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Abstract 
 

The World Health Organisation has recently recognised a shift towards digital 

healthcare. Wearable health technology can improve patient self-

management, healthcare utilisation and reduce patient morbidity and mortality. 

Chronic lung diseases such as chronic obstructive pulmonary disease (COPD) 

and obstructive sleep apnoea (OSA) have a global prevalence of roughly 400 

million and one billion respectively. The main aim of this work was to 

investigate the utility of a novel wearable device, AcuPebble RE100, in 

participants with COPD and OSA. A systematic review and meta-analysis was 

conducted to initially gain a better understanding of the current landscape of 

wearables in COPD. This identified a gap, where further research was needed 

to explore the role of wearables in identifying upcoming exacerbations. The 

next observational cross-sectional study, sought to build an acceptability 

model to aid future wearable design to maximise patient utility. The primary 

study used AcuPebble RE100 in a group of stable and exacerbating COPD 

patients to analyse physiological signal differences between groups. This 

observational study demonstrated that heart rate variability increased during 

an exacerbation, while complexity decreased. Respiratory rate variability and 

complexity increased during an exacerbation and airflow had increased 

random fluctuations during an exacerbation. These differences could help 

build future algorithms to detect upcoming exacerbations, resulting in earlier 

management initiation and improved patient outcomes. Chapter 5 investigated 

whether AcuPebble SA100 could be used to monitor patients with OSA on 

continuous positive airway pressure therapy. This study found AcuPebble 

SA100 in its current state to be less accurate than gold-standard tools. Overall, 
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the work in this thesis will help to inform future studies using wearables in 

chronic lung disease, to positively impact patient outcomes, and lead to a truly 

digital respiratory healthcare system.   
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Impact Statement 

Wearables have the potential to improve patient healthcare outcomes, but 

further research is needed to realise these benefits. Earlier detection of an 

exacerbation of chronic obstructive pulmonary disease (COPD) has been 

widely recognised as a key research priority. My work has explored the current 

landscape of wearables in COPD; identified a research gap in exacerbation 

detection and found that a novel device, AcuPebble RE100, can detect 

differences between stable and exacerbating COPD participants. I have also 

investigated the role of wearables in monitoring patients on treatment for 

obstructive sleep apnoea. My work will have impact in several ways outlined 

below.  

1. My systematic review on wearables and COPD has been published in 

Nature digital medicine (impact factor 15) and accessed over 3000 

times. This work identifies gaps in wearable research in COPD patients, 

helping inform future studies. 

2. My work on wearable technology acceptability shows that patients with 

chronic lung disease are receptive to new technologies that are highly 

accurate and easy to use. This work can support small and medium-

sized enterprises (SME) in developing wearables specifically targeted 

at this population. The findings will also be distributed via the Asthma-

UK / British Lung Foundation which may help develop future guidance 

and policies for new wearable designs and inform regulatory bodies on 

the importance of accuracy.  

3. The main body of work highlights key differences between stable and 

exacerbating COPD patients, this will support development of key 
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studies that positively impact patient management. By building on work 

in this thesis and involving SMEs we can develop exacerbation 

detecting algorithms, that enable patients to start exacerbation 

management earlier thus improving overall outcomes. This will not only 

improve patient morbidity and mortality but will also reduce healthcare 

utilisation and therefore result in national cost savings.  

4. While the variability analysis techniques employed in this thesis are well 

established, their application to a group of patients with COPD is novel 

and will influence future work. The large amount of data amassed from 

wearables needs better, meaningful analysis tools, and my work shows 

this is not only possible but informative. The next focus should be to 

build on this to create ‘normal ranges’ for both healthy participants and 

those suffering from long term lung conditions, such that relevant 

differences can be established. We also need to understand how the 

network physiology map differs in stability and sickness, and how we 

can use variability analysis in the clinical setting to positively impact 

outcomes in hospitalised patients.   

5. My work has highlighted the importance of finding novel tools to 

accurately monitor patients undergoing continuous positive airway 

pressure (CPAP) therapy. It has shown that existing wearables that are 

used to diagnose OSA, need modification to account for CPAP therapy.  

The work in this thesis will guide the successful use and application of 

wearable technology to not only improve patient outcomes but also help to 

cement their place in a future digital healthcare system.  
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1. Chapter 1: Introduction 
 

1.1 Chronic Obstructive Pulmonary Disease  

1.1.1 Definition  

Chronic obstructive pulmonary disease (COPD) is a heterogeneous long-term 

lung condition characterised by respiratory symptoms including 

breathlessness, cough, sputum production and/or exacerbations) which 

occurs due to abnormal airways and / or alveoli, resulting in persistent and 

often progressive airflow obstruction. (1) 

1.1.2 Burden of COPD 

According to the world health organisation (WHO), COPD is currently the third 

leading cause of death worldwide (2) and in 15 years, COPD is expected to 

become the leading cause of death, with an economic impact of more than 

£1.7 trillion (3). A recent systematic review which included 162 population-

based studies across 65 countries found that the global prevalence of COPD 

in people aged 30-79 years in 2019 was 10.3% (CI 8.2-12.8). This roughly 

equates to 392 million people, the majority of which live in low- and middle-

income countries (LMIC). They also found that the prevalence of COPD was 

higher in men compared to women [14.1% (11.3-17.4%) vs. 6.5% (5.1-8.2%)]. 

(4) 

In the UK, cases have also continued to rise with the British Lung Foundation 

estimating 1.2 million people currently live with COPD, an increase of nearly 

40% from 2011. Furthermore, the National Institute for Health and Care 

Excellence (NICE) estimates that a further 2 million people are living 

undiagnosed with COPD, meaning the total burden of disease is likely to be 
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closer to 3 million.  This makes it the second most common lung disease in 

the UK. (5, 6) COPD also costs the UK economy roughly £1.9 billion each year, 

causes 115,000 emergency admissions annually, with 16,000 deaths 

occurring within 90 days of admission. (7, 8) Furthermore, the incidence and 

mortality are greater in disadvantaged groups, living in areas of low social 

deprivation where there is a higher prevalence of smokers, poor housing 

conditions and a greater exposure to occupational hazards. This is resulting in 

a widening of health inequality and poorer health outcomes. (8) 

The burden of COPD is therefore felt both at a patient level and nationally with 

clearly more research needed to improve overall outcomes and lead to a 

betterment of patient care. 

1.1.3 Aetiology and pathophysiology 

COPD results from a complex interplay between host and environmental 

factors leading to a chronic inflammatory disease process. While cigarette 

smoking is the commonest environmental risk factor, it is not the only risk 

factor. Historically it was thought that 15-20% of smokers developed COPD 

but this is now thought to be significantly higher. (9)  

The most common genetic risk factor for COPD is a severe deficiency of alpha-

1 antitrypsin (AAT); although in itself it is an uncommon cause of COPD (1% 

in the UK). (10) In patients with significant reduction (homozygous or 

heterozygous for the Z- allele) there can be unopposed neutrophil elastase 

activity and resultant lung damage and COPD. This is further exacerbated by 

environmental factors such as tobacco exposure. (11, 12) Other potential 

genetic factors have been suggested based on genome wide association 
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studies (GWAS), with a recent meta-analysis identifying 82 loci associated 

with COPD. The genetic interaction and susceptibility in COPD is clearly 

complex and likely determined by several alleles, rather than one gene. (9) 

Lung developmental insults during gestation (e.g., maternal smoking (13)), 

childhood exposures / infections can affect overall lung growth, leading to a 

reduced peak lung function and subsequent increased risk of COPD as 

demonstrated by Lange et al. (14) Moreover, there is some evidence that  

normal physiological aging bears a resemblance to patients with COPD 

(enlarged alveolar spaces and increasing loss of lung elasticity), although it is  

unclear yet if healthy aging alone leads to COPD or it is simply a reflection of 

cumulative environmental exposures. (15) 

Fletcher and Peto (1977) first described the accelerated lung function decline 

in susceptible smokers, (16) leading to the large body of subsequent evidence 

describing the causal link between cigarette smoking and COPD development. 

While cigarette smoking is one of the commonest encountered risk factors for 

COPD, other types of tobacco, including pipe, cigar and water pipe, as well as 

marijuana are well described risk factors. (17) Globally, exposure to biomass 

fumes is an important risk factor in the development of COPD, especially since 

most COPD deaths occur in LMICs. These countries commonly burn biomass 

in stoves for cooking and heating. (9) 

Occupational exposures are also an important cause of COPD. These include 

organic and inorganic dusts and fumes. For example, a study of a large UK 

cohort concluded that certain occupations including gardeners, sculptors and 

warehouse works were associated with an increased risk of COPD. (18) 

Furthermore, another cross-sectional study has shown that exposure to 
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workplace dust is associated not only with airflow limitation but also 

emphysema and air trapping. (19) 

 

COPD is underpinned by a chronic inflammatory state whereby inhalation of 

noxious particles including cigarette smoke leads to an amplified inflammatory 

response that differs from the normal response to respiratory tract irritants. 

The reason behind this amplified response is not fully understood but host 

susceptibility and genetics are likely to be at least in part responsible. (17) The 

main site of airway inflammation and subsequent obstruction is in the small 

airways. As the severity of this obstruction increases, there is an increased 

accumulation of mucous and inflammatory cells. The inflammatory cells 

include macrophages, neutrophils, CD8+ lymphocytes and lymphoid follicles. 

There is also an imbalance between pro- and anti-inflammatory mechanisms 

leading to alveolar destruction and emphysema. The severity of airflow 

limitation is associated with the extent of inflammatory cell infiltration. Once 

the inflammatory stimulus stops, a reparative process ensues, but some key 

components of this process are also downregulated in patients with COPD. 

This adaptive response to either self-antigens or foreign antigens may also 

explain the persistence of airway inflammation even after smoking cessation. 

With increasing severity of COPD, bacterial colonisation becomes important 

and can lead to accelerated decline in lung function and frequent 

exacerbations, which in turn also accelerate decline. (9, 20) 

 

Lung damage in COPD is also potentiated by oxidative stress. Oxidative stress 

can be directly caused by cigarette smoke and biomass exposure but also 
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persists in ex-smokers, suggesting that it also rises endogenously. 

Macrophages release reactive oxidative species resulting in lung damage. 

Patients with COPD also have reduced antioxidant defences. Oxidative stress 

results in cytokine and chemokine release causing increased inflammation 

and activation of MMP9, an elastolytic enzyme which can lead to emphysema. 

Oxidative stress also impairs the ability of corticosteroids to supress 

inflammation and directly damages DNA. (21) 

 

COPD represents an underlying chronic inflammatory state and is associated 

with a large burden of comorbid disease. Mannino et al analysed data from 

20,296 subjects and found that impaired lung function was associated with 

more comorbid disease compared to patients with no impairment. (22) 

Moreover, cardiovascular disease and COPD share similar risk factors, 

frequently co-exist and can exacerbate each other with a higher rate of 

mortality and a higher risk of hospitalisation for both conditions. (23) The fact 

that COPD is associated with many comorbidities, underpins the idea that 

COPD can be seen as the pulmonary component of a systemic disease 

process. (20) 

 

Figure 1-1 summarises the aetiology, pathophysiology and cardiovascular 

outcomes seen in COPD. 
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Figure 1-1 Aetiology, pathophysiology, and consequences of COPD  

Modified from (17, 20, 21, 23) 
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1.1.4 Diagnostic criteria 

Spirometry is required to make the diagnosis of COPD in an appropriate 

clinical context where a patient has typical respiratory symptoms and/or an 

exposure / risk factor history. The presence of a post-bronchodilator forced 

expiratory volume in 1 second (FEV1) to forced vital capacity (FVC) ratio of 

less than 0.7 is the only current way to confirm a diagnosis of COPD. (1) 

Routine reversibility testing is not recommended as the presence of 

reversibility does not predict responses to bronchodilators or steroids.  

However, it is worth mentioning that the FEV1/FVC ratio naturally declines in 

age and therefore there is a risk of over diagnosis in the elderly population. 

Furthermore, different ethnicities will also have different normal ranges / cut-

offs and is important to bear in mind. While it has been suggested that using 

the lower limit of normal (LLN) FEV1/FVC ratio may be a better diagnostic cut-

off, this has not yet been utilised in both national and international guidelines. 

(6, 9, 17) 

The severity of airflow obstruction in COPD is based on the FEV1% predicted 

value (all cases requiring a post-bronchodilator FEV1/FVC ratio of <0.7). The 

NICE guidelines (UK) are now aligned with the international global initiative for 

chronic obstructive lung disease (GOLD) strategic report, and grade severity 

as follows: (17, 24) 

• Mild – FEV1 ≥ 80% predicted. 

• Moderate – 50% ≤ FEV1 < 80% predicted. 

• Severe – 30% ≤ FEV1 < 50% predicted. 
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• Very Severe – FEV1 < 30% predicted (or FEV1 < 50%predicted with 

respiratory failure) 

While this scoring system, stratifies patients with regards to airflow severity, it 

is worth noting that COPD is a heterogenous disease with several different 

phenotypes, including more traditional ones like emphysema, chronic 

bronchitis and frequent exacerbators, and newly emerging phenotypes such 

as the systemic phenotype with a high cardiovascular burden and the non-

smoking COPD phenotype. (25, 26) While, there is a weak corelation between 

FEV1, symptoms and an individual’s health impairment, (1, 17) reduced FEV1 

has an association with increased mortality. (27) 

 

1.1.5 Management of stable COPD 

Appropriate management of COPD requires a holistic and comprehensive 

assessment of an individual's COPD burden. Given the large degree of 

heterogeneity and evidence that FEV1 severity alone is not enough to guide 

management, a more thorough assessment is required. This includes 

assessing symptoms using validated questionnaires such as the COPD 

Assessment Tool (CAT) score and MRC breathlessness score, assessing the 

degree of airflow obstruction (based on the FEV1), and gaining a history of 

prior exacerbations and the existence of comorbidities. (28)  

The Chronic Airways Assessment Test (CAAT)  

 

The Chronic Airways Assessment Test (CAAT) formally known as the COPD 

Assessment Tool (CAT) score is a short, validated, self-administered 
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questionnaire, with higher scores indicating increased symptom severity. It 

consists of eight items which are scored on a six-point scale (0-5) and covers 

a range of symptoms. It covers several patient symptoms and includes some 

quality-of-life measures. Furthermore, the initial validation study showed that 

the items related to cough and sputum production had good discriminative 

power for milder disease, whereas items concerning chest tightness and 

confidence leaving the house were more discriminative for severe disease. 

The remaining items captured moderate disease impairment. (29) 

An example of the CAAT score can be seen in Figure 1-2 (taken from Jones 

et al.) (29) 

The CAAT score has very good overall correlation with the COPD-specific 

version of the St George’s Respiratory Questionnaire (r=0.8) and has been 

incorporated in several guidelines as an assessment, monitoring and severity 

tool for COPD. (1, 17) The CAAT is also increasingly used in research trials to 

determine response to both pharmacological and non-pharmacological 

treatments, such as the effect of pulmonary rehabilitation.  
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Figure 1-2 Chronic Airways Assessment Test (CAAT)  (29) 

 

I never cough 0 1 2 3 4 5 I cough all the time 

I have no phlegm 

(mucous) in my chest 

at all 

 

0 1 2 3 4 5 My chest is 

completely full of 

phlegm (mucous) 

My chest does not feel 

tight at all 

 

0 1 2 3 4 5 My chest feels very 

tight 

When I walk up a hill 

or one flight of stairs I 

am not breathless 

 

0 1 2 3 4 5 When I walk up a hill 

or one flight of stairs 

I am very breathless 

I am not limited doing 

any activities at home 

0 1 2 3 4 5 I am very limited by 

doing activities at 

home 

I am confident leaving 

my home despite my 

lung condition 

0 1 2 3 4 5 I am not at all 

confident leaving my 

home because of my 

lung condition 

I sleep soundly 0 1 2 3 4 5 I don’t sleep soundly 

because of my lung 

condition 

I have lots of energy 0 1 2 3 4 5 I have no energy at 

all 
 

For each item in the figure, patients are asked to choose (0-5) which best represents their 

current situation. Scores overall range from 0-40, with higher scores indicating increased 

symptom severity. 
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mMRC Dyspnoea scale 

The Medical Research Council (MRC) breathlessness scoring system was first 

published in 1959 by Fletcher et al to categorise a patient’s response to a level 

of activity. (30) This was modified slightly by Mahler in 1988 to address some 

limitations in the MRC and provide some more nuanced descriptions of 

breathlessness. (31) The modified MRC (mMRC) comprises of the following 

five statements: (32)  

0. Breathless only with strenuous exercise 

1. Breathless when hurrying on the level or walking up a slight hill. 

2. Walks slower than most people of the same age on the level because 

of breathlessness. 

3. Stops for breath after walking about 100 yards or a few minutes on 

level ground. 

4. Too breathless to leave the house, or breathlessness when 

undressing. 

Patients choose the phrase which best describes their current condition. It 

does not quantify the degree of breathlessness, but rather quantifies the 

disability associated with breathlessness.  

The MRC scale has also been validated as a measure of disability in patients 

with COPD (33) and is recommended by international guidance as part of the 

assessment of patient symptom burden. (1) 
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The GOLD ABE Assessment Tool 

The 2023 GOLD strategic report that is updated every year now acknowledges 

the various phenotypes of COPD and has combined different dimensions of 

the disease including, symptoms (based on CAAT and MRC scores), airflow 

obstruction (based on spirometry) and exacerbation frequency to attribute a 

risk group (A, B or E) to patients. This encourages a more targeted patient 

management. (28, 34) This is illustrated in Figure 1-3. 
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Figure 1-3 GOLD ABE assessment tool.  

(modified from (9, 34)) 
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be classified as mild (an increase in usual inhaled therapy), moderate 

(requiring antibiotics +/- steroids) or severe (requiring hospital attendance). 
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The goal in managing patients with COPD is to improve patient symptoms and 

quality of life as well as reducing their future risk of exacerbations, morbidity, 

and mortality. Management should be in the form of multidisciplinary teams 

encompassing community support when appropriate with the patient at the 

centre of care. The information below is based on UK NICE and the 2024 

international GOLD strategic report. (6, 34)  

Smoking cessation is of utmost importance and patients should be offered 

advice and necessary adjuncts at every opportunity. Other non-

pharmacological measures include vaccinations (including influenza, 

pneumococcal, pertussis and COVID-19), pulmonary rehabilitation and 

nutritional supplementation. All patients should be recommended physical 

activity and referred to appropriate weight management specialist services if 

appropriate. Active cycle breathing techniques can also help patients improve 

their cough and breathlessness.  

Medical management is usually in the form of a combination of inhaled therapy 

that includes bronchodilator agents, and in some cases, inhaled 

corticosteroids. The GOLD ABE assessment tool is used to try and personalise 

therapy for different phenotypes of COPD. The initial pharmacological therapy 

is as follows: 

• GOLD group A – a bronchodilator should be offered to all patients 

tailored to its effect on breathlessness.  

• GOLD group B – Initial therapy is a combination of a long-acting 

muscarinic antagonist (LAMA) and a long-acting beta agonist (LABA).  
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• GOLD group E – Initial therapy would be a combined LAMA/LABA 

inhaler, with consideration of adding in an inhaled corticosteroid if 

features of airway reversibility on lung function testing, or if blood 

eosinophils are ≥ 0.3 x 109/L, or if they have further exacerbations 

despite a LAMA/LABA.  

The above management represents a change from previous, as inhaled 

corticosteroids are now used more judiciously given recent evidence that there 

is an increased risk of pneumonia in this population.  

Other add on therapy for patients with COPD who continue to exacerbate may 

include roflumilast and macrolide therapy and biologic therapy such as anti-

IL5 and anti-IL5 receptor antibodies.  

Finally surgical management of COPD needs to be considered in some 

patients and some of the options include lung volume reduction surgery, 

bullectomy, endobronchial valves and lung transplant.  

1.1.6 Acute exacerbations of COPD 

COPD exacerbations can be defined as acute episodes where patients 

experience worsening of their respiratory symptoms, above day-to-day 

variation, resulting in the requirement for additional therapy. Exacerbations 

can be classified as mild (an increase in usual inhaled therapy), moderate 

(requiring antibiotics +/- steroids) or severe (requiring hospital attendance) and 

are mainly triggered by viral infections. (1) (17) Severe COPD exacerbations 

are the second largest cause of emergency admissions in the UK. (35) It is 

well documented that the single best predictor of future exacerbation risk is a 
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prior history of them. (36) Moreover, the risk of subsequent severe 

exacerbations is increased threefold after a second exacerbation and 24-fold 

after the 10th. This clearly significantly impacts patient’s quality of life and leads 

to increased morbidity and mortality. (37)  

Aaron et al (2012) characterised the course and pattern of COPD 

exacerbations in 212 patients using symptom diaries. They found that about 

half the patients who reported an initial worsening in their respiratory 

symptoms from baseline crossed the exacerbation threshold (defined as a set 

higher daily symptom score), whereas the remainder resolved spontaneously 

following a few days of slightly increased symptoms. Furthermore, they also 

described two different patterns of exacerbations. The first was sudden onset 

whereby patients had rapidly increasing symptom burden and shorter recovery 

back to baseline. While the second was a more gradual onset of symptom 

severity with a statistically significant longer duration of recovery (OR 1.28, 

95% CI 1.06-1.54). (38) They also showed that the time from first onset of 

increased symptoms to full exacerbation ranged from 0-5 days in 90% of 

patients, with an overall range of 0-14 days. 

Current treatments for COPD exacerbations include antibiotics and oral 

corticosteroids, coupled with increased inhaled bronchodilator therapy. 

However, nearly half of all COPD exacerbations are not reported to healthcare 

professionals. (39) There is also a delay between exacerbation onset and 

treatment which can lead to poorer patient outcomes. One study found that 

the median time between exacerbation onset and treatment was 3.69 days 
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(2.0-5.57). Moreover, the authors of the study also found that failing to report 

exacerbations led to an increased risk of emergency hospitalisation. (40)  

There are several challenges that exist with the current definition of 

exacerbations. Firstly, there is a sole reliance on patients’ subjective 

perception of increased symptoms, which will vary from patient to patient and 

can also be affected by patients underlying mental state. Secondly, the 

symptoms are not related to measurable objective variables that characterise 

the event itself, and finally severity is only established based on healthcare 

utilisation. Recently a panel of global experts have established the Rome 

protocol to try and update the definition and classify the severity of COPD 

exacerbations by including objective measurements such as respiratory rate, 

heart rate, oxygen saturations and CRP; but this needs further validation in 

prospective studies. (41)  

It has been widely acknowledged that earlier, and accurate identification of an 

exacerbation can lead to improved patient outcomes, reducing the risk of 

hospitalisation and developing respiratory failure. (35, 41) It could also result 

in cost savings from: 1) reduced emergency hospital admissions; 2) reduced 

GP visits; 3) reduced work absenteeism and therefore increased productivity. 

Therefore, finding new predictors/markers of exacerbations is clearly a priority 

for COPD research. This will enable patients to potentially start their therapy 

earlier, improving patient outcomes. (35)  

Wearable technology, described in detail in Chapter 1.3, is one way of 

detecting physiological changes before, during and in recovery from an 
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exacerbation, and can be succinctly defined as a ‘miniature embedded 

computing system worn by people.’ (42) The potential integration of future 

wearable technology to enable patients to start and escalate their COPD 

exacerbation therapy is illustrated in Figure 1-4.  
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Figure 1-4 The use of wearable technology devices in future exacerbation detection 
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1.2 Obstructive Sleep Apnoea 
 

 

1.2.1 Definition 
 

Obstructive sleep apnoea (OSA) is a common sleep disorder, especially in the 

overweight / obese population, that is characterised by repetitive episodes of 

partial or complete collapse of the upper airway leading to a reduction or 

cessation of airflow, resulting in frequent nocturnal desaturations and 

wakening. (43) 

 

1.2.2 Burden of OSA  
 

The global prevalence of OSA in adults aged 30-69 years is nearly one billion. 

About 50% of these patients have moderate to severe disease and the largest 

number of patients are in China, followed by the USA, Brazil, and India. (44) It 

is estimated that OSA affects about 1.5million patients in the UK, of which a 

large number (85%) are undiagnosed and therefore untreated. (45) 

Furthermore, untreated OSA has been shown to decrease quality of life, 

increase demand for healthcare services and also has a large global economic 

impact. As an example, a cost-effectiveness study in the USA found that to 

diagnose and treat every adult in the USA who has OSA it would cost $49.5 

billion but the net projected savings would be $100.1 billion. (46) 
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1.2.3 Diagnostic criteria of OSA 
 

The diagnosis of OSA usually requires typical symptoms and a confirmatory 

sleep study. 

The International Classification of Sleep Disorders 3 criteria for diagnosing 

OSA require the following: (47) 

Either 

Symptoms / signs including: 

• Daytime sleepiness / somnolence 

• Fatigue 

• Insomnia 

• Nocturnal symptoms including snoring, gasping episodes, witnessed 

episodes of breathing cessation. 

Or 

Associated medical / psychiatric disorders including: 

• Hypertension 

• Coronary artery disease 

• Atrial fibrillation 

• Congestive heart failure 

• Stroke 

• Diabetes 

• Cognitive decline / dysfunction 
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• Mood disorder 

And 

• An overnight sleep study (scored according to the American 

Association of Sleep Medicine (AASM) criteria) showing ≥ 5 

predominantly obstructive respiratory events per hour. 

However, it is worth noting that if the overnight sleep study shows ≥ 15 

predominantly obstructive respiratory events per hour, patients can be 

diagnosed with OSA without associated symptoms or medical/psychiatric 

disorders.  

Determining daytime somnolence can be done through the validated Epworth 

Sleepiness Scale (Appendix 7.7.1) which is an eight-item scale in which 

patients score the likelihood of falling asleep in various scenarios from not at 

all (0) to very likely (3). A score of greater than 10/24 is indicative of an 

increased risk of falling asleep. (48)  

Patients can also be referred for sleep studies based on screening tools, such 

as the STOP-BANG questionnaire, originally developed as a pre-operative 

screening tool.  The STOP-BANG questionnaire uses 8 simple questions / 

measurements to determine OSA risk: (49)  

S – Do you Snore loudly? 

T – Do you feel Tired during the daytime? 

O – Has anyone Observed you stop breathing while you sleep? 
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P – Do you have / are on treatment for high blood Pressure  

B – Is your BMI > 35kg/m2? 

A – Is your Age >50? 

N – Is your Neck circumference greater than 40cm? 

G – Male Gender? 

One point is given to each of the above points and a score of ≥ 3 is considered 

to indicate a high risk of OSA.  

It is worth noting that while the sensitivities of screening tools tend to be high 

(98% for STOP-Bang), the specificities are much lower (26% for STOP-

BANG). (50) This means a high number of false positive screening tests, which 

in turn means a large number of patients who are referred for sleep studies, 

end up having normal studies. 

At the Royal Free Hospital NHS Foundation Trust, we screen referrals from 

general practitioners using a referral questionnaire that incorporates STOP-

Bang as well as the ESS and key co-morbidities including hypertension, 

diabetes, atrial fibrillation, ischaemic heart disease and thyroid disorders. 

Referrals with an elevated STOP-Bang, associated daytime sleepiness will be 

triaged for a sleep study.  

1.2.3.1 Overnight sleep studies 

The diagnosis of OSA is confirmed with an overnight sleep study. There are 

various categories of sleep studies: (51) 
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• Level 1 sleep studies (Reference / Gold standard) – require an 

overnight stay in a sleep laboratory with a technician in attendance and 

have a minimum of seven channels of data (usually more than 16), 

including respiratory, cardiovascular, and neurological sensors. 

• Level 2 sleep studies – the same as level 1 but without a technician in 

attendance. 

•  Level 3 sleep studies – portable home monitors with at least three 

channels of data (e.g., oxygen saturations, nasal airflow, and 

respiratory effort). They do not have neurological channels and 

therefore cannot detect non-respiratory sleep disorders.  

• Level 4 sleep studies – portable devices that capture only one or two 

channels of data (e.g., overnight oximetry). 

It is worth noting that most sleep studies used in many centres in the UK are 

level 3, given the ease of testing and portability (for home studies). A 

systematic review and meta-analysis (n = 59 studies, 5026 patients) 

comparing level 1 and level 3 studies showed that level 3 studies have good 

diagnostic performance for diagnosing OSA, with a summary sensitivity 

between 0.79 – 0.97 and specificity between 0.60 – 0.93 across the different 

apnoea-hypopnoea cut-offs. (51) Furthermore, the AASM recognise level 3 

studies as an acceptable reference standard for diagnosing OSA. 

The diagnosis of OSA relies on determining the number of apnoea’s and 

hypopnoea’s occurring every hour. This is called the apnoea/hypopnoea index 

(AHI). An apnoea is defined as a more than 90% reduction in nasal flow lasting 
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at least 10 seconds, with or without an associated desaturation. A hypopnoea 

is defined as a reduction in nasal flow by at least 30% lasting at least 10 

seconds with an associated 3% or 4% desaturation. For these events to be 

classified as obstructive, there needs to be evidence of ongoing respiratory 

effort, in the form of thoraco-abdominal movement. (52) Examples of an 

obstructive apnoea and hypopnoea are shown in Figure 1-5 below. These 

have been taken with permission and anonymously from a patient who 

underwent a sleep study at Royal Free Hospital.  
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Figure 1-5 Obstructive apnoea and hypopnoea on a multi-channel (level 3) 

sleep study. 

1-5-A: Obstructive apnoea 

 

1-5-B: Obstructive hypopnoea 
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The severity of OSA is defined by the AHI (number of apnoeas and 

hypopnoeas per hour): 

• Normal: AHI < 5 

• Mild: 5 ≥ AHI < 15 

• Moderate: 15 ≥ AHI < 30 

• Severe: AHI ≥ 30 

Other useful and relevant information gained from sleep studies include mean 

nocturnal oxygen saturations and the percentage of time spent with oxygen 

saturations less than 90%. The latter gives some indication as to whether the 

patient may have nocturnal hypoventilation and may be a better indicator of 

hypoxic burden / oxidative stress. 

1.2.4 Medical consequences of OSA 

 

Patients with OSA have recurrent episodes of temporary airway obstruction, 

leading to nocturnal desaturations and arousals. This leads to a surge of 

sympathetic nervous system activity, resulting in blood pressure elevations, 

inflammatory mediator release and worsened insulin resistance. Furthermore, 

the intra-thoracic pressure swings affect pre- and after- load resulting in 

cardiac remodelling. (53) 

A previous literature review (106 articles) concluded that OSA has numerous 

and serious downstream consequences. These not only include 

cardiovascular morbidities and hypertension, but also metabolic disorders, 

cancer and increased perioperative complications. Given patients with OSA 
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are often somnolent in the daytime, there is also an increased risk of road 

traffic accidents and occupational accidents. (54) 

Table 1-1 outlines some of the major medical consequences of untreated 

OSA. 
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Table 1-1 Major medical consequences of OSA. 

Medical Condition Prevalence / Risk  

Hypertension Prevalence estimates: 30-50% (55) 

Pooled odd ratio (OR) for: (56) 

Mild OSA: 1.184 (1.093-1.274) 

Moderate OSA: 1.316 (1.197-1.433) 

Severe OSA: 1.561 (1.287-1.835) 

 

Atrial Fibrillation OR 2.19 (1.40-3.42) (57) 

Heart Failure Left ventricular ejection fraction significant lower in 

OSA patients compared to controls (pooled 

standard mean difference [95%CI] -0.238 (-0.379, 

-0.097)  (58) 

Coronary artery disease Prevalence estimates: 38 – 65%   

Moderate/severe OSA compared to no / mild OSA 

had a larger total atheroma volume (461.3 ± 

250.4mm3 vs. 299.2 ± 135.6mm3) (59) 

Cerebrovascular disease Poststroke prevalence of OSA: 71% (60) 

Pulmonary hypertension Prevalence estimates: 70-80% (55) 

Metabolic syndrome Pooled OR of metabolic syndrome in patients with 

OSA: 2.87 (2.41-3.42). (61) 

Mortality  Severe OSA and all-cause mortality: pooled OR 

1.54 (1.21-1.97) (62) 

Severe OSA and cardiovascular death: pooled OR 

2.96 (1.45-6.01) (62) 

No clear association between mild/moderate OSA 

and increased mortality risk. (55) 

Road Traffic Accidents Motor vehicle accidents in OSA vs. control: Hazard 

ratio 1.29 (1.18-1.39). 

Risk of accidents as pedestrian and bicyclist were 

not increased. (63) 
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1.2.5 Management of OSA 

 

The National Institute of Clinical Excellence (NICE), UK has recommended the 

following treatments, dependant on the severity of OSA and the presence of 

symptoms. (64) 

Mild OSA (asymptomatic / symptoms not affecting activities of daily living) 

This group of patients can be managed conservatively with lifestyle measures 

(such as weight loss, smoking cessation and stopping any sedatives). 

Mild OSA (symptomatic) 

This group of patients should be offered continuous positive airway pressure 

(CPAP) therapy. If patients refuse or do not tolerate this treatment, they should 

be offered a mandibular advancement device. This should be alongside 

lifestyle measures. 

Moderate / Severe OSA (with or without symptoms) 

This group of patients should be offered CPAP therapy as first line treatment. 

However, if they do not tolerate this treatment, they should also be offered a 

trial of a mandibular advancement device.  

CPAP is a machine that blows air continuously through a mask (interface) 

worn by the patient, splinting open the back of the airway, stopping it from 

collapsing / narrowing, thus treating OSA.   
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1.2.5.1 Benefits of CPAP therapy in OSA 

 

Whilst CPAP is considered gold standard therapy for patients with OSA, the 

benefits on reducing morbidity and mortality are somewhat less clear. There 

is no doubt that CPAP reduces the AHI, the number of nocturnal desaturations 

and sleep arousals, thus improving sleep quality. This has also translated into 

benefits in daytime symptoms of somnolence, quality of life and mental 

alertness. (43) Furthermore, a recent large Danish cohort study followed 

48,168 patients with OSA and concluded that CPAP use was associated with 

a reduction in motor vehicle accidents [incidence rate ratio 0.75 (0.60-0.91). 

(63) 

However, the benefit with respect to cardiovascular disease outcomes has 

been mixed. In 2012, Montesi et al undertook a systematic review on the effect 

of CPAP on blood pressure. They included 28 studies (n=1948) and found that 

that the weighted mean difference in diurnal systolic blood pressure was -

2.58mmHg (-3.57 to -1.59mmHg) in favour of therapy. While statistically 

significant this is unlikely to be of clinical importance. (65) Following on from 

this, Iftikhar et al (2014) conducted a systematic review in patients with 

resistant hypertension and showed a greater reduction in mean systolic blood 

pressure of -6.74mmHg (-9.98 to -3.49) in favour of CPAP. (66) These results 

are similar to those of a recent systematic review (2021) published by Labarca 

et al. (67) 

The SAVE trial in 2016 randomised participants with moderate/severe OSA 

with pre-existing cardiovascular or cerebrovascular disease to receive either 
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CPAP or usual care alone. Usual care was defined as medical management 

of their cardiovascular co-morbidities. Their primary composite outcome of 

interest was death from cardiovascular disease or hospitalisation from 

unstable angina, heart failure or transient ischaemic attack. They found no 

significant difference between groups (hazard ratio with CPAP 1.10 (0.91-

1.32)). However, they limited their study to a population with an ESS <15, and 

the mean use of CPAP was only 3.3 hours per night. (68) More recently a 

systematic review and meta-analysis of 8 randomised controlled trial (n=5684) 

also found no difference between CPAP and control in the risk of major 

adverse cardiovascular events (MACE) (risk ratio 0.97 (0.85-1.10). However, 

subgroup analysis suggested that CPAP was associated with lower MACE (by 

36%, p=0.08) in patients who were adherent with CPAP (defined as ≥ 4 

hours/night).  

With regards to other cardiovascular outcomes (including heart failure, atrial 

fibrillation, and stroke), the results have also been similar. A recent systematic 

review also concluded that treatment with CPAP was not associated with a 

change in fasting glucose. (69) Although a major limitation of most studies has 

been variable / low concordance with CPAP. 

Ideally patients should use their CPAP machine for the duration of their sleep. 

However, this rarely happens and internationally patients who use CPAP for ≥ 

4hours a night for at least 70% of the time, have been classed as adherent or 

concordant with treatment. (70) Even at this level, studies have shown 

concordance rates to be between 30-60%. (71) While ≥ 4hours a night is 
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classified as adherent; this is arbitrary. One study found that differing 

thresholds of CPAP use were required to achieve significant improvements in 

sleepiness and daily functioning, beyond which further improvements were 

unlikely. These thresholds were 4 hours for ESS, 6 hours for the Multiple Sleep 

Latency Test and 7.5 hours for the Functional Outcomes associated with 

Sleepiness Questionnaire. The study also found that a significant minority of 

patients (41%) had an improvement in their ESS with just 2 hours of nightly 

use. Another systematic review and meta-analysis on cardiovascular 

outcomes in OSA patients treated with CPAP, demonstrated  following 

sensitivity analysis, that CPAP concordance ≥ 4hours/night reduced MACE by 

57% (relative risk 0.43, 0.23-0.80). (72) A small study showed that patients 

who used CPAP for > 6hours were 7.9 times (p=0.01) more likely to normalise 

memory function compared to those who used CPAP for < 2hours. Finally, a 

study investigating mortality in OSA patients treated with CPAP (n = 871) with 

a mean duration of follow up of 48.5 ± 22.7 months) where 46 patients died, 

showed that the 5-year cumulative survival rates were significantly lower in 

patients who did not use CPAP (compliance <1 h) compared to those using 

the device for >6/d [85.5% (95%CI 78% - 92%) vs. 96.4% (95%CI 94% - 98%), 

p <0.001)]. A multivariate analysis including compliance, age, arterial 

hypertension and FEV1 percent predicted showed that that compliance > 

6h/day correlated with mortality benefit (OR 0.10 (0.04-0.29)). (73) 
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It is probable that increasing CPAP use, and concordance will be beneficial to 

cardiovascular and other outcomes and further studies are required to 

ascertain this.  

Currently CPAP concordance monitoring in most centres in the UK is 

conducted via remote telemonitoring, whereby the CPAP machine inherently 

calculates the residual AHI (i.e., the patients AHI while using the machine). 

CPAP machines can store airflow and pressure data and thus display to the 

clinician residual events and compliance indices. However, algorithms 

between different manufacturers vary and a review by the American Thoracic 

Society concluded that while usage can be reliably determined, the residual / 

remnant AHI is not easy to interpret. (74)  

Moreover, while machines show the residual AHI, the effective AHI is 

unknown. The effective AHI was a term introduced by Boyd et al, defined as 

the ‘AHI value measured over the entire sleep period including both the time 

therapy is and is not being used’. (75) On analysing a small sample (n=28) of 

severe OSA patients, they found that 63.5% of patients who used CPAP for 

less than 6 hours still had an effective AHI in the moderate-severe category. 

This suggests a huge burden of untreated disease. (75) 

The data above suggests that a ‘one size fits all’ approach of recommending 

> 4hours of CPAP use may not be correct, especially given everyone starts 

with a differing diagnostic AHI. Further research into accurate ways of 

monitoring the residual and effective AHI while using CPAP is important as the 

lack of cardiovascular and other benefits of CPAP therapy may simply be due 
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to lack of enough use. While 4 hours may be enough for someone who has 

moderate OSA to begin with, it may not be enough for someone with severe 

disease or with severe symptoms, or with multiple morbidities, and further work 

is required to try and provide a patient specific CPAP target requirement. This 

is likely to overall improve concordance to therapy and lead to morbidity and 

mortality benefits. This idea is shown in Figure 1-6.  
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Figure 1-6 Patient specific CPAP therapy target 
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1.3  Wearable technology 
 

1.3.1 Definition of wearable technology 
 

To understand the definition of wearable technology it is necessary to 

understand the definition of the following terms first. 

A computer is an electronic device that processes, stores, and calculates data 

according to a set of instructions. These instructions are provided by a 

software or hardware program. A computer therefore can accept data, process 

it, and compute various outputs depending on the desired outcome. (76) 

The internet can be defined as an electronic communications network, 

connecting many different computer networks around the world. (77) The 

transmission control protocol (TCP) and internet protocol (IP) is a standard set 

of communication rules which governs how the data is sent across the internet. 

The internet is a ‘packet-switched’ network which allows information to be 

efficiently sent across long distances. The IP sends small ‘packets’ of 

information to the right destination and the TCP re-assembles these ‘packets’ 

at the receiving end. (78) 

The term ‘Internet of Things’ (IOT) was coined by Kevin Ashton in 1999 and 

can be defined as a network of physical objects. It is essentially a network of 

different devices (‘things’) that interact with each other enabling 

communication between human-to-human, human-to-things, and things-to-

things. The sensors embedded in the devices are linked through wired and 
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wireless networks, often using the same internet IP that connects the internet. 

(79, 80) 

Wearable technology is a leading category of IOT and can be succinctly 

defined as a ‘miniature embedded computing system worn by people.’ (42) 

Wearable technology includes any electronic device that is worn close to 

and/or on the surface of skin or implanted, that can collect, track, monitor and 

relay information. (81) 

In 2015, Alrige and Chatterjee (82) proposed a taxonomy of wearable 

technology in healthcare, classifying the different technologies according to 

application, form and functionality. This can be seen in the schematic (Figure 

1-7) below.  
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Figure 1-7 Schematic for the taxonomy of wearable technology in healthcare. 
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The technical commission 124 of the International Electrotechnical 

Commission (IEC) similarly categorises four different types of wearable 

technology: (81) 

1. Accessory wearables: low powered devices worn as accessories like 

smart watches, glasses, or fitness trackers. 

2. Textile/Fabric wearables: these are sensors integrated into different 

textiles. 

3. Patchable devices: skin patches which are flexible and thin. 

4. Implantable devices: these are implanted in the body. 

Furthermore, the IEC further classify these four types depending on their 

proximity to the body as: 

1. Near-body wearables: intended to be near the body but do not need 

physical contact. 

2. On-body wearables: direct skin contact 

3. In-body wearables: implanted inside the body. 

4. Electronic textiles: fabric-based electronics 
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1.3.2 A short history of wearable technology 

The invention of eyeglasses in 1289 is probably the start of the journey for 

wearable devices. While a long throw away from the wearable technology we 

know today it paved the way for other accessories including the pocket watch 

in 1530, the abacus ring in 1644 and the wristwatch in 1911.  

The first wearable computer was developed by Thorpe and Shannon in 1961. 

They developed a timing device (input) hidden in a shoe that could predict 

where the ball would land in a game of roulette. The computing device was 

worn on the waist with feedback output relayed to a speaker behind the ear. 

(83) Surtherland developed the origins of smart glasses and helmets in the 

late 1960s, paving the way for augmented reality (AR). (81, 84) In fact AR was 

not developed until the early 1990’s.  

The 1970’s saw a camera-to-tactile vest for the blind (Smooth-Kettewell) as 

well as a wearable system to help photographers characterise the way objects 

responded to light (Steve Mann). (81, 85) Through the 1980s and 1990s, Mann 

created further wearable technology including a radar system for the blind and 

audio wearables. 

The beginning of the 1990s saw the development of the portable electronic 

device assistants such as the ‘forget-me-not’, a continuous recording system 

enabling users to record their interaction with people. This data was stored on 

a database for future use. (85, 86) Towards the end of the nineties into the 

noughties, wearable technology really exploded. Several different wearables 

developed simultaneously including: the mBraclet™ (1998), a forerunner to 
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the Apple and Android watches; the Wearable motherboard™ (1999), the first 

‘smart shirt’ monitoring vital signs; the Levi Industrial Clothing Division 

Jacket™ (2000) contained an internal network designed to interconnect 

gadgets; the first-ever GoPro camera™ (2004); the Nike and iPod Sport kit’™ 

(2006) which was a device measuring and recording distance travelled with 

the aid of a small accelerometer; the Fitbit™ (2007), the first wireless activity 

tracker to synchronize data with the internet; the Samsung smart watch™ 

(2009) and Google’s Project Glass™ in 2012 was a milestone in augmented 

reality. (85) 

Android wear was developed in 2014 and was the first operating system 

specifically designed for wearables, mainly smartwatches. (87) Apple inc™ 

made its first entry into the wearable watch market in 2015. (85) 

The above information provides a brief insight into the development of mass, 

commercially available wearable technology which is now expanding 

exponentially. However, it is worth noting that several routine medical 

wearable devices are currently being used in the hospital setting. The following 

are some common examples: 

• Cardiac pacemakers, developed in Stockholm in 1958, were the first 

implantable medical devices. Further developments and modifications 

led in 1980 to the multifunctional pacemaker, more akin to what is used 

today. (88)  

• Pulse oximetry, an invaluable tool to monitor patient saturations and 

heart rate was initially developed in Japan in 1972. (89)  
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• The electrocardiogram (ECG) has its origins in 1901, where a Dutch 

physiologist first developed an ECG for clinical use. (90) 

• While blood pressure monitors have the origins in the late 19th and early 

20th centuries, they are in wide use currently both in hospital and also 

has home wearable devices. A recent standard published by the 

Institute of Electrical and Electronics Engineers (IEEE) has published a 

standard for wearable cuffless blood pressure monitoring. (91) 

Mass produced and commercially available wearable technology, emulating 

bulkier technology used in the hospital setting, is likely to significantly improve 

patient outcomes. Health wearable technology could potentially improve 

patient monitoring and diagnostics, as well as lead to increased patient 

physical activity and may also help patients adhere to beneficial treatments.  

The wearable health technology market has grown exponentially recently with 

an estimated market value of $29.27 billion in 2017, predicted to rise to 

$195.57 billion by 2027. (92) There is therefore clearly an increasing consumer 

demand and interest as more people engage with their own healthcare and as 

personalised medicine starts to become a reality. This concept has also been 

endorsed by the World Health Organisation (WHO), who have recognised a 

shift in healthcare to one where digital healthcare, including IOT, is the future. 

(93) 

However, several challenges still exist of which the biggest is the lack of clear 

regulation and issues surrounding data ownership and privacy. The next 
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section focuses on some of the wearable health technology regulations that 

are currently in place.   
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1.3.3 Wearable technology regulations 
 

This section focuses on regulatory body requirements for medical wearable 

devices. 

The Medical Device Regulation (MDR) which came into force in April 2017, 

replaced previous European legal frameworks in place. The MDR defines a 

medical device as: 

“any instrument, apparatus, appliance, software, implant, reagent, material or 

other article intended by the manufacturer to be used, alone or in combination, 

for human beings for one or more of the following purposes: 

• Diagnosis, prevention, monitoring, prediction, prognosis, treatment of 

alleviation of disease or disability. 

• Investigation, replacement, or modification of the anatomy or of a 

physiological or pathological process 

which does not achieve its principal intended action by pharmacological, 

immunological, or metabolic means, but which may be assisted in its function 

by such means.” (94) 

If wearable devices fall under the definition of a medical device (as per the 

above definition) the next step is to classify the device according to the 

following: 

1. Class 1 (low risk) 

2. Class IIa or IIb (medium risk) 

3. Class III (high risk) 
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The next step in the process is to involve a Notified Body. A Notified Body is 

not necessary for medical devices of class 1 unless they have a measuring 

function. A Notified Body is an organisation that is designated by the EU to 

assess the conformity of the medical device, in accordance with the legislation 

set out by the MDR. This is a complex process and covers all stages from the 

manufacturing of the product to the clinical evaluation of the product which 

includes summating currently available literature and collecting clinical data. 

The level of depth required depends on the class of the medical device.  

Once all the necessary steps have been completed the medical device can 

have a CE marking on the product. This shows that the product complies with 

EU legislation and confirms that it is valid to be sold throughout the European 

union. (94-96) 

Following Brexit, CE marking stopped being recognised in Great Britain 

following 30 June 2023. Furthermore, UK Notified bodies could not issue CE 

certificates and instead became UK Approved Bodies. Medical devices sold in 

the UK instead now need to have a UKCA (United Kingdom Conformity 

Assessed) mark. Furthermore, all medical devices also need to be registered 

with the MHRA (Medicines and Healthcare products Regulatory Agency). The 

MHRA is ultimately responsible for the conformity of the device and monitoring 

and the device must also conform to the UK Medical device regulations 2002. 

Moreover, the MHRA will only accept registration of devices where the 

manufacturers are based in the UK. (97, 98) 
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Medical devices in the United States require approval from the U.S. Food and 

Drug Administration (FDA). The route to market for a medical device can take 

on average 3-7 years and have a large cost implication. The FDA classifies 

devices into 3 different groups (similar to the EU and UK): 

1. Low risk (Class I) – low risk of illness or injury (e.g., surgical gauze) 

2. Medium risk (Class II) – e.g., a suture 

3. High risk (Class III) – devices which support or sustain human life or 

are important to prevent damage to human health. 

Class I and II device approvals are more focused on registration, 

manufacturing, and labelling, often do not require large amounts of clinical 

data. Most class I devices qualify for an ‘exempt status’, whereby they do not 

need proof of safety. Class II devices often must demonstrate they will perform 

as expected and have to go through a pre-market notification (PMN). This also 

does not need a large amount of robust clinical evidence. Finally, class III 

devices require a pre-market approval (PMA) and are the most rigorously 

tested devices with robust clinical data. (99) 

Following this process and depending on the type of device, the FDA gives 

three different outcomes: (100) 

1. FDA registered – all medical devices must be registered with the FDA. 

This only means that the FDA is aware of the device. They cannot use 

the FDA logo in marketing or labelling the device. This generally applies 

to class I devices. 
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2. FDA cleared – these devices have generally gone through a PMN. This 

generally means the manufacturer can submit evidence that the device 

in question is similar to another device that has previously been through 

a rigorous PMA. This usually applies to class II devices. 

3. FDA approved – New medical devices which are not similar to others, 

or class III devices must undergo a PMA. This is a rigorous process that 

requires robust clinical trial data.  

For clinical trials in Great Britain, all medical devices must be UKCA/CE 

marked for the purpose they are being used for, unless the study is designed 

to investigate the performance and/or safety of the device. If the device is not 

CE marked then notification to the MHRA is required along of course with 

ethics applications via the Health Research Authority (HRA). (101, 102) 
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1.3.4 Wearable medical devices and COPD 

Wearable medical devices are likely to be integrated into telemedicine in the 

future, to better patient care. Telemedicine can be defined as “the use of 

electronic and communications technologies to provide and support health 

care when distance separates the participants” (103) Part of telemedicine is 

telemonitoring which allows for real-time transfer of data across a distance. 

Wearable devices enable this telemonitoring to take place. A recent Cochrane 

review identified 29 studies on telehealth interventions and remote monitoring 

in COPD. However, only five of these interventions transferred data, allowing 

real-time review by health professionals, so called synchronous monitoring, as 

opposed to store and transfer. The authors concluded that the quality of the 

evidence was very low but remote monitoring was not beneficial overall, and 

larger studies were necessary. However, they also found no harm. (104) 

Another systematic review looking into the role of remote patient monitoring to 

detect exacerbation rates and reduce acute care use was more positive. It 

included 91 studies and concluded that remote monitoring can lead to reduced 

acute care use. However, while the studies were of medium-to-high quality, 

there was a great deal of heterogeneity in terms of patient groups (e.g., 

comorbidities), the actual intervention (invasive vs. non-invasive; active vs. 

passive review) and study differences (all-cause vs. disease-specific acute 

hospital use). (105) Therefore further research is clearly needed in both the 

field of wearable technology and the role it plays in telemedicine. It is also 

important to note, that at present, given the paucity of data and the cost of this 

technology, telemedicine sits at the top of the COPD value pyramid, with an 
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estimated value of £92,000 per QALY (quality-adjusted life year). This is 

significantly more expensive than the influenza vaccination (£1000 per QALY). 

