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Abstract—Reconfigurable intelligent surface (RIS) can improve
wireless transmission performance by passive reflective elements
to reconfigure the wireless propagation environment. However,
the traditional optimization approach has a high complexity when
jointly optimizing phase shifts at the RIS and the beamforming
at the base station (BS). This paper focuses on the sum rate
maximization problem with the transmit power constraint and
the phase constraint, for the RIS-assisted multiuser multiple-
input-single-output (MISO) downlink transmission where the
downlink and uplink channel reciprocity does not exist. To solve
this problem, we propose a data and model-driven learning
approach via a hybrid learning manner. Specifically, we adopt an
optimal beamforming structure to effectively reduce the output
dimension and to improve the training and testing efficiency of
the neural network. Then, we provide a learning framework
including several fully-connected neural networks to learn the
mapping between uplink and downlink channels, power features
of the beamforming, and phase-shift matrices, after which the
optimal beamforming can be recovered by the proposed beam-
forming structure. Simulation results show that our proposed
method achieves better rate performance than state-of-the-art
data-driven learning approaches.

Index Terms—RIS, deep learning, multiuser MISO, beamform-
ing.

I. INTRODUCTION

Reconfigurable intelligent surface (RIS) [1]-[3], utilizes a
set of passive radio elements to flexibly adjust the reflection
of incident signals, thereby improving the rate, spectral effi-
ciency, coverage, and other performance of the communication
system. Considering its ability to enhance the performance
of communication systems and the low power consumption
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of passive radio elements, RIS has gained wide attention
and has been used to various applications, such as device-to-
device communications [4], [5], heterogeneous networks [6],
[7], simultaneous wireless information and power transmission
[8], [9], and unmanned aerial vehicle networks [10], [11].

This paper focuses on the RIS-assisted multiuser multiple-
input-single-output (MISO) downlink transmission, and inves-
tigates the joint optimal design of beamforming at the base
station (BS) and phase-shifts of passive radio elements at the
RIS. This is a very challenging work because the optimiza-
tion problems (e.g., the classical rate maximization problem
with power and continuous or discrete phase constraints) are
usually non-convex. Traditionally, the joint beamforming and
continuous phase optimization problem can be solved by the
alternating optimization [12] or its variants block coordinate
descent (BCD) [13]-[15], and semidefinite relaxation(SDR)
[16], [17]. By applying SDR and alternating optimization
techniques, [18] proposes an efficient algorithm to jointly
optimize the active transmit beamforming of the AP and the
passive reflective beamforming of the RIS. In [19], the joint
optimization problem is decomposed into two sub-problems
(namely, the conventional BS beamforming design problem
and the continuous phase optimization problem), which are
solved by the BCD method. Contrary to its assumption of
continuous phase shifts, [20], [21] consider the practical case
where each element of the RIS has only a finite number of
discrete phase shifts. [20] proposes a successive refinement
algorithm to optimize the RIS discrete phase shifts for a single-
user setup, and then extends the algorithm to the general case
of multiple users. However, these iterative algorithms suffer
from high complexity and slow convergence speed, which
limits its adoption in 5G or 6G systems, especially for some
delay-sensitive services. In addition, existing literature per-
forms joint optimization of beamforming and phase shifts in
different frequency bands and specific configurations. Among
them, [25] explores the joint optimization of spectrum, coding
and phase-shifting in terahertz communication systems, while
[26] focuses on RIS-assisted phase optimization in single-input
single-output (SISO) systems. [27] proposes signal focusing
via phase shifting of RIS in indoor scenarios. While these
studies provide important theoretical foundations, most of
them do not adequately consider the case of missing upstream
and downstream channel reciprocity, especially in RIS-assisted
multiuser multiple-input-multiple-output (MU-MISO) systems
in frequency bands below 6G.

Recently, the success of deep learning has opened up a



tractable “learn to optimize” approach to solving traditional
optimization problems [28]-[30]. [28] studies the beamform-
ing problem from a data-driven perspective and, in particular,
proposes a multilayer fully connected neural network (FCNN)
to learn the phase shift of a single-user system in order to
reduce the complexity of the algorithms executed to optimize
RIS. In [29], the authors adopt a graph neural network (GNN)
architecture to model the interactions between multiple users
in a RIS system to directly learn the beamforming for the BS
and the reflection phase for the RIS. [30] proposes a fully
distributed machine learning algorithm where each BS can
locally design its beamforming vectors, and the RIS reflection
coefficients are determined by one of the BSs. Nevertheless,
the neural networks in all these works are learned in a data-
driven manner, which requires a large number of samples to
train thus reducing the speed of convergence and accuracy of
training.

A natural idea to address this shortcoming is to reduce the
output of the neural network by introducing classical models
from wireless communication theory, i.e., using a model-
driven learning approach. A lot of previous work has focused
on the optimization of beamforming in multiuser MISO. In our
previous work [31], a model-driven deep learning approach
is proposed for beamforming in multiuser MISO downlink
transmissions, where the neural network learns the power
feature instead of beamforming vectors by adopting an optimal
beamforming structure [32]. This approach reduces the output
dimension and improves transmission performance, thus be-
ing widely extended in [33]-[35]. However, in RIS-assisted
MISO systems, beamforming and phase-shift optimization are
coupled with each other, which is very challenging for model-
driven learning methods. In [36], the authors propose a joint
beamforming and phase-shift optimization method based on
model-driven and GNN, obtaining low complexity and better
performance. The inputs to the neural network include CSI
from base station to users, from base station to RIS, and from
RIS to users. However, the passive elements of the RIS are not
able to actively send and receive signals, so it is a challenge
to estimate the channel state information from the base station
to the RIS and from the RIS to the users.

