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A B S T R A C T

Previous studies identified atrophy-based Alzheimer’s disease(AD) subtypes linked to distinct clinical symptoms, 
but their consistency across subtyping approaches remains unclear. This large-scale study evaluates subtype 
concordance using two data-driven approaches. In this work, we analyzed data from n = 10,011 patients across 
10 AD cohorts spanning Europe, the US, and Australia, extracting regional volumes using Freesurfer. To char
acterize atrophy heterogeneity in the AD continuum, we developed a two-step approach, Snowphlake (Staging 
NeurOdegeneration With PHenotype informed progression timeLine of biomarKErs), to identify subtypes and 
atrophy-event sequences within each subtype. Results were compared with SuStaIn (Subtype and Stage Infer
ence), which jointly estimates subtypes and staging, using similar training and validation. Training included Aβ+
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participants (n = 1,195) and Aβ− cognitively unimpaired controls (n = 1,692). We validated model-staging in a 
held-out clinical dataset (n = 6,362) and an independent dataset (n = 762), and assessed clinical significance in 
Aβ+ subsets(n = 1,796 held-out; n = 159 external). Concordance analysis evaluated consistency between 
methods.

In the AD dementia(AD-D) training data, both Snowphlake and SuStaIn identified four subtypes. In the 
validation datasets, staging with both methods correlated with Mini-Mental State Examination(MMSE) scores. 
The Snowphlake subtypes assigned in Aβ+ validation datasets were associated with alterations in specific 
cognitive domains(Cohen’s f: [0.15 − 0.33]). Similarly, the SuStaIn subtypes were also associated specific 
cognitive domains(Cohen’s f: [0.17 − 0.34]). However, we observed low concordance between Snowphlake and 
SuStaIn, with 39.7% of AD-D patients grouped in concordant subtypes by both methods. In conclusion, Snow
phlake and SuStaIn identified four atrophy-based subtypes that linked to distinct symptom profiles. While this 
highlights that the neuro-anatomically defined subtypes also meaningfully associate with different cognitive 
impairments at a group level, the low concordance between methods suggests that future research is needed to 
better understand the biological and methodological factors contributing to the observed variability.

1. Introduction

Alzheimer’s disease (AD) is the leading cause of dementia. 
(Alzheimer’s disease facts and figures, 2023) It is characterised by 
progressive loss of brain volume (atrophy) and cognitive decline with 
early involvement of the medial temporal lobe structures followed by 
atrophy spreading to the frontal, parietal, and posterior cingulate re
gions as the disease progresses. (Nagy et al., 1999; Apostolova and 
Thompson, 2008; Hari et al., 2024) However, across individuals with 
AD, there is substantial variability in severity and pattern of brain at
rophy, (Young et al., 2018; Ferreira et al., 2020; Ten Kate et al., 2018; 
Zhang et al., 2021) as well as in the symptoms that AD patients manifest. 
(Scheltens et al., 2017; Geifman et al., 2018) Understanding the vari
ability in brain atrophy between patients, and how they explain differ
ences in cognitive symptoms, could improve tailored patient care 
management.

One approach to study heterogeneity in atrophy patterns is by data- 
driven analysis of structural magnetic resonance imaging (MRI) that 
quantify in-vivo atrophy patterns in AD patients. Previous studies taking 
this approach, using different techniques, identified either three sub
types (Risacher et al., 2017; Zhang et al., 2016; Chen et al., 2023) or four 
subtypes (Ten Kate et al., 2018; Ferreira et al., 2017) of AD. The most 
frequently identified subtypes include a medial temporal lobe (MTL) 
atrophy subtype and hippocampal-sparing subtype. (Young et al., 2018; 
Ten Kate et al., 2018; Risacher et al., 2017; Zhang et al., 2016; Ferreira 
et al., 2017) Other subtypes that have been identified include subcortical 
atrophy subtype (Young et al., 2018; Zhang et al., 2016), 
parieto-occipital atrophy subtype (Ten Kate et al., 2018), cortical atro
phy subtype (Young et al., 2018; Ten Kate et al., 2018; Zhang et al., 
2016), and minimal atrophy subtype. (Ten Kate et al., 2018; Ferreira 
et al., 2017) Although these findings suggest that atrophy-based sub
types may represent robust biological entities, there remains inconsis
tency in the specific subtypes found, number of subtypes found, and in 
their associations with clinical symptoms. Possibly, this may be 
explained by difference in methodology used for subtyping, but so far 
remains unclear to what extent different subtyping methodologies 
converge on identifying the same subtypes when performed in the same 
patient population.

Apart from distinct patterns of atrophy, studies have identified 
another dimension that contributes to atrophy heterogeneity i.e. 
severity of atrophy (also referred to as atrophy stage). (Young et al., 
2018; Ferreira et al., 2020) Consequently, it remains a challenge to 
reliably identify data-driven subtypes that reflect meaningful pheno
typic differences independent of disease severity, which might further 
explain the inconsistencies in atrophy subtypes observed across studies. 
To overcome this challenge, data-driven disease progression models 
(DPMs), (Young et al., 2024) such as SuStaIn (Young et al., 2018) and 
Disease Course Mapping (Poulet and Durrleman, 2021), have been 
developed to identify subtypes and severity jointly within a single 
framework. However, these methods remain computationally expensive 

and thus use a limited number of volumetric (or thickness) markers. 
Other studies have used regular machine-learning (ML) approaches for 
subtyping by selecting patients within the same clinical stage of AD (Ten 
Kate et al., 2018; Zhang et al., 2016). While the regular ML approaches 
are computationally efficient as compared to DPMs and thus scalable to 
large cohorts and markers with greater spatial resolution, regular ML 
methods do not account for atrophy severity. To address this drawback, 
in this work, we combined a well-validated ML approach for AD sub
typing using non-negative matrix factorization (NMF) (Ten Kate et al., 
2018; Tijms et al., 2024) with a scalable disease progression model 
called discriminative event-based model (DEBM) (Venkatraghavan 
et al., 2019; V Venkatraghavan et al., 2021) for estimating severity. The 
resulting hybrid-method was termed Snowphlake (Staging NeurO
degeneration With PHenotype informed progression timeLine of bio
marKErs) and this was used to study AD heterogeneity and compare our 
results with those obtained using SuStaIn.

In this large-scale multi-centre study including n = 10,011 partici
pants from 10 cohorts across Europe, United States, and Australia, we 
first characterised atrophy heterogeneity in the AD continuum using 
Snowphlake and compared our results with SuStaIn, trained and vali
dated similarly. Second, we studied how the data-driven estimates of 
atrophy heterogeneity for each method were related to the cognitive 
symptoms that patients experience. Finally, we examined the concor
dance between the subtypes assigned by Snowphlake and SuStaIn.

