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Abstract

A typical learning problem involves training an estimator f(X,...,X,,) on some data
set X,...,X,,. Gaussian universality is the observation that, for many potentially com-
plicated estimators, properties of the estimator are preserved if the training data are sub-
stituted by appropriately chosen Gaussian distributions. This unlocks a wide range of
empirical and theoretical tools for analysing the trained estimator, since Gaussian dis-
tributions are both analytically tractable and computationally fast to simulate. Univer-
sality results have been observed in statistical physics, random matrix theory and other
branches of probability; in recent papers, they have been theoretically and/or empirically
established for several high-dimensional models across statistics and machine learning
(ML). One crucial question is the extent to which universality may hold under high di-

mensionality and dependence.

To address this, this thesis develops Gaussian universality results for a general class of
estimators of high-dimensional data, with nearly matching upper and lower bounds. The
results cover any f well-approximated by strictly monotone functions of polynomials,
whose degree grows not too fast with respect to the sample size n. No explicit require-
ments are imposed on the number of data dimensions with respect to n. Together with
the fourth moment phenomenon of Nualart and Peccati (2005), our results imply neces-
sary and sufficient conditions for the asymptotic normality of approximately polynomial

estimators.

The remainder of this thesis focuses on how universality results can recover, ex-
tend and establish new high-dimensional analyses across statistics and machine learn-
ing. These include: (i) a complete distributional characterisation of high-dimensional
U-statistics used for kernel-based testing via a moment ratio; (i1) a high-dimensional
delta method; (iii) a finite-sample approximation of subgraph count statistics that recover
known geometric conditions; (iv) characterising the unexpected effects of dependence
under the popular ML practice of data augmentation; (v) analysis of optimisation algo-

rithms found in ML and Al for Science.



Impact Statement

This thesis focuses on the theory of Gaussian universality, which extends the classical
probability result of central limit theorem to more general algorithms and estimation
methods. The main contributions include the development of universality results for
high-dimensional data and for block dependence, a tight characterisation of a range of
settings to which universality applies, and the applications of universality results to pro-
vide theoretical and practical intuitions on various statistical and machine learning algo-

rithms.

In probability, statistics and machine learning theory, Gaussian approximations are
routinely used for simplifying analysis of complex models, understanding hyperparam-
eter choices and providing consistency and uncertainty guarantees for algorithms. One
direct impact of this work is the provision of several general tools and recipes, which
extend known results, that can be used to obtain new understanding for various practical
models and algorithms. This thesis also contains concrete applications where such anal-
ysis is performed, which offer additional understanding on the effects of data augmen-
tation, the behaviour of high-dimensional hypothesis testing, the prediction performance
of an optimisation problem, the stability of training algorithms and so on. These provide
additional mathematical insights that may aid practitioners in their day-to-day choice of

algorithms and models.

In critical real-world applications such as finance, medicine, scientific discovery and
social policy research, classical statistical results such as the central limit theorem are piv-
otal in providing uncertainty quantification, robustness guarantees and bias controls. This
thesis provides several extensions of such results to the setting with high-dimensional and
dependent data, which commonly arise in the modern era of “big data”. Such extensions
are vital, both for ensuring the validity and safety of the algorithms used in these domains,
and for identifying and rectifying possible points of failure with a rigorous mathematical

guidance.
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Chapter1

Introduction

A central premise of statistics and machine learning is the ability to learn from data.
Given a finite set of observed data from some unknown mechanism p, one seeks the
best estimators and models, trained on these observations, that are capable of inferring
various properties of 1 and of making predictions about future observations from pu.
Over the last decade, the complexity and scale of these learning algorithms and datasets
have grown at an unprecedented pace, and have led to remarkable empirical successes

across many fields of machine learning (ML) and applied statistics.

A solid theoretical understanding of these algorithms, however, remains difficult.
This is in part due to the complex data and training regimes in which they operate, and
in part due to the many heuristics they require to run effectively. Many well-established
tools of statistical and ML theory are developed under the classical regime of assump-
tions, where data are typically low-dimensional and independently sampled, and where
estimators take simple closed forms with a few learnable parameters. In contrast, modern
statistical estimation and ML algorithms are usually defined implicitly through complex
optimisation algorithms, operate on data and parameters that live in a high-dimensional

space, and are heavily influenced by the engineering heuristics employed during training.