(106) 

There have been several advancements in wearable devices and COPD in 

recent years. Physical activity monitoring and exacerbation detection have 

been described in detail in the literature review in Chapter 2. The next section 

focuses on the most common areas which have seen advancements in 

wearable technology.  

Physical activity monitoring 

Physical activity plays a vital role in improving outcomes in patients with 

COPD. Studies have shown that higher levels of physical activity are linked to 

a reduction in lung function decline, (107) hospitalisations, (108) and mortality. 

(109) Furthermore, physical inactivity is linked with poorer quality of life and 

increased breathlessness. (110) Pedometers and accelerometers are two 

commonly used motion sensors to objectively measure physical activity. (111) 

Pedometers are simple wearable devices that count the number of daily steps. 

Bravata et al conducted a systematic review in 2007 to investigate whether 

pedometers improve physical activity in outpatients, (not specific to COPD). 

They included 26 studies (n=2767) and concluded that pedometer use was 

associated with an increase in physical activity by about 27% from baseline. 

Moreover, this was associated with a significant decrease in BMI (0.38, CI 

0.05-0.72, p=0.03). Having a step goal (like the 10,000 steps) was an 

important predicter of increased physical activity. (112)  
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Accelerometers are more advanced and therefore more expensive than 

pedometers. They typically measure and store the amount and intensity of 

movement over time. They can detect movement in uniaxial or multiaxial 

planes. 

A review in 2014 found that several different varieties of pedometer models 

were available on the market with good test-retest reliability (an intraclass 

correlation coefficient of 0.94). While one study found good correlation 

between pedometers and triaxial accelerometers, the accuracy was lower with 

slow walking or inactivity, commonly seen in COPD patients. At that time the 

research on COPD and physical activity devices had mainly focused on their 

reliability and validity. (111) 

Mendoza et al (2015) conducted a randomised trial to assess whether 

pedometers improved physical activity in a COPD population [n=97, mean age 

69 years, 61% male, mean (SD) FEV1 percent predicted 66% (19)]. (19). 

COPD patients took part in a 3-month program comparing a standard arm 

(encouragement alone) or a pedometer-based programme. The pedometer 

group had a significant improvement in physical activity from baseline (3080 ± 

3254 steps/day vs. 138.3 ± 1950 steps/ day). There were also improvements 

in the CAT score (-3.5 ± 5.5 vs. -0.6 ± 6.6, p=0.001) and the six-minute walk 

distance (12.4 ± 34.6m vs. -0.7 ± 24.4m, p=0.02). (110) 

Qui et al (2018) conducted a systematic review of 15 studies (n = 1316, mean 

age 66years, FEV1% predicted 42 – 78%), found that step-counter use in a 

COPD population increased physical activity compared to controls 
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(standardised mean difference (SMD) = 0.57 (95%CI 0.31 – 0.84), I2 0.57). 

(113)  

Another systematic review in 2021 assessed patients’ perceptions and 

experiences of wearing physical activity monitors (including smartphone apps 

and wearables) in a COPD population. They included 12 studies (n=424) in 

their qualitative analysis. They developed seven different themes across the 

study and concluded that overall people with COPD liked using the technology 

and found it useful in increasing their physical activity level. The review also 

highlighted some negative experiences including some frustration with 

inaccurate monitoring, technical issues, and the time-consuming nature of 

monitoring. Feedback from monitors, goal setting and self-monitoring popular 

with patients. Overall however, the authors felt that there is limited research 

exploring views of how people with COPD actually integrate technology in their 

lives and this therefore is something that needs to be explored in the future. 

(114) The acceptability of physical activity monitors in this group of patients is 

important if healthcare practitioners want them to engage with the technology.  

Pulse oximetry devices.  

Pulse oximetry is a widely used wearable device using an optical method 

based on a reflection of infra-red light. A large Spanish study (n = 2181) has 

shown that in patients with COPD there is a high correlation (0.89) between 

oxygen saturations detected by a pulse oximeter (SpO2) and arterial blood 

gas measurements. (115) Most studies to date, have focused on continuous 

overnight oximetry measurements to look for oxygen desaturation in patients 
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with various cardio-respiratory diseases or with certain symptoms. (116-118) 

However, the clinical usefulness of this has not been fully investigated. The 

INOX trial aimed to investigate the correction of overnight hypoxia with 

nocturnal oxygen therapy, in patients with COPD who otherwise do not meet 

criteria for daytime LTOT. While underpowered for their composite primary 

outcome of death from any cause or a requirement for LTOT, the study 

showed no benefit or risk associated with nocturnal oxygen therapy alone. 

(119) Therefore, while monitoring overnight pulse oximetry may inform COPD 

patients that they have a degree of nocturnal hypoxia, if this is not associated 

with any sleep disordered breathing, there is currently no evidence-based 

beneficial treatment for this. Therefore, the role of nocturnal oximetry 

monitoring in COPD needs to be further investigated. 

Several studies have also looked at the role of 24-hour oxygen monitoring with 

varying results. Some studies showed a high frequency of daytime 

desaturation during activities of daily living, while others showed less frequent 

desaturation (120, 121). This highlights either the heterogenous phenotypes 

in COPD or normal day-to-day variations or poor sensitivity of the test. Further 

work in this field is necessary to see whether pulse oximetry monitoring can 

translate to clinical usefulness. 

A study by Buekers et al (2019) investigated the role of continuous pulse 

oximetry monitoring over a one-week period. They showed that a high 

percentage of valid SpO2 data could be obtained through a longer monitoring 

period with significant fluctuations during the week both during the day and 
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night. This suggests that longer monitoring may have a role in telehealth and 

fluctuations in oxygen saturations may highlight clinical relevance. (122) 

Finally, more recently there has been interest and research into investigating 

the complex pattern of variability in SpO2 signals using a network physiology 

approach, showing that oxygen saturation fluctuations are not random, but 

have useful information about the wider physiological response to hypoxia. 

Rajeh et al, recruited 11 patients (FEV1% predicted 48 ± 19%) from COPD 

clinics, who had a history of one moderate/severe COPD exacerbation in the 

preceding 12 months. All the patients received a wristband pulse oximeter and 

wore it overnight. All patients had an exacerbation within the study period and 

the complexity and variability of their oxygen saturation signals was calculated 

during an exacerbation and compared to a period of stability. They 

demonstrated increased complexity and variability in COPD patients 

undergoing an exacerbation compared to the stable state, while the mean 

saturations remained equal. (123) Therefore, investigating the beat-by-beat 

fluctuations in saturations at a microscopic level, may hold the key to 

determining the starting point of an exacerbation.  

 

Wearables to detect COPD exacerbations. 

Patients undergoing COPD exacerbations clearly have a change in symptoms 

and physiological variables. Detection of these changes by wearable 

technology is likely to lead to earlier detection of exacerbations and then 

hopefully an improvement in patient care. In 2010, Hurst et al showed that 
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changes in heart rate, oxygen saturations and peak flow were significantly 

different just before and during an exacerbation. (124) Following on from this, 

the PROMETE study in Spain showed that measuring vital signs on daily basis 

and peak flow three times a week as part of a home telehealth intervention 

significantly reduced emergency department attendances (20 vs. 57), the 

need for non-invasive ventilation (0 vs. 8) and the time to first severe 

exacerbation of COPD increased from 77 days in the control group to 141 days 

in the telehealth group. (125) 

A systematic review by Rajeh et al in 2015 looked at the value of home 

physiological monitoring in predicting exacerbations in patients with COPD. A 

total of 16 studies were included, four randomised controlled trials and 12 

cohort studies. Patient heart rate (HR) and SpO2 were monitored in 10/16 

studies but 7/10 did not report any statistical analyses for the HR or SpO2. 

Four studies reported significant changes in HR and/or SpO2 prior to the onset 

of an exacerbation. It is important to note that most of the studies did not use 

continuous monitoring but rather isolated daily measurements of HR and 

SpO2. One study (n = 16, moderate-severe COPD) recorded daily respiratory 

sounds using a microphone over the suprasternal notch. 25/33 exacerbations 

were detected 5 ± 1.9 days prior to the onset of the exacerbation. From the 

systematic review, the authors concluded that while there was some positive 

signal with regards to physiological signals predicting COPD exacerbations, 

there was not enough reliable data to draw a firm conclusion. Furthermore, 

there was a gap from detecting variable changes in a research setting to 
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implementation in a clinical environment, where there are barriers such as 

determining alarm thresholds, setting up virtual clinics and participant uptake. 

(126) 

The same group went on to compare whether overnight oxygen saturation 

monitoring was better than once daily monitoring to detect a COPD 

exacerbation. They found that prior to an exacerbation there was a significant 

change in heart rate and oxygen saturation levels. However, they also found 

that symptoms were elevated about five days prior to treatment initiation and 

the physiological parameters were not statistically better than detecting an 

exacerbation compared to symptoms alone.  

A group in Taiwan (2021) used a combined approach to predict COPD 

exacerbations. They performed a prospective study gaining data on patient 

symptoms, physical activity, heart rate, sleep pattern and home air quality to 

predict whether a patient will experience a COPD exacerbation in the next 

seven days using machine learning and a smart phone app. They recruited 67 

COPD patients prospectively, with a mean 4-month follow-up period and 

detected 25 exacerbation episodes. For 7-day prediction of exacerbations, 

their model had a sensitivity of 94% and specificity of 90.4%. The most 

important variables in their model were daily steps walked, and daily distance 

moved. (127) It is worth pointing out that this study combined several 

parameters (symptoms, physiology, lifestyle and environment) to try and 

predict exacerbations and in reality this is likely to be costly and cumbersome 

to many patients. Ideally a simple wearable device that is accurate is 
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necessary, that objectively predicts an exacerbation, without having to rely on 

the subjective nature of symptoms. 

Studies to date have largely used linear models of analysis when looking at 

SpO2 and HR traces. However, there is evidence to suggest that these 

physiological parameters exhibit more complex patterns of variability with 

multiple different influences. This complex pattern of variability may provide 

greater insight into exacerbation prediction. Sample entropy looks at the 

complexity of time series data and can be used to analyse SpO2 and HR 

traces in a novel way. It measures the degree of regularity vs. irregularity, 

capturing signal richness or complexity. A more complex signal has increased 

variability and can be seen as a signal that is more engaged and ready to 

respond to external stressors. (Appendix 7.1.4) A recent proof-of-concept 

study showed that during a COPD exacerbation sample entropy increased, 

even though the mean oxygen saturations remained the same. New 

wearables could integrate these complex network physiological analyses into 

their devices, to automate predictions of COPD exacerbations. (123) 

Challenges of wearable technology in COPD 

Wearable technology is likely to form an integral part of telemedicine in the 

future but there are several challenges that lie ahead. Figure 1-8 illustrates 

some of the challenges that remain. 
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Figure 1-8 Wearable technology future challenges 

 

From existing literature, it is still unclear what the best mode of home 

monitoring is. Studies have shown symptom monitoring and patient reported 

outcomes are perhaps as accurate as objective physiological variables. 

However, objective measurements allow stricter verification of exacerbations. 

The way in which different phenotypes of COPD and co-morbidities respond 

to wearables is still unclear and needs further investigation. There is also little 

research into looking at patient concordance, however, it is likely that a single 

wearable device is probably going to be better than multiple sensor symptoms. 

This is especially true if patients lack the ability to use technology. Finally, 

there are data privacy concerns, health inequalities and digital literacy that 

also need to be taken into consideration. (128) 
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Further research into novel wearable devices is needed to improve not only 

COPD exacerbation prediction but also improve home self-management and 

optimise COPD care. These devices can ease pressure on an overburdened 

healthcare system, empower patients to take control of their own health and 

improve patient outcomes and care.  
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1.3.5 Wearable technology and OSA 
 

Wearable sleep-trackers have recently exploded onto the consumer market 

with many products available from wrist watches to armbands and headbands. 

While there is perhaps a growing recognition of potential benefits of these 

devices, they largely remain unregulated, with little knowledge on 

performance. Several devices use actigraphy (using an accelerometer) to 

measure patters of motion to estimate sleep/wake states. Although the 

specificity is somewhat limited given, they are unable to differentiate between 

sleep and motionless wakeful state when compared to gold standard 

polysomnography. (129) 

While several devices exist to try and differentiate different stages of sleep, 

this section will focus on wearables on OSA specifically. This largely can be 

split into diagnostic wearables and monitoring/treatment devices. 

1.3.5.1 Diagnostic devices: 

• Polysomnography (PSG) – this is a multichannel wearable sleep study 

(conducted with or without a technician present), that records several 

different parameters including brain electrical activity, cardiac and 

respiratory parameters. The origins of the polysomnography date back 

to the 1970s and this has become the standardised major gold standard 

clinical test to diagnose OSA. (130) 

• Level 3 portable home sleep study – These are portable home sleep 

study monitors that incorporate cardiovascular and respiratory 

channels (including oxygen saturations and detection of respiratory / 
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abdominal effort) but do not record electrical brain activity and thus 

cannot accurately stage sleep. (131) A large systematic review and 

meta-analysis suggested good overall diagnostic performance and the 

AASM recognises these studies as acceptable for diagnosis of OSA. 

(51) 

• Peripheral arterial tonometry (PAT) devices were first developed in 

2000 and subsequently through various iterations are now widely used 

in the UK for OSA diagnostics. A meta-analysis (2013) of 14 studies 

comparing PAT devices to PSG showed good correlation of AHI 

(r=0.889 (0.862-0.911)). (132) These devices are now accepted for 

OSA diagnosis by the AASM in uncomplicated patients (i.e., those 

without significant cardiorespiratory disease, neuromuscular disease or 

suspicion of hypoventilation. (133) 

• Overnight pulse oximetry – while overnight pulse oximetry (measuring 

oxygen saturation and heart rate) forms one of the channels in level 1 

or level 3 sleep studies, their role in diagnosing OSA is limited and has 

been shown to have a great deal of variability (specificity 40-100% and 

sensitivity 30-98%). (134) One study in the UK (n = 89, mean AHI 43), 

found that if pulse oximetry alone was used to diagnose OSA, 20% of 

patients with moderate – severe OSA may be missed. (135) It is 

important to note however, that many studies to date have used linear 

analysis of oxygen saturation to diagnose OSA, based on the mean 

saturations and oxygen desaturation index (ODI). However, oxygen 

saturations represent a complex physiological signal and non-linear 
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analysis methods may prove to be an interesting avenue to investigate 

in the future. Furthermore, combining various measures including ODI 

and other derived variables may improve the overall sensitivity and 

specificity.  

The diagnostic devices described above are those currently in common 

widespread use throughout the UK. However, recently there have been 

several other wearable devices that have been explored in the potential 

diagnosis of OSA. A few of these are outlined in Table 1-2. 

Finally, while not strictly wearable technology, a recent systematic review and 

meta-analysis investigated the value of a smartphone in diagnosing OSA. 

Smartphones have various apps and can also link with potentially wearable 

devices that detect oxygen saturation and heart rate. This review included 11 

studies, of which most used either sound or motion to diagnose OSA. All 

included studies compared smartphones with a PSG. This review concluded 

that the smartphone diagnostic accuracy had a pooled sensitivity of 90% and 

pooled sensitivity of 88% for moderate-severe OSA (AHI ≥ 15/hr). The 

summary AUC was 0.917. The study did, however, find significant 

heterogeneity between studies. (136) 
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Table 1-2 Novel wearables to diagnose OSA. 

Device sensor type 

and Name 

Picture / description OSA 

definition 

Comparator N Statistical 

comparison 

Wearable Garment 

(Accelerometer, ECG 

sensor) 

EquivitalTM EQo2 life 

monitor (137) 

  

Not 

specifically 

used in OSA 

population 

PSG 32 Correlation 

was 

observed 

between 

respiratory 

signals, 

cardiac 

signals and 

positional 

signals. (Nil 

stats 

described). 

Further trials 

awaited for 

OSA 
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Photoplethysmography 

(PPG) + 

accelerometer 

 

MORFEA (138) 

 

Used in one 

patient only 

to detect 

apnoea’s 

and 

hypopnoeas. 

Not specific 

in OSA 

Type 3 

sleep study 

1 Sensitivity 

88.6%, 

specificity 

92.9% 

Thoracic and 

abdominal movement 

signals analysis from 

PSG 

(No specific wearable 

investigated) (139) 

- 

Analysed 34 existing sleep studies from a 

database and re-analysed looking at only 2 

signals 

AHI ≥ 5/hr PSG 34 Thoracic 

signals – 

classification 

accuracy 

average 

75.9% ± 

11.7% 

Abdominal 

signals – 

classification 

accuracy 

average 

73.8% ± 

4.4% 

Combined 

accuracy 
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81.8% ± 

9.4% 

Accelerometer – 

tracheal respiratory 

movements + deep 

learning algorithms 

The Patch (140) 

  

AHI ≥ 15 PSG 69 Using AHI 

cut-off ≥ 15: 

Sensitivity 

81% 

Specificity 

87% 

Accuracy 

84% 

Thermistor (detecting 

changes in airflow) 

and galvanic skin 

response (141) 

Nil picture available N/A Nil - Prototype 

that sends 

signals. 

Needs 

further 

validation 

work.  

Airflow and nasal 

pressure, motion and 

noise (microphone), 

accelerometer 

 

ARAM 

(142) 

 

N/A ResMed 

ApneaLink 

Air 

6 Needs 

further work. 

Unable to 

provide 

sensitivities / 

specificities 

due to some 

mechanical 
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failures. 

Further work 

pending 

Volatile Organic 

Component (VOC) 

 

VOCNEA (143) 
 

AHI ≥ 5/hr Nil 2 100% 

detection 

rate from 

prototype but 

needs long-

term 

comparison 

study with 

PSG 

Tracheal sounds and 

nasal pressure sensor 

 

TS-NP 

PneaVoX TS Sensor 

(144) 

While PSG used, analysis was done using 

only the combination of oronasal thermister 

and nasal pressure sensor (Therm-NP) 

AHI ≥ 5/hr Therm-NP 33 Sensitivity 

when 

compared to 

Therm-NP 

was 93% 

The authors 

concluded 

that tracheal 

sounds are 

has good as 

oronasal 

thermistors in 

sleep 
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recording 

systems 

Acoustic sensing of 

physiological sounds 

(respiratory and 

cardiovascular) 

 

AcuPebble SA100 

(145) 

 

≥ 5/hr Type 3 

home sleep 

monitor 

182 Accuracy 

95.3% (90.6 

– 98.1%) 

Specificity – 

96.8% (91.1-

99.3%) 

Sensitivity – 

92.7% (82.4 

– 98.0%) 
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1.3.5.2 Treatment / monitoring devices 

• Positive airway pressure therapy – CPAP and other positive airway 

pressure therapy devices such as non-invasive ventilation (NIV) and 

adaptive servo ventilation (ASV) are devices that are used in the 

treatment of OSA. Patients wear a mask around their nose and/or 

mouth which is connected to the device. The device either provides one 

continuous pressure (CPAP) which splints open the upper airway or 

provides two different pressures, bilevel. (NIV). These devices can 

automatically regulate, monitor, and change the pressure according to 

patient need and therefore are a form of wearable technology. 

Furthermore, the devices will often connect to a mobile phone app / 

web cloud to allow information such as usage, leak and required 

pressure to be recorded and viewed by patients and healthcare 

professionals. As described above the algorithms between devices vary 

and there are no standards on how the data should be used and how 

accurate it is. The American Thoracic Society has concluded that the 

residual AHI and mask leak will differ between manufacturers and 

therefore a better, standardised system is necessary to monitor patients 

on therapy. (74) 

• NightBalance – This is small device worn on the chest which vibrates 

when the patient is in a supine position to encourage turning. A 

randomised study of 110 patients with positional OSA, defined as a 

supine AHI at least twice the non-supine AHI and at least 30% sleep 
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time in both supine and non-supine positions, compared auto-CPAP 

with the positional device showed that while the mean residual AHI post 

treatment was significantly higher in the positional device arm (7.29 ± 

6.8 vs. 3.71 ± 5.1 events/hr, p<0.001), the mean AHI difference 

between the two was 3.58 events/hr (one sided 95% confidence interval 

4.96). This showed that for exclusive positional OSA, the device was 

non-inferior and better tolerated. (146) 

The above lists are not exhaustive but shows the variety of different wearable 

devices that are available / upcoming to aid diagnosis and management of 

OSA. However, currently only positive airway pressure devices and 

mandibular advancement devices are approved for treatment of OSA in the 

UK. We currently do not have a robust way to monitor patients with OSA on 

treatment, especially given the discrepancies between the residual and 

effective AHI and so further research into this field is needed.  
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1.4   AcuPebble – a wearable technology 
 

1.4.1 Acurable Ltd 

Acurable is a medical devices company that has offices based in London and 

Seville. They have developed AcuPebble®. AcuPebble products are wearable 

acoustic sensors which can continuously record internal body sounds. 

Signalling algorithms then convert these sounds into various physiological 

biomarkers including heart rate and respiratory rate. 

Professor Esther Rodriguez-Villegas, the founder of the Wearable 

technologies lab at Imperial College, initially investigated in 2004 whether a 

small wearable device could monitor apnoea’s with the future aim of 

preventing Sudden Unexpected Death in Epilepsy (SUDEP). In 2014 they 

studied 20 healthy and 10 patients (referred for sleep apnoea diagnostics) and 

compared a wearable apnoea detection device (measuring 3.74 x 2.4 x 2.1cm) 

with an FDA approved level 3 portable sleep study to detect spontaneous 

apnoeas. The new wearable device had a sensitivity of 88.6% and specificity 

of 99.6% in the detection of apnoeas. This compared very well with the level 

3 device. (147) 

Following on from this Professor Rodriguez-Villegas founded Acurable in 2016 

to develop further uses for this novel technology. Since then, the company has 

been awarded multiple industry awards including an Innovate UK grant, and 

been chosen as a Disrupt 100 company. They passed ISO certification for 

medical device manufacturers in 2019 and currently have two products. These 

two products are described below.  
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1.4.2 AcuPebble SA100 

AcuPebble SA100 is a CE marked device for a class IIa medical device as well 

as FDA cleared as a medical device for OSA testing. The 7g device (shown in 

Figure 1-8) is circular with a diameter of 2.9cm and height of 1.4cm. It attaches 

to the neck with a disposable medical grade adhesive. It works by acoustic 

sensing of physiological sounds, including those generated by the respiratory 

and cardiovascular systems. It is paired with a self-explanatory mobile phone 

application. It records acoustic signals from the trachea which are converted 

by software algorithms to derive breathing segments, respiratory rate, heart 

rate, airflow and their time-frequency characteristics. These are used to 

automatically detect disordered breathing events and generate a diagnostic 

output.  

Figure 1-14: AcuPebble SA100 

 

A study conducted at the Royal Free Hospital compared the diagnostic 

accuracy and acceptability of AcuPebble SA100 with a level 3 portable home 

sleep device (Embletta MPR Sleep System (Natus Medical, California). While 

patients were given AcuPebble SA100 face to face, they were not trained on 

how to use it. A total of 150 patients successfully completed the study. 
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AcuPebble SA100 automatically generated four different parameters which 

were compared with polygraphy. The results showed: 

• When using standard AASM AHI criteria (with a desaturation threshold 

of ≥ 3%), AcuPebble SA100 had a sensitivity of 92.4% (82.41-97.98%), 

specificity of 96.84% (91.05-99.34%) and accuracy of 95.33% (90.62-

98.10%) in diagnosing OSA (AHI ≥ 5/hr). Cohen’s Kappa was 0.9 (0.82-

0.97). 

• When using standard AASM AHI criteria (with a desaturation threshold 

of ≥ 4%), AcuPebble SA100 had a sensitivity of 95.92% (86.02 – 

99.50%), specificity 97.03% (91.56 – 99.38%) and accuracy of 96.67% 

(92.39 – 98.91%) in diagnosing OSA (AHI ≥ 5/hr). Cohen’s Kappa was 

0.92 (0.86-0.99). 

• When using the ODI alone (with a desaturation threshold of ≥ 3%), 

AcuPebble SA100 has a sensitivity of 91.03% (82.38 – 96.32%), 

specificity 93.06 (84.53 – 97.71%), accuracy of 92% (86.44-95.8%) in 

diagnosing an ODI ≥ 5/hr. Cohen’s Kappa was 0.84 (0.75-0.93). 

• When using the ODI alone (with a desaturation threshold of ≥ 4%), the 

sensitivity 97.96% (89.15 – 99.95%), specificity 92.08 (84.99 – 

96.52%), accuracy 94% (88.92 – 97.22) in diagnosing an ODI ≥ 5/hr. 

Cohen’s Kappa was 0.87 (0.79-0.95). 

In terms of usability, 90% of patients found the AcuPebble sensor more 

comfortable and 97% of patients agreed that it was easier to use. (145) 
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Acupebble SA100 is now used in clinical practice at the Royal Free Hospital 

for diagnosis of OSA and has also been selected for the NHS Innovation 

Accelerator scheme to help support its use throughout the NHS in England.  

AcuPebble SA100 is reusable and the per test cost is £50.  

 

1.4.3 AcuPebble RE100  

The AcuPebble RE100 is a wearable device that is CE marked for research 

and is similar to AcuPebble SA100. It also attaches to the base of the neck to 

record various physiological acoustic signals including sounds generated from 

patient’s respiratory and cardiac functions. These are then wirelessly 

transferred to a mobile device and uploaded to a GDPR compliant cloud. The 

device looks exactly like AcuPebble SA100 (Figure 1-14). 

Subsequent algorithms convert these sounds into three main physiological 

signals: 

1. Respiratory rate (breaths per minute) measured every two seconds 

and validation work with Bland Altman plots have shown a RR bias of 

-0.215 breaths per minute (LOA between -5.747 to 5.316 breaths per 

minute). (Unpublished) 

2. Heart rate (beats per minute) measured every two seconds and the 

root mean squared error (RMSE) of the heart rate, with the 50-120 

beats per minute range is 3.62 beats per minute. (148) 

3. Airflow (normalised volt (V)) with a recording every 0.1seconds, giving 

100 recordings every second.    
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1.5. Aims and Objectives  

1.5.1 Wearable technology interventions in patients with chronic 

obstructive pulmonary disease: a systematic review and meta-analysis 

(Chapter 2) 

The aim of this systematic review and meta-analysis was to assess the impact 

of home wearable technology in COPD patients on the following outcomes of 

interest: 

• Physical activity promotion 

• Exercise capacity 

• Exacerbation detection 

• Smoking cessation 

• Home self-management 

• Disease progression 

• Quality of life – assessed by validated scoring systems. 
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1.5.2 The acceptability of wearable technology for long-term respiratory 

disease: a cross-sectional survey (Chapter 3) 

The primary aim of this cross-sectional survey was to identify the acceptability 

of wearable technology in a group of patients with chronic respiratory disease. 

The secondary aims of the survey were to: 

• Identify patient preferences in wearable technology design. 

• Identify the impact of social norm perspectives on wearable technology. 
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1.5.3 Acquisition of physiological signals with a wearable device to 

assist on research aiming to improve early identification of 

exacerbations in chronic obstructive pulmonary disease (Chapter 4) 

The primary objective of this feasibility and acceptability study was to get 

physiological signals including heart rate, respiratory rate, and airflow with a 

small new wearable device (AcuPebble RE100) in a group of stable and 

exacerbating COPD patients that could be used to objectively differentiate 

between them. 

The aims of this work were: 

1. To acquire physiological signals including heart rate, respiratory rate 

and airflow with a novel small wearable device (AcuPebble RE100) in 

a group of stable and exacerbating COPD patients.  

2. Use linear and non-linear time-series analyses methods to ass the 

following: 

a. Differences in physiological signal variability between stable and 

exacerbating COPD patients. 

b. Differences in physiological signal variability amongst patients 

with different phenotypes of stable COPD patients, specifically 

looking at: 

i. Airflow severity as assessed by the FEV1 measurement. 

ii. Symptom severity as assessed by validated scoring 

systems like the COPD Assessment Tool (CAT) and the 

modified Medical Research Council (mMRC) score. 
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iii. GOLD ABE categories 

c. The association of physiological signal variability measures with 

currently measured admission characteristics including:   

i. Admission national early warning score 2 (NEWS2). 

ii. The Rome Criteria for COPD exacerbation severity. 

iii. Length of hospital stay 

d. Differences in physiological signal variability amongst 

exacerbating COPD patients at the point of admission vs. 

discharge vs. post-discharge (i.e., exacerbation recovery). 

3. Assess the acceptability and feasbility of the wearable device. 

4. Compare the recorded physiological signal measurements from stable 

and exacerbating COPD patients with a historical non-COPD cohort. 
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1.5.4 The use of a novel wearable medical device for remote monitoring 

of patients with obstructive sleep apnoea on continuous positive airway 

pressure therapy. (Chapter 5) 

The primary aim of this study was to determine whether AcuPebble SA100 

can accurately determine the residual AHI in patients with OSA on CPAP 

therapy, using a simultaneous cardio-respiratory polygraphy as the gold 

standard comparator.  

The secondary aims of the study were: 

• To determine whether AcuPebble SA100 is more accurate than the 

CPAP machine in detecting the residual AHI in patients with OSA on 

CPAP therapy. 

• To determine whether AcuPebble SA100 can accurately determine the 

effective AHI (this includes time spent on and off CPAP, i.e., the whole 

night). 

• To determine whether AcuPebble SA100 is acceptable and comfortable 

for patients to wear while using CPAP therapy. 
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2. Chapter 2: Home wearable technology in patients 

with chronic obstructive pulmonary disease: a 

systematic review and meta-analysis 
 

2.1 Background 

Given the significant individual and global burden of COPD, there is an urgent 

need to find future strategies to improve COPD diagnosis, management, and 

outcomes for the betterment of patient care. Over the last two decades, there 

have been several wearable devices that have emerged for the purpose of 

monitoring patients with COPD, improving physical activity outcomes and 

preventing exacerbations. However, the reliability, accuracy and utility of the 

devices are debated, and few have made it into mainstream use.(35)  

There have been several previous systematic reviews investigating the role of 

step-counters, including both pedometers and accelerometers, in promoting 

physical activity and improving exercise capacity. Qiu et al (2018) identified 15 

trials (n =1316) that assessed the efficacy of a step counter in increasing 

physical activity. They found that step counter use increased physical activity 

(measured by step-counters) compared to controls (standardised mean 

difference (SMD) = 0.57 (95%CI 0.31 - 0.84)).(113) Armstong et al (2019) 

confirmed these findings by reviewing studies looking at pedometer use to 

promote physical activity either in isolation (n = 12 studies, standardised mean 

difference (SMD) = 0.53 (95%CI 0.29 - 0.77)) or alongside pulmonary 

rehabilitation (n = 7studies, SMD 0.51 (0.13 - 0.88)).(149) The SMD is used 

for comparison of data obtained at different scales / by differing measuring 
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devices (e.g., different pedometers / accelerometers). It is also used as a 

balance measure of individual covariates before and after propensity score 

matching. Both reviews may be biased by including studies that did not 

mandate gold-standard spirometric diagnostic criteria for COPD and were 

limited by only including studies investigating step counters. Han et al (2021) 

also looked at step counter use, but only focused on studies with a duration of 

at least 12 weeks (n=9) and showed a significant increase in physical activity 

(≥ 793 steps/day).(150) Finally, Reilly et al (2023) recently reviewed 

interventions (both wearables and other) to promote physical activity as 

assessed by step-count in chronic airways disease, but did not split results by 

different disease groups.(151) Only Qiu et al (113) looked at the effect of step-

counters on 6-minute walk distance, and none of the studies looked at the 

impact of step counters on other physical activity measures, such as time 

spent at various intensity levels and muscle strength. Moreover, none of these 

reviews investigated the impact on patients’ subjective symptoms and quality 

of life (using standardised questionnaires).  

Patients undergoing COPD exacerbations clearly have a change in symptoms 

and physiological variables. Detection of these changes by wearable 

technology is likely to lead to earlier detection of exacerbations and then 

hopefully an improvement in patient care. In 2010, Hurst et al showed that 

changes in heart rate, oxygen saturations and peak flow were significantly 

different just before and during an exacerbation. (124) Following on from this, 

the PROMETE study in Spain showed that measuring vital signs on daily basis 
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and peak flow three times a week as part of a home telehealth intervention 

significantly reduced emergency department attendances (20 vs. 57), the 

need for non-invasive ventilation (0 vs. 8) and the time to first severe 

exacerbation of COPD increased from 77 days in the control group to 141 days 

in the telehealth group. (125) 

A systematic review by Rajeh et al in 2015 looked at the value of home 

physiological monitoring in predicting exacerbations in patients with COPD. A 

total of 16 studies were included, four randomised controlled trials and 12 

cohort studies. Patient heart rate (HR) and SpO2 were monitored in 10/16 

studies but 7/10 did not report any statistical analyses for the HR or SpO2. 

Four studies reported significant changes in HR and/or SpO2 prior to the onset 

of an exacerbation. It is important to note that most of the studies did not use 

continuous monitoring but rather isolated daily measurements of HR and 

SpO2. One study (n = 16, moderate-severe COPD) recorded daily respiratory 

sounds using a microphone over the suprasternal notch. 25/33 exacerbations 

were detected 5 ± 1.9 days prior to the onset of the exacerbation. From the 

systematic review, the authors concluded that while there was some positive 

signal with regards to physiological signals predicting COPD exacerbations, 

there was not enough reliable data to draw a firm conclusion. Furthermore, 

there was a gap from detecting variable changes in a research setting to 

implementation in a clinical environment, where there are barriers such as 

determining alarm thresholds, setting up virtual clinics and participant 

uptake.(126)  
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The same group went on to compare whether overnight oxygen saturation 

monitoring was better than once daily monitoring to detect a COPD 

exacerbation. They found that prior to an exacerbation there was a significant 

change in heart rate and oxygen saturation levels. However, they also found 

that symptoms were elevated about five days prior to treatment initiation and 

the physiological parameters were not statistically better than detecting an 

exacerbation compared to symptoms alone.  

A group in Taiwan (2021) used a combined approach to predict COPD 

exacerbations. They performed a prospective study gaining data on patient 

symptoms, physical activity, heart rate, sleep pattern and home air quality to 

predict whether a patient will experience a COPD exacerbation in the next 

seven days using machine learning and a smart phone app. They recruited 67 

COPD patients prospectively, with a mean 4-month follow-up period and 

detected 25 exacerbation episodes. For 7-day prediction of exacerbations, 

their model had a sensitivity of 94% and specificity of 90.4%. The most 

important variables in their model were daily steps walked, and daily distance 

moved. (127) It is worth pointing out that this study combined several 

parameters (symptoms, physiology, lifestyle and environment) to try and 

predict exacerbations and in reality, this is likely to be costly and cumbersome 

to many patients. Ideally a simple wearable device that is accurate is 

necessary, that objectively predicts an exacerbation, without having to rely on 

the subjective nature of symptoms. 
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Studies to date have largely used linear models of analysis when looking at 

SpO2 and HR traces. However, there is evidence to suggest that these 

physiological parameters exhibit more complex patterns of variability with 

multiple different influences. This complex pattern of variability may provide 

greater insight into exacerbation prediction. Sample entropy looks at the 

complexity of time series data and can be used to analyse SpO2 and HR 

traces in a novel way. (Appendix 7.1.4) A recent proof-of-concept study 

showed that during a COPD exacerbation sample entropy increased, even 

though the mean oxygen saturations remained the same. New wearables 

could integrate these complex network physiological analyses into their 

devices, to automate predictions of COPD exacerbations. (123) Recent 

advances in this field have not yet been subject to systematic review. 

To date, reviews have largely focussed on the role of wearables in physical 

activity metrics and exacerbation detection. However, the management of 

COPD includes other facets including smoking cessation, quality of life 

improvement and self-management. None of these have been systematically 

reviewed. Therefore, it is still not clear, whether home wearable technology 

can benefit patients with COPD in other aspects of their management. 

Furthermore, while prior reviews have focussed on step-counters, there may 

be novel wearable devices that improve physical activity that were excluded 

from those reviews. 

This systematic review and meta-analysis, and therefore some of the figures 

and tables in this chapter, have already been published in npj Digital Medicine 
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in November 2023 (https://doi.org/10.1038/s41746-023-00962-0) under the 

creative commons attribution (CC BY 4.0). (152)  

  

https://doi.org/10.1038/s41746-023-00962-0
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2.2 Aims 

The aim of this systematic review and meta-analysis was to assess the impact 

of home wearable technology in COPD patients on the following outcomes of 

interest: 

• Physical activity promotion 

• Exercise capacity 

• Exacerbation detection 

• Smoking cessation 

• Home self-management 

• Disease progression 

• Quality of life – assessed by validated scoring systems. 
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2.3 Methods 

2.3.1 Design 

The systematic review and meta-analysis was conducted in accordance with 

the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) (153) and the Meta-analysis Of Observational Studies (MOOSE) 

guidelines. (154) The systematic review was prospectively registered at 

PROSPERO (registration number: CRD42022299706). 

2.3.1 Inclusion criteria 

• Types of Studies: 

o Studies directly investigating home wearable technology in a 

COPD population with the pre-specified outcomes of interest, 

with or without a control / standard of care arm. 

o Randomised controlled trials. 

o Prospective and retrospective observational studies including 

cohort studies; case-controlled studies and cross-sectional 

studies. 

o Studies from 1946 onwards 

• Types of participants 

o Adult participants with a diagnosis of COPD made with an 

exposure history, (> 10 pack year smoking history and/or 

biomass), and post-bronchodilator spirometry showing either: 

▪ FEV1:FVC < 0.7 or 

▪ FEV1:FVC < lower limit of normal (LLN) 
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• Outcomes of interest: 

o Physical activity promotion 

o Exercise capacity 

o Exacerbation detection 

o Smoking cessation 

o Home self-management 

o Disease progression 

o Quality of life measures 

• Home wearable technology was defined as any device that was 

worn/fitted to the subject’s body externally which detects and collects 

data. The device also had to have a means to retrieve the data for 

analysis e.g., through a computer / smart phone / tablet etc.  

 

3.2.4 Exclusion Criteria 

• Studies not in English 

• Studies that only used self-reported diagnoses, physician diagnoses or 

a non-validated questionnaire to diagnose COPD. 

• Studies that were narrative reviews, non-research letters, abstracts, 

case reports, conference proceedings, theses, and books.  

• Systematic reviews, meta-analysis, and literature reviews. We did 

however search reference lists 

• Studies involving non-human subjects. 

• Studies looking at implantable medical devices. 
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• Studies looking at in-hospital wearable devices. 

• Studies looking at other outcomes of interest. 

3.2.5 Search strategy 

We searched five databases including: MEDLINE (via Ovid), EMBASE (via 

Ovid), the Cumulative Index to the Nursing and Allied Literature (CINAHL; 

EBSCO host), Cochrane Central Register of Controlled Trials (CENTRAL), 

and the Institute of Electrical and Electronics Engineers (IEEE) Xplore digital 

library, from inception to April 2023. We used an extensive search strategy 

which was developed with the help of a specialised librarian and included the 

terms relating to COPD and wearable technology. The Appendix (Chapter 7.2) 

shows the search strategies for each of the five databases.  

All studies were then uploaded onto EndNote referencing software and 

duplicates removed by adjusting various filters on EndNote and manually 

double checking the duplicate entries. The final screening articles were then 

uploaded onto Rayyan software (available from: https://www.rayyan.ai/). This 

is an online platform which enables researchers to screen titles and abstracts 

and mark them for either ‘inclusion’, ‘exclusion’ or ‘maybe’. To increase the 

internal validity of the screen, a second researcher (MA) also screened the 

articles in a blinded fashion.   

3.2.6 Study selection and data extraction  

The initial pool of articles from the search strategy were independently 

screened by a primary (AJS) and secondary researcher (MA) in a blinded 

https://www.rayyan.ai/
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fashion. The articles were separated into three categories based on this initial 

screening and the inclusion / exclusion criteria: 

• Included 

• Excluded 

• Maybe 

Following the screening of all the articles, the two researchers were unblinded. 

All the articles in the ‘maybe’ category were discussed to reach a consensus 

opinion. Full texts at this stage were also read if necessary to aid the decision-

making process. The articles in the ‘maybe’ category were either included or 

excluded based on consensus opinion. When this was not possible, a third 

reviewer (SM) was asked for their opinion. Any conflicts in the ‘included’ or 

‘excluded’ categories were also resolved in the same way. This led to a final 

list of eligible articles which moved onto the next stage.  

Full texts of the eligible articles were reviewed independently by MA and AJS 

according to the inclusion/exclusion criteria and data was extracted and 

summated in an excel spreadsheet. The following data from each article was 

collected: 

• General information including main author, year of study, title of study, 

country of origin. 

• Study design 

• Date of study collection 

• Patient population of interest 
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• COPD definition / diagnostic criteria 

• Population demographics (total number of patients, mean age, sex, 

COPD severity) 

• Name and type of wearable technology intervention 

• Duration of use and follow-up 

• Primary outcomes of interest 

• Secondary outcomes of interest 

• Sub-group analyses performed 

• Qualitative data with regards to wearable technology 

• Quality of the study. The risk of bias assessment was performed using 

either the modified Newcastle-Ottawa Scale for non-randomised / 

observational studies (155) or the Cochrane Risk of Bias Tool for 

randomised controlled trials. (156) 

Following on from this a final list of included and excluded studies was 

confirmed with any disagreements at this stage resolved by a third person 

(SM). 

3.2.8 Data analysis 

Meta-analysis 

Only objective measurements (e.g., mean daily step count, six-minute walk 

distance, CAT score, number of exacerbations etc.) that could be grouped 

together were included in the meta-analysis. Subjective outcome 

measurements were not included. 
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All statistical analysis was performed using the Cochrane Collaboration 

RevMan software (version 5.4) and Rstudio version 4.2.3. 

Mean change scores with the corresponding standard deviation (SD) for the 

objective outcomes of interest were used in the meta-analysis to obtain the 

overall effect size. This was presented as either the mean difference or the 

standardised mean difference (SMD) with a 95% confidence interval. SMD 

was used only where the same outcome measure was obtained by different 

measurement approaches and devices, e.g., different pedometers measuring 

the mean daily steps. 

Where studies had not given the mean change scores, the mean change score 

was calculated simply by subtracting the post-intervention mean from the 

baseline mean. The SD change in this instance was calculated using an 

imputed correlation coefficient of 0.80, using Equation 1 shown below. This 

was derived from the Cochrane handbook. (157) 

Equation 1: Calculation of SD change using an imputed correlation coefficient 

of 0.80 (derived from (157)) 

𝑆𝐷𝐶ℎ𝑎𝑛𝑔𝑒  =  √𝑆𝐷𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
2   +  𝑆𝐷𝐹𝑖𝑛𝑎𝑙

2 −  (2  ×  𝐶𝑜𝑟𝑟  ×  𝑆𝐷𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒   ×  𝑆𝐷𝐹𝑖𝑛𝑎𝑙) 

 

Where studies quoted mean with standard error or confidence intervals, these 

were changed to mean and SD using RevMan software.  
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Heterogeneity was assessed by the I2 value. A value ≥ 50% was indicative of 

significant heterogeneity and in this instance a random-effects meta-analysis 

model was employed compared to a fixed-model.  

To understand the sources of heterogeneity between studies, a multivariable 

meta-regression analysis was conducted with five covariates, age, publication 

year, FEV1%predicted, type of wearable used as part of the intervention and 

the outcome measurement device. A mixed effects meta-regression was 

performed using a Knapp-Hartung modification, and the overall model fit 

assessed by the Bayesian information criterion.  

If appropriate, subgroup analyses were also performed looking at the effect of 

the type of intervention (e.g., isolated wearable, wearable with additional 

health coaching or pulmonary rehabilitation), duration of wearable use, 

outcome measurement device (pedometer vs. accelerometer) and severity of 

COPD (moderate vs. severe).  

Where meta-analysis was not possible due to significant heterogeneity, a 

narrative synthesis was conducted based on the Cochrane Data Synthesis 

and Analysis guidelines, and outlined the following: 

• A description of the included studies was summarised and tabulated. 

We commented on study type, type of wearable technology, 

methodology, main outcomes of interest and risk of bias. This was 

grouped by the outcome of interest. 

• Similarities and differences between the included studies. 

• Details of the studies based on the outcome measures outlined below. 
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• Relevant statistical tests when wearable technology was compared with 

standard of care. 

2.4 Results 

The initial search generated 7396 potential studies of which 2208 were 

immediately excluded due to duplication. After the first screening of titles and 

abstracts, 96 studies were sought for retrieval, but one study was inaccessible, 

and the author was not reachable. Therefore, 95 studies were assessed in full 

for eligibility according to our inclusion criteria. An additional 58 papers were 

excluded following full-text review. A total of 37 studies were analysed. Figure 

2-1 shows the PRISMA flow diagram. The list of excluded studies with reasons 

for exclusion can be seen in Appendix (Chapter 7.3).  
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Figure 2-1 PRISMA flow chart for included studies. 
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2.4.1 Characteristics of included studies. 

A summary of the included studies can be seen in Table 2-1. Thirty studies 

(158-187) investigated the role of wearable technology in improving physical 

activity outcomes (27 randomised controlled trials (RCT) (162, 163, 165-173, 

175-178, 180-187) and three observational studies (164, 174, 179)). These 

studies included 2955 patients (69% male) with a median (IQR) sample size 

of 53 (32 – 143), mean (SD) age of 67 (6) years and a median (IQR) FEV1% 

predicted of 54% (45 – 59%). For the RCTs the median (IQR) drop-out rate in 

the intervention group was 20% (10% - 29%), similar to 17% (10% - 28%) in 

the control group. The majority of RCT’s used a per-protocol analysis (80%). 

Ten studies (123, 127, 159, 177, 178, 188-192) investigated the role of 

wearable technology for COPD exacerbation detection (six RCTs and four 

observational studies). The studies included 3660 patients (69% male) with a 

median (IQR) sample size of 78 (46 – 143), mean (SD) age of 69 (2) years 

and a median (IQR) FEV1% predicted of 57% (53 – 61%). For the RCTs the 

median (range) drop-out rate in the intervention group was 36% (9% - 56%) 

and was 17% (4% - 30%) in the control group.  

Quality of life measures using validated scoring systems were secondary 

outcome measures in 24 (159, 160, 162, 163, 165-178, 180-182, 184, 185, 

187) of the 30 studies that were investigating the role of wearable technology 

in physical activity measures. The median (IQR) duration of these studies was 

5.4months (2.9 – 6months) 
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Two studies (162, 177) investigated whether wearable technology was 

associated with improved self-management, although they both used different 

scoring systems.  

There were no studies investigating the other outcomes of interest.  
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Table 2-1 Characteristics of included studies. 

Author, 
Year, 

Country 

Study 
Design 

Sampling / N /  
Duration of 

intervention /  
COPD Severity  

Intervention Group / wearable used / 
sample characteristics / Attrition rate 

Control Group / sample 
characteristics / Attrition rate 

Outcomes of interest 

Outcome measure Mean difference between 
groups 

 (95%CI) from baseline to end 
of study duration 

Or 
Other difference measure 

Al Rajeh et 
al 
2020 
UK 
(188) 
 

RCT 
 
Per 
Protocol 

Stable COPD patients 
 
 
 

Overnight pulse oximetry measurements 
(SpO2 and HR). Recorded every 4 
seconds 
 

Once daily measurement of HR 
and SpO2 
 
 
 
 
 
 
 

Exacerbation detection 
using changes in HR and 
Saturations 
 
 
 
 
 
 

Control group showed no 
statistically significant variation 
from baseline prior to an 
exacerbation. 
  
Intervention group showed 
significant variation from baseline 
for both heart rate and oxygen 
saturation pre-exacerbation. 
 

88 randomised 
44 to intervention 
44 to control 
 
 

Nonin 3150 pulse oximeter 
 
 
 
 

6 months or 1st 
exacerbation 
 
 
 

Exacerbated N = 13; Male = 7 (54%) 
Mean age ± SD = 71 ± 3 
 
 
 

Exacerbated N = 14; Male = 
4(29%) 
Mean age ± SD = 72 ± 3 
 
 

Composite score (of 
changes in heart rate and 
oxygen saturations) 

Composite score increased in 
control group for 1 day prior to 
exacerbation. 
 
Composite score in intervention 
group increased for 7 days prior 
to exacerbation with a positive 
predictive value of 91.7%; 
sensitivity 84.6% and specificity 
of 81.8% 

FEV1% 52.9  Attrition rate: 52% Attrition rate: 59% 

Al Rajeh et 
al* 
2021 
UK(123) 
 

OBS Stable COPD patients 
 
 

Overnight pulse oximetry measurements 
(SpO2 and HR). Recorded every 4 
seconds. This is secondary analysis of Al 
Rajeh et al (2020) described above 

- 
 

Oxygen saturation variability 
measures 
 

Data presented as stable phase 
vs. exacerbation phase. 
 

Mean SpO2 (mean (SD)) 
 

91.4 ± 1.89% vs. 90.6 ± 2.11%; 
p=0.125 
 

13  
 

Nonin 3150 Sample entropy 
 
 

0.395 ± 0.101 vs. 0.505 ± 0.159; 
p=0.029 
 

1st exacerbation 
 
 

N = 11; Male 7 (64%) 
Mean age ± SD = 72 ± 10 
 

DFA (α1) 
 

1.17 ± 0.110 vs. 1.15 ± 0.137; p 
= 0.555 
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FEV1% 47.7 Attrition rate: 15% DFA (α2) 1.04 ± 0.114 vs. 0.925 ± 0.107; 
p = 0.002 

Altenburg 
et al 
2014 
Netherland
s 
(158) 

RCT 
Per 
Protocol 

Stable COPD patients 
from both GP 
practices, secondary 
care and PR 
 

12-week lifestyle physical activity 
counselling programme. Pedometer with 
feedback and motivation and 5x30min 
counselling sessions for 3 months. 
 

Usual Care 
 
 
 
 
 
 
 
 
 

Median Daily Steps Median (IQR) daily step change 
given: 

 
Intervention 218 (-1423 to 1863) 

Control -201 (-1809 to 1006) 

6MWD (m) 
 

Median (IQR) at each time point 
given 

 
Intervention: 

Baseline: 454 (361 to 509) 
15-months: 506 (422 to 571) 

 
Control: 

Baseline: 450 (351 to 530) 
15-months: 468 (417 to 543) 

155 randomised 
78 to intervention 
77 to control 
 

Digiwalker SW-2000, Yamax, Tokyo, 
Japan 
 

15months 
 
 

Demographics only given for whole 
groups: N = 155; Male 102 (66%) 
Median age (IQR) = 62 (54-69) 
 

Demographics only given for 
whole groups: N = 155; Male 102 
(66%) 
Median age (IQR) = 62 (54-69) 

FEV1% 60  
 

Attrition rate: 36% 
 

Attrition rate: 34% 

Arbillaga-
Etxarri et al 
2018 
Spain 
 
(159) 

RCT 
 
Per 
Protocol 

Stable COPD patients 
 
 
 
 

‘Urban Training intervention’ – motivational 
interviewing, urban training walking trails, 
walking groups and a pedometer 
 

Usual care – general health 
counselling and ELF information 
brochure (recommending ≥ 30min 
moderate physical activity ≥ 
5days/week 
 
 
 

Mean daily steps 
 

-136.00 
(-768.20 to 496.20) 

 

Severe COPD  
Exacerbation (%) 

Mean difference of 6% (control 
group 3% and intervention 9%) 

407 randomised 
202 to intervention 
205 to control 
 

Onstep 50 Geonaute and Omron 
Pedometer 
 
 

6MWD (m) 
 

-3.00 
(-17.13 to 11.13) 

12 months 
 
 

Analysed N = 132; Male = 114 (86%) 
Mean age ± SD = 68 ± 9 

Analysed N = 148; Male = 130 
(88%) 
Mean age ± SD = 69 ± 8 

CAT Score 
 

0.00 
(-1.08 to 1.08 

HAD-A 
 

1 
(0.41 to 1.59) FEV1% 57  Attrition rate: 35% Attrition rate: 28% 

HAD-D -1 
(-1.45 to -0.55) 

Armstrong 
et al 
2021 
UK 
(160) 

RCT 
 
Per 
Protocol 

Stable COPD patients 
during PR 
 
 

Pedometer + motivational interview + 
individual daily step-count target + PR 
 
 

Usual PR programme delivered as 
per British Thoracic Society 
 
 

C-PPAC Total score 
 

8.00 
(4.58 to 11.42) 

Mean daily steps 
 

1016 
(581 to 1451) 

60 randomised 
31 to intervention 

Fitburg, Camden, London. 
 