2. Methods

2.1. Study participants

We selected participants with a clinical diagnosis of AD dementia 
(AD-D), mild cognitive impairment (MCI), subjective cognitive decline 
(SCD), or were cognitively normal (CN) when they had a 3D T1w MRI 
scan available, from 10 cohorts across Europe, United States of America, 
and Australia. The included cohorts were: Amsterdam Dementia Cohort 
(ADC) (van der Flier et al., 2014), Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) (Jack et al., 2008), Australian Imaging Biomarker & 
Lifestyle Flagship Study of Ageing (AIBL) (Ellis et al., 2009), National 
Alzheimer’s Coordinating Center (NACC) (Beekly et al., 2007), Open 
Access Series of Imaging Studies (OASIS) (Marcus et al., 2007), Alz
heimer’s Repository Without Borders (ARWiBo) (Frisoni et al., 2009), 
European DTI Study on Dementia (EDSD) (Brueggen et al., 2017), Italian 
Alzheimer’s Disease Neuroimaging Initiative (I-ADNI) (Cavedo et al., 
2014), European Alzheimer’s Disease Neuroimaging Initiative (also 
known as PharmaCOG) (Galluzzi et al., 2016), and the Geneva 
memory-centre cohort (GMC) (Ribaldi et al., 2021). The characteristics 
of each cohort are summarized in Supplementary Table 1. ADNI data 
used in the preparation of this article were obtained from the database 
adni.loni.usc.edu. Further details about ADNI are mentioned in the 
Supplementary methods section S1.1. The institutional review boards of 
all participating institutes approved the protocol for data collection and 
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its subsequent use in retrospective analyses. The clinical diagnosis of 
participants in each cohort was performed by the different study teams 
according to international criteria and have been described in detail in 
each of those cohorts. In the present study we grouped the CN and SCD 
participants together as cognitively unimpaired (CU).

2.2. Study data, MRI processing and harmonization

Across cohorts, baseline 3D T1w MRI scans were acquired with 44 
different MRI scanners, with varied image acquisition protocols. Sup
plementary Table 2 gives an overview of the scanners included in this 
study. Cortical reconstruction and volumetric segmentation were per
formed with a Docker container of Freesurfer v7.1.1 in 3 different cen
tres (ADC and NACC in Amsterdam, ADNI and AIBL in Brisbane, and the 
rest in Brescia) to extract volumes of 68 cortical regions as per the 
Desikan-Killiany atlas and 14 subcortical brain regions. Automated 
quality control for Freesurfer segmentations utilized the Euler number, 
(Monereo-Sanchez et al., 2021; Archetti et al., 2024) with outlier 
thresholds determined independently for each scanner. These thresholds 
were based on the interquartile range (IQR) specific to each scanner, 
where outliers were identified as 1.5×IQR below the first quartile. 
(Monereo-Sanchez et al., 2021; Archetti et al., 2024) Furthermore, 
subjects with total intracranial volume (TIV) greater than the threshold 
of 1.5×IQR above the third quartile computed independently for males 
and females, were identified as outliers. These outliers were excluded 
from further analysis in this study. The number of participants excluded 
based on these two criteria were n = 1, 198 (10.7%), leaving a total 
number of scans of n = 10,011 participants included for subsequent 
analyses.

We harmonized cortical and subcortical volumes by removing 
scanner related batch effects while preserving the effects of age, sex, and 
clinical stage. In our analysis, we used ComBat harmonization (Fortin 
et al., 2018) with empirical Bayes optimization to remove batch-related 
effects, with the largest single-scanner data from the ADNI cohort 
(Siemens TrioTim 3T scanner, n = 257) used as a reference batch. 
Finally, because SuStaIn is a computationally intensive algorithm and 
prior subtyping studies using SuStaIn have used between 12 and 21 
input features (Young et al., 2018; Young et al., 2023), we reduced the 
number of cortical areas by constructing 24 composite regions, 
comprising 17 composite cortical ROIs (details of the mapping to derive 
these composite ROI volume from Freesurfer cortical parcellation are 
tabulated in Supplementary Table 3) and 7 subcortical regions (namely: 
Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and 
Accumbens-area). We corrected for the effects of total intracranial vol
ume and normal aging by regressing out the effects that were estimated 
in the Aβ− CU participants (see the next section for details on deter
mining amyloid status). The harmonized volumes were combined using 
the sum of left and right counterparts. These volumes were converted to 
w-scores (covariate-adjusted z-score) based on the mean and standard 
deviation of Aβ− CU participants in the study.

2.3. Amyloid status

Where information about amyloid markers was available, in
dividuals were labelled as having a normal or abnormal amyloid 
biomarker (Aβ − / Aβ+ for normal/abnormal respectively) based on 
either cerebrospinal fluid (CSF, available in ADC, ADNI, ARWiBo, EDSD, 
PharmaCog, and in NACC after 2015), positron emission tomography 
(PET) images, or pathological examination (NACC). CSF testing and PET 
imaging performed during the baseline visit (within a timeframe of 90 
days of MRI) were considered for this purpose. Positivity in PET images 
was determined by either visual readouts by radiologists (available in 
ADC and GMC), centiloid values (available in ADNI, AIBL, cut-off = 30), 
(Salvado et al., 2019) or a combination of the two (in NACC after 2015). 
The cut-off points for Aβ positivity based on CSF were defined for each 
cohort independently based on Aβ1–42 concentrations. The details of 

cut-off point selection and assays used are in Supplementary Section 
S1.2. Details of the Aβ PET processing pipeline and the tracers used are 
in Supplementary Section S1.3. In ADC, ADNI, and NACC, participants 
were considered Aβ+ if either one of CSF or PET were positive. In 
pre-2015 NACC cohort, due to the absence of either of these biomarkers, 
autopsy-confirmed AD-related neuro-pathologic change (ADNC) based 
on ABC summary score (Hyman et al., 2012) (comprising Aβ plaque 
score, modified Braak stage, modified CERAD score) was used to define 
Aβ positivity in patients, when available. These scores were categorized 
as either non-AD, or graded as low, intermediate, or high ADNC in the 
NACC cohort. In this study, MCI and AD-D participants with low to high 
ADNC were termed Aβ positive. Participants for whom amyloid status 
was unavailable were excluded from training the models, and their in
clusion in the validation experiments is detailed in the study design.

2.4. Cognitive data preparation

Neuropsychological test batteries assessing the cognitive domains of 
episodic memory, attention and executive function, language, and vi
suospatial function were used to compute composite scores for these 
domains. Cognitive tests performed during the baseline visit (within a 
timeframe of 90 days of MRI) were considered for this purpose. Aβ − CU 
participants’ data were used as a reference group for computing these 
composite scores. The methodological details of computing the cogni
tive domain scores in each of our cohorts are included in Supplementary 
material Section S1.4. We computed the domain scores in the cohorts of 
ADC, ADNI, AIBL, NACC, and GMC in our analysis. Cognitive test data in 
the remaining cohorts were not available to us. In the GMC cohort, the 
language domain score was not computed as the cognitive test battery in 
that cohort did not include any associated tests for assessing language. 
Since the different cohorts had different neuropsychological tests to 
assess the patients, we computed the domain scores independently in the 
different cohorts, with the Aβ − CU participants in that cohort serving 
as a reference group to compute z-scores for individual tests. Subse
quently, for each domain, multiple test scores belonging to a specific 
domain were averaged to compute the domain score.

2.5. Study design

We divided our combined cohorts into three different datasets: 
training dataset, held-out clinical validation dataset, and an indepen
dent external dataset. A subset of the clinical validation dataset and the 
external dataset with Aβ+ participants was further selected for a few 
experiments (Aβ+ validation dataset). Fig. 1 gives a graphical overview 
of the study design described here.

The training dataset comprised 40% of the combined Aβ+ partici
pants randomly selected from six cohorts (ADC, ADNI, AIBL, NACC, 
ARWiBO, EDSD) that had Aβ biomarker status of participants available. 
With the aim of creating atrophy-based subtyping models that are 
equally generalizable to AD patients across all ages and to potentially 
remove any age-related bias while excluding participants based on Aβ 
status, we ensured the training set had a uniform age distribution. Hence 
the participants were selected in the training dataset based on weighted 
random sampling without replacement, with weights inversely propor
tional to the age distribution in each clinical stage. Moreover, we also 
included Aβ− CU participants in all the cohorts except GMC to serve as a 
reference group for training the models.