Another readily overlooked issue is that the reciprocity
between the uplink and the downlink channels may not ex-
ist. Wireless channel state information (CSI) is critical for
beamfoming in multiuser multi-antenna system, providing key
information about channel quality and environmental condi-
tions [37], [38]. Most existing works assume that perfect CSI
is available at the BS, which can estimate the CSI of the
downlink from the pilots transmitted by the mobile user in
the uplink. However, this approach is based on the assump-
tion that channel reciprocity conditions exist. In practice, the
presence of the analog front-end circuitry in actual radio units
complicates the situation and makes the baseband-to-baseband
channel non-reciprocal [39], [40]. In [41], we extend the
model-driven learning approach in [31] for multiuser MISO
with the consideration of only uplink CSI being available at
the BS, where the linear channel model [42] is used to describe
the relationship between the downlink and uplink channels.
This motivates us to use a similar method to deal with this

issue.

Based on the above observations, this paper provides a
data- and model-driven, i.e., dual-driven, approach to solve
the joint optimization problem of beamforming and reflection
for the RIS-assisted multi-user MISO system. We focus on the
sum rate maximization problem while satisfying the transmit
power constraint at the BS and continuous or discrete phase
constraints at the RIS, where the BS only knows the uplink
CSI. To the best of our knowledge, this is the first work that
jointly considers the model-driven learning and the absence of
reciprocity between the uplink and the downlink channels in
the RIS-assisted multiuser MISO system. The contributions of
this paper are summarized as follows.

e« We propose a dual-driven learning approach. We first
provide the optimal beamforming structure for the RIS-
assisted MISO system, which is based on the phase-shift
vector, and the equivalent downlink channel that includes
the direct channel from the BS to users, and the cascade
channel from the BS to RIS and then to users. Then, we
propose an overall deep neural network consisting of four
sub-networks to respectively learn the downlink direct
and cascade CSI, the phase vector, and power features,
which are used to recover the beamforming matrix via
the aforementioned optimal beamforming structure. The
proposed neural network is trained in a hybrid learning
manner. Specifically, the downlink CSI, phase-shifts and
power feature are learned in a supervised manner, and
the sum rate is learned in an unsupervised manner. The
overall loss function is chosen to be a weighted sum of
four sub-nets’ loss function.

¢ We use the uplink channel information to learn the down-
link channel and the reflection phase shift. Specifically,
we assume that there exists a deterministic unique map-
ping from the uplink channel to the downlink channel,
which can be learned by a deep neural network. Similarly,
the mapping between the uplink channel information and
the optimal phase-shift can be learned via another neural
network in a supervised manner.

e We conduct a large number of simulations to evaluate
the performance of the proposed algorithm, and these
experimental results fully validate the effectiveness and
excellent performance of our algorithm. Compared with
traditional methods, our algorithm shows significant ad-
vantages in improving the total system rate, and it is also
able to achieve satisfactory results close to state-of-the-art
numerical algorithms with perfect CSIL.

The rest of this paper are organized as follows. The system
model is presented in Section II. Section III describes the dual-
driven learning method for joint optimization of beamforming
and reflection. Numerical results and analysis are given in
Section IV, after which we conclude this paper in Section V.

Notation: Bold lowercase and capital letters are used to
represent column vectors and matrices, respectively. We use
[A];; and [a]; to denote the element of the matrix A in -
th row and j-th column, and the i-th element of the vector
a, respectively. (-)T and ()" denote the transpose and the
conjugate transpose of matrix, respectively. CN(u, 02) rep-
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Fig. 1: RIS-assisted multi-user MISO system

resents a complex Gaussian distribution with mean p and
variance o2. |- | and || - || refer to the absolute value operator
and the Euclidean norm operator, respectively. We use diag(-)
to denote the diagonal matrix of the elements. R™*™ and
C™>™ are respectively the real and complex spaces of m by n
dimensions. mod(b, m) returns the remainder of b divided by
m. |-| denotes the floor function (i.e. a downward rounding
operation).

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We start with a RIS-assisted downlink multi-user MISO
system, where a BS with IV antennas serves K single-antenna
users. A RIS equipped with M passive reflective elements is
used to assist transmission between the BS and the users. By
adjusting the phase of elements, incident signals are reflected
to the users in the desired direction as shown in Fig. 1.
Let h% e CIxN, f,f € C™M and BY € CM*N represent
downlink channels from the BS to the user £, the RIS to the
user k and the BS to the RIS, respectively. The received signal
at the user k can be written as

K

Z <hg + f,fdiag(v)Bd> W, + Ny

T M
<h§€1 + vHA‘g) W;T; + N,

Yk

j=1

where A{ = diag(fd)B is the cascaded channel between BS
and the user k by reflection at the RIS. Denote the downlink
chanel matrix as H{ £ [(h{)™, (AH)™]T. Let wy, € CV*! be
the beamforming vector and z;, € C be the symbols transmit-
ted from the BS to the user k. v = [e/%1, .-  e/¥M]H ig the
continuous phase-shift vector at the RIS, where w; € [—7, 7)
is the phase shift of the i-th element, and nj ~ CA(0, Ny) is
the additive white Gaussian noise with zero mean and variance
Ny. Then, the signal to interference plus noise ratio (SINR)

at the user k can be expressed as
d 2
|Giiw|

quék |G2Wj|2 + NO’

Ve = 2

where G% = hg + VHAg represents the equivalent downlink
channel. The sum rate of all users is then expressed as

K

Roum = Y _ o log(1+ 1), 3)

k=1
where «ay, is the weight. The problem in this paper can be
formulated as maximizing the sum rate of all users while
satisfying the transmit power and continuous phase constraints,
and is given in the following

hax Rsum “4)
K
s.t. S olwkl? <P (4a)
k=1
;| =1,i=1,..., M, (4b)
where W = [wy, -+ ,Wg] is the beamforming matrix at the

BS. (4a) is the transmit power constraint and P denotes the
maximum transmit power of the BS. (4b) is the continuous
phase constraint at the RIS, and the discrete phase constraint
will be given in Section V.

