properties (both at the single-trajectory and ensemble level) but significantly worse CP predictions. This is
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because giving every encoder scale the same number of channels shifts most of the network’s capacity into the
early, high-resolution layers. This allows for better learning of the statistics determining diffusion parameters,
but leaves fewer parameters for deeper layers that aim to aggregate long-range context, thus making noticing
changes in diffusion regime more difficult. It should be noted that even the highest-ranking network (i.e. the
one with a larger convolutional kernel) did not outperform U-AnD-ME on all metrics. It performed better in
predicting diffusion properties (α and K) and in the ensemble task (Wα andWK) due to the wider kernel
enabling better integration of information across time steps, yet it performed worse in determining the DT
(F1) and in detecting CPs (JSCCP). Interestingly, time resolution (RMSECP) is better, but this metric alone
can be misleading in cases with lower JSCCP as it is only calculated on TP detections (section 2.2).
Importantly, U-AnD-ME keeps inference time relatively low compared to this variant (approximately 25%
faster), thus becoming our architecture of choice in the time-sensitive context of the Challenge.

3. Results

Inspired by the 2024 AnDi Challenge, we evaluate U-AnD-ME using a well-balanced dataset with
approximately 216 000 trajectories representative of a wide range of biologically relevant phenomena
(section 2.1, table 1). We first evaluate how impactful the framework’s experiment-specific training is
(section 3.1). We then discuss the quality of the single-trajectory analysis, including the CP detection, the
inference of the diffusion properties (the anomalous-diffusion exponent α and the generalized diffusion
coefficient K, section 3.3), and the classification of the DT (section 3.4). Finally, after discussing the ensemble
predictions (section 3.5), we apply U-AnD-ME to infer anomalous diffusion properties in experimental
trajectories (section 3.6).

3.1. Generalist vs. experiment-specific networks
Figure 6 compares the performance of the generalist network to that of experiment-specific ones which
leverage ensemble predictions. For all metrics, experiment-specific networks led to improvements in average
performance (figures 6(a)–(g)), highlighting their benefit over the generalist because of a more relevant
selection of diffusion properties for training. In most cases, there is also a strong correlation between the
improvement of paired metrics going from generalist to experiment-specific networks (figures 6(h)–(j)): for
CP detection, an improved JSCCP typically comes with a lower RMSECP (figure 6(h)); a similar trend emerges
for the joint predictions of the trajectories’ diffusion properties (figure 6(i)) and of their ensemble
distributions (figure 6(j)). Only the RMSECP for Experiments 1, 6 and 7,WK for Experiment 8 (due to its
broad range of K values) and the F1-score for Experiment 6 deviate from this trend, with the decrease seen
for this last metric being negligible.

For RMSECP, experiment specificity led to worse performance for Experiments 1, 6 and 7, as they contain
more complex CPs to detect due to MS diffusion or DI. As RMSECP is calculated only on TP CPs, the better
RMSECP less specific networks exhibit is not caused by superior CP detection but by them simply failing to
detect more difficult CPs entirely. Generalist networks detect only more distinct CPs and make good
predictions on these with relatively low localization error (hence the relatively higher values of RMSECP),
while experiment-specific networks additionally pick up more subtle CPs that are harder to localize well
(hence the relatively lower values of RMSECP). This can lead to an anti-correlation between JSCCP and
RMSECP where favourable (high) JSCCP can be accompanied by poor (high) RMSECP, as in figure 6(h) for
Experiments 1, 6 and 7. This counter-intuitive behaviour is why both RMSECP and JSCCP were used in
tandem to evaluate CP detections in the 2024 AnDi Challenge [27].

Interestingly, for Experiment 8 (serving as negative control to the other experiments [27]), the values of
most metrics changed little between generalist and experiment-specific networks. In particular, the latter led
only to negligible improvements for JSCCP, RMSECP, and F1-score. The relatively simpler dynamics of the SS
model (single diffusion state with no CPs) meant that even our generalist network could get close to optimal
values for these metrics, thus reducing the need for experiment-specificity. Experiment 9 instead stands out
due to the improvement that experiment-specific networks introduced over the generalist one on all metrics
of the single-trajectory task (figures 6(a)–(e) and (h)–(i)). This experiment in fact possesses two diffusion
states that have very different properties (trapped and near ballistic) with narrow distributions (table 1), thus
justifying the greatest benefits over other experiments introduced by a better selection of parameters due to
experiment-specific training.