The held-out clinical validation dataset consisted of all the partici
pants not included in the training dataset or the reference group from 
ADC, ADNI, AIBL, NACC, ARWiBO, EDSD, I-ADNI, OASIS, and Phar
maCOG. The GMC cohort was chosen as the independent external 
validation dataset. The difference between the held-out clinical valida
tion dataset and the independent external validation dataset is that for 
the training dataset all the Aβ+ participants from the GMC cohort were 
excluded.

The Aβ+ validation datasets comprised the remaining 60% Aβ+
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Fig. 1. Graphical overview of this study. A) Shows the color coding used in the graphical over to denote participants in different clinical stages of the disease as 
well as their Aβ status. B) Overview of the data partitioning into the training dataset, Aβ+ validation dataset, clinical validation dataset, and external validation 
datasets, including the inclusion criteria for participants in each dataset. C and D) Overview of the steps involved in training the Snowphlake and SuStaIn models and 
their subsequent use in subtype assignment in validation datasets for concordance analysis. The reference group shown here is used in both the methods for creating a 
reference distribution and for w-scoring the imaging biomarkers. Abbreviations: CU: Cognitively unimpaired consisting of both cognitively normal (CN) individuals 
and subjective cognitive decliners (SCD); MCI: mild cognitively impaired; AD-D: individuals with clinical diagnosis of AD Dementia; + denotes Aβ positivity; - 
denotes Aβ negativity.
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participants not included in training from the aforementioned six co
horts (ADC, ADNI, AIBL, NACC, ARWiBO, EDSD) and 100% Aβ+ par
ticipants in the external dataset.

2.6. Characterising atrophy heterogeneity

We used two data-driven approaches for estimating atrophy subtypes 
and severity: Snowphlake and SuStaIn. Snowphlake is a hybrid method 
we introduce using non-negative matrix factorization (NMF) (Ten Kate 
et al., 2018; Tijms et al., 2024) for subtyping followed by DEBM 
(Venkatraghavan et al., 2019; V Venkatraghavan et al., 2021) for esti
mating sequence of atrophy-events within each subtype. Although each 
component of this approach has independently been validated before, 
this is the first study to jointly use them for the purpose of subtype and 
severity estimation. To ensure easy reproducibility of this approach, we 
built a python software toolbox: https://github.com/snowphlake-dpm/s 
nowphlake. SuStaIn is a disease progression modelling technique 
developed previously (Young et al., 2018), with an existing python 
software package. (Aksman et al., 2021) The key conceptual difference 
is that Snowphlake is a two-step subtype-then-stage approach, while 
SuStaIn estimates both subtype and stage jointly. Correspondingly, 
SuStaIn optimizes a non-linear likelihood-based objective function for 
joint estimation (Young et al., 2018), whereas Snowphlake uses a linear 
objective function based on NMF to identify subtypes (Lee and Seung, 
1999) prior to staging.

Snowphlake: The subtyping model was trained on Aβ+ AD-D par
ticipants, using the non-smooth variant of non-negative matrix factor
ization (ns-NMF) (Ten Kate et al., 2018; Pascual-Montano et al., 2006) 
with KL-divergence as a distance metric. Ns-NMF is a stochastic 
dual-clustering approach that is designed to estimate sparse clusters in 
the data. With different random initializations resulting in slightly 
different subtypes, ns-NMF was run nrun times on the training data, 
where nrun = 25 × nAD− D. Here, nAD− D was the number of Aβ+ AD-D 
participants in the training data. The run with the least residual of 
subtyping (resk) was chosen as the optimal factorization solution, where 
k is the number of subtypes. For choosing the optimal number of sub
types (nopt), a random permutation of the training data was subsequently 
subtyped. kopt is chosen such that Δresidual = resk− 1 − resk for the 
training data is higher than that in the random permutations. On sub
typing, each participant is assigned a weight for each subtype. These 
subtype weights were further used to detect outliers within each subtype 
based on minimum covariance determinant algorithm (Rousseeuw and 
Van Driessen, 1999) with Mahalanobis distance metric.

Next, based on the identified optimal factorization, we assigned the 
subtypes of Aβ+ MCI and Aβ+ CU participants in the training dataset. 
We then determined the sequences of atrophy-events for each subtype 
using co-initialized discriminative event-based model (DEBM). 
(Venkatraghavan et al., 2019; Venkatraghavan et al., 2021) Briefly, 
Gaussian mixture modelling (GMM) was used to estimate the probabil
ities for each region to be abnormal for each participant, with Aβ− CU 
group considered as a reference group for GMM. These probabilistic 
abnormality values were used to infer a sequence for each Aβ+ partic
ipant in the training data. These individual estimates were aggregated 
using generalized Mallows model (Venkatraghavan et al., 2019) to es
timate the sequence of atrophy-events for each subtype. Further details 
about training DEBM are in Supplementary Section S1.5.

SuStaIn: We trained SuStaIn on the same training data as used in 
Snowphlake, with the pySuStaIn toolbox (Aksman et al., 2021). We used 
the cross-validation information criteria (CVIC) for selecting optimum 
number of subtypes, with w = − 1 and w = − 2 chosen as event thresh
olds. The methodological details of the SuStaIn approach has been 
described in detail in Young et al. (Young et al., 2018). For the sake of 
completeness, the method has been briefly described in Supplementary 
Section S1.6.

For both Snowphlake and SuStaIn, the trained models were used to 

assign atrophy-based subtype and stage to participant data in the 
different validation datasets.

2.7. Statistical analysis to characterise subtypes and evaluate 
concordance of assigned subtypes

The subtype and staging measures assigned in the Aβ+ validation 
dataset, clinical validation dataset, and external validation dataset by 
both methods, were used further for investigating if these measures were 
associated with symptom profile and severity respectively.

2.7.1. Experiment 1: validating the estimated staging
To evaluate the staging system of Snowphlake and SuStaIn, the 

trained models were used to assign the subtypes and stages of all par
ticipants in the Aβ+ validation dataset, clinical validation dataset, and 
external validation dataset. The assigned stage within each subtype was 
used to compute Pearson’s correlation with Mini-Mental Status Exami
nation (MMSE), as a proxy for disease severity.

2.7.2. Experiment 2: comparison of subtypes on cognitive symptoms
In the absence of ground-truth in data-driven subtyping, we used the 

association of the identified subtypes with the patients’ cognitive- 
symptom profile, to determine their validity. We performed analysis of 
variance (ANOVA) tests in MCI and AD-D patients in Aβ+ validation 
dataset and Aβ+ subset of the external validation dataset to determine if 
subtypes differed in terms of deficits in specific cognitive domains, after 
correction for confounding effects of age, sex, and level of education. 
These statistical tests were performed for both subtyping methods in the 
validation datasets, independently in each of ADC, ADNI, NACC, AIBL, 
and GMC. Lastly, we performed random-effect meta-analysis pooling the 
results of independent cohorts and accounted for multiple testing using 
false discovery rate (FDR) correction.

2.7.3. Experiment 3: concordance between Snowphlake and SuStaIn
The motivation to investigate concordance between the methods was 

to go beyond group-level definitions of subtypes to individuals assigned 
to these subtypes. High concordance between the two methods would 
indicate individual patients in different subtypes have distinct atrophy 
pattern much like their group-level definitions, while low concordance 
would indicate individual atrophy patterns vary substantially even 
within each subtype. To quantify the concordance between the two 
methods, we constructed contingency matrices of participant subtypes 
by Snowphlake and SuStaIn for Aβ+ CU, MCI, and AD-D in the training 
and in the validation dataset. Concordant subtype-pairs are defined 
based on Aβ+ AD-D patients, as the Snowphlake subtype most 
frequently co-occurring with SuStaIn subtypes identified.