The above problem can be solved iteratively by classical
methods when downlink CSI is available at the BS [41].
However, this iterative algorithm usually suffers from high
complexity and slow convergence speed, so we consider a
deep learning approach to solve the problem (4). In addition,
channel reciprocity between uplink and downlink may not
exist in the real case. Therefore, we assume that there is only
uplink channel information on the BS and channel reciprocity
does not hold. Suppose that there is a function €2(-) with inputs
of uplink CSI and the outputs of the optimal beamforming
matrix W and phase shift v that satisfies the constraints in
problem (4). Then, the problem (4) can be reformulated as

{Wla"'aWK;V}:Q(H¥a"'7HIIL()7 (5)

where H} £ [h{, AY] denotes the uplink channel matrix, and
A} = Budiag(fy). hy € CVX1 2 € CM*! and B" €
CN*M tepresent uplink channels from the user k to the BS,
the user k to the RIS and the RIS to the BS, respectively.

Generally, the closed-form expression for function €(-)
does not exist. Because any continuous-valued function may
be approximated with a small approximation error according to
the universal approximation theorem [37], the problem (4) can
be transformed into a trainable problem. Suppose a network
Q(-; ) with a trainable parameter set u, then (5) can be
approximated as follows

B. Uplink-Downlink Channel Reciprocity

In this subsection, we discuss the reciprocity relationship
between uplink and downlink channels. Uplink and downlink
channels are interrelated in wireless communication, but their



reciprocity may or may not exist under different circum-
stances.

e Existence of the uplink and downlink channel reciprocity.
When the communication system is in a relatively stable
environment, the characteristics of the uplink and down-
link channels may be similar, in which case there is uplink
and downlink channel reciprocity [44]. This means that
downlink CSI can be obtained directly from estimation of
the uplink CSI. This reciprocity can be used to improve
the performance of the communication system. If reci-
procity is considered, the channel relationship between
the users, the BS and the RIS can be expressed as

hi = () £ = (), B = BHY. D)

e Absence of uplink and downlink channel reciprocity.
The characteristics of the uplink and downlink chan-
nels are affected by a variety of factors, including the
propagation environment, multipath effects, and antenna
configurations. In these cases, the uplink and downlink
channels may not be reciprocal. Following [42], we use
a unitary matrix to describe the relationship between
the uplink channel and the downlink channel. Unitary
reciprocity is a special type of channel relationship that
refers to the unitary transform relationship between the
uplink channel matrix and the downlink channel matrix.
Specifically, if there is a unitary transform relationship
between channels, it can be expressed as

h = ¢; (W)U, £ = o (£ UL, BY = ¢3(B")H U3,
)]
where ci, co, c3 are the randomly generated complex
coefficients of the channels hy, f}!, B, and U; € CNxN
U, € CM*XM Uz € CN*N are the unitary identity
matrices of the channels hj, f;!, B", respectively.

III. DUAL-DRIVEN LEARNING APPROACH

In this section, we first review the traditional approach (i.e.,
the BCD algorithm with the downlink channel information)
to solving problem (4). This approach provides labels for
hybrid training neural networks which will be presented in
sub-section B. Then, we focus on the dual-driven learning
approach for joint beamforming and reflection optimization
with only uplink CSI available at the BS.

A. BCD algorithm with the downlink channel information

The BCD algorithm [19] is widely used to solve joint
optimization problems in RIS-based systems. The key idea
is to divide the optimization variables into multiple blocks,
and then update each block according to certain rules while
fixing the remaining blocks to the values of the last update
[45]. Our original optimization problem is non-convex and
cannot be solved directly using convex optimization method,
so BCD algorithm can reduce the computational complexity,
especially in high-dimensional optimization problems. Specif-
ically, the original problem (4) can be decomposed into two
sub-problems, namely, the conventional beamforming design

problem, and the phase-shift optimization problem, which are
given in the following

max Roum
A%
K
s.t. > lwil® < P, 9)
k=1
max Rsum
s.t. lvg| =1,i=1,..., M. (10)

We first focus on the sub-problem of conventional beam-
forming design. Given the phase shift v, the sub-problem
of optimizing W reduces to the weighted sum rate (WSR)
maximization problem of a conventional multi-user MISO
system, which has been widely applied, and the weighted
minimum mean square error (WMMSE) algorithm [46] is a
very well-known method.

Then, we focus on the sub-problem of phase optimization.
Given fixed W, we can obtain optimal v through Riemannian
manifold optimization method as in [19], which is a specific
type of manifold optimization method [47]. Denote the direct
channel and the cascade channel as follows

a5 = Ajw;, (11)
bjk = hi pw;, (12)
and then the objective function can be re-written as
K 2
.+ b
cost (x) = Z log | 1+ [war + k];‘ . (13)
k=1 > |lwajk +b;k" + No

J#k
We can calculate the Riemannian gradient of this objective
function as follows

K
egrad (x) = ZQFk, (14)
k=1
S ajbly + > ajpallx!
J J
Fi = -
Z |bj,k: + maj7k| + No
! (15)

T o H o H
;kaj,kbj,k + ;k a; kA T
J J7Fk

> bk + zajil + Ny
ik

We set the step size to 1, and then proceed to use the step size
and gradient to constantly update the current point to move to a
new position on the manifold to find the point on the manifold
or an approximation of the optimal value.

