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ARTICLE INFO ABSTRACT

Keywords: Previous studies identified atrophy-based Alzheimer’s disease(AD) subtypes linked to distinct clinical symptoms,
Alzheimer’s disease but their consistency across subtyping approaches remains unclear. This large-scale study evaluates subtype
Heterogeneity concordance using two data-driven approaches. In this work, we analyzed data from n = 10,011 patients across
;i?gg;ien 10 AD cohorts spanning Europe, the US, and Australia, extracting regional volumes using Freesurfer. To char-
MRI acterize atrophy heterogeneity in the AD continuum, we developed a two-step approach, Snowphlake (Staging

NeurOdegeneration With PHenotype informed progression timeLine of biomarKErs), to identify subtypes and
atrophy-event sequences within each subtype. Results were compared with SuStaln (Subtype and Stage Infer-
ence), which jointly estimates subtypes and staging, using similar training and validation. Training included Ap+
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participants (n = 1,195) and Ap— cognitively unimpaired controls (n = 1,692). We validated model-staging in a
held-out clinical dataset (n = 6,362) and an independent dataset (n = 762), and assessed clinical significance in
AP+ subsets(n = 1,796 held-out; n =159 external). Concordance analysis evaluated consistency between

methods.

In the AD dementia(AD-D) training data, both Snowphlake and SuStaln identified four subtypes. In the
validation datasets, staging with both methods correlated with Mini-Mental State Examination(MMSE) scores.
The Snowphlake subtypes assigned in Af+ validation datasets were associated with alterations in specific
cognitive domains(Cohen’s f: [0.15 — 0.33]). Similarly, the SuStaln subtypes were also associated specific
cognitive domains(Cohen’s f: [0.17 — 0.34]). However, we observed low concordance between Snowphlake and
SuStaln, with 39.7% of AD-D patients grouped in concordant subtypes by both methods. In conclusion, Snow-
phlake and SuStaln identified four atrophy-based subtypes that linked to distinct symptom profiles. While this
highlights that the neuro-anatomically defined subtypes also meaningfully associate with different cognitive
impairments at a group level, the low concordance between methods suggests that future research is needed to
better understand the biological and methodological factors contributing to the observed variability.

1. Introduction

Alzheimer’s disease (AD) is the leading cause of dementia.
(Alzheimer’s disease facts and figures, 2023) It is characterised by
progressive loss of brain volume (atrophy) and cognitive decline with
early involvement of the medial temporal lobe structures followed by
atrophy spreading to the frontal, parietal, and posterior cingulate re-
gions as the disease progresses. (Nagy et al., 1999; Apostolova and
Thompson, 2008; Hari et al., 2024) However, across individuals with
AD, there is substantial variability in severity and pattern of brain at-
rophy, (Young et al., 2018; Ferreira et al., 2020; Ten Kate et al., 2018;
Zhang et al., 2021) as well as in the symptoms that AD patients manifest.
(Scheltens et al., 2017; Geifman et al., 2018) Understanding the vari-
ability in brain atrophy between patients, and how they explain differ-
ences in cognitive symptoms, could improve tailored patient care
management.

One approach to study heterogeneity in atrophy patterns is by data-
driven analysis of structural magnetic resonance imaging (MRI) that
quantify in-vivo atrophy patterns in AD patients. Previous studies taking
this approach, using different techniques, identified either three sub-
types (Risacher et al., 2017; Zhang et al., 2016; Chen et al., 2023) or four
subtypes (Ten Kate et al., 2018; Ferreira et al., 2017) of AD. The most
frequently identified subtypes include a medial temporal lobe (MTL)
atrophy subtype and hippocampal-sparing subtype. (Young et al., 2018;
Ten Kate et al., 2018; Risacher et al., 2017; Zhang et al., 2016; Ferreira
et al., 2017) Other subtypes that have been identified include subcortical
atrophy subtype (Young et al, 2018; Zhang et al, 2016),
parieto-occipital atrophy subtype (Ten Kate et al., 2018), cortical atro-
phy subtype (Young et al., 2018; Ten Kate et al., 2018; Zhang et al.,
2016), and minimal atrophy subtype. (Ten Kate et al., 2018; Ferreira
et al., 2017) Although these findings suggest that atrophy-based sub-
types may represent robust biological entities, there remains inconsis-
tency in the specific subtypes found, number of subtypes found, and in
their associations with clinical symptoms. Possibly, this may be
explained by difference in methodology used for subtyping, but so far
remains unclear to what extent different subtyping methodologies
converge on identifying the same subtypes when performed in the same
patient population.

Apart from distinct patterns of atrophy, studies have identified
another dimension that contributes to atrophy heterogeneity i.e.
severity of atrophy (also referred to as atrophy stage). (Young et al.,
2018; Ferreira et al., 2020) Consequently, it remains a challenge to
reliably identify data-driven subtypes that reflect meaningful pheno-
typic differences independent of disease severity, which might further
explain the inconsistencies in atrophy subtypes observed across studies.
To overcome this challenge, data-driven disease progression models
(DPMs), (Young et al., 2024) such as SuStaln (Young et al., 2018) and
Disease Course Mapping (Poulet and Durrleman, 2021), have been
developed to identify subtypes and severity jointly within a single
framework. However, these methods remain computationally expensive

and thus use a limited number of volumetric (or thickness) markers.
Other studies have used regular machine-learning (ML) approaches for
subtyping by selecting patients within the same clinical stage of AD (Ten
Kate et al., 2018; Zhang et al., 2016). While the regular ML approaches
are computationally efficient as compared to DPMs and thus scalable to
large cohorts and markers with greater spatial resolution, regular ML
methods do not account for atrophy severity. To address this drawback,
in this work, we combined a well-validated ML approach for AD sub-
typing using non-negative matrix factorization (NMF) (Ten Kate et al.,
2018; Tijms et al., 2024) with a scalable disease progression model
called discriminative event-based model (DEBM) (Venkatraghavan
etal., 2019; V Venkatraghavan et al., 2021) for estimating severity. The
resulting hybrid-method was termed Snowphlake (Staging NeurO-
degeneration With PHenotype informed progression timeLine of bio-
marKErs) and this was used to study AD heterogeneity and compare our
results with those obtained using SuStaln.

In this large-scale multi-centre study including n = 10,011 partici-
pants from 10 cohorts across Europe, United States, and Australia, we
first characterised atrophy heterogeneity in the AD continuum using
Snowphlake and compared our results with SuStaln, trained and vali-
dated similarly. Second, we studied how the data-driven estimates of
atrophy heterogeneity for each method were related to the cognitive
symptoms that patients experience. Finally, we examined the concor-
dance between the subtypes assigned by Snowphlake and SuStaln.