Lastly, we estimated the sequence of atrophy-events in the concor
dant subtype-pairs using DEBM, the methodological equivalent of 
Snowphlake with 1-subtype and w-score EBM, the methodological 
equivalent of SuStaIn with 1-subtype.

3. Results

The demographics of participants and their amyloid status are 
summarized in Table 1. Overall, our combined dataset (from 10 cohorts) 
consisted of n = 3,150 Aβ+ participants (nADD = 1, 525; nMCI = 1,
150; nCU = 475), n = 2, 568 Aβ− participants (nADD = 131; nMCI =

706; nCU = 1, 731), and n = 4,293 participants with unknown Aβ 
status (nADD = 1,264; nMCI = 1,360; nCU = 1, 669). This combined 
dataset was divided into a training dataset, held-out validation dataset, 
and an external validation dataset. The training dataset consisted of n =

1, 195 Aβ+ participants (nADD = 596; nMCI = 416; nCU = 183) and n = 1,
692 Aβ− CU reference group participants. The held-out validation 
dataset consisted of n = 6, 362 participants across the clinical spectrum 
(nADD = 2, 187; nMCI = 2,381; nCU = 1, 794) and the external dataset 
consisted of n = 723 patients (nADD = 137; nMCI = 419; nCU = 167) and 
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n = 39 Aβ− CU reference group participants. A subset of participants in 
the validation datasets with Aβ+ status (Aβ+ validation dataset) con
sisted of n = 1,796 participants in the internal cohorts 
(nADD = 894; nMCI = 626; nCU = 276) and n = 159 participants in the 
external cohort.

The age of the n = 1, 525 Aβ+ AD-D patients included in our study 
was 66.8 ± 8.7 years (see Supplementary Figure 1), with ADC predom
inantly being a young-onset AD cohort, while the rest being predomi
nantly late-onset AD cohorts. Supplementary Figure 1 also shows the age 
distribution in the different clinical stages within the Aβ+ patient pop
ulation and in our selected training dataset. 52.2% (5226 /10,011) of 
the included participants were women, while 47.6% (569 /1195) of the 
Aβ+ patients included in the training dataset were women. Further
more, all the imaging markers used in this study except Pallidum volume 
were different between the Aβ+ AD-D patients and Aβ− CU reference 
group with p > 0.05 for Pallidum and p < 10− 5 for all other markers, 
after correcting for multiple testing with FDR.

3.1. Subtypes identified with Snowphlake and SuStaIn

Snowphlake and SuStaIn each identified four subtypes. Supplemen
tary Figure 2 shows the criteria used for selecting the optimum number 
of subtypes for each modelling technique (Δresidual for Snowphlake, 
CVIC for SuStaIn). For SuStaIn, the CVIC value for the 5-subtype solution 
was marginally better than the 4-subtype solution. However, only 3 /1,
195 Aβ+ patients in the training data belonged to 5th subtype. We hence 
chose the 4-subtype solution for our further analysis.

The atrophy subtypes identified by Snowphlake, along with the 
prevalence of each subtype and age distribution among AD-D Aβ+ pa
tients in the training and Aβ+ validation datasets were: Diffuse cortical 
atrophy subtype (Training: 21.6% (n = 129 /596), age = 66.5 ± 7.8; 
Aβ+ Validation: 21.1%(n = 189 /894), age = 67.5 ± 9.4), Parieto- 
temporal atrophy subtype (Training: 19.2% (n = 115 /596), age =

63.1 ± 6.9; Aβ+ Validation: 19.7%(n = 177 /896), age = 60.9 ± 7.9), 
Frontal atrophy subtype (Training: 25.5% (n = 152 /596), age =

68.3 ± 7.9; Aβ+ Validation: 24.8% (n = 222 /894), age = 67.6 ± 8.9), 
and Subcortical atrophy subtype (Training: 24.8% (n= 148 /596), age 

= 70.0 ± 7.2;Aβ+ Validation: 25.2% (n= 225 /894), age = 68.3 ± 8.3)
with prominent temporal lobe atrophy in each of the identified subtypes. 
Apart from these subtypes, an additional outlier group not assigned to 
any subtype was detected (Training: 8.7%; Aβ + Validation : 9.1%). 
Fig. 2 depicts the sequence of atrophy-events estimated for each subtype 
by Snowphlake. Supplementary Figure 3 shows the uncertainty in these 
estimates.

The prevalence, age and MMSE distribution, and the percentage of 
APOE4 carriers in each of these atrophy subtypes across the different 
clinical stages in the pooled validation datasets (held-out validation and 
external validation pooled together) are summarized in Table 2 and 
these results in each cohort independently are reported in Supplemen
tary Table 4. Age of onset of AD-D differed significantly (p < 0.05) be
tween the four identified subtypes in the pooled validation datasets, as 
well as in each of the cohorts independently, except EDSD (p = 0.11), 
with Parieto-temporal atrophy subtype consisting of the youngest AD-D 
patients (61.2 ± 8.1) and subcortical atrophy subtype the oldest 
(68.3 ± 8.6). In ADNI, AIBL, ARWiBo, I-ADNI and OASIS cohorts, MMSE 
of the AD-D patients in different subtypes were not significantly 
different (p > 0.05), indicating the identified subtypes and severity were 
disentangled. In ADC, EDSD and NACC cohorts, MMSE of AD-D patients 
was significantly different (p < 0.05) between subtypes, with the 
Parieto-temporal atrophy subtype having the lowest MMSE among the 
four subtypes. Percentage of APOE4 carriers was significantly different 
(p < 0.05) in the AD-D dementia patients in the pooled validation 
datasets. The percentage of outliers across all Aβ+ validation datasets 
decreased with clinical stage (CU: 25.0%, MCI: 12.4%, AD-D: 9.1%) 
indicating that characteristic atrophy patterns emerge as the disease 
progresses.

Supplementary Figure 4 depicts the atrophy subtypes and sequence 
of atrophy-events estimated by SuStaIn and Supplementary Figure 5 
shows the posterior probability distribution of these sequences using 
Markov chain Monte Carlo (MCMC) sampling, interpreted as the un
certainty in this estimation. The identified subtypes were Typical sub
type (with early hippocampus and temporal lobe atrophy), Limbic 
predominant subtype, Hippocampal sparing subtype, and Subcortical 
subtype. The prevalence of these subtypes and age distribution among 
AD-D participants in the training and Aβ+ validation dataset were: 
Typical (Training: 55.7% (n = 332 /596), age = 66.7 ± 7.8; Aβ+ Vali
dation: 56.0% (n= 501 /894), age = 65.8 ± 9.3) Limbic predominant 
(Training: 24.1% (n = 144 /596), age = 72.2 ± 6.6; Aβ+ Validation: 
24.0%(215 /894), age = 69.8 ± 8.2), Hippocampal sparing (Training: 
14.5% (n= 87 /596), age = 62.8 ± 6.9; Aβ+ Validation: 12.9% (n =

115 /894), age = 60.9 ± 7.0), Subcortical atrophy (Training: 
0.8% (n= 5 /596), age = 68.2 ± 7.6; Aβ+ Validation: 0.5% (n =

5 /894),age = 70.4 ± 9.3). Apart from these subtypes, an outlier group 
(defined as AD-D patients in stage 0) was detected (Training: 4.7 %; Aβ +

Validation : 6.5%) The prevalence, age and MMSE distribution, and the 
percentage of APOE4 carriers in each of these subtypes across the 
different diagnostic categories in the pooled validation datasets have 
been summarized in Table 2 and these results in each cohort indepen
dently are reported in Supplementary Table 5. Age of onset of AD de
mentia and APOE4 carriership percentage differed significantly 
(p < 0.05) between the four subtypes identified by SuStaIn with Hip
pocampal sparing subtype consisting of the youngest AD-D patients 
(61.0 ± 7.1) and Limbic-predominant and Subcortical atrophy subtypes 
the oldest (69.9 ± 8.2 and 70.4 ± 9.3 respectively).