 
 Movement intensity (VMU) 93.00 
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29 to control 
 

 
 

 
 

 (44.09 to 141.91) 

Sedentary time (min) 
 

-0.24 
(-0.81 to 0.32) 8 weeks 

 
Analysed N = 24; Male 9 (37.5%) 
Mean age ± SD = 71 ± 9 
 

Analysed N = 24; Male 9 (38%) 
Mean age ± SD = 73 ± 9 
 

Light time (min) 
 

22.00 
(2.56 to 41.44) 

FEV1% 50.5 Attrition rate: 23% 
 
 

Attrition rate: 17% 
 Mod-vigorous time (min) 

 
0.42 

(-0.16 to 0.99) 

6WMD (m) 
 

16.00 
(-8.12 to 40.12) 

Hand grip strength (Kg) 
 

2.10 
(0.62 to 3.58) 

Quadricep capacity (Kg) 
 

0.63 
(0.05 to 1.21) 

Sit-to-stand reps (number in 
30s) 

1.00 
(-0.34 to 2.34) 

 
CAT score 

-2.10 
(-3.78 to -0.42) 

Bently et al 
2020 
UK(161) 

RCT 
 
Per 
Protocol 

Stable COPD patients 
during PR  

SMART-COPD intervention consisted of 
an Android App and wearable activity 
tracking device with goal setting and 
feedback 

Blinded activity tracker only 
 
 
 
 
 
 
 

Mean daily step count 
 

Lack of data to calculate 
difference 
 

Incremental Shuttle walk test Lack of data to calculate 
difference 

30 randomised 
19 to intervention 
11 to control 
 

Fitbit Activity device 
 
 
 

8 weeks during PR 
and 8 weeks post 
 

Analysed N = 10; Male 8/19 (42%) 
Median age (IQR) = 68 (63 – 72)  
 

Analysed N = 6; Male 5/11 (45%) 
Median age (IQR) = 66 (60 – 70) 

Not given Attrition rate: 47% 
 

Attrition rate: 45% 

Benzo et al 
2021 
USA(162) 

RCT 
 
Per 
Protocol 

Stable COPD patients 
 
 
 
 

Android tablet with health coaching using 
video guided exercises, measurement of 
daily steps and pulse oximetry during 
exercises 
 

Usual care / Wait list for PR 
 
 
 
 
 
 

Mean daily steps 
 

631 
(-143 to 1405) 

Sedentary time (min) 
 

-29.90 
(-84.70 to 24.90) 

154 randomised 
78 to intervention 

Vivofit activity monitor (Garmin, 
Switzerland) 

Light intensity time (min) 
 

21.00 
(-24.50 to 66.50) 
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76 to usual care 
 

Oximeter 3150 Wrist Ox2, Nonin Medical, 
Minnesota 

 
 
 
 
 
 

Mod intensity time (min) 
 
 

9.70 
(-4.25 to 23.65) 

SMAS total score 4.10 
(1.68 to 6.52) 

8 weeks 
 
 

Start study N = 72; Male 34 (47%) 
Mean age ± SD = 69 ± 8 
 
 

Study start N = 74; Male 37 (50%) 
Mean age ± SD = 69 ± 9 
 
 

FEV1% 42.5 Attrition rate: 28% Attrition rate: 17% 
 

Cooper et 
al 
2019 
USA 
(189) 

OBS Stable COPD patients Remote patient monitoring with daily 
saturations, spirometry, and symptom 
questionnaires. This was accompanied by 
an accelerometer worn all the time.  

- Exacerbation detection Due to poor concordance – 
unable to calculate 

GeneActiv ® Accelerometer 

17 
 

12 months 
 
 

N = 17; Male = 5 (29%) 
Mean age ± SD = 71 ± 7 
 

FEV1% 56.8 Attrition rate: 53% 

Chen et al 
2022 
Taiwan(163) 

RCT 
 
Per 
Protocl 

Stable COPD patients 
 

Pedometer with step count target 
 

Weekly counselling where 
participants were encouraged to 
be active and walk ≥ 30mins/day 
 

Mean daily step count 
 

2358 
(738 to 3978) 

6MWD (m) 
 

-13.13 
(-47.52 to 21.26) 45 randomised 

21 to intervention 
24 to control 

Pedometer (brand not mentioned) 
 
 

CAT score 
 

-6.35 
(-11.27 to -1.43) 

mMRC score -0.11 
(-0.89 to 0.66) 6 weeks 

 
 

Analysed N = 15; Male 13 (87%) 
Mean age ± SD = 74 ± 8 
 

Analysed N = 11; Male 9 (82%) 
Mean age ± SD = 72 ± 11 

 
FEV1% 52 

Attrition rate: 29% Attrition rate: 54% 

Cruz et al 
2014 
Portugal 
(164) 

OBS Stable COPD patients PR with exercise training, 
psychoeducation, and feedback on 
physical activity with a wearable monitor 

- Mean daily step count 
 

220 
(-565 to 1005) 

Mod-vigorous time (min) 
 

-5.05 
(-14.00 to 3.90) 

GT3X Activity monitor Light intensity time (min) 
 

-0.08 
(-28.33 to 28.17) 
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20 
 

Sedentary time (min) 
 

-9.6 
(-38.06 to 18.86) 

3 months 
 
 

Analysed N = 16; Male 11 (69%) 
Mean age ± SD = 66 ± 11 

Standing time (min) 
 

30.06 
(5.27 to 54.85) 

Sitting time (min) 2.13 
(-8.43 to 12.69) FEV1% 70.3 Attrition rate: 20%. 

 

De-Blok et 
al 
2006 
Netherland
s 
(165) 

RCT 
Per 
Protocol 
 

Stable COPD patients 
referred to PR aged 
40-80 years 
 
 

Lifestyle physical activity counselling 
program with pedometer feedback and 
goal settings in addition to PR 
 
 

Usual PR 
 
 
 
 
 
 
 
 

Mean daily steps 
 

567 
(-663 to 1797) 

Chair stand test (n) 
 

1.10 
(-1.35 to 3.55) 

Arm curl test (n)  
 

2.50 
(-0.93 to 5.93) 

21 randomised 
10 to intervention 
11 to control 
 

Yamax Digi-Walker SW-200 (Tokyo, 
Japan) 
 
 

2-min step test (n)  
 
 

15.00 
(-0.99 to 30.99) 

Total SGRQ 3.30 
(-6.38 to 12.98) 

10 weeks 
 
 

Randomised N = 10; Male 5 (50%) 
Mean age ± SD = 66 ± 10 
 

Randomised N = 11; Male 4 (36%) 
Mean age ± SD = 63 ± 12 
 

FEV1% 47.5 
 
 

Attrition rate: 20% Attrition rate: 27% 

Demeyer et 
al 
2017 
European 
(multi-
centre 
study) 
 
(166) 

RCT 
 
Per 
Protocol 

Stable COPD and 
those who had had an 
exacerbation 
Not in PR 
 

Tele-coaching with step counter, direct 
feedback and smartphone app giving 
activity goals and feedback 

Standard leaflet explaining 
importance of physical activity with 
a 5–10-minute session explaining 
 
 
 
 
 
 

Mean daily steps 
 

1548 
(1012 to 2084) 

Moderate time (min) 
 

0.57  
(0.35 to 0.80) 

Walking time (min) 
 

17.00 
(9.68 to 24.32) 

343 randomised 
171 to intervention 
172 to control 
 

Fitbug Air 
 
 
 

Movement intensity (m/s2) 
 

0.09 
(0.04 to 0.14) 

3 months 
 
 
 
 

Analysed N = 159; Male 111/171 (65%) 
Mean age ± SD = 66 ± 8 

Analysed N = 159; Male 108/172 
(63%) 
Mean age ± SD = 67 ± 8 

6MWD (m) 
 

13.51 
(3.55 to 23.47) 

Quadricep strength (Kg) 
 

0.05 
(-0.17 to 0.27) 

FEV1% 56 Attrition rate: 7% Attrition rate: 8% CAT score -0.47  
(-1.89 to 0.95) 
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Geidl et al 
2021 
Germany 
 
(167) 

RCT 
 
Intention
-to-treat 

COPD patients 
undergoing inpatient 
rehabilitation 
 

Pedometer given during 3-weeks inpatient 
rehabilitation then continued after. 
Feedback and goal setting 

3-weeks inpatient rehabilitation 
and patient education 

Means daily steps 
 

496 
(-72 to 1063) 

Moderate time (min) 
 

0.21 
(-0.00 to 0.43) 

Sedentary time (min) 
 

-0.02 
(-0.23 to 0.20) 

327 randomised 
167 to intervention 
160 to control 

Pedometer, brand not mentioned SGRQ 
 

2.20 
-1.12 to 5.52) 

CAT score -0.79 
(-3.06 to 1.48) 

6 months 
 
 

N = 167; Male = 115 (69%) 
Mean age ± SD = 58 ± 6 
 

N = 160; Male = 110 (69%) 
Mean age ± SD = 58 ± 5 

FEV1% 53.5 
  

Attrition rate: ?% Attrition rate: ?% 

Hawthorne 
et al 
2022 
UK(190) 

OBS COPD patients post 
acute exacerbation 
admission 
 
 
 

Equivital LifeMonitor to be worn on 
discharge for 6 weeks. This monitor 
continuously records respiratory rate, heart 
rate, skin temperature and physical activity 
every 15 seconds 
 

- Changes in the following measures 3 days prior to an 
exacerbation (n = 11) 

 

Changes in heart rate 
 
 

Increased by a mean 8.1 ± 0.7 
beats per minute 

50 recruited 
 
 

N = 31 Analysed; Male 16 (52%) 
Mean age ± SD = 69 ± 8 
 

Changes in Respiratory rate Increased by a mean 2.0 ± 0.2 
breaths/min 

6 weeks 
 
 

Attrition rate: 38%  
Changes in skin temperature 

Nil change 

FEV1%: 43.5 

 
Changes in physical activity 

Nil change 

Hornikx et 
al 
2015 
Belgium 
 
(168) 

RCT 
 
Per 
Protocol 

Severe COPD 
exacerbators post 
hospital discharge 
 
 
 
 

Pedometer used post discharge to provide 
real-time feedback on step counts. 
Physical activity counselling telephone 
calls three times per week with new goals 
set based on step-count 

Usual care (no rehabilitation or 
motivational messages). General 
advice about increased physical 
activity during inpatient stay 

Mean daily steps 
 

-29 
(-969 to 911) 

Minutes walked 
 

0.00 
(-11.50 to 11.50) 

Movement intensity ((m/s2) / 
day) 
 

-0.02 
(-0.06 to 0.02) 

Quadricep strength (Kg) 
 

0.28 
(-0.48 to 1.05) 

30 randomised 
15 to intervention 
15 to control 
 

Fitbit Ultra (San Francisco, California) 6MWD (m) 
 

3.00 
(-53.13 to 59.13) 

mMRC 
(median and IQR) 

Intervention: 
0 (-1 to 0) 
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Control: 

0 (-1 to 0) 
 

CAT score 
(median and IQR) 

Intervention: 
-3 (-10 to 1) 

 
Control: 

-5 (-7 to 1) 
 

1 month 
 
 
 
 

Overall demographic N = 15; Male = 8 
(53%) 
Mean age ± SD = 66 ±7  
Note only 12 analysed 
 

N = 15; Male 9 (60%) 
Mean age ± SD = 68 ± 6 
 
 

FEV1% 43 Attrition rate: 20% Attrition rate: 0% 

Hospes et 
al 
2009 
Netherland
s 
 
(169) 

RCT 
 
Per 
Protocol 

Stable COPD patients 
(45-75 years) 
 
 

Exercise counselling group: included 
motivational interviewing based on 
pedometer feedback  
 

Usual care only 
 
 
 
 
 
 
 

Mean daily steps 
 

2152 
(527 to 3777) 

Leg strength (?units) 
 

1.90 
(0.66 to 3.14) 

39 randomised 
20 to intervention 
19 to control 
 

Pedometer (Digiwalker SW-2000, Yamax, 
Tokyo, Japan) 
 
 

Arm strength (?units) 6.30 
(4.58 to 8.02) 

 

12 weeks 
 
 
 

Analysed N = 18; Male 10 (55%) 
Mean age ± SD = 63 ± 8 

Analysed N = 17; Male 11 (65%) 
Mean age ± SD = 61±9 

Grip force (?units) 
 

0.20 
(-4.67 to 5.07) 

6MWD (m) 
 

12.50 
(-10.76 to 35.76) 

FEV1% 64.6 Attrition rate: 10% Attrition rate: 11% 

SGRQ -6.60 
(-13.22 to 0.02) 

Kato et al 
2017 
Japan 
(170) 

RCT 
Per 
protocol 

Stable COPD patients 
 
 
 

Pedometer to record their number of steps 
and self-evaluate the cumulative daily step 
count. No target number given 
 

Usual care with no diary or 
pedometer 
 
 
 
 
 
 

Knee extension strength 
(WBI) 
 

0.08 
(-0.04 to 0.20) 

 

26 randomised 
12 to intervention 
14 to control 
 

Omron HJ-205IT pedoemeter (Omron, 
Tokyo, Japan) 
 
 

6MWD (m) 
 

43.30 
(-15.50 to 102.10) 

SGRQ 
 
 

-5.10 
(-14.73 to 4.53) 

6months 
 
 

Analysed 6; Male 5 (83%) 
Mean age ± SD = 74 ± 5 
 

Analysed 5; Male 5 (100%) 
Mean age ± SD = 73 ± 5 
 

CAT -2.80 
(-8.22 to 2.62) 

FEV1% Not given 
 

Attrition rate: 50% Attrition rate: 64%  

Kawagoshi 
et al 
2015 

RCT 
 

Stable COPD patients 
 

Pulmonary rehabilitation programme with 
pedometer feedback and goal setting 
 

Home based pulmonary 
rehabilitation program with 45min 
monthly education programme 

Time spent walking / day 
(min) 
 

39.00 
(0.72 to 77.28) 
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Japan 
(171) 
 

Per 
Protocol 

Time spent standing / day 
(min)  
 

11.70 
(-16.83 to 40.23) 39 randomised 

19 to intervention 
20 to control 

Pedometer (Kens Liferecorder EX, 
Nagoya, Japan) 

Time spent sitting / day (min 
 

53.20 
(-20.93 to 127.33) 

12 months 
 

Analysed N = 12; Male 10 (83%) 
Mean age ± SD = 74 ± 8 
 

Analysed N = 15; Male 14 (93%) 
Mean age ± SD = 75 ± 9 

Time spent lying down / day 
(min) 
 

-24.30 
(-72.00 to 23.40) 

FEV1% 56.6 Attrition rate: 37% Attrition rate: 25% Quadricep strength (Kg) 
 

2.90 
(-3.42 to 9.22) 

BODE index 
 

-1.76 
(-6.25 to 2.73) 

6MWD (m) 
 

-18.59 
(-39.55 to 2.36) 

MRC -0.20 
(-0.50 to 0.10) 

Kohlbrenne
r et al 
2020 
Switzerland 
(172) 

RCT 
 
Per 
Protocol 

Stable COPD patients 
aged over 40, with 
FEV1 <50% predicted 
 

Physical activity counselling and 
pedometer with feedback. Activity diary 
(step counts, daily activity and goal 
setting) with monthly calls for 3 months, 
then unsupported for further 9 months 
 

Usual care with no diary and no 
pedometer 
 

Mean daily steps 
 

300 
(-412 to 1012 

CAT score 
 

0.31 
(-3.68 to 4.30) 

1min sit to stand reps 1.50 
(-2.02 to 5.02) 

74 randomised 
37 to intervention 
37 to control 
 

Pedometer (Omron Healthcare Co. Kyoto, 
Japan) 
 

12 months 
 

Randomised N = 37; Male 27 (73%) 
Mean age ± SD = 67 ± 9 
 

Randomised N = 37; Male 23 
(62%) 
Mean age ± SD = 64 ± 9 
 

FEV1% 35 Attrition rate: 22% Attrition rate: 16% 

Mendoza et 
al 
2015 
Chile 
(173) 

RCT 
Per 
protocol 
 

Stable COPD patients 
 

Pedometer with feedback and goal setting 
 

General counselling monthly and 
advised to increased activity and 
walk 30min/day. Paper diary 
 

Mean daily steps 
 

2942 
(1881 to 4002) 

6MWD (m) 
 

13.10 
(1.24 to 24.96) 

102 randomised 
52 to intervention 
50 to control 
 

Pedometer (PD724 Triaxial pedometer, 
Tanita, Tokyo, Japan) 
 
 

SGRQ 
 

-5.00 
(-9.60 to -0.40) 

CAT  
 

-2.90 
(-5.33 to -0.47) 

3 months Randomised N = 52; Male 29 (56%) 
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Mean age ± SD = 69 ± 10 
 
 

Randomised N = 50; Male 33 
(66%) 
Mean age ± SD = 68 ± 8 
 

mMRC 
 

0.20 
(-0.12 to 0.52) 

FEV1% 66.1% Attrition rate: 4% Attrition rate: 6% 

Moy et al  
2012 
USA 
(174) 

OBS Stable COPD patients 
 
 

Every step counts walking program which 
included a pedometer giving feedback with 
goal setting and motivational messages 
 

- Mean daily steps 
 

1263 
(-268 to 2794) 

mMRC -0.24 
(-0.85 to 0.37) 

27 
 
 

 
Pedometer – Omron HJ-720ITC 
 

3 months 
 
 

Recruited N = 27; Male 27 (100%) 
Mean age ± SD = 72 ± 8 
 

FEV1% 55 Attrition rate: 11% 

Nguyen et 
al 
2009 
USA 
(175) 

RCT 
 
Intention 
to treat 

Stable COPD patients 
completed PR 
 
 
 

‘MOBILE-COAHED’ – collaborative 
monitoring of symptoms and exercise (via 
pedometer) and ongoing reinforcement 
feedback with weekly messages 
 

‘MOBILE SELF-MONITORED’ – 
Symptom and exercise information 
(via pedometer) but no feedback 
and no reinforcement 
  

Mean daily steps 
 

-1626 
(-3459 to 207) 

Incremental cycle test 
(watts) 
 

-6.80 
(-22.32 to 8.72) 

6MWD (feet) 
 

-114.00 
(-341.52 to 113.52) 17 randomised 

9 to intervention 
8 to control 
 

Omron HJ-112 digital pedometer (Omron 
Healthcare, Bannockburn, IL, USA) 
 
 

Omron HJ-112 digital pedometer 
(Omron Healthcare, Bannockburn, 
IL, USA) 
 

SGRQ 
 

8.90 
(0.30 to 17.50) 

6 months 
 
FEV1% 40.55 

Analysed N = 9; Male 3 (33%) 
Mean age ± SD = 72 ± 9 
 

Analysed N = 8; Male 3 (38%) 
Mean age ± SD = 64 ± 12 
 

Attrition rate: 0% 
 

Attrition rate: 13% 
 

Nguyen et 
al 
2019 
USA 
(191) 

RCT 
 
Intention 
to Treat 

COPD patients 
needing ED 
attendance 
 
 
 

Physical activity coaching intervention – 
‘Walk-on!’ 
Collaborative monitoring of physical 
activity step counts, semiautomated step 
goals and individualised reinforcement 
 

Standard care with no contact with 
study team  
 
 
 
 
 
 
 

Self-reported activity  
 

- 

All cause acute care use 
and death 
 

OR 1.05 (0.82 – 1.35) 

2707 randomised 
1358 to intervention 
1349 to control 

Either Omron HJ329 pedometer or 
Tractivity accelerometer or 
Fitbit Alta 

Hospitalisations 
 

OR 0.84 (0.65 – 1.10) 

Observation stays OR 0.92 (0.66 – 1.28) 
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12 months 
 
 
 
 
 
 

Randomised N = 1358; Male 642 (47%) 
Mean age ± SD = 72 ± 10 
 
 

Randomised N = 1349; Male 610 
(45%) 
Mean age ± SD = 72 ± 10 
 

Emergency department 
visits 
 

OR 1.07 (0.84 – 1.36) 

Death 
 

OR 0.62 (0.35 – 1.11) 

COPD-related acute care 
use 
 

OR 0.96 (0.68 – 1.35) 

FEV1% 61.2 Attrition rate: 76% 
 

Attrition rate: 3% 
 

Nolan et al 
2017 
UK 
(176) 

RCT 
Per 
protocol 

Stable COPD patients 
undergoing initial PR 
assessment 
 

Pedometer plus PR, with individualised 
daily step-count target and weekly review 
 
 

Standardised twice-weekly 
outpatient PR program 
 
 
 
 
 
 

Mean daily step count 
 

198 
(-657 to 1054) 

Mod-intensity time (min) 
 

-0.16 
(-0.53 to 0.21) 

152 randomised 
76 to intervention 
76 to control 
 

Pedometer – Yamax Digi-walker CW700; 
Yamax, Bridgnoth, UK 
 
 

Shuttle walk distance (m) 
 

20.00 
(-28.91 to 68.91) 

Chronic resp Questionnaire 
 
 

-7.00 
(-22.92 to 8.92) 

6months 
 
 
 

Randomised N = 76; Male 56 (74%) 
Mean age ± SD = 69 ± 9 
 

Randomised N = 76; Male 54 
(71%) 
Mean age ± SD = 68 ± 8 
 

FEV1% 50.5 
 

Attrition rate: 26% 
 

Attrition rate: 25% 

Park et al. 
2020 
Korea(177) 

RCT 
 
Intention 
to treat 

Stable COPD patients 
 
 
 
 
 

Combination of group education sessions, 
prescribed individualised exercises for 
each participant, pedometer with step 
count record and symptom monitoring. 
Built-in smart phone application 
 

Group education sessions and 
prescribed individual exercises 
 
 
 
 
 
 
 
 

Mean daily steps 
 

1189 
(90 to 2287) 

6MWD (m) 
 

15.41 
(-20.01 to 50.83) 

Mod-intensity activity (%of 
time) 
 

0.02 
(0.01 to 0.03) 

Sedentary behaviour (% of 
time) 
 

-0.04 
(-0.07 to -0.01) 44 randmoised 

23 to intervention 
21 to control 
 

Pedometer brand not mentioned 
 
 
 

SEMCD 
 

-0.04 
(-0.87 to 0.73) 

Exacerbation needing  
hospitalisation (%) 
 
 

Intervention: 9.1%  
Control: 10% 6 months 

 
 

Analysed N = 22; Male 19 (86%) 
Mean age ± SD = 68 ± 10 
 

Analsyed N = 20; Male 14 (70%) 
Mean age ± SD = 65 ± 11 
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FEV1% 65 Attrition rate: 4% 
 

Attrition rate: 5% 

Robinson 
et al 
2021 
USA(178) 

RCT 
 
Intention 
to treat 

Stable COPD patients 
 
 
 

Pedometer with individualised step count 
goals + objective walking assessment and 
feedback + motivational messages + 
online community 

Verbal encouragement to increase 
physical activity and an 
educational booklet 
 
 
 
 
 

Mean daily step count 
 

1312 
(192 to 2432) 

6MWD (m) 
 

-12.27 
(-38.93 to 14.39) 

153 randomised 
75 to intervention 
78 to control 
 

Fitbit Zip pedometer 
 
 
 

SGRQ score 
 

0.07 
(-0.25 to 0.39) 

mMRC score 
 

-0.13 
(-0.45 to 0.19) 

6 months 
 
 
 

Randomised N = 75; Male 70 (93%) 
Mean age ± SD = 69 ± 7 
 
 

Randomised N = 78; Male 72 
(92%) 
Mean age ± SD = 70 ± 7 

Acute exacerbation (%) Intervention: 12% 
Control 9% 

FEV1%: 61% Attrition rate: 20% 
 

Attrition rate: 31% 

Spielmanns 
et al 
2023 
Germany(1
80) 

RCT 
 
Intention 
to treat 

Stable COPD patients 
post PR 
 
 
 

Physical exercise training essions via the 
Kaia COPD App with an activity tracker. 
The purpose of he app was to individualise 
strength training and increase daily steps 
 

Activity tracker but no access to 
COPD App 
 
 
 
 
 
 
 

Median daily step count 
 
 

Effect size 0.402 
 (IQR 0.131 to 0.617 

CAT score 
 

-5.12 
(-7.53 to -2.71) 

Sit-to-Stand repetitions 
 
 

1.04 
(-1.49 to 3.51) 67 randomised 

33 to intervention 
34 to  control 
 

Activity tracker: Polar A370® Watch 
 
 
 

6 months 
 
 
 

Randomised N = 33; Male 17 (52%) 
Mean age ± SD = 66 ± 7 
 

Randomised N = 34; Male 17 
(50%) 
Mean age ± SD = 63 ± 8 

FEV1% 44 Attrition rate: 9% 
 

Attrition rate: 13% 

Sasaki et al 
2021 
Japan 
  
(179) 

OBS Stable COPD patients 
 
 
 

Pedometer provided. For 8 weeks patients 
were asked to increase their step count as 
much as possible using the pedometer. 
 

- Mean daily step count 
 
 

205 
(-123 to 534) 

 
 

 
19 

Pedometer: OMRON healthcare, Kyoto, 
Japan 
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8 weeks 
 
 

Analysed N = 16; Male 13 (81%) 
Mean age ± SD = 73 ± 7 
 

FEV1% 56 
 

Attrition rate: 16% 

Valeiro et al 
2022 
Spain(181) 

RCT 
 
Per 
Protocol 

Following an acute 
exacerbation of COPD 
 
 

Motivational interview with a personalised 
physical activity program with a pedometer 
and weekly telephone calls 
 

Usual Care 
 
 
 
 
 
 
 

Mean daily step count 
 

2193 
(595 to 3791) 

Sedentary time (hours) -0.10 
(-1.16 to 0.96) 

46 randomised 
22 to intervention 
24 to control 
 

Pedometer brand not mentioned 
 
 
 

Light-intensity time (min) 
 

-16.00 
(-32.73 tp 0.73) 

Mod-intensity time (min) 
 

14.00 
(-4.77 to 32.77) 12 weeks 

 
 
 

Analysed N = 20; Male 16 (80%) 
Mean age ± SD = 66 ± 10 
 
 

Analysed N = 23; Male 16 (70%) 
Mean age ± SD = 66 ± 10 
 
 

Quadricep strength (Kg) 
 

1.00 
(-2.27 to 4.27) 

FEV1% 46 Attrition rate: 10% 
 

Attrition rate: 4% 6MWD (m) 
 

29.00 
(-16.36 to 74.36) 

CAT score -3.00 
(-5.77 to -0.23) 

Varas et al 
2018 
Spain 
(182) 

RCT 
 
Per 
protocol 
 

Stable COPD patients 
with low physical 
activity level and no 
PR for 12 months 
 

5-group sessions of physiotherapy + 8-
week community program with exercise 
training + pedometer with daily step-target. 
Post intervention – asked to keep same 
step-count 

5-group sessions of 
physiotherapy. Given a pedometer 
but no target or instructions 
 
 
 
 
 
 
 

Mean daily step count 
 

2547 
(927 to 4167) 

Shuttle test time (min) 
 

7.50 
(4.32 to 10.68) 

Shuttle test distance (m) 
 

624.40 
(230.76 to 1018.04) 

 
40 randomised 
21 to intervention 
19 to control 
 

 
OMRON walking style X Pocket HJ-320e, 
Omron Healthcare Inc, Illinois 
 
 

SGRQ 
 

-5.50 
(-8.20 to -2.80) 

mMRC -0.30 
(-0.65 to 0.05) 

 
12 months 
 
 

Randomised N = 21; Male 18 (86%) 
Mean age ± SD = 70 ± 7 
 
 

Randomised N = 19; Make 13 
(68%) 
Mean age ± SD = 65 ± 9 
 

FEV1% 49 
 

Attrition rate: 19% 
 

Attrition rate: 16% 
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Vorrink et 
al 
2016 
Netherland
s 
(183) 

RCT 
Per 
protocol 

Stable COPD patients 
 
 

Patients wore a smartphone continuously 
on a belt which measured physical activity 
and set individual personalised goals set. 

Usual Care 
 
 
 
 

Mean daily step count 
 

-77 
(-763 to 609) 

Metabolic equivalent of task 
 
 

0.05 
(-0.10 to 0.20) 183 randomised 

102 to intervention 
81 to control 

 
Smartphone – HTC Desire A8181; HTC; 
Taoyuan, Taiwan 6MWD (m) 

 
-3.20 

(-14.51 to 8.11) 

BMI (kg.m2) 0.04 
(-0.29 to 0.37) 12months 

 
 

Completed baseline investigations N = 84; 
Male 42 (50%) 
Mean age ± SD = 62 ± 9 
 

Completed baseline investigation 
N = 73; Male 36 (49%) 
Mean age ± SD = 63 ± 8 
 

FEV1% 56 Attrition rate: 39% Attrition rate: 27% 

Wan et al  
2017 
USA 
(184) 

RCT 
Per 
protocol 

Stable COPD patients 
 
 
 
 

Pedometer and website where step counts 
uploaded weekly and individualised goal 
set with iterative step-count feedback and 
motivational content 
 

Pedometer alone with no website 
and no step-count goals 
 
 
 
 
 
 
 

Mean daily step count 
 

804 
(105 to 1503) 

6MWD (m) 
 

3.50 
(-15.92 to 22.92) 

SGRQ 
 

-0.23 
(-4.53 to 4.07) 

mMRC -0.20 
(-0.60 to 0.20) 

114 randomised 
60 to intervention 
54 to control 
 

Omron HJ-720 ITC pedometer 
 
 
 

3 months 
 
 
 

Analysed N = 57; Male 56 (98%) 
Mean age ± SD = 68 ± 9 
 

Analysed N = 52; Male 51 (98%) 
Mean age ± SD = 68 ± 8 
 

FEV1% 62.6 Attrition rate: 5% 
 

Attrition rate: 4% 
 

Wan et al  
2020 
USA* 
(192) 

RCT 
2o 
Analysis 

Stable COPD patients 
 
 
15 months (12 months 
post study completion) 

Secondary analysis of Wan et al 2017 
dataset  

Secondary analysis of Wan et al 
2017 dataset  

Risk of acute exacerbations Rate ratio 0.51 
(0.31 to 0.85) 

Widyastuti 
et al 
2018 
Indonesia 

RCT 
Per 
Protocol 

Stable COPD 
 
 
 

Fast-walking at least 30minutes/day and 
pedometer for 6 weeks with goal setting 
and feedback 
 

3x30min weekly sessions for 6 
weeks of supervised exercise 
training on a treadmill. 

Mean daily step count 
 

264 
(-823 to 1351) 

6MWD (m) 
 

-20.80 
(-48.89 to 7.29) 
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(185) Encouraged to be more active at 
home with 30min fast walking/day. 
No pedometer 
 
 
 

CAT score 
 
 

1.20 
(-0.51 to 2.91) 40 randomised 

20 to intervention 
20 to control 
 
 

Omron HJ 321, Omron Healthcare CoLtd, 
Kyoto, Japan 
 
 
 

6 weeks 
 
 

Analysed N = 18; Male 16 (89%) 
Mean age ± SD = 68 ± 7 
 

Analysed N = 18; Male 15 (83%) 
Mean age ± SD = 69 ± 9 
 

FEV1% exact value 
not given 
 

Attrition rate: 10% 
 

Attrition rate: 10% 
 

Wootton et 
al 
2017 
Australia 
(187) 

RCT 
 
Intention 
to Treat 

Stable COPD patients 
 
 
 
 

Unsupervised maintenance walking 
exercise 3 days a week for 12 months. 
Telephone calls with biofeedback from a 
pedometer and progressive goal setting 
 

Unsupervised maintenance 
walking exercise 3 days a week for 
12 months 
 
 
 
 
 
 

6MWD (m) 
 

16.00 
(-10.20 to 42.20) 

Endurance shuttle walk test 
time (s) 
 

58.00 
(-119.21 to 235.21) 

Incremental shuttle walk test 
distance (m) 
 

-29.00 
(-62.81 to 4.81) 95 randomised 

49 to intervention 
46 to control 
 

G-Sensor accelerometer, Pedometers 
Australia, Cannington, Australia 
 
 

SGRQ -3.00 
(-7.20 to 1.20) 

12 months 
 
 

Randomised N = 49; Male 25 (51%) 
Mean age ± SD = 70 ± 7 
 
 

Randomised N = 46; Male 30 
(65%) 
Mean age ± SD = 69 ± 9 
 

 FEV1% 43 
 

Attrition rate: 18% Attrition rate: 24% 

Wootton et 
al 
2019 
Australia 
(186) 

RCT 
 
Per 
protocol 

Stable COPD patients 
 
 
 
 

Unsupervised maintenance walking 
exercise 3 days a week for 12 months. 
Telephone calls with biofeedback via a 
pedometer and progressive goal setting.  
 

Unsupervised maintenance 
walking exercise 3 days a week for 
12 months 
 
 
 
 
 

Mean daily step count 
 

894 
(74 to 1714) 

Total energy expenditure 
(kcal) 
 

5.00 
(-106.11 to 116.11) 

86 randomised 
42 to intervention 
44 to control 
 

G-Sensor accelerometer, Pedometers 
Australia, Cannington, WA, Australia 
 

Sedentary time (min) 
 

4.00 
(-30.60 to 38.60) 

12 months Randomised N = 42; Male 30 (71%) 
Mean age ± SD = 70 ± 7 
 
 

Randomised N = 44; Male 23 
(52%) 
Mean age ± SD = 69 ± 9 
 

Light intensity (min) 
 

24.00 
(-12.59 to 60.59) 

FEV1% 44 Attrition rate: 45% 
 

Attrition rate: 55% 
 

Moderate intensity (min) 
 

-10.00 
(-25.97 to 5.97) 
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Vigorous intensity (min) 0.00 
(-1.33 to 1.33) 

Wu et al 
2021 
Taiwan 
(193) 

OBS Stable COPD patients 
 
67 
 
 
 
 
 

Prediction system which was made of 4 
components: 
1. Wearable device (Fitbit Versa) 
2. Home air quality sensing device 

(EDIMAX Airbox) 
3. Lifestyle observation platform 
4. Health application 
 

- 7-day prediction system for 
early detection of COPD 
exacerbations 

Accuracy 92.1% 
Sensitivity of 94% 
Specificity 90.4% 
AUROC >0.9 

Exact value not given N = 67; Male 59 (88%) 
Mean age ± SD = 67 ± 11 

Abbreviations: 6MWD = Six-minute walk distance; BODE index = body mass index, airflow obstruction, dyspnoea and exercise capacity; BMI = body mass 

index; CAT = COPD Assessment Tool; CPPAC = Clinical visit-PROactive physical activity in COPD instrument; HAD = hospital anxiety and depression scale;  

mMRC = modified medical research council; OBS = Observational study; PR = pulmonary rehabilitation; RCT = randomised controlled trial; SMAS = self-

management ability scale; SEMCD = self-efficacy for managing chronic diseases SGRQ = St George’s Respiratory Questionnaire; WBI = weight bearing 

index.  

*secondary analysis papers.  
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2.4.2 Wearable technology and physical activity metrics 

 

Mean daily step count change. 

A total of 21 RCTs enrolling 2025 patients with a median (IQR) duration of 3 

months (2.3 - 6months), assessed the impact of wearable technology on the 

mean daily step count. (159, 160, 162, 163, 165-169, 172, 173, 175-178, 181-

186) The studies were heterogenous in nature (I2 = 69%). A random effects 

meta-analysis showed that wearable technology significantly increased the 

mean daily step count from baseline, compared to controls [SMD (95%CI) 0.42 

(0.25– 0.60)] equating to an improvement of 850 (494 – 1205) steps/day. This 

is illustrated in Figure 2-2.  

Figure 2-2 Forrest plot showing the mean daily step count change. 

 

Subgroup analyses investigating the impact of study duration, type of 

intervention (wearable technology alone vs. wearable technology combined 

with additional health coaching vs. wearable technology plus pulmonary 

rehabilitation), outcome measurement device and COPD severity can be seen 

in Table 2-2. Wearables combined with another facet (health coaching or 

pulmonary rehabilitation) had a higher mean difference compared to wearable 
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technology alone. As expected, studies of a shorter duration also had a higher 

overall mean difference.  

Table 2-2 Subgroup analysis on mean daily steps of included studies. 

Subgroups N Effect Size 

Mean difference 

(95%CI) 

I2 (%) 

Duration 

≤ 3months 11 1190 

(715 - 1664) 

67 

> 3months 10 469 

(34 – 905) 

60 

Type of interventiona 

Wearable technologyb with 

feedback ± goal setting vs. 

usual care 

2 243 

(-341 – 801) 

37 

Wearable technology + 

health coachingc vs. usual 

care 

9 998 

(539 – 1456) 

55 

Wearable technology + 

pulmonary rehabilitation 

vs. usual care 

3 723 

(191 – 1255) 

33 

Outcome measurement device 

Pedometer 9 1582 

(910 – 2255) 

64 

Accelerometer 10 490 

(114 – 866) 

77 

Severity of COPD 

Moderate 12 1011 

(539 – 1482) 

78 

Severe 8 649 

(42 – 1255) 

61 

aThis analysis excluded studies whereby the control arm was given a pedometer. It also 
excluded studies where the control arm had some counselling sessions or encouragement 
were excluded from this analysis. 
ball included studies used a step-counter as their intervention. 
cHealth coaching is used to describe motivational interviewing ± counselling ± smart-phone 
access.  
 

Three observational studies enrolling 66 patients also looked at the impact of 

wearable technology and changes observed in mean daily step count. None 

of these studies found a significant difference in the step count from baseline. 

(164, 174, 179) 
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Multivariable meta-regression analysis with year of publication, participant 

age, baseline FEV1 (%predicted), type of pedometer used in the intervention, 

and outcome measurement device explained 21% of the heterogeneity but 

was non-significant (residual I2 = 57%, R2 = 21%, p=0.61). The full model 

results can be seen in Table 2-3. 

Table 2-3 Multivariable meta-regression analysis results for mean daily step 
count. 

Covariate Regression 

Coefficient 

P-value 95% confidence 

interval 

Age -0.1498 0.40 -1.55 to 1.25 

Publication year 0.2388 0.15 -0.99 to 1.47 

FEV1 (% predicted) -0.0465 0.40 -1.55 to 1.25 

Type of pedometer used for the intervention 

Fitbit Zip -0.2028 0.89 -14.63 to 14.23 

Fitburg 0.4719 0.74 -13.09 to 14.03 

G-Sensor 2.0192 0.31 -11.47 to 15.51 

Omron 0.2123 0.80 -8.01 to 8.44 

PD724 2.0231 0.37 -14.92 to 18.97 

Vivofit Activity Monitor -0.6227 0.73 -18.09 to 16.85 

Digi-walker 2.2117 0.30 -12.23 to 16.65 

Outcome measurement device 

Dynaport 

accelerometer 

-0.3726 0.74 -11.36 to 10.61 

Omron pedometer 0.2930 0.81 -11.83 to 12.42 

SenseWear 

Accelerometer 

-2.2625 0.29 -16.13 to 11.61 
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Six-minute walk distance (6MWD) 

A total of 17 RCTs enrolling 1485 participants looked at the impact of wearable 

devices on the 6MWD.(159, 160, 163, 166, 168-171, 173, 175, 177, 178, 181, 183-

185, 187) Studies were not heterogeneous (I2 = 20%). A fixed-effects meta-

analysis showed that wearable technology significantly increased the 6MWD 

from baseline compared to the control group with a mean difference (MD) 

(95%CI) of 5.81m (1.02 – 10.61m). Figure 2-3 shows the pooled effect size.  

Figure 2-3 Forrest plot showing the six-minute walk distance change. 

 

Subgroup analyses using the same criteria as above can be seen in Table 2-

4 and showed that studies which were multi-component and shorter (≤ 

3month) had a higher mean difference. 
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Table 2-4 Subgroup analysis on six-minute walk distance of included studies. 

Subgroups N Effect Size 

Mean difference 

(95%CI) 

I2 (%) 

Duration 

≤ 3months 9 10.13 
(3.97 – 16.30) 

6 

> 3months 8 -0.80 
(-8.43 – 6.82) 

0 

Type of interventiona 

Wearable technologyb with 

feedback ± goal setting vs. 

usual care 

2 -1.54 
(-12.64 – 9.56) 

57 

Wearable technology + 

health coachingc vs. usual 

care 

7 11.75 
(3.93 – 19.56) 

0 

Wearable technology + 

pulmonary rehabilitation 

vs. usual care 

2 15.66 
(-7.04 – 38.36) 

0 

Severity of COPD 

Moderate 11 5.97 
(0.94 – 11.00) 

17 

Severe 4 12.61 
(-7.52 – 32.74) 

0 

aThis analysis excluded studies whereby the control arm was given a pedometer. It also 
excluded studies where the control arm had some counselling sessions or encouragement 
were excluded from this analysis. 
ball included studies used a step-counter as their intervention. 
cHealth coaching is used to describe motivational interviewing ± counselling ± smart-phone 
access.  

 

Time spent in various activity intensities (sedentary, light, moderate and 

vigorous) 

Four RCTs enrolling 537 participants looked at the impact of wearable devices 

on sedentary time. (160, 162, 167, 186) Fixed effects meta-analysis showed 

wearables had no significant impact on sedentary time [SMD (95%CI) -0.07 (-

0.24 – 0.10); I2 = 0%]. Figure 2-4 shows the pooled effect. 
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Figure 2-4 Forrest plot showing the time spent sedentary (min) 

 

Two RCTs (160, 186) and one observational study (164) looked at the impact 

of wearable devices on time spent doing light intensity activities. Armstrong et 

al (160)  found that the intervention group spent longer doing light intensity 

activities (mean difference 22mins (95%CI 2.56 – 41.44). While Cruz et al and 

Wootton et al found no difference between the groups. (164, 186)   

Seven RCTs enrolling 1010 participants looked at the impact of wearable 

devices on time spent doing moderate – vigorous activities. (160, 162, 166, 

167, 176, 181, 186) Random-effects meta-analysis showed no significant 

difference between groups [SMD (95%CI) 0.22 (-0.02 – 0.46); I2 65%). Figure 

2-5 shows the pooled effect. 

Figure 2-5 Forrest plot showing the time spent in moderate-vigorous activity 
(min) 

 

Muscle Strength 

Five RCTs enrolling 463 participants looked at the impact of wearable devices 

on quadriceps muscle strength (Kg). (160, 166, 168, 171, 181)  Fixed-effects 
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meta-analysis showed no significant difference between groups [SMD 

(95%CI) 0.15 (-0.03 – 0.33); I2 0%] Figure 2-6 shows the pooled effect.   

Figure 2-6 Forrest plot showing quadricep muscle strength. 

 

Two studies investigated hand strength. Armstrong et al (160)  found a 

significant increase in hand grip strength with a mean difference of 2.10Kg 

(0.62- 3.58Kg) and Hospes et al (169) also found significant increases in arm 

strength with a mean difference of 6.30 (4.58 – 8.02). The units used in this 

case were not clear. 

Other activity measures 

Other activity measures tested included movement intensity, (160, 166, 168) 

1-minute sit to stand repetitions (165, 172) and shuttle walk distance. (161, 

176, 182, 187) (Table 2-1) Due to heterogeneity in measurement units and few 

studies a meta-analysis was not possible.  
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2.4.3 Wearable technology and exacerbation detection 

Ten studies involving 3660 participants investigated the impact of wearable 

technology on exacerbation detection. (123, 127, 159, 177, 178, 188-192) 

There was a high attrition rate amongst the intervention groups (median 36% 

(IQR 9 – 56%). Five studies (159, 177, 178, 191, 192) used physical activity 

monitors and assessed whether their use was associated with a decreased 

rate of hospital exacerbations. A fixed effects meta-analysis of four of these 

studies (median follow up duration 9 months) found no significant difference in 

the risk of hospitalisation from a COPD exacerbation (pooled OR 1.06 (0.90 – 

1.24), I2 = 31%. (159, 177, 178, 191) This meta-analysis was dominated by 

the study by Nguyen et al who had a high attrition rate in the intervention group 

of 76%.  This is illustrated in Figure 2-7.  Wan et al (192) performed some 

secondary analysis on a prior RCT and found that the use of a pedometer with 

individualised targeted goals in a group of stable COPD patients significantly 

decreased the risk of acute exacerbations over 15months (rate ratio 0.51 (0.31 

– 0.85). The absolute values were not given in their paper. 

Figure 2-7 Forrest plot showing the pooled OR for an exacerbation of COPD 
requiring hospitalisation. 

 

The remaining five studies investigated the role of wearable technology in 

exacerbation prediction. Al Rajeh et al (188) found that a continuous oxygen 

saturation and heart rate composite score had a positive predictive value of 

91.7% for exacerbation detection. The same group then performed some 
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secondary analysis using non-linear analyses methods including sample 

entropy of oxygen saturation. They found that the sample entropy of oxygen 

saturation was significantly higher in the exacerbating group compared to a 

stable control (0.505 ± 0.159 vs. 0.395 ± 0.101, p = 0.029). (123)  

Hawthorne et al (190) found significant changes in both heart rate and 

respiratory rate three days prior to an exacerbation but no changes detected 

in physical activity or skin temperature. Heart rate increased by a mean (SD) 

of 8.1 (0.7) beats per minute for 9/11 exacerbations, while respiratory rate 

increased by a mean (SD) of 2.0 (0.2) breaths per minute in 7/11 

exacerbations. 

Wu et al (127) conducted a telehealth study incorporating a wearable device 

alongside a health application and home air quality device. They had data from 

67 COPD patients and followed them up for a mean of 4-months. This resulted 

in the detection of 25 exacerbations episodes, and a 7-day exacerbation 

prediction model with an AUC of greater than 0.9, accuracy of 92% with a 

sensitivity of 94% and specificity of 90.4%. The most important variables in 

their model were daily steps walked, daily distance moved, and number of 

stairs climbed.  

Cooper et al (189)  combined a wearable device with daily spirometry to detect 

an exacerbation. They enrolled 17 participants with moderate-severe COPD 

and obtained daily symptom scores and activity levels, as well as measuring 

daily slow and forced spirometry.  However, due to poor adherence of the 

activity monitor, they could not identify activity patters immediately preceding 
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or post an exacerbation event and so could not use this to predict 

exacerbations.  
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2.4.4 The impact of wearable technology on quality-of-life measures 

 

Secondary analysis measures in 24 studies looked at changes in quality of life. 

(159, 160, 162, 163, 165-178, 180-182, 184, 185, 187) All the studies involved 

using a wearable physical activity device.  

COPD Assessment Tool (CAT) 

A total of 11 RCTs involving 1306 participants looked at the impact of wearable 

devices on the CAT scores over a median (IQR) duration of 3months (2.3 – 

6months). (159, 160, 163, 166, 167, 170, 172, 173, 180, 181, 185) Random-

effects meta-analysis showed wearables were associated with a significant 

reduction in the CAT scores compared to controls with a mean difference of -

0.99 (-1.59 to -0.40). Figure 2-8 shows the pooled effect. 

Subgroup analysis (Table 2-5) showed that the greatest reduction was seen 

in patients with severe COPD (mean difference -2.96 (-5.78 to -0.14)). 

 

Figure 2-8 Forrest plot for CAT score. 
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Table 2-5 Subgroup analysis for CAT scores 

Subgroups N Effect Size 

Mean difference 

(95%CI) 

I2 (%) 

Duration 

≤ 3months 5 -1.47 
(-3.28 - 0·33) 

74 

> 3months 6 -1.82 
(-3.74 - 0·11) 

71 

Type of interventiona 

Wearable technologyb with 

feedback ± goal setting vs. 

usual care 

2 -1.09 
(-3.19 - -1.01) 

0 

Wearable technology + 

health coachingc vs. usual 

care 

2 -1.44 
(-3.89 – 0.97) 

61 

Wearable technology + 

pulmonary rehabilitation 

vs. usual care 

1 -2.10 
(-3.78 - -0.42) 

- 

Severity of COPD 

Moderate 6 -1.35 
(-2.56 – 0.14) 

59 

Severe 3 -2.96 
(-5.78 - -0.14) 

63 

 

St George’s Respiratory Questionnaire (SGRQ) 

A total of eight RCTs involving 469 participants looked at the impact of 

wearable technology on the SGRQ. (165, 169, 170, 175, 178, 182, 184, 187) A 

random-effects meta-analysis showed no significant difference between 

groups (MD -1.73 (-4.90 to 1.44), I2 = 57%). Figure 2-9 shows the pooled 

effect.  

Figure 2-9 Forrest plot for SGRQ score change. 
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Modified Medical Research Council (mMRC) Score 

Five RCTs involving 418 participants investigated the impact of using a 

wearable device for physical activity on the mMRC score. (163, 173, 178, 182, 

184) A fixed-effects meta-analysis found no significant difference between 

groups (MD -0.10 (-0.30 to 0.11), I2 = 21%). Figure 2-10 shows the pooled 

effect. 

Figure 2-10 Forrest plot for mMRC score change. 

 

 

Clinical PROactive physical activity in COPD (C-PPAC) instrument score 

Two studies(159, 160) used the C-PPAC score which has previously been 

validated in COPD patients and requires both questionnaire and 

accelerometer data. This instrument generates scores of: patients’ 

experiences on the amount of physical activity performed, the difficulty of this 

activity and a total score. Higher scores indicate a better experience and less 

difficulty. Meta-analysis showed no significant difference in the score for the 

amount of physical activity (MD 4.33 (-1.40 to 10.06), I2 = 69%) but showed a 

significantly higher score in favour of wearable technology for the difficulty 

score (MD 5.50 (3.56 to 7.45), I2 = 22%) and total score (MD 5.74 (1.85 to 

9.62), I2 = 75%). This is illustrated in Figures 2-11, 2-12 and 2-13. 
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Figure 2-11 Forrest plot for C-PPAC amount score 

 

 

Figure 2-12 Forrest plot for C-PPAC difficulty score 

 

Figure 2-13 Forrest plot for C-PPAC total score 
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2.4.5 The impact of wearable technology on self-management measures 

Two studies investigated the role of wearables in COPD self-management 

through different scoring systems which meant a meta-analysis was not 

possible. Benzo et al, (162) showed that the wearable intervention significantly 

increased the self-management ability scale (SMAS) with a mean difference 

of 4.10 (1.68 – 6.52); while Park et al (177) showed no significant difference 

when using the self-efficacy for managing chronic diseases (SEMCD) score 

with a mean difference of -0.04 (-0.84 – 0.73). Both studies used wearable 

technology with the primary aim of improving physical activity metrics.  
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2.4.6 Risk of bias assessment 

This review included 30 randomised controlled trials, of which 23 used a per-

protocol analysis and seven used an intention-to-treat analysis plan. The 

quality of these trials was assessed using the Cochrane risk-of-bias tool and 

the domain ratings and overall ratings can be seen in Figure 2-14. Overall, a 

large number of studies had concerns in the domain looking at deviations from 

the intended interventions due to the per-protocol analysis employed, and the 

high drop-out rate in a large number of studies may have affected the overall 

results. Studies had a low risk of bias in most of the other domains.  