The gap between theory and practice leaves many practically important questions un-
solved: How sensitive is my algorithm to specific hyperparameter choices? Do specific
training heuristics help or hurt my models? How confident should I be about the answers
returned by my models? These questions underline a broader set of theoretical proper-
ties we desire for our algorithms and models, such as uncertainty quantification, robust-
ness and bias control (Abdar et al., 2021; Mehrabi et al., 2021; Freiesleben and Grote,
2023). The ability to obtain such theoretical guarantees is critical in high-stake applica-
tions e.g. finance, medicine and social policy research, where verifying the correctness of
model outputs is expensive, difficult or ethically and legally challenging (Grimmer et al.,
2021; Giovanola and Tiribelli, 2023; Blasco et al., 2024).

One of the many attempts to address this gap is the theoretical framework of univer-
sality, which has gained substantial interests across statistics and machine learning over

the last decade. This thesis constitutes a modest effort to contribute to its development.
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Specifically, the goal of this thesis is to develop theoretical characterisations and applica-
tions of universality in the modern regime of high-dimensional and dependent data, for
estimators at various levels of complexity, and in pursuit of partial answers to some of

the aforementioned practical questions.

To give a high-level introduction of universality, from now on, we treat estimators
and algorithms as functions of the inherent randomness in the observed data. To be more

concrete, we study objects of the form

X = (Xy,...,X,) are random observations taking values in a high-dimensional Eu-
clidean space R?, where d = d(n) is typically of a comparable size to n. The function
f: (RY)"™ — R? describes a chosen property of interest of a learning algorithm trained
with X. Examples in this thesis range from estimators used in high-dimensional hy-
pothesis testing, prediction risk of high-dimensional estimators, to stability estimate of

gradients of large neural network models used in Al for physics.

Universality is the probabilistic phenomenon that, for many potentially complicated

functions f, properties of (1.1) resemble those of the surrogate estimate

f(2) = f(Z4,,...,2,) .

Z =(%,...,Z,) are random vectors that take substantially simpler forms than X. Such
results are “universal” in that it typically holds for a wide class of data distributions of
X, allowing for the influence of complicated datasets to be reduced to simple surrogates.
When Z consists of Gaussian random vectors, we refer to this phenomenon as Gaus-
sian universality. Most of this thesis concerns Gaussian universality (except for parts of

Chapter 6), and we use the two terms interchangeably unless otherwise specified.

A special case of Gaussian universality is the celebrated central limit theorem (CLT).
For i.i.d. univariate random variables X, ..., X,,, the CLT can be viewed as a universal-

ity result by taking f to be a rescaled empirical average:
1 n 1 n e e e .
N > (Xi—E[Xj]) ~ 7 > ., (Zi —E[Xi]) in distribution as n — oo .

Z;’s are 1.1.d. Gaussian variables with the same mean and variance as X, and one con-
cludes that the above sum has a normal limit by noting that an average of Gaussians is
again a Gaussian. The CLT approximation error can be further quantified at finite n by

the celebrated Berry-Esseen theorem, which gives a finite number C' such that

P 0, (- BIXD) <t) —P(S= X0, (2 - BIX)) < )| < 0o 2

The CLT was first developed by de Moivre (1733) for Bernoulli random variables X,’s
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and extended to general X;’s by a series of work throughout the 19th and early 20th cen-
turies. When first established, it confirmed the many numerical findings at its time about
the emergence of Gaussian distribution as a “common error curve” for an average; see
Fischer (2011) for a historical account. To date, the CLT has served as one of the most
fundamental results used in statistics, probability and machine learning in both theoreti-
cal and applied domains. Normal approximations of averages are now routinely applied
in hypothesis testing, confidence intervals, regression analysis, statistical modelling, op-
timisation algorithm analyses and, indeed, any general setting where one expects a sum

of weakly dependent, low-dimensional and mildly well-behaved random variables.