3.2. Experiment 1: atrophy-based model stage correlates with MMSE

Fig. 3 depicts the correlation between the atrophy-based patient 
stage assigned by Snowphlake for the clinical validation dataset and 
external dataset, with MMSE, a clinical screening tool for measuring 
disease severity of the patient. The atrophy-based stage showed signif
icant correlation with MMSE within all four subtypes, with higher at
rophy stage related to worse MMSE scores (R = − 0.51 to − 0.28), 

Table 1 
Participant Demographics. Values indicated in this table are calculated after 
automated quality control.

Cohort Age 
[years]

Sex 
(F/M)

CN and SCD MCI AD-D
Aβ Status: −
/ + / 
unknown

Aβ Status: −
/ + / 
unknown

Aβ Status: −
/ + / 
unknown

ADC 63.9 ±
9.2

1675 / 
1952

687 / 184 / 
456

256 / 328 / 
199

79 / 1053 / 
385

ADNI 72.1 ±
7.0

875 / 
909

378 / 184 / 
113

254 / 397 / 
177

21 / 192 / 
68

AIBL 72.7 ±
6.5

298 / 
224

268 / 91 / 
28

27 / 49 / 7 6 / 43 / 3

ARWiBo 55.1 ±
16.0

482 / 
293

1 / 0 / 593 0 / 14 / 89 4 / 10 / 64

EDSD 70.4 ±
7.3

191 / 
174

0 / 0 / 136 24 / 45 / 43 0 / 1 / 116

I-ADNI 72.1 ±
8.0

105 / 
64

0 / 0 / 7 0 / 0 / 35 0 / 0 / 127

NACC 71.2 ±
10.2

882 / 
688

358 / 0 / 0 39 / 126 / 
463

18 / 191 / 
375

OASIS 71.9 ±
10.8

197 / 
105

0 / 0 / 185 0 / 0 / 90 0 / 0 / 27

PharmaCog 69.0 ±
7.4

78 / 
57

0 / 0 / 0 52 / 83 / 0 0 / 0 / 0

GMC 71.5 ±
10.5

443 / 
319

39 / 16 / 
151

54 / 108 / 
257

3 / 35 / 99

Total 67.6 ±
10.9

5226 / 
4785

1731 / 475 / 
1669

706 / 1150 / 
1360

131 / 1525 / 
1264

Abbreviations: CN: cognitively normal; SCD: subjective cognitive decline; MCI: 
mild cognitive impairment; AD-D: Clinical diagnosis of AD Dementia.
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Fig. 2. Snowphlake modelling in the Aβþ participants in the multi-cohort harmonized training dataset. A) These plots depict the subtypes and sequence of 
atrophy-events for each subtype estimated. Within each subtype, the x-axis corresponds to the stage of the disease. Each column shows the brain in its lateral, medial, 
and subcortical views, with the regions that is expected to be abnormal at this stage for the subtype in shades of red and unaffected regions in white. B) The scale for 
the colour map goes from 0 to 1, the normalized staging scale for Snowphlake, where 0 represents a region becoming abnormal at the earliest stages of the disease 
and 1 represents late stage.
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with p < 0.0001 in the clinical validation dataset and p < 0.05 in the 
external validation dataset. The distribution of atrophy-based stages for 
the different diagnostic groups (of CU, MCI, AD-D) were different (p 
< 0.0001) and are also shown in Fig. 3. Supplementary Figure 6 depicts 
a similar plot for these correlations for the Aβ+ validation dataset and 
the Aβ+ subset of the external dataset. Supplementary Figure 7 shows 
the correlation between the atrophy-based patient stage assigned by 

SuStaIn for the clinical validation dataset and external dataset, with 
MMSE. The atrophy-based stage assigned by SuStaIn showed significant 
correlation with MMSE within all subtypes except in the subcortical 
atrophy subtype (R = − 0.54 to − 0.26) with p < 0.0001 in the 
clinical validation dataset and p < 0.01 in the external validation 
dataset and p > 0.05 for the subcortical atrophy subtype in both vali
dation datasets.

Table 2 
Characteristics of atrophy-based subtypes assigned by the trained Snowphlake and SuStaIn models, pooled across the validation datasets (held-out validation dataset 
and external dataset).

Method: Snowphlake

Diffuse cortical atrophy Parieto-temporal 
atrophy

Frontal atrophy Subcortical atrophy Outliers

Characteristic per diagnostic group Aβ+ All Aβ+ All Aβ+ All Aβ+ All Aβ+ All

Age CU# 71.9 ±
9.2

60.4 ±
15.1

73.6 ±
3.8

62.7 ±
13.8

70.2 ±
10.0

66.0 ±
11.4

69.9 ±
6.0

62.0 ±
14.6

69.6 ± 9.0 61.0 ±
14.2

MCI 71.1 ±
7.9

71.4 ± 8.8 68.8 ±
8.7

69.3 ± 9.4 71.0 ± 6.9 71.0 ± 8.7 71.3 ±
7.5

71.4 ± 8.8 71.3 ± 8.9 69.7 ± 9.6

AD-D
*,#

67.7 ±
9.3

71.1 ± 9.3 61.2 ±
8.1

62.9 ± 8.8 67.6 ± 8.8 70.8 ± 8.9 68.3 ±
8.6

71.4 ± 8.9 66.5 ±
10.2

70.0 ±
10.6

N ( %) CU 90 (30.8) 533 (27.2) 5 (1.7) 49 (2.5) 53 (18.2) 293 (14.9) 73 (25.0) 421 (21.5) 71 (24.3) 665 (33.9)
MCI 228 

(31.1)
781 (27.9) 34 (4.6) 117 (4.2) 130 (17.7) 575 (20.5) 246 

(33.5)
816 (29.1) 96 (13.1) 511 (18.3)

AD-D 202 
(21.7)

520 (22.4) 182 
(19.6)

328 (14.1) 228 (24.5) 655 (28.1) 234 
(25.2)

556 (23.9) 83 (8.9) 265 (11.4)

Sex (nmale/nfemale) CU 46/44 259/274 2/3 25/24 32/21 159/134 41/32 207/214 14/57 198/467
MCI# 111/117 384/397 21/13 75/42 81/49 346/229 134/112 465/351 39/57 187/324
AD-D* 76/126 217/303 88/94 145/183 113/115 298/357 121/113 276/280 28/55 96/169

MMSE CU 28.5 ±
1.5

28.6 ± 1.5 28.4 ±
1.1

28.6 ± 1.2 28.7 ± 1.4 28.7 ± 1.5 28.5 ±
1.4

28.6 ± 1.5 28.8 ± 1.2 28.6 ± 1.6

MCI# 26.7 ±
2.5

26.6 ± 2.7 25.2 ±
4.1

26.4 ± 3.2 26.6 ± 2.2 26.5 ± 2.7 26.3 ±
2.5

26.6 ± 2.6 27.1 ± 2.5 26.8 ± 2.8

AD-D
*,#

21.8 ±
4.5

21.4 ± 4.7 19.1 ±
5.4

18.7 ± 5.7 21.0 ± 4.9 20.8 ± 5.3 22.1 ±
4.2

21.7 ± 4.5 20.3 ± 5.7 20.9 ± 5.4

APOE4 carriers 
(nAPOE/ntotal)