There were seven observational studies. One of these was a secondary 

analysis of a RCT. The quality of these trials was assessed using the 

Newcastle Ottawa Scale and the domain and overall ratings can be seen in 

Table 2-6. A score of ≥ 7points is considered a good rating. 
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Figure 2-14 Detailed quality assessment for the randomised controlled trials 
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*Wan et al (2020) not included in this analysis as it was a secondary analysis to a previous RCT. 
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Table 2-6 Detailed quality assessment of the observational studies 

Author, 

Year 

Population 

representative 

Selection of 

non-exposed 

cohort 

Exposure A priori 

Outcome 

Comparability Outcome 

assessment 

Follow-up 

duration 

Follow-up 

adequacy 

Total 

rating 

(max 

9) 

Cooper et 

al 

(2019) 

1 1 1 1 1 1 1 0 7 

Hawthorn

e et al 

(2022) 

1 1 1 0 1 1 1 1 7 

Moy et al 

(2012) 

1 1 1 1 2 1 0 1 8 

Rubio et 

al 

(2017) 

1 1 1 1 2 1 1 1 9 

Sasaki et 

al 

(2022) 

1 1 1 1 2 0 1 1 8 

Wu et al 

(2021) 

1 1 1 1 1 1 0 1 7 

*Al Rajeh et al (2021) not included in this as it was a secondary analysis and the initial study has been included in the ROB assessment tool in Figure 4-14 
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2.5 Discussion 

This systematic review and meta-analysis, has shown: 1) home wearable 

technology significantly improved the mean daily step count in COPD patients 

over a median duration of 3 months, with an average effect size of 0.42, 

equating to a clinically important difference of 850 (494-1205) steps [minimal 

important difference (MID) 600-1100 steps/day (194)]; 2) wearable technology 

significantly increased the 6MWD with a mean difference of 5.81m (1.02 – 

10.61m), however, this was below the MID of 25m (195); 3) wearable 

technology significantly decreased the CAT score (MD -0.99 (-1.59 to -0.40)) 

but this did not reach the MID of -2 points; (196) 4) wearable technology may 

support COPD exacerbation detection, however, studies were heterogenous 

with mixed outcomes and had a high attrition rate, suggesting further work in 

this field is necessary to draw firm conclusions; 5) wearable technology had 

no significant impact on other activity or quality of life metrics.  

2.5.1 Physical activity outcome measures 

To my knowledge this is the largest systematic review and meta-analysis to 

date, investigating the role of wearable devices in improving physical activity 

outcomes in a COPD population. The increase in mean daily step count is 

within the previously reported MID range and is higher than 600 steps/day, 

which has previously been shown to reduce the risk of hospitalisation. (194) 

Furthermore, wearable technology is likely to have a greater positive impact 

on physical activity and step-count than exercise training programs alone, 

long-term oxygen therapy of neuromuscular stimulation. (197, 198) However, 

it is worth noting that the studies in this meta-analysis were heterogenous, 

likely due to different intervention designs and devices. This heterogeneity 
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could not be explained by the multivariable meta-regression analysis, 

suggesting a degree of caution is needed in interpreting these findings. The 

year of publication also had no effect and so this heterogeneity is unlikely due 

to improvement / ease of technology.  

While my findings echo previous reviews, which have also showed that step-

counters improve mean daily step count, (113, 149-151) key points of 

difference lie in our sub-group analyses which were not performed by the other 

studies. First, isolated pedometer use (with feedback and goal setting) showed 

no significant difference when compared to usual care (MD 243 (-314 – 

801steps/day). Second, it is apparent that wearable technology coupled with 

another intervention, such as health coaching (e.g., motivational interviewing 

and counselling) or pulmonary rehabilitation significantly improves the mean 

daily step count. This suggests that wearable technology interventions which 

are muti-faceted are more effective in improving physical activity. This is 

illustrated in Figure 2-15. 

Subgroup analyses also found that the increase in mean daily step count was 

lower in studies of longer duration (>3months). This is illustrated in Figure 2-

15. However, it is worth noting that studies using wearable technology for a 

longer duration (>3months) had a higher drop-out rate (23% vs. 15%), and 

most of these studies used a per-protocol analysis, meaning they will be 

subject to attrition bias. It may also suggest patients find it difficult to use 

pedometers over a longer-term period, and perhaps, other forms of more 

acceptable wearable devices are needed to realise longer term benefits. It is 

possible that during this time participants had disease progression or had more 

time for other influences, such as exacerbations, meaning they dropped out of 
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the study. The initial novelty of using a wearable may also wear off. Further 

work in this field is necessary to understand the true long-term impact of 

wearables on physical activity.   

We also found that the device used for measuring the outcome of interest 

(pedometer vs. accelerometer) significantly impacted the overall result. 

(Figure 2-15). This may be due to accelerometers being a validated tool to 

measure step count in COPD patients, meaning that pedometers may over-

estimate the true effect. (199) While the data from Armstong et al (149) agrees 

with this finding, that from Qui et al are contrary. (113) Given the indirect 

comparison made in this meta-analysis, future confirmation may be required 

through a one versus one design.   
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Figure 2-15 Subgroup analyses of the differences in daily steps achieved 
according to the MID 

 

The dotted line represents a mean daily step count of 600 steps/day (MID) 

 

Unsurprisingly, patients with severe COPD had decreased improvement in 

their daily steps compared to moderate COPD patients, likely due to 

decreased exercise capacity and reserve. Although it is worth noting that 

patients with severe COPD make the best gains with pulmonary rehabilitation 

and analysing further sub-groups (e.g., the type of intervention and severity) 

may lead to different results.   

Our meta-analysis showed that wearable technology was associated with an 

improvement in the 6MWD by 5.81m (1.02 – 10.61m). This is similar to 

previously published data by Qui et al, who found a change of 11.6m. Both 

these values fall short of the previously published MID of 25m, (195) but are 

higher than the change associated with telehealth interventions (1.3m). (200) 
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It is worth noting that a previous study has shown that even a 6m increase in 

the 6MWD is associated with an approximately 4% risk reduction in all-cause 

and respiratory mortality on COPD patients. (201) Once again, it seemed that 

studies with shorter durations had a greater improvement in the 6MWD 

compared to studies of >3month duration. Studies of longer duration had a 

greater drop-out rate, meaning more attrition bias which could explain the 

results somewhat. This could also imply that participants found it difficult to 

use pedometers for a longer duration. Therefore, future work is needed to 

ascertain whether the short-term gains achieved by wearables translate in the 

longer term.  

Our systematic review has shown for the first time, that wearable technology 

is not associated with different times spent at different activity intensities or 

quadriceps strength. This is not unsurprising as most studies utilised 

pedometers, which primarily act to count and feedback steps. They do not 

direct the speed of the steps, nor are they strength training devices. A recent 

review by Cochrane also found minimal improvements in physical activity 

intensity with pulmonary rehabilitation, even when additional measures such 

as inspiratory muscle training and physical activity counselling were added. 

(202) Future studies need to focus on wearables specifically designed to 

improve physical activity intensity in patients with both stable COPD and in 

patients immediately post exacerbation, given this is a high risk group, (203) 

to realise short and long-term benefits in this population. This is vital, as prior 

work has shown that a minimal increase in activity intensity level reduces the 

risk of COPD admissions and all-cause mortality. (109)   
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Therefore, while wearable technology has been shown to improve the mean 

daily step count and 6WMD in the short term, benefits with regards to physical 

activity intensity and muscle strength are yet to be seen. The longer-term 

benefits of wearable technology to improve physical activity needs to be fully 

investigated in well powered studies. This is vital to ensure persistent gain in 

this patient population.  

2.5.2 Exacerbation detection 

Exacerbation detection and early treatment is of vital importance in COPD 

management, as it has been established to be the most important predictor for 

future exacerbations and deteriorations. (36) To my knowledge, this is the first 

systematic review to explore the role of continuous wearable technology 

monitoring in aiding exacerbation detection. While a prior review investigated 

the role of monitoring physiological parameters, all the studies included in that 

review used intermittent monitoring. (204) 

In this review, five studies (159, 177, 178, 191, 192) examined the association 

between use of physical activity monitors and the rate of exacerbations. While 

a meta-analysis of four of these studies found no significant difference (OR 

1.06 (0.90 – 1.24), this was dominated by one large study (n = 2707) (191) 

and so needs to be interpreted with caution. Furthermore, the primary aim of 

these studies was to improve physical activity, rather than use wearables to 

support exacerbation detection, which was not the primary outcome for these 

studies.  

Three studies used composite scores combining several measures to predict 

exacerbation onset. While one study combined a wearable device with daily 
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spirometry, poor concordance meant no analysis could be performed. (189) 

Both the remaining studies suggested high positive predictive values in 

exacerbation prediction of over 90%. While this is encouraging, some caution 

must be exercised. Al-Rajeh et al (188) had a high attrition rate of 52% and 

only included 13 patients in the final analysis, resulting in low total numbers 

and a study that was underpowered for exacerbation; and Wu et al (193) used 

a prediction system combining several factors including environmental 

measures which can be very costly and cumbersome to replicate in the non-

research setting. Moreover, their study also included only 25 acute 

exacerbation events, meaning more data in this field is necessary.  

While the data so far, has mixed outcomes, it does seem to suggest that 

continuous monitoring of physiological parameters may hold the key to detect 

exacerbations early. Future work needs to focus on using wearables to identify 

differences between stable and exacerbating patients, such that algorithms 

can be developed to detect change and institute management early. It is also 

important that these wearables are simple to use and acceptable to patients.  

2.5.3 Quality of life measures 

To my knowledge this this first review looking at the impact wearable devices 

have on validated quality of life measures. Over a median duration of 3 

months, wearables were associated with a significant reduction in the CAT 

score by -0.99 points, below the MID of -2 points(196) and thus unlikely to be 

clinically relevant. Although, it is worth noting that a certain proportion of 

participants in these trials will have achieved the MID and whilst no study 

performed responder analysis, a dedicated study investigating the association 

of wearable technology and CAT score may be useful. Moreover, subgroup 
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analysis showed that patients with severe COPD seemed to have a greater 

reduction in their CAT score (-2.96 (-5.78 to -0.14)). This is relevant, as this 

patient population often have a high disease burden and therefore reducing 

their CAT score may have a large improvement in their quality of life.  

We found no evidence that wearable devices improved the SGRQ score or 

mMRC score. Quality of life measures were secondary outcomes in all the 

studies. While these studies showed an increased mean daily step count, 

there was no change in the time spent in various activity intensities. This may 

account for a lack of improvement in quality-of-life measures as previous work 

has shown that higher levels of moderate intensive physical activity is 

associated with improved health related quality of life. (205)  

Similar findings have also been found in a recent umbrella review of five 

systematic reviews looking at the impact of activity trackers on psychosocial 

outcomes and quality of life in healthy participants. These results may be 

because quality of life measures rarely consider participants’ perspectives or 

views of the actual activity. Two studies (159, 160) in this review, incorporated 

the C-PPAC instrument (206) which assesses patients’ experience of the 

amount of physical activity and difficulty experienced with the actual activity. 

Meta-analysis of these two studies suggested that wearables improved both 

the difficulty score (i.e., patients had less difficulty with physical activity at the 

end of the intervention) and total score. The difficulty dimension of the tool has 

a moderate-strong correlation with health status, chronic dyspnoea, and 

exercise capacity. (206) While these results are encouraging, they need to be 

interpreted with some caution given only two studies have used this 

instrument.  
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Overall, it is probable that quality of life is a key motivator for physical activity. 

Therefore, if wearables of the future can improve both quality of life while 

improving physical activity, it is more likely that patients will continue to use 

the devices and gain benefit in the longer term.  

2.5.4 Self-management 

Only two studies looked at the association of wearables and improvement in 

COPD self-management using different scoring systems. The studies showed 

contrasting outcomes with Benzo et al (162), showing significant increases in 

the SMAS score and Park et al (177) showing no change in the SEMCD score. 

Further work in this field is necessary to ascertain whether wearables have a 

role in improving the self-management in COPD patients. 

2.5.5 Quality of the evidence 

The overall quality of evidence from the RCTs had some concerns on the 

Cochrane Risk of Bias Tool, mainly due to the per-protocol analyses employed 

by most studies and subsequent attrition bias. Studies had a low risk of bias 

with regards to other criteria including the randomisation process and outcome 

measurements. The observational studies were of good quality overall with all 

having a rating of greater than or equal to seven out of nine on the Newcastle 

Ottawa Scale.  

2.5.6 Strengths and limitations 

This systematic review and meta-analysis is the largest and most robust 

review of the use of wearable devices to aid physical activity promotion. We 

are also the first to report that current wearables have no impact on physical 

activity intensity levels, muscle strength and a limited impact on quality-of-life 
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measures and acknowledge that further work delineating the role of wearables 

for COPD exacerbation detection is needed.  

Several limitations should be noted. Firstly, the studies were heterogenous 

with different patient cohorts and used different objective outcome measures 

and different wearable devices. This was not significantly accounted for by 

meta-regression analysis, and therefore direct comparison between studies 

may be somewhat limited. However, the random-effects model and SMD used 

in the meta-analysis should reduce bias attributed to this. Secondly, studies 

using pedometers differed in their approach to setting an individualised step 

target which means direct comparison between studies will inherently have 

some bias. Thirdly, wearables were often combined with other health 

interventions, such as motivational interviewing and walking programs, which 

means identifying the exact impact of the wearable may be under or over-

estimated. Fourth, several studies had a high drop-out rate which was not 

appropriately accounted for in the analysis. This led to attrition bias in most 

studies which will invariably impact the outcomes. Finally, despite a 

comprehensive literature search, there exists the possibility that some eligible 

studies were missed. Furthermore, restricting the studies to English and not 

searching for unpublished studies may result in selection and publication bias.  

2.5.7 Conclusion 

In conclusion, this review and meta-analysis suggests that home wearable 

devices significantly improve the mean daily step count and physical activity 

capacity as measured by the 6MWD. However, this increase does not seem 

to translate to an increase in time spent doing moderate-vigorous activity. 

Currently wearables have a limited impact on patient quality of life, and the 
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gains seen in physical activity metrics are likely to be short-lived. While there 

is limited data, wearables are likely to improve the detection of COPD 

exacerbations, however, further work is needed in this field. The main findings 

from this review are summarised in Figure 2-16. 

Future work needs to focus on how to improve wearable technology longevity. 

This would be helped by improving patient quality of life alongside improving 

physical activity metrics. This would translate into longer term gains and help 

improve patient morbidity and mortality. 

Overall, wearables seem to have the potential to become a core part of future 

COPD management and improve health outcomes, but further work is required 

for this to become a reality.  

Having understood the current landscape of wearable technology in different 

facets of COPD management, the next chapter explores the acceptability of 

future wearables in a group of patients with chronic respiratory disease. This 

is to understand how to ensure future, novel wearables can maximise use and 

longevity. 
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Figure 2-16 Summary infographic. 
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3. Chapter 3: The acceptability of wearable 

technology for long-term respiratory disease: a 

cross-sectional survey 
 

3.1 Background 

Chronic respiratory disease affects a large number of patients in the UK and 

is responsible for more than 700,000 hospital admissions and over six-million 

inpatient bed-stays in the UK each year. The British Lung Foundation (BLF) 

estimates that about one in five people in the UK suffers with a long-term 

respiratory condition such as asthma or chronic obstructive lung disease 

(COPD). This has a significant effect on patient morbidity, mortality and the 

healthcare economy. (207)  

The World Health Organisation (WHO) has recognised a shift in healthcare to 

one where digital health care, including wearables, are the future. (93) This is 

perhaps even more important in the current climate given the recent global 

pandemic, which has seen the rise of remote consultations, coupled with a 

huge backlog of routine patient appointments. Wearable technology has real 

potential to change the way patients are managed, reduce hospital admissions 

and improve the outpatient pathway. It can empower patients to take control 

of their condition, improving quality of life, reduce disease burden and 

improving their overall experience of healthcare. However, to maximise their 

benefit, understanding patient acceptability to wearables is vital. 

While there have been several studies looking at the usability of wearables in 

chronic disease, a recent systematic review concluded that this is often poorly 

reported and measured. (208) Moreover, usability of a device is often 

summarised with wear-time and adherence data. (209) This is not the same 
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as acceptability of the wearable device. Models of acceptability include other 

factors such as user characteristics, attitudes about technology, product 

characteristics and social influence. (210-213) 

There have been few studies that have investigated the acceptability of 

wearables in long-term respiratory disease. Prinable et al conducted an online 

survey (n=134) to assess key device attributes for a wearable that can be used 

for long-term monitoring of breathing in patients with chronic asthma. They 

concluded that the majority of patients would be willing to wear a device (62%) 

and most participants would prefer to use a wrist watch (92.5%).(214) Simmich 

et al. looked at older patients with COPD and their perspectives of wearable 

devices. They used semi-structured interviews and concluded that wearables 

were perceived to be useful to facilitate goal-setting and visualise long-term 

improvements. (215) Finally Keogh et al. looked at the acceptability of a waist-

worn device (McRoberts Dynaport MM+) which measured mobility remotely 

and included 25 patients with COPD. Semi-structured interviews showed the 

device was easy to use and comfortable but not considered useful due to the 

lack of interaction with the participant. (216)  

A systematic review in 2021 assessed patients’ perceptions and experiences 

of wearing physical activity monitors (including smartphone apps and 

wearables) in a COPD population. They included 12 studies (n=424) in their 

qualitative analysis. They developed seven different themes across the study 

and concluded that overall people with COPD liked using the technology and 

found it useful in increasing their physical activity level. The review also 

highlighted some negative experiences including some frustration with 

inaccurate monitoring, technical issues, and the time-consuming nature of 
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monitoring. Feedback from monitors, goal setting and self-monitoring were 

popular with patients. Overall, the authors felt that there is limited research 

exploring views of how people with COPD actually integrate technology in their 

lives and this therefore is something that needs to be explored in the future. 

(114) 

Given the paucity of data in chronic respiratory disease, further work to 

investigate patient perspectives and acceptability of wearables is necessary. 

This will enable us to build models for patients with chronic respiratory disease 

and guide future wearable design, to maximise benefit, and use in the long-

term.  
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3.2 Aims 

The primary aim of this cross-sectional survey was to identify the acceptability 

of wearable technology in a group of patients with chronic respiratory disease. 

The secondary aims of the survey were to: 

• Identify patient preferences in wearable technology design. 

• Identify the impact of social norm perspectives on wearable technology. 

 

This survey, and therefore some of the figures and tables in this chapter, have 

already been published in Heliyon in August 2024 

(DOI:  10.1016/j.heliyon.2024.e35474) under the creative commons attribution 

(CC BY 4.0). (217) 

  

https://doi.org/10.1016/j.heliyon.2024.e35474
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3.3 Methods 

3.3.1 Ethical approval 

This cross-sectional survey received ethical approval from the Health 

Research Authority and Care Research Wales (HCRW), REC reference 

22/NS/0017. 

3.3.2 Survey design 

This was a cross-sectional survey to identify various factors that affect 

patients’ acceptability to wearable technology and assess their current use of 

any wearables. The survey was also designed to identify any patient 

preferences in wearable design and the impact of social norm perspectives on 

wearable technology. The survey was designed to be completely anonymous. 

The survey questions were initially designed using four well described models 

of acceptance of technology, and social behavioural theories: 

1. Diffusion of Innovation Theory 

Rogers (1983) defines diffusion as ‘the process by which an innovation is 

communicated through certain channels over time among the members of a 

social system.’ (218) He also distinguished five different categories of adopters 

of an innovation as outlined by the bell-curve in Figure 3-1 (adapted from 

Peterson and Kaminski) (219, 220)  
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Figure 3-1 Diffusion of innovation theory bell curve. 

(adapted from Peterson and Kaminski) (219, 220) 

 

 

 

 

Innovation ‘diffuses’ through the different categories and as early innovators 

and adopters ‘spread the word’ more people become open to the idea of the 

innovation. 

Furthermore, various diffusion studies have demonstrated a classic sigmoid 

(S-shaped curve) of over-time adoption for innovations perceived to be useful. 

The key component affecting diffusion are outlined below: (210, 219) 

a. The innovation – especially the adopters’ ideas behind its 

relative advantage, complexity, and ability to fulfil a goal. 

b. The Adopter – (based on the adopters’ degree of 

innovativeness, as demonstrated by the bell-shaped curve) 

Early 

Adopters 

13.5% 

Innovators 

2.5% 

Early 

Majority 

34% 

Late 

Majority 

34% 

Laggards 

16% 
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c. The social system – this includes the potential adopters’ 

perception or ideology of the social pressure to adopt a particular 

innovation. 

d. The individual adoption process which includes: 

i. The awareness of the need for an innovation 

ii. The interest in this new idea and seeking of information 

about it. 

iii. The decision or evaluation stage (where they weigh up 

whether or not to try the device). 

iv. The trial stage of the device. 

v. The decision for continued use of the innovation. 

e. The diffusion system – for example the role of an external 

change agency – this is akin in today’s work of a social media 

influencer or ‘innovation champion’. 

 

2. The theory of reasoned action (TRA) 

The theory of reasoned action (TRA) was first described by Fishbein & Ajzen 

in 1975. Central to this theory is that the most important determinant of a 

particular behaviour is the behavioural intention. Determining features of this 

intension include attitudes towards performing that behaviour and the 

subjective norms associated with a particular behaviour. Attitudes can be 

determined by an individual’s normal beliefs and their beliefs about the 

outcomes of a particular behaviour. For example, if someone had strong belief 

that wearable technology is the future and will have good outcomes in 

healthcare, they are far more likely to engage with it. Subjective norms are 
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determined by whether an individual feels certain people (family, friends etc.) 

would approve of a particular behaviour. (212)  

3. The theory of planned behaviour 

The theory of planned behaviour (TPB) was developed as an extension to 

TRA. The TRA assumes that behaviour can always be controlled and is 

voluntary. However, this may not always be the case. This led to the 

development of the TPB. In addition to attitudes towards a particular behaviour 

and subjective norms, TPB introduces the concept of perceived behavioural 

control. This refers to an individual’s perception of how easy or difficult the 

behaviour in question is. This will of course vary depending on the situation 

and so leads to differing perceptions that are situation dependent. (221, 222) 

4. Technology acceptance model 

The technology acceptance model (TAM) was introduced by Fred Davis in 

1989. The underlying principles of this model are based on two factors which 

determine whether any computer system (such as wearable technology) will 

be accepted by users: (211) 

i. Perceived usefulness – this can be defined as the degree to which 

someone believes using a particular system will improve an aspect 

of their life. 

ii. Perceived ease of use – this would equate to the amount of effort 

someone felt would be needed to use the system.  

Overall, four main themes that were universal to all these models were 

identified. These can be seen in Figure 3-2 below. This was echoed by Sun et 
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al who conducted a survey on the acceptance of personal health devices 

amongst all patients with chronic conditions in China. (213)  

Figure 3-2 Four common themes of technology acceptance. 

 

 

A total of 27 questions were initially developed based around these four 

themes. A draft of the survey was built on SurveyMonkey®. These were then 

reviewed by an Asthma-UK / British Lung Foundation expert patient panel. 

This panel kindly reviewed the questions and provided in-depth feedback, both 

on the layout of the questions on SurveyMonkey® and the actual questions 

and whether they were appropriate to answer the main research aims. 

Following this feedback, a finalised survey was developed for use in this study. 

The final survey had 24 questions which can be seen in the Appendix (Chapter 

7.4) Ten questions used a 7-point Likert scale ranging from 1: strongly 

disagree to 7: strongly agree. Two questions were presented in the reverse 

order to ensure survey validity. If a respondent gave inconsistent answers in 
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either reverse question, their answers were eliminated from the valid data set 

to be analysed.  

The finalised survey was sent out to patients via the following different 

pathways to maximise responses: 

1. Respiratory clinics at Royal Free Hospital 

2. Respiratory clinics at Barnet Hospital 

3. Via the Asthma UK – British Lung Foundation Respiratory Voices 

Network 

4. Via social media 

The respiratory clinics at Royal Free Hospital and Barnet Hospital are a mix of 

general respiratory clinics, specialist asthma, COPD, sleep and ventilation, 

interstitial lung disease and lung cancer clinics.  

Patients had the option of completing the survey online (via SurveyMonkey®) 

or via a paper version which was then transcribed online. All the survey 

information was completely anonymous.  

3.3.3 Inclusion and Exclusion Criteria 

Inclusion Criteria: 

• All patients with a diagnosis of chronic respiratory disease 

Exclusion Criteria: 

• Age < 18years 

• Participants not fluent in English 

• Participants unable to give consent 
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3.3.4 Study flow chart 

 

3.3.5 Statistical analysis 

The statistical analysis used both quantitative and descriptive methodology. 

Patient baseline characteristics were summarised in a descriptive manner and 

tabulated. Any survey responses with a lack of consent or no information were 

excluded, and any survey responses with inconsistent answers in any of the 

reverse questions were also excluded. The data was exported to SPSS 

statistical software for further analysis.  

Ten questions had a 7-point Likert scale response, but one of these was 

dependent on whether participants had already used wearable technology. 

The internal validity of the remaining nine questions was assessed using 

Cronbach alpha. I then performed exploratory factor analysis to assess 

whether common factors emerged from these nine questions. Common factor 
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analysis with maximum likelihood and direct Oblimin rotation (delta = 0) was 

used. Analysis was conducted using pre-specified two and three factor 

analysis, as opposed to using Eigenvalues greater than one, due to the small 

number of questions. The Kaiser-Meyer-Olkin (KMO) measure of sampling 

adequacy and Bartlett’s test of sphericity were used to test adequacy of the 

analysis. The minimum loading of an item was 0.32. (223) Mean rank scores 

(± SD) of the nine questions also allowed comparison with the highest score 

denoting the most important question. 
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3.4 Results 

The survey had an initial response from 106 participants, but 17 participants 

did not provide any information, leaving 89 (84%) potentially valid responses. 

Fifteen responses had inconsistent answers in the reverse questions and so 

were felt not to be suitable for analysis. Therefore, 74 (70%) valid survey 

responses were analysed.   

Demographic responses including age, gender, income levels were optional, 

although most respondents completed this section. Table 3-1 illustrates 

participant background demographics. 
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Table 3-1 Participant background demographics 

Demographic variable Number Percentage (%) 

Age (n = 72) 

18-21 years 0 0 

22-30 years 3 4 

31-40 years 9 13 

41-50 years 8 11 

51-60 years 18 25 

61-70 years 18 25 

71-80 years 14 19 

81-90 years 0 0 

>90 years 2 3 

Gender (n = 72) 

Male 20 28 

Female 52 72 

Ethnicity (n = 71) 

Asian other 3 4 

Black African 1 1 

Black British 3 4 

Chinese 1 1 

Indian 4 4 

White British 45 63 

Mixed 3 4 

Other 11 15 

Income (n = 53) 

£0  0  0 

£0 – 9,999 9 17 

£10,000 – 24,999 15 28 

£25,000 – 49,999 18 34 

£50,000 – 74,999 6 11 

£75,000 – 99,999 1 2 

> £100,000 4 8 
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Respiratory conditions (n = 74) 

COPD 17 23 

OSA 12 16 

Asthma 38 51 

Lung cancer 1 1 

ILD 6 8 

Bronchiectasis 14 19 

Long-COVID 5 7 

Other* 11 15 

2-diseases 19 26 

3-disease 4 5 

Abbreviations: COPD = chronic obstructive pulmonary disease; ILD – interstitial 
lung disease; OSA = obstructive sleep apnoea. 
*included non-tuberculous mycobacteria, allergic broncho-pulmonary aspergillosis 
and sarcoidosis. 
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3.4.1 Participants already using wearable technology 

Overall, 26/74 (35%) of participants currently used a wearable device. The 

majority used a smart watch (58%), with 27% using a Fitbit, and 4% used a 

smart ring. No participants currently used a pedometer or any other wearable 

device. Participants utilised their wearable device specifically in relation to their 

lung condition as well as for their general health. Figure 3-3 illustrates the 

different reasons participants utilised their wearable device.  

Binomial logistic regression analysis looking at whether age (<50 years vs. 

>50 years), gender (female vs. male), and annual income (<50,000 vs. 

>£50,000) were associated with current use of wearables, found no significant 

differences with respective odds ratios (OR) of 0.76 (0.20 – 2.9), 2.31 (0.63 – 

8.4), 0.91 (0.21 – 3.9).  
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Figure 3-3 Percentage of participants and different uses of their wearable 
device. 

 

Only 16 participants answered the question relating to whether they find their 

wearable device useful to monitor their health. 56% either agreed or strongly 

agreed that they found the device useful, while 19% either disagreed or 

remained neutral.  

3.4.2 Exploratory factor analysis 

Exploratory factor analysis was conducted on the nine remaining Likert-scale 

questions. Cronbach’s alpha for the 74 valid questionnaires was 0.65.  

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was 0.667, 

and Bartlett’s test of sphericity rejected the null hypothesis (p<0.001). Three 

factors had an Eigenvalue above 1 and explained 60% of the variance. When 

selecting how many factors to include in a model, researchers must balance 

parsimony (a model with relatively few factors) and plausibility (enough factors 
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to adequately account for correlations amongst the measured variables). 

Figure 3-4 shows the Scree plot. 

Figure 3-4 Scree plot for the 9 items as part of exploratory factor analysis. 

 
 
Maximum likelihood ratio and direct oblimin rotation used (delta 0) 

 

Exploratory factor analysis with both 2 and 3 fixed factors were performed. 

Table 3-2 and Table 3-3 illustrate the rotated pattern matrix.  
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Table 3-2 Pattern matrix with 2 factors and loading correlations. 

Question Factor 

1 2 

I would like to learn about new technology that 

I can wear. 

0.665  

Wearable technology will increase my 

confidence to monitor my long-term lung 

condition at home. 

0.630  

I believe that wearable technology will reduce 

the number of times I see a doctor of my 

community team, in relation to my lung 

condition. 

0.607  

I think that the wearable technology that is 

currently available is accurate. 

0.478 0.338 

It is important the wearable technology links to 

other devices that I use to monitor my health. 

0.584  

It is important the wearable technology has 

undergone testing in an appropriate clinical 

trial and has been approved by regulatory 

bodies. 

  

The wearable technology should look the 

same as other everyday items so that other 

people don’t know I am wearing it. 

 0.750 

I think wearable technology will become a 

normal part of everyday life in the future. 

0.363 -0.490 

I am more likely to use wearable technology if 

I have the support from my friends and family. 

0.402  

Extraction Methods: Maximum Likelihood; Rotation Method: Oblimin with Kaiser 

normalisation. 
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Table 3-3 Pattern matrix with 3 factors and loading correlations. 

Question Factor 

1 2 3 

I would like to learn about new 

technology that I can wear. 

1.014   

Wearable technology will increase 

my confidence to monitor my long-

term lung condition at home. 

  0.428 

I believe that wearable technology 

will reduce the number of times I see 

a doctor of my community team, in 

relation to my lung condition. 

  0.719 

I think that the wearable technology 

that is currently available is accurate. 

  0.506 

It is important the wearable 

technology links to other devices that 

I use to monitor my health. 

0.387   

It is important the wearable 

technology has undergone testing in 

an appropriate clinical trial and has 

been approved by regulatory bodies. 

   

The wearable technology should look 

the same as other everyday items so 

that other people don’t know I am 

wearing it. 

 0.952  

I think wearable technology will 

become a normal part of everyday life 

in the future. 

 -0.371  

I am more likely to use wearable 

technology if I have the support from 

my friends and family. 

  0.527 

Extraction Methods: Maximum Likelihood; Rotation Method: Oblimin with Kaiser 

normalisation. 
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3.4.3 Mean rank scores for Likert-scale questions 

 

For the nine Likert scale questions Table 3-4 shows the mean rank scores in 

descending order, such that the first ordered question was the most agreeable 

to participants.  
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Table 3-4 Mean rank scores presented in descending order. 

Question Theme Mean 

score 

(SD) 

Positive 

scores 

(%) 

Negative 

scores 

(%) 

It is important the wearable 

technology has undergone 

testing in an appropriate clinical 

trial and has been approved by 

regulatory bodies. 

Product 

characteristics 

6.4  

(0.8) 

99 0 

I would like to learn about new 

technology that I can wear. 

Attitudes to 

technology 

6.3 

(1.0) 

93 2 

Wearable technology will 

increase my confidence to 

monitor my long-term lung 

condition at home 

Attitudes to 

technology 

6.2 

(0.9) 

95 0 

It is important that the wearable 

technology links to other 

devices that I use to monitor my 

health 

Product 

characteristics 

5.8 

(1.0) 

85 0 

I think wearable technology will 

become a normal part of 

everyday life in the future. 

Social 

influence 

5.8 

(1.3) 

88 5 

I believe that wearable 

technology will reduce the 

number of times I see a doctor 

of my community team, in 

relation to my lung condition. 

Attitudes to 

technology 

5.3 

(1.2) 

74 4 

I am more likely to use 

wearable technology if I have 

the support from my friends and 

family. 

Social 

influence 

5.1 

(1.1) 

57 0 

The wearable technology 

should look the same as other 

everyday items so that other 

people don’t know I am wearing 

it 

Social 

influence 

5.0 

(1.6) 

63 14 

I think that the wearable 

technology that is currently 

available is accurate 

Attitudes to 

technology 

4.7 

(1.0) 

51 6 

For each question, scores of 5-7 were considered as positive scores, which meant 
respondents agreed with the item and scores of 1-3 were considered as negative 
scores. Scores of 4 were neutral values and so not included in the percentages. 
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3.4.4 Product characteristics 

Several questions asked the participants about their ideal product 

characteristics. Participants were asked how wearable technology would be 

useful to them with several options described (Q11). Figure 3-5 illustrates their 

response. 

Figure 3-5 Participants response when asked how wearable technology 
would be useful to them (n=74) 

 

Participants were also asked to identify three characteristics of a future 

wearable device that would be most important to them (Q13). 44 participants 

incorrectly answered this question by either choosing more or less than three 

characteristics. Therefore 30 valid samples were available for analysis. Figure 

3-6 illustrates the commonest characteristics picked by participants in 

descending frequency (n = 30).  

Participants were also asked how they would prefer to access the information 

from the wearable technology. The funnel chart is illustrated in Figure 3-7. 

 

78%

55%

49%

39%

8%

81%Detects when unwell

Helps manage symptoms

Improves Sleep

Encourages exercise

Medication reminder

Other
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Figure 3-6 Most important characteristics of wearable technology. 

 

Figure 3-7 Participant preferences in accessing information from wearables. 

 

The remaining questions about product characteristics were Likert-scale 

questions and have been summarised in Table 3-4.  

  

63%

50%

27%

27%

27%

23%

73%Accurate results

Easy to learn

Easy to use

Battery life

Price and brand

Privacy of data …

Aesthetics

Other

76%

55%

46%

8%

4%

Own mobile device

Through the wearable device

Through a computer

Through an accessory monitor

Not access the information
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3.4 Discussion 

This survey on wearable technology in patients with chronic lung diseases had 

a 70% completion rate with 74 valid responses. The survey demographic was 

representative of a typical age distribution of patients seen in chronic 

respiratory disease clinics at a London tertiary hospital, with about 50% of 

participants being between 50 and 70years old. The majority of respondents 

were female (72%) and from a white British ethnic background. Most 

participants earned less than £50,000. While there was a good spread of 

different chronic respiratory diseases, the majority had obstructive airways 

disease with 51% of participants diagnosed with asthma. A quarter of the 

participants had two different chronic respiratory diseases. 

About a third of the respondents currently used a wearable device, giving 

insight into potential user characteristics. This is similar to previously published 

data by Chandrasekaran et al, who found that 30% of adults in the United 

States use wearable health devices (224). Smart watches and Fitbit devices 

were the commonly used devices and participants utilised the device to 

monitor their symptoms (69%) through measurements (like saturation and 

breathing rate) but also used the device for general health measurements 

(85%). Most participants used the device to encourage them to exercise (50%) 

and track their progress against health goals (50%), but few used the devices 

as a reminder for their medication (15%). Just over half of these patients 

agreed that they found the device useful, while 19% disagreed or remained 

neutral.  

While the previous survey by Chandrasekaran et al. concluded that older 

adults (>50years) were less likely to use wearable devices compared to 18-34 
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years (OR 0.46 – 0.57 (224)), our survey found no difference during binomial 

logistic regression (OR 0.76 (0.20 – 2.9, p=0.69). This is unsurprising, given 

most respondents in our survey were above 50 and our overall sample size 

was small and not normally distributed. 

Cronbach’s alpha for the nine Likert-scale questions was satisfactory at 0.65. 

(225) The KMO was 0.667 suggesting that it was possible to conduct 

exploratory factor analysis (EFA). EFA with a two-factor solution showed 

several cross-loading items suggesting inadequacy of this solution. EFA with 

a three-factor solution, led to two factors having only two items which is 

generally considered weak and unstable in the literature. Therefore, overall, 

for this dataset, EFA was not a helpful analysis tool. (223) This is likely to be 

due to the presence of a small sample size and a small number of Likert-scale 

questions.   

Participants ranked the importance of wearables undergoing testing and 

approval by regulatory bodies the highest, with 99% agreeing with this item 

(mean rank score 6.4). This is important, given most wearables currently in the 

market have not undergone rigorous testing and therefore lack reliability and 

accuracy. (226) Moreover, some participants seemed to be aware of this, as 

only 51% (mean rank score 4.7) agreed that currently available technology is 

accurate. However, it is important to note, a large number remained neutral 

suggesting a lack of knowledge. This was similar to findings by Sun et al, who 

found that their respondents expressed a negative attitude towards accuracy 

of personalised health devices used for chronic diseases. (213)  
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The survey questions were based around four different themes, common and 

central to previously described models of technology acceptance and social 

behavioural theory. User characteristics are important when developing novel 

technologies. Most responses were from patients with obstructive airways 

diseases (including asthma, COPD and bronchiectasis), which are some of 

the most common chronic lung diseases seen, suggesting that novel 

technology should focus on these conditions, given the technology is likely to 

be benefit the majority of users. Most current users of wearables wore 

watches, suggesting a preference for this type of wearable, echoing findings 

by Keogh et al, (209)  and preferred using the device to monitor symptoms, 

improve general health and engage in physical activity.  

Participants attitudes towards technology are important. A population that is 

technology averse, will not be receptive to new technology, meaning reduced 

behavioural intention, fewer early innovators and therefore less ‘diffusion’ of 

technology within the target population. (219) However, this survey has shown 

most participants were agreeable to learning about new technology (mean 

rank score 6.3), felt the technology would increase their confidence to monitor 

their condition (mean rank score 6.2) and felt wearables would reduce the 

number of times they see their doctor (mean rank score 5.3). This is promising, 

as it suggests participants with chronic lung disease have a positive attitude 

to technology and are likely to be receptive to new wearables in the future. 

Product characteristics are important when developing a device that will have 

longevity and perceived usefulness. Participants agreed that the wearable 

should be tested rigorously and be approved by regulatory bodies (mean rank 

score 6.4) and also felt it should link to other devices that they use to monitor 
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their health (mean rank score 5.8). The majority of patients attending hospital 

wanted wearables to detect when they become unwell (81%), help manage 

their symptoms (78%) and improve their sleep quality (55%). When asked to 

identify the three most important characteristics of future wearables, 

participants wanted a device that was accurate (73%), easy to learn (63%) 

and easy to use (50%). These characteristics are similar to those concluded 

by Sun et al. (213) They were less concerned about data privacy (27%) and 

aesthetics (23%). Finally, they wanted a device that linked to their own mobile 

device so that they could access the information from the wearable (76%). 

Very few wanted the information through an accessory monitor (8%).  

Social norms and peer pressure impact the ‘diffusion’ and acceptance of new 

technology. While most participants agreed that wearables will become a 

normal part of everyday life in the future (88% positive score), fewer 

participants agreed that they are more likely to use wearables if their family 

supported them (57%), with the rest remaining neutral. This suggests that for 

this population, family support in use of wearables is not as important. This is 

in contrast to findings by Sun et al. who found that social support was an 

important factor in driving use. This difference is likely to be due to the 

population surveyed. Sun et al. surveyed a Chinese population, where they 

found family support was important as they have a interdependent relationship 

with others. (213) This may not be the case in the British population we 

surveyed. This highlights important socio-cultural differences and also means 

novel technology providers need to be aware of population self-construals.   

There were several limitations to this survey. Firstly, the majority of 

respondents were of white British ethnicity, and therefore the views of ethnic 
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minority communities were not represented. This is important, as this 

population is often harder to engage in clinics and healthcare due to several 

barriers including language. Furthermore, their social construct may differ, and 

therefore opinions around social norms and peer pressure impact are also 

likely to differ. Second, the survey had few Likert-scale questions to allow for 

accurate exploratory factor analysis. While the initial survey had a larger 

number of questions, the expert patient-panel at Asthma-UK/BLF felt the 

length of the survey was too long. Third, the survey had small numbers and a 

complete response rate of 70%. A large number of online participants did not 

answer any questions following consent. However, in the literature, a response 

rate of above 60% is considered acceptable. (227) Fourth, the survey did not 

have many open / free-text questions which may have allowed better 

expression of participants’ views on wearable technology and allowed for 

qualitative thematic analysis. Fifth, online surveys inherently have a self-

selection bias and can have sampling limitations with difficulty reaching certain 

populations. 

In conclusion, this survey on the acceptability of wearable technology for long-

term respiratory disease, has highlighted that patients are open to the idea of 

wearable devices in the future that are accurate, easy to use, easy to learn 

and approved by regulatory bodies. While there was no direct question about 

cost, most participants of this age group had low-middle income earnings, 

meaning any new technology should be affordable, and focus on helping 

patients manage their symptoms and detect when they become unwell. 

Participants were less concerned about making the wearables look like 

everyday items and prioritised functionality over aesthetics. This survey will 
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help future developers of technology in producing a wearable for this patient 

population, increase the chance of patient acceptability and thus usefulness.   

Having appreciated that patients would like wearables that are accurate, easy 

to use and approved by regulatory bodies, the next chapter studies the use of 

a novel wearable device (AcuPebble RE100) in a group of both stable and 

exacerbating COPD patients to assess its capability of detecting physiological 

signals and differences, the utility of these measurements, and understand its 

acceptability in this population.  
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4. Chapter 4 – Physiological signal variability 

differences between stable and exacerbating 

chronic obstructive pulmonary disease patients: 

a feasibility and acceptability study  
 

4.1 Background 

The data investigating the role of wearable technology and COPD 

exacerbation detection has had mixed outcomes, and further work in this field 

is necessary to find simple, practical wearables to identify differences between 

stable and exacerbating patients, such that future algorithms can be 

developed to detect change and institute management early.  

To detect an exacerbation with novel technology, one first has to understand 

key differences in physiological parameters measured in a stable population 

and exacerbating population. Identifying differences, allows the building of 

algorithms to detect the point at which a stable patient starts to exacerbate, 

thus allowing for earlier intervention. This study aims to acquire physiological 

signals including heart rate, respiratory rate and airflow with a novel small 

wearable device (AcuPebble RE100) in a group of stable and exacerbating 

COPD patients.  
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4.2 Aims 

The primary objective of this feasibility and acceptability study was to get 

physiological signals including heart rate, respiratory rate, and airflow with a 

small new wearable device (AcuPebble RE100) in a group of stable and 

exacerbating COPD patients that could be used to objectively differentiate 

between them. 

The aims of this work were: 

1. To acquire physiological signals including heart rate, respiratory rate 

and airflow with a novel small wearable device (AcuPebble RE100) in 

a group of stable and exacerbating COPD patients.  

2. Use linear and non-linear time-series analyses methods to assess the 

following: 

a. Differences in physiological signal variability between stable and 

exacerbating COPD patients. 

b. Differences in physiological signal variability amongst patients 

with different phenotypes of stable COPD patients, specifically 

looking at: 

i. Airflow severity as assessed by the FEV1 measurement. 

ii. Symptom severity as assessed by validated scoring 

systems like the COPD Assessment Tool (CAT) and the 

modified Medical Research Council (mMRC) score. 

iii. GOLD ABE categories 

c. The association of physiological signal variability measures with 

currently measured admission characteristics including:   

i. Admission national early warning score 2 (NEWS2). 
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ii. The Rome Criteria for COPD exacerbation severity. 

iii. Length of hospital stay 

d. Differences in physiological signal variability amongst 

exacerbating COPD patients at the point of admission vs. 

discharge vs. post-discharge (i.e., exacerbation recovery). 

3. Assess the acceptability and feasability of the wearable device. 

4. Compare the physiological signal measurements from stable and 

exacerbating COPD patients with a historical non-COPD cohort. 
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4.3 Methods 

4.3.1 Ethical approval 

This study received ethical approval from the Health Research Authority (IRAS 

ID: 247489; REC reference 19/NI/0194) and was sponsored by the Royal Free 

London NHS Foundation Trust, where it was also conducted.  

4.3.2 Cohort, inclusion and exclusion criteria 

Cohort 

This study was conducted on a cohort of COPD patients who attended the 

Royal Free Hospital NHS Foundation Trust, a tertiary London hospital. Stable 

COPD patients were recruited from outpatient secondary care specialist 

COPD clinics and from patients attending pulmonary rehabilitation classes in 

Camden, London. Exacerbating patients were recruited following their 

admission to hospital once they were on a medical ward. Participants admitted 

due to an exacerbation of COPD on any medical ward who met the inclusion 

criteria were included. The majority of participants were recruited from the 

respiratory ward. The respiratory ward consists of nursing staff experienced in 

treating patients with exacerbations of COPD using controlled oxygen therapy 

and has respiratory specialist physiotherapists.  

Inclusion criteria 

• Adult patients with a diagnosis of COPD made with an exposure history 

(> 10pack year smoking history) and/or biomass and/or genetic 

predisposition (e.g., α-1 antitrypsin deficiency) and spirometry showing 

a FEV1:FVC <0.7. 
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Exclusion criteria 

• Age <18 or > 80 years.  

• Subjects who are were not fluent in English, or who had special 

communication needs. 

• Known allergy to the adhesive dressing. 

• For the stable patient group, subjects with physical or mental 

impairments who would not be able to use the new technology on their 

own. 

• For the exacerbating patient group, subjects needing non-invasive 

ventilation or an admission to intensive care. 

• Subjects with very loose/saggy skin in the neck area which would 

unavoidably result on AcuPebble RE100 swinging if moving the neck. 

• Subjects with implantable devices 

• Subjects with known sleep disordered breathing 

4.3.3 Study protocol 

This was a prospective observational study that was performed at Royal Free 

Hospital. AcuPebble RE100 was the novel sensor used. Under the scope of 

this study, AcuPebble RE100 was not used as a medical device, but as an 

acoustic monitor to acquire acoustic signals to carry out signal processing 

research. The signal acquisition sensor is CE marked for research.  

4.3.3.1 Stable Participants 

COPD clinic lists and medical records were screened to identify suitable stable 

COPD participants who met the eligibility criteria. Stable participants were 

defined as those who had not an exacerbation for 3 months prior to 
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recruitment.  Potential participants were contacted by telephone and if 

interested a participant information sheet was either posted or emailed to 

them, as per participant preference. A follow up conversation with the 

participant was conducted to see whether they were interested and if so, a 

study visit was arranged. 

Study Visit  

Due to the coronavirus pandemic, participants understandably were not keen 

to come into hospital for a study visit and a decision was therefore made to 

offer participants a choice of whether to conduct the study visit on the 

telephone or via a video call through a secure network (NHS Attend 

Anywhere). If participants chose a remote visit, the following items were 

posted to the participant, with a pre-paid return envelope for the end of the 

trial: 

1. Written consent form 

2. AcuPebble RE100 device 

3. Research mobile phone (which was locked for the purposes of the study 

and contained the AcuPebble COPD application only) 

4. Adhesive stickers 

5. Charging cables 

6. Usability questionnaire for the end of study 

For the purposes of this study, participants only had to use AcuPebble RE100 

whilst they slept for up to 30 days. Written consent was taken. 

Baseline data was collected via a case report form (CRF) during the study visit 

(remote or in-person) that included the following information: 
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• Baseline demographics including age, gender, ethnicity and body 

mass index. 

• Smoking history 

• Lung function tests / spirometry details 

• NICE COPD severity 

• Modified Medical Research Council (mMRC) dyspnoea score 

• COPD Assessment Test score 

• GOLD ABCD category 

• Past medical history 

• Drug history 

• Social history: mobility aid requirement and package of care 

During this study visit (remote or in-person) the following steps were taken to 

set participants up with AcuPebble RE100: 

1. The participant was initially shown how to link the AcuPebble RE100 

device with the mobile phone by having the device near the phone and 

pressing the ‘start’ button. 

2. The participant then needed to attach AcuPebble RE100 onto their 

neck using the adhesive sticker, anywhere between the suprasternal 

notch and Adam’s apple.  

3. While the mobile phone application had videos showing participants 

how to do this, we went through the following steps to ensure 

participants were comfortable with this step. The adhesive stickers had 

a ‘yellow’ and ‘white’ side. Participants were asked to remove the 

‘yellow’ side first and place the device on the exposed surface. 
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Following this, they were asked to remove the ‘white’ side, leaving a 

clear sticky surface which attached to their neck. 

4. Once the device was on the neck, participants had to press a ‘start 

recording’ button. They also had to ensure the device and mobile phone 

were no more than 1m apart to ensure adequate signal strength. 

5. In the morning, participants were told to press ‘stop recording’ and 

follow the steps on the mobile phone application to ensure the data was 

uploaded automatically to a GDPR compliant cloud. The signals were 

encrypted and pseudo-anonymised. 

6. The participant was then asked to repeat the above steps nightly (with 

a new adhesive sticker) for up to 30 nights.  

7. They were reminded to charge the device and mobile phone to ensure 

enough battery for the following night.  

Figure 4.1 shows a pictorial version of the steps above. (Reproduced with 

approval from Acurable Ltd). 
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Figure 4-1 Steps taken to set up AcuPebble RE100 with the mobile phone 
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The second part of the mobile phone application was a ‘COPD diary’ which 

participants were asked to complete daily (Figure 4-2) 

Figure 4-2 COPD diary. 
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The following four items formed part of the diary: 

1. Mood diary: this was one question asking participants to pick their mood 

daily as shown in Figure 4-3. 

Figure 4-3 Mood diary 
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2. Symptom diary: asked participants daily to score (from 0-10) the 

severity of the following four symptoms (shown in the Figure 4-4): 

a. Chest tightness 

b. Shortness of breath 

c. Wheeze 

d. Cough 

Figure 4-4 Symptom diary 
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3. Exercise diary: asked participants to note down any exercise they did 

during the day and the duration and number of repetitions. A group of 

sample exercises were available to choose on the application to help 

participants, but they could also add their own. The following exercises 

were already listed on the application (an example is shown in the 

Figure 4-5): 

a. Walking 

b. Step-ups 

c. Star jacks 

d. Marching 

e. Sit to stand 

f. Wall push-offs 

g. Heel raises 

h. Arm punches 

i. Squats 

j. Bicep curls 

k. Hip extensions 

l. Upright rows 

m. Knee extensions 

n. Leg side to side 

o. Mini knee lifts 

p. Other 
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Figure 4-5 Exercise diary example 
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4. Flare-up tracker (Figure 4-6): participants were asked to fill this section 

in only if they had a flare-up requiring either: 

a. Use of their rescue pack at home 

b. Attendance to their general practitioner 

c. Attendance to accident and emergency 

d. Admission to hospital 

Figure 4-6 Flare-up tracker 

   

 

Participants were asked to continue to wear the device during any ‘flare-ups’ 

or exacerbations.  

If participants preferred to keep a paper diary, this option was also available 

to them.  