B. Dual-driven learning approach with uplink CSI

The BCD algorithm has two main limitations. Firstly, it
suffers from a high complexity due to the nature of iterative
algorithms. In particular, it contains both inner and outer iter-
ations, where the outer iterative algorithm solves the problems
(9) and (10), respectively, and the solution of each sub-problem
also consists of this multi-step iteration. This practice limits its
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Fig. 2: Model-driven neural network framework.

application in practical systems, especially for delay-sensitive
applications. Another challenge is that the BCD algorithm can-
not be directly applied to the case where the BS only knows the
uplink channel information. Therefore, we focus on the deep
learning-based solution method which uses neural networks to
learn the relationship between the input (i.e., uplink channel
information) and the output (optimal solution), thus bypassing
the complex iterative solution process. This method is based
on the fact that a well-designed deep neural network has the
ability to approximate any continuous-valued function with
arbitrarily small approximation errors, as demonstrated in [43].

e Optimal beamforming structure for RIS-assist MISO
system

Unlike common data-driven learning, we use a model-based
beamforming structure as in [41] reduce the neural network’s
output dimension and to improve the training efficiency and
performance. It is worth noting that this structure was origi-
nally designed for multi-antenna MISO systems. It cannot be
directly applied in RIS-assisted MISO systems because RIS
systems include complex direct and cascade channels, as well
as phase-shift vectors. However, given a fixed phase transfer
vector v, the RIS system can be equivalently treated as a multi-
user MISO system from a mathematical point of view. Thus,
the optimal beamforming structure for RIS-assisted MISO
system is given by

1+ £ #@diad) @
(1N+ RO G9)1<G2>H

where Iy € RV*YN denotes an identity matrix. pj, and g, are
both positive parameters satisfying Zszl Pr = Zszl Gk =
P.p=[p1,...,pr]T is the optimal downlink power vector,
and q = [q1,...,qx]" is an auxiliary vector variable that can
be used to determine the beamforming direction. The power
vector [p; q] is considered as a key feature of the beamforming
solution. Unlike the direct learning of the high-dimensional

beamforming matrix W, (16) enables us to learn the low-
dimensional power features [p;q]. Then, the beamforming
vector can be recovered from the learned power feature [p; q]
by (16). This practice reduces the output dimension of the
neural network learning beamforming from 2NK to 2K,
which in turn improves the training efficiency.

e The overall neural network freamwork

Based on the optimal beamforming structure (16), we pro-
pose a neural network framework to jointly learn the phase-
shifts v and the power feature [p;q] that maxmizes the sum
rate while adhering to the transmit power constraint and the
phase shift constraint. The proposed neural network takes
uplink CSI {HY,--- ,HY%} as inputs and final outputs are the
beamforming matrix W and phase-shifts v at the RIS. The
overall neural network framework is depicted in Fig. 2, which
consists of four modules and is described in detail below:

CSI-Net: The CSI-Net consists of CSI-Netl and CSI-Net2,
which are two fully-connected neural networks (FCNN5s) used
to learn the uplink-downlink relationship (i.e., the unitary
transform relationship) for the direct channel and the cascade
channel, respectively. The inputs of both CSI-Netl and CSI-
Net2 are uplink CSI {HY, - -- ,HY% }. The outputs of CSI-Netl
are the predicted downlink CSI {h{,--- ,h%} and the outputs
of CSI-Net2 are predicted cascade CSI {A{,--- AL} We
train both networks using supervised learning methods. Since
it’s input is a complex matrix, we split it into real and
imaginary parts to facilitate neural network training. Suppose
there is a channel training dataset with 7" uplink-downlink CSI
pairs. Denote the predicted outputs of CSI-Netl and CSI-Net2
ashy, and A{, (k=1,--- ,K,t =1,---,T), respectively,
where the corrésponding labels refering to the real channels
are denoted as h,c . and Ak ;» respectively. The mean square
error (MSE) is adopted as the loss functions for CSI-Net1 and
CSI-Net2, which are given as follows

K T

2TN Z _ﬁg,tH27
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Phase-Net: This module aims to learn and optimize phase-
shifts v at the RIS. Specifically, the neural network takes the
uplink CSI {HY,--- ,HY%} as input and outputs the phase-
shifts v in a supervised learning manner. Similarly, we divide
the complex vector v into real and imaginary parts. Denote the
predicted output of Phase-Net as ¥; and its label is denoted
as v;. Meanwhile, the MSE-based loss function of Phase-Net
is given as follows

Ly = QTM Z lve = %% (19)

Power-Net: The Power-Net aims to learn the power fea-
ture of the beamforming solution [p;q]. We denote that
the predicted outputs of Power-Net are p; and §;. The p;
and q; are the ¢-th training samples of the downlink and
uplink power vectors obtained by the BCD algorithm in the
power training database, respectively. Similar to the previous
networks, we use a supervised learning method to train this
network. Meanwhile, the loss function of Power-Net is given
as follows

T
Lp= 2TKz:: (Ipe — Dell® + llae — & ®). (0

Beamforming Recovery Module: This module aims to
recover the optimal beamforming. We first use the estimated
direct and cascade channels and the eatimated phase-shifts
to obtain the equivalent downlink CSI {G¢,--- ,G%}. The
beamforming matrix W is then recovered using the power
features and the equivalent downlink channel information.
Note that this module does not contain any training parameters
and only computes the beamforming matrix W via (16).

C. Hybrid training

In the training stage, the overall loss function is given as
follows

Loss =apgLly+aala+ayLy +apLlp+ arLpr, (21)

where «;,i € {H,A,V,P,R} is the weight for each loss
component. The learning of the channel matrices, phase-shift
vector and power features is only an intermediate process, and
our ultimate goal is to maximize sum rate of the system, so we
add sum rate as an additional part of the overall loss function,
ie., Lr = —Rsum- We adopt a hybrid training method as in
[31], where the downlink CSI, power features, and the phase
shift vector are trained in a supervised manner, and the sum
rate is trained via the unsupervised manner.