For benchmarking, we also compare U-AnD-ME performance in inferring α and K against logarithmic
(for α) and linear (for K) fits of the time-averaged MSD (MSD, figures 6(c) and (d)). To this end, focusing
on Experiment 8’s single-state trajectories enables us to assess U-AnD-ME ability to infer these diffusion
parameters avoiding segmentation errors [27]. Under these conditions of absence of CPs, U-AnD-ME
experiment-specific networks perform better than the MSD fit, particularly for the estimation of K: while the
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Figure 6. Impact of experiment specificity. (a)–(e) Performance by experiment (numbers as in section 2.1) for each metric of the
single-trajectory analysis: (a) JSCCP, (b) RMSECP, (c) MAEα, (d) MSLEK, and (e) F1 score. In c and d, the scores obtained by
using the fit (MSD Fit) of the time-averaged mean-squared displacement of the single-state trajectories of Exp. 8 are provided as a
benchmark; the corresponding line is shown in black for c but not for d as this value lies well beyond the plot limits. (f) and (g)
Performance by experiment for each metric of the ensemble analysis: (f)Wα, and (j)WK. The y-axes show better metric values at
the bottom of each plot. Dashed and solid horizontal lines show average performance for generalist and experiment-specific
networks, respectively. (h)–(j) Correlation between subtask metrics for (h) change-point detection, (i) inference of diffusion
properties and (j) ensemble predictions. The numbers indicate individual experiments. Dashed lines connect each experiment’s
generalist and experiment-specific metrics’ values. Mean values are shown in black. Axes show better metric values at the bottom
left of each plot. (a)–(j) Hollow circles and filled diamonds represent metrics values of generalist and experiment-specific
networks, respectively.

value for MAEα from the MSD fit (MAEα = 0.133) is only slightly worse than that from U-AnD-ME (MAEα
= 0.130), MSLEK from the MSD fit (MSLEK = 0.478) is an order of magnitude worse than that from
U-AnD-ME (MAEK = 0.038). The results of the AnDi Challenge further benchmark our method against
those of the other 17 participating teams in Track 1 [27, 52].

3.2. Change-point detection
U-AnD-ME outperformed all other methods in the 2024 AnDi Challenge in terms of CP detection, scoring
better in terms of both JSCCP (accuracy) and RMSECP (localization) [27]. The JSCCP (figure 7(a)) and the
corresponding RMSECP (figure 7(b)) show that CP detection was highly performant, being both accurate
(JSCCP) and precise (RMSECP), for two models (TC and QT) with JSCCP > 0.91 and a RSMECP < 0.72 time
steps. As a reference, all submitted methods in the segmentation task of the previous 2020 AnDi Challenge
obtained RSMECP values of at best 10–20 time steps (an order of magnitude larger) when only considering
the subset of trajectories with CPs at least 20 time steps away from their start/end [34]. U-AnD-ME’s
particularly high performance for TC and QT is due to these two models showing two very clearly different
states. Unlike the other models with CPs, TC and QT transitions always involve one segment with very low
mobility—near zero for TC and precisely zero for QT. This leads to more distinct CPs, reducing mislabelling
from the network, as can be seen from the relatively low number of FP (FP, figure 7(c)) and FN (FN,
figure 7(d)) detected CPs compared to the other two models (MS and DI). This common segment feature in
the CPs may also facilitate a more effective training generalization among different trajectories.