2. Methods
2.1. Study participants

We selected participants with a clinical diagnosis of AD dementia
(AD-D), mild cognitive impairment (MCI), subjective cognitive decline
(SCD), or were cognitively normal (CN) when they had a 3D T1lw MRI
scan available, from 10 cohorts across Europe, United States of America,
and Australia. The included cohorts were: Amsterdam Dementia Cohort
(ADC) (van der Flier et al., 2014), Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (Jack et al., 2008), Australian Imaging Biomarker &
Lifestyle Flagship Study of Ageing (AIBL) (Ellis et al., 2009), National
Alzheimer’s Coordinating Center (NACC) (Beekly et al., 2007), Open
Access Series of Imaging Studies (OASIS) (Marcus et al., 2007), Alz-
heimer’s Repository Without Borders (ARWiBo) (Frisoni et al., 2009),
European DTI Study on Dementia (EDSD) (Brueggen et al., 2017), Italian
Alzheimer’s Disease Neuroimaging Initiative (I-ADNI) (Cavedo et al.,
2014), European Alzheimer’s Disease Neuroimaging Initiative (also
known as PharmaCOG) (Galluzzi et al., 2016), and the Geneva
memory-centre cohort (GMC) (Ribaldi et al., 2021). The characteristics
of each cohort are summarized in Supplementary Table 1. ADNI data
used in the preparation of this article were obtained from the database
adni.loni.usc.edu. Further details about ADNI are mentioned in the
Supplementary methods section S1.1. The institutional review boards of
all participating institutes approved the protocol for data collection and
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its subsequent use in retrospective analyses. The clinical diagnosis of
participants in each cohort was performed by the different study teams
according to international criteria and have been described in detail in
each of those cohorts. In the present study we grouped the CN and SCD
participants together as cognitively unimpaired (CU).

2.2. Study data, MRI processing and harmonization

Across cohorts, baseline 3D T1w MRI scans were acquired with 44
different MRI scanners, with varied image acquisition protocols. Sup-
plementary Table 2 gives an overview of the scanners included in this
study. Cortical reconstruction and volumetric segmentation were per-
formed with a Docker container of Freesurfer v7.1.1 in 3 different cen-
tres (ADC and NACC in Amsterdam, ADNI and AIBL in Brisbane, and the
rest in Brescia) to extract volumes of 68 cortical regions as per the
Desikan-Killiany atlas and 14 subcortical brain regions. Automated
quality control for Freesurfer segmentations utilized the Euler number,
(Monereo-Sanchez et al., 2021; Archetti et al., 2024) with outlier
thresholds determined independently for each scanner. These thresholds
were based on the interquartile range (IQR) specific to each scanner,
where outliers were identified as 1.5xIQR below the first quartile.
(Monereo-Sanchez et al., 2021; Archetti et al., 2024) Furthermore,
subjects with total intracranial volume (TIV) greater than the threshold
of 1.5xIQR above the third quartile computed independently for males
and females, were identified as outliers. These outliers were excluded
from further analysis in this study. The number of participants excluded
based on these two criteria were n = 1,198 (10.7%), leaving a total
number of scans of n =10,011 participants included for subsequent
analyses.

We harmonized cortical and subcortical volumes by removing
scanner related batch effects while preserving the effects of age, sex, and
clinical stage. In our analysis, we used ComBat harmonization (Fortin
et al., 2018) with empirical Bayes optimization to remove batch-related
effects, with the largest single-scanner data from the ADNI cohort
(Siemens TrioTim 3T scanner, n = 257) used as a reference batch.
Finally, because SuStaln is a computationally intensive algorithm and
prior subtyping studies using SuStaln have used between 12 and 21
input features (Young et al., 2018; Young et al., 2023), we reduced the
number of cortical areas by constructing 24 composite regions,
comprising 17 composite cortical ROIs (details of the mapping to derive
these composite ROI volume from Freesurfer cortical parcellation are
tabulated in Supplementary Table 3) and 7 subcortical regions (namely:
Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and
Accumbens-area). We corrected for the effects of total intracranial vol-
ume and normal aging by regressing out the effects that were estimated
in the Ap— CU participants (see the next section for details on deter-
mining amyloid status). The harmonized volumes were combined using
the sum of left and right counterparts. These volumes were converted to
w-scores (covariate-adjusted z-score) based on the mean and standard
deviation of AB— CU participants in the study.

2.3. Amyloid status

Where information about amyloid markers was available, in-
dividuals were labelled as having a normal or abnormal amyloid
biomarker (Ap— / Ap+ for normal/abnormal respectively) based on
either cerebrospinal fluid (CSF, available in ADC, ADNI, ARWiBo, EDSD,
PharmaCog, and in NACC after 2015), positron emission tomography
(PET) images, or pathological examination (NACC). CSF testing and PET
imaging performed during the baseline visit (within a timeframe of 90
days of MRI) were considered for this purpose. Positivity in PET images
was determined by either visual readouts by radiologists (available in
ADC and GMQ), centiloid values (available in ADNI, AIBL, cut-off = 30),
(Salvado et al., 2019) or a combination of the two (in NACC after 2015).
The cut-off points for Ap positivity based on CSF were defined for each
cohort independently based on Af; 42 concentrations. The details of
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cut-off point selection and assays used are in Supplementary Section
S1.2. Details of the AB PET processing pipeline and the tracers used are
in Supplementary Section S1.3. In ADC, ADNI, and NACC, participants
were considered AP+ if either one of CSF or PET were positive. In
pre-2015 NACC cohort, due to the absence of either of these biomarkers,
autopsy-confirmed AD-related neuro-pathologic change (ADNC) based
on ABC summary score (Hyman et al., 2012) (comprising Ap plaque
score, modified Braak stage, modified CERAD score) was used to define
AP positivity in patients, when available. These scores were categorized
as either non-AD, or graded as low, intermediate, or high ADNC in the
NACC cohort. In this study, MCI and AD-D participants with low to high
ADNC were termed Af positive. Participants for whom amyloid status
was unavailable were excluded from training the models, and their in-
clusion in the validation experiments is detailed in the study design.

2.4. Cognitive data preparation

Neuropsychological test batteries assessing the cognitive domains of
episodic memory, attention and executive function, language, and vi-
suospatial function were used to compute composite scores for these
domains. Cognitive tests performed during the baseline visit (within a
timeframe of 90 days of MRI) were considered for this purpose. Ap — CU
participants’ data were used as a reference group for computing these
composite scores. The methodological details of computing the cogni-
tive domain scores in each of our cohorts are included in Supplementary
material Section S1.4. We computed the domain scores in the cohorts of
ADC, ADNI, AIBL, NACC, and GMC in our analysis. Cognitive test data in
the remaining cohorts were not available to us. In the GMC cohort, the
language domain score was not computed as the cognitive test battery in
that cohort did not include any associated tests for assessing language.
Since the different cohorts had different neuropsychological tests to
assess the patients, we computed the domain scores independently in the
different cohorts, with the AR — CU participants in that cohort serving
as a reference group to compute z-scores for individual tests. Subse-
quently, for each domain, multiple test scores belonging to a specific
domain were averaged to compute the domain score.

2.5. Study design

We divided our combined cohorts into three different datasets:
training dataset, held-out clinical validation dataset, and an indepen-
dent external dataset. A subset of the clinical validation dataset and the
external dataset with AB+ participants was further selected for a few
experiments (AB+ validation dataset). Fig. 1 gives a graphical overview
of the study design described here.