The proposed neural network model utilizes a multi-layer
perceptron (MLP) architecture, with computational complex-
ity primarily determined by the number of hidden layers
and neurons. The input matrices are flattened into a one-
dimensional vector before being fed into the proposed neu-
ral network framework, resulting in an input dimension of
F = 2(M + 1)NK. For CSI-Netl, we have four fully
connected layers with A neurons each; for CSI-Net2, four
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Fig. 3: Sum rate versus the number of users/BS antennas.

layers with B neurons; for Power-Net, four layers with C'
neurons; and for Phase-Net, four layers with D neurons. The
total computational complexity of the four neural networks is
approximately O(F A+ A%+ FB+ B2+ FC+C?*+FD+D?).
The computational complexity of the beamforming matrix
recovery is O(N® + KN? + KM N). Therefore, the overall
computational complexity of the proposed neural network
framework is O((FA+ A>+ FB+ B?>+ FC +C? + FD +
D?) + (N3 + KN? + KMN)).

Fig. 3 shows the rate performance comparison between the
hybrid training method and the supervised training method
which has a similar loss function as in (21) but does not
include rate loss. The transmit power of the downlink channel
is 30 dBm, and the number of passive reflect elements is 32.
The performance of hybrid learning achieves improved sum
rate performance than that of the supervised learning method.
For example, when the number of users and transmit antennas
at the BS is 6, the sum rate of the supervised learning method
is 11.9 bps/Hz, about 5% lower than that of the hybrid learning
method. Fig. 4 depicts the respective loss training curves of
the sub-networks with different number of transmit antennas,
and we can observe that after training for multiple epochs, the
loss of each sub-network converges stably. Fig. 5 depicts the
total loss training curve of the overall neural network under
different hyper-parameters. The performance of the total loss
is affected by the hyper-parameters. This means that we need
to fine-tune the hyper-parameters of the neural network to
achieve better performance.

D. Discrete Phase Shifts

While the aforementioned studies focused on the study
of continuous phases of reflective elements, in this sub-
section, we will extend the problem of optimizing RIS-assisted
MISO systems under continuous phase constraints to practical
discrete phase constraints [20], [21]. For practical implemen-
tation, we consider that the phase shift of each element of the
RIS can only take a finite number of discrete values. Let b
denote the number of bits used to represent the phase shift
level L, where L = 2°. For simplicity, we assume that these
phase shift values are obtained by uniformly quantizing the
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interval [—m, 7). Thus, the set of discrete phase shifts at each
reflective element is given by

F={-m -7+ A0, —7m+2A0,...,—7+ (L — 1)Af8},
(22)

where A0 = 27/L. v = [e/% ... /4]0 js the discrete
phase-shift vector at the RIS, where 6; is the phase shift of
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Fig. 5: The final loss function value versus training

epochs(N = 8).

the ¢-th element. Then the original optimization problem (4)
can be reformulated as follows

max Rgum (23)
W,v
K
s.t. > olwkl? <P (23a)
k=1
0, € Fi=1,...,M. (23b)

The optimization problem in (23) is non-convex due to
the coupling of W and v. Furthermore, the constraints in
(23b) restrict 6; to be discrete. Following [20], we employ
an efficient successive refinement algorithm to solve this op-
timization problem by extending the channel gain expression.
Let C = AY(AHH and b = A¢(h{)!. The channel gain is
given by

Ih¢ + £ddiag(v)B" |2 = vICv + 2Re{v!b} + ||hd|2.
(24)

Assuming that all other reflecting elements (0¢, V¢ #
m,m € M) are fixed, and focusing only on a single reflecting
element 6,,, the channel gain can be written as [20]

2Re{e? (n} + T, (25)

where (,, = Zg m C’mge’je§ + by & [ple™7%m and T, =
S esm Diem Cei€?%e=%) 1 2Re{3", , e?%be} + Crm +
[16]]?, where C¢; and b represent the individual elements of
C and b, respectively. Let € denotes the stopping threshold
for convergence. Then the successive refinement algorithm is
summarized in Algorithm 1




Algorithm 1 Successive Refinement algorithm [21]

initialize v = v(©)

set A =10

R© = R{,

while |[R?) — RA-1| > ¢ do

for m =1to M do

0r, = argminge r |0 — |
A=A+1
RN — p)

sum

R AN A R

end for
end while

—
e

However, this successive refinement algorithm achieves the
optimal or near-optimal solution by stepwise optimization, and
thus converges slowly. Therefore, we consider the proposed
dual-driven learning approach to solve the problem (23).
Specifically, we first utilized the model framework in Fig. 2 to
train four sub-networks for obtaining the predicted values of
downlink direct channel, downlink cascade channel, reflection
phase shifts and power features, respectively. Different from
the above approach, we process the continuous phase shifts
obtained from Phase-Net. After prediction, we map the con-
tinuous phase values to discrete phase values to obtain the
final prediction. For specific implementation, we calculate the
distance between each continuous output value and discrete
phase value based on the shortest distance principle, and
select the closest discrete phase value as the mapping target.
Finally, we learn the downlink beamforming matrix based on
the proposed optimal beamforming structure to maximize the
system sum rate.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
approach. Unless otherwise specified, the RIS-assisted multi-
user MISO system includes a BS with N = 6 antennas, a RIS
with M = 32 passive reflective elements, and K = 3 single
antenna users. Weight «, = 1,Vk. The (z,vy,2) coordinates
(in meters) of the RIS and the BS positions are (0,0,0) and
(100, —100,0), respectively. Users are uniformly distributed
in a rectangular region [5,30] x [—30,30] in the (z,y) plane
at z = —20. The total transmit power of the BS is 30 dBm
and the noise power is —120 dBm.

We use Rayleigh fading to model the direct channel from
multiusers to the BS as follows

hy = L, ;hy, (26)

where h} denotes Rayleigh fading and follows CA(0,T). L1 .
denotes the path loss (in dB) of the direct channel from the
user k to the BS as 32.6+36.7 log(d2), where d/® (in meter)
is the distance between the user k and the BS [19].