At the end of study, participants were asked to return the equipment with the 

consent form (if study visit was remote). 
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Study flow chart: Stable patients 

 

  

Screening

• Participant contacted by phone prior to study visit 1

• Participant information sheet sent by post or email

Day 1

• Study visit 1 conducted in person or remotely 
depending on participant preference

• Informed consent

• Participant shown how to use AcuPebble 

Day 31

• Participant to return the device back to the 
research team

• Completion of a usability / acceptability 
questionnaire
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4.3.3.2 Exacerbating Participants 

For the inpatient / exacerbating group of participants, medical admission lists 

were screened to identify suitable patients. Patients who had moved from the 

accident and emergency department to any medical ward were approached 

and the study explained to them. If interested a participant information sheet 

was given to them. Patients on intensive care and those needing non-invasive 

ventilation were not approached.  

Participants who were interested and had read the information sheet were then 

asked to complete and sign a written consent form.  

Participants were asked to wear AcuPebble RE100 throughout the duration of 

their inpatient stay. Participants were recruited from any medical ward during 

their admission. If agreeable to continue, participants were asked to use the 

device while asleep post discharge for up to 28 days. The initial protocol had 

specified up to five days post discharge, however, following the recruitment of 

the first ten patients, we noticed that 3 patients had had a re-admission within 

a month. To capture this data for future patients, an amendment was added to 

the protocol and participants were asked to wear the device for 28 days post 

discharge. This time frame was chosen as it was felt to be clinically relevant 

as the NHS does not receive additional payment for recurrent COPD 

exacerbation admissions within this time frame. (228)   

All participants admitted to any medical ward were given the following during 

their inpatient stay: 
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1. Two AcuPebble RE100 devices – this was to ensure there was enough 

battery to last the patient 24 hours. One AcuPebble RE100 device 

carried enough charge for 12-14 hours. 

2. Research mobile phone (which was locked for the purposes of the study 

and contained the AcuPebble COPD application only) 

3. Adhesive stickers 

4. Charging cables 

Baseline data was collected via a case report form (CRF) that included the 

following information: 

• Baseline demographics including age, gender, ethnicity and body 

mass index 

• Smoking history 

• Lung function tests / spirometry details 

• NICE COPD severity 

• Medical Research Council dyspnoea score  (32) 

• COPD Assessment Tool score (29) 

• GOLD ABCD category 

• Past medical history 

• Drug history 

• Social history: mobility aid requirement and package of care 

• Admission arterial blood gas (if done) 

• Admission CXR (if done) 

Participants were then shown how to connect AcuPebble RE100 to the mobile 

phone. (Figure 4-1). The research team facilitated connecting and attaching 
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the AcuPebble RE100 sensor twice daily if necessary for the duration of the 

participants admission. 

Inpatients were given a daily paper diary to fill in which had the following 

information:  

• Walked to the toilet 

• Using a commode 

• Physiotherapy sessions 

• Self-exercise 

• Cough + sputum production 

• Amount of sputum (+ / ++ / +++) 

• Given a nebuliser 

• Eating 

Throughout the admission daily clinical data was also collected from the 

participant records including: 

• Exacerbation medication including antibiotics, steroids, nebulisers, and 

the timing of these. 

• Nursing observations throughout the day including oxygen saturations, 

respiratory rate, heart rate, blood pressure, temperature and NEWS2 

score. 

• Participant clinical status – defined simply as static, deteriorating, or 

improving. 

• If the participant was on a ward monitoring system this was also 

collected 
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On discharge participants were asked whether they would be happy to take 

the device home for a further 28 days. At home they were asked only to wear 

the device while sleeping and asked to start completing the same COPD diary 

as the stable patients on the mobile phone application.  

Following 28 days, the participants were asked to return the device, either in 

person, or were provided with a pre-addressed return envelope. The 

participant was also asked to complete a usability questionnaire.  

Study flow chart: exacerbating group  

 

  

Day 0-1

•Participant admitted to hospital

•Screened for eligibility

Day 1-2

•Participant information sheet given to the participant

•Written informed consent obtained

•Baseline data collected

•AcuPebble given and fitted to the patient to commence recordings

Day 2-end of 
admission

•AcuPebble worn throughout the admission period

•Routine medical data and observations collected

Discharge - 28 
days post 
discharge

•Continued use of the device nightly

Day 28 post 
discharge

•Return / retrieval of the device and usability questionnaire
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4.3.3.3 Historical cohort without COPD for comparative group 

To enable direct comparison with a cohort without COPD, (non-COPD group), 

using the same device, historical data were used. AcuPebble SA100 has 

previously been validated as a diagnostic tool for obstructive sleep apnoea 

(OSA) by our research group. (145) For that prospective study (IRAS ID 

225818, REC Ref 18/LA/0308), patients attending the sleep and ventilation 

clinic for evaluation of possible OSA at Royal Free London Hospital NHS 

Foundation Trust were asked to use AcuPebble SA100 alongside a multi-

channel sleep study (clinical standard). Patients used these devices 

simultaneously. AcuPebble SA100 data gave the same time series data (HR, 

RR and airflow) as well as automatically diagnosing OSA (through detection 

of apnoeas and hypopnoeas and giving an anponea/hypopnoea index (AHI)). 

The multi-channel sleep study included a pulse oximeter and therefore gave 

HR data. However, did not give direct RR measurements. 

It is important to note that AcuPebble SA100 is a device that is similar to 

AcuPebble RE100 and works in the same way, recording acoustic signals and 

converts them to heart rate (HR), respiratory rate (RR) and airflow data. The 

main difference is AcuPebble SA100 is CE marked for OSA diagnosis while 

AcuPebble RE100 is intended for research purposes only. While for the 

remainder of the chapter they are referred to as either AcuPebble SA100 or 

RE100 depending on which device was used, the results and interpretation 

are transferable between the devices.  
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Patients with a normal sleep study and therefore no OSA were defined as 

having an AHI < 5 events/hr. Their HR, RR and airflow time-series data was 

extracted and analysed using the same algorithms and methodology as 

described below. This provided me with a historical non-COPD cohort, that I 

could use to compare with the results from the stable and exacerbating COPD 

population. As for the stable patients, a six-hour nocturnal recording was used 

(excluding the first 10-minutes) giving the same number of data points. The 

detailed analysis plan is described below. 
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4.3.4 Linear and non-linear analysis methodology and data analysis 

plan. 

AcuPebble RE100 senses acoustic signals and manufacturer algorithms 

convert these into heart rate (HR), respiratory rate (RR) and airflow. In terms 

of the accuracy of these measures, HR has a root mean squared error (RMSE) 

of 3.62 beats per minute when the heart rate range is 50-120 beats per minute. 

(148). Bland Altman plots have shown that for RR there is a bias of -0.215 

breaths per minute and limit of agreement between -5.747 to 5.316 breaths 

per minute (unpublished).  The device gives HR and RR data every 2 seconds, 

a resolution of 0.5Hz. The device gives airflow data every 0.1 seconds, a 

resolution of 100Hz. This in turn means there are 100 data points every 

second.   

Therefore, physiological signal variability analysis was conducted on three 

independent time-series, HR, RR and airflow. Given the significant resolution 

differences between airflow and the other signals, different analysis methods 

were employed. Both linear and non-linear methods were used for the HR and 

RR data. However, given the high resolution of the airflow data, detrended 

fluctuation analysis (DFA) was felt to be a more appropriate analysis technique 

for the airflow data. Further details, definitions and explanations of 

physiological signal variability measures can be found in the Appendix 

(Chapter 7.1). The linear and non-linear analysis method used in this study 

are described below. 

For the stable COPD group, we assessed any associations between 

physiological signal variability measures and: 
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1. Severity of airflow obstruction based on FEV1. 

2. The GOLD ABE assessment tool. 

3. Symptom burden severity based on the CAT score and mMRC 

breathlessness score. 

For the exacerbating group any associations between physiological signal 

variability measures with currently measured admission characteristics were 

also analysed including: 

1. Admission national early warning score 2 (NEWS2) 

2. The Rome Criteria for COPD exacerbation severity. 

3. Length of hospital stay 

For the non-COPD group, the HR measures from the multi-channel sleep 

study (done on the same night as AcuPebble SA100), were also extracted and 

analysed using similar algorithms as described below. This was to assess 

whether HR variability measures from two different devices (AcuPebble 

SA100 and gold standard multi-channel sleep study) were comparable. The 

pulse oximetry used as part of the multi-channel sleep study had a higher 

resolution of HR data (3Hz) with 3 samples every second. The data was then 

filtered (by averaging adjacent data points) to decrease the resolution to both 

1Hz (1 sample every second) and 0.5Hz (2 samples every second). The latter 

(0.5Hz) was to directly compare to the AcuPebble SA100 data which was also 

at this resolution. The code used for this work is in the Appendix (Chapter 7.5) 

All data analysis was conducted in MATLAB programming software with the 

help and guidance of Dr Alireza Mani and the Network Physiology Laboratory 

at University College London.  
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4.3.4.1 Linear Analysis methods for HR and RR data 

Given the large number of data points available for analysis, to deal with 

missing data, the data were first cleaned to remove potential artefact: 

• HR – any measurement below 40 beats per minute, was assumed to 

be inaccurate data capture, and this measurement was changed to the 

median HR.  

• RR – any measurement below eight breaths per minute was assumed 

to be inaccurate data capture, and this measurement was changed to 

the median RR. 

The percentage of artefact for each trace was noted and if any recording had 

≥15% of aberrant data, that study was not included in the final analysis. For 

included studies the following measurements were calculated. 

The mean HR and RR were calculated.  

With the HR measurements the R-R interval (ms) was calculated by Equation 

2 equation. (229) 

Equation 2: Calculation of R-R interval from heart rate measurements. (229) 

𝑅 − 𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
60,000

𝐻𝑅
 

With the RR measurements the breath-to-breath interval (B-B) (ms) was 

calculated by Equation 3. 

Equation 3: Calculation of breath-to-breath interval from respiratory rate 

measurements 

𝐵 − 𝐵 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  
60,000

𝑅𝑅
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Using both the R-R interval and B-B interval, the standard deviation of these 

intervals was calculated giving linear time-domain measure for each (SDNN 

and SDBB respectively).  

Monfredi et al showed that the R-R interval (for HR) has an inverse non-linear 

relationship with HR and therefore ideally the SDNN should be corrected for 

the mean HR to reduce bias and improve reliability. This value (cSDNN) is 

shown in Equation 4. (230)  

Equation 4: Correction of SDNN by Monfredi et al. (230) 

 

Therefore, for the HR data the cSDNN was also calculated. No such correction 

exists for the RR time series.  

4.3.4.1 Non-linear analysis methods used for HR and RR data 

For all non-linear analyses the calculated R-R and B-B intervals was used, 

rather than the original HR and RR time-series, as this is conventional 

methodology in the literature. (231) This also allows comparison of my data to 

other published literature. 

The SD1 and SD2 values from the Poincare Plots and SE were calculated 

from well described and freely available coding algorithms in MATLAB 

processing software. For SE calculations I used settings of m at 2 and r at 0.2. 

These values of m and r are widely used in the existing literature and are 

accepted as the standard. Further explanations of Poincare plots and sample 

entropy can be found in the Appendix (Chapter 7.1) 
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Multi-scale entropy (MSE) was also calculated for both HR and RR using well 

described and freely available coding algorithms in MATLAB processing 

software. For this analysis, MSE was used over ten scales with m at 2 and r 

at 0.2.  

All the code used for this work can be seen in the Appendix (Chapter 7.1). 

4.3.4.3 Time series duration for HR and RR analysis 

There are limited data on nocturnal physiological variability analysis and no 

current gold standard duration of analysis recommended for COPD linear and 

non-linear analysis. However, previous work on heart rate variability has 

described long term (24 hours), short-term (≈ 5minutes) and ultra-short-term 

(<5 minutes) analysis, which are not interchangeable. It is also well recognised 

that longer term analysis will enable better representation of the overall 

response of a system. (231)  

When comparing nocturnal readings from several patients with stable COPD, 

a fixed time-series duration was necessary to avoid bias and improve 

comparability.  Six hours was felt to adequately represent all the stages of 

sleep and give more than enough data points (10,800) to conduct physiological 

variability analysis. Studies with less than six hours of recording were deemed 

too short and excluded from the analysis. When patients had more than six 

hours of recording, only the first six hours were analysed (excluding the first 

10 minutes), so that the same time-series duration was used in all patients. 

Within this time period, if the patient had broken sleep, but left the device on 

and it continued to record valid data, it was included. If there was no recording 

or the signal dropped for a few minutes, this data was treated as missing data. 
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If a time-series had ≥ 15% of total data missing, this was excluded from the 

analysis. 

However, given the data derived from AcuPebble is novel, I also sought to 

understand whether hourly analysis of our data in the stable COPD group 

(across 6 hours) was comparable to analysing the entire 6-hour period of 

recording. This concept is shown below. 

An example showing the calculated sample entropy (HR) for a random 

night from one participant, hourly and over the entire 6-hour period. 

Hourly sample entropy (SE)  

Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 

0.1991 0.2415 0.1811 0.2585 0.1694 0.33314 

Mean hourly SE (calculated from each hour above) = 0.2302 

6-hourly SE from the same entire recording period = 0.2658 

This comparison was performed on all the recordings for the first five 

participants. If the 6-hourly recording had ≥ 15% of data missing, this recording 

was removed. Additionally, for each hour, if there was ≥ 15% of data missing 

this individual hour was removed for that night. The mean hourly value was 

calculated from the remaining hourly data available and used to compare with 

the overall 6-hourly data.  

Following the identification that a six-hour nocturnal time window was 

adequate in the stable COPD population, the same time window was used to 

analyse the exacerbating population. The exacerbating group had recordings 

available throughout their stay (both day and night), however, for 
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comparability, we chose to only use the nocturnal recording portion. However, 

it is important to note, that the recordings encompassing the nocturnal portion, 

often started in the late afternoon/evening. Therefore, we could not take six 

hours from the start of the recording. To reduce bias, the median start time of 

all the stable valid six-hour nocturnal recordings was calculated and used as 

the start time for the exacerbating population. This was to ensure a similar time 

and duration of the recording, thus increasing comparability. The first valid 

nocturnal recording within 48 hours was used to compare with the stable 

group.  

Recordings from admission to discharge and post discharge were also 

compared where available. To do this, the first valid nocturnal recording within 

48 hours of admission was compared to a nocturnal recording 48 hours from 

discharge. This was then also compared to a nocturnal recording 5-days post 

discharge. Where 5-day recordings were not available, day 4 or 6 was used 

instead. A small number of participants used the device for longer than 5 days 

post discharge and this was also analysed in a similar manner.  

When comparing the admission night, discharge night and post-discharge 

night, the same technique as above was used (i.e., the median start time of 

the home recordings was used as the starting point). For the post-discharge 

nights, participants understandably only started the recording when they went 

to sleep, which in some cases was later than the median start time used. In 

this situation their actual sleep time was used for the recording analysis 

(similar to the home stable patient analysis).  
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4.3.4.4 Airflow data analysis 

The airflow data had a high resolution of 100Hz, meaning there were 100 data 

points every second. Using the same 6-hour time window as the HR and RR 

analysis, this gave 2,160,000 data points. The data were initially cleaned to 

remove potential artefact. If there was a 30 second apnoea (determined by 

3000 data points where the airflow was recorded as 0), this was deemed to be 

artefact and thus deleted. 

Detrended fluctuation analysis (DFA), a non-linear method, was used to 

analyse this data., DFA analyses a time-series at various scales, de-trends the 

data and then calculates the fluctuation at each time scale. (Appendix 7.1) This 

is plotted on a double logarithmic axis and the exponent of the straight line is 

denoted as alpha (α). Therefore, in a DFA plot, the logarithm of fluctuation 

(Log10 f(n)) is plotted against the logarithm of scale (n). (123) There have been 

few studies previously looking at airflow using DFA, with one focussed on a 

sleep apnoea population (232) and another isolated peak flow readings. (233) 

Previous studies have shown that both oxygen saturation and heart rate (234) 

DFA graphs have one ‘cross-over’ point. Initial analysis of our airflow data 

showed two ‘cross-over’ points suggesting a short-term, intermediate term and 

long-term scaling exponent, α1, α2 and α3 respectively. These were 

calculated separately by visually inspecting the DFA graph and identifying the 

cross-over point manually.  

The first three airflow recordings for the first five patients (total of 15 

recordings) in the stable group were all inspected manually and found to have 

similar cross-over points. An example of this, can be seen below in Figure 4-
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7. The same two cross-over points were also seen in the preliminary analysis 

of the exacerbating group allowing for direct comparison.  

It is useful to note, that the first cross over point at a scale of 2.52114 is 

equivalent to Log10(332) and means that we are looking at the data at a scale 

of roughly 3 seconds (as we have 100 data points every second). Therefore, 

α1 is a short-term scaling exponent. The second cross-over point at a scale of 

3.49941 is equivalent to Log10(3158) and means that we are looking at the 

data at a scale of roughly 31 seconds, therefore α2 is an intermediate scaling 

exponent and there after α3 is a longer scale scaling exponent. 
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Figure 4-7 Illustration of DFA analysis plot with cross-over points highlighted. 

   

Main graph illustrates the complete DFA analysis results. The dashed red lines depict the two cross-over points. Panels on the right 

show the various sections of the graph corresponding to short, intermediate, and long scales.   
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4.3.4 Statistical analysis  

Given this was feasibility study and was novel, a sample size calculation was 

not performed. Initially a sample of 40 participants (20 stable and 20 

exacerbators) was deemed sufficient. However, due to the variability of the 

data we received and the adherence of participants to the device, this was 

subsequently revised to 70 participants (40 stable and 30 exacerbators).  

All statistical analysis was conducted using the software Statistical Package 

for the Social Sciences (SPSS). Baseline demographic data between different 

groups of patients was compared using Chi Squared tests for ordinal and 

categorical data. Continuous data were checked for normality using the 

Shapiro-Wilk test. For the initial validity work, to ascertain which recording 

time-period (hourly vs. 6-hourly) was most useful, we performed Bland Altman 

Plots and calculated the intraclass correlation coefficients (ICC). As the 

performance of the same device was being investigated in each patient, 

absolute agreement and 2-way mixed methodology was used as shown by 

Koo et al. (235) This method was also employed when comparing the same 

HR variability measures in the healthy cohort (comparing AcuPebble SA100 

with pulse oximetry). 

For the main COPD analysis, continuous data from multiple groups were 

analysed using either the Krushal Wallis H test for non-parametric data or an 

Analysis of Variance (ANOVA) test for parametric data. Simple linear 

regression analysis was used to assess the association between two 

continuous variables and multi-linear regression analysis performed to 

account for any confounding variables.  
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For comparing two groups the independent t-test for parametric data or the 

Mann-Whitney U test for non-parametric data was employed. 

When comparing the MSE analysis at varying scales and in two different 

groups a two-way ANOVA was used.  

Overall data was reported as mean (± standard deviation) or median (± 

interquartile range) based on the mode of distribution. If the physiological 

parameters were non-normally distributed both mean (± standard deviation) 

and median (± interquartile range) were presented to allow for adequate 

comparison of values in the literature. 

A p-value of ≤ 0.05 was considered to be statistically significant. 

Acceptability of AcuPebble was described based on usability feedback and 

descriptive parameters.  
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4.4 Results  

For the study, 200 non-selected participants were screened, of which 114 met 

eligibility criteria, and 59 were consented for the study (36 with stable COPD 

and 23 hospitalised patients with an exacerbation. Of the 36 stable COPD 

patients, two participants subsequently declined following consent with no 

data to analyse, and one participant was found to be ineligible post consent 

and therefore did not start the study. This participant, post consent was found 

to have a pacemaker and so had to be excluded. They had not started the 

study. Therefore 33 participants with stable COPD were analysed (20 male, 

13 female) with a mean (SD) age of 67 (10) years. 

Of the 23 COPD patients undergoing an exacerbation, five patients did not 

have enough nocturnal data on a recording within 48 hours of admission. 

Therefore, 18 participants undergoing an exacerbation were analysed (10 

male, 8 female) with a mean age (SD) of 64.5 (9) years. 

The historical non-COPD group had 51 patients (29 male, 22 female, mean 

age (SD) 38 (11) years), who had undergone a one-night study. While all had 

available RR data, following removal of artefact there were 48 HR recordings 

and 46 airflow recordings. 

Figure 4-8 illustrates the study flow diagram. Table 4-1 shows all the 

participants baseline characteristics and medical comorbidities. The non-

COPD cohort were significantly younger had a lower prevalence of having ever 

smoked, and significantly fewer comorbid conditions. None of the non-COPD 

cohort had any form of known airways disease.  
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Table 4-2 shows the COPD participants’ pulmonary function tests, symptom 

severity scores and relevant medication.  

All participants had lung function within 3 years of the study. In some cases, 

the lung function post study start was taken as it was closest to data analysis.  

Table 4-3 shows participant admission data. 
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Figure 4-8 Study flow diagram for the COPD patients. 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Assessed for eligibility 
(n = 200) 

Excluded (n = 141) 
 - Declined (n = 55) 
 -  Not met inclusion    
criteria (n = 86) 

Participants 
consented for study 

(n = 59) 

Stable COPD 
patients 
(n = 36) 

Data available 
for analysis 
 (n = 33)  

Nil data (n=3) 
 -declined post 
consent (n = 2) 
- found to be 
ineligible (n = 1) 

Exacerbating 
COPD patients 
 (n = 23)  

Data available 
for analysis 
 (n = 18)  

Nil / short 
nocturnal 
admission 
recording (n = 5) 
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Table 4-1 Baseline characteristics of all participants 

Baseline 
characteristic 

Non-COPD 
cohort 
(n = 51) 

Stable 
COPD 

(n = 33) 

Exacerbating 
COPD 

(n = 18) 

p 
value
* 

Male (%) 29 (57) 20 (61) 10 (56) 0.73 

Female (%) 22 (43) 13 (39) 8 (44) 0.73 

Age (years) (mean ± 
SD) 

38 ± 11** 67 ± 10 64 ± 9 0.46 

Body Mass Index 
(kg.m2) 
(median (IQR)) 

25.2 
(23.5 – 28.9) 

27.1 
(21.0 – 31.8) 

18.9 
(17.7 – 24.5) 

0.002 

Current smoker (%) 8 (15)** 6 (18) 7 (39) 0.11 

Ex-smoker (%) 12 (24)** 27 (82) 11 (61) 0.11 

Pack year history 

(median (IQR)) 

Not available 47 

(25 – 64) 

43 

(40 – 50) 

0.97 

Mobility (%) 
Independent 
Uses a stick 
Uses a frame 

Not available  
20 (61) 
11 (33) 
2 (6) 

 
13 (72) 
4 (22) 
1 (6) 

0.69 

Independent with 
regards to activities of 
daily living (%) 

Not available 31 (94) 18 (100) 0.29 

Medical Co-morbidities (%) 

Alpha-1 Antitrypsin Not available 4 (12) 0 0.12 

Atrial fibrillation 0 3 (9) 0 0.19 

Cerebrovascular 
disease 

0 0 0 - 

Hypercholesterolaemia 1 (2)** 9 (27) 5 (28) 0.97 

Hypertension 5 (10)** 11 (33) 5 (28) 0.68 

Ischaemic heart 
disease 

1 (2)** 5 (15) 2 (11) 0.69 

Oxygen therapy Not available 2 (6) 1 (6) 0.94 

Peripheral vascular 
disease 

0 1 (3) 0 0.46 

Type 2 diabetes mellitus 1 (2)** 5 (15) 1 (6) 0.31 

*p-value shows significance between the stable and exacerbating COPD 

patients. **denotes significance (p <0.05) between the non-COPD cohort and 

stable COPD patients. 
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Table 4-2 Pulmonary function tests, baseline symptom severity assessment 

scores and relevant medication 

Characteristic Stable group 
(n = 33) 

Exacerbating group 
(n = 18) 

p 
value 

Pulmonary function tests* (mean ± SD) 

FEV1 (L) 1.35 ± 0.64 0.91 ± 3.22 0.008 

FEV1 %predicted 48.96 ± 20.00 32.31 ± 10.14 0.002 

FVC (L) 3.27 ± 1.06 2.42 ± 0.68 0.004 

FVC %predicted 91.31 ± 25.67 70.00 ± 19.97 0.005 

FEV1/FVC ratio  0.41 ± 0.12 0.38 ± 0.11 0.47 

TLCO 

(mmol/min/kPa) 

4.11 ± 2.34 2.46 ± 0.63 0.023 

TLCO %predicted 48.60 ± 22.82 33.21 ± 10.78 0.029 

KCO 

(mmol/min/kPa) 

0.86 ± 0.35 0.65 ± 0.18 0.06 

KCO %predicted 61.88 ± 25.52 48.72 ± 16.02 0.10 

Symptom assessment questionnaires (median (IQR)) 

mMRC 

breathlessness 

score 

3 (2 – 3) 3 

(2.5 – 4) 

0.25 

COPD Assessment 

Test (CAT) score 

20 (14 – 25.25) 27 

(22.5 – 32.25) 

0.004 

COPD Severity Assessment (GOLD) (%) 

GOLD A 2 (6) 0 0.003 

GOLD B 20 (61) 3 (17) 0.003 

GOLD E 11 (33) 15 (83) 0.003 

Respiratory Medication (%) 

SABA 33 (100) 18 (100) - 

LABA/ICS 0 1 (6) 0.17 

LAMA alone 0 1 (6) 0.17 

LABA/LAMA** 10 (30) 1 (6) 0.040 

LABA/LAMA/ICS** 21 (64) 15 (83) 0.14 

*All participants had lung function within 3 years of the study. In some cases, 

the lung function post study start was taken as it was closest to data analysis. 

Note one patient had lung function 5 years prior to study but did not have any 

valid data and so was not included. **Included patients on various 

combinations, but receiving all the medication. 
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Table 4-3 Admission data for participants undergoing a COPD exacerbation 

(n = 18) 

Characteristic n (%), mean ± SD, median (IQR) 

Length of stay (days) 5 (3 – 7) 

Respiratory rate (bpm) 26 ± 7 

Heart rate (bpm) 105 ± 17 

Oxygen saturations (%) 91 ± 6 

Admission NEWS2 score 5 (3 – 6) 

Severity (ROME proposal): 

Mild 

Moderate 

Severe 

 

7 (39) 

11 (61) 

0 

PaO2 (kPa) 7.79 ± 1.28 

PaCO2 (kPa) 5.81 ± 1.07 

C-reactive protein 54 ± 66 
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4.4.1 Accuracy and usability of the data recorded by AcuPebble RE00 in 

the stable COPD group 

Participants were asked to wear the AcuPebble RE100 device at night for up 

to 30 nights. Participants used the device for a median of 18 nights (IQR 10 – 

26; range 2 – 34). Participants used the device for a median of 8.3 hours (IQR 

6.8 – 9.8; range 0.78 – 13.6) per night. Recordings shorter than six hours 

duration were not included in the final analysis, leading to a removal of 14% of 

the recordings (Table 4-4).  

Data recordings that had ≥ 15% of missing data, due to device artefact, were 

not included in the overall analysis. AcuPebble RE100 had less device artefact 

when recording respiratory rate compared to heart rate and airflow data, 

meaning that a higher number of respiratory rate data recordings were 

available for the final analysis. This is summarised in Table 4-4. Overall, there 

was a total of 338 nocturnal heart rate, 492 nocturnal respiratory rate and 345 

airflow recordings from the 33 patients. The median number of recordings 

available for each patient were 8 (3 – 15) nights, 14 (9 – 23) nights and 8 (3 – 

18) nights for heart rate, respiratory rate and airflow respectively.  
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Table 4-4 Accuracy and usability of the data derived from AcuPebble RE100 
in 33 stable patients with COPD. 

Participant 

number 

Total 

number of 

recordings 

returned 

Number of 

recordings 

of <6hour 

duration  

Number of 

6-hour HR 

recordings 

with ≥15% 

missing data 

Number of 

6-hour RR 

recordings 

with ≥15% 

missing data 

Number 

of 6-hour 

Airflow 

recordings 

with 

≥15% 

missing 

data 

RF01 17 2 1 1 4 

RF02 24  1  0 0 4 

RF03 25 1 16 0 0 

RF05 23 0 2 2 2 

RF08 3 0 1 0 1 

RF09 13 1 0 0 1 

RF13 19 0 12 4 19 

RF14 23 1 20 0 5 

RF15 24 5 0 0 1 

RF16 26 2 8 0 19 

RF17 4 4 - - - 

RF18 34 0 7 2 31 

RF20 18 10 1 1 2 

RF21 25 7 3 0 0 

RF22 10 1 8 0 1 

RF23 29 6 18 0 21 

RF24 34 0 30 0 3 

RF31 26 13 0 0 5 

RF34 3 1 1 0 0 

RF35 18 4 3 0 3 

RF36 28 1 3 0 6 

RF38 9 6 0 0 0 

RF43 29 1 22 16 7 

RF45 29 18 6 1 10 

RF46 2 1 1 0 1 

RF47 28 0 6 0 8 

RF48 3 0 0 0 3 

RF51 15 1 0 0 0 

RF52 23 0 2 0 10 

RF53 16 6 2 0 3 

RF55 17 0 2 0 3 

RF63 7 1 4 0 0 

RF64 9 0 2 0 1 

TOTAL 613 94 181 27 174 
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4.4.2 Comparing hourly and 6-hourly heart rate and respiratory rate 

analysis in a small group of stable patients. 

4.4.2.1 Heart rate variability  

The Bland-Altman plots comparing the mean hourly vs. 6-hourly data analysis 

for each of the variables are shown in Figure 4-9 below. The Bland-Altman 

plots for cSDNN and SD2HR showed that the mean hourly data compared to 

the 6-hourly data had mean differences (and therefore bias) of, 72ms and 

30ms respectively. This suggested that the two approaches were not 

comparable and may lead to different results. The mean HR, SD1HR and 

SEHR had more favourable comparable outcomes with lower mean 

differences and less bias. However, the intraclass correlation coefficient (ICC) 

values were above 0.7 for all parameters except for SEHR (Table 4-5). 

Table 4-5 Intraclass correlation coefficients (ICC) for the hourly and 6-hourly 
data analysis – heart rate. 

Analysis variable ICC 

Mean HR (beats per minute) 0.941 

SDNN (ms) 0.737 

cSDNN (ms) 0.832 

SD1HR (ms) 0.832 

SD2HR (ms) 0.735 

SEHR 0.640 
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Figure 4-9 Bland-Altman plots comparing mean hourly and 6-hourly data analysis – heart rate. 
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Thermoregulation has been shown to play an important role in longer term 

fluctuations in heart rate variability. (231) This may explain the bias seen in 

cSDNN and SD2HR measurements, which reflect longer-term fluctuations, 

given the known changes in body temperature that occur overnight. In view of 

this, 6-hourly data was thought to better represent the overall variability in 

nocturnal heart rate compared to hourly data. Moreover, mean hourly data 

over 6 hours that is then averaged again to give a final value, would have led 

to a larger standard deviation and potentially less precise data. Therefore, a 

6-hour analysis window was used for the analysis of the whole data set.  

4.4.2.2 Respiratory rate variability  

The Bland-Altman plots comparing the mean hourly vs. 6-hourly data analysis 

(RR) for each of the variables are shown in Figure 4-10. Table 4-6 shows the 

intraclass correlation coefficients for the hourly and 6-hourly data (respiratory 

rate) analysis. 

Table 4-6 Intraclass correlation coefficients (ICC) for the hourly and 6-hourly 
data analysis – respiratory rate. 

Analysis variable ICC 

Mean RR (beats per minute) 0.952 

SDBB (ms) 0.767 

SD1RR (ms) 0.774 

SD2RR (ms) 0.766 

SERR 0.757 
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Figure 4-10 Bland-Altman plots comparing mean hourly and 6-hourly data analysis – respiratory rate. 
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The Bland-Altman analysis again showed that for SDBB and SD2RR the mean 

hourly data compared to the 6-hourly data had mean differences (and 

therefore bias) of 113ms and 160ms respectively. This suggested that the two 

approaches were not comparable. However, the mean RR, SD1RR and SERR 

had more favourable and comparable outcomes. Moreover, the intraclass 

correlation coefficients showed good correlation. In view of the above results, 

and for ease of comparability of the heart rate data, a 6-hour window was 

chosen for the remainder of the analysis. 

The subsections below describe the results of the analysis of all the heart rate 

and respiratory rate and airflow recordings conducted over the entire 6-hour 

period.  

4.4.3 Differences in physiological signals (HR, RR and airflow) between 

all groups (non-COPD, stable and exacerbating COPD patients) 

The median start time for AcuPebble RE100 in the group of stable home 

patients was calculated as 22:39:33. This time was used as the start time in 

calculating the linear and non-linear time-series measurements for the first 

valid nocturnal recording within 48 hours of admission for the exacerbating 

group. Two participants had recordings which fell short of the six-hour time 

window using this start time. In this case, to maximise data capture, the first 

quartile start time from the stable COPD patients was used (21:48:21). Data 

recordings that had ≥ 15% of missing data, due to device artefact, were not 

included in the overall analysis. Most signals were not normally distributed and 

therefore non-parametric tests were used and median (IQR) values displayed. 

The results are illustrated in Table 4-7. 
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Table 4-7: Differences in physiological signals comparing non-COPD 
controls vs. stable COPD group vs. exacerbating group. 

Physiological 

variability 

measure 

Non-COPD cohort Stable COPD 

group 

Exacerbating 

COPD group 

p-

value* 

 

Heart Rate (HR) measures (n = 48 vs. 31 vs. 9) 

Mean HR 

(bpm) 

65.48**  

(60.83 – 70.03)  

71.04 

(64.55 – 75.10) 

74.22 

(67.42 – 82.31) 

0.35 

cSDNN (ms) 189.43  

(147.92 – 244.59)  

179.40 

(162.14 – 245.83) 

268.41 

(206.67 – 314.90) 

0.006 

SD1HR (ms) 8.90  

(6.92 – 10.38) 

7.80 

(6.52 – 10.40) 

12.06 

(7.76 – 14.51) 

0.040 

SD2HR (ms) 87.61  

(65.73 – 115.35)  

74.76 

(66.68 – 95.67) 

90.18 

(78.62 – 130.15) 

0.037 

SEHR 0.1872  

(0.1273 – 0.2307)  

0.1607 

(0.1355 – 0.1981) 

0.1258 

(0.1044 – 0.1568) 

0.015 

Respiratory Rate measures (RR) (n = 51 vs. 32 vs. 18) 

Mean RR 

(bpm) 

15.67**  

(14.26 – 17.00)  

16.86 

(15.13 – 18.87) 

18.58 

(15.27 – 20.50) 

0.30 

SDBB (ms) 478.98  

(349.30 – 654.93)  

525.41 

(398.08 – 665.35) 

628.68 

(514.90 – 1126.30) 

0.024 

SD1RR (ms) 88.93  

(69.59 – 126.41)  

91.97 

(75.97 – 108.82) 

133.61 

(95.52 – 168.53) 

0.037 

SD2RR (ms) 672.144  

(488.23 – 916.01) 

737.48 

(558.01 – 936.16) 

875.93 

(722.42 – 1584.36) 

0.025 

SERR 0.0906  

(0.0533 – 0.1347)  

0.1078 

(0.0743 – 0.1377) 

0.1378 

(0.0982 – 0.1916) 

0.09 

Airflow analysis (detrended fluctuation analysis) (n = 46 vs. 29 vs. 12) 

Alpha 1 1.6751**  

(1.6601 – 1.6820)  

1.6607 

(1.6341 – 1.6730) 

1.6294 

(1.6055 – 1.6452) 

0.005 

Alpha 2 0.2367**  

(0.2070 – 0.2661)  

0.2805 

(0.2600 – 0.3077) 

0.2968 

(0.2779 – 0.3110) 

0.13 

Alpha 3 0.7191  

(0.6608 – 0.7762)  

0.6931 

(0.6509 – 0.7931) 

0.5000 

(0.4676 – 0.5578) 

<0.001 

*p-value shows significance between the stable and exacerbating COPD 

patients. **denotes significance (p <0.05) between the non-COPD cohort and 

stable COPD patients. 
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Heart rate variability 

Heart rate variability was analysed for 338 recordings from 31 stable COPD 

participants and compared to 9 recordings from the exacerbating group and 

48 recordings from the non-COPD group. The non-COPD cohort had a 

significantly reduced mean HR compared to the stable COPD group. There 

were no significant differences in HR variability and complexity measures 

between the non-COPD cohort and stable COPD group. 

Participants undergoing a COPD exacerbation had significantly higher 

variability measures (cSDNN, SD1HR and SD2HR) but a significantly lower 

complexity measure [median SEHR 0.1258 (0.1044 – 0.1568) vs 0.1607 

(0.1355 – 0.1981), p = 0.015] compared to the stable group. (Table 4-7) 

Multi-scale entropy (MSE) analysis for HR showed that the sample entropy 

increased as the scale increased for all three groups. The is illustrated in 

Figure 4-11.  

A two-way ANOVA test showed a significant reduction in HR MSE [Fgroup (1,19) 

= 5.608, p= 0.018, Fscale(9,19) = 88.43, p<0.001] in the COPD group compared 

to non-COPD group, irrespective of scale.  

A two-way ANOVA test showed a significant reduction in HR MSE [Fgroup (1,20) 

= 17.895, p<0.001, Fscale(9,20) = 38.37, p<0.001] in the exacerbating group 

compared to the stable group, irrespective of scale. 
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Figure 4-11 Heart rate multiscale entropy (MSE) comparing the non-COPD 
group, stable COPD patients and exacerbating patients. 

 

 

Black line = non-COPD group; Blue line = Stable COPD group; Red line = 

Exacerbating COPD group  
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Respiratory rate variability 

Respiratory rate variability was analysed for 492 recordings from 32 stable 

COPD participants and compared to 18 recordings from the exacerbating 

group and 51 recordings from the non-COPD group. The non-COPD group 

had a significantly reduced mean RR compared to the stable COPD group. 

There were no significant differences in RR variability and complexity 

measures between the non-COPD group and stable COPD group.  

Participants undergoing a COPD exacerbation had significantly higher 

variability and complexity measures compared to the stable cohort. (Table 4-

7) 

Multi-scale entropy (MSE) analysis for RR data showed that the sample 

entropy increased as the scale increased for all three groups. This is illustrated 

in Figure 4-12. 

A two-way ANOVA test showed a significant increase in the RR MSE [Fgroup 

(1,19) = 39.89, p<0.001, Fscale(9,19) = 92.13, p<0.001]  in the COPD group 

compared to the non-COPD group irrespective of scale.  

A two-way ANOVA test showed a significant increase in the RR MSE [Fgroup 

(1,20) = 40.703, p<0.001, Fscale(9,20) = 51.434, p<0.001] ] in the exacerbating 

group compared to the stable group.  
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Figure 4-12 Respiratory rate multiscale entropy comparing stable COPD to 
exacerbating patients. 

 

Black line = non-COPD group; Blue line = Stable COPD group; Red line = 

Exacerbating COPD group   



 

259 
 

Airflow 

Airflow variability was analysed for 345 recordings from 29 stable COPD 

participants and compared to 12 recordings from the exacerbating group and 

46 recordings from the non-COPD group. Airflow variability analysis using 

detrended fluctuation analysis (DFA) showed the same cross-over points 

existed in both the exacerbating and stable population, corresponding to a 

scale of 2.52114 and 3.49941 respectively. The graph shape was also similar. 

An example comparing a single exacerbating recording alongside a stable 

recording can be seen in Figure (4-11). 

The non-COPD group and a significantly higher median alpha 1 and a 

significantly lower median alpha 2 compared to the stable COPD group.  

The exacerbating group had a significantly lower median alpha 1 and median 

alpha 3 compared to the stable COPD group (Table 4-7). 
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Figure 4-13 Example of DFA analysis of a single night from a stable COPD 
patient and an exacerbating patient. 

 

Exacerbating patients represented by red circles and stable by blue circles. 
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4.4.4 Physiological signal variability measures in the stable COPD 

group 

4.4.4.1 Heart rate variability measures in relation to the severity of airflow 

obstruction 

Linear regression analysis found no significant associations between FEV1 

and mean HR (r = 0.158, p= 0.40), cSDNN (r = 0.155, p = 0.41), SD1HR (r = 

0.030, p = 0.87), SD2HR (r = 0.091, p = 0.63) or SEHR (r = 0.035, p = 0.85).  

4.4.4.2 Heart rate variability measures in relation to symptom burden 

There were no significant differences between heart rate variability measures 

and different severities of breathlessness as assessed by the mMRC score 

(Table 4-8). Linear regression analysis found no significant association with 

the CAT score and mean HR (r = 0.098, p = 0.61), cSDNN (0.151, p = 0.42), 

SD1HR (0.065, p = 0.74), SD2HR (0.087, p = 0.65) or SEHR (0.212, p = 0.26). 
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Table 4-8 Heart rate variability measures and different severities of 
breathlessness 

HRV 

measure 

mMRC 0 

(n=2) 

mMRC 1 

(n=6) 

mMRC 2 

(n=6) 

mMRC 3 

(n=11) 

mMRC 4 

(n=6) 

P 

value 

Mean 

HR(bpm) 

73.38 

 

69.27 

(66.36 – 

77.41) 

71.15 

(47.68 – 

67.03) 

72.21 

(69.15 – 

75.10) 

69.30 

64.19 – 

72.78) 

0.90 

cSDNN 

(ms) 

184.64 172.65 

(166.50 – 

267.30) 

197.20 

(136.47 – 

248.48) 

179.40 

(167.64 – 

253.11) 

172.41 

(154.29 – 

232.72) 

0.98 

SD1HR 

(ms) 

6.07 8.63 

(5.75 – 

10.60) 

9.52 

(7.68 – 

10.29) 

7.63 

(5.57 – 

11.37) 

8.72 

(6.82 – 

11.95) 

0.46 

SD2HR 

(ms) 

73.84 77.59 

(62.82 – 

119.05) 

77.29 

(66.97 – 

94.25) 

79.11 

(65.45 – 

97.20) 

76.88 

(61.62 – 

106.44) 

1.0 

SEHR 0.1312 0.1694 

(0.1210 – 

0.2078) 

0.1715 

(0.1472 – 

0.1836) 

0.1523 

(0.1361 – 

0.2037) 

0.1788 

(0.1468 – 

0.2234) 

0.53 

Krushal wallis test with median (IQR) presented. 

 

4.4.4.3 Heart rate variability measures in relation to ABE assessment tool 

Most patients were either in group B (n = 20) or group E (n = 9).  There were 

no significant differences in any heart rate variability measures amongst the 

three ABE groups. 

4.4.4.4 Correlation between mean HR and sample entropy of HR 

In health, studies have shown a negative linear correlation between the 

meanHR and SEHR. (236) In our study we found that this correlation was lost 

(r = 0.005, p = 0.98). 
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4.4.4.5 Respiratory rate variability measures in relation to the severity of 

airflow obstruction 

Linear regression analysis found that there was a weak negative correlation 

between FEV1 and the mean RR (r = -0.394. p = 0.026) and SERR (r = -0.380, 

p = 0.032). This is illustrated in Figure 4-13 and 4-14. However, when 

corrected for age, gender and BMI, all of which can independently affect FEV1 

in a stepwise linear regression model, FEV1 was no longer significantly 

associated with mean RR and SERR. The step-wise model results for each 

can be seen in Figure 4-15 and 4-16.  

No significant associations were found with FEV1 and SDBB (r = 0.013, p 

=0.94), SD1RR (r = 0.130, p = 0.48) and SD2RR (r = 0.011, p = 0.95).   

Figure 4-14 Correlation between mean RR and FEV1 
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Figure 4-15 Correlation between SERR and FEV1 

 

 

Figure 4-16 Step wise linear regression model with FEV1, BMI, age and 
gender for mean RR. 
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Figure 4-17 Step wise linear regression model with FEV1, BMI, age and 
gender for SERR. 

 

4.4.4.6 Respiratory rate variability measures in relation to symptom burden 

There were no significant differences between respiratory rate variability 

measures and different severities of breathlessness as assessed by the 

mMRC score (Table 4-9). Linear regression analysis found no significant 

association with the CAT score and mean RR (r = 0.164, p = 0.38), SDBB 

(0.031, p = 0.87), SD1RR (0.081, p = 0.67), SD2RR (0.030, p = 0.87) or SERR 

(0.110, p = 0.56). 
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Table 4-9 Respiratory rate variability measures and different severities of 
breathlessness. 

RRV 

measure 

mMRC 0 

(n=2) 

mMRC 1 

(n=6) 

mMRC 2 

(n=6) 

mMRC 3 

(n=12) 

mMRC 4 

(n=6) 

P 

value 

Mean RR 

(bpm) 

17.68 15.71 

(15.24 – 

18.71) 

18.45 

(16.00 – 

19.04) 

15.13 

(14.19 – 

18.23) 

17.66 

(16.15 – 

24.45) 

0.28 

SDBB 

(ms) 

412.14 551.51 

(385.90 – 

883.45) 

494.44 

(426.33 – 

547.04) 

633.85 

(451.03 – 

764.75) 

457.51 

(294.12 – 

646.14) 

0.39 

SD1RR 

(ms) 

74.19 85.20 

(78.14 – 

142.67) 

98.09 

(78.68 – 

110.75) 

108.27 

(87.71 – 

132.02) 

91.49 

(61.12 – 

100.63) 

0.33 

SD2RR 

(ms) 

577.84 773.82 

(540.55 – 

1242.00) 

688.93 

(595.58 – 

768.30) 

889.66 

(630.20 – 

1073.23) 

640.04 

(411.45 – 

907.67) 

0.39 

SERR 0.0745 0.1140 

(0.0605 – 

0.1261 

0.1354 

(0.0715 – 

0.2661) 

0.1057 

(0.0804 – 

0.1306) 

0.1257 

(0.0845 – 

0.1998 

0.66 

Krushal Wallis test with median (IQR) presented. 

 

4.4.4.7 Respiratory rate variability measures in relation to the ABE assessment 

tool. 

Most patients were either in group B (n = 20) or group E (n = 10).  There were 

no significant differences in any respiratory rate variability measures amongst 

the ABE groups. 
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4.4.4.8 Airflow variability in relation to the severity of airflow obstruction 

Linear regression analysis found no significant association between FEV1 and 

α1 (r = 0.294, p = 0.12), α2 (r = 0.056 p = 0.77) and α3 (r = 0.201, p = 0.30).  

4.4.4.9 Airflow variability measures in relation to symptom burden 

A one-way analysis of variance (ANOVA) showed no significant differences 

between any of the airflow variability measures and different severities of 

breathlessness as assessed by the mMRC score. Linear regression found no 

significant association with the CAT score and α1 (r = 0.092, p = 0.64), α2 (r = 

0.329, p = 0.09) and α3 (0.364, p = 0.06).  

4.4.4.10 Airflow variability measures in relation to the ABE assessment tool. 

There were no significant differences in any airflow variability measures 

amongst the three ABE groups. 
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4.4.5 Physiological signal variability measures in the exacerbating 

COPD group 

The first nocturnal recording (within 48 hours of admission) was used to 

assess whether there were any associations with the admission NEWS2 

score, CRP, ROME severity classification and length of stay.  

Admission NEWS2 score 

The median (IQR) admission NEWS2 score was 5 (3 – 6). There were no 

significant correlations between the NEWS2 score and any of the physiological 

signal variability measures. This is illustrated in Table 4-10. 
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Table 4-10 Correlation between the admission NEWS2 score and the 
physiological signal variability measures. 

Variability 

measurement 

Pearson’s Correlation 

Coefficient 

P value 

Heart Rate measurements 

Mean HR -0.326 0.39 

cSDNN -0.478 0.19 

SD1HR -0.312 0.41 

SD2HR -0.158 0.69 

SEHR -0.328 0.39 

Respiratory Rate measurements 

Mean RR -0.60 0.81 

SDBB 0.036 0.89 

SD1RR 0.081 0.75 

SD2RR 0.035 0.89 

SERR 0.007 0.98 

Airflow measurements 

Alpha 1 -0.166 0.61 

Alpha 2 -0.341 0.34 

Alpha 3 -0.008 0.98 

 

Admission CRP 

The mean (SD) admission CRP was 54 ± 66. There was a significant negative 

correlation between alpha1 (airflow) and the CRP (correlation coefficient -0.58, 

p = 0.049). No other significant correlations were found amongst any of the 

other physiological variability measures.  

ROME Proposal severity classification 

Binomial logistic regression was not performed for heart rate measurements 

or airflow measurements given the sample size was very small (n=9). Binomial 

logistic regression to ascertain the effects of mean RR, SDBB, SD1RR, 

SD2RR and SERR on the likelihood of having a mild or moderate exacerbation 

as per the ROME proposal was not statistically significant (χ2 = 1.929 (5), p = 

0.86).  
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Length of stay 

The median length of stay was 5 (3 – 7) days. There was no correlation 

between any of the physiological variability analysis measures (HR, RR and 

airflow) with the length of stay. Although there was a trend towards a positive 

correlation with mean RR (correlation coefficient = 0.432, p = 0.07) and 

negative correlations with SDBB (correlation coefficient = -0.403, p = 0.097) 

and SD2RR (correlation coefficient -0.403, p = 0.097). 

4.4.6 Differences in physiological signal variability measures at 

admission, discharge and post discharge in the exacerbating group 

Three participants stopped using AcuPebble RE100 after their first night, two 

participants did not use AcuPebble RE100 the night prior to discharge 

meaning no data was available, one participant was only admitted for one day, 

and one participant, while admitted for four days, due to data collection 

windows for admission and discharge being 48 hours and due to artefact, only 

the reading 48 hours into admission was available. Therefore, 11/18 nocturnal 

discharge recordings were available. Most recordings were taken from the 

night prior to discharge, with 2/11 being from 48 hours prior to discharge to 

maximise data capture. From the 11 recordings due to artefact, 6/11 HR, 10/11 

RR and 8/11 airflow recordings were available for analysis. Table 4-11 

illustrates the findings. As the majority of the measures were not normally 

distributed, the Wilcoxon Signed-Rank Test was used, and data presented as 

median (IQR). No significant differences were found in any of the measures.  
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Table 4-11 Differences in measures at admission and discharge. 

Physiological 

variability 

measure 

Admission Discharge p-value* 

 

Heart Rate (HR) measures 

Mean HR 

(bpm) 

74.22 

(67.42 – 82.31) 

82.62 

(75.19 – 93.49) 

0.5 

cSDNN (ms) 268.41 

(206.67 – 314.90 

279.86 

(220.47 – 389.75) 

0.35 

SD1HR (ms) 12.06 

(7.76 – 14.51) 

11.53 

(9.70 – 13.11) 

0.35 

SD2HR (ms) 90.18 

(78.62 – 130.15) 

95.13 

(82.48 – 114.81) 

0.23 

SEHR 0.1258 

(0.1044 – 0.1568) 

0.1281 

(0.1032 – 0.1550) 

0.89 

Respiratory Rate measures (RR) 

Mean RR 

(bpm) 

18.58 

(15.27 – 20.50) 

16.63 

(14.42 – 21.04) 

0.58 

SDBB (ms) 628.68 

(514.90 – 1126.30) 

732.29 

(620.18 – 1158.03) 

0.80 

SD1RR (ms) 133.61 

(95.52 – 168.53) 

126.35 

(87.74 – 166.60) 

0.88 

SD2RR (ms) 875.93 

(722.42 – 1584.36) 

1027.97 

(872.62 – 1627.45) 

0.80 

SERR 0.1378 

(0.0982 – 0.1916) 

0.1193 

(0.0979 – 0.1697) 

0.06 

Airflow analysis (detrended fluctuation analysis) 

Alpha 1 1.6294 

(1.6055 – 1.6452) 

1.6215 

(1.6095 – 1.6580) 

0.92 

Alpha 2 0.2968 

(0.2779 – 0.3110) 

0.2932 

(0.2826 – 0.3136) 

0.35 

Alpha 3 0.5000 

(0.4676 – 0.5578) 

0.5265 

(0.4562 – 0.6167) 

0.46 

Data presented as median (IQR). Wilcoxon signed-rank test used. 