The training dataset comprised 40% of the combined AP+ partici-
pants randomly selected from six cohorts (ADC, ADNI, AIBL, NACC,
ARWIiBO, EDSD) that had Af biomarker status of participants available.
With the aim of creating atrophy-based subtyping models that are
equally generalizable to AD patients across all ages and to potentially
remove any age-related bias while excluding participants based on Ap
status, we ensured the training set had a uniform age distribution. Hence
the participants were selected in the training dataset based on weighted
random sampling without replacement, with weights inversely propor-
tional to the age distribution in each clinical stage. Moreover, we also
included Ap— CU participants in all the cohorts except GMC to serve as a
reference group for training the models.

The held-out clinical validation dataset consisted of all the partici-
pants not included in the training dataset or the reference group from
ADC, ADNI, AIBL, NACC, ARWiBO, EDSD, I-ADNI, OASIS, and Phar-
maCOG. The GMC cohort was chosen as the independent external
validation dataset. The difference between the held-out clinical valida-
tion dataset and the independent external validation dataset is that for
the training dataset all the A+ participants from the GMC cohort were
excluded.

The A+ validation datasets comprised the remaining 60% Ap+
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Fig. 1. Graphical overview of this study. A) Shows the color coding used in the graphical over to denote participants in different clinical stages of the disease as
well as their Af status. B) Overview of the data partitioning into the training dataset, Ap+ validation dataset, clinical validation dataset, and external validation
datasets, including the inclusion criteria for participants in each dataset. C and D) Overview of the steps involved in training the Snowphlake and SuStaln models and
their subsequent use in subtype assignment in validation datasets for concordance analysis. The reference group shown here is used in both the methods for creating a
reference distribution and for w-scoring the imaging biomarkers. Abbreviations: CU: Cognitively unimpaired consisting of both cognitively normal (CN) individuals
and subjective cognitive decliners (SCD); MCI: mild cognitively impaired; AD-D: individuals with clinical diagnosis of AD Dementia; + denotes AP positivity; -

denotes AP negativity.
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participants not included in training from the aforementioned six co-
horts (ADC, ADNI, AIBL, NACC, ARWiBO, EDSD) and 100% AB-+ par-
ticipants in the external dataset.

2.6. Characterising atrophy heterogeneity

We used two data-driven approaches for estimating atrophy subtypes
and severity: Snowphlake and SuStaln. Snowphlake is a hybrid method
we introduce using non-negative matrix factorization (NMF) (Ten Kate
et al.,, 2018; Tijms et al., 2024) for subtyping followed by DEBM
(Venkatraghavan et al., 2019; V Venkatraghavan et al., 2021) for esti-
mating sequence of atrophy-events within each subtype. Although each
component of this approach has independently been validated before,
this is the first study to jointly use them for the purpose of subtype and
severity estimation. To ensure easy reproducibility of this approach, we
built a python software toolbox: https://github.com/snowphlake-dpm/s
nowphlake. SuStaln is a disease progression modelling technique
developed previously (Young et al., 2018), with an existing python
software package. (Aksman et al., 2021) The key conceptual difference
is that Snowphlake is a two-step subtype-then-stage approach, while
SuStaln estimates both subtype and stage jointly. Correspondingly,
SuStaln optimizes a non-linear likelihood-based objective function for
joint estimation (Young et al., 2018), whereas Snowphlake uses a linear
objective function based on NMF to identify subtypes (Lee and Seung,
1999) prior to staging.

Snowphlake: The subtyping model was trained on Ap+ AD-D par-
ticipants, using the non-smooth variant of non-negative matrix factor-
ization (ns-NMF) (Ten Kate et al., 2018; Pascual-Montano et al., 2006)
with KL-divergence as a distance metric. Ns-NMF is a stochastic
dual-clustering approach that is designed to estimate sparse clusters in
the data. With different random initializations resulting in slightly
different subtypes, ns-NMF was run n,, times on the training data,
where n,, = 25 X nap_p. Here, nap_p was the number of A+ AD-D
participants in the training data. The run with the least residual of
subtyping (resi) was chosen as the optimal factorization solution, where
k is the number of subtypes. For choosing the optimal number of sub-
types (ngp:), a random permutation of the training data was subsequently
subtyped. ko is chosen such that Aresidual = resi_, —res; for the
training data is higher than that in the random permutations. On sub-
typing, each participant is assigned a weight for each subtype. These
subtype weights were further used to detect outliers within each subtype
based on minimum covariance determinant algorithm (Rousseeuw and
Van Driessen, 1999) with Mahalanobis distance metric.

Next, based on the identified optimal factorization, we assigned the
subtypes of A+ MCI and Ap+ CU participants in the training dataset.
We then determined the sequences of atrophy-events for each subtype
using co-initialized discriminative event-based model (DEBM).
(Venkatraghavan et al., 2019; Venkatraghavan et al., 2021) Briefly,
Gaussian mixture modelling (GMM) was used to estimate the probabil-
ities for each region to be abnormal for each participant, with AB— CU
group considered as a reference group for GMM. These probabilistic
abnormality values were used to infer a sequence for each Ap+ partic-
ipant in the training data. These individual estimates were aggregated
using generalized Mallows model (Venkatraghavan et al., 2019) to es-
timate the sequence of atrophy-events for each subtype. Further details
about training DEBM are in Supplementary Section S1.5.

SuStaln: We trained SuStaln on the same training data as used in
Snowphlake, with the pySuStaln toolbox (Aksman et al., 2021). We used
the cross-validation information criteria (CVIC) for selecting optimum
number of subtypes, with w = —1 and w = —2 chosen as event thresh-
olds. The methodological details of the SuStaln approach has been
described in detail in Young et al. (Young et al., 2018). For the sake of
completeness, the method has been briefly described in Supplementary
Section S1.6.

For both Snowphlake and SuStaln, the trained models were used to
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assign atrophy-based subtype and stage to participant data in the
different validation datasets.

2.7. Statistical analysis to characterise subtypes and evaluate
concordance of assigned subtypes

The subtype and staging measures assigned in the Ap+ validation
dataset, clinical validation dataset, and external validation dataset by
both methods, were used further for investigating if these measures were
associated with symptom profile and severity respectively.

2.7.1. Experiment 1: validating the estimated staging

To evaluate the staging system of Snowphlake and SuStaln, the
trained models were used to assign the subtypes and stages of all par-
ticipants in the Ap+ validation dataset, clinical validation dataset, and
external validation dataset. The assigned stage within each subtype was
used to compute Pearson’s correlation with Mini-Mental Status Exami-
nation (MMSE), as a proxy for disease severity.

2.7.2. Experiment 2: comparison of subtypes on cognitive symptoms

In the absence of ground-truth in data-driven subtyping, we used the
association of the identified subtypes with the patients’ cognitive-
symptom profile, to determine their validity. We performed analysis of
variance (ANOVA) tests in MCI and AD-D patients in AB+ validation
dataset and Ap+ subset of the external validation dataset to determine if
subtypes differed in terms of deficits in specific cognitive domains, after
correction for confounding effects of age, sex, and level of education.
These statistical tests were performed for both subtyping methods in the
validation datasets, independently in each of ADC, ADNI, NACC, AIBL,
and GMC. Lastly, we performed random-effect meta-analysis pooling the
results of independent cohorts and accounted for multiple testing using
false discovery rate (FDR) correction.