We use Rician fading to model the channels B" and f;' as

follows
€ R/LOS I sNpos
1+5B +V1+€B ) @D
£ = 1 =
fFLOS FNLOS
gk + Vite™® )

1+

BY = Ly(

£ = La( (28)

where € = 10 is the Rician factor, Lo (in dB) stands for the
path loss from the RIS to the BS as 30 + 22log(d"®), and
L3 ;. (in dB) denotes the path loss from the user k to the RIS
as 30 + 221og(dyh). d'B and d! (in meters) are the distances
between the RIS and the BS, and between the user k and
the RIS, respectively [18]. The superscript LOS and NLOS
represent the line-of-sight part and the non-line-of-sight part
of the channel, respectively. The NLOS parts are modeled as
standard Gaussian distribution, i.e., [BNYO5],; ~ CA(0,1)
and[fY OS], ~ CN(0,1).

The LOS parts are the function of the BS/RIS/user £ loca-
tions. Denote the superscripts azi and ele as the azimuth and
elevation angles, respectively. Similar to [48], H?Zi, 9?1’3 denote
the azimuth and elevation angles of arrival (AoA) to the BS,
respectively. ¢3%, ¢S are the azimuth and elevation angles of
departure (AoD) from the RIS to the BS, respectively. gpgz,‘c,
@Sle are the azimuth and elevation angles of arrival from the
user k to the RIS, respectively. The steering vectors of the BS
can be given by

aBS(Galxzi, e?le) _ [1, e ejﬂ'(Mfl) cos (82%) cos (0’1319)}. (29)
Then the LOS part of B can be written as [29]
BLOS _ aBS(e%Ziu e(lele)aRIS( 221217 gle)H. (30)

Similarly, the n-th element of the RIS steering vector
ele

aRIs(@g)Z}C, <p37k) can be given by

[ams(tpgﬁi, @3{2)] n=

azi ele ele

ej”{il (n)sin (¢5%,)cos (893,k)+i2 (n)sin (893,k)} ,

3D

where i1(n) = mod(n — 1,10) and iz(n) = [(n — 1)/10].
Then the LOS part of fj, can be given as

= apis (5% ¥55.)- (32)

Let (xka Yk, Zk), (xRISv lesv ZRIS) and (%BS, yBS7 ZBS) de'
note the location of the user k, the RIS and the BS, respec-
tively. Then we have

fLOS
fk

cos (077 cos(65'°) = %, (33)

sin (639 )cos(¢5¢) = yBSd_IiByRIS (34)

sin(4) = ZBdeiBZRIS, (35)

sin (gog’z,i)cos(gogl’%) = yk;#ylms, (36)
k

sin (55) = - d};ms (37)

A. Continuous Phase-shifts with Non-reciprocal Channel

We implement the proposed network using the deep learning
library TensorFlow [49] which is trained through 105 training
samples and 10° test samples. We use the Adam optimizer
[50] with an initial learning rate of 1073. The structure and
hyper-parameters of the proposed neural network are shown
in Table I and Table II.



TABLE I: Neural Network Hyperparameter

CSI-Netl | CSI-Net2 | Phase-Net | Power-Net
Number of hidden layers 4 4 5 2
Hidden layers activation relu relu relu relu
Output layer activation tanh tanh tanh softmax
Batchsize 256 256 256 256

TABLE II: Number of Neurons

CSI-Netl {1024,512,256,128}
CSI-Net2 {1024,512,256,128}
Phase-Net | {1024,1024,512,256,128}
Power-Net {1024,512,128}

We compare the proposed approach with the following
benchmarks.

e Perfect CSI with BCD: This approach first assumes
that the perfect downlink CSI are known at the BS,
and we use the BCD algorithm [19] to solve the sum
rate maximization problem (4), and resulting sum rate
performance is used as the upper bound for comparison.

e ZF-based learning apporach: This approach first learns
the downlink CSI, power features and phase-shift vector
through supervised training of the neural networks, and
then uses the learned information to construct the beam-
forming via zero-forcing (ZF) structure [51].

e MRT-based learning apporach: This approach is also
similar with the proposed solution except that we use
the maximum ratio transmission (MRT) beamforming
structure [52] rather than the structure in (16).

Table III depicts the comparison between the Perfect CSI
with BCD method and the proposed solution in terms of
execution time for 1000 samples with different number of
RIS elements (i.e., M). The execution time of both methods
increases with the increase of M, and the execution time of our
method is significantly smaller than that of the traditional BCD
method. For example, when M = 32, the proposed method
takes about 1.43 s to complete 1000 samples, which is about
3 percent of the BCD algorithm execution time.
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Fig. 6: Sum rate versus the transmit power.

Fig. 6 shows that the sum rate performance of four methods
increases with the increasing transmit power, because the
higher the transmit power, the stronger the signal received by

the wireless terminal and the better the beamforming effect.
The sum rate of the proposed approach is close to that of
the BCD algorithm with perfect CSI, and it outperforms
that of ZF and MRT beamforming based learning methods.
For example, when the transmit power is equal to 30 dBm,
the sum rate of the proposed solution achieves around 8.24
bps/Hz, about 6.87% and 92.97% higher than that of ZF-based
and MRT-based learning approaches respectively. The reason
lies in that ZF beamforming only focuses on interference
cancellation, and ignores the negative effect arising from noise,
thus suitable for high signal to noise ratio (SNR) scenarios,
while MRT adapts to low SNR scenarios because it focuses
on the noise minimization. In contrast, the proposed method
adopts the optimal beamforming structure (16) considering
both interference cancellation and noise reduction, so it obtains
improved rate performance. The MRT beamforming solution
has the worst sum rate performance which remains almost
unchanged. This is because the beamforming matrix (16) of
the RIS system is affected by the direct channel, the cascaded
channel, and the phase shift vectors, whereas the MRT method
with only simpler beamforming structures (i.e., conjugate
transposition of the downlink channel) does not allow for
any further improvement in the rate performance, even for
larger transmit power. This imply that MRT is unsuitable to
be the beamforming method for RIS-assisted multiuser MISO
system.
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Fig. 7: Sum rate versus the number of BS antennas at
[3’ . ’7]_

Fig. 7 shows the sum rate versus the number of BS’s
antennas N. The sum rates of the BCD with the perfect CSI
method, the proposed approach and the ZF-based method have
improved with the increasing number of transmit antennas at
the BS (i.e., N), because more antennas increases the diver-
sity gain in multi-antenna system. Once again, the proposed
method achieves higher rate performance compared with ZF-
and MRT-based methods due to the efficient beamforming
structure. For instance, when N equals 5, the sum rate of the
proposed scheme reaches about 8.07 bps/Hz, about 10.09%
and 101.25% higher than that of the ZF-based and MRT-based
learning methods, respectively.