The MS model shows the poorest performance with JSCCP > 0.32 and a RSMECP < 2.15 time steps as,
unlike other models, the CPs in MS trajectories can involve a variety of states, which naturally adds

12



J. Phys. Photonics 7 (2025) 045005 S Asghar et al

Figure 7. Change-point detection. (a) and (b) Metrics for change-point detection from experiment-specific networks for the four
models that exhibit change points (MS, DI, TC and QT) in terms of (a) JSCCP and (b) RMSECP. Horizontal lines represent the
average value of each metric. (c) The proportion of false positives (FP) over all detected change points. (d) The relative
proportion of true positives (TP, dark green) and false negatives (FN, light green) over all ground-truth change points (CPGT). (e)
The frequency of different segment lengths across our dataset. Shorter segments are more represented as predictions are more
challenging due to the lower information content per segment. (f) The relative proportion of true positives (TP, dark green) and
false negatives (FN, light green) across all ground-truth change points (CPGT as in d) by segment length. (g) RMSECP of the
change-point detections by segment length. Every change point is assigned to two segments, the ones immediately preceding and
following it. The horizontal line shows the metric’s average value.

complexity to their identification. Also, unlike TC or QT, these transitions can be between high mobility
states. The relatively poorer JSCCP for MS is caused both by CPs being missed (low TP and high FN,
figure 7(d)) and by a relatively high proportion of false CPs being identified (FP, 7(c)).

DI, with only two diffusion states as TC and QT, fares in-between as the change in diffusion properties is
not always as marked as for these other two models (table 1). Like MS, DI can also include transitions
between high-mobility states, but, differently from this model, penalization in detection comes from a higher
proportions of FP values rather than disproportionally mislabelling true CPs (figures 7(c) and (d)).

Figures 7(e)–(g) explore the influence of segment length on CP detection. As in the 2024 Challenge, the
evaluation dataset is richer in shorter segments (figure 7(e)); this mirrors the fact that single-molecule
live-imaging data often contain short trajectories. Additionally, this segment length distribution allows
training to focus on identifying and characterising shorter segments, which are known to be more
challenging and easier to miss due to their lower information content [4, 48]. As can be expected, prediction
quality increases with segment length (figures 7(f) and (g)), confirming that the improved feature
information provided by longer trajectories has a notable impact on CP identification [4]. U-AnD-ME
struggles most for very short segments (< 10 time steps, figures 7(f) and (g)). The proportion of TP CPs over
FNs across all ground-truth values increases steeply for increasing lengths, until it plateaus at approximately
83% for segments longer than 65 time steps (figure 7(f)). Similarly, the RMSECP shows a roughly linear
halving from 1.86 to 0.94 time steps with increasing segment lengths (figure 7(g)). Interestingly, for very long
segments (> 194 time steps), while the localization error is low (RMSECP < 1 time steps (figure 7(g)), there
is a higher proportion of FN points compared to slightly shorter segments (figure 7(g)). This is an artefact
coming from the high proportion of FN points identified on very short segments. As the maximum
trajectory length is 200, any detection shortcoming in trajectories with a single CP associated with a very
short segment is also bound to propagate to its longer counterpart [4].

3.3. Inference of the diffusion parameters
U-AnD-ME also outperformed all other participating methods in the 2024 AnDi Challenge in terms of
inferring both α and K, achieving the lowest MAEα and MSLEK [27]. On our dataset, we achieved averages
of MAEα = 0.12 and MSLEK = 0.015. Inference strongly improves with segment length, due to the
aforementioned increased feature information that longer segments contain (figures 8(a) and (b)) [4]. After
an initial steep improvement with segment length, MAEα plateaus at≈ 0.7 for segments longer than 150
time steps, while MSLEK keeps slowly improving (figure 8(b)).
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Figure 8. Inference of the diffusion properties. (a) MAEα and (b) MSLEK as a function of ground-truth segment length. (c)
MAEα and (d) MSLEK for each of the five possible diffusion models. Horizontal lines show average values. (e) and (f) Heat-maps
showing (e) MAEα and (f) MSLEK as a function of α and K.