Post discharge day 4-5 nocturnal data was available in nine participants, 

however due to artefact, data was available for 6/9 HR, 8/9 RR and 7/9 airflow 

recordings. Given the small numbers involved, statistical analysis with 

Friedman’s test was not computed. At five days post discharge, the mean HR 

was largely unchanged, but the variability measures (cSDNN, SD1HR and 

SD2HR) trended downwards, while sample entropy of HR increased. While 
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the mean RR was also largely unchanged, the other variability measures all 

decreased at five days post discharge compared to admission values. This is 

illustrated in Figures 4-18 and 4-19. Airflow measures alpha 1 and alpha 2 

decreased from admission to post discharge, while alpha 3 increased. This is 

illustrated in Figure 4-20. 

MSE analysis of the HR time-series, showed no difference between the 

admission and discharge sample entropy at all scales, but the sample entropy 

was increased at five days post discharge at all scales. This is illustrated in 

Figure 4-21.  

MSE analysis of the RR time-series, showed no difference between the 

admission and discharge sample entropy at all scales, but the sample entropy 

at five days post discharge seemed to be lower at higher scales. This is 

illustrated in Figure 4-22.  
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Figure 4-18 Heart rate variability measures at admission, discharge and 5-days post discharge 

 

Circles represent the mean value and error bars represent the standard error. 
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Figure 4-19 Respiratory rate variability measures at admission, discharge and 5-days post discharge.  

 

Circles represent the mean value and error bars represent the standard error. 
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Figure 4-20 Airflow measures at admission, discharge and 5-days post discharge. 

 

Circles represent the mean value and error bars represent the standard error.  
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Figure 4-21 MSE analysis of HR time-series at admission, discharge and 5-days post discharge. 
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Figure 4-22 MSE analysis of RR time-series at admission, discharge and 5-days post discharge. 
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Three participants used the device for at least 10 days post discharge, with 

one participant using it for 26 days. Figures 4-23 and 4-24 illustrate the HR 

and RR variability measures respectively, from admission, at the point of 

discharge (day 0) and each subsequent day following discharge. There was 

no change in the mean HR following discharge. Several HR variability 

measures (cSDNN, SD1HR and SD2HR) showed decreased variability 

following discharge, while sample entropy of HR increased following 

discharge. Linear regression showed no significant differences in these trends.  

There was a trend towards an increasing meanRR following discharge, 

although there was significant variability in the data. SDBB and SD2RR 

showed no change following discharge, while SD1RR had a decreasing trend. 

Sample entropy of RR significantly decreased following discharge (R2 = 0.297, 

p <0.001). 

There was a trend towards increasing alpha 1 (R2 = 0.121, P = 0.017) and 

alpha 2 values following discharge, but alpha 3 showed no obvious change in 

pattern. This is illustrated in Figure 4-25. 
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Figure 4-23 Heart rate variability measures from admission to post discharge. 

 

Data taken from three patients. The red line indicates the linear regression fit with confidence intervals. None were significant 
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Figure 4-24 Respiratory rate variability measures from admission to post discharge. 

 

Data taken from three patients. The red line indicates the linear regression fit with confidence intervals. SERR had an R2 value of 0.297, p<0.001. 
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Figure 4-25 Airflow variability measures from admission to post discharge. 

 

Data taken from three patients. The red line indicates the linear regression fit with confidence intervals. Alpha 1 had an R2 value of 0.121, p<0.017. 

Nil other significant differences seen. 
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4.4.7 HR variability measures from multi-channel polygraphy in non-

COPD cohort 

Overnight HR data from the multi-channel polygraphy was available for 48 

non-COPD participants, but 2 participants had a high degree of artefact and 

therefore 46 recordings were analysed. Figure 4-26 illustrates the variability 

measures at different resolutions (3Hz, 1Hz and 0.5Hz). The meanHR, cSDNN 

and SD2 measures of variability were similar at the different resolutions. 

However, SD1 and SEHR measures progressively increased at lower 

resolutions (i.e., when we ‘zoomed’ out of the data, SD1HR and SEHR 

increased in value). 

  



 

283 
 

Figure 4-26 Box-plots for each variability measurement at different resolutions from the multi-channel polysomnography. 

 

Boxplot representing the median and IQR. The whiskers represent the minimum and maximum values (bar any outliers). Outliers 
represented by the red cross are values which lie above Q3 + (1.5 x IQR).
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4.4.8 Comparing HR variability measures from AcuPebble SA100 and the 

multi-channel polygraphy in the non-COPD cohort. 

Heart rate variability measures calculated from the multi-channel polygraphy 

recordings significantly varied from HR measures calculated from AcuPebble 

SA100 at the same resolution (0.5Hz), with very low intraclass correlation 

coefficients (ICC) and a high degree of bias in the Bland Altmann Plots. The 

exception to this was the mean HR which was similar for both devices (ICC 

0.918). This is shown in Table 4-12. Figure 4-27 illustrates the Bland-Altman 

plots for each of these variables, showing a high mean difference (and 

therefore bias) for all measurements except the mean HR where the mean 

difference and bias was 0.30 (-0.61 – 1.21) beats per minute.  

Table 4-12 HR variability measurements from AcuPebble SA100 and the 
overnight multi-channel polygraphy at the same resolution. 

Variability 

measure 

AcuPebble HR 

data 

Multi-channel 

polygraphy data 

ICC 

Mean HR (bpm) 64.95 

(60.66 – 69.84) 

65.19 

(60.67 – 70.86) 

0.918 

cSDNN (ms) 188.35 

(146.70 – 243.92) 

223.00 

(181.71 – 259.57) 

0.479 

SD1 (ms) 9.04 

(7.07 – 10.44) 

11.39 

(8.72 – 13.22) 

0.160 

SD2 (ms) 87.27 

(65.56 – 117.03) 

101.37 

(80.27 – 123.83) 

0.653 

SE 0.1892 

(0.1331 – 0.2309) 

0.6039 

(0.5158 – 0.6644) 

0.027 

As most of the data was non-parametric the median (IQR) has been shown 

the intraclass correlation coefficient (ICC) was calculated using a two-way 

mixed method with absolute agreement. 
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Figure 4-27 Bland-Altman plot comparing heart rate variability measured by AcuPebble SA100 vs. multi-channel polygraphy. 
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4.4.9 Acceptability of AcuPebble RE100 in the stable COPD population 

Usability feedback was obtained from 24/33 (73%) of the participants. The 

majority (16/24) found attaching the sensory very easy with no participant 

finding the sensor very difficult or difficult to attach. While many participants 

(14/24) found the sensor very easy to pair with the mobile phone application, 

3/24 (13%) found this difficult. Most participants (17/24) found the sensor 

comfortable to wear with 60% finding it more comfortable than a plaster. This 

is illustrated in Figure 4-28a and 4-28b. In the majority (20/24) the sensor 

stayed in place for the duration of the night, and only one participant 

experienced side effects of red skin over the site. General issues noted by 

participants included problems with charging the sensor and delay in 

uploading the data to the cloud. While some patients found the sensor 

uncomfortable and tedious for four weeks, several thanked us for ‘letting them 

take part’, found the study easy, well presented and straightforward.  
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Figure 4-28 Attachment and comfort of sensor 

Figure 4-28a: Ease of attaching the sensor and application. 

 

Figure 4-28b: Comfort level of the sensor 

 

  



 

288 
 

4.4.10 Acceptability of AcuPebble RE100 in a group of COPD patients 

undergoing an exacerbation 

Usability feedback was obtained from 8/18 participants. All participants found 

it at least moderately easy to put the sensor on and attach the app with 38% 

finding it very easy. 75% of participants found the sensor comfortable with only 

one participant finding it uncomfortable. However, it is worth noting that 4/18 

participants only managed one recording due to finding the sensor 

uncomfortable or the sensor falling off. None of these four filled out the 

usability questionnaire. Only one participant developed a red rash around the 

site of the device, but this disappeared through the day and the participant was 

able to carry on. There were four general comments provided by participants 

which are outlined below: 

“felt like I was choking, very uncomfortable” 

“excellent machine. I wished I had one” 

“not too good at technical things” 

“psychological.. having something on my neck scared me. The doctor 

was helpful and professional” 

The inpatient diaries provided to participants were incomplete with no reliable 

and usable data.  
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4.5 Discussion 

The feasibility of this study was tested using the ACCEPT model. (237) 

1) Sample size and participants 

a. 52% of eligible participants agreed to take part in the study 

b. Only one participant in the stable group used the device for the 

entire duration of the study (30 nights). Median (IQR) use was 

18 nights (10 – 26).  

c. There was a high attrition rate amongst the exacerbating group 

with admission data available for 78% of participants, discharge 

data for 61% participants, day five post discharge in 50% and 

only 17% using the device for at least 10 days post discharge.   

2) Wearable Technology 

a. More than 65% of participants in the stable group found the 

sensor easy to use and comfortable to wear.  

b. 75% of participants undergoing an exacerbation found the 

sensor comfortable to wear but importantly 22% only managed 

one nocturnal recording due to discomfort.  

c. Heart rate and airflow recordings had greater noise interference 

and artefact compared to the respiratory rate recordings. 

3) Outcomes 

a. There were significant differences in physiological signal 

variability measures between stable COPD participants and the 

exacerbating group. 
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b. HR variability measures derived from AcuPebble devices 

significantly differed from measures derived from the multi-

channel polygraphy. This may limit their reliability in 

distinguishing stable COPD patients from a non-COPD 

population. However, if the same device is used, trend 

differences, as opposed to actual values, can be used as a 

differentiator. Furthermore, MSE analysis, which is more robust 

and not impacted by resolution did suggest a difference. 

c. Multi-scale entropy (MSE) analysis of the heart rate time-series 

suggested that participants undergoing an exacerbation of 

COPD have a significantly lower sample entropy compared to 

the stable COPD group and non-COPD patients, regardless of 

scale. 

d. MSE analysis of the respiratory rate time-series suggested that 

participants undergoing an exacerbation of COPD have a 

significantly higher sample entropy compared to the stable group 

and non-COPD group regardless of scale. This difference is 

more apparent at larger scales. 

e. DFA analysis of airflow variability showed two-cross over points; 

and suggested that at intermediate scales, stable COPD 

participants had less anti-correlation compared to non-COPD 

participants.  

f. DFA analysis of airflow variability suggested that at longer 

scales, participants undergoing an exacerbation of COPD had a 
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significantly lower α3 value compared to the stable population 

and this was suggestive of random fluctuation.  

g. No significant differences in any variability measures were found 

for different phenotypes of stable COPD. 

h. There were limited significant correlations with any physiological 

signal variability measure and currently measured admission 

severity characteristics. 

i. The resolution of time-series measurements impact variability 

analysis and are an important consideration for future work. 
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4.5.1 Baseline characteristics 

Compared to the stable group, participants undergoing an exacerbation had 

no significant differences in age, gender, smoking history, and medical 

comorbidities. As expected, they had significantly worse lung function with a 

reduced FEV1, FVC and TLCO and a higher CAT symptom score. A greater 

proportion of exacerbating patients were in GOLD category E compared to the 

stable group. This can be explained by the fact that the greatest predictor of a 

future exacerbation is having an exacerbation history, (36) meaning 

participants admitted for a COPD exacerbation are likely to have had one 

previously, thus putting them in a higher GOLD COPD category. This also 

explained why fewer exacerbating participants were on a LAMA/LABA 

combination inhaler on admission compared to the stable group. Therefore, 

participants undergoing a COPD exacerbation, as expected, represented a 

more severe COPD cohort.  

Admitted patients were tachypnoeic, tachycardic and hypoxic with a median 

NEWS2 score of 5 (3 – 6) and had a median length of stay of 5 days (3 – 7). 

This is slightly lower than a previous large cross-sectional audit from 13 

European counties that found the median length of stay was 7 days (4 – 11). 

(238) This is probably because this study excluded patients requiring non-

invasive ventilation, who represent the sickest patients and are likely to be in 

hospital for a prolonged period of time, thus skewing the results.  
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4.5.2 Usability and acceptability of AcuPebble RE100  

4.5.2.1 Stable group 

Only one participant used the device for the entire duration of the study (30 

nights). However, most patients used it for 60% (median 18 nights (10 – 26)). 

One participant used it for only 2 nights. This participant had several issues 

with the mobile phone signal and upload of daily content and so returned the 

device early. Most participants used the device for at least 6 hours overnight 

(median 8.3 hours (6.8 – 9.8)), which is likely to have adequately captured the 

various stages of sleep. The HR recordings and airflow data from AcuPebble 

RE100 had greater noise interference / artefact than the RR recordings, 

leading to more aberrant and missing data. Therefore only 65% (338/519) of 

the 6-hour HR recordings and 66% (345/519) of the airflow recordings were 

adequate for analysis compared to 95% (492/519) of the 6-hour RR 

recordings. This suggests that if HR or airflow fluctuations are needed to 

create a future exacerbation prediction algorithm, a longer device recording 

period may be needed compared to RR, to account for potentially higher level 

of missing data.  

Given the limited data currently available on nocturnal physiological variability 

analysis, there is no gold standard duration of analysis recommended for 

COPD patients. Bland Altman plots comparing mean hourly to 6-hourly data 

analysis showed low mean differences and less bias for meanHR, SD1HR, 

SEHR, meanRR and SERR. The other measures were skewed with high bias. 

Some of this may be explained in part by the effect of thermoregulation. 

Thermoregulation is thought to affect long term fluctuations in heart rate 

variability and studies have shown that cooler temperatures are associated 
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with increased SDNN and SD2HR (markers of longer-term variability). (231, 

239, 240) This may mean that heart rate variability measures for the 1st hour 

of sleep are significantly different to the 6th hour of sleep, given our body 

temperature cools overnight, giving a skewed overall representation, that is 

different from the total 6-hour recording which in-corporates longer term 

fluctuations. Moreover, it is well recognised that longer term analysis allows a 

better representation of the overall response of a system. (231) Given this, I 

have established that a 6-hour analysis timeframe is likely to be more accurate 

than hourly measurements, and that this comparable across both HR and RR 

measures.  

Usability feedback from stable participants, found that the majority found the 

device comfortable, had minimal side effects and found attaching the sensor 

and app easy. As expected, some participants struggled with this and future 

work should focus on detailing these struggles, so that future versions of the 

wearable and application can be made simpler. There were some comments 

regarding charging the sensor, given the short battery life and data upload. 

Both these problems can be fixed in future iterations of the product.  

4.5.2.2 Exacerbating group 

Out of 23 consented participants undergoing an exacerbation, admission data 

was only available for 18 (78%) participants. Discharge data was available for 

11/18 (61%) participants. Three participants (17%) stopped using AcuPebble 

RE100 after the first night due to discomfort, while two didn’t use it the night 

prior to discharge. Day five post discharge data was available in 9/18 (50%) of 

participants, while three participants used the device for at least 10 days post-

discharge. This suggests a high attrition rate amongst our participants who 
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have been admitted with COPD. This is not dissimilar to a recent study, in 

which participants had to wear a vest-like wearable device post COPD 

exacerbation for six-weeks and 29/50 (58%) completed the follow-up period. 

(241) 

However, this is lower than studies investigating pulmonary rehabilitation (PR) 

and self-management post COPD exacerbation, where a systematic review of 

43 studies found that the drop-out rate was less than 30% for 93% of the 

included studies. (242) This difference is likely to be explained by the fact that 

wearable technology adoption amongst older adults is still low. (243, 244) 

Furthermore, PR and self-management strategies have been around for 

considerably longer with greater publicity, thus perhaps participants are more 

likely to engage. Therefore, further work needs to be done, in motivating older 

participants to use wearables for a prolonged period. This is important as 

future devices that may be used to predict an upcoming exacerbation will need 

to be used for a long duration. It is likely that for this strategy to work, 

partnerships with respected lung charities such Asthma and Lung UK will need 

to be made to help publicise the benefits of future wearables.  

Usability feedback from the device was completed by 8/18 (44%). All 

participants found the device and app moderately easy with 75% of 

participants finding the actual sensor comfortable. However, 4/18 participants 

(22%) only managed one recording due to finding the sensor uncomfortable 

or falling off due to increased perspiration secondary to being unwell.  
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4.5.3 Heart rate variability analysis 

The heart rate (HR) and rhythm are continuously and dynamically regulated 

by the autonomic nervous system (ANS). The parasympathetic nervous 

system (PNS) slows the HR down almost immediately and thus regulates the 

HR on a beat-by-beat basis, accounting for the short-term variability. The 

sympathetic nervous system (SNS) releases catecholamines and increases 

the HR, with a slower onset, accounting for longer-term variability. It is 

important to note that the PNS and SNS do not merely have opposite effects 

but a complex interplay with often overlapping and different time frequencies 

of action. (245) Moreover, the ANS is not the only regulatory mechanism of 

heart rate variability with thermoregulation, chemoreceptors and the circadian 

rhythm all playing a role. (231) This complex interplay can be somewhat 

captured by analysing different measures of HR variability and complexity.  

Heart rate variability is defined as the fluctuation in the interval between 

successive heartbeats. (231) It thereby follows that the gold standard 

measurement of heart rate variability is through an ECG recording that can 

capture each successive R-R interval. However, for prolonged recordings, this 

is cumbersome for patients. The R-R interval data for this study was derived 

from the pulse rate (integer HR) and therefore may be less accurate than direct 

ECG measurements. 

4.5.3.1 Heart rate variability between stable COPD participants and the non-

COPD group. 

Our data showed that the mean HR calculated with AcuPebble RE100 was 

significantly higher in patients with stable COPD compared to the historical 

non-COPD cohort (71.04 (64.55 – 75.10) vs. 65.48 (60.83 – 70.03), p = 0.002). 
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For all other variability measures (cSDNN, SD1HR, SD2HR and SEHR), there 

was no significant difference found between stable COPD participants and 

non-COPD participants.  

However, when we investigated the non-COPD participant data comparing 

AcuPebble SA100 and the pulse oximetry data from the multi-channel 

polygraphy, at the same resolution (0.5Hz), there was poor correlation in the 

variability measurements despite good correlation for the mean HR from each 

device (ICC 0.918). This suggests, that AcuPebble SA100 may not accurately 

reflect the underlying variability around the mean value. This is likely to be due 

to how each device measures the pulse rate. AcuPebble SA100 and RE100 

are both acoustic devices, placed at the neck, which detect the first and 

second heart sounds which are then processed to get the average heart rate 

(measured every 2 seconds). Moreover, there are multiple layers of filters to 

remove artefact (e.g., noise and breathing sounds). However, hidden in this 

may be the subtle variation (appearing as noise) around the mean HR which 

is missed or mistaken to be artefact. This leads to increased regularity, less 

randomness and thus decreased supposed variability and complexity. This 

may explain why the variability measures derived from non-COPD AcuPebble 

SA100 recordings were lower than those derived from the polygraphy (Table 

4-12). The multi-channel polygraphy pulse oximeter identifies the pulse via 

photoplethysmography (PPG) which is a well-established technique and so 

perhaps more accurate. However, a recent review showed that while pulse 

rate variability (measured via PPG) has been largely used in the literature as 

a validated surrogate for heart rate variability (measured by ECG), the 
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relationship is still not completely clear, especially in an aged or unhealthy 

population. (246)  

This work has also shown that varying resolution of the heart rate time series 

can impact certain variability measurements. The pulse oximetry HR 

recordings had an initial resolution recording of 3Hz, meaning three HR 

recordings were noted every second. However, the mean HR for this patient 

population was just over 60 beats per minute, giving an R-R interval of roughly 

1s. Thus, changes in R-R interval can only really be appreciated in recordings 

that have a resolution of 1Hz or less. At a resolution of 3Hz, there will be 

several repeated HR measurements (as the three samples for the first second 

will have the same HR and same R-R interval) meaning a false sense of 

periodicity will ensue. This will give the impression of increased regularity and 

less randomness. When the resolution is decreased (by averaging adjacent 

values), a more realistic impression of the ‘true’ HR and variability can be seen. 

This idea is illustrated in Figure 4-29.  
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Figure 4-29 The impact of resolution on variability measurements  

 1st second 2nd second 3rd second 4th second 5th second 
 

3Hz 60 60 60 66 66 66 64 64 64 68 68 68 70 70 70 

 
 
Repeated measures = decreased short-term variability and decreased 
entropy 
 

1Hz  60  
 
 

 66   64   68   70  

0.5Hz    63      66      

 

Our data showed that for the mean HR, cSDNN and SD2HR decreasing the 

resolution had little bearing on the actual values, while at decreasing 

resolution, the values for SD1HR and SEHR increased. This can be explained 

by the fact the cSDNN is a global measure of variability and SD2HR a measure 

of longer-term variability, thus less affected by short-term periodicity. However, 

SD1HR is representative of short-term (beat-to-beat) variability, therefore, 

increased regularity (at higher resolution) will give the impression of less 

variability. Decreasing the resolution and getting a more accurate data picture 

will show the increased short-term variability that truly exists. Sample entropy 

is a measure of complexity and determines the degree of randomness vs. 

periodicity. Therefore, falsely having repeated measures will decrease the 

entropy.   

Multi-scale entropy (MSE) analysis of heart rate recordings from AcuPebble 

devices increased in both stable COPD patients and non-COPD patients with 

increasing scale, confirming that the HR time-series recorded was a complex 

physiological signal. Moreover, MSE analysis showed a significant reduction 

in heart rate sample entropy, irrespective of scale, in the stable COPD 
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participants compared to non-COPD, (Fgroup (1,19) = 5.61; p = 0.018). 

Multiscale entropy can further define the richness / complexity of a time-series 

by taking into account the multiple time scales that exist in physiological 

systems. By course graining / zooming out from the data, you can look at the 

complexity at varying scales, a concept that is otherwise ignored by 

conventional entropy calculations. (247, 248) Previous work by Norris et al 

looked at HR MSE in 3154 patients in intensive care. The HR was measured 

by conventional hospital monitors giving integer (pulse rate) values at varying 

frequencies ranging from 0.25Hz (4 samples / second) to 1hz. They found that 

MSE was robust to variations in data resolution, density and missing data. 

(249) This suggests that AcuPebble RE100 derived HR MSE is likely to be 

accurate.  

Previous work investigating heart rate variability measures in the COPD 

population has largely focused on time-domain and power measures. Several 

studies have shown that daytime SDNN (with recordings of varying durations) 

is significantly reduced in COPD patients compared to healthy controls. (250-

254) Moreover, a recent meta-analysis of seven studies showed a 

standardised mean difference (95%CI) of 1.26 (0.63 – 1.89) between patients 

with COPD and age and/or sex-matched controls, with lower SDNN values 

consistently reported in patients with COPD. However, all of these studies 

utilised 24-hour recordings. (255) This systematic review identified only one 

study from 22 that looked at nocturnal HR, which showed a median SDNN of 

83ms (65 – 99) in the healthy cohort vs. 80ms (66 – 95ms) in the COPD 

population. (256) This is interesting as it perhaps suggests that while daytime 

or 24-hour variability is decreased in the COPD population, isolated nocturnal 
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variability may not be. Although given the paucity of nocturnal studies, further 

work in this field is necessary. Overall, lower values of SDNN confirms that 

COPD negatively impacts the ANS, reducing heart rate variability and 

increasing cardiovascular burden. (231) 

HR is known to have a strong inverse non-linear relationship with SDNN and 

this should be corrected for (cSDNN). To our knowledge, no prior study has 

looked at this in the COPD population. No prior studies have looked at the 

Poincare indices (SD1 and SD2) in the COPD population either. Two studies 

have looked at daytime sample entropy values (based on 10minute HR 

analysis) but had no comparator arm, and did not specify the values of m and 

r used in their calculation, making any conclusion difficult. (257) (258) As 

previously explained, the variability measures derived from AcuPebble RE100 

in this study are likely to be somewhat biased by the measuring technique that 

AcuPebble RE100 uses, and therefore comparison to existing literature is 

difficult.  

However, it is likely that MSE values can be used and suggest that the stable 

COPD population has decreased multiscale entropy values compared to a 

non-COPD population, suggesting decreased complexity of the heart rate 

signal. Decreased complexity of the heart rate and decreased variability is 

associated with increased systemic inflammation, increased cytokine 

production, increased cardiovascular mortality and is a negative predictor of 

outcomes. (259) 
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4.5.3.2 Heart rate variability between stable COPD participants and those 

undergoing an exacerbation 

Many HR recordings from the exacerbating group had significant artefact 

meaning only 50% of valid admission recordings could be compared with the 

stable COPD population. As previously described above it is probable that 

while AcuPebble RE100 measures the mean HR accurately, other calculated 

HR variability measures are less reliable with evidence of bias, given the 

multiple layers of filters applied to the recorded sound. Nonetheless, from our 

small sample size, we found that cSDNN, SD1HR and SD2HR were 

significantly higher in participants undergoing a COPD exacerbation compared 

to the stable population, while sample entropy of HR was significantly lower in 

the exacerbating group (median (IQR) 0.1258 (0.1044 – 0.1568) vs. 0.1607 

(0.1355 – 0.1981), p = 0.015). The mean HR showed no significant difference. 

While we have to be cautious in interpreting these findings, given the bias 

known to exist with AcuPebble RE100, our results suggest that while 

participants undergoing an exacerbation have increased HR variability, the 

complexity of the signal is reduced. These findings are similar to previously 

published data by Kabbach et al (2017), who used 10-minute daytime 

recordings comparing COPD exacerbators to stable participants. They also 

found increased HR variability measures (increased SDNN, SD1 and SD2) in 

the exacerbating group, but decreased entropy. (260) Another study also 

found similar results using spectral analyses, assessing the HR variability 

using frequency domains, showing increased variability in the exacerbating 

population. (261) 
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Prior work has shown that patients with stable COPD have autonomic nervous 

system (ANS) dysfunction, leading to reduced HR variability. (262) However, 

during an exacerbation patients have increased ANS activity, resulting in 

increased HR variability, in keeping with the findings from this study. (261) This 

study has also demonstrated that SD1HR was significantly increased in the 

exacerbating population compared to stable patients, suggestive of increased 

short-term variability. This is likely to be a combination of increased respiratory 

sinus arrhythmia and possibly increased parasympathetic nervous system 

(PNS) activation. In humans, airway tone is thought to be mainly vagally 

controlled, (263) and during an exacerbation, there is increased 

bronchoconstriction, airway narrowing and increased vagal activity in the 

airway. This may translate into increased PNS activity on the HR and thus 

increased variability. (260) Respiratory sinus arrhythmia is where the heart rate 

variability is altered by respiration, (shortened during inspiration and prolonged 

during expiration). A stressed respiratory system may lead to increased short-

term variability of the HR in response to the RR, leading to improved gas 

exchange. (264) We also established an increase in cSDNN, a global measure 

of ANS activity and SD2HR, a measure of longer-term variability that 

incorporates PNS and the sympathetic nervous system (SNS). Patients with 

COPD exacerbation are also likely to have increased SNS activity, in an 

increasingly stressed system. This will lead to increased HR variability 

compared to the stable state. The exact underlying mechanisms of this ANS 

imbalance are not yet completely understood. It is also important to note, that 

while in states of stability, a higher heart rate variability is linked to a good 

overall prognosis, this is unlikely to be the case in this situation, whereby 
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increased variability, relates to a stretched and heightened ANS with worse 

clinical outcomes. (260) Finally, it is important to consider the impact of the 

nebulised medication that forms part of standard treatment in patients 

undergoing an exacerbation of COPD. Prior studies in stable asthmatic 

patients have shown conflicting results, with some showing increased 

sympathetic drive, (265) while others showing no change in heart rate 

variability. (266) However, to my knowledge, no study has actively investigated 

the impact of nebulisers on heart rate variability during an acute exacerbation 

of COPD. 

Finally, while this discussion has mainly focused on ANS activity, HR variability 

is affected by a wide range of different parameters including thermoregulation, 

chemoreceptors and the circadian rhythm which may also play a role. 

Moreover, environmental factors, such as stress of being admitted to hospital, 

bed situation and capacity, and additional medications such as nebulisers, are 

likely to also play a role.  

Sample entropy of HR appears to be significantly lower in patients undergoing 

an exacerbation compared to stable patients. These results remain true during 

multi-scale analysis (MSE) of the heart rate recordings, where there was a 

significant reduction in HR MSE in the exacerbating group irrespective of 

scale. As previously discussed MSE is more robust to missing data and 

therefore is likely to be accurate, even allowing for the limitations of AcuPebble 

RE100  that have previously been discussed. Therefore, it is likely that patients 

undergoing a COPD exacerbation have decreased complexity in their HR 

signal. It is worth remembering that complexity is not the same as variability. 

For example, a sine wave while variable is not complex. Our data is similar to 
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Kabbach et al (mean (SD) exacerbating SEHR 1.4 ± 0.32 vs. mean (SD) stable 

SEHR 1.7 ± 0.3, p = 0.007). (260) While our sample entropy values were much 

lower, a couple of key differences need to be noted. Firstly, their data was 

conducted over a shorter time duration (10 minutes) and in the day, compared 

to our nocturnal data over six hours. Secondly, they did not specify the values 

of m and r used in their calculation and therefore direct comparisons cannot 

be made. Nonetheless, their data represents a similar trend to the data in this 

study. No prior data has conducted MSE analysis in either a stable or an 

exacerbating COPD patient population, making this data novel.  

Lower values of sample entropy suggest a greater degree of regularity and 

less complexity. Previous work has shown decreased sample entropy in 

patients with sepsis, (267) cirrhosis (268) and that HR MSE is an independent 

predictor of death in patients hospitalised for trauma. (269) A reduction in 

entropy potentially describes reduced system coupling, increased system 

isolation, which in turn implies a system that is less adaptable to change to 

added stressors, leading to poorer prognosis. (270) Overall these studies 

suggest that lower sample entropy and increased system disengagement, are 

markers of poor prognosis. Moreover, participants undergoing a COPD 

exacerbation would have a stressed respiratory system and therefore usually 

strong coupling with the cardiovascular system, (271) meaning the sample 

entropy in an engaged system should increase to account for this stress. 

However, we did not see this in our population.  

Of note, no associations between any HR measure were found with any of the 

inpatient admission severity parameters. This is possibly to be due to the small 

sample size. However, could be due to confounding factors or a genuine lack 
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of an association or simply that HR measures are poor biomarkers for this 

purpose.  

While no differences were found between HR measures at admission and 

discharge, there was a trend towards a reduction in HR variability (cSDNN, 

SD1HR and SD2HR) at day five post discharge, while SEHR increased. While 

the numbers were too small to conduct meaningful statistical tests, this may 

suggest that recovery from an exacerbation, ‘corrects’ HR variability measures 

back toward baseline stable COPD levels. This was also seen in HR MSE 

which increased compared to admission/discharge levels. These trends were 

also seen in the three patients where prolonged follow up data was available.  

In summary, it is highly probable that heart rate variability and complexity 

measures differ between stable and exacerbating patients. Longer future 

studies are needed to identify the exact point of change. It remains to be seen 

whether this point occurs prior to perceived symptom onset and whether it can 

alter management. This may enable us to identify an objective measure of 

exacerbation commencement, prior to symptoms, allowing earlier treatment 

and reduced sequelae. 

Moreover, this work has highlighted the need for future wearable devices to 

take into consideration the importance of variability measures, rather than 

simply focussing on the mean value as this has important clinical implications. 

Therefore, the design and recording nature of future wearables needs further 

thought.  
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4.5.4 Respiratory rate variability analysis 

The respiratory rate is affected by a myriad of different signalling pathways 

including chemoreceptors, mechanoreceptors, locomotion receptors from 

muscle and joints, the cerebral cortex and the paralimbic system. The 

breathing pattern can also, to an extent, be voluntarily controlled and is also 

affected by other factors such as the afferent input from the vagus nerve. It is 

an integrative process in which the characteristics of current breaths (both tidal 

volume and respiratory rate) are correlated with previous breaths both in the 

short term and longer term. This variation is thought to be composed of both 

random and non-random parts. Short term correlations may reflect automatic 

or metabolic influences on the respiratory control centre in the medulla. The 

regulation of breathing variability is important, as a rigid system that has lost 

variability, means the system cannot adequately respond to stimuli, but a 

heightened system may lead to overreactions and loss of control. (272-275) 

To my knowledge, only one prior study (1983) has looked at breathing 

variability (using coefficient of variation) in patients with COPD and found that 

it was decreased compared to healthy controls. This study was performed 

during the day using respiratory inductance plethysmography for 45 minutes 

in 12 patients with stable COPD and 8 age-and sex matched controls. 

Coefficients of variation were significantly less for inspiratory time and volume 

in COPD compared to the healthy controls. (276) 

Given the voluntary impact on respiratory rate, it is probable that respiratory 

rate variability differs from awake and asleep states. In health, respiratory rate 

variability decreases during non-rapid eye movement (non-REM) sleep, being 

lowest in N3 (deep sleep). (277) Furthermore, breath-to-breath components 
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display short-term correlations (longer breath followed by longer breath and 

vice versa) in both REM and non-REM sleep; but only display long-term 

correlations during the transition from non-REM to REM sleep, likely due to 

the cortical influence in REM sleep. (274)  The variability of respiratory rate is 

increased in REM sleep, compared to non-REM sleep but is not as prominent 

as wakefulness. (277) The decreased variability seen in non-REM sleep is the 

result of a prominence of short-term autoregression as well as period 

oscillations. The autoregression is thought to be caused by the central 

respiratory pattern generator, whereas period oscillations are likely to be due 

to the chemical / metabolic feedback systems. (275) 

Overall, respiratory variability is complex, not yet fully understood and 

impacted by wakefulness and sleep. While there is some emerging data on 

respiratory rate variability measures, no prior studies have investigated the 

Poincare indices (SD1, SD2) and sample entropy of nocturnal respiratory rate 

in health or disease. Therefore, comparison of my data with pre-existing 

literature is not fully possible for these measures.  

4.5.4.1 Respiratory rate variability between stable COPD participants and the 

non-COPD group. 

The mean respiratory rate for our COPD participants was 17.32 ± 3.20 

breaths/minute. This may indicate participants have an increased 

cardiovascular risk as suggested by Baumert et al (2019). They looked at 

overnight RR in 2686 men and 406 women and found that post adjustment for 

age, BMI, smoking, asthma, COPD, OSA, patients with a RR ≥ 16 breaths/min 

had a significantly higher risk of cardiovascular disease (HR = 1.57, p=0.005). 

(278) As the data was not normally distributed, non-parametric tests were 
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conducted to compare to the non-COPD group. COPD participants had a 

significantly higher meanRR compared to non-COPD group (median meanRR 

16.86 (IQR 15.13 – 18.87) vs. 15.64 (IQR 14.26 – 17.00), p = 0.02). 

No significant associations were found between any respiratory rate variability 

measure and COPD disease severity / phenotype. While linear regression 

suggested a correlation between FEV1 and mean RR and SERR, this 

correlation was no longer significant following a step wise linear regression 

analysis correcting for age, gender and BMI. This suggests that different 

participants with different severities of airflow obstruction have no difference 

in respiratory rate variability. This not unsurprising, as most participants has 

moderate-severe disease, with the extremes of disease severity not 

adequately represented in this cohort. Furthermore, the study is likely to be 

underpowered given the small sample size to understand the true impact at 

subgroup levels. The lack of difference in symptom severity and respiratory 

rate measures is also unsurprising given the subjective nature of these 

questions and the bias attributed to simply asking patients these questions as 

part of the study. Moreover, COPD is a heterogenous disease with multiple 

phenotypes, no one-size fits all, and a poor correlation between symptoms 

and FEV1. (279) Therefore, it remains unlikely that detailed analysis of just 

one physiological parameter can differentiate this disease process between 

different individuals.   

Apart from the mean RR, no other differences were found between any of the 

other respiratory rate variability measures (SDBB, SD1RR, SD2RR and 

SERR) between stable COPD participants and the non-COPD group. While 

the measures were numerically higher in the COPD population, none reached 
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statistical significance. Unlike the HR measures, this is unlikely to be due to 

measuring artefact or inaccuracy, as the device was positioned over the 

trachea and the sounds would have had less noise interference compared to 

picking up the more distant S1 and S2. Furthermore, the data capture was 

much more accurate for the RR time series.  

There could be a few reasons for the lack of differences found. Firstly, the 

sample size in both cohorts was relatively small. Secondly, it is possible that 

the data capture for the respiratory rate was of too high a resolution. Similar to 

the HR measures above, the mean RR was roughly 16 breaths per minute. 

This suggests that the average inter-breath interval is nearly 4 seconds. 

Therefore, if AcuPebble RE100 captures data every 2 seconds, there will be 

a number of repeated RR measurements, which do not reflect the true RR 

variation. This is similar to the concept described in Figure 6-15 for HR. This 

is likely the reason MSE analysis of the RR led to significant results, as this 

employs a coarse grain / zooming out phenomenon. 

Multi-scale entropy (MSE) analysis of RR increased in both stable COPD 

patients and non-COPD group with increasing scale, confirming that the RR 

time-series recorded was a complex physiological signal, with structural 

richness. Moreover, MSE analysis showed a significant (Fgroup (1,19) = 39.89, 

p<0.001, Fscale(9,19) = 92.13, p<0.001) increase in the sample entropy values 

in the stable COPD population compared to the non-COPD group. This 

difference seemed to be greater at higher scales showing that the increased 

signal complexity seems to be more apparent when longer-term time scales 

are considered. This is useful for clinical practice, as it suggests that wearables 
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with lower resolution data capture (e.g., one sample every 10 or 20 seconds) 

provides valuable information. 

To the best of my knowledge this is novel data and not described in the 

literature. Through the MSE analysis, the data suggests that participants with 

stable COPD have a significantly increased sample entropy compared to 

healthy controls at night. This suggests a respiratory rate that has increased 

variability and complexity. To understand possible reasons for this, it is 

necessary to explore changes in sleep patterns in patients with COPD 

compared to health. Several changes have been noted to occur in patients 

with COPD during sleep: 

1. Patients can often have prolonged oxygen desaturation during REM 

sleep which have a long duration (of several minutes) and subsequent 

resolution. (280) The prolonged oxygen desaturation will result in a 

more engaged or ‘panicked’ respiratory system compared to health. 

This will lead to increased signal coupling, as the respiratory system 

tries to correct the hypoxia. This in turn leads to a more complex 

system and this increased entropy. (270)  

2. People with COPD have a disturbed sleep architecture with frequent 

arousals and reduced time spent in stage N3 (deep sleep). (281) As 

described above, this will lead to increased respiratory rate variability 

and decreased periodicity, with a reduction in short-term correlations 

that are present in non-REM sleep. This in turn will increase the 

complexity and sample entropy of the respiratory rate. (275)  

3. In COPD, during non-REM sleep the basal metabolic rate (responsible 

for the periodicity / regularity) and the central ventilatory drive 
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(responsible for short-term autoregression) are decreased. (282) This 

in turn will lead to increased variability and entropy.  

4. During sleep there is inspiratory muscle hypotonia leading to a reliance 

on the diaphragm to maintain ventilation. However, in COPD the 

diaphragm is inefficient due to hyperinflation, and this is accompanied 

by falls in minute ventilation. (281) This overall, leads to a system that 

must be more engaged, with likely increased respiratory rate coupling 

to maintain adequate ventilation. A more engaged system will lead to 

increased variability / complexity and higher entropy.  

In summary, it is possible that patients with stable COPD have increased 

nocturnal respiratory rate variability and complexity that can be explained by 

a more ‘switched on’ or engaged or heightened respiratory system. This may 

in turn lead to a loss of control or over-reactions of an already stretched 

system, leading to an aberrant loop gain pathway. Only one prior study has 

looked at daytime respiratory rate variability in COPD patients and found it to 

be reduced, but this study only included eight patients and used the coefficient 

of variation analysis only. (276) A previous study using daytime respiratory rate 

measurements also found that the respiratory rate variability was reduced in 

patients with chronic asthma. (283) Clearly further work in this field is 

necessary to better understand the differences in respiratory rate variability 

both during the day and at night.  
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4.5.4.2 Respiratory rate variability between stable COPD participants and 

those undergoing an exacerbation 

No previous study has investigated respiratory rate variability in a patient 

undergoing a COPD exacerbation, making these findings novel. 

The mean RR between groups showed no significant differences. Respiratory 

rate variability measures (SDBB, SD1RR and SD2RR) were significantly 

higher in patients undergoing an exacerbation compared to the stable 

population. Sample entropy of RR was numerically higher in patients 

undergoing an exacerbation but did not reach statistical significance. 

However, MSE analysis of RR showed that sample entropy was significantly 

higher [Fgroup (1,20) = 40.703, p<0.001, Fscale(9,20) = 51.434, p<0.001]  in the 

exacerbating group compared to the stable group, irrespective of scale. This 

difference was more apparent at higher scales, suggesting that the increased 

signal complexity becomes more apparent when longer-term time-scales are 

considered. This is very useful for clinical practice, as it suggests that 

wearables with lower resolution (e.g., one sample every 10 or 20 seconds) 

provide more valuable information than higher resolution data.  

This data suggests that patients undergoing a COPD exacerbation have 

increased variability and complexity in their RR signal compared to the stable 

population. There are several possible reasons for this. First, while both 

recordings were nocturnal, there was no sleep diary, and therefore the 

hospitalised patients may not have been asleep during the analysis time. This 

would bias the results, as an awake state has increased RR variability. 

Second, hospitalised patients are known to have poorer sleep quality with 

frequent night-time intrusions, (284) meaning that they may spend less time in 
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non-REM deep sleep, meaning that RR variability increases. This would imply 

that the changes seen, are due to poor sleep, rather than representing true 

underlying physiological changes in the actual RR. However, a recent cohort 

study on hospitalised COPD patients, found that while COPD patients 

averaged 34 fewer minutes of nightly sleep, their sleep quality (assessed using 

the Karolinska Sleep Diary) was no different. (285) Therefore, while it is 

probable that hospitalised patients sleep architecture differs, it is unlikely to 

account fully for the increased variability seen. Third, patients undergoing an 

exacerbation were hypoxic, leading to a metabolic imbalance, and this is likely 

to increase respiratory rate coupling and engagement, leading to increased 

variability and complexity. Fourth, during a COPD exacerbation, there is 

greater skeletal muscle dysfunction (286) and increased hyperinflation, (287) 

meaning reduced efficacy of both the inspiratory muscles and the diaphragm. 

This in turns means a fall in minute ventilation and leads to increased 

engagement of the respiratory system with increased complexity. Finally, 

COPD patients undergoing an exacerbation will be breathing in a state of 

dynamic hyperinflation, resulting in increased activity of the stretch-sensitive 

afferent fibres, and will have increased systemic inflammation leading to 

activation of the bronchopulmonary C fibres. Both are vagal afferent nerves, 

and dysregulation of these nerves can lead to increased smooth muscle tone, 

mucous secretion and cough. (288) Ultimately this will lead to a respiratory 

system that is heightened and more complex given the large number of 

interactions occurring at multiple scales. This will lead to increased variability 

and complexity of the respiratory system, which is under active stress.  
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No significant associations between any RR measure were found with any of 

the inpatient admission severity parameters. This is likely to be due to the 

small sample size, aforementioned hospital environment and/or medications.  

Only a small number of patients could be compared with regards to admission 

vs. discharge vs. post discharge. Therefore, these results need to be 

interpreted with caution given the small sample size.  

While no differences were found between RR measures at admission and 

discharge, there was a trend towards decreasing variability and complexity at 

five days post discharge. No apparent change in mean RR could be seen. 

MSE analysis of RR showed that at lower scales, there was no apparent 

difference in sample entropy comparing admission, discharge, and five days 

post. This difference was more apparent at higher scales, once again 

suggesting future wearables should be of lower resolution to capture these 

differences.  This may suggest that during the recovery phase of a COPD 

exacerbation, variability decreases. Therefore, it is probable that in the lead 

up to an exacerbation, variability is likely to rise and finding this point is vital in 

developing algorithms to objectively detect an exacerbation. Interestingly, in 

the 3 patients followed for a longer duration, there seemed to be minimal 

differences in SDBB and SD2RR, while SERR significantly decreased (R2 = 

0.297, p<0.001).   

In summary, during an exacerbation, the stress placed on the respiratory 

system leads to a more engaged and coupled system that is actively dealing 

with an acute state. This leads to increased respiratory rate variability and 

complexity.  
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4.5.5 Airflow variability analysis 

There is limited prior data using DFA analysis on airflow data. In brief, DFA 

quantifies long-range power law correlations of a non-stationary time series, 

providing a quantitative parameter (alpha). A power law correlation is a 

functional relationship between two quantities, whereby a relative change in 

one, quantity leads to a relative change in another. Long-range correlations 

simply indicate that for example a large inter-beat HR interval or a higher 

airflow rate is more likely to be followed by a large interval or flow rate and vice 

versa. It is important to note that in physiological time-series the scaling 

exponent (alpha) is not always constant (i.e., independent of the actual scale) 

and therefore cross-overs exist. This can mean the scaling component differs 

for different ranges of scales. (234, 289) (290) The values of the scaling 

exponent (alpha) has various meanings: (234) 

• α = 0.5 is suggestive of white noise and completely random fluctuation, 

and thereby a signal that has no correlations. 

• 0.5 > α < 1.0 indicates positive autocorrelations and persistent long-

range power-law correlations. 

• 0 < α < 0.5 indicates anti-correlation whereby large and small values of 

the time series are likely to alternate. 

• α = 1 corresponds to 1/f noise or pink noise. This is whereby the signal 

has a frequency spectrum whereby the power / count / intensity is 

inversely proportional to the frequency of the signal. Any physical signal 

can be decomposed into many discrete frequencies (a spectrum). With 

pink noise, lower frequencies have a higher count compared to higher 

frequencies. (291) 
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• α ≥ 1 correlations exist but are not of a power-law form. 

• α = 1.5 indicates Brown noise. The spectral density is inversely 

proportion to f2, meaning that there is a higher count (more than pink 

noise) at lower frequencies. The change in the signal from one moment 

to the next is still random, but unlike white noise, there is greater energy 

/ intensity at lower frequencies.  

Finally, the alpha value can also be viewed as an indicator that describes the 

‘roughness’ of a time-series, with higher values representing a smoother time 

series. (234)  

DFA analysis showed that the pattern of airflow variability is fractal-like. This 

is similar to previous work by Saatci et al (2020) but they used a slightly 

different measure (multifractal DFA). (292) For the first time I have 

demonstrated that nocturnal airflow variability in non-COPD patients, stable 

COPD patients and those undergoing an exacerbation, have two cross-over 

points with three exponents (α1, α2 and α3). This differs from a HR and oxygen 

saturation time series, where prior work has shown only one cross over point. 

(234) (247) 

4.5.5.1 Airflow variability between stable COPD participants and the non-

COPD group. 

This data has shown that on very short scales (corresponding to roughly 3 

seconds) the fluctuation of airflow is stable and smooth with a high α1 value. 

While participants with COPD had statistically significantly lower α1 compared 

to the non-COPD cohort (median 1.66 (1.63 – 1.67) vs. 1.68 (1.66 – 1.68), p 

<0.001), it is unlikely that this is clinically relevant.  
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At an intermediate scale (corresponding to roughly 30 seconds), participants 

with COPD had a significantly higher α2 value compared to the non-COPD 

cohort (median 0.29 (0.26 – 0.31) vs. 0.24 (0.21 – 0.27), p< 0.001). However, 

both values were less than 0.5, suggestive of anti-correlation at these scales. 

This means that a higher rate of airflow is followed by a lower rate of airflow. 

This seemed to be more prominent in the non-COPD cohort (i.e., a lower 

alpha2 value). This may be explained by the concept of memory in time-series. 

This is where past information of the time-series influences its present state. 

It has previously been shown that healthy subjects have less memory than in 

certain disease states, such as heart failure. (293) In this example, each 

heartbeat keeps a longer memory of previous heart beats. This can be a 

disadvantage to respond to a changing environment, delaying necessary 

change. Participants with uncontrolled asthma have also been shown to have 

a longer memory than healthy controls. (293) Therefore, in our sample, COPD 

patients may have a longer memory, meaning less anti-correlation, as they are 

‘holding’ on to the increased / decreased airflow for longer and thus changing 

slower.  

Finally, at larger scales (over 30 seconds), there was no significant difference 

between COPD participants and the non-COPD cohort (median 0.69 (0.65 – 

0.66) vs. 0.72 (0.66 – 0.78). The alpha 3 values were above 0.5 but less than 

1, meaning at larger scales airflow variability demonstrated long-range power 

law dynamics and was positively autocorrelated.  

In summary the DFA analysis suggests that stable COPD patients have a 

longer memory compared to the non-COPD cohort. This means that they are 

not able to vary their breathing pattern as quickly as non-COPD patients, 
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meaning that they are 'holding’ on to the past and thus have less adaptability 

and flexibility to additional stressors.  

4.5.5.2 Airflow variability between stable COPD participants and those 

undergoing an exacerbation 

For short-term scales (corresponding to roughly 3 seconds) the fluctuation of 

airflow in both groups was smooth with a high α1 value above Brown noise. 

While the exacerbating group had a significantly lower α1 value, it is unlikely 

that this is clinically relevant. 

At an intermediate scale (corresponding to roughly 30 seconds), there was no 

difference in the α2 value between both groups. Both values were less than 

0.5, suggestive of anti-correlation, whereby a higher rate of airflow is followed 

by a lower rate at this scale. Both values were higher than the non-COPD 

group, suggesting once again, that patients undergoing a COPD exacerbation 

are likely to have increased system memory. This means that they are slower 

to ‘alternate’ their airflow rates that a healthy individual as they are ‘holding on’ 

to the previous airflow rate. This means they are less adaptable. This has 

previously been seen in asthmatics when studying respiratory rate. (293) 

At longer scales (above 30 seconds), exacerbators had a significantly lower 

α3 value compared to the stable population (median (IQR) 0.5000 (0.4676 – 

05578) vs. 0.6931 (0.6509 – 0.7931), p<0.001). This suggests that while stable 

COPD patients demonstrate long-range power law dynamics and positive 

autocorrelation at longer scales (whereby higher airflow rate is followed by 

higher and vice versa), the exacerbating population have an α3 of 0.5, which 

is suggestive of white noise and completely random fluctuation. This means at 
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longer scales there is no correlation in the airflow and the airflow pattern is 

completely random. COPD exacerbations have increased upper and lower 

airway inflammation as well as bronchoconstriction, oedema and increased 

mucous production. This can lead to expiratory flow limitation, narrow calibre 

airway and increased turbulence of flow. (287) This may explain why the 

airflow becomes more akin to white noise and becomes completely random. 

This is also compounded by nebulised therapy. Interestingly while most 

changes in COPD occur in the small airways, AcuPebble RE100 recording of 

the large airway still demonstrates random airflow.  

A prior study using DFA on daily isolated peak flow measurements, showed 

that higher alpha values were associated with increased exacerbation 

frequency. (233) However, a key and important difference in this study was 

using daily isolated peak flow measurements, rather than continuous 

measurements of airflow at very high resolution. Furthermore, this data had 

no cross over points in their data. Therefore, true comparison with this work is 

not possible.  

No differences were found in any alpha values at admission or discharge. 