2.7.3. Experiment 3: concordance between Snowphlake and SuStaln

The motivation to investigate concordance between the methods was
to go beyond group-level definitions of subtypes to individuals assigned
to these subtypes. High concordance between the two methods would
indicate individual patients in different subtypes have distinct atrophy
pattern much like their group-level definitions, while low concordance
would indicate individual atrophy patterns vary substantially even
within each subtype. To quantify the concordance between the two
methods, we constructed contingency matrices of participant subtypes
by Snowphlake and SuStaln for A+ CU, MCI, and AD-D in the training
and in the validation dataset. Concordant subtype-pairs are defined
based on AP+ AD-D patients, as the Snowphlake subtype most
frequently co-occurring with SuStaln subtypes identified.

Lastly, we estimated the sequence of atrophy-events in the concor-
dant subtype-pairs using DEBM, the methodological equivalent of
Snowphlake with 1-subtype and w-score EBM, the methodological
equivalent of SuStaln with 1-subtype.

3. Results

The demographics of participants and their amyloid status are
summarized in Table 1. Overall, our combined dataset (from 10 cohorts)
consisted of n= 3,150 Ap+ participants (napp = 1, 525; nyer = 1,
150; ncy = 475), n=2,568 AB— participants (napp = 131;nyc =

706; ncy = 1, 731), and n = 4,293 participants with unknown A
status  (napp = 1,264;nycr = 1,360; ncy=1,669). This combined
dataset was divided into a training dataset, held-out validation dataset,
and an external validation dataset. The training dataset consisted of n =
1,195 AB+ participants (napp = 596; nycr = 416;ncy = 183) andn =1,
692 Ap— CU reference group participants. The held-out validation
dataset consisted of n = 6, 362 participants across the clinical spectrum
(napp = 2,187; nycr= 2,381; ncy=1,794) and the external dataset
consisted of n = 723 patients (napp = 137; nycr = 419; ncy = 167) and
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Table 1
Participant Demographics. Values indicated in this table are calculated after
automated quality control.

Cohort Age Sex CN and SCD MCI AD-D

[years] (F/M) Ap Status: — Ap Status: — Ap Status: —
/+/ /+/ /+/
unknown unknown unknown

ADC 63.9 + 1675/ 687 /184 / 256 / 328 / 79 /1053 /
9.2 1952 456 199 385

ADNI 721 + 875/ 378 /184 / 254 /397 / 21/192/
7.0 909 113 177 68

AIBL 72.7 £ 298 / 268 /91 / 27/49/7 6/43/3
6.5 224 28

ARWiBo 55.1 + 482/ 1/0/593 0/14/89 4/10/ 64
16.0 293

EDSD 70.4 £ 191/ 0/0/136 24/45/ 43 0/1/116
7.3 174

I-ADNI 72.1 + 105/ 0/0/7 0/0/35 0/0/127
8.0 64

NACC 71.2 + 882/ 358/0/0 39/126/ 18/191/
10.2 688 463 375

OASIS 719 + 197 / 0/0/185 0/0/90 0/0/27
10.8 105

PharmaCog  69.0 + 78/ 0/0/0 52/83/0 0/0/0
7.4 57

GMC 71.5 £ 443 / 39/16/ 54 /108 / 3/35/99
10.5 319 151 257

Total 67.6 + 5226 / 1731/475/ 706/1150/ 131/1525/
10.9 4785 1669 1360 1264

Abbreviations: CN: cognitively normal; SCD: subjective cognitive decline; MCI:
mild cognitive impairment; AD-D: Clinical diagnosis of AD Dementia.

n = 39 Ap— CU reference group participants. A subset of participants in
the validation datasets with A+ status (AB+ validation dataset) con-
sisted of n=1,796 participants in the internal cohorts
(napp = 894; nyc = 626; ncy = 276) and n =159 participants in the
external cohort.

The age of the n = 1,525 AB+ AD-D patients included in our study
was 66.8 + 8.7 years (see Supplementary Figure 1), with ADC predom-
inantly being a young-onset AD cohort, while the rest being predomi-
nantly late-onset AD cohorts. Supplementary Figure 1 also shows the age
distribution in the different clinical stages within the Ap+ patient pop-
ulation and in our selected training dataset. 52.2% (5226 /10,011) of
the included participants were women, while 47.6% (569 /1195) of the
AP+ patients included in the training dataset were women. Further-
more, all the imaging markers used in this study except Pallidum volume
were different between the Ap+ AD-D patients and Ap— CU reference
group with p > 0.05 for Pallidum and p < 10~ for all other markers,
after correcting for multiple testing with FDR.

3.1. Subtypes identified with Snowphlake and SuStaln

Snowphlake and SuStaln each identified four subtypes. Supplemen-
tary Figure 2 shows the criteria used for selecting the optimum number
of subtypes for each modelling technique (Aresidual for Snowphlake,
CVIC for SuStaln). For SuStaln, the CVIC value for the 5-subtype solution
was marginally better than the 4-subtype solution. However, only 3 /1,
195 AB+ patients in the training data belonged to 5th subtype. We hence
chose the 4-subtype solution for our further analysis.

The atrophy subtypes identified by Snowphlake, along with the
prevalence of each subtype and age distribution among AD-D AB+ pa-
tients in the training and Ap+ validation datasets were: Diffuse cortical
atrophy subtype (Training: 21.6% (n = 129 /596), age = 66.5+7.8;
AB+ Validation: 21.1%(n = 189 /894), age = 67.5+9.4), Parieto-
temporal atrophy subtype (Training: 19.2% (n = 115/596), age =
63.1+6.9; Af+ Validation: 19.7%(n = 177 /896), age = 60.9 + 7.9),
Frontal atrophy subtype (Training: 25.5% (n = 152/596), age =
68.3 +7.9; Ap+ Validation: 24.8% (n = 222 /894), age = 67.6 +8.9),
and Subcortical atrophy subtype (Training: 24.8% (n= 148 /596), age
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=70.0 £ 7.2;Ap+ Validation: 25.2% (n= 225/894),age = 68.3 &+ 8.3)
with prominent temporal lobe atrophy in each of the identified subtypes.
Apart from these subtypes, an additional outlier group not assigned to
any subtype was detected (Training: 8.7%; Ap + Validation : 9.1%).
Fig. 2 depicts the sequence of atrophy-events estimated for each subtype
by Snowphlake. Supplementary Figure 3 shows the uncertainty in these
estimates.

The prevalence, age and MMSE distribution, and the percentage of
APOE4 carriers in each of these atrophy subtypes across the different
clinical stages in the pooled validation datasets (held-out validation and
external validation pooled together) are summarized in Table 2 and
these results in each cohort independently are reported in Supplemen-
tary Table 4. Age of onset of AD-D differed significantly (p < 0.05) be-
tween the four identified subtypes in the pooled validation datasets, as
well as in each of the cohorts independently, except EDSD (p = 0.11),
with Parieto-temporal atrophy subtype consisting of the youngest AD-D
patients (61.2+8.1) and subcortical atrophy subtype the oldest
(68.3 + 8.6). In ADNI, AIBL, ARWiBo, I-ADNI and OASIS cohorts, MMSE
of the AD-D patients in different subtypes were not significantly
different (p > 0.05), indicating the identified subtypes and severity were
disentangled. In ADC, EDSD and NACC cohorts, MMSE of AD-D patients
was significantly different (p < 0.05) between subtypes, with the
Parieto-temporal atrophy subtype having the lowest MMSE among the
four subtypes. Percentage of APOE4 carriers was significantly different
(p < 0.05) in the AD-D dementia patients in the pooled validation
datasets. The percentage of outliers across all Ap+ validation datasets
decreased with clinical stage (CU: 25.0%, MCIL: 12.4%, AD-D: 9.1%)
indicating that characteristic atrophy patterns emerge as the disease
progresses.