One of the first efforts to develop universality results beyond averages are the works
of Rotar (1976), Rotar et al. (1979), Mossel, O’Donnell, and Oleszkiewicz (2005, 2010)
and Chatterjee (2006). A shared observation was that Lindeberg’s swapping technique
— used for proving the CLT in Lindeberg (1922); Trotter (1959) — can be extended to
well-behaved multilinear polynomials as well as general functions with suitable stability
properties. Meanwhile, the Malliavin-Stein method has also been shown as a powerful
alternative to Lindeberg’s technique for establishing universality in Gaussian variables
(see e.g. Nourdin et al. (2010)). These immediately led to a body of fruitful universality
results for spectral properties of large random matrices (Chatterjee, 2006; Tao and Vu,
2011, 2015; Wang and Paul, 2014; Wood, 2016; Basak et al., 2018). At the same time,
the notion of universality has been developed and widely applied in many problems in
statistical physics; see Kadanoff (1990) for a survey of the area. Building on these under-
standings, a wave of universality results started emerging for estimators found in com-
munications and statistical learning (Korada and Montanari, 2011; Wen et al., 2012), sta-
tistical physics (Bayati et al., 2015; Caravenna et al., 2016) and high-dimensional statis-
tics (Chernozhukov et al., 2013, 2017; Montanari and Nguyen, 2017; Dobriban and Liu,
2019). In parallel to the course of this thesis, universality results are being rapidly estab-
lished theoretically and/or empirically for estimators found in machine learning: A non-
exhaustive list includes random feature models (Hu and Lu, 2022), regularised regression
(Han and Shen, 2023), generalised linear models (Dandi et al., 2023), perceptron mod-
els (Gerace et al., 2024), max-margin classifiers (Montanari et al., 2023), general classes
of empirical risk minimisers (Montanari and Saeed, 2022), representations of data gen-
erated by generative adversarial networks (Seddik et al., 2020), student-teacher models
(Loureiro et al., 2021; Pesce et al., 2023) and diffusion models (Ghane et al., 2025).

In almost all of the aforementioned results or their subsequent extensions, universality
has proved to be successful in characterising various properties of the estimator f(X).
This is often no mean feat: Unlike the case of an empirical average, f(Z) may still follow
an intractable distribution. Numerically, f(Z) is typically analysed by simulations with

Gaussian variables, which are computationally fast to generate. Theoretically, further
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analyses are made possible thanks to the wide range of tools developed specifically for
addressing Gaussian data, such as the cavity method (Opper et al., 2001), approximate
message passing method (Donoho et al., 2009), the replica method (Mézard et al., 1987)
and the convex Gaussian min-max theorem (Gordon, 1985; Thrampoulidis et al., 2014).
These techniques are grounded on the well-understood properties of Gaussian processes

and Gaussian matrices, and are constantly evolving to adapt to new complicated settings.

In view of these developments, this thesis sets out to address the following questions:

(i) For what class of functions f can universality results of the form f(X) ~ f(Z) be
established, and are there examples where universality ceases to hold?
(i1) Is the finite-sample upper bound on the universality approximation, typically given
by the Lindeberg method, improveable?
(ii1)) How do universality results behave under high-dimensionality, i.e. when dimension
d of the data is comparable or large compared to n?
(iv) How do universality results behave under dependence, i.e. when X;,..., X, are
not i.i.d.?
(v) How may we use universality to gain theoretical and practical insights on statistical

and machine learning applications?

The core theoretical results of this thesis, which seek to address (i), (i) and (iii),
are presented in Chapter 4. Informally those results imply that, if f ~ h o q is well-
approximated by some strictly monotonic function h of some low-degree polynomial
function ¢, universality applies, even when the dimension d = d(n) of data is large

relative to the number of samples n.

The rest of the thesis investigates (iii)—(v) across a diverse range of examples and ap-
plications in Chapters 3, 5, 6 and 7. These include estimators trained with the ML tech-
nique of data augmentation, U-statistics found in high-dimensional kernel-based testing,
subgraph count statistics, plug-in estimators, ridge and ridgeless regressions, softmax en-
semble estimator, the contrastive divergence algorithm (typically used for energy-based
model training) and the variational Monte Carlo algorithm (used in large-scale neural
network solvers to the many-body Schrodinger equation). Examples of the properties
we analyse include variance and stability properties, consistency, training and test risk
behaviours e.g. the double-descent risk curve of high-dimensional estimators, and other

effects of hyperparameter choices.
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1.1 Thesis outline and relation to the author’s works

In the rest of this chapter, Section 1.2 clarifies notations and terminology. Chapter 2 re-
views the Lindeberg method, a core proof technique of universality, and briefly discusses
its comparison to other distributional approximation techniques. Chapter 8 concludes the

thesis by discussing some ongoing developments in the literature and future directions.

The remaining chapters are based on works completed over the course of this thesis.
Note that the chapters below are organised in the order of ease of presentation, rather

than in the order of completion of the corresponding works.

Chapter 3 motivates the applicability of universality in high-dimensional analysis by
studying the distributional approximation of a degree-two U-statistic. As a consequence,
we establish how commonly used kernel-based test statistics can exhibit different asymp-
totics as a result of their hyperparameter choices. Most of Chapter 3 is based on the

publication

K. H. Huang, X. Liu, A. Duncan, and A. Gandy. A high-dimensional con-
vergence theorem for U-statistics with applications to kernel-based testing.
In The Thirty Sixth Annual Conference on Learning Theory (COLT), pages
3827-3918. PMLR, 2023,

except for tightness results on the error of approximation, which is based on the work

K. H. Huang and P. Orbanz. Slow rates of approximation of U-statistics and
V-statistics by quadratic forms of Gaussians. arXiv:2406.12437, 2024.