In Fig. 8, as the number of antennas increases from 8 to 12,
the sum rates of the perfect CSI method, our proposed method,



TABLE III: Comparison of execution time for different methods.

Number of RIS Elements
8 16 32 48 64
Method
Perfect CSI with BCD (s) 12.69 | 38.64 | 4246 | 64.25 | 168.65
Proposed Solution (s) 1.16 1.17 1.43 1.55 1.66
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Fig. 8: Sum rate versus the number of BS antennas at
[8,---,12].

and the ZF and MRT-based methods all show improvement. In
comparison, the rate of the ZF-based method increases from
13.12 bps/Hz to 15.77 bps/Hz, which is close to our method
but slightly lower. The sum rate of the MRT-based method
is the lowest, with a small increase from 2.23 bps/Hz to 2.62
bps/Hz. Overall, our proposed method continues to outperform
the ZF and MRT-based methods as the number of antennas
increases.
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Fig. 9: Sum rate versus the number of users.

Fig. 9 shows the sum rate versus the number of users
K. The sum rate increases with the increasing number of
users, because the multiplexing gain of multi-antenna and RIS.
Meanwhile, the proposed approach still has improved sum
rate compared with ZF-based and MRT-based methods. For
example, when K is equal to 4, the sum rate of the proposed
solution achieves 9.25 bps/Hz, about 12.94% and 126.16%
higher than that of ZF-based and MRT-based methods, respec-
tively.
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Fig. 10: Sum rate versus the number of elements.

Fig. 10 shows the sum rate versus the number of passive
reflect elements M at the RIS. The sum rate increases with
the increasing the number of RIS elements, because more
reflective elements make the RIS more flexible, allowing it
to precisely control the direction of the reflected signals and
extend the communication range. Likewise, the sum rate of
the proposed approach outperforms other benchmarks. For
instance, when M is equal to 100, the sum rate of the proposed
method achieves 9.19 bps/Hz, about 7.86% and 102.42%
higher than that of ZF-based and MRT-based approaches,
respectively.
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Fig. 11: Simplified neural network framework.

B. Continuous Phase-shifts with Reciprocal Channel

Now, we will compare our proposed method with the state-
of-the-art method in [29], which adopts a GNN with the pilot
signal as the inputs to direct learn the beamforming matrix W
and the phase shift vector v without the aid of beamforming



structure. However, since this methods assumes the availability
of channel reciprocity, it is hard to compare with our method
directly. To address this problem, we also consider channel
reciprocity, and adopt Least Squares (LS) [53] to estimate the
downlink CSI, which is used as the input of the overall neural
network. Because the channel reciprocity is hold, CSI-Net is
not necessary, and we provide a simpler network framework
where two FCNNS learn the power feature [p; q] and the phase
shift vector v, followed by which we recover beamforming
matrix via (16) and then calculate the sum rate, as shown in
Fig. 11.

Next, we will briefly introduce the pilot generation and the
LS channel estimation method. We divide the total training
slots F' into A\ sub-frames, each with F; = K symbols, and
thus FF = AFp. Let v(z) be the phase-shift at the RIS in
the sub-frame z. Users simultaneously send pilot sequences
sk = [sk(1),...,sx(Fo)] (k =1,---, K) to the BS, which is
repeated in the A sub-frames. Then, the received pilots Y (z)
at the BS in sub-frame x can be given as

K
Y(z) = (hi + Ajv(z))sp + N(z),z =1,...
k=1

A, (38)
where N(z) is the noise matrix with each column inde-
pendently distributed as CA'(0,02I). We use an orthogonal
pilot transmission strategy, i.e., Sg, sgi = FyP,, where P, is
the uplink pilot transmission power, and sklsl,jz = 0 when
k1 # ko. Then, the received pilot of the k-th user in sub-
frame x can be represented as [54]

yvi(x)= FLOY(x)SE =hj; + Apv(z) + n(x)

£ Hle(z) + n(z),

(39)

where n(z) = #N(z)s}' is the equivalent noise. The

combined phase-shifts is defined as e(z)= [1,v(:c)H]H. The
received pilots matrix Yy = [y (1), ..., y%(\)] can be repre-
sented as

Y, =HIE + N, (40)

where E = [e(1),...,e(A)] and N = [n(1),...,n(\)].

Then, we use the LS method to estimate the downlink
channel matrix H%, which considers the existence of reci-
procity between the uplink and downlink channels, i.e., the
downlink channel matrix is the conjugate transpose of the
uplink channel.

As shown in Fig. 11, we use downlink CSI [H{,--- , H%]
as the input of the neural networks to learn the power feature
[p; ] and the phase-shift vector v. We compare the proposed
solution with the following benchmarks.

o GNN-based learning apporach [29]: This approach

uses a GNN to map the received pilot signals to the
beamformer at the BS and the phase shifter at the RIS.

e LS channel estimation with BCD: This approach first
estimates CSI using the LS estimator, and then solves
sum rate maximization problem with the BCD algorithm
[19].

Fig. 12 shows the sum rate versus the number of users

K. The sum rate of our proposed method is superior to the
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Fig. 12: Sum rate versus the number of users.
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Fig. 13: Sum rate versus the number of BS antennas.