When evaluating the inference of α by model (figure 8(c)), MAEα for SS, MS, and TC are all comparable
and close to the average value. QT shows the best performance (MAEα = 0.06), likely because inferring α is
straightforward for the immobilized state (α= 0). The inference of segment properties can also be expected
to be most effective when CPs are accurately detected (figure 7), which slightly benefited TC too
(section 3.2). At the opposite end, DI was the worst performing model (MAEα = 0.23). This is attributed
largely to Experiment 2 which, unlike the two other DI experiments (Experiments 5 and 6) has two
overlapping states (diffusion and directed) with very similar values of α, leading to mislabelling the less
frequent directed state (table 1). In fact, this experiment has the worst MAEα of all even after using
experiment-specific networks (figure 6(c)). Interestingly, the inference of K by model (figure 8(d)) shows
much more variability than that of α. MS performance is the only one close to the MSLEK average value,
with the other models performing much better or worse than average. TC and DI performed best, both with
MSLEK scores of ca. 0.005, as all experiments of these models have well-separated bimodal distributions of K
(table 1, section 3.5), which U-AnD-ME could discern well. On the opposite end, SS performed the worst,
likely due to the range of K values in its only experiment (the negative-control Experiment 8) being
significantly broader than any other experiment. Although better than SS, QT performance was also poorer
than the average, hampered by Experiment 9 with an extremely superdiffusive state (µα = 1.99). We believe
that its very directed trajectories have indeed influenced our network’s capability to finely resolve the correct
width of the distribution of K-values (see also section 3.5).

Finally, figures 8(e) and (f) show how the values of MAEα and MSLEK vary with α and K. Performance is
generally quite consistent across different values with two exceptions: MAEα at α≈ 1.2 for low values of K
(K < 1.5) (figure 8(e)) and MSLEK for strongly superdiffusive trajectories as K grows (figure 8(f)). Both
deviations are however not due to the actual values of α and K, but rather to their representation in the
training dataset and the shape of the experimental distributions to be resolved by U-AnD-ME (section 3.5).
In fact, while the latter is due to Experiment 8 (the negative-control experiment) and its atypically broad
range of K-values compared to the other experiments (table 1), the former is due to U-AnD-ME struggling
to resolve the multimodal distributions of Experiments 6 and 7, both featuring a secondary narrow peak at
α= 1.2 on a much broader underlying distribution centred at α= 1 (table 1, section 3.5).
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Figure 9. Classification of diffusion type. F1-score of the classification of diffusion type (DT) by (a) diffusion type (immobilized,
confined, freely diffusing, or directed), (b) diffusion model, and (c) ground-truth segment length. The solid lines show the
average F1 score across all experiments.

Figure 10. Predicted α-distributions from ensemble analysis. Ground-truth α-distributions P(α) (black lines), distributions
predicted by generalist networks (dashed red lines), and distributions predicted by experiment-specific networks (solid red lines)
for each experiment.

3.4. Classification of diffusion type
When it came to the classification of DT (among immobilized, confined, freely diffusing and directed),
U-AnD-ME achieved a superior F1-score (with an average score of F1 = 0.98) compared to all other
participating methods in the 2024 AnDi Challenge [27]. Figure 9(a) shows that U-AnD-ME was indeed
highly accurate in classifying all DTs, being the lowest F1 score 0.85 for directed diffusion. Looking at the
classification by model (figure 9(b)) shows how this relatively poorer performance for directed trajectories is
primarily due to the QT model. As noted earlier (section 3.3), this model was hampered by Experiment 9
with an extremely superdiffusive state that was harder to resolve for U-AnD-ME (see also figure 6(e)).
Finally, classification as a function of segment length is unsurprising, with relatively poorer predictions for
shorter segments due to their lower information content (figure 9(c)). Segments of length 3 achieved F1 =
0.92, with values plateauing to F1 ≈ 1 for segments longer than 100 time steps.

3.5. Ensemble distributions
Finally, U-AnD-ME outperformed all other participating methods in the 2024 AnDi Challenge in terms of
capturing the ensemble distribution of α.Wα values in figure 6(f) show an average of 0.16 and 0.11 for
generalist and experiment-specific networks, respectively. Our method was not as successful in terms of
predicting the distribution of K, placing 4th; this was the only metric across the Trajectory Track of the
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Figure 11. Predicted K-distributions from ensemble analysis. Ground-truth K-distributions P(K) (black lines), distributions
predicted by generalist networks (dashed red lines), and distributions predicted by experiment-specific networks (solid red lines)
for each experiment.

Challenge for which U-AnD-ME did not outperform all other participating methods. We primarily attribute
this decreased performance to the negative-control Experiment 8 (section 3.3), which shows the worstWK in
figure 6(g) with scores of 2.83 and 3.29 against averages of 0.49 and 0.40 for generalist and
experiment-specific networks, respectively.