Chapter 4 develops a set of general universality results that characterise the class
of functions for which universality holds. As direct applications, Chapter 5 presents a
higher-order delta method with possibly non-Gaussian limits, and generalise a number of
known results on high-dimensional and infinite-order U-statistics, and on fluctuations of

subgraph counts. Both chapters are based on the work

K. H. Huang, M. Austern and P. Orbanz. Gaussian universality for approx-
imately polynomial functions of high-dimensional data. arXiv:2403.10711,
2024.

Chapter 6 analyses the effects of data augmentation, a ubiquitous machine learning
technique, by developing universality results under block dependence and for estima-
tors beyond polynomials. This enables us to show that variance reduction and regular-
isation, two effects commonly associated with data augmentation, can be nuanced and

hyperparameter-dependent. This is based on the work

K. H. Huang, P. Orbanz and M. Austern. Gaussian and Non-Gaussian uni-
versality of data augmentation. arXiv:2202.09134, 2022.
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Chapter 7 considers the role of Gaussian universality in optimisation analysis, es-
pecially in the case where the object of interest may not admit a closed-form formula
in terms of the data. Section 7.1 presents a convex Gaussian min-max theorem under
dependence, which is useful for analysing the risks of a high-dimensional optimisation.

This is developed as part of the joint work

M. E. Mallory*, K. H. Huang* and M. Austern. Universality of high-dimensional
logistic regression and a novel CGMT under dependence with applications
to data augmentation. arXiv:2502.15752, 2025. (*equal contribution)

Section 7.2 discusses the implications of Gaussian universality in one-step and multi-step
stability analyses of training algorithms employed in practical machine learning prob-

lems. The results presented are partially used in the publication

P. Glaser, K. H. Huang and A. Gretton. Near-optimality of contrastive di-
vergence algorithms. The Thirty-eighth Annual Conference on Neural Infor-

mation Processing Systems (NeurIPS), 2024,
as well as in the work

K. H. Huang, N. Zhan, E. Ertekin, P. Orbanz and R. P. Adams. Diagonal
symmetrization of neural network solvers for the many-electron Schrodinger
equation. arXiv:2502.05318, 2025.

We emphasise that universality is not the key message of either work, and our focus will

primarily be on highlighting the connection of universality to their analyses.

1.2 Notation and terminology

Asymptotics. Throughout this thesis, we use the asymptotic notations o, O, ©, w, ) de-
fined in the usual way (see e.g. Chapter 3 of Cormen et al. (2009)) under the limit n — oo.
The dimension parameter d = d(n) is always allowed to depend on n, and we omit the
dependence on n for simplicity. With an abuse of notation, we write n, d — co to mean
that the n-dependent sequence d(n) — oo as n — oo. We also use the terminology
finite-sample bounds to mean error bounds that hold for finite n and d, without taking
asymptotics. The error bounds often involve unspecified numerical constants that do not
depend on n, d or any other properties of the data or the estimators. These are referred to

as absolute constants in our results.

Norms. We use for the Euclidean norm,

op for the matrix operator norm,

o|l.. = E[|+|*]"* for the L, norm and |||, as the infinity norm (typically for a

14

function).
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Terminology: Gaussian universality. We use the term Gaussian universality to refer
to the approximation of a function of (X;);<, by the same function of Gaussian vectors
(Z;)i<n; this matches the nomenclature of most of the literature surveyed in the intro-
duction. Some texts—for example, in the context of Gaussian approximation of Wiener
chaos—use the term instead to indicate that the overall function is asymptotically nor-
mal, see e.g. Chapter 11 of Nourdin and Peccati (2012). Since our approximation f(2)
still involves n-dependent quantities, it may have Gaussian or non-Gaussian limits (Sec-
tion 4.4).
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Chapter 2

Brief review on the Lindeberg method

This phenomenon, when the final asymptotic result
proves to be insensitive to the fine details of the

original problem, is known as universality.