Supplementary Figure 4 depicts the atrophy subtypes and sequence
of atrophy-events estimated by SuStaln and Supplementary Figure 5
shows the posterior probability distribution of these sequences using
Markov chain Monte Carlo (MCMC) sampling, interpreted as the un-
certainty in this estimation. The identified subtypes were Typical sub-
type (with early hippocampus and temporal lobe atrophy), Limbic
predominant subtype, Hippocampal sparing subtype, and Subcortical
subtype. The prevalence of these subtypes and age distribution among
AD-D participants in the training and A+ validation dataset were:
Typical (Training: 55.7% (n = 332 /596), age = 66.7 + 7.8; A+ Vali-
dation: 56.0% (n= 501 /894),age = 65.8 +9.3) Limbic predominant
(Training: 24.1% (n = 144 /596), age = 72.2 £ 6.6; Ap+ Validation:
24.0%(215/894), age = 69.8 + 8.2), Hippocampal sparing (Training:
14.5% (n= 87 /596), age = 62.8 +6.9; Af+ Validation: 12.9% (n =
115/894), age = 60.9+7.0), Subcortical atrophy (Training:
0.8% (n=5/596),age = 68.2+7.6; Ap+  Validation: 0.5% (n =
5/894),age = 70.4 £ 9.3). Apart from these subtypes, an outlier group
(defined as AD-D patients in stage 0) was detected (Training: 4.7 %; Af +
Validation : 6.5%) The prevalence, age and MMSE distribution, and the
percentage of APOE4 carriers in each of these subtypes across the
different diagnostic categories in the pooled validation datasets have
been summarized in Table 2 and these results in each cohort indepen-
dently are reported in Supplementary Table 5. Age of onset of AD de-
mentia and APOE4 carriership percentage differed significantly
(p < 0.05) between the four subtypes identified by SuStaln with Hip-
pocampal sparing subtype consisting of the youngest AD-D patients
(61.0 +7.1) and Limbic-predominant and Subcortical atrophy subtypes
the oldest (69.9 + 8.2 and 70.4 + 9.3 respectively).

3.2. Experiment 1: atrophy-based model stage correlates with MMSE

Fig. 3 depicts the correlation between the atrophy-based patient
stage assigned by Snowphlake for the clinical validation dataset and
external dataset, with MMSE, a clinical screening tool for measuring
disease severity of the patient. The atrophy-based stage showed signif-
icant correlation with MMSE within all four subtypes, with higher at-
rophy stage related to worse MMSE scores (R = — 0.51 to — 0.28),
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Fig. 2. Snowphlake modelling in the Af+ participants in the multi-cohort harmonized training dataset. A) These plots depict the subtypes and sequence of
atrophy-events for each subtype estimated. Within each subtype, the x-axis corresponds to the stage of the disease. Each column shows the brain in its lateral, medial,
and subcortical views, with the regions that is expected to be abnormal at this stage for the subtype in shades of red and unaffected regions in white. B) The scale for
the colour map goes from 0 to 1, the normalized staging scale for Snowphlake, where 0 represents a region becoming abnormal at the earliest stages of the disease

and 1 represents late stage.
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Table 2
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Characteristics of atrophy-based subtypes assigned by the trained Snowphlake and SuStaln models, pooled across the validation datasets (held-out validation dataset

and external dataset).

Method: Snowphlake

Diffuse cortical atrophy Parieto-temporal Frontal atrophy Subcortical atrophy Outliers
atrophy
Characteristic per diagnostic group AB+ All AB+ All AB+ All AB+ All AB+ All
Age cu” 719 + 60.4 + 73.6 + 62.7 + 70.2 + 66.0 + 69.9 + 62.0 + 69.6 £9.0 61.0+
9.2 15.1 3.8 13.8 10.0 11.4 6.0 14.6 14.2
MCI 71.1 + 71.4+88 688+ 69.3+94 71.0+69 71.0+87 713+ 71.4+88 71.3+89 69.7+9.6
7.9 8.7 7.5
AD-D 67.7 £ 71.1 £9.3 61.2 + 62.9 + 8.8 67.6 + 8.8 70.8 £ 8.9 68.3 + 71.4+8.9 66.5 + 70.0 £
w7 9.3 8.1 8.6 10.2 10.6
N (%) CU 90(30.8) 533(27.2) 5(1.7) 49 (2.5) 53(18.2) 293 (14.9) 73(25.0)0 421 (21.5) 71(24.3) 665 (33.9)
MCI 228 781 (27.9) 34 (4.6) 117 (4.2) 130 (17.7)  575(20.5) 246 816 (29.1) 96 (13.1) 511 (18.3)
(31.1) (33.5)
AD-D 202 520 (22.4) 182 328 (14.1) 228(24.5) 655(28.1) 234 556 (23.9) 83(8.9) 265 (11.4)
(21.7) (19.6) (25.2)
Sex (Mmate/Mfemate) CU 46/44 259/274 2/3 25/24 32/21 159/134 41/32 207/214 14/57 198/467
MCI” 111/117 384/397 21/13 75/42 81/49 346/229 134/112 465/351 39/57 187/324
AD-D* 76/126 217/303 88/94 145/183 113/115 298/357 121/113 276/280 28/55 96/169
MMSE CU 28.5 + 28.6 £ 1.5 28.4 + 28.6 £1.2 28.7 £ 1.4 28.7 £1.5 285+ 28.6 £1.5 28.8+1.2 28.6 £1.6
1.5 1.1 1.4
MCI” 26.7 + 266 +£27 252+ 264+32 266+22 265+27 263+ 266 £26 27.1+25 26.8+28
2.5 4.1 2.5
AD-D 21.8 + 21.4+47 191+ 18.7+57 21.0+49 208453 221+ 21.7+45 203+57 209+54
4.5 5.4 4.2
APOE4 carriers CU 38/69 103/334 3/5 9/34 20/41 56/192 37/65 69/269 27/47 86/302
(Mapor/Niotar) MCI 125/198 265/594 21/28 43/88 82/120 200/451 131/193 283/598 49/74 122/342
AD-D 137/185 240/388 103/173 140/275 135/216 256/529 159/217 267/428 54/80 93/194
Method: SuStaln
Typical Limbic-predominant Hippocampal-sparing Subcortical atrophy Outliers
Characteristic per diagnostic group A+ All Ap+ All Ap+ All Ap+ All Ap+ All
Age cu” 71.5 + 65.4 + 67.6 + 59.0 + 75.8 & 62.2 + 76.0 68.2 + 70.3+8.2 61.0+
8.9 13.4 8.8 16.5 13.6 15.8 11.1 14.1
mcr” 71.5 + 721+85 715+ 71.4+89 67.7+96 681+ 75.2 + 733 £ 705+7.5 69.7+9.3
7.5 8.2 9.7 4.4 8.7
AD-D 66.0 + 69.5+9.7 699+ 722+83 61.0+7.1 63.0+ 70.4 + 71.8 £ 67.5 + 72.3 £+
w7 9.3 8.2 8.4 9.3 10.0 10.6 10.0
N (%) cu 87(29.8) 504 (25.7) 18(6.2) 124 (6.3) 6 (2.1) 52 (2.7) 1(0.3) 5(0.3) 180 (61.6) 1276
(65.0)
MCI 368 1255 150 484 (17.3) 27(3.7) 91 (3.3) 5(0.7) 26 (0.9) 184 (25.1) 944 (33.7)
(50.1) (44.8) (20.4)
AD-D 525 1292 221 542 (23.2) 118(12.7) 224 (9.6) 5 (0.5) 18 (0.8) 60 (6.5) 248 (10.7)
(56.5) (55.6) (23.8)
Sex (Mmate/Mfemate) cu” 50/37 252/252 13/5 84/40 472 27/25 1/0 4/1 67/113 471/805
MCI 207/161 706/549 80/70 274/210 17/10 55/36 4/1 18/8 78/106 404/540
AD-D 242/283 567/725 118/103 281/261 49/69 98/126 3/2 11/7 14/46 75/173
MMSE CU 28.2 + 285+16 285+ 285+1.4 27.5+1.4 285+ 29.0 29.0 + 288+1.2 287+15
1.6 1.4 1.3 0.7
MCI* 26.6 + 26.5+27 260+ 262+28 243+49 261+ 26.4 + 27.0 £ 269+26 27.0+26
2.3 2.4 3.6 1.8 2.9
AD-D 20.8 + 20.6 +£5.2 21.5 + 21.3+4.8 19.3 £ 5.6 19.2 + 22.0 + 21.6 + 23.5+3.1 22.8 £4.3
w7 5.2 4.1 5.5 5.5 4.4
APOE#4 carriers cu 37/73 101/315 11/16 22/92 1/3 7/31 0/1 0/5 76/134 193/688
(MapoE/Niotar) MCI 212/310 431/916 78/117 172/360 14/25 28/68 3/5 7/18 102/158 275/711
309/495 516/1003 153/202 256/435 80/111 125/193 3/5 8/14 43/58 91/169