CU 38/69 103/334 3/5 9/34 20/41 56/192 37/65 69/269 27/47 86/302
MCI 125/198 265/594 21/28 43/88 82/120 200/451 131/193 283/598 49/74 122/342
AD-D
*,#

137/185 240/388 103/173 140/275 135/216 256/529 159/217 267/428 54/80 93/194

Method: SuStaIn

Typical Limbic-predominant Hippocampal-sparing Subcortical atrophy Outliers

Characteristic per diagnostic group Aβ+ All Aβ+ All Aβ+ All Aβ+ All Aβ+ All

Age CU# 71.5 ±
8.9

65.4 ±
13.4

67.6 ±
8.8

59.0 ±
16.5

75.8 ±
13.6

62.2 ±
15.8

76.0 68.2 ±
11.1

70.3 ± 8.2 61.0 ±
14.1

MCI# 71.5 ±
7.5

72.1 ± 8.5 71.5 ±
8.2

71.4 ± 8.9 67.7 ± 9.6 68.1 ±
9.7

75.2 ±
4.4

73.3 ±
8.7

70.5 ± 7.5 69.7 ± 9.3

AD-D
*,#

66.0 ±
9.3

69.5 ± 9.7 69.9 ±
8.2

72.2 ± 8.3 61.0 ± 7.1 63.0 ±
8.4

70.4 ±
9.3

71.8 ±
10.0

67.5 ±
10.6

72.3 ±
10.0

N (%) CU 87 (29.8) 504 (25.7) 18 (6.2) 124 (6.3) 6 (2.1) 52 (2.7) 1 (0.3) 5 (0.3) 180 (61.6) 1276 
(65.0)

MCI 368 
(50.1)

1255 
(44.8)

150 
(20.4)

484 (17.3) 27 (3.7) 91 (3.3) 5 (0.7) 26 (0.9) 184 (25.1) 944 (33.7)

AD-D 525 
(56.5)

1292 
(55.6)

221 
(23.8)

542 (23.2) 118 (12.7) 224 (9.6) 5 (0.5) 18 (0.8) 60 (6.5) 248 (10.7)

Sex (nmale/nfemale) CU# 50/37 252/252 13/5 84/40 4/2 27/25 1/0 4/1 67/113 471/805
MCI 207/161 706/549 80/70 274/210 17/10 55/36 4/1 18/8 78/106 404/540
AD-D 242/283 567/725 118/103 281/261 49/69 98/126 3/2 11/7 14/46 75/173

MMSE CU 28.2 ±
1.6

28.5 ± 1.6 28.5 ±
1.4

28.5 ± 1.4 27.5 ± 1.4 28.5 ±
1.3

29.0 29.0 ±
0.7

28.8 ± 1.2 28.7 ± 1.5

MCI* 26.6 ±
2.3

26.5 ± 2.7 26.0 ±
2.4

26.2 ± 2.8 24.3 ± 4.9 26.1 ±
3.6

26.4 ±
1.8

27.0 ±
2.9

26.9 ± 2.6 27.0 ± 2.6

AD-D
*,#

20.8 ±
5.2

20.6 ± 5.2 21.5 ±
4.1

21.3 ± 4.8 19.3 ± 5.6 19.2 ±
5.5

22.0 ±
5.5

21.6 ±
4.4

23.5 ± 3.1 22.8 ± 4.3

APOE4 carriers 
(nAPOE/ntotal)

CU 37/73 101/315 11/16 22/92 1/3 7/31 0/1 0/5 76/134 193/688
MCI 212/310 431/916 78/117 172/360 14/25 28/68 3/5 7/18 102/158 275/711
AD-D
*,#

309/495 516/1003 153/202 256/435 80/111 125/193 3/5 8/14 43/58 91/169

* indicates the corresponding measure is significantly different (p < 0.05) between the different subtypes (excluding the outliers group) in Aβ+ validation dataset, 
using ANOVA test for Age and MMSE characteristics, and χ2 contingency test for Sex and APOE4 characteristics.

# indicates the significant difference (p < 0.05) using similar tests in the clinical validation dataset. Abbreviations: CU: Cognitively unimpaired (Cognitively normal 
or subjective cognitive decline); MCI: Mild cognitive impairment; AD-D: Alzheimer’s disease dementia.
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3.3. Experiment 2: cognitive domain characteristics of the subtypes

Fig. 4 shows the effect sizes (Cohen’s f-statistic) of cognitive domain 
score differences between subtypes identified by Snowphlake and SuS
taIn, for the diagnostic groups of MCI and AD-D. These subtype differ
ences are computed for participants in the Aβ+ validation cohorts of 
ADC, ADNI, NACC, AIBL, and GMC for the cognitive domains of mem
ory, executive function and attention, language, and visuospatial func
tion. For Snowphlake, the mean effect sizes for the effects of subtypes on 
the four cognitive domains were between f = 0.15 to 0.33 in the AD-D 
group, and were between f = 0.15 to 0.24 in the MCI group. For SuS
taIn, the mean effect sizes for the effects of subtypes on the four 
cognitive domains were between f = 0.17 to 0.34 in the AD-D group and 
were between f = 0.08 to 0.20 in the MCI group. There were no sig
nificant differences between the effect sizes of Snowphlake and SuStaIn 
for AD-D patients, when the effect sizes were compared using Fisher’s z- 
transformation before testing for significance. However, a similar com
parison showed Snowphlake was significantly better at detecting dif
ferences in the language domain for MCI patients (FDR-corrected p =
0.016) than SuStaIn’s subtypes. There was significant heterogeneity 
(based on Cochran’s Q statistic) observed between cohorts for both the 
methods, for both the diagnostic groups.

3.4. Experiment 3: concordant subtype-pairs

When comparing how participants were clustered, we observed a 
low concordance between Snowphlake and SuStaIn. Fig. 5 shows the 
contingency matrices between Snowphlake and SuStaIn subtype as
signments in different clinical stages of Aβ+ participants, in the training 
and validation datasets.

Of the n = 501 AD-D individuals assigned to the typical subtype 
(with prominent hippocampal and temporal lobe atrophy) of SuStaIn in 
the Aβ+ validation dataset, n = 183(36.5%) were also assigned to the 
frontal atrophy subtype (with prominent frontal and temporal lobe at
rophy) of Snowphlake, which is referred to as concordant subtype-pair 
#1. Of the n = 215 AD-D individuals assigned to the limbic- 
predominant subtype (with prominent thalamus, hippocampus, and 
amygdala atrophy) of SuStaIn in the Aβ+ validation dataset, n =
127 (59.1%) were also assigned to the subcortical-atrophy subtype of 
Snowphlake, which is referred to as concordant subtype-pair #2. Of the 
n = 115 AD-D individuals assigned to the hippocampal-sparing subtype 
of SuStaIn in the Aβ+ validation dataset, n = 52 (45.2%) were also 
assigned to the parieto-temporal atrophy subtype of Snowphlake, which 
is referred to as concordant subtype-pair #3. The Subcortical atrophy 
subtype of SuStaIn was too small to be compared. The concordant 
subtype-pairs accounted only for 38.6% (n= 230 /596) of Aβ+ AD-D 
participants in the training dataset and 40.5% (n= 362 /894) in the 
Aβ+ validation dataset. Cohort-wise contingency matrix shown in 
Supplementary Figure 8 further added to the evidence that low 
concordance was consistent across cohorts.