Andrei Okounkov

Symmetric functions and random partitions, 2003

In this chapter, we briefly review the Lindeberg method (also known in the literature
as Lindeberg’s swapping technique or Lindeberg’s principle) for proving upper bounds
on a universality approximation. Some of the earliest developments of these results trace
back to Rotar (1976), Rotar et al. (1979), Mossel, O’Donnell, and Oleszkiewicz (2005,
2010) and Chatterjee (2006), and we also refer interested readers to Van Handel (2014)

for a more comprehensive introduction to the method.

The chapter is organised as follows. Section 2.1 presents a full walk-through of the
Lindeberg method in the independent univariate case. Section 2.2 discusses possible
modifications to the Lindeberg proof, which are formalised and used in the rest of the

thesis for various applications.

2.1 The Lindeberg method for functions of independent univariate random vari-

ables

Let X, X5, ... be independent (not necessarily identically distributed) and mean-zero
univariate random variables with finite third absolute moments. The surrogate variables
are independent random variables Z;, Z, . . . such that Z; ~ N (0, Var[X;]). Fix a thrice-
differentiable function f : R® — R. The objective is to show that the two random

variables

f(X) = f(Xq,...,X,) and f(z2) =f“,...,7,)
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are close to each other in distribution. This can be measured by, for example, the Kol-
mogorov distance, where the universality approximation result concerns a difference in

cumulative distribution functions (c.d.f.):

sup,eg [P(f(X) <t) —P(f(2) <t)] == 0. Q2.1

The Lindeberg method typically provides universality approximation with respect to
an integral probability metric (Miiller, 1997) on a class of smooth functions. Specifically,

consider the following class of thrice-differentiable functions with bounded derivatives
H = {h:R— R‘ 10h]|w <1, [|0%h|l <1, [|0Ph]|o < 1},
and consider the induced metric d4, on two probability measure ;o and v in R as

dy (11 v) = suppey [Bypu[M(U)] = By [R(V)]]-

For the rest of the thesis, with an abuse of notation, we also write the above interchange-

ably as
d?—l(U7 V) ’

which is taken as the probability metric d,, evaluated on the laws of U and V. Since
appropriately rescaled elements of H approximate the indicator functions, one can show
that convergence in d,, implies convergence in the Kolmogorov metric*. It therefore

suffices to prove
dy(1(X), [(2)) = suppey [Elho f(X)] = E[ho f(Z)]] = 0.
The key step of the Lindeberg method rests on building a discrete interpolation path
from h o f(X)toho f(Z)'. This is done by considering the telescoping sum
ho f(X)—ho f(Z) = 3" (hofoW_ (X)) —hofoW_ (Z)), 2.2)
where we have denoted the random function W_, : R — R" as
W_ily) = (X0, . X1,y Zigas - Zy) -

Each summand is a difference of functions that differs only in the ¢-th data point. Since
ho f o W_,is thrice-differentiable by construction, we may perform a Taylor expansion
with respect to X; around E[X;] = 0 to obtain

[E[ho foW_i(X,) = di(ho f)W_.(0) X, — 508(ho f)(W_,(0)) X?]

1
< G0 (ho )l EIXGI . (2.3)

“More details can be found in Section 6.3 as well as the proof of Theorem 4.1 in Appendix C.2, with
the exact choice of h given in Lemma A.10. Also see Section 2.2 for a brief discussion
"For Lindeberg method with a continuous interpolation path, see e.g. Montanari and Saeed (2022).
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The same argument also applies to Z;. This allows us to substitute h o f o W_;(X;) and
ho foW_;(Z;) by their second-order Taylor approximations, and obtain

|E[ho foW_J(X;) —ho foW_i(Z)]|
< [E[0,(ho PW_(0)) + 502(h o £)(W_,(0)) X?
—dy(ho YW_i(0) Z — 502(h o f)(W_.(0)) Z2)|
+ 28 (h o Nl BIXP + 108 (h o Nl EIZ -

Since X; and Z; match in mean and variance, and W_;(0), W_;(0) are independent of
X, Z;, the above difference in second-order Taylor approximations vanish. Therefore
foralll < <n,

‘E[h ofoW_i(X;)—hofo sz(Zz)H < 210} (ho [l (E|Xi|3 + ]E|Zi|3) .