AD-D

* indicates the corresponding measure is significantly different (p < 0.05) between the different subtypes (excluding the outliers group) in Ap+ validation dataset,
using ANOVA test for Age and MMSE characteristics, and y? contingency test for Sex and APOE4 characteristics.

#

indicates the significant difference (p < 0.05) using similar tests in the clinical validation dataset. Abbreviations: CU: Cognitively unimpaired (Cognitively normal

or subjective cognitive decline); MCI: Mild cognitive impairment; AD-D: Alzheimer’s disease dementia.

with p < 0.0001 in the clinical validation dataset and p < 0.05 in the
external validation dataset. The distribution of atrophy-based stages for
the different diagnostic groups (of CU, MCI, AD-D) were different (p
< 0.0001) and are also shown in Fig. 3. Supplementary Figure 6 depicts
a similar plot for these correlations for the Ap+ validation dataset and
the Ap+ subset of the external dataset. Supplementary Figure 7 shows
the correlation between the atrophy-based patient stage assigned by

SuStaln for the clinical validation dataset and external dataset, with
MMSE. The atrophy-based stage assigned by SuStaln showed significant
correlation with MMSE within all subtypes except in the subcortical
atrophy subtype (R = — 0.54to — 0.26) with p < 0.0001 in the
clinical validation dataset and p < 0.01 in the external validation
dataset and p > 0.05 for the subcortical atrophy subtype in both vali-
dation datasets.
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Fig. 3. Experiment 1: Correlation of the estimated stage (measuring atrophy severity) using Snowphlake with MMSE in A) clinical validation cohort B)
external validation cohort. Figures A) and B) both consists of 4 hex-plots, one for each subtype assigned by the trained Snowphlake model. The colour of a bin in
the hex-plot denotes the relative proportion of the participants. The boxplot on top of each hex-plot shows the distribution of estimated Snowphlake stage for the
participants in the different clinical groups. The boxplot at the right of each hex-plot shows the distribution of MMSE in the different clinical groups. The line
overlaying on each hex-plot shows the regression line between MMSE and Snowphlake’s stage. The text on top of each hex-plot shows the correlation coefficient (R)

between estimated stage and MMSE. The asterisk (*) next to R denotes the significance level. * corresponds to p < 0.05; ** corresponds to p < 0.01; *** corresponds

top < 0.001;
impairment; AD-D: Alzheimer’s disease dementia.

“ corresponds to p < 0.0001. Abbreviations: CU: Cognitively unimpaired (Cognitively normal or subjective cognitive decline); MCI: Mild cognitive

3.3. Experiment 2: cognitive domain characteristics of the subtypes

Fig. 4 shows the effect sizes (Cohen’s f-statistic) of cognitive domain
score differences between subtypes identified by Snowphlake and SuS-
taln, for the diagnostic groups of MCI and AD-D. These subtype differ-
ences are computed for participants in the A+ validation cohorts of
ADC, ADNI, NACC, AIBL, and GMC for the cognitive domains of mem-
ory, executive function and attention, language, and visuospatial func-
tion. For Snowphlake, the mean effect sizes for the effects of subtypes on
the four cognitive domains were between f = 0.15 to 0.33 in the AD-D
group, and were between f = 0.15 to 0.24 in the MCI group. For SuS-
taln, the mean effect sizes for the effects of subtypes on the four
cognitive domains were between f = 0.17 to 0.34 in the AD-D group and
were between f = 0.08 to 0.20 in the MCI group. There were no sig-
nificant differences between the effect sizes of Snowphlake and SuStaln
for AD-D patients, when the effect sizes were compared using Fisher’s z-
transformation before testing for significance. However, a similar com-
parison showed Snowphlake was significantly better at detecting dif-
ferences in the language domain for MCI patients (FDR-corrected p
0.016) than SuStaln’s subtypes. There was significant heterogeneity
(based on Cochran’s Q statistic) observed between cohorts for both the
methods, for both the diagnostic groups.

3.4. Experiment 3: concordant subtype-pairs

When comparing how participants were clustered, we observed a
low concordance between Snowphlake and SuStaln. Fig. 5 shows the
contingency matrices between Snowphlake and SuStaln subtype as-
signments in different clinical stages of Ap+ participants, in the training
and validation datasets.

Of the n =501 AD-D individuals assigned to the typical subtype
(with prominent hippocampal and temporal lobe atrophy) of SuStaln in
the AB+ validation dataset, n = 183(36.5%) were also assigned to the
frontal atrophy subtype (with prominent frontal and temporal lobe at-
rophy) of Snowphlake, which is referred to as concordant subtype-pair
#1. Of the n=215 AD-D individuals assigned to the limbic-
predominant subtype (with prominent thalamus, hippocampus, and
amygdala atrophy) of SuStaln in the AP+ validation dataset, n
127 (59.1%) were also assigned to the subcortical-atrophy subtype of
Snowphlake, which is referred to as concordant subtype-pair #2. Of the
n =115 AD-D individuals assigned to the hippocampal-sparing subtype
of SuStaln in the AP+ validation dataset, n = 52 (45.2%) were also
assigned to the parieto-temporal atrophy subtype of Snowphlake, which
is referred to as concordant subtype-pair #3. The Subcortical atrophy
subtype of SuStaln was too small to be compared. The concordant
subtype-pairs accounted only for 38.6% (n= 230 /596) of Ap+ AD-D
participants in the training dataset and 40.5% (n= 362 /894) in the
AB+ validation dataset. Cohort-wise contingency matrix shown in
Supplementary Figure 8 further added to the evidence that low
concordance was consistent across cohorts.