Lastly, progression modelling in the three concordant subtype-pairs 
using DEBM and w-score EBM showed that the estimated atrophy- 
event sequences using the two methods were largely similar. The 
normalized Kendall’s Tau (KT) metric measuring the dissimilarity be
tween the sequences estimated by SuStaIn and Snowphlake were: KT =
0.11 for concordant subtype-pair #1, KT = 0.14 for concordant 

subtype-pair #2, and KT = 0.12 for concordant subtype-pair #3. These 

values are within the expected error ranges of each model, 
(Venkatraghavan et al., 2019) indicating that the estimated sequences in 
concordant subtype-pairs using the two methods agree with each other. 
The sequences of atrophy-events estimated using DEBM and z-score 
EBM are shown in Fig. 6.

4. Discussion

In this large-scale multi-cohort study of atrophy-heterogeneity in AD, 
we used a novel methodology, Snowphlake, that couples a previously- 
validated ML approach for disease subtyping (NMF) (Ten Kate et al., 
2018; Tijms et al., 2024) with data-driven disease progression modelling 
(DEBM), to estimate sequences of atrophy-events in four atrophy-based 
subtypes of AD. We compared our results with those obtained using 
SuStaIn and used the trained models to assign subtypes and atrophy 
stage in patient populations not included in training them. The assigned 
subtypes in validation datasets were associated with distinct cognitive 
profiles and the atrophy stage with the subtypes correlated with global 
cognition level of patients. We have made the trained models of both 
SuStaIn and Snowphlake openly available at https://snowphlake-dpm. 
github.io, along with the associated code. The source code for Snow
phlake has also been made available at: https://github.com/snowph 
lake-dpm/snowphlake, while the source code for SuStaIn was previ
ously made available by Aksman et al. (Aksman et al., 2021) A thorough 
comparison of Snowphlake’s subtype assignments with that of SuStaIn’s 
provided evidence for a spectrum of differences in atrophy among AD 
patients, rather than discretised by distinct subtypes.

4.1. The identified atrophy-based subtypes were consistent with literature

Snowphlake identified a parieto-temporal atrophy subtype where the 
AD-D patients were consistently the youngest and had worse visuospa
tial function, attention and executive function consistent with prior 
studies on young-onset AD patients. (Ten Kate et al., 2018; Scheltens 
et al., 2017; van der Flier et al., 2011) This subtype also had a signifi
cantly lower percentage of APOE4 carriers in the ADC cohort, also 
observed in a previous study (van der Flier et al., 2011), as well as in the 
and the ARWiBo cohort. Still, APOE4 carriership did not differ signifi
cantly in other cohorts in our study, which may be because those cohorts 
predominantly consisted of late-onset AD patients. The subcortical at
rophy subtype (also referred to as “mild atrophy” in literature) patients 
had the least affected cognition across all domains when compared to 
the other subtypes. (Ten Kate et al., 2018; Zhang et al., 2016; Ferreira 
et al., 2017) The diffuse cortical atrophy subtype (or cortical atrophy 
subtype) and frontal atrophy subtype have also been identified in pre
vious studies (Chen et al., 2023; Alladi et al., 2007; Sawyer et al., 2017). 
Moreover, the subtypes identified by SuStaIn in this study (typical, 
hippocampal-sparing, limbic-predominant) were aligned with the 
neuropathological subtypes of AD reported in literature (Ferreira et al., 
2020; Murray et al., 2011) and largely aligned with the previous studies 
of atrophy-subtypes using SuStaIn. (Young et al., 2018; Chen et al., 
2023; Baumeister et al., 2024)

4.2. Comparing Snowphlake and SuStaIn subtypes

A novel approach in our study was that we compared two data- 
driven AD subtyping techniques directly on the same patient 

Fig. 3. Experiment 1: Correlation of the estimated stage (measuring atrophy severity) using Snowphlake with MMSE in A) clinical validation cohort B) 
external validation cohort. Figures A) and B) both consists of 4 hex‑plots, one for each subtype assigned by the trained Snowphlake model. The colour of a bin in 
the hex‑plot denotes the relative proportion of the participants. The boxplot on top of each hex‑plot shows the distribution of estimated Snowphlake stage for the 
participants in the different clinical groups. The boxplot at the right of each hex‑plot shows the distribution of MMSE in the different clinical groups. The line 
overlaying on each hex‑plot shows the regression line between MMSE and Snowphlake’s stage. The text on top of each hex‑plot shows the correlation coefficient (R) 
between estimated stage and MMSE. The asterisk (*) next to R denotes the significance level. * corresponds to p < 0.05; ** corresponds to p < 0.01; *** corresponds 
to p < 0.001; **** corresponds to p < 0.0001. Abbreviations: CU: Cognitively unimpaired (Cognitively normal or subjective cognitive decline); MCI: Mild cognitive 
impairment; AD-D: Alzheimer’s disease dementia.
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population, while the comparisons in the previous studies so far have 
been based on the identified atrophy characteristics or patient charac
teristics. (Young et al., 2018; Ten Kate et al., 2018; Zhang et al., 2016) 
The subtypes identified by the two methods in our analysis also showed 
some similarities in patient characteristics, for example, 
parieto-temporal atrophy subtype of Snowphlake and 
hippocampal-sparing subtype of SuStaIn both consisted of significantly 
younger-onset AD-D patients. Nevertheless, our direct comparison 
showed low concordance between the subtype assignments of the two 
methods, highlighting the limitations of indirect comparisons based on 
read-outs.

While comparing average w-score maps of patients within a specific 
SuStaIn subtype, but assigned to different Snowphlake subtype, we saw 
significant differences in atrophy profiles, providing further evidence 
that atrophy patterns might vary substantially between individuals 
within a data-driven subtype. The three concordant subtype-pairs that 
accounted for approximately 40 % of individuals with AD-D were the 

typical subtype with temporal and frontal lobe atrophy, the limbic 
predominant subtype with severe subcortical atrophy, and the hippo
campal sparing subtype with parieto-temporal atrophy. The sequence of 
atrophy-events estimated by the two methods in these concordant 
subtype-pairs agreed with each other, showing that in spite of the 
methodological differences, similar inferences could be made in these 
concordantly subtyped individuals. Although these concordant subtype- 
pairs are in line with previous literature (Ferreira et al., 2020; Zhang 
et al., 2021), future work on synthetic data simulating a spectrum of 
atrophy differences would be crucial for understanding more about 
concordant subtype-pairs. However, the notion that not all patients were 
clustered similarly, suggests that group estimates of atrophy subtypes 
may be driven by a particular subset of patients, and may not capture 
heterogeneity of all patients. Future studies should further investigate 
more continuous measures of subtyping that may be able to better 
capture such nuance and heterogeneity.

The differences in estimated subtypes by the two methods arise from 

Fig. 4. xperiment 2: Cognitive domain differences between subtypes assigned in the Aβþ validation datasets. Cognitive domain differences are shown for 
subtypes assigned by Snowphlake (left) and SuStaIn (right) in A) MCI patients and B) AD-D patients. Each sub-plot shows the effect size (Cohen’s f-statistic) and its 
confidence internal for a cognitive domain in 5 different cohorts within the Aβ+ validation datasets. The combined effect-size of the random effect (RE) model 
obtained via meta-analysis across the different cohorts, and the corresponding confidence internal is shown within each subplot as well. The p-value corresponding to 
the RE model and the Cochran’s Q statistic measuring heterogeneity across cohorts is shown at the bottom right of each sub-plot. The Q* indicates that the shown 
Cochran’s Q statistic is significant (< 0.0001).