1
6
Substituting this control into (2.2) gives us the approximation bound
dy(f(X), f(Z)) = suppey ‘ Z?:l E[h o foW_ (X;)—hofo W—i(Zi)} ‘

1 n
5 2o SPen [0/ (h o )l (BIX,P + E|Z[)

1 n
< 52y 0 1% + 3110: flloo 107 fllo + 1107 fllo) (BIXGI? + E[Z) -

In the last line, we have applied a higher-order chain rule and used that the first three

IN

derivatives of h are bounded from above by 1. In summary, we obtain:

Lemma 2.1. Let X = (X,);<, be a set of independent, mean-zero univariate random
variables. Let Z = (Z;);<, be independent normal variables with Z; ~ N (0, Var[X}]).
Fix a thrice-differentiable function f : R" — R. Then

1 n
dy(f(X), £(2)) < 5> (10:F 1% + 3110 fllow 107 fllo + 1108 Fllc) (BIX* +EIZ) .
i=1
Remark 2.1. Note that we have omitted the condition E| X;|> < oo, as in the case where
E|X;|? is unbounded, the above bound is interpreted as a vacuous bound. This convention

is assumed throughout this thesis.

Lemma 2.1 is a typical universality approximation bound obtained by the Lindeberg
method. To see how it may be small as n — o©o, consider the case where X;’s are
i.i.d. mean-zero and f(X) = \/Lﬁ > i, X;. In this case, the partial derivatives of f can be
evaluated as

_ b 2 — |67 -
10:flloe = — and 107 flloe = 1107 flloc = O

for all 1 <4 < n. Provided that E| X |?> < oo, Lemma 2.1 implies
1 n 1 n o ~1/2
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For a general f, in order for the bound in Lemma 2.1 to imply convergence, we

require that forall 1 < i < n,
10, flle = on™®), N0 fle = O7*?), |0} fllw = o(n™") .

Since each partial derivative measures the influence of the ¢-th input to the function, this
says that the universality approximation is valid if the contribution of the ¢-th data point
to the overall statistic f(X) is vanishingly small. Conditions of this nature are called

stability conditions (Mossel et al., 2005, 2010). One example of an unstable estimator is
f(X) = max{X,,..., X,,}. (2.4)

In this case, the generalised extreme value distribution is a suitable surrogate for X;’s and
approximation results are found in the extreme value theory literature (Haan and Ferreira,

2006). We do not consider this case and focus only on stable estimators in this thesis.

Comparison to other proof techniques for distributional approximation. The
Fourier method, Stein’s method and Edgeworth expansion method (see e.g. Tao and Vu
(2011); Chen et al. (2011); Ross (2011); Hall (2013)) are all techniques that have been
routinely used for proving central limit theorems and their variants, as well as distri-
butional approximations beyond normal variables. Beyond CLT for empirical averages,
a wealth of results are available in the Stein’s method literature for Gaussian univer-
sality approximations in the Wiener space and random matrix ensembles among others
(Nourdin et al., 2009; Nourdin and Peccati, 2010). These methods typically require the
knowledge of the limiting distribution family of f(X): For example, Stein’s method re-
lies on the availability of Stein’s kernel for the distributional approximation of f(.X ), and
techniques to control the approximation are typically specific to the different Stein kernel
choice; extensions do exist in certain cases, see e.g. Gaunt (2020); Gaunt and Sutcliffe
(2023). In comparison, the Lindeberg method directly targets the approximation of the
input variable by Gaussians without knowing what the limit of f(X) or f(Z) may be,
which is natural for our universality-type approximations. The Lindeberg method is also
more flexible with rather mild assumptions on the function f. This flexibility is known
to come at a price: The Lindeberg method is known to result in sub-optimal error rates
in the Kolmogorov distance (2.1) for a range of specific problems (see the discussion
after Theorem 3.3 in Chen et al. (2011) for empirical averages, the remark in Section 4
of Brailovskaya and van Handel (2022) for random matrices, and the example at the start
of Section 4.5). At a high level, this sub-optimality is due to too much smoothing: the
approximation of the Kolmogorov metric by d;, with thrice-differentiable test functions
prevents one from obtaining finer controls for well-behaved estimators like the empirical
averages. One important finding in this thesis, Theorem 4.7, is that this sub-optimality is

a necessary price of generality: If the data are generated by some general n-dependent
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probability measures (which occurs, for example, when data are R%™-valued and the
dimension d = d(n) are of comparable size to n), the bounds obtained by the Lindeberg

method are, in fact, near-optimal.

2.2 Modifications and extensions to the Lindeberg proof

In this section, we provide an informal discussion on how various aspects of the proof in
Section 2.1 may be adapted to accommodate a more complicated setup. For each adapta-
tion, we also provide pointers to the relevant sections of this thesis that takes advantage

of the adaptation.