Lastly, progression modelling in the three concordant subtype-pairs
using DEBM and w-score EBM showed that the estimated atrophy-
event sequences using the two methods were largely similar. The
normalized Kendall’s Tau (KT) metric measuring the dissimilarity be-
tween the sequences estimated by SuStaln and Snowphlake were: KT =
0.11 for concordant subtype-pair #1, KT = 0.14 for concordant
subtype-pair #2, and KT = 0.12 for concordant subtype-pair #3. These

10

values are within the expected error ranges of each model,
(Venkatraghavan et al., 2019) indicating that the estimated sequences in
concordant subtype-pairs using the two methods agree with each other.
The sequences of atrophy-events estimated using DEBM and z-score
EBM are shown in Fig. 6.

4. Discussion

In this large-scale multi-cohort study of atrophy-heterogeneity in AD,
we used a novel methodology, Snowphlake, that couples a previously-
validated ML approach for disease subtyping (NMF) (Ten Kate et al.,
2018; Tijms et al., 2024) with data-driven disease progression modelling
(DEBM), to estimate sequences of atrophy-events in four atrophy-based
subtypes of AD. We compared our results with those obtained using
SuStaln and used the trained models to assign subtypes and atrophy
stage in patient populations not included in training them. The assigned
subtypes in validation datasets were associated with distinct cognitive
profiles and the atrophy stage with the subtypes correlated with global
cognition level of patients. We have made the trained models of both
SuStaln and Snowphlake openly available at https://snowphlake-dpm.
github.io, along with the associated code. The source code for Snow-
phlake has also been made available at: https://github.com/snowph
lake-dpm/snowphlake, while the source code for SuStaln was previ-
ously made available by Aksman et al. (Aksman et al., 2021) A thorough
comparison of Snowphlake’s subtype assignments with that of SuStaln’s
provided evidence for a spectrum of differences in atrophy among AD
patients, rather than discretised by distinct subtypes.

4.1. The identified atrophy-based subtypes were consistent with literature

Snowphlake identified a parieto-temporal atrophy subtype where the
AD-D patients were consistently the youngest and had worse visuospa-
tial function, attention and executive function consistent with prior
studies on young-onset AD patients. (Ten Kate et al., 2018; Scheltens
et al., 2017; van der Flier et al., 2011) This subtype also had a signifi-
cantly lower percentage of APOE4 carriers in the ADC cohort, also
observed in a previous study (van der Flier et al., 2011), as well as in the
and the ARWiBo cohort. Still, APOE4 carriership did not differ signifi-
cantly in other cohorts in our study, which may be because those cohorts
predominantly consisted of late-onset AD patients. The subcortical at-
rophy subtype (also referred to as “mild atrophy” in literature) patients
had the least affected cognition across all domains when compared to
the other subtypes. (Ten Kate et al., 2018; Zhang et al., 2016; Ferreira
et al., 2017) The diffuse cortical atrophy subtype (or cortical atrophy
subtype) and frontal atrophy subtype have also been identified in pre-
vious studies (Chen et al., 2023; Alladi et al., 2007; Sawyer et al., 2017).
Moreover, the subtypes identified by SuStaln in this study (typical,
hippocampal-sparing, limbic-predominant) were aligned with the
neuropathological subtypes of AD reported in literature (Ferreira et al.,
2020; Murray et al., 2011) and largely aligned with the previous studies
of atrophy-subtypes using SuStaln. (Young et al., 2018; Chen et al.,
2023; Baumeister et al., 2024)

4.2. Comparing Snowphlake and SuStaln subtypes

A novel approach in our study was that we compared two data-
driven AD subtyping techniques directly on the same patient
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Fig. 4. xperiment 2: Cognitive domain differences between subtypes assigned in the Ap+ validation datasets. Cognitive domain differences are shown for
subtypes assigned by Snowphlake (left) and SuStaln (right) in A) MCI patients and B) AD-D patients. Each sub-plot shows the effect size (Cohen’s f-statistic) and its
confidence internal for a cognitive domain in 5 different cohorts within the A+ validation datasets. The combined effect-size of the random effect (RE) model
obtained via meta-analysis across the different cohorts, and the corresponding confidence internal is shown within each subplot as well. The p-value corresponding to
the RE model and the Cochran’s Q statistic measuring heterogeneity across cohorts is shown at the bottom right of each sub-plot. The Q* indicates that the shown
Eochran’s Q statistic is significant (< 0.0001).
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Fig. 5. Experiment 3: Concordance of Snowphlake and SuStaln subtypes. A) shows the contingency matrix of estimated atrophy-based subtypes using
Snowphlake and SuStaln for participants in the training dataset, in different clinical stages of the disease. B) shows a similar contingency matrices for participants in
the Ap+ validation dataset, in different clinical stages of the disease. The squares marked in red in the contingency matrix for AD-D patients correspond to the
frequently co-occurring subtypes between SuStaln and Snowphlake, also referred to as concordant subtypes. Abbreviations: CU: Cognitively unimpaired (Cognitively
normal or subjective cognitive decline); MCI: Mild cognitive impairment; AD-D: Alzheimer’s disease dementia.

population, while the comparisons in the previous studies so far have typical subtype with temporal and frontal lobe atrophy, the limbic
been based on the identified atrophy characteristics or patient charac- predominant subtype with severe subcortical atrophy, and the hippo-
teristics. (Young et al., 2018; Ten Kate et al., 2018; Zhang et al., 2016) campal sparing subtype with parieto-temporal atrophy. The sequence of
The subtypes identified by the two methods in our analysis also showed atrophy-events estimated by the two methods in these concordant
some similarities in patient characteristics, for example, subtype-pairs agreed with each other, showing that in spite of the
parieto-temporal ~ atrophy  subtype  of  Snowphlake  and methodological differences, similar inferences could be made in these
hippocampal-sparing subtype of SuStaln both consisted of significantly concordantly subtyped individuals. Although these concordant subtype-
younger-onset AD-D patients. Nevertheless, our direct comparison pairs are in line with previous literature (Ferreira et al., 2020; Zhang
showed low concordance between the subtype assignments of the two et al., 2021), future work on synthetic data simulating a spectrum of
methods, highlighting the limitations of indirect comparisons based on atrophy differences would be crucial for understanding more about
read-outs. concordant subtype-pairs. However, the notion that not all patients were
While comparing average w-score maps of patients within a specific clustered similarly, suggests that group estimates of atrophy subtypes
SuStaln subtype, but assigned to different Snowphlake subtype, we saw may be driven by a particular subset of patients, and may not capture
significant differences in atrophy profiles, providing further evidence heterogeneity of all patients. Future studies should further investigate
that atrophy patterns might vary substantially between individuals more continuous measures of subtyping that may be able to better
within a data-driven subtype. The three concordant subtype-pairs that capture such nuance and heterogeneity.
accounted for approximately 40 % of individuals with AD-D were the The differences in estimated subtypes by the two methods arise from
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Fig. 6. Experiment 3: Snowphlake and SuStaln modelling of the A+ participants in the three identified concordant subtypes. A) For each concordant
subtype, the top row depicts the sequence of atrophy-events obtained using DEBM, the methodological equivalent of Snowphlake with 1-subtype. The bottom row
depicts the sequence of atrophy-events obtained using w-score EBM the methodological equivalent of SuStaln with 1-subtype. Within each subtype, the x-axis
corresponds to the stage of the disease. Each column shows the brain in its lateral, medial, and subcortical views, with the regions that is expected to be abnormal at
this stage. B) shows the scale of the colour map used for DEBM plots goes from 0 to 1, where 0 represents a region becoming abnormal at the earliest stages of the
disease and 1 represents late stage. C) shows the scale of the colour map used for w-score EBM plots, in which regions that are expected to be mildly affected (w = —
1) are shown in shades of blue, and severely affected (w = — 2) in shades of red, and unaffected regions in white. The scale for the color map goes from 1 to 48,