From the reconstructed ensemble probabilities of α and K in figures 10 and 11, we can see how
experiment-specific networks tend to perform better than generalist ones as already observed in figures 6(f),
(g) and (j). For both properties, generalist networks tend to find unimodal distributions near the average
parameter value, while experiment-specific networks capture richer distributions better reflecting those of
the ground truth. When two peaks in the ground-truth distributions are close together (e.g. in the
α-distributions for Experiments 2, 6 and 7, and in the K-distribution for Experiment 1), experiment-specific
networks tend to approximate neighbouring ground-truth modes with a single broad coarse-grained peak,
merging the information from the individual modes. Unimodal distributions (e.g. in the α-distributions for
Experiments 1 and 3, and in the K-distribution for Experiments 3) and multimodal distributions formed by
well-separated modes (e.g. in the distributions of α for Experiments 4, 5 and 9, and of K for Experiments 2,
4, 5, 6, 7 and 8) tend instead to be captured better by U-AnD-ME.

3.6. Application to experimental data
To verify that U-AnD-ME generalises beyond synthetic trajectories, we applied it to extract the diffusion
properties of experimental single-particle-tracking data from Granik et al [15] as an example (figure 12).
These data are available online at [54] and capture the diffusion of fluorescent beads in entangled F-actin
network gels with various mesh sizes. These trajectories demonstrate fractional Brownian motion [15], and
hence can be directly compared with the dataset used for the Challenge [27]. As no ground truth is available,
our estimates are compared to fits of the ensemble average of the time-averaged MSDs (eTAMSD) from the
trajectories at different gel mesh sizes. In their work, Granik et al [15] introduce a deep-learning framework
based on convolutional neural networks (CNNs) that well recovers the dependence of the anomalous
diffusion exponent α on the gel mesh size against the MSD fits (mean square error ϵ= 7.90× 10−4,
figure 12(a)). Using the generalist network trained on simulated data, U-AnD-ME produces consistent
predictions of the exponent α (ϵ= 3.35× 10−4, figure 12(a)) and, differently from [15], is also able to
extract reliable predictions of the generalized diffusion coefficient K (ϵ= 0.142, figure 12(b)) based on the
analysis of single trajectories. Ensemble analysis offers comparable results for predictions of both α
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Figure 12. Inference of anomalous diffusion properties in experimental data. Predicted anomalous diffusion properties from
experimental trajectories of fluorescent beads diffusing in entangled F-actin network gels with various mesh sizes [15] based on
the data available online at [54]. Both U-AnD-ME (a) and (b) single-trajectory and (c) and (d) ensemble predictions are shown
for (a, c) the anomalous diffusion exponent α and (b, d) the generalized diffusion coefficient K. In addition to the pre-processing
steps detailed in section 2.3.2, input trajectories were also processed to have differences of zero mean in x and y. U-AnD-ME
predictions are compared against fits of the ensemble average of the time-averaged mean squared displacements (eTAMSD)
calculated from trajectories for each gel mesh size. Bootstrapped standard deviations are also shown for eTAMSD (1000 iterations
with 1000 samples, values on the order of line width). In a, U-AnD-ME predictions are also compared against those from the
CNN-based approach from [15] (code available online at [53]). In c and d, U-AnD-ME ensemble predictions are shown as violin
plots to represent the full spread of the distributions of α and K for each gel mesh size. Dots and error bars respectively show the
mean and standard deviation of the distributions.

(ϵ= 3.35× 10−4, figure 12(c)) and K (ϵ= 0.142, figure 12(d)). Although the true diffusion properties are
unknown, U-AnD-ME’s reliable performance on these experimental data strengthens confidence in our
model and corroborates the results on synthetic trajectories presented earlier.