However, five days post discharge, importantly alpha 2 decreased and alpha 

3 numerically increased. This suggests that during the recovery phase of an 

exacerbation, at intermediate scales, there is more anti-correlation (i.e., lower 

alpha 2 value), meaning less memory, and thus more adaptability. The 

increase in alpha 3 means, at longer term scales, airflow is becoming less 

random and more positively autocorrelated. Interestingly, these trends were 

not seen on longer term follow up of the three patients. This may be due to a 

small sample size, however, could also potentially imply that the airway 
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inflammation and obstruction may take longer to recover than symptom 

recovery. Currently the end of an exacerbation is defined as a return to pre-

exacerbation state, which will be largely subjective based on patients’ 

symptoms. (294) However, perhaps the airway inflammation lasts longer that 

symptom improvement, meaning alpha 3 will not increase for a considerable 

while longer. While this is all theoretical, it merits further investigation with 

longer term studies.  

4.5.5 Limitations 

There are several limitations to this work. Firstly, study participants used the 

AcuPebble RE100 device for a varying number of nights with a large range, 

with only one participant completing the 30-day period. This is likely to 

introduce bias in the results when comparing mean values from each 

participant. However, given all patients had stable disease, it is unlikely that 

would make a significant difference to the mean values. Second, there was a 

great deal of artefact from the HR and airflow recordings, due to the way 

measurements were recorded by the device leading to a high type 2 (beta) 

error. In terms of HR, this had little bearing on the mean values but impacted 

variability measurements. Therefore, future wearables need refinement in their 

filtering algorithms to achieve more accurate variability measurements. Third, 

we took the first 6-hours of recording, without knowing when participants fell 

asleep and must acknowledge that sleep times may differ, and so we may be 

comparing slightly different sleep stages. Although by using a 6-hour time 

window we will have accounted for both REM and non-REM sleep time. 

Fourth, participants did not have contemporaneous spirometry, largely due to 

the COVID-19 pandemic. Fifth, our non-COPD group was historical and not 
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age matched, meaning that comparisons that have been, need to be 

interpreted with a degree of caution. Furthermore, the non-COPD group 

sample, only had a one-night recording which could impact the results further. 

Sixth, while we used the median nocturnal time to use as the start point of our 

analysis for the exacerbating population, no sleep diaries were given to 

patients. Therefore, we may have captured some data while COPD 

exacerbators were awake. This could lead to some bias, as there is evidence 

to suggest HR and RR variability differs during sleep compared to 

wakefulness. Seventh the patients admitted to hospital may have started their 

actual exacerbation at different times, i.e., one participant may have presented 

on day 1-2 of their exacerbation, but another may have trialled management 

at home and been on day 5-6 of the exacerbation. In future studies, a 

retrospective symptom diary would be useful to pinpoint the exact start of their 

symptom onset. Lastly the overall sample size was small, and the study is 

likely to be underpowered. Eighth, our sample size was small to detect 

differences post discharge variability changes. Finally, the COPD diaries were 

not accurately completed by anyone, meaning a lack of available data to 

analyse. This could have been useful as subtle differences in symptoms may 

have been reflected in the various time-series.  

However, even with this small sample size, differences were observed in 

several parameters, and we have also shown that a study of this nature was 

feasible and possible. 

6.6.7 Conclusion 

In conclusion, I have used a novel wearable device to obtain signals from 

participants with both stable and exacerbating COPD over multiple successive 



 

323 
 

nights to gain insight into their HR, RR and airflow variability. The device 

proved easy to use and in the main acceptable to participants. The data 

demonstrated that a longer time duration of analysis yields more consistent 

results and ensures incorporation of both REM and non-REM sleep cycles. 

While the device was accurate for the mean HR and mean RR measurement, 

variability analysis is likely to be less reliable. For HR this is likely due to 

multiple filtering techniques that remove subtle variations in the data. For RR 

this is likely to be because the data resolution was too high and needs to be 

looked at in a ‘zoomed out’ fashion. 

Exacerbating patients had increased HR variability but decreased complexity; 

increased RR variability and complexity and on longer scales had random 

airflow with no correlations compared to the stable population. It is clear from 

this work, that differences exist between stable and exacerbating COPD 

patients, but these differences are only apparent when linear and non-linear 

analysis methodology is used. 

Future work needs to focus on identifying the point(s) at which variability 

measures change in a patients’ exacerbation journey, above day-today 

variations, and whether this can be picked up objectively prior to symptoms, 

such that treatment can be started earlier and thus avoid severe sequalae. 

Figure 4-30 summarises my work in stable and exacerbating patients and 

highlights areas of future work.  

We have assessed AcuPebble RE100 in participants with both stable and 

exacerbating COPD. It’s utility in other respiratory conditions such as OSA 

merits review. AcuPebble SA100 is a similar device, already validated for OSA 
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diagnosis and in the next chapter I reviewed whether it could be used as a 

monitoring tool in a group of OSA patients undergoing continuous positive 

airway pressure therapy.  
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Figure 4-30 The potential future of wearables and physiological variability analysis in detecting a COPD exacerbation. 

Adapted from (38) (40) 
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5. Chapter 5 – The use of a novel wearable medical 

device for remote monitoring of patients with 

obstructive sleep apnoea on continuous positive 

airway pressure therapy. 
 

5.1 Background 

Continuous positive airway pressure (CPAP) therapy is the globally accepted 

gold-standard treatment for obstructive sleep apnoea (OSA), virtually 

eliminating OSA (by normalising the AHI), improving quality of life, decreasing 

daytime sleepiness and probably reducing medical sequelae. (295) However, 

in some patients a high residual AHI (and therefore OSA) may still be present 

despite adequate treatment with CPAP. This patient population will suffer on-

going daytime somnolence, sleep apnoea symptoms and potentially ongoing 

cardiovascular risk. This will lead to a reduction in their concordance, due to 

perceived lack of benefit, which will increase their residual AHI further, creating 

a vicious cycle. Therefore, reliable monitoring of their CPAP and underlying 

AHI is necessary to optimise treatment. 

Ideally CPAP should be used for the entire duration of sleep, but this is not the 

case for a significant number of patients. Furthermore, while CPAP machines 

can detect the residual AHI, the effective AHI remains unknown. The effective 

AHI, a term introduced by Boyd et al and can be defined as the AHI measured 

over the entire duration of sleep and includes both time on and off CPAP 

therapy. In a small sample of patients (n=28), they found that in participants 
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who used CPAP for < 6hours/night, 63.5% of participants had an effective AHI 

in the moderate-severe category. (75) 

Currently CPAP monitoring in most centres in the UK is conducted via remote 

telemonitoring, whereby the CPAP machine inherently calculates nocturnal 

usage and the residual AHI (i.e., the patients’ AHI while using the machine). 

This is either available via a direct upload to a GDPR compliant cloud, or 

through a SD card which can be manually downloaded. While CPAP machines 

can store airflow and pressure data, the algorithms between different 

manufacturers vary. A review by the American Thoracic Society concluded 

that while the actual usage can be reliably determined from the machine 

algorithms, the actual residual AHI and data around mask leak is not easy to 

interpret. (74) Furthermore, some studies have found that this is especially the 

case in relation to detecting residual hypopnoeas. (296-298) Therefore a more 

accurate and simple system is needed to determine both usage and residual 

events, that is standardised, reliable, and independent of machine 

manufacturer.  

Overnight oximetry recordings have previous been used to monitor patients 

on CPAP therapy. However, there are some limitations to this strategy. Firstly, 

studies comparing the diagnostic utility of oximetry for OSA have found 

decreased sensitivity and specificity in patients with mild-moderate OSA 

compared to severe OSA. (135, 299, 300) This suggests that in treated 

patients, who are likely to have decreased disease severity, the accuracy is 

likely to be limited. Second, there is a paucity of data on how well overnight 

oximetry works while patients are on CPAP compared to gold standard. Third, 
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oximetry’s only capture desaturation events and therefore miss events that 

occur without desaturation (i.e., some apnoeic events and arousals). 

Recently Epstein et al (301) investigated whether a home sleep apnoea testing 

kit (WatchPAT®200, Itamar Medical, Israel) could accurately determine the 

AHI while patients used CPAP therapy. They concluded that the 

WatchPAT®200 AHI was significantly higher than simultaneously automated 

CPAP detected AHI in nearly half of patients with clinically suspected residual 

sleep disordered breathing. However, a major limitation of this study was the 

presumption that WatchPat® could accurately diagnose the AHI in patients on 

CPAP, without a gold standard comparator arm. Moreover, WatchPAT® can 

be uncomfortable for patients given its use of peripheral arterial tonometry, 

meaning the sensor has to be quite tight on patients’ fingers.  

It is also useful to note, that recently Foresi et al, have shown that built-in-

software analysis on one brand of CPAP machine showed good accuracy with 

a gold standard multi-channel sleep study in detecting the residual AHI (bias 

of 0.57events/hr (95%CI -3.30 – 4.45). However, this study used a specific 

brand of CPAP device. (302) Moreover, the study, titrated CPAP pressures 

first to adequately reduce the AHI and only waited a further 2 days prior to 

conducting a sleep study. This would have led to an inherent bias, as these 

patients were optimised just prior to the recording and all patients included in 

the study had excellent control (mean AHI 2.6 ± 2.4 events/hr).  

Therefore, further research into accurate ways of monitoring both the residual 

and effective AHI while using CPAP is important to try and risk stratify patients 

and also potentially suggest an individualised target for hours of nocturnal 
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CPAP based on initial disease severity. This would especially help in patients 

who are struggling with CPAP concordance. For example, four hours of CPAP 

use may be adequate for someone with moderate OSA but not enough for 

someone with severe OSA. This idea has been illustrated previously in Figure 

1-6.  

AcuPebble SA100 is a medical device, similar to Acupebble RE100, which 

was created for the purpose of improving the diagnosis of OSA and has a high 

positive (96%) and negative (99%) predictive value when compared with a 

cardiorespiratory-polygraphy. Furthermore, the study demonstrated that this 

device can be used by patients, without requiring professional assistance at 

home. (145) Therefore, we aim to investigate whether AcuPebble SA100 can 

also be used as a monitoring tool to detect both the residual and effective AHI 

in patients undergoing CPAP therapy.  

5.2 Aims 

The primary aim of this study was to determine whether AcuPebble SA100 

can accurately determine the residual AHI in patients with OSA on CPAP 

therapy, using a simultaneous cardio-respiratory polygraphy as the gold 

standard comparator.  

The secondary aims of the study were: 

• To determine whether AcuPebble SA100 is more accurate than the 

CPAP machine in detecting the residual AHI in patients with OSA on 

CPAP therapy. 
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• To determine whether AcuPebble SA100 can accurately determine the 

effective AHI (this includes time spent on and off CPAP, i.e., the whole 

night). 

• To determine whether AcuPebble SA100 is acceptable and comfortable 

for patients to wear while using CPAP therapy. 
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5.3 Methods 

5.3.1 Ethical approval 

This study received ethical approval from the Health Research Authority (IRAS 

ID: 311874, REC reference 22/SC/0272); and was sponsored by Royal Free 

Hospital NHS Foundation Trust, where it was conducted. 

Under the scope of this study, AcuPebble SA100 was the novel sensor that 

was used. It is a CE marked device, and for this study was used within the 

scope of its intended purpose as a medical device as a monitor for participants 

on treatment. 

5.3.2 Inclusion and exclusion criteria 

Inclusion criteria: 

• Patients with an initial diagnosis of moderate/severe OSA (defined as 

an AHI ≥ 15events/hr made on a full polysomnography, limited 

cardiorespiratory polygraphy or other validated home sleep study) with 

no evidence of nocturnal hypoxia (defined as spending <30% of the 

night with saturations <90%). 

• Patients who have been established on CPAP therapy > 3 months 

• Patients who are deemed compliant on CPAP therapy (average use ≥ 

4hours/night for ≥ 70% of the last 28 nights).  

Exclusion criteria: 

• Age <18 

• Subjects not fluent in English, or who have special communication 

needs 

• Known allergy to adhesive dressing 



 

333 
 

• Subjects with physical or mental impairments who would not be able to 

use the device and technology on their own 

• Subjects with implantable devices 

• Subjects with stridor 

• Subjects unable to or unwilling to give consent 

• Subjects on non-invasive ventilation (NIV) or bi-level positive airway 

pressure (BIPAP) 

5.3.3 Study protocol 

This was a prospective observational study conducted at the Royal Free 

London NHS Foundation Trust which at the time of study had a total of 1899 

patients with a diagnosis of OSA on CPAP therapy.  

Potential participants for this study were recruited from the sleep and 

ventilation service at Royal Free Hospital. This service is a tertiary sleep and 

ventilation service in North London.  All patients under this service who are on 

CPAP therapy for moderate / severe OSA and have consented, have their 

CPAP usage monitored remotely. This information is available on a secure 

password protected GDPR compliant website accessible only to the direct 

care team looking after the patient. This is the current standard of practice at 

the Royal Free Hospital.  

Participants were screened through review of medical records (to identify 

whether they met the inclusion/exclusion criteria), and their CPAP usage 

information (to ensure they were compliant on CPAP and had been using it for 

at least 3 months). We then randomly selected patients who met the eligibility 

criteria from this existing database of patients. Participants were called in 
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advance of their study visit and if agreeable the participant information sheet 

was sent to them by post or email, according to patient preference.  

Study Visit 1 

Participants were consented for a 2-night study while using their CPAP. At the 

initial study visit they were asked to fill in two questionnaires: 

1. Epworth Sleepiness Scale – a commonly used subjective measure of 

patient’s sleepiness (Appendix 7.7.1) 

2. A baseline symptom questionnaire (‘Sleep Clinic Questionnaire (SCQ)) 

– created specifically for this study to gain some understanding on 

whether participants are suffering from common OSA symptoms). See 

section 7.7.2 

We collected baseline information from the participant and the medical records 

including age, gender, ethnicity, body mass index (BMI), original sleep study 

(type, date, and outcome), comorbidities, smoking history, CPAP data 

(including average use over the last 28 days; average number of hours used 

on the days used; average pressure requirement; average residual AHI over 

the last 28 days; any leak recorded).  

Participants were pseudo-anonymised and given a trial identification number, 

which was used to set up the monitoring devices they had been asked to wear.  

Participants were asked to wear the following devices (below) for the entire 

duration of their sleep study for two consecutive nights. The average use of 

CPAP over the preceding 3 months was noted and patients were asked only 

to use the CPAP for the same duration (rounded to the nearest hour) to reduce 

bias on the nights of the study. The participants were asked to use both 
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monitoring devices (below) for the duration of their sleep. They were also 

asked to note down the time each device was put on and the time CPAP was 

put on (‘D’on) and off (D’off). The CPAP machine automatically downloads 

data including the residual AHI, which is visible on a secure password 

protected website that patients have already consented to. Therefore, the 

CPAP data could be directly compared to both the following devices.  

The two monitoring devices participants were asked to wear for the entire 

duration of sleep were: 

1. AcuPebble SA100 – Participants were all provided with a research 

mobile phone with the application installed and given basic information 

at the study visit on how to use the device. The signals recorded from 

AcuPebble SA100 are automatically encrypted and transmitted to a 

secure website that is compliant with General Data Protection 

Regulations (GDPR). The device can automatically diagnose OSA.    

For this study, we only used the 4% desaturation threshold as this is 

the current clinical standard at Royal Free Hospital to measure disease 

control. While this gave the effective / whole night AHI, data was re-

analysed to match the time that CPAP was used, thus giving us the 

residual AHI as well.  

Participants were given a very basic instruction sheet to aid them to use 

the device. The main purpose of the instruction sheet was to serve as 

a reminder of how to open the application on the mobile phone. 

Participants were asked to go through the following steps for each of 

the nights of the study: 



 

336 
 

i. Link AcuPebble SA100 to the mobile phone application 

(by starting a new study on the application itself, with the 

device in proximity) 

ii. Attach the adhesive provided to AcuPebble SA100 (a 

video on the application showed participants how to do 

this) 

iii. Attach AcuPebble SA100 onto the front of their neck 

(anywhere between the suprasternal notch and Adam’s 

apple).  

iv. Press ‘start recording’ when ready.  

v. Press ‘stop recording’ the following morning on waking. 

vi. Allow the device to download the data and automatically 

run a diagnostic algorithm yielding the diagnostic results 

for night one.  

vii. Repeat above steps with a new adhesive for the second 

night. 

viii. Device and phone needed to be charged in between 

nights.  

 

During their study visit, participants were asked to carry out a ‘mock 

trial’ on how to use the system and to ask questions if there were any 

doubts. 

The device automatically gives a diagnosis and AHI which was evident 

on the patients’ own downloaded application. The signals were 

encrypted automatically by existing software and subsequently 



 

337 
 

transmitted to a password protected, secure website, compliant with 

GDPR.  

2. Domiciliary cardiorespiratory polygraphy (Embletta MPR PG 

ambulatory (unattended) polygraph sleep monitor (Stowood scientific 

instruments ltd)) –reference standard. The following signals were used 

for analysis: thoracic and abdominal piezoelectric respiratory 

movements sensors; peripheral pulse oximetry; nasal thermistor air-

flow sensor; snore and body position. It is a device that meets the 

AASM technical adequacy requirements to be considered gold 

standard for ambulatory diagnosis of the disease. Please see Appendix 

7.6 for further details on diagnostic criteria and manual scoring criteria.  

Participants were shown how to put this device on at their study visit 

and were told to wear and use this device for both nights along with 

AcuPebble SA100.  

The device was automatically programmed to start and stop recording 

at set times. 

The sleep studies were scored / analysed by two independent scorers 

in a blinded fashion. Both scorers were also blinded to the results from 

AcuPebble SA100 until our analysis was completed. The sleep studies 

were scored using the AASM criteria with a 4% oxygen desaturation 

threshold used for scoring hypopnoeas. Initial analysis was conducted 

using the specific times of CPAP use (giving the residual AHI). If the 

entire duration of sleep as noted on the sleep study differed by more 

than 30 minutes compared to the CPAP start / end times, the studies 

were re-analysed for this duration, giving the effective AHI. We also 
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calculated the mean saturations, the oxygen desaturation index, and 

the percentage of time spent with saturations less than 90%. The 

overall duration of sleep was noted as the index time (overall time minus 

the movement time). 

If the difference in the start / stop times of CPAP vs. AcuPebble SA100 / multi-

channel sleep study was ≤ 30minutes, the data was not re-analysed (to get 

the effective / residual AHI). This value was assumed to be the residual AHI. 

The reason this time gap was chosen, was that clinically we felt this was 

unlikely to make a significant difference in the calculated residual / effective 

AHI. Therefore, in this instance, the participant had effectively used the device 

for the entire duration of the night and the effective and residual AHI were the 

same.  

Following completion of the study, participants were asked to fill out a usability 

questionnaire for AcuPebble SA100. Participants were then asked to return 

both devices either in person or by an arranged courier.  
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5.3.4 Study flow chart 

 

5.3.5 Statistical analysis 

Sample size calculation 

The main statistical test used in this instance was a Bland-Altman analysis to 

check the agreement between measurements obtained by AcuPebble SA100, 

CPAP and the gold-standard multi-channel polygraphy. The outcome variable 

was AHI. An assessment of the agreement in the AHI produced by AcuPebble 

Patients will be asked to fill a usability questionnaire for AcuPebble SA100

Compare Residual AHI

Cardio-respiratory polygraphy AcuPebble SA100 CPAP automatic download

Following 2-night study devices returned

Set-up on home sleep monitoring devices (while using CPAP)

AcuPebble SA100 Cardiorespiratory-polygraphy (Gold Standard)

Asked to complete Questionnaires

Epworth Sleepiness Scale Baseline symptom questionnaire

Patients with moderate OSA on home CPAP therapy (≥ 3months) screened for 
eligibility
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SA100 vs. gold-standard and AcuPebble SA100 vs. CPAP was conducted. 

Therefore, the following parameters were used in the power calculation: 

Mean of any paired differences: 2 

Standard deviation of paired differences: 3 

Power 95% 

Type 1 error: 5% 

Since there were three devices and two comparisons with repeated measures, 

the type 1 error was adjusted for multiple testing using the Bonferroni method 

and gave a value of 0.025. This was used to compute the required sample size 

of 37. In this study repeat measurements were taken over two days and 

therefore I needed to recruit 18.5 patients to achieve 95% power of detecting 

a true difference with 0.025 probability.  

Statistical Analysis 

All the statistical analysis was conducted using the software Statistical 

Package for the Social Sciences (SPSS). Baseline demographics were 

tabulated. The internal validity of the manual sleep study scoring from both 

scorers of the gold standard multi-channel polysomnography was assessed 

using the intraclass correlation coefficient using a two-way mixed effects 

method with consistency, as previously described by Khoo et al. (235) The 

mean values from both scorers was used as the ‘gold standard’ AHI. This was 

then used to compare to the CPAP or AcuPebble SA100 AHI using Bland 

Altman Plots.  
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The Bland-Altman plots were constructed in MATLAB programming software 

using freely available coding algorithms. Two plots were constructed. One 

using the mean of paired differences on the x-axis and another using the gold 

standard measure on the x-axis as first described by Krouwer et al. (303)  The 

same process was used for residual and effective AHI. 

Finally, we assessed the acceptability and comfort of AcuPebble based on 

questionnaires and usability defined as: 

• Percentage of patients who used the system correctly. 

• Percentage of patients who completed the test, returning valid signals. 

• Usability answers in the questionnaire 
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5.4 Results 

For the study 136 participants were screened of which 30 met eligibility criteria 

and 19 were consented. One participant withdrew their consent prior to starting 

the study. One participant did not use their CPAP or any of the test equipment 

for either night. Therefore, CPAP data was available for 17 participants (15 

male, 2 females; mean (SD) age 55 (14) years), 14 completed a two-night 

study and three only used CPAP for one night, resulting in a total of 31 studies. 

Gold-standard multi-channel sleep data was available for 11 participants, with 

the remainder having either no data or very poor-quality data that was not 

usable. Of these 11 participants, eight managed a two-night study, while three 

only managed one night, resulting in a total of 19 studies which were of 

sufficient quality. Valid AcuPebble SA100 data was available for 14 

participants, with seven manging both nights and seven managing one night. 

This gave a total of 21 valid recordings. Overall, 11 recordings from nine 

participants had good quality multi-channel sleep study and AcuPebble SA100 

data allowing for comparison. In summary, 19 recordings were available to 

compare CPAP vs. gold standard and 11 recordings were available to 

compare AcuPebble SA100 vs. gold standard. This is summarised in Figure 

5-2. Table 5-1 shows the participants baseline characteristics and medical 

comorbidities and Table 5-2 shows their original sleep study data, CPAP data 

and symptom questionnaire data. 
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Figure 5-1 Study flow diagram  

Assessed for eligibility. 
(n = 136) 

Excluded (n = 116) 

- Declined (n = 11) 

- Not met inclusion (n = 106) 

 

Participants consented 

for 2-night study. 

(n = 19) 

CPAP studies 

available 

(n = 31) 

Gold standard sleep 

studies available 

(n = 19) 

AcuPebble studies 

available 

(n = 21) 

CPAP vs Gold 

standard studies 

available for analysis 

(n = 19) 

AcuPebble vs Gold 

standard studies 

available for analysis 

(n = 11) 

Withdrawal post 

consent 

(n = 1) 

No CPAP or test-kit 

use 

(n = 1) 
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Table 5-1 Baseline characteristics of participants (n = 17) 

Baseline characteristic n (%), mean ± SD, median (IQR) 

Male 15 (88) 

Female 2 (12) 

Age (years) 55 ± 14 

Body Mass Index (kg.m2) 34.6 (32.7 – 37.7) 

Never smoker 6 (35) 

Ever-smoker 11 (65) 

Pack year history 25 (12 – 42) 

Mobility 

Independent 

Stick 

 

16 (94) 

1 (6) 

Independent with regards to activities of 

daily living 

17 

Medical Co-morbidities 

Asthma 3 (18) 

Atrial fibrillation 0 

Cerebrovascular disease 2 (12) 

Hypercholesterolaemia 5 (29) 

Hypertension 6 (35) 

Ischaemic heart disease 1 (6) 

Type 2 diabetes mellitus 3 (18) 

The participant who did not use CPAP or any of the devices was excluded 

from the background demographic data.  
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Table 5-2 Sleep study and CPAP use characteristics for participants (n = 17) 

Characteristic n (%), mean ± SD, median (IQR) 

Original sleep study data 

Type of sleep study: 

• Multi-channel sleep study 

• WatchPat® study 

 

• 4 

• 13 

AHI (events/hour) 54.5 (33 – 75.8) 

ODI (events/hour) 47 (30.1 – 76.4) 

Mean Saturations (%) 93 (92 – 94)  

Time spent with saturations below 90% 

(%) 

9.9 (2.5 – 18.9)  

CPAP usage prior to study 

Type of CPAP device: 

Philips 

Lowenstein 

 

11 (65) 

6 (35) 

Average nightly CPAP use in the last 3 

months (mins) 

414 ± 62 

Baseline symptom questionnaire 

Epworth Sleepiness Score 4 (3 – 11) 

Baseline symptom severity score* 4 (2 – 6) 

Average hours of sleep 7 ± 0.7 

Average time taken to fall asleep (min) 21 ± 15 

Presence of nocturia 9 (53) 

Driving statistics post starting CPAP (n = 10) 

Road traffic accidents  0 

Episodes of head bobbing while driving 1 (10) 

Hitting the rumble strip while driving 1 (10) 

Using alerting manoeuvres while driving 2 (20) 

* The baseline symptom severity score was developed for this study to look 

objectively at the frequency of common symptoms in OSA. Higher scores 

indicate increased symptom burden. The total score is out of 24. 
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5.4.1 Interrater reliability of multi-channel sleep study scoring 

A total of 19 sleep studies were available from 11 participants, with the 

remainder having either no data available or very poor-quality data available. 

Two of these studies had a high percentage of oxygen saturation trace artefact 

but preserved nasal flow tracings and were included given the small overall 

numbers available for analysis. The intraclass correlation coefficient values for 

all the measured and scored parameters from the sleep study are shown in 

Table 5-3. 

Table 5-3 Intraclass correlation coefficients (ICC) for interrater reliability of 
multi-channel sleep studies (n = 19) 

Analysis variable Scorer 1 

Mean ± SD 

Score 2 

Mean ± SD 

ICC 

Index / Analysed time (min) 407 ± 70 403 ± 70 0.997 

Overall AHI (events/hr) 3.3 ± 3.6 2.5 ± 3.1 0.984 

Obstructive apnoea (events/hr) 0.7 ± 0.9 0.2 ± 0.3 0.532 

Obstructive hypopnoea 

(events/hr) 

2.4 ± 2.6 2.1 ± 2.4 0.990 

ODI (events/hr) 3.4 ± 3.5 3.3 ± 3.6 0.997 

Mean sats (%) 93.9 ± 1.4 93.9 ± 1.4 0.999 

Time below 90% (%) 2.6 ± 4.0 2.6 ± 4.1 0.999 

Movement time (min) 11.7 ± 11.1 14.8 ± 13.4 0.942 

Saturation artefact (%) 7.3 ± 14.4 8.5 ± 14.3 0.995 

 

5.4.2 Agreement between AcuPebble SA100 and gold standard multi-

channel sleep study. 

A total of 11 studies had concurrent AcuPebble SA100 and multi-channel 

sleep study from nine participants. The remainder had poor AcuPebble SA100 
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recordings or poor multi-channel sleep study data and so were excluded from 

the analysis.  

While the recorded start and stop times of AcuPebble SA100 are based on 

when participants press ‘start’ and ‘stop’ on the accompanying mobile phone 

application, they may not be representative of the actual time asleep. 

AcuPebble algorithms can estimate the actual sleep duration, which may be 

different from when participants press ‘start’ and ‘stop’, and this is used as the 

analysis time.  

The Bland-Altman plots comparing the analysed time, AHI and ODI between 

AcuPebble SA100 and the gold standard multi-channel sleep study are shown 

in Figure 5-3. The mean difference (95%CI) and therefore bias between all 

three measures was clinically significant, [analysed time: -28.7mins (-90.09 – 

32.7), AHI: 2.005 events/hr (-2.484 – 6.493), ODI: 1.745 (-3.17 – 6.661). The 

limits of agreement were each were also very wide and clinically significant.  
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Figure 5-2 Bland-Altman plots comparing AcuPebble SA100 with gold-standard multi-channel sleep studies (n = 11) 
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While the numbers were too small to fully appreciate any trends in the data, to 

assess whether AcuPebble SA100’s performance varied depending on the 

residual AHI, further Bland-Altman plots were constructed by plotting the 

difference of paired means against the gold standard AHI as first shown by 

Krouwer et al. (303) This was used to assess trend, given the significant 

fluctuations present in AcuPebble SA100 recordings which would give rise to 

bias in assessing trends, if the mean of paired measurements were used as 

above.  

These plots (Figure 5-4) showed that, for higher AHI and ODI values, indicative 

of more severe disease, AcuPebble SA100 under-called these events, 

resulting in a more negative mean difference observed.  
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Figure 5-3 Bland-Altman plots comparing AcuPebble SA100 with gold-standard multi-channel sleep studies using the gold-standard 
as the x-axis (n = 11) 
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5.4.3 Agreement between CPAP machine and gold standard multi-

channel sleep study 

A total of 19 studies from 11 participants were available to compare 

parameters derived from CPAP machine and the gold standard sleep study. 

Three studies were performed on Lowenstein CPAP devices and the 

remainder were Philips CPAP devices. Participants used the CPAP machine 

for a mean (SD) duration of 7 hours and 42 minutes (1 hour and 18 minutes), 

with average pressure requirements of 8.52cmH2O (2.07) and an average leak 

of 14% (18%).  

While the start and stop times were matched as closely as possible, this was 

not possible in all the studies, due to the CPAP device starting either before 

the sleep study or finishing afterwards. This led to a time discrepancy in 11/19 

studies, where there was more than a 30-minute time difference. Moreover, 

three studies were performed on a Lowenstein CPAP device, for which the 

machine data does not give the exact start and stop time, thus estimation of 

this time was performed based on visual inspection of the graphical data. It is 

also worth noting that even if the start and stop times matched exactly, the 

analysed time for the multi-channel sleep study could differ as periods of 

movement or artefact were removed prior to analysis as is the convention. The 

Bland-Altman plot for the analysed time can be seen in Figure 5-5. The mean 

time difference and therefore bias was 57.22mins (32.39 – 82.05). This meant 

that on average the CPAP machine analysed an extra 1 hour of time compared 

to the gold standard measure. There were also wide limits of agreement as 

shown in Figure 5-5. 
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Figure 5-4 Bland-Altman plot comparing CPAP and gold-standard analysis 
time. 

 

Bland-Altman plots comparing the overall AHI, obstructive apnoea, obstructive 

hypopnea between the CPAP machine and the gold-standard multi-channel 

sleep study can be seen in Figure 5-6.  The mean difference (95%CI) and 

therefore bias in these parameters was unlikely to be of clinical significance 

[overall AHI: 1.46 (0.56 – 2.37), obstructive apnoea: 0.29 (-0.09 – 0.67), 

obstructive hypopnoea: 1.04 (0.18 – 1.9)].  However, the overall AHI and the 

obstructive hypopnoea parameters did have a high upper limit of agreement 

(overall AHI: 5.13 (3.57 – 6.69) and obstructive hypopnoea: 4.54 (3.05 – 

6.03)), which may be of clinical significance.  

Trends were difficult to appreciate in this data, even when using the gold-

standard AHI on the x-axis (Figure 5-7).  
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Figure 5-5 Bland-Altman plots comparing CPAP with gold-standard multi-channel sleep studies (n = 19) 
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Figure 5-6 Bland-Altman plots comparing CPAP with gold-standard multi-channel sleep studies using the gold-standard as the x- 
axis (n = 19) 
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While the overall number of sleep studies were small, a sensitivity analysis 

was performed to assess whether the device type, leak of more than 15%, and 

closer analysed time matching made a difference to the overall bias. This can 

be seen in Table 5-4. 

With regards to distinguishing between the residual and effective AHI, only 

2/19 studies had an extra hour of analysis available once CPAP had finished, 

thus giving the effective AHI. Due to the small number, and only one extra hour 

available, it was not possible to assess differences between the residual and 

effective AHI. 

Given the inaccuracies observed with AcuPebble SA100 in detecting the 

residual AHI, it was not possible to directly compare AcuPebble SA100 and 

CPAP residual events.   
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Table 5-4 Sensitivity analysis when comparing CPAP derived measures from the gold standard sleep study. 

Subgroup Recording time (min) Overall AHI  Obstructive Apnoea Obstructive hypopnea 

 Mean 

bias 

(95% CI) 

Upper 

LOA 

(95% CI) 

Lower 

LOA 

(95% 

CI) 

Mean 

bias 

(95% CI) 

Upper 

LOA 

(95% CI) 

Lower 

LOA 

(95% CI) 

Mean 

bias 

(95% CI) 

Upper 

LOA 

(95% CI) 

Lower 

LOA 

(95% CI) 

Mean 

bias 

(95% 

CI) 

Upper 

LOA 

(95% 

CI) 

Lower 

LOA 

(95% 

CI) 

Device Type 

Philips  

(n = 16) 

59 

(-29 –87) 

 

168 

(117 –

219) 

-49 

(-101 –

2) 

1.7 

(0.7–2.7) 

5.5 

(3.7 – 

7.3) 

-2.1 

(-3.9–     

-0.3) 

0.4 

(-0.1–0.8) 

2.0 

(1.2 – 

2.8) 

-1.3 

(-2.1–      

-0.5) 

1.2 

(0.3–

2.2) 

4.9 

(3.2 – 

6.6) 

-2.4 

(-4.2–     

-0.7) 

Lowenstein 

(n = 3) 

47 

(-13 –

107) 

94 

(-9 –198) 

0 

(-104 –

103) 

0.2 

(-1.3–

1.7) 

1.4 

(-1.2 – 

4.0) 

-1.0 

(-3.6 –

1.6) 

-0.1 

(-0.4 –

0.2) 

0.2 

(-0.4 – 

0.7) 

-0.4 

(-0.9–     

0.2) 

0.0 

(-1.4–

1.4) 

1.1 

(-1.3 – 

3.7) 

-1.2 

(-3.7–     

1.4) 

Leak 

<15% leak 

(n = 12) 

58 

(-35 –82) 

 

133 

(91 –174) 

-15 

(-57 –

26) 

1.2 

(-0.1 – 

2.5) 

5.2 

(2.9 – 

7.5) 

-2.9 

(-5.2 -      

-0.6 

0.4 

(-0.2 – 

1.0) 

2.2 

(1.2 – 

3.2) 

-1.5 

(-2.5 -      

-0.4 

0.7 

(-0.6 – 

2.0) 

4.7 

(2.5 – 

7.0) 

-3.3 

(-5.6 -      

-1.1 

>15%leak 

(n = 7) 

55 

(-13 – 

122) 

198 

(80 – 315) 

-88 

(-205 –

28) 

2.0 

(-0.6 – 

3.3) 

4.9 

(2.5 – 

7.2) 

-0.9 

(-3.3 -      

1.4 

0.1 

(-0.3 – 

0.6) 

1.1 

(0.3 – 

1.8) 

-0.8 

(-1.5 -      

0.0 

1.6 

(-0.6 – 

2.6) 

3.7 

(2.0 – 

5.4) 

-0.5 

(-2.2 -      

1.2 

Start / stop time difference 

< 30-minute 

difference 

(n = 8) 

14 

(8 – 19) 

 

27 

(17 – 37) 

0.1 

(-8 – 11) 

0.9 

(-0.3 – 

2.2) 

3.8 

(1.7 – 

6.0) 

-2.0 

(-4.2 – 

0.2) 

0.3 

(-0.4 – 

1.1) 

2.0 

(0.8 – 

3.3) 

-1.3 

(-2.6 –     

-0.1) 

0.5 

(-0.9 – 

1.9) 

3.7 

(1.3 – 

6.1) 

-2.8 

(-5.2 –    

-0.4) 

> 30-minute 

difference 

(n = 11) 

88 

(57 – 

120) 

 

180 

(126 – 

234) 

-2.7 

(-57 –

52) 

1.9 

(0.5 – 

3.3) 

5.9 

(3.5 – 

8.4) 

-2.2 

(-4.6 – 

0.2) 

0.25 

(-0.3 – 

0.8) 

1.8 

(0.9 – 

2.7) 

-1.3 

(-2.2 –     

-0.4) 

1.4 

(0.2 – 

2.6) 

5.0 

(2.9 – 

7.2) 

-2.2 

(-4.3 –    

0) 
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5.4.4 Usability of AcuPebble SA100 

Usability feedback was obtained from 10/17 participants. Half (5/10) of the participants 

found the AcuPebble SA100 device easy or very easy to attach, with 4 finding it 

moderately easy and 1 participant found it very difficult. Participants struggled with 

attaching the app to the sensor, with 2/9 finding it difficult, 3/9 moderately easy and 

4/9 finding it easy. The majority (7/10) found the sensor at least moderately 

comfortable, and found the sensor remained in place for both nights of the study (9/10).  

Some participants commented that the device was difficult to charge and there were 

some issues connecting the sensor to the mobile phone application. Others found the 

set up easy and found no issues with the study overall.  

5.5 Discussion 

The data from this observation study has shown: 

1) AcuPebble SA100 in its current format cannot accurately determine the residual 

AHI in patients with OSA on CPAP therapy. 

2) CPAP machines seemed more accurate than AcuPebble SA100 in determining 

the residual AHI in patients with OSA on CPAP therapy, given the better overall 

mean bias and limits of agreement when compared to gold standard. Head-to-

head comparisons could not be made in this study due to the observed 

inaccuracies with AcuPebble SA100. However, the upper limit of agreement 

when comparing CPAP vs. gold standard for the overall AHI is likely to be 

clinically significantly different.  

3) Participants generally found the sensor moderately comfortable and 

moderately easy to attach and use, but some struggled connecting the sensor 

to the mobile phone application. 
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This study recruited mainly male participants with primarily severe OSA (median AHI 

54.5 (33 – 75.8) who were concordant with CPAP use (mean nightly CPAP ~ 7 hours 

(±1 hour)). Participants were not somnolent with a median Epworth sleepiness score 

of 4 (3-11) and had a reduced baseline symptom burden. The mean subjective 

duration of sleep was 7 hours (± 0.7hours), which largely matched CPAP use, meaning 

that this population in the main used CPAP for the entire duration of their sleep. This 

meant that differences between the residual and effective AHI could not be 

appreciated. This was therefore a population who were not symptomatic and had well 

controlled OSA (mean (SD) AHI on CPAP across all studies 2.9 (3.4)). From the 19 

consented participants only 11 had adequate multi-channel sleep study data, resulting 

in 19 possible sleep studies that could be analysed.  

Gold standard multi-channel sleep studies were scored by two independent 

researchers with adequate training based on the AASM criteria (304) and a ≥4% 

oxygen desaturation threshold. There was very good interrater reliability with the 

overall AHI having an ICC of 0.984. This is similar to previously published literature. 

(305, 306) While the ICC of the obstructive events appeared lower at 0.532, the actual 

mean and SD values between both scorers fell within a clinically accepted difference 

range of less than 1 event/hour.   

There was poor overall agreement between AcuPebble SA100 and the gold-standard 

multi-channels sleep study data. While the mean AHI bias (95%CI) may be clinically 

acceptable (2 events/hr (-2 – 6)), there were wide limits of agreement with an upper 

limit of 15 events/hr and lower of -11 events/hr, suggesting the device is not reliable in 

detecting the residual AHI in patients undergoing CPAP therapy. Furthermore, when 

the gold standard was used as the x-axis of the Bland-Altman plot, there was a 

suggestion of a negative AHI and ODI trend, meaning that for a higher residual AHI 
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(as shown by the multi-channel sleep study), AcuPebble SA100 under-called these 

events, resulting in a more negative bias. This is clinically significant, as AcuPebble 

SA100 may under-represent a patient’s disease severity, leading to false reassurance 

and a lack of further investigation. While these findings must be interpreted with a 

degree of caution given the high degree of attrition bias, with only 11/34 studies having 

acceptable and comparable data, it is likely that AcuPebble SA100 in its current format 

cannot be used to monitor. 

AcuPebble SA100 has previously been shown to have a high positive (96%) and 

negative (99%) predictive value in diagnosing OSA. (145) There are two potential 

reasons which may explain the inaccuracy observed in this study. Firstly, AcuPebble 

SA100 is an acoustic device that detects sound from the airway and converts this 

through various algorithms into the AHI and ODI based on the AASM 

recommendation. Patients on CPAP therapy are likely to have a large degree of 

external noise interference from the machine itself, which is likely to interfere with the 

device algorithms, and may account for some of the differences seen. Secondly, the 

analysed time from AcuPebble SA100 and the multi-channel sleep study differed 

significantly, this therefore may affect the actual AHI which is reported as events/hr. If 

the denominator differs, the actual value will too.  

There is a paucity of data looking at the role of wearables in determining the residual 

AHI in patients on CPAP therapy. Epstein et al (301) showed concluded that in patients 

suspected to have poor controlled OSA, a home sleep apnoea testing kit 

(WatchPat®200) performed better than the CPAP machine in nearly 50% of this 

population. However, a key limitation to this study was no gold-standard comparator 

arm, and thus an assumption that WatchPat®200 accurately diagnoses the residual 

AHI while patients are using CPAP therapy. Other novel wearable devices that have 
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been investigated to diagnose OSA, have not yet been tested to monitor residual sleep 

events while on CPAP.  

Our study showed an acceptable agreement between the CPAP machine and gold-

standard sleep study with a mean bias of 1.5 events/hr (0.6 – 2.4). However, the upper 

limit of agreement was still too high (5.1 events/hr (3.6 – 6.7)), while the lower limit of 

agreement was clinically acceptable (-2.2 events/hr (-3.8 – -0.6). The CPAP machine 

was more accurate when it came to detecting the residual obstructive apnoea events 

compared to the hypopnoea events. This data suggests that CPAP machines may 

detect higher than actual residual AHI events, especially if the residual events are 

hypopnoea’s compared to apnoea events, leading to a higher number of subsequent 

and potentially unnecessary investigations.  

While our data is similar to previously published data, differing CPAP devices provide 

different biases and limits of agreement when compared to gold standard 

polysomnography. (298, 307-310)  In the main, studies have found detection of 

hypopnoeas to be more problematic and less accurate than apnoea detection when 

compared to gold standard. A summary of some of the prior data can be seen in Table 

5-5. 

While we had a small number of studies, sensitivity analyses suggested a lower leak 

percentage resulted in less overall AHI and hypopnea detection bias compared to a 

higher leak percentage > 15%. This study also showed that CPAP had a significantly 

different analysed time bias of 57 mins, which may also affect the results. Sensitivity 

analyses suggested improved diagnostic accuracy when there was a less than 

30minute difference in analysed times compared to more than 30 minutes (mean bias 

0.9 vs. 1.9).  
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Usability feedback was only returned in 10 patients who in the main found AcuPebble 

SA100 easy to use and attach, with most finding it moderately comfortable. However, 

they were problems with regards to application-to-sensor connectivity that needs 

improvement in future iterations. This significantly differs from a prior study 

investigating the diagnostic accuracy of AcuPebble SA100, where 99% felt confident 

using the mobile phone application and comfort levels were a lot higher. (145) There 

may be an element of recall bias in our work, as participants had to wear three devices 

(CPAP, AcuPebble SA100 and a multi-channel sleep study). The combination of three 

devices may have led to decreased perceived comfort of the device itself. 

Nonetheless, further work needs to be done to assess whether there is widespread 

acceptability of the device.  
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Table 5-5 Prior work comparing CPAP derived measurements to gold standard multi-channel sleep studies. 

Author and device tested 

(n) 

Overall AHI Apnoea events Hypopnoea events 

Mean 

bias 

Upper 

LOA 

Lower 

LOA 

Mean 

bias 

Upper 

LOA 

Lower 

LOA 

Mean 

bias 

Upper 

LOA 

Lower 

LOA 

Ueno et al (2010) 

S8 Auto-CPAP device, ResMed 

(n = 70) (298) 

-5.7 0.1 -11.5 -0.5 1.3 -2.3 -5.3 0.1 -10.7 

Cilli et al (2012) 

(REMstar Auto) 

(n = 137)  (307) 

0.05 4.9 -4.8 - - - - - - 

Nigro et al (2015) 

S9 Autoset, ResMed 

(n = 114) (310) 

-3.5 4.2 -11.2 - - - -4 4.1 -12.1 

Fanfulla et al (2021) 

Various devices* 

(n = 299)  (308) 

-2.42 9.16 -14 While the Bland-Altman plot was 

not presented. The median gold 

standard index was 2.8 ± 5.3 vs. 

machine 2.9 ± 5.6. 

While the Bland-Altman plot 

was not presented. The median 

gold standard index was 4 ± 6 

vs. machine 1.5 ± 2.3, p<0.001 

Foresi et al (2023) 

AirSense 10 ResMed 

(n = 41) (309) 

0.57 4.5 -3.3 - - - - - - 

Our study data 

Philips and Lowenstein devices 

(n = 19) 

1.5 5.1 -2.2 0.3 1.8 -1.3 1.0 4.5 -2.5 

 

* This study used a variety of positive airway pressure devices in a real-life study. 53% were on CPAP and the other’s were on 
differing modes of ventilation 
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There are several notable limitations to this work. First, the study had a high 

attrition bias, with many multi-channel sleep studies not being suitable for 

analysis. This is lower than previously reported home based sleep study failure 

rate, with one prior study reporting only a 4% failure rate. (311) However, it is 

probable, that the additional use of CPAP while conducting a home-based 

sleep study is likely to have resulted in a higher failure rate. Other comparative 

work in the literature has often used in-lab sleep studies and so cannot be 

compared to this work. Second, because of poor-quality data, the study was 

under-powered. A truly powered study may reduce the limits of agreement 

observed with AcuPebble SA100 and may suggest that the device is clinically 

usable. However, device adjustments, to account for the extra noise from the 

CPAP machine, are likely to lead to more accurate results and should be 

performed prior to conducting a larger trial. Moreover, true differences 

between CPAP and gold standard measures may not also be realised. Third, 

participants had well controlled OSA, meaning that the ability of both CPAP 

devices and AcuPebble SA100 to detect higher residual AHI was not 

adequately tested. This is important, as this is often where the devices have 

the most clinical utility, given these are the patients with likely ongoing 

symptoms. Fourth, we were unable to detect differences between the residual 

and effective AHI, given the lack of data. This work remains important clinically 

and needs consideration for future larger studies. 

In conclusion, this small observational study has shown that AcuPebble 

SA100 in its current form is not accurate in determining the residual AHI in 

patients with OSA on CPAP therapy. While the CPAP machines used in this 

study appear more accurate, they had a wide limit of agreement and are likely 
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to overscore hypopnoea events. Prior existing studies have suggested that 

different CPAP machines have varying accuracies in detecting the residual 

AHI, a finding that has also been noted by the American Thoracic Society, (74) 

and therefore their use in clinical practice needs caution. Given different 

centres use different machines, each sleep service should conduct a study 

sampling their own machine accuracy to ensure clinical reliability and use. 

However, future wearables need to be designed and tested to accurately and 

easily determine the residual AHI on CPAP therapy, so that patients can be 

better monitored irrespective of machine brand.  

The previous chapters have described four studies conducted for this thesis. 

The next chapter provides an overall discussion and also discusses ideas for 

future work, building on this thesis. 
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6. Chapter 6 – Discussion 
 

Wearable technology is set to grow exponentially in the next decade, with an 

estimated market value of $195.57 billion by 2027, (92)  and the world health 

organisation has recognised a shift to digital healthcare. (93) Therefore, the 

role of wearable technology in chronic lung disease is of paramount 

importance. Wearables have the ability to improve patient self-management, 

decrease health burden and reduce patient morbidity and mortality. Therefore, 

research into novel wearable devices is critical, to not only help identify 

potential uses, but to also gauge acceptability. This in turn will help new 

devices become clinically useful and acceptability and make a difference to 

patients in real terms. 

During my research, I sought to: 

1. Understand and summarise the current role of wearable technology in 

COPD management. 

2. Explore the acceptability of wearable technology in a group of patients 

with chronic respiratory disease. 

3. Determine whether there were any differences in continuous 

physiological measurements in stable COPD patients and those 

undergoing an exacerbation. 

4. Determine the accuracy of wearable technology in monitoring patients 

undergoing CPAP treatment for sleep apnoea.  

A summary infographic and results from this thesis can be seen in Figure 6-1. 
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Figure 6-1 Wearable technology in chronic lung disease 
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6.1 Understanding the current landscape of wearable technology 

in COPD management. 

To date, I have found that there has been a large body of work looking at the 

role of step-counters / pedometers to improve physical activity metrics in 

patients with COPD, specifically mean daily step count and the six-minute walk 

distance. For the most part, these improvements are short-lived and have little 

impact on quality-of-life measures and exacerbation rates. However, it seems 

clear that when step-counters are used as part of a multi-faceted approach, 

there appears to be greater gains in step-count improvement.  

No study has investigated the role of other wearable devices to improve 

physical activity, capacity or intensity. This is an area that needs further 

research and development. 

With respect to exacerbation detection, there have been few studies that have 

shown promising application of continuous physiological monitoring using 

wearables to predict exacerbations. However, one of these studies only 

included 13 patients and had a high attrition rate, (188) and the other combined 

wearables with environmental measurements which can be costly and 

cumbersome to replicate in a real-world setting. (193) Further studies in this 

field are clearly essential to improve patient outcomes. Early identification of a 

COPD exacerbation has been listed as key unmet clinical need by the National 

Institute for Health and Care Research (NIHR) and wearable technology has 

the potential to fill this need. (35) 
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The first step in realising this potential is to use a simple wearable device to 

identify key physiological differences that exist between stable COPD patients 

and those undergoing an exacerbation. The second would be to follow a group 

of COPD patients for a prolonged period, to capture five phases: stability, pre-

exacerbation, exacerbation, post-exacerbation, recovery to stability. The third 

step would be to create an algorithm whereby patients use the wearable 

device to measure regular physiological measurements and receive an alert 

to say an exacerbation is likely, resulting in early intervention including 

medication review and avoidance of a severe exacerbation necessitating 

hospital admission. This would likely lead to quicker recovery back to the 

stable state.  

It is important to note, that simply designing and developing a wearable device 

that could detect a COPD exacerbation is not enough, if patient uptake, 

acceptance and compliance is lacking. Through my survey, I have shown that 

people living with chronic respiratory diseases are likely to be agreeable to 

learn about novel technology, feel that it will increase their confidence in 

monitoring their condition, and aid self-management. This positive attitude 

towards new technology is important as this is a key metric in understanding 

whether a certain population will be receptive to the technology and thus 

accept and use it. 

Participants wanted a product that was accurate, easy to learn, easy to use, 

approved by regulatory bodies following rigorous testing, with less emphasis 

on aesthetics and data privacy. Importantly they wanted a device to link to their 
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own mobile phone, thus giving them real time information. In the primarily 

white British population surveyed, social norms were less important in driving 

acceptance. It is also worth noting that most participants had low-middle 

income earnings, meaning any new technology would have to be affordable to 

increase reach and equity.  

The current landscape of wearable technology in COPD is promising. Future 

work needs to focus on designing simple to use wearable devices that are 

accurate and affordable, easy to learn and use, which aid exacerbation 

detection and symptom management. This will empower patients to self-

manage their condition, ease the pressure on a busy national health service 

and improve patient morbidity and possibly mortality.  

6.2 Measurable differences between stable and exacerbating COPD 

patients using a novel wearable device AcuPebble RE100. 

A simple wearable device, AcuPebble RE100, was able to continuously 

measure patients’ respiratory rate (RR), heart rate (HR) and airflow and was 

acceptable to most participants. However, the device had some notable 

limitations. Firstly, stable COPD participants only used the device for 60% of 

the prescribed duration (median 18 nights (10 – 26)). Second, a high rate of 

attrition was found in those undergoing an exacerbation, especially post 

discharge, with only 50% of participants having data 5 days post discharge. 