Fig. 5. Experiment 3: Concordance of Snowphlake and SuStaIn subtypes. A) shows the contingency matrix of estimated atrophy-based subtypes using 
Snowphlake and SuStaIn for participants in the training dataset, in different clinical stages of the disease. B) shows a similar contingency matrices for participants in 
the Aβ+ validation dataset, in different clinical stages of the disease. The squares marked in red in the contingency matrix for AD-D patients correspond to the 
frequently co-occurring subtypes between SuStaIn and Snowphlake, also referred to as concordant subtypes. Abbreviations: CU: Cognitively unimpaired (Cognitively 
normal or subjective cognitive decline); MCI: Mild cognitive impairment; AD-D: Alzheimer’s disease dementia.
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the differences in the objective functions being optimized by the 
methods. While SuStaIn optimizes a non-linear objective function to 
jointly estimate subtypes and atrophy-stage, Snowphlake uses linear 
objective function in NMF to identify subtypes. Each of them have been 
shown before to identify true subtypes in the presence of distinct sub
types. (Young et al., 2018; Lee and Seung, 1999) In the absence of 
ground-truth in data-driven AD subtyping, the ability of the identified 
subtypes to associate with distinct cognitive profiles determines their 
validity. In our current study, atrophy-based subtypes identified by both 
Snowphlake and SuStain resulted in cognitive profile differences. 
However, we observed low concordance between the atrophy-subtype 
assignments of the two methods which can potentially be explained by 
a spectrum of atrophy differences between individuals with AD. This is 
supported by the results of our concordance analysis in Fig. 5, which 
shows that individuals grouped together in one method’s subtype are 
often assigned to different subtypes by the other method, suggesting 
overlapping and continuous variation rather than distinct categories. 
This possibility has also been raised by other studies (Ten Kate et al., 
2018; Groot et al., 2020), which highlighted the graded nature of at
rophy in AD suggesting a spectrum.

This spectrum could either consist of distinct prototypical subtypes 
coupled with a lot of variations in a large number of AD patients, or it 
could be a continuum of atrophy-variations with the Snowphlake and 
SuStaIn identifying different variations depending on the objective 
function used for their optimization. While the non-linear objective 
function of SuStaIn identifies non-uniform distribution of the identified 
subtypes, Snowphlake’s linear objective function identifies four sub
types that were roughly uniformly distributed.

4.3. Differences in cognitive domain profiles

The subtypes identified by Snowphlake and SuStaIn each showed 
significant differences in cognitive domain scores in both Aβ+ MCI and 
AD-D patients. While the effect sizes were comparable for Snowphlake 
and SuStaIn for AD-D patients, Snowphlake showed marginally stronger 
effect sizes for MCI patients, potentially indicating that Snowphlake’s 
subtypes are more sensitive at associating with different symptom pro
files at the prodromal stage of the disease. While some of the differences 
between subtypes (by either method) assigned were consistent across 
the multiple cohorts in our study, we also observed significant hetero
geneity in associations across cohorts. These differences could poten
tially indicate genuine cohort-wise differences in how atrophy causes 
symptoms or could be due to using different cognitive tests to compute 
cognitive domain scores in different cohorts. Future work on studying 
these associations could focus on working with harmonized cognitive 
data across multiple cohorts. (Gavett et al., 2023; Boccardi et al., 2022) 
Notwithstanding these inconsistencies, the significant differences in 
cognitive domain profiles between subtypes indicate that data-driven 
subtyping models have the potential to identify personalized 
end-points in future interventions to boost statistical power. (Evans 
et al., 2018; Doherty et al., 2023)

4.4. Methodological considerations and limitations

A potential limitation of our approach is that while our algorithms 
allow estimation of sequences of atrophy events, these remain inferences 
based on cross-sectional data. While there have been prior studies that 

validated these inferences on longitudinal datasets (Wijeratne et al., 
2023; Venkatraghavan and Vinke et al., 2021), future studies could 
focus on a similar large-scale validation on multi-cohort longitudinal 
datasets to confirm if these subtypes remain consistent in preclinical and 
prodromal AD patients as the disease develops. Another limitation of the 
study is that the cohorts used came from the countries of the European 
Union, United States, and Australia. It would be essential to also validate 
the subtyping models in AD patients from diverse ethnicity and 
under-represented regions. Further independent validation of 
low-concordance between subtyping methods would also be valuable to 
assess the robustness of these findings across diverse cohorts.

One of the strengths of our study is that we have made the trained 
models and source code openly available and validated the subtype 
assignments in external datasets. Future or ongoing studies such as the 
AD sequence project (Leung et al., 2024), can hence use these trained 
models to identify proteomic profiles, genetic and lifestyle factors 
driving these subtypes in large external cohorts. Another important 
feature of this study is that our combined multi-cohort data had many 
patients with young-onset AD-D. This could potentially be a strength of 
our study since young-onset AD-D patients have less comorbidity or it 
could be a limitation with the identified subtypes being an 
over-representation of young-onset AD-D patients. Lastly, by decoupling 
atrophy-based subtyping from disease progression modelling in the 
Snowphlake framework, we pave the way for the inclusion of 
high-dimensional imaging features (such as voxel-based measures) in 
data-driven subtyping and staging analysis.

5. Conclusion

In conclusion, in this large-scale multi-centre study, we identified 
four atrophy-based subtypes using Snowphlake and SuStaIn. Subtype 
assignments in independent validation datasets were associated with 
different cognitive symptoms, and estimated atrophy-severity measures 
were associated with global cognition. The low concordance of subtypes 
between the two methods indicates that atrophy differences between 
individuals may be a spectrum rather than strictly delineated subtypes. 
Based on our findings, future research should prioritize developing 
novel approaches to capture and analyse this spectrum of heterogeneity 
in atrophy patterns to help us further understand the biological-basis for 
the observed variability in atrophy patterns between individuals.

Data and code availability

The ADNI data used is this study were obtained from the ADNI 
database (adni.loni.usc.edu). The ADC data used in this study are 
available from the corresponding author, upon reasonable request. The 
AIBL imaging data used in this study were obtained from the AIBL LONI 
database (https://ida.loni.usc.edu/login.jsp?project=AIBL), while 
cognitive and genetic data can be requested from the AIBL management 
team, upon reasonable request by submitting an Expression of Interest 
(EOI) form available on the AIBL website (https://aibl.org.au/collabora 
tion/). The NACC data used in this study were obtained from htt 
ps://naccdata.org/. The OASIS data used in this study were obtained 
from https://sites.wustl.edu/oasisbrains/ website. The data of the other 
cohorts used in this study can be requested from the neuGRID (https 
://www.neugrid2.eu/) and GAAIN (https://www.gaain.org) platforms 
after registration.

Fig. 6. Experiment 3: Snowphlake and SuStaIn modelling of the Aβþ participants in the three identified concordant subtypes. A) For each concordant 
subtype, the top row depicts the sequence of atrophy-events obtained using DEBM, the methodological equivalent of Snowphlake with 1-subtype. The bottom row 
depicts the sequence of atrophy-events obtained using w-score EBM the methodological equivalent of SuStaIn with 1-subtype. Within each subtype, the x-axis 
corresponds to the stage of the disease. Each column shows the brain in its lateral, medial, and subcortical views, with the regions that is expected to be abnormal at 
this stage. B) shows the scale of the colour map used for DEBM plots goes from 0 to 1, where 0 represents a region becoming abnormal at the earliest stages of the 
disease and 1 represents late stage. C) shows the scale of the colour map used for w-score EBM plots, in which regions that are expected to be mildly affected (w = −

1) are shown in shades of blue, and severely affected (w = − 2) in shades of red, and unaffected regions in white. The scale for the color map goes from 1 to 48, 
where 1 represents a region getting affected at the earliest stages of the disease and 48 represents late stage.
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The source code for Snowphlake has also been made available at: 
https://github.com/snowphlake-dpm/snowphlake, while the source 
code for SuStaIn was previously made available by Aksman et al.
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