GNN-based learning approach. For instance, when K equals
4, the rate of our method achieves 8.82 bps/Hz, which is about
14.41% higher than that of GNN-based method. This is due
to the fact that GNN-based direct learns the beamforming
vector instead of power feature in a data driven manner,
and has a larger output dimension of the neural network,
thus deteriorating the training efficiency and accuracy. In
contrast, our proposed method takes the advantage of optimal
beamforming structure, and achieves better performance, im-
plying that purely data-driven is insufficient, and the superior
performance of our proposed data and model driven approach.
In addition, the GNN-based learning method achieves a better
rate performance than LS channel estimation based BCD
method, and the reason is given in the following. LS channel
estimation with BCD actually can be viewed as a two step
approach, namely, estimating the channel and then optimizing
the beamforming and the phase shift. This practice is not
the rate performance oriented, and thus achieves lower rate
performance. In contrast, the GNN-based learning approach
joint learns the channel estimation and optimization design
which focuses on the final target of maximizing the sum rate
performance without pursuiting the high accuracy of channel
estimation.

Fig. 13 shows the relationship between the number of
antennas and the sum rate. The sum rate performance achieved



by our proposed method close to the perfect CSI with BCD
and significantly outperforms the GNN-based and LS-based
methods. As the number of antennas increases from 8 to 12,
the performance upper bound rises from 15.02 bps/Hz to 22.84
bps/Hz, while our proposed method similarly improves from
14.61 bps/Hz to 22.75 bps/Hz, demonstrating high efficiency.
In contrast, the GNN-based method grows slowly, with the
sum rate only increasing from 5.02 bps/Hz to 6.01 bps/Hz,
while the LS-based method shows the lowest sum rate and
remains almost flat. Overall, our method significantly out-
performs the GNN-based and LS-based methods, achieving
performance close to the theoretical optimum.

C. Discrete Phase-shifts with Non-reciprocal Channel

In order to verify that our proposed dual-driven approach
also applies to the discrete phase shifts, we compare the
proposed solution with the following benchmarks.

o Perfect CSI with Successive Refinement algorithm:
This approach assumes that the perfect downlink CSI
are known at the BS, and uses the successive refinement
algorithm [20] to solve problem (23).

o ZF-based learning apporach, b=2: This approach first
uses the neural networks to learn the feature information.
Then, the continuous phase is quantized into discrete
values by setting b = 2, and then the beamforming is
constructed by zero-forcing (ZF) structure [51]. Similarly
for b =1.

In Fig. 14, we compare the sum rate performance for differ-
ent quantized phase shifts. Taking the successive refinement
algorithm with perfect CSI as an upper bound, it can be found
that the sum rate of the proposed discrete phase-shift method
is close to the upper performance bound, and outperforms the
ZF-based learning approach. In addition, we can find that the
performance of the system is significantly improved when the
discrete phase shift levels increasing from 1 bit to 2 bits. For
instance, when the transmit power is 30 dBm, the sum rate of
the proposed method achieves 6.54 bps/Hz with 1 bit discrete
phase shift, while it achieves 7.97 bps/Hz with 2 bits. This is
because the increased phase resolution allows the system to
more accurately control the phase of the electromagnetic wave,
resulting in more accurate beamforming and thus improved
system performance.

D. Performance for Maximizing Minimum Rate

In practical wireless communication systems, the summa-
tion rate objective does not provide fairness among users.
In this section, we consider the problem of maximizing the
minimum user rate, i.e., the max-min problem, formulated as
follows

max min Ry 41
W.,v k
K

st Y Wil <P (41a)
k=1

lv;|=1, i=1,....,.M (41b)
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Fig. 14: Sum rate versus the transmit power for different
quantized phase shifts.

For the max-min problem, we use the same neural network
architecture as for the optimization problem (4), while we
use the traditional BCD algorithm to provide labels for the
hybrid trained neural network. The difference is that here
it is based on the WMMSE algorithm to continuously and
iteratively update the beamforming vectors to increase the
minimum user rate, with the goal of maximizing the minimum
rate by increasing the rate of the weakest user in the system
as much as possible.

We employed the same neural network architecture and
parameter settings as those used for the sum rate problem
to address the max-min optimization problem, conducting
simulation analyses in multi-antenna scenarios. Fig. 15 indi-
cates that under ideal channel conditions, system performance
significantly improves as the number of antennas increases,
with the maximum user rate reaching 4.87 bps/Hz in the
10-antenna configuration. The GNN-based method exhibited
relatively poor performance across all antenna configurations,
achieving a maximum rate of only 0.88 bps/Hz in the 10-
antenna setup, highlighting its limitations in complex envi-
ronments. In contrast, our proposed algorithm demonstrated
significantly better performance on the max-min problem,
increasing the maximum rate from 0.71 bps/Hz to 4.63 bps/Hz
in the case of three users, especially achieving 3.03 bps/Hz in
the nine-antenna configuration; for four users, the maximum
rate improved from 1.95 bps/Hz to 3.65 bps/Hz. This indicates
that our algorithm effectively enhances system performance
while ensuring user fairness.

V. CONCLUSION

In this paper, for a RIS-assisted multi-user MISO system,
we propose an optimization algorithm that directly optimizes
the beamforming matrix and continuous or discrete phases
shifts to maximize the sum rate of the system, provided that
only the uplink channel information is known and there is
no reciprocity between the uplink and downlink channels. We
introduce a dual-driven approach to learn the required power
features and phase-shift vector using the uplink CSI as input
to the neural network, and use the structure of the optimal
beamforming solution to facilitate efficient neural network
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design. Numerical results show that the proposed solution can
approach the upper limit of the achieved performance for both
continuous and discrete phase shifts, and achieve higher sum
rate than the benchmarks. Simulation results demonstrate the
importance of the dual-driven approach in downlink beam-
forming optimization.
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