Third, HR and airflow data capture had significant artefact meaning a large 

number of recordings could not be analysed. Fourth, whilst the mean HR data 

from AcuPebble RE100 was accurate, variability and complexity 
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measurements were less accurate. This is likely due to the filtering algorithms 

applied during the recording.  

These limitations from the device can be improved upon in future iterations. 

The limited battery life and prolonged upload time of the data from device to a 

GDPR compliant cloud, was a hindrance and made it slightly cumbersome for 

patients and may be partly responsible for the high attrition rate. Other reasons 

are likely to be technology acceptance and confidence. While our survey 

showed this age group of patients with chronic respiratory disease are 

agreeable to technology in the main, during a period of sickness, the added 

effort to use technology may add an unnecessary burden. To encourage 

participants to use future wearables more consistently, work needs to be done 

in conjunction with national charities like Asthma and Lung UK, to promote the 

benefits of the technology.  

AcuPebble RE100 generated a large amount of data points for each patient 

and thus the usual static analysis methodologies commonly used in medical 

research like mean, median and standard deviation was not enough to 

summate the data and detect differences. While techniques for variability and 

complexity analysis have been around for a while, their use has not yet been 

clinically normalised. Furthermore, there is a paucity of data specifically 

relating to respiratory rate and airflow. This is likely to be in part due to the lack 

of wearables that can accurately collect this information. This study allowed 

exploration of various variability techniques and the use of sample entropy to 
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assess time-series complexity, to understand differences between stability 

and exacerbation. 

While the HR variability and complexity data was less accurate due to noise 

interference, differences still existed between stable COPD participants and 

exacerbators. This means that future algorithms can be built based on the 

differences found. Moreover, multi-scale entropy, which is more robust to 

missing data also showed significant differences. This means HR measures 

can still be incorporated into future algorithms to detect the start of an 

exacerbation. However, it is important to note, that a high degree of artefact, 

means that participants are likely to need a longer and more frequent recording 

period (e.g., use every day compared to every other day).  

The device found significant differences between a stable COPD population 

and one undergoing an exacerbation. HR variability increased during an 

exacerbation, while complexity decreased. RR variability and complexity both 

increased during an exacerbation and at longer scales (above 30 seconds), 

exacerbators had a significantly lower airflow α3 value compared to stable 

patients, suggesting the airflow was more random during an exacerbation 

compared to the stable state. While some of these trends ‘reversed’ or went 

back towards the stable state during the recovery period following an 

exacerbation, small numbers in this study, make firm conclusions difficult.  

It is perhaps unsurprising that differences in common physiological measures 

exist between these two patient groups of patients. However, importantly, 

these differences only became apparent when non-routine analysis methods 
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were employed. The mean HR and mean RR measures did not significantly 

differ between the groups, highlighting the need for the development and 

optimisation of more complex analysis methods.  

6.3 The accuracy of wearable technology in monitoring patients 

undergoing CPAP treatment for sleep apnoea. 

AcuPebble SA100 is used clinically as a medical diagnostic device for OSA 

with a high positive and negative predictive value when compared to gold 

standard sleep studies. However, this device was not reliable in detecting 

residual disease severity, as measured by the apnoea/hypopnoea index (AHI) 

in patients undergoing treatment with continuous positive airway pressure 

(CPAP) therapy. Bland-Altman analysis showed a high bias and wide limits of 

agreement. This is likely to be due to the significant noise interference from 

the CPAP machine on this acoustic wearable device, meaning that future 

iterations require algorithm manipulation to improve accuracy. The CPAP 

machines in our study were better at detecting the residual AHI (with a lower 

bias and reduced limit of agreement) when compared to gold standard multi-

channel sleep studies. However, we only tested participants who already had 

good concordance and relatively good disease control. Existing literature 

points to inaccuracies with CPAP machines detecting residual events in this 

patient population, and therefore, further work needs to be done to find a 

simple solution to monitor this patient group, such that treatment effectiveness 

can be appropriately and simply measured. 
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6.4 Future work 

Work in the future needs to expand upon the completed work in this thesis. It 

is clearly evident from the systematic review, that further studies investigating 

whether other physical activity metrics including movement intensity and 

exercise capacity can be improved in the long term by using wearable 

technology in addition to other facets. Further work into other aspects of COPD 

management needs to be investigated. For example, the role of wearables in 

promoting and helping with smoking cessation, improving attendance at 

pulmonary rehabilitation, maintaining pulmonary rehabilitation post classes 

and inhaled therapy. 

From the main study, we have clearly shown AcuPebble RE100 has the 

potential to differentiate between stable and exacerbating patients, but this 

needs further work. The following section describes two potential future 

studies to expand on the work on this thesis. 

6.4.1 Observational study using AcuPebble RE100 in a group of stable 

COPD patients 

This study would aim to give AcuPebble RE100 to a group of stable COPD 

patients over a 1-year period. Participants would wear the device every night 

for a year and the same physiological measures (heart rate, respiratory rate 

and airflow) would be collected. Alongside the device participants would fill in 

a symptom diary which aims to understand their symptom burden daily. During 

this period, participants are likely to go through various phases of their disease 

including: 
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a) Stability 

b) Pre-exacerbation phase 

c) Exacerbation 

d) Early recovery 

e) Stability  

By analysing physiological parameters using linear and non-linear analysis 

methodology, differences between these phases can be identified. This can 

be compared with subjective symptom burden. This will enable us to identify 

whether physiological changes occur prior to a perceived increase in symptom 

burden and how quickly these changes return to normal. It will also give us an 

understanding of how management of these exacerbations affects the overall 

trajectory. The main objective behind this study would be to develop an 

algorithm whereby AcuPebble RE100 can automatically detect an upcoming 

exacerbation prior to symptom onset and ‘warn’ patients such that earlier 

action could be taken. AI and machine learning could be used such that the 

algorithms get more specific and accurate every year. This could be 

investigated in the next study as described below. 

6.4.2 Randomised controlled trial using AcuPebble RE100 to allow earlier 

identification and treatment of a COPD exacerbation. 

This study would aim to randomise COPD patients to receive either AcuPebble 

RE100 to wear nocturnally over a one-year period or usual care. Participants 

in the AcuPebble RE100 group would get a warning when an upcoming 

exacerbation is detected by the device and be advised to commence on oral 
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steroid treatment for five days, as this is current standard practice. Participants 

in the usual care group would only take oral steroids when they subjectively 

feel they are undergoing an exacerbation or when their healthcare practitioner 

feels they are having an exacerbation. The primary outcome of interest would 

be the number of hospitalisations / hospital attendances for a COPD 

exacerbation over the course of the study period. The primary safety outcome 

of interest would be the number of steroid courses received over the course of 

the study period. The PICO model / approach is shown below: 

• P – the population being studied is a group of stable COPD participants 

o COPD will be defined as post-bronchodilator spirometry showing 

an FEV1/FVC ratio of <0.7 combined with an at least 10-pack 

year smoking history. 

o Stability will be defined as no exacerbations in the last 3 months 

• I – the intervention of interest in this case with be AcuPebble RE100 

o All participants in this group will receive AcuPebble RE100. They 

will wear this nocturnally for the study period. A warning will be 

delivered via an accompanying mobile phone application which 

tells them that an exacerbation is likely to occur soon. They will 

be then advised to start a 5-day course of oral steroids. 

• C – the control group will be usual care. 

o They will not receive a device and will simply be monitored 

remotely to assess they exacerbation status and medication use. 

o They will engage in filling out a daily symptom diary 



 

377 
 

• O – the primary outcome of interest would be the number of 

hospitalisations / hospital attendances for a COPD exacerbation over 

the course of the study period. The primary safety outcome will be the 

number of steroid courses taken during the course of the study period. 

Secondary outcomes would include cost-effectiveness measures. 

6.4.3 AcuPebble SA100 and residual events in patients using CPAP 

therapy. 

The currently used AcuPebble SA100, needs further modification prior to re-

trialling its ability to detect residual events in the OSA population undergoing 

CPAP therapy. CPAP machines are inaccurate to reliably understand the 

disease burden in concordant but symptomatic individuals and further work 

needs to be done in this field to provide a simple solution for patients.  

6.4.4 Future wearables and signal interpretation 

Finally, it is worth noting that future wearables will enable clinicians and 

researchers to gather a large quantity of continuous physiological 

measurements and work needs to be done to try and understand how to 

interpret these signals such that they have clinical utility. Heart rate variability 

and complexity analysis has been evolving for over 20 years but its place and 

routine use in clinical practice has not yet been established. This is likely to be 

due to a myriad of different approaches, analysis methods and a lack of 

available continuous data in routine clinical practice. Furthermore, there is no 

standardisation of these techniques and no easily available normal ranges, 

such that this can be incorporated into meaningful clinical practice. (312) This 
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is even more so for other physiological measures like respiratory rate and 

airflow.  

The human body consists of a complex interplay of signalling pathways which 

all interact and interfere with one another. This complex physiological network 

map needs further investigation and may hold the key to assess the transition 

from stability to instability, such that flare-ups or exacerbations of otherwise 

stable chronic diseases can be recognised and acted upon.  

As a first step, building a repository / database of nocturnal physiological signal 

variability measures for both healthy and diseased states is important. This 

can then lead to further specific research in different diseases.  

6.5 Conclusion 

The wearable technology landscape is fast evolving, but its utility in patients 

with chronic respiratory diseases, such as COPD and OSA needs further work. 

Acceptance and uptake of the technology is likely to be positive; however, the 

reliability and accuracy of this technology is still in its infancy. Nonetheless 

AcuPebble RE100, has been shown to be a simple, acceptable wearable 

device that can distinguish between COPD patients in a stable state and those 

undergoing a severe hospital exacerbation. Future work can build upon this to 

create a device that can predict an upcoming exacerbation thereby reducing 

patient morbidity and mortality and improve patient care for the better.  
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7. Appendix 
 

7.1  Appendix 1: Physiological signal variability 

Physiological variability measures such as heart rate (HR) and respiratory rate 

(RR) are often summated by static, linear measurements like the mean and 

standard deviation. However, these measurements do not capture the 

variability and complexity of these signals that are occurring both in the short 

term (beat-to-beat) and long term. The human body represents a complex 

interplay of many different signalling pathways which impact each 

physiological variable in many ways. This complex interaction is often 

dynamic, non-linear, and ever-changing and physiological variability analysis 

can give useful information on the integrity of these control systems. (293) 

To understand these concepts further, I have used the heart rate (HR) as an 

example of a complex physiological time series. A time series simply describes 

a collection of observations over time. For example, if a device measured the 

HR every two seconds over the course of six hours this would lead to 10,800 

measurements. Simply using the mean and standard deviation in this instance 

would lose the subtle variations that exist amongst these data points. The HR 

and rhythm are continuously and dynamically regulated by the autonomic 

nervous system (ANS). The parasympathetic nervous system (PNS) slows the 

heart rate down by lengthening each R-R interval, (the interval between each 

successive heartbeat), and leads to an almost immediate reduction in HR due 

to a very short latency of the neurotransmitter acetylcholine. Therefore, the 

PNS regulates the HR on a beat-by-beat basis and accounts for the short-term 
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variability seen. The sympathetic nervous system (SNS) releases 

catecholamines and increase HR but has a slower onset and offset. It is 

important to note, that the PNS and SNS do not merely have opposite effects 

on the HR but rather have a complex interplay with often overlapping and 

different time frequencies of action. (245) Moreover, the ANS is not the only 

regulatory mechanism of HRV, but thermoregulation, respiration, 

baroreceptors and chemoreceptors all play a role in this complex system. 

(231) Therefore, capturing this variability and complexity is vital in 

understanding differences between different patient groups. 

The next sections describe various linear and non-linear analysis methods 

used in this thesis, that aim to capture this variability and complexity. 

7.1.1 Linear analysis measures 

Successive R waves on an electrocardiogram (ECG) are denoted as the R-R 

interval (Figure 7-1). This is the same as the interval between two successive 

heartbeats. The standard deviation of all the R-R intervals (SDNN, where NN 

refers to the R-R interval for normal R waves, i.e., those without arrhythmia / 

artefact), is the commonest linear measure of heart rate variability in the 

literature. Higher values suggest increased variability.  

 

Figure 7-1 Illustration of an ECG trace and the R-R interval. 

 

 

 

Short R-R interval Long R-R interval 
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As this is a standard deviation measurement, it is influenced by the recording 

length. A short HR time series of 5-minutes will not incorporate the impact of 

thermoregulation and the circadian rhythm, while a 24-hour HR time series 

should. While SDNN is a global measure of HR variability with varying 

contributions of the PNS, SNS and other regulatory factors, the duration of the 

time series should always be considered when comparing data. (231) Analysis 

of 24-hour Holter recordings have suggested patients with SDNN values below 

100ms, and therefore decreased variability, have compromised health and an 

increased cardiovascular burden. (231) Umetani et al (1998) characterised 

normal SDNN values in different ages ranges following 24-Holter recordings. 

They found that SDNN decreased with increasing age and patients aged 60-

69 had an SDNN 121 ± 32ms; compared to 153 ± 44ms for the 20–29-year 

category. (313) 

Monfredi et al showed that heart rate variability has an inverse non-linear 

relationship with HR (i.e., increasing HR results in reduced variability), and 

therefore ideally the SDNN should be corrected for the mean HR to reduce 

bias and improve reliability. This value (cSDNN) can be calculated by the  

equation below: (230)  

 

It is useful to note that this sort of correction does not exist for other 

physiological measures such as respiratory rate.  
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7.1.2 Non-linear analysis measures 

Non-linear measurements allow quantification of the unpredictability of time-

series data. This means the relationship cannot be plotted on a straight line 

and is based on the perspective that physiological time-series, like HR, 

operate between periods of randomness and periodicity. Some examples of 

these measures are described below.  

7.1.3 Poincare Plots 

A Poincare plot is a graphical representation (scatter graph) of the correlation 

between two consecutive data points in a time-series. For example, between 

two consecutive R-R intervals (R-Rn and R-Rn+1). This is illustrated in Figure 

7-2. An ellipse is subsequently fitted to the line of identity (the line where the 

x-value and y-values are equal). Two values are then calculated from this plot. 

SD1 is the standard deviation of the points perpendicular to the line of identify 

and SD2 is the standard deviation along the line of identify. SD1 represents 

shorter term fluctuations (beat-to-beat), while SD2 represents longer term 

fluctuations in the time series. (259, 314) SD1 is therefore largely a measure 

of PNS activity whereas SD2 incorporates both SNS and PNS activity. (315)  
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Figure 7-2 Poincare plot example 

(reproduced with permission from Mani et al (2009)) (259) 

 

7.1.4 Sample entropy 

The Oxford English dictionary defines entropy as ‘a state of or tendency toward 

disorder’. (316) It is therefore simply a mathematical measure of uncertainty 

or irregularity of a time-series. The idea stems from information theory, which 

provided a way of determining information contained in a message, first 

developed by Shannon in the mid-20th century. The index quantifies the 

number of times a particular signal pattern is repeated and thus measures the 

complexity of a time-series. (247, 317, 318) It is worth noting that variability 

and complexity are different measures. For example a sine wave is variable, 

but not complex. (319) While there are several different entropy measures, 

sample entropy (SE) was developed by Richard and Moorman and is 
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independent of the length of the time-series and demonstrates good 

consistency compared to other measures. (320)  

SE measures the probability that sequences of a certain length (m) in a time-

series are repeated at a later point, with a certain degree of tolerance (r). 

Tolerance (r) is akin to a confidence interval. Additionally, it measures whether 

this pattern of sequences of length m, remain similar when the next sample 

(m+1) is included in the sequence. This is illustrated in Figure 7-3. Putting it 

simply SE quantifies the degree of irregularity vs. regularity in a time series. 

(247, 321, 322) Low values of SE suggest a greater degree of regularity and 

less complexity compared to higher values. SE, as a measure of complexity, 

will account for the interference from multiple regulatory systems affecting a 

time-series. (270, 319, 323) SE usually has no units ascribed to it. Patients 

with cardiovascular disease have been found in multiple studies to have a 

decreased SE of HR, meaning a decreased complexity of the HR signal and 

decreased ability of the HR to adapt to different stimuli, resulting in a 

decreased ability to respond to stressors and a higher morbidity during periods 

of illness. (324) SE of HR also decreases with age and is affected by both 

gender and obesity. (325-327)   
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Figure 7-3 Schematic illustration of computing sample entropy. 

 [adapted from (321, 328)] 

 

          B = number of matches of length m  

A = number of matches of length m+1 

𝑆𝑎𝑚𝑝𝐸𝑛 =  −log ((∑ 𝐴)/(∑ 𝐵)) 

 

7.1.5 Multiscale entropy (MSE) 

Multiscale entropy (MSE) is a technique to further define the richness / 

complexity of a time-series by taking into account the multiple time scales that 

exist in physiological systems. It is an extension of sample entropy and relies 

on calculating sample entropy over a range of different scales. By coarse-

graining or zooming out of a time series, MSE analysis allows us to assess 

complexity at varying timescales. Mathematically, this is achieved by creating 
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several sub-time series from the main time-series and calculating the sample 

entropy at each scale. This is illustrated in Figure 7-4. This is then plotted to 

assess cross-scale correlations (with scale on the x-axis and sample entropy 

on the y axis). A constant MSE graph, where the sample entropy values are 

roughly the same at each scale or where the values increase, represents a 

complex time-series. If the values decrease as the scale increases that 

suggests the time-series lacks structural richness. (329, 330) (247) 

Figure 7-4 Multiscale entropy analysis. 

 (Adapted from (329)) 
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7.1.5 Detrended fluctuation analysis 

To understand detrended fluctuation analysis, the following definitions are 

important to understand first.  

Fractal Dimension (289, 331) : 

To understand what a dimension is, it is necessary to understand why a 

straight line is one dimensional, a square two dimensional and cube three. All 

these objects are self-similar. If you break a line segment into two self-similar 

pieces, each with the same length, the scale or magnification factor is 2. If you 

break a square into 4 self-similar pieces, the scale here is 2. Similarly, if you 

break the square into 9 pieces the scale is 3. So, the square can be broken 

down into N2 self-similar copies which are magnified / have a scale of N and 

in this case a dimension of 2 (i.e., 2-dimension). This idea is shown in Figure 

7-5.  
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Figure 7-5 Understanding the concept of dimension. 

(Adapted from (289, 331) 

 

 

2 = 21 

Straight line broken into 2 pieces at a 

scale of 2 

 

 

3 = 31 

Straight line broken into 3 pieces at a 

scale of 3 

 

 

4 = 22  

Square broken into 4 pieces at a scale of 

2 

 

9 = 32 

Square broken into 9 pieces at a scale of 

3 

 

8 = 23 

Cube broken into 8 pieces at a scale of 2 

 

27 = 33 

Cube broken into 27 pieces at a scale of 3 
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Therefore, dimension is the exponent of the number of self-similar pieces with 

the magnification factor / scale and can be represented by the following 

equation:  

How many ‘pieces’ = ScaleDimension 

 

However, what if you had a self-similar structure, that was more complicated? 

A good example would be the Sierpinski triangle. (Figure 7-6) 

 

Figure 7-6 Sierpinski Triangle 

 

In order to find it’s dimension we need to rearrange the above formula into a 

logarithmic one: 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 =  
log(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑙𝑓_𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑝𝑖𝑒𝑐𝑒𝑠)

log(𝑠𝑐𝑎𝑙𝑒)
 

In the above example the dimension would be fractional. 
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This number in complicated self-similar structures is termed a fractal 

dimension. Therefore, fractal dimensions are measures of how ‘complicated’ 

self-similar structures are. 

Fractal time series 

The fractal dimensions described above, generally represent geometrical 

shapes and structures. However, time-series that display self-similarity or self-

affinity can have fractal properties. They may exhibit fractal scaling properties 

in either a statistical sense or an exact sense and can be quantified using 

fractal dimensions. (289) 

Self-Affinity 

This is a property of a fractal time series. This differs from self-similarity (seen 

in purely mathematical or geometrical fractals described above). Self-affinity 

describes anisotropic scaling whereby the statistical properties of the fractal 

scale differ along different dimensions. (332) 

Power-law function 

This is a functional relationship between two quantities whereby a relative 

change in one lead to a relative change in another. For example, an area of a 

square is related to the length of its side. If the length is doubled the area is 

multiplied by four. When the log of the relationships are plotted the result is a 

straight line.  
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Scale-free time series 

There is no typical distribution of a particular time-series. A scale-free time 

series will be made up of several sine waves with amplitudes inversely 

proportional to their frequency. When plotted on a double logarithmic axis, the 

result will be a straight line. (332) 

Non-stationary time-series 

This is a time-series where the statistical properties change over time. This 

time series will often have a trend.  

Detrended Fluctuation Analysis 

Many physiological time-series have no characteristic length scale, exhibit 

long-range power-law correlations, are self-affine and are non-stationary. This 

non-stationary element of physiological time-series is important as it suggests 

a complexity associated with different trends in the signal or different segments 

with different statistical properties. DFA accurately quantifies long-range 

power law correlations of a non-stationary time series, providing a quantitative 

parameter, known as the scaling exponent (α) which is akin to the fractal 

dimension. (234, 289) 

While the mathematics is complicated, DFA looks at the time-series at various 

scales, de-trends the data, by subtracting the local trend at each scale, and 

then calculates the fluctuation at each scale. The fluctuation is akin to the 

standard deviation. This computation is repeated several times and at different 

scales to provide a relationship between the fluctuation and the scale. This is 



 

393 
 

plotted in a double logarithmic axis and the exponent of the straight line is α. 

The values of α have various meanings: (234) 

• α = 0.5 indicates white noise and completely random fluctuation 

• 0.5 > α < 1.0 indicates positive autocorrelation, whereby, using heart 

rate, as an example one large inter-beat interval is followed by another 

large inter-beat interval. 

• α < 0.5 indicates anti-correlation, whereby for example one large inter-

beat interval is followed by a short inter-beat interval 

• α = 1.5 indicates brown noise  

• α = 1.0 indicates 1/f noise or pink noise which can be seen to be 

between the complete unpredictability of white noise to the very smooth 

and predictable Brownian noise.  

It is important to note, that in physiological time-series the scaling component 

is not always constant (independent of scale) and therefore crossovers often 

exist. This means the scaling component (α) differs for different ranges of 

scales. This is usually due to a change in the correlation properties of the 

signal at different time scales. (290) 
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7.2 Appendix 2: Systematic review database search strings 

7.2.1 Ovid MEDLINE / EMBASE Search Strategy 
Search Strategy - Ovid MEDLINE(R) ALL <1946 to April 12, 2023> 

# Searches 

1 exp Lung Diseases, Obstructive/ 

2 

(chronic adj2 (air* adj2 obstruct*)).mp. [mp=title, abstract, original title, name of 

substance word, subject heading word, floating sub-heading word, keyword 

heading word, organism supplementary concept word, protocol supplementary 

concept word, rare disease supplementary concept word, unique identifier, 

synonyms] 

3 

((lung* or pulmon* or respirat* or bronchopulmon*) adj3 obstruct*).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, floating sub-

heading word, keyword heading word, organism supplementary concept word, 

protocol supplementary concept word, rare disease supplementary concept word, 

unique identifier, synonyms] 

4 

(COAD or COBD or COPD).mp. [mp=title, abstract, original title, name of substance 

word, subject heading word, floating sub-heading word, keyword heading word, 

organism supplementary concept word, protocol supplementary concept word, rare 

disease supplementary concept word, unique identifier, synonyms] 

5 

((centriacinar* or centrilobular* or focal or panacinar* or panlobular* or pulmonar*) 

adj2 emphysem*).mp. [mp=title, abstract, original title, name of substance word, 

subject heading word, floating sub-heading word, keyword heading word, organism 

supplementary concept word, protocol supplementary concept word, rare disease 

supplementary concept word, unique identifier, synonyms] 

6 exp Bronchitis/ 

7 

bronchit*.mp. [mp=title, abstract, original title, name of substance word, subject 

heading word, floating sub-heading word, keyword heading word, organism 

supplementary concept word, protocol supplementary concept word, rare disease 

supplementary concept word, unique identifier, synonyms] 

8 Exp Emphysema/ 
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9 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 

10 
exp wearable electronic devices/ or exp fitness trackers/ or exp hearing aids/ or exp 

smart glasses/ 

11 

((fit or fitness) adj3 tracker*).mp. [mp=title, abstract, original title, name of substance 

word, subject heading word, floating sub-heading word, keyword heading word, 

organism supplementary concept word, protocol supplementary concept word, rare 

disease supplementary concept word, unique identifier, synonyms] 

12 

fitbit.mp. [mp=title, abstract, original title, name of substance word, subject heading 

word, floating sub-heading word, keyword heading word, organism supplementary 

concept word, protocol supplementary concept word, rare disease supplementary 

concept word, unique identifier, synonyms] 

13 

((wear* or portabl* or home) adj3 activity*).mp. [mp=title, abstract, original title, 

name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, organism supplementary concept word, protocol 

supplementary concept word, rare disease supplementary concept word, unique 

identifier, synonyms] 

14 

(activity* adj3 monitor*).mp. [mp=title, abstract, original title, name of substance 

word, subject heading word, floating sub-heading word, keyword heading word, 

organism supplementary concept word, protocol supplementary concept word, rare 

disease supplementary concept word, unique identifier, synonyms] 

15 

pedometer*.mp. [mp=title, abstract, original title, name of substance word, subject 

heading word, floating sub-heading word, keyword heading word, organism 

supplementary concept word, protocol supplementary concept word, rare disease 

supplementary concept word, unique identifier, synonyms] 

16 

((apple or smart) adj3 watch*).mp. [mp=title, abstract, original title, name of 

substance word, subject heading word, floating sub-heading word, keyword 

heading word, organism supplementary concept word, protocol supplementary 

concept word, rare disease supplementary concept word, unique identifier, 

synonyms] 

17 
((apple* or smart*) adj3 (telephone* or mobile* or cell*)).mp. [mp=title, abstract, 

original title, name of substance word, subject heading word, floating sub-heading 
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word, keyword heading word, organism supplementary concept word, protocol 

supplementary concept word, rare disease supplementary concept word, unique 

identifier, synonyms] 

18 exp Biosensing Techniques/ 

19 10 and 18 

20 

(wear* adj3 (ECG or electrocardiogram)).mp. [mp=title, abstract, original title, name 

of substance word, subject heading word, floating sub-heading word, keyword 

heading word, organism supplementary concept word, protocol supplementary 

concept word, rare disease supplementary concept word, unique identifier, 

synonyms] 

21 

(wear* adj3 ("blood pressure*" or hyperten*)).mp. [mp=title, abstract, original title, 

name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, organism supplementary concept word, protocol 

supplementary concept word, rare disease supplementary concept word, unique 

identifier, synonyms] 

22 

(acceleromet*).mp. [mp=title, abstract, original title, name of substance word, 

subject heading word, floating sub-heading word, keyword heading word, organism 

supplementary concept word, protocol supplementary concept word, rare disease 

supplementary concept word, unique identifier, synonyms] 

23 

((wear* or portabl* or home) adj10 (biosens* or sensor* or track*)).mp. [mp=title, 

abstract, original title, name of substance word, subject heading word, floating sub-

heading word, keyword heading word, organism supplementary concept word, 

protocol supplementary concept word, rare disease supplementary concept word, 

unique identifier, synonyms] 

24 

(Wear* adj3 monitor*).mp. [mp=title, abstract, original title, name of substance 

word, subject heading word, floating sub-heading word, keyword heading word, 

organism supplementary concept word, protocol supplementary concept word, rare 

disease supplementary concept word, unique identifier, synonyms] 

25 

((wear* or portabl* or home*) adj3 technolog*).mp. [mp=title, abstract, original title, 

name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, organism supplementary concept word, protocol 
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supplementary concept word, rare disease supplementary concept word, unique 

identifier, synonyms] 

26 

((wear* or portabl* or home*) adj3 (garment* or cloth* or shirt* or t?shirt* or blouse* 

or vest* or underwear)).mp. [mp=title, abstract, original title, name of substance 

word, subject heading word, floating sub-heading word, keyword heading word, 

organism supplementary concept word, protocol supplementary concept word, rare 

disease supplementary concept word, unique identifier, synonyms] 

27 exp Textiles/ 

28 exp oximetry/ or exp blood gas monitoring, transcutaneous/ 

29 

oximetr*.mp. [mp=title, abstract, original title, name of substance word, subject 

heading word, floating sub-heading word, keyword heading word, organism 

supplementary concept word, protocol supplementary concept word, rare disease 

supplementary concept word, unique identifier, synonyms] 

30 

((wear* or portabl* or home*) adj3 patch*).mp. [mp=title, abstract, original title, 

name of substance word, subject heading word, floating sub-heading word, 

keyword heading word, organism supplementary concept word, protocol 

supplementary concept word, rare disease supplementary concept word, unique 

identifier, synonyms] 

31 
10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 19 or 20 or 21 or 22 or 23 or 24 or 

25 or 26 or 27 or 28 or 29 or 30  

32 9 and 31 

33 Limit 32 to (English language) 

Note: For the EMBASE search an additional line limiting 33 to (article or article in press) was 

used. 
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7.2.2 CINAHL Search Strategy 
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7.2.3 CENTRAL Database Search Strategy 
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7.2.4 IEEE Search Terms used 
 

1. obstructive lung disease 

2. (All Metadata:COPD) OR (All Metadata:COAD) OR (All Metadata:COBD) 

3. bronchitis 

4. emphysem* 

5. (All Metadata:wear* electronic ) OR (All Metadata:wear* computer) OR (All 

Metadata:smart watch) 

6. (All Metadata:fitness tracker) OR (All Metadata:fitbit) OR (All Metadata:pedometer) 

7. (All Metadata:activity monitor) OR (All Metadata:accelerometer) OR (All 

Metadata:wear* sensor) 

8. ((((obstructive lung disease)) OR ((All Metadata:COPD) OR (All Metadata:COAD) OR (All 

Metadata:COBD))) OR (bronchitis)) OR (emphysem*) 

9. (All Metadata:textiles) OR (All Metadata:oximetr*) OR (All Metadata:wearable patch) 

OR (All Metadata:wearable garment) OR (All Metadata:wearable blood pressure) OR 

(All Metadata:wearable electrocardiogram) 

10. (All Metadata:wear* technolog*) 

11. (All Metadata:fitness tracker) OR (All Metadata:hearing aids) OR (All Metadata:smart 

glasses) 

12. (((((((All Metadata:wear* electronic ) OR (All Metadata:wear* computer) OR (All 

Metadata:smart watch))) OR ((All Metadata:fitness tracker) OR (All Metadata:fitbit) OR 

(All Metadata:pedometer))) OR ((All Metadata:activity monitor) OR (All 

Metadata:accelerometer) OR (All Metadata:wear* sensor))) OR ((All Metadata:textiles) 

OR (All Metadata:oximetr*) OR (All Metadata:wearable patch) OR (All 

Metadata:wearable garment) OR (All Metadata:wearable blood pressure) OR (All 

Metadata:wearable electrocardiogram))) OR ((All Metadata:wear* technolog*))) OR 

((All Metadata:fitness tracker) OR (All Metadata:hearing aids) OR (All Metadata:smart 

glasses)) 

13. (((((((((((((No Keywords Specified))) AND ((All Metadata:wear* electronic ) OR (All 

Metadata:wear* computer) OR (All Metadata:smart watch))) OR ((All Metadata:fitness 

tracker) OR (All Metadata:fitbit) OR (All Metadata:pedometer))) OR ((All 

Metadata:activity monitor) OR (All Metadata:accelerometer) OR (All Metadata:wear* 

sensor))) OR ((All Metadata:textiles) OR (All Metadata:oximetr*) OR (All 

Metadata:wearable patch) OR (All Metadata:wearable garment) OR (All 

Metadata:wearable blood pressure) OR (All Metadata:wearable electrocardiogram))) 

OR ((All Metadata:wear* technolog*))) OR ((All Metadata:fitness tracker) OR (All 

Metadata:hearing aids) OR (All Metadata:smart glasses))) AND ((No Keywords 

Specified))) AND (obstructive lung disease)) OR ((All Metadata:COPD) OR (All 

Metadata:COAD) OR (All Metadata:COBD))) OR (bronchitis)) OR (emphysem*) 
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7.3 Appendix 3: list of excluded studies with rationale 

Inaccurate COPD diagnosis 

Bender BG, Depew A, Emmett A, et al. A Patient-Centered Walking Program for 
COPD. Chronic Obstr Pulm Dis 2016; 3(4): 769-77. 
 
Lin WY, Verma VK, Lee MY, Lin HC, Lai CS. Prediction of 30-Day Readmission for 
COPD Patients Using Accelerometer-Based Activity Monitoring. Sensors (Basel) 
2019; 20(1). 
 
Martinez CH, Moy ML, Nguyen HQ, et al. Taking Healthy Steps: rationale, design and 
baseline characteristics of a randomized trial of a pedometer-based Internet-
mediated walking program in veterans with chronic obstructive pulmonary disease. 
BMC Pulm Med 2014; 14: 12. 
 
Moy ML, Collins RJ, Martinez CH, et al. An Internet-Mediated Pedometer-Based 
Program Improves Health-Related Quality-of-Life Domains and Daily Step Counts in 
COPD: A Randomized Controlled Trial. Chest 2015; 148(1): 128-37. 
 
Moy ML, Martinez CH, Kadri R, et al. Long-Term Effects of an Internet-Mediated 
Pedometer-Based Walking Program for Chronic Obstructive Pulmonary Disease: 
Randomized Controlled Trial. J Med Internet Res 2016; 18(8): e215. 
 
Orme MW, Weedon AE, Saukko PM, et al. Findings of the Chronic Obstructive 
Pulmonary Disease-Sitting and Exacerbations Trial (COPD-SEAT) in Reducing 
Sedentary Time Using Wearable and Mobile Technologies With Educational Support: 
Randomized Controlled Feasibility Trial. JMIR Mhealth Uhealth 2018; 6(4): e84. 
 
Riis HC, Jensen MH, Cichosz SL, Hejlesen OK. Prediction of exacerbation onset in 
chronic obstructive pulmonary disease patients. J Med Eng Technol 2016; 40(1): 1-
7. 
 
Tabak M, Vollenbroek-Hutten MM, van der Valk PD, van der Palen J, Hermens HJ. A 
telerehabilitation intervention for patients with Chronic Obstructive Pulmonary 
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7.4 The acceptability of wearable technology for long-term 

respiratory disease: a cross-sectional survey 

 

 

 

The acceptability of wearable technology for long-term respiratory 

disease: a cross-sectional survey  

You are being invited to participate in a research study titled: the acceptability of wearable 
technology for long-term respiratory disease: a cross-sectional survey. This study is being 
done by Dr Amar Shah and Dr Swapna Mandal who are respiratory doctors at the Royal 
Free Hospital in Hampstead, London and will form part of Dr Amar Shah’s PhD thesis being 
done at University College London. 
  
What is the purpose of this survey? 
The purpose of this research study is to try and find out whether wearable technology 
would be acceptable to patients who suffer with long-term respiratory disease, for example 
COPD, asthma, lung fibrosis, lung cancer, bronchiectasis etc. 
 
What is wearable technology? 
Wearable technology is any electronic device that is worn by someone close to and/or on 
the surface of the skin. It can collect information about that person for example, body 
signals such as heart rate or breathing rate or oxygen levels, activity levels, sleep patterns 
etc. It can track these signals, monitor progress, and let that person know how the signals 
have changed (feedback). Most of the wearable technology that is available to buy has not 
been tested in a research study and the results can sometimes be inaccurate. Examples of 
wearable technology can be seen in the picture below: 
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 We are interested in getting patients’ views on the following: 
 
1) Is new wearable technology something they would be interested in trying in the 
future? 
2) Do they think new wearable technology could help them with their lung conditions? 
3) What features are important in any new technology? 
  
What will the information be used for? 
The information from this survey will be used to hopefully guide future development of 
new technology that is specific to patients with respiratory disease. It will also give us an 
idea on what features are important to patients when designing new technology. We will 
aim to publish the information in a medical journal. Your answers are completely 
anonymous and you will not be identifiable from the information. 
  
How will the information be processed and stored? 
All the information on this survey is treated confidentially by SurveyMonkey. All data is 
collected and the content is stored in a manner consistent with industry security standards 
in accordance with the Data Protection Act 2018 and is General Data Protection Regulation 
(GDPR) compliant. All the information we collect about you during the course of the 
research will be kept strictly confidential and only the research team directly involved in 
the study will have access to the answers. You will not be able to be identified in any 
publications or reports from this research. We will share the anonymised data with 
selected non-commercial third parties, such as respiratory charities. 
  
We believe there are no known risks associated with this research study. However, as with 
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any online related activity the risk of a breach is always possible. 
  
Your participation in this study is entirely voluntary and will take approximately 10-15 
minutes (including reading the information sheet) to complete. You do not have to answer 
any questions you do not want to. If you are happy to take part you will be asked to fill a 
consent form. 
  
For further information about the study please download the participant information 
sheet: 
[https://drive.google.com/file/d/1kTz_Zn3lYXziqNMrmoJdHUEN3kvXIE_G/view?usp=sharin
g] and retain this for your records. 

 
 

1. I have read the above information and the patient information sheet. Please tick one 

of the following options: 

☐ I wish to proceed with this study and am happy to give my consent 

☐ I do not wish to proceed with this study  

  

https://drive.google.com/file/d/1kTz_Zn3lYXziqNMrmoJdHUEN3kvXIE_G/view?usp=sharing
https://drive.google.com/file/d/1kTz_Zn3lYXziqNMrmoJdHUEN3kvXIE_G/view?usp=sharing
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2. Which of the following lung conditions are you currently affected by? If not listed 

please use the other box and write the condition down. (Please tick all that apply). 

☐ Chronic obstructive lung disease (COPD) 

☐ Obstructive sleep apnoea (OSA) 

☐ Asthma 

☐ Lung cancer 

☐ Interstitial lung disease (ILD), including idiopathic pulmonary fibrosis (IPF) and 

sarcoidosis 

☐ Bronchiectasis 

☐ Long COVID 

☐ Other ……………………………………………………………….. 

 

3. Do you currently wear something to monitor your health and wellbeing? 

☐ Yes (Go to Q4) ☐  No (Go to Q8, page 5) 
 

4. What type of device to you currently wear to monitor your health and wellbeing? 

Please choose the type of device from the following list. If not listed please use the 

‘other’ box and write down the name of the device. (Please tick all that apply). 

☐ Smart watch (e.g., Apple watch, Samsung watch, Garmin watch or others that are 

designed to monitor your health and well-being)  

☐ Fitbit® 

☐ Smart glasses that are designed to monitor your health and wellbeing 

☐ Smart Ring (e.g., oura rings or others that monitor your health and wellbeing) 

☐ Pedometer or step counter 

☐ Clothing (including T-shirt, vest etc./ that monitor your health and wellbeing with 

sensors) 

☐ Patch (e.g., glucose monitoring patch, or others that monitor your health and wellbeing) 

☐ Belts (e.g., across your chest or tummy or elsewhere that are able to monitor your 

health and wellbeing) 

☐ Other (please specify) 

………………………………………………………………………………………………………… 
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5. What do you use this wearable technology for, specifically in relation to your lung 

condition? (Tick all that apply) 

☐ To monitor symptoms of my lung condition through measurements, such as breathing 

rate, respiratory effort, oxygen levels etc. 

☐ To remind me to take medication for my lung condition   

☐ To encourage exercise or other self-care for my lung condition  

☐ To help predict when I might become unwell from my lung condition 

☐ Not applicable  

☐ Other (please specify) 

……………………………………………………………………………………………………………. 

 

6. What do you use this wearable technology for, in relation to your general health? (Tick 

all that apply) 

☐ General health measurements e.g., heart rate, sleep quality, oxygen levels 

☐ To track my progress against general health goals 

☐ To remind me to take medication  

☐ To encourage exercise or other self-care  

☐ Not applicable Other (please state) 

☐ Other (please specify) 

………………………………………………………………………………………………………………… 

 

7. I find the device I use to monitor my health useful. 

Strongly 
disagree 

 

☐ 

Disagree 
 
 

☐ 

Somewhat 
disagree 

 

☐ 

Neutral 
 
 

☐ 

Somewhat 
Agree 

 

☐ 

Agree 
 
 

☐ 

Strongly 
Agree 

 

☐ 
 

 

8. I would like to learn about new technology that I can wear. 

Strongly 
disagree 

 

☐ 

Disagree 
 
 

☐ 

Somewhat 
disagree 

 

☐ 

Neutral 
 
 

☐ 

Somewhat 
Agree 

 

☐ 

Agree 
 
 

☐ 

Strongly 
Agree 

 

☐ 
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9. Wearable technology will increase my confidence to monitor my long-term lung 

condition at home. 

Strongly 
disagree 

 

☐ 

Disagree 
 
 

☐ 

Somewhat 
disagree 

 

☐ 

Neutral 
 
 

☐ 

Somewhat 
Agree 

 

☐ 

Agree 
 
 

☐ 

Strongly 
Agree 

 

☐ 
 

10. I believe that wearable technology will reduce the number of times I see a doctor or 

my community, in relation to my lung condition. 

Strongly 
disagree 

 

☐ 

Disagree 
 
 

☐ 

Somewhat 
disagree 

 

☐ 

Neutral 
 
 

☐ 

Somewhat 
Agree 

 

☐ 

Agree 
 
 

☐ 

Strongly 
Agree 

 

☐ 
 

11. Wearable technology that helps me with the following would be useful for me. (Tick 

all that apply) 

☐ Detects when I am becoming unwell 

☐ Helps me to manage my symptoms (e.g. breathlessness, cough, chest tightness etc.) 

☐ Reminds me to take my medication 

☐ Encourages me to exercise and become more active 

☐ Improves my sleep quality 

☐ Other (please specify) 

……………………………………………………………………………………………………….. 

 

 

12. I think that the wearable technology that is currently available is accurate. 

Strongly 
disagree 

 

☐ 

Disagree 
 
 

☐ 

Somewhat 
disagree 

 

☐ 

Neutral 
 
 

☐ 

Somewhat 
Agree 

 

☐ 

Agree 
 
 

☐ 

Strongly 
Agree 

 

☐ 
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13. Which of the following 3 characteristics of wearable technology are most important 

to you? 

☐ Easy to learn 

☐ Easy to use 

☐ Battery life 

☐ Price and brand 

☐ Look and feel (aesthetics) 

☐ Accurate (correct) results 

☐ Privacy of data collected 

☐ Other (please specify) 

………………………………………………………………………………………………………… 

 

14. How would you prefer to access the information recorded / monitored from the 

wearable technology (Tick all that apply) 

☐ Own mobile phone 

☐ Through the wearable technology itself (e.g., screen directly on technology) 

☐ A computer or tablet 

☐ An extra monitor that attaches to the wearable device 

☐ I would not want to access any of the information and would prefer it to go directly to 

my healthcare provider (e.g., doctor, nurse, physiotherapist) 

☐ Other (please specify) 

………………………………………………………………………………………………………….. 

 

15. It is important that the wearable technology links to other devices that I use to 

monitor my health (e.g., peak flow meter, exercise diary, symptom diary). 

Strongly 
disagree 

 

☐ 

Disagree 
 
 

☐ 

Somewhat 
disagree 

 

☐ 

Neutral 
 
 

☐ 

Somewhat 
Agree 

 

☐ 

Agree 
 
 

☐ 

Strongly 
Agree 

 

☐ 
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16. It is important that the wearable technology has undergone testing in an appropriate 

clinical trial and has been approved by regulatory bodies. 

Strongly 
disagree 

 

☐ 

Disagree 
 
 

☐ 

Somewhat 
disagree 

 

☐ 

Neutral 
 
 

☐ 

Somewhat 
Agree 

 

☐ 

Agree 
 
 

☐ 

Strongly 
Agree 

 

☐ 
 

 

17. The wearable technology should look the same as other everyday items so that other 

people don’t know I am wearing it. 

Strongly 
agree 

 

☐ 

Agree 
 
 

☐ 

Somewhat 
Agree 

 

☐ 

Neutral 
 
 

☐ 

Somewhat 
Disagree 

 

☐ 

Disagree 
 
 

☐ 

Strongly 
Disagree 

 

☐ 
 

18. I think wearable technology will become a normal part of everyday life in the future. 

Strongly 
disagree 

 

☐ 

Disagree 
 
 

☐ 

Somewhat 
disagree 

 

☐ 

Neutral 
 
 

☐ 

Somewhat 
Agree 

 

☐ 

Agree 
 
 

☐ 

Strongly 
Agree 

 

☐ 
 

19. I am more likely to use wearable technology if I have the support from my friends and 

family 

Strongly 
disagree 

 

☐ 

Disagree 
 
 

☐ 

Somewhat 
disagree 

 

☐ 

Neutral 
 
 

☐ 

Somewhat 
Agree 

 

☐ 

Agree 
 
 

☐ 

Strongly 
Agree 

 

☐ 
 

20.  Do you have any other comments or thought on wearable technology to manage 

your lung condition? 
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Demographic data 

The next part of the survey is to give us a bit of information about you. This information is 

completely anonymous but feel free to end the survey if you do not wish to answer this 

section. 

 

21. Please select what age range you fit into. 

☐ 18 – 21 years  ☐ 41 – 50 years ☐ 71 – 80 years  

☐ 22 – 30 years ☐ 51 – 60 years ☐ 81 – 90 years  

☐ 31 – 40 years  ☐ 61 – 70 years  ☐ Above 90 years 
 

22. What is your gender? 

☐ Male  ☐ Intersex 

☐ Female ☐ Transgender 

☐ Non-binary ☐ Other ………………………………………….. 
 ☐ Prefer not to say 

 

23. What is your ethnicity? 

☐ Asian Other  ☐ Black Caribbean ☐ Pakistani 

☐ Bangladeshi ☐ Chinese ☐ White British 

☐ Black African ☐ Hispanic or Latino ☐ Mixed 

☐ Black British ☐ Indian ☐ Other (please specify) 
 
 

 

24. Which of the following best describes your approximate household income last year? 

☐ £0  ☐ Between £50,000 and £74,999 

☐ Between £1 and £9,999 ☐ Between £75,000 and £99,999 

☐ Between £10,000 and £24,999 ☐ Over £100,000  

☐ Between £25,000 and £49,999 ☐ Prefer not to answer 
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7.5 Matlab code used for the thesis 

The code used for this thesis has been uploaded as part of a Github repository 

and can be freely viewed from the following link: 

https://github.com/amarshah191288/PhD-Thesis.git 

The repository is publicly available and archived. To see the code, please 

access the individual branches labelled: 

• Stable-COPD 

• Exacerbating-COPD 

• Health-controls 

These can be accessed on the main page by switching from the ‘main’ branch. 

 

 

  

https://github.com/amarshah191288/PhD-Thesis.git
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7.6 Overnight limited cardio-respiratory polygraphy 

Cardiorespiratory polygraphy is a non-invasive multi-channel overnight sleep 

study which records several parameters including: 

• Nasal flow (and as a result respiratory rate) 

• Oxygen saturations 

• Heart rate 

• Abdominal and thoracic movements (through piezoelectric bands) 

Prior studies have shown that this type of sleep study has a high sensitivity 

and specificity for the diagnosis of sleep disordered breathing compared to a 

full polysomnography (which includes electroencephalography amongst other 

signals), with one study showing the area under the ROC curve for AHI ≥5, 

≥10 and ≥15 was 0.896, 0.907 and 0.862 respectively. (333) Subsequent 

studies and guidelines now accept these studies as gold standard diagnostic 

tools for sleep disordered breathing. (52, 334) 

The signals from this study are manually scored with previously identified 

American Association of Sleep Medicine criteria (52) to define a hypopnoea 

and apnoea as follows: 

• Hypopnoea: ≥ 30% reduction in nasal flow which is followed by a 3% or 

4% desaturation. 

• Apnoea: ≥ 90% reduction in nasal flow which may or may not be 

followed by a desaturation 
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The abdominal and thoracic belt movement is then used to characterise the 

apnoeas and hypopnoeas as either obstructive (ongoing abdominal / thoracic 

belt movement), central (no movement at all in these belts) or mixed.  

This leads to an overall apnoea/hypopnoea index (AHI) and categorises these 

into obstructive, central and/or mixed events to give an overall diagnosis.  

The device used for this study (Embletta MPR PG ambulatory (unattended) 

polygraph sleep monitor (Stowood scientific instruments ltd)) is routinely used 

at the Royal Free Hospital sleep service.  

7.7 Measures of health-related quality of life 

A variety of different health-related quality of life scores and measures were 

used throughout all the studies. The CAT score and MRC score have already 

been described in the introduction (1.1.5) and so have not been repeated here.  

7.7.1 Epworth sleepiness scale 

The Epworth sleepiness scale (ESS) was first developed by Dr Johns in 1990, 

named after the Epworth hospital in Melbourne. It is a validated eight item 

questionnaire which is used to indicate daytime somnolence which is a 

prominent symptom in patients with sleep disordered breathing. Johns showed 

that it can differentiate between simple snorers, those with OSA and healthy 

controls. In patients with OSA the ESS is also significantly correlated to the 

respiratory disturbance index and the minimum oxygen saturation recorded.  

(335, 336) However, the correlation between AHI and ESS has been poor, 

with two studies finding no association between the two (R2 0.011), (337) and 

(R2 = 0.001). (338)  
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The ESS asks patients to rate between 0 – 3 (0 = no chance of dozing, 1 = 

slight chance, 2 = moderate chance, 3 = high chance) how likely they are to 

fall asleep in the following scenarios: 

• Sitting and reading 

• Watching TV 

• Sitting, inactive in a public place (e.g., a theatre or a meeting) 

• As a passenger in a car for an hour without a break 

• Lying down to rest in the afternoon if allowed to do so 

• Sitting and talking to someone 

• Sitting quietly after lunch without alcohol 

• In car or bus stopped for a few minutes 

A score of > 10 suggests mildly increased daytime sleepiness, with a score ≥ 

16 suggestive of excessive daytime somnolence. (335) There are several 

limitations to the ESS. Several studies have failed to demonstrate an 

association between ESS and OSA severity. Furthermore, only about 40% of 

patients with moderate-severe OSA will have an ESS greater than the cut-off 

of 10, and importantly some individuals with low ESS scores will give positive 

responses to different questions regarding sleepiness. (339) 

7.7.2 Sleep questionnaire 

This baseline sleep questionnaire was developed specifically for this study. 

The questionnaire aimed to encapsulate a concise sleep history, to 

understand participant symptomatology. The first part of the questionnaire 

asked participants to rate between 0 – 3 (0 = never, 1 = occasionally / some 
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days, 2 = frequently / most days, 3 = always / every day) how likely they are 

to suffer with the following symptoms: 

• Snoring while sleeping at night. 

• Choking episodes or waking up gasping for breath. 

• Someone has seen them stop breathing in their sleep. 

• Breathless when lying flat at night. 

• Early morning headaches. 

• Increased daytime sleepiness. 

• Confusion in the morning. 

• Waking up un-refreshed. 

Participants were then asked a series of questions including: 

• Whether they wake up overnight to pass urine? 

• How many hours they sleep at night? 

• Whether they have trouble getting to sleep at night. 

• The average time it takes them to fall asleep? 

• How long they take to get back to sleep if woken in the middle of the 

night? 

• Do they currently drive? 

• If they do drive, they were asked about whether they had had any of the 

following since starting CPAP: 

o A road traffic accident because of falling asleep 

o Head nodding or bobbing 
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o Hitting the rumble strip on the motor way 

o Regular use of alerting manoeuvres such as keeping the 

windows open, stopping to stretch, or listening to loud music to 

help stay awake.  
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