4. Discussion

The success of U-AnD-ME in the 2024 AnDi Challenge demonstrates its significance and potential for the
analysis of data from live-cell single-molecule imaging at both single-trajectory and ensemble levels. Our
method came 1st for the Single-Trajectory Task of the Trajectory Track of the Challenge, which was the most
subscribed task of the competition. For this highly competitive task, U-AnD-ME was awarded 1st place for
every possible subtask, accurately predicting the locations of CPs, the anomalous-diffusion exponent α, the
generalized diffusion coefficient K, and the DT. Our method was also awarded 1st place for the Ensemble
Task of the Trajectory Track, coming 1st in the subtask dedicated to predicting the distribution of α and 4th in
the subtask for predicting the distribution of K. The suboptimal performance for this subtask is due to our
framework struggling in cases where the training distribution for the generalist network differs significantly
from the experimental distribution. In the Challenge, the generalised diffusion coefficient K could take
values in the range K ∈ [10−12,106]. As most experiments but the negative-control Experiment 8 generally
take smaller values, the training procedure we used for generalist networks focussed on a smaller range
(K ∈ [10−12,15]), as training a network over the full range would be computationally expensive and result in
poor performance for the range of interest. As a consequence, experiments with significant density for
K > 15 may have poor generalist network predictions for the ensemble K-distribution, and thereby poor
experiment-specific network predictions for this distribution. No such issue affects α as these values are
confined to a much smaller interval (α ∈ [0,2)), making training over all possible values straightforward. In
practice, prior knowledge of the system being analysed could eliminate this issue by adapting the generalist
network’s training range to better suit the problem at hand.

The inference of segment diffusion properties tends to improve with the quality of the CP detections [4].
Currently, U-AnD-ME uses a standard binary cross-entropy loss for CPs. However, in typical trajectories,
fewer time steps are CPs than not, leading to significant imbalances between these two possible classes. Focal
loss is a modified cross-entropy designed to perform better with class imbalance [55]. Its use for training
instead of binary cross-entropy could improve the performance of CP detection and thereby improve the
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inference of segment properties too. Moreover, as shown here, experiment-specific training significantly
improves the accuracy of all network predictions. Using experiment-specific architectures informed by the
physics of each underlying model could further improve our approach. Ensemble predictions could also
benefit from increased a priori knowledge about experimental data: knowing an experiment’s model could
inform us about the number of distinct states it has and this could be used to directly enforce the number of
GMM components. Finally, while the original U-Net 3+ architecture was designed for image analysis [43],
U-AnD-ME extended it to time series. Amongst other changes, this involved using 1D convolutions as
opposed to 2D convolutions. Presently, U-AnD-ME analyses trajectories extracted from microscopy videos.
Future developments could explore the use of 3D convolutions to enable U-AnD-ME to directly extract
information from these videos.

Our ablation study shows that variations to the basic U-AnD-ME architecture can be introduced to
enhance specific performance metrics (e.g. inference of diffusion properties versus CP detection) while
keeping computational resources approximately constant. Alternatively, architectural modifications can
improve overall performance, albeit at the cost of increased computational demand. While these variants can
be considered based on specific experimental needs, we find that the U-AnD-ME basic architecture offers a
good balance between overall performance and computational efficiency, particularly in tasks requiring the
detection of CPs as in the 2024 AnDi Challenge.

In conclusion, built using convolutional operations, our machine learning framework ensures high
efficiency and stable training while delivering results that allowed U-AnD-ME to be among the
top-performing teams in the 2024 Andi Challenge. Even against comparable frameworks for the analysis of
anomalous diffusion data proposed during the 2020 AnDi Challenge [4], U-AnD-ME offers several
advantages as it does not require complex feature engineering [19], uses a single network for a wide range of
segment lengths [20, 21], and extracts all diffusion parameters with a single architecture [20]. The relative
simplicity of our framework is particularly noteworthy given the increased complexity of the 2024 AnDi
Challenge tasks compared to those of the previous version. While we applied it to the analysis of both
synthetic and experimental 2D trajectories, our architecture could be easily adapted to handle even higher
dimensional trajectories. Besides its proven effectiveness in particle-tracking analysis, U-AnD-ME’s central
architecture could also be relevant for any other task requiring analysis of time series exhibiting complex
diffusion behaviour, such as animal migration records [56], search strategy development in microrobotics
[57] or financial market data [58]. Additionally, it holds potential for any problem that requires the
segmentation of time series. For example, U-AnD-ME framework could be applied to ECG analysis [59],
fault detection in manufacturing [60], or detecting ecosystem regime shifts [61].
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