Finite-sample bounds on the Kolmogorov distance. For practical purposes such as
hypothesis testing and confidence intervals, it is desirable to obtain distributional controls
on the Kolmogorov distance (2.1). To relate the dy-control in Lemma 2.1 to (2.1), one
needs to approximate the indicator I{ f(X') < t} by h,(f(X)) for some smooth function
hy. If H is just the class of bounded Lipschitz functions, one example of h, is h,(z) =

hy.s(x) for some sufficiently small 6 > 0, where

]. ifI <T— 5 y }I’T:fs____\h7'+5§5
heo(2) = 752 ifwe€lr—06,7), N
- T
0 ifex>r71. T—=6 T THS

For the class ‘H of thrice differentiable functions considered in the Lindeberg method,
we adapt this construction to obtain a thrice differentiable approximation (Lemma A.10
used in Chapters 3 to 5). Asymptotically, the approximation of I{« < ¢} by h, al-
lows one to prove that convergence in dy, implies convergence in Kolmogorov metric
(Corollary 6.4 used in Chapter 6). To obtain a finite-sample bound in addition, one
needs to account explicitly for the error made in the interval [7 — 6,7 + 6|. This can
be achieved if an anti-concentration bound for f(Z) is known, i.e. if one can control how
fast P(f(Z) € [t — 0,7 + ¢]) decays in 6 as 6 — OF. In Chapters 3 to 5, we follow
Mossel et al. (2010)’s approach to utilise the Carbery-Wright inequality (Carbery and
Wright, 2001), which gives an anti-concentration control for degree-m polynomials of
Gaussians. This typically yields a sub-optimal rate, but as we show in Chapter 4, the rate
can be nearly optimal in a general class of approximately polynomial functions, when the
data probability measure also depends on n (e.g. by d = d(n)). The lower bound cannot

be proved by the Lindeberg method; see Section 4.5 for our proof technique.
Beyond multilinear functions. Rotar (1976); Rotar et al. (1979); Mossel et al. (2010)

use the Lindeberg method to prove universality results for multilinear polynomials. This
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is the most natural case for the Lindeberg method, as multilinearity would immediately
yield |02 f]lsc = |02f]loc = 0 in the bound of Lemma 2.1. To extend this beyond

multilinear functions, two common approaches are as follows:

(i) We may approximate f by a suitable multilinear function. This is considered in
Section 5.1 for approximating V-statistics by U-statistics.

(i) We may obtain explicit bounds on 9? f and 3 f. This is considered in Section 6.4.5
for ridge regression in moderate dimensions, where universality is shown to hold

but the departure from linearity is the source of an unexpected observation.
Two additional preprocessing techniques on X and f are also useful:

(i) The dependence of f(X) on X; may be completely described by some feature
vectors Y; := ¢(X;), and f(X) may be linear in Y; even though it is not linear in
X;. This is used in Chapters 3 and 5 for rewriting U-statistics in terms of degree-
two polynomials in appropriately transformed versions of the original data.

(i1) Since the Kolmogorov distance is invariant under a strictly monotonic transforma-
tion 7, it suffices for us to have f = 7 o f , Where f is a multilinear function. We

comment on this observation in the remarks after Theorem 4.1.

Unbounded derivatives of f. Bounding terms like ||0; f||,, in Lemma 2.1 requires
a uniform control on the derivatives of f, which is too strong for most practical estima-
tors. Notice that the
der in (2.3). Instead, it suffices to control 0, f(+) only on the intervals [E[X;], X;| and

~ arises from a crude bound on the third-order Taylor remain-

[E[X;], Z;], where the Taylor approximation was performed. This notably implies only
local control of the derivatives in the two intervals of most interest to our problem. All
Lindeberg-based proofs in the thesis use these local controls, which are also a staple in
the universality literature (e.g. Montanari and Saeed (2022), Han and Shen (2023)).

v-th moment for v € (2, 3]. If X,’s only have bounded »-th moments for v € (2, 3],
we can choose h to be a twice-differentiable test function with a (v — 2)-Holder second
derivative rather than a thrice-differentiable function. The only modification in the proof
is that, instead of controlling the Taylor remainder in (2.3) by the third-order Taylor
remainder, we use the Holder condition. This is used in Chapters 3 to 5 and an explicit

construction of our choice of & is also in Lemma A.10.

High-dimensionality. Suppose X;’s are R%-valued instead of R-valued, where the
dimension d = d(n) may grow in n. The step in (2.3) can introduce rather crude
dimension dependence, if we use the Cauchy-Schwarz inequality to obtain quantities
such as || X;||* and ||0;f(X)
careful control, we may keep the vector product 9;f(X)" X; and exploit concentration

, where ||+ || is the Euclidean norm. To obtain a more

properties of this product. For example, in the case of a simple degree-two U-statistic
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f(X) = \/ﬁ Z#]‘ X' X;, where X;’s are RP-valued, mean-zero and i.i.d., this prod-

uct evaluates to

O, f(X)T X, (2.5)

S TYX o~ (L !