where 1 represents a region getting affected at the earliest stages of the disease and 48 represents late stage.

the differences in the objective functions being optimized by the
methods. While SuStaln optimizes a non-linear objective function to
jointly estimate subtypes and atrophy-stage, Snowphlake uses linear
objective function in NMF to identify subtypes. Each of them have been
shown before to identify true subtypes in the presence of distinct sub-
types. (Young et al., 2018; Lee and Seung, 1999) In the absence of
ground-truth in data-driven AD subtyping, the ability of the identified
subtypes to associate with distinct cognitive profiles determines their
validity. In our current study, atrophy-based subtypes identified by both
Snowphlake and SuStain resulted in cognitive profile differences.
However, we observed low concordance between the atrophy-subtype
assignments of the two methods which can potentially be explained by
a spectrum of atrophy differences between individuals with AD. This is
supported by the results of our concordance analysis in Fig. 5, which
shows that individuals grouped together in one method’s subtype are
often assigned to different subtypes by the other method, suggesting
overlapping and continuous variation rather than distinct categories.
This possibility has also been raised by other studies (Ten Kate et al.,
2018; Groot et al., 2020), which highlighted the graded nature of at-
rophy in AD suggesting a spectrum.

This spectrum could either consist of distinct prototypical subtypes
coupled with a lot of variations in a large number of AD patients, or it
could be a continuum of atrophy-variations with the Snowphlake and
SuStaln identifying different variations depending on the objective
function used for their optimization. While the non-linear objective
function of SuStaln identifies non-uniform distribution of the identified
subtypes, Snowphlake’s linear objective function identifies four sub-
types that were roughly uniformly distributed.

4.3. Differences in cognitive domain profiles

The subtypes identified by Snowphlake and SuStaln each showed
significant differences in cognitive domain scores in both A+ MCI and
AD-D patients. While the effect sizes were comparable for Snowphlake
and SuStaln for AD-D patients, Snowphlake showed marginally stronger
effect sizes for MCI patients, potentially indicating that Snowphlake’s
subtypes are more sensitive at associating with different symptom pro-
files at the prodromal stage of the disease. While some of the differences
between subtypes (by either method) assigned were consistent across
the multiple cohorts in our study, we also observed significant hetero-
geneity in associations across cohorts. These differences could poten-
tially indicate genuine cohort-wise differences in how atrophy causes
symptoms or could be due to using different cognitive tests to compute
cognitive domain scores in different cohorts. Future work on studying
these associations could focus on working with harmonized cognitive
data across multiple cohorts. (Gavett et al., 2023; Boccardi et al., 2022)
Notwithstanding these inconsistencies, the significant differences in
cognitive domain profiles between subtypes indicate that data-driven
subtyping models have the potential to identify personalized
end-points in future interventions to boost statistical power. (Evans
et al., 2018; Doherty et al., 2023)

4.4. Methodological considerations and limitations
A potential limitation of our approach is that while our algorithms

allow estimation of sequences of atrophy events, these remain inferences
based on cross-sectional data. While there have been prior studies that
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validated these inferences on longitudinal datasets (Wijeratne et al.,
2023; Venkatraghavan and Vinke et al., 2021), future studies could
focus on a similar large-scale validation on multi-cohort longitudinal
datasets to confirm if these subtypes remain consistent in preclinical and
prodromal AD patients as the disease develops. Another limitation of the
study is that the cohorts used came from the countries of the European
Union, United States, and Australia. It would be essential to also validate
the subtyping models in AD patients from diverse ethnicity and
under-represented regions. Further independent validation of
low-concordance between subtyping methods would also be valuable to
assess the robustness of these findings across diverse cohorts.

One of the strengths of our study is that we have made the trained
models and source code openly available and validated the subtype
assignments in external datasets. Future or ongoing studies such as the
AD sequence project (Leung et al., 2024), can hence use these trained
models to identify proteomic profiles, genetic and lifestyle factors
driving these subtypes in large external cohorts. Another important
feature of this study is that our combined multi-cohort data had many
patients with young-onset AD-D. This could potentially be a strength of
our study since young-onset AD-D patients have less comorbidity or it
could be a limitation with the identified subtypes being an
over-representation of young-onset AD-D patients. Lastly, by decoupling
atrophy-based subtyping from disease progression modelling in the
Snowphlake framework, we pave the way for the inclusion of
high-dimensional imaging features (such as voxel-based measures) in
data-driven subtyping and staging analysis.

5. Conclusion

In conclusion, in this large-scale multi-centre study, we identified
four atrophy-based subtypes using Snowphlake and SuStaln. Subtype
assignments in independent validation datasets were associated with
different cognitive symptoms, and estimated atrophy-severity measures
were associated with global cognition. The low concordance of subtypes
between the two methods indicates that atrophy differences between
individuals may be a spectrum rather than strictly delineated subtypes.
Based on our findings, future research should prioritize developing
novel approaches to capture and analyse this spectrum of heterogeneity
in atrophy patterns to help us further understand the biological-basis for
the observed variability in atrophy patterns between individuals.

Data and code availability

The ADNI data used is this study were obtained from the ADNI
database (adni.loni.usc.edu). The ADC data used in this study are
available from the corresponding author, upon reasonable request. The
AIBL imaging data used in this study were obtained from the AIBL LONI
database  (https://ida.loni.usc.edu/login.jsp?project=AIBL),  while
cognitive and genetic data can be requested from the AIBL management
team, upon reasonable request by submitting an Expression of Interest
(EOI) form available on the AIBL website (https://aibl.org.au/collabora
tion/). The NACC data used in this study were obtained from htt
ps://naccdata.org/. The OASIS data used in this study were obtained
from https://sites.wustl.edu/oasisbrains/ website. The data of the other
cohorts used in this study can be requested from the neuGRID (https
://www.neugrid2.eu/) and GAAIN (https://www.gaain.org) platforms
after registration.
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The source code for Snowphlake has also been made available at:
https://github.com/snowphlake-dpm/snowphlake, while the source
code for SuStaln was previously made available by Aksman et al.
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