B mzj#‘){j X <¢ﬁ Z#in) Xi-
Suppose for j # i, E[X X;|X,] is O(1) with high probability. Then by the central limit
theorem, (2.5) is O(n~'/?) with high probability, regardless of how large the dimension
d is with respect to n. This is heavily exploited in Chapters 3 to 5 for removing the

dependence on the dimension d in the universality approximation bound.

However, this approach does not help with getting rid of dimension dependence in
the ridge regression and ridgeless regression examples in Chapter 6. There, the high-
dimensionality manifests through the pseudo-inverse of a large sample covariance matrix
(% ot XX, )T, which necessitates a careful control on the smallest non-zero eigen-
value of a large R?*? random matrix. In those settings, we need to combine the Lindeberg
proof with concentration results from random matrix theory, and impose the condition

that d = O(n), i.e. the dimension grows at most proportionally to 7.

Dependence. Say n is divisible by k& and write n = mk. Suppose (X;);<,, satisfies

block dependence, i.e. we can form the blocks
Xl = (X17'--7Xk) ) BRI Xm = (X(m—l)k+17"'7ka) )

such that X;’s are independent with each other but arbitrary dependence is allowed within
each block X;. Provided that m — oo, the Lindeberg method of Lemma 2.1 still applies
for approximating f(X) by f(Z); the only differences are that (Z;);<,, are also block-
dependent to match the dependence structure of (X;),<,,, and that the moment bounded-
ness condition on E|X;|? needs to be replaced by the stronger control on E||X;||?>. The
remarks after Theorem 4.1 discuss the implication of requiring E||X;||* to be bounded
and the implicit condition it may impose on the size of k. Chapter 6 develops a universal-
ity result for block dependence and applies it to study the effects of data augmentation.
Lahiry and Sur (2024) also builds universality results for high-dimensional regularised

linear models under block-dependent coordinates.

While not covered by this thesis, we remark that once an approximation result is es-
tablished under block dependence, one may extend this result to m-dependence and mix-
ing (see definitions and applications in e.g. Cryer (1986); Brock et al. (1992); Schwein-
berger and Handcock (2015); Wackernagel (2003); Billingsley (1995); Bradley (2005)).
This is achieved by the classical big-block-small-block technique: One represents the
data (X;);<, as an alternating sequence of big blocks and small blocks of random vec-
tors, where the big blocks become approximately independent and the small blocks have

negligible contributions (Bernstein, 1927; Ibragimov, 1975; Davidson, 1992). In a recent
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joint work of Mallory, Huang, and Austern (2025), universality results are provided for
high-dimensional logistic regression models for block dependence, m-dependence and
specific mixing processes. We mention this work in Section 7.1, but shall focus only on
how an exact risk analysis may be performed under dependence after Gaussian univer-

sality is established.

Non-smoothness. In many practical cases, such as estimators arising from an opti-
misation problem, f may not be differentiable due to e.g. the presence of max and min.
These points of non-differentiability can be neglected, if the quantities f(X) and f(Z) of
interest do not take values on those points with high probability. This is used in the con-
sideration of a maximum of a high-dimensional average in Section 6.6.1 with an example

use case in Section 7.2.2.

Random components with negligible contributions. Suppose we may express
f(X) = fi(X) + f5(X) such that f;(X) is amenable to the Lindeberg method, whereas
f>(X) is not (e.g. lands on points of non-differentiability with high probability). WLOG
suppose that f;(X) and f,(X) both have zero means. If f,(X) has negligible contribu-
tions to the overall asymptotic distribution, one may expect to ignore f,(X) and obtain
a universality approximation of f(X) by only f;(Z). It turns out that a sufficient condi-
tion for “ignoring” f,(X) is that Var|[f,(X)] < Var[f;(X)]. This is formalised under a
concept called “variance domination” in Section 4.3. We use this technique to extend a
universality result on degree-m polynomials (Theorem 4.1) to a result for approximately
polynomial functions, where the approximation is made in the L, sense. As applications,
this idea is also exploited to obtain different limiting approximations for U-statistics and

a high-dimensional delta method (Chapters 3 and 5).
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Chapter 3

Distribution approximations of degree-two

U-statistics in large dimensions

In this section, we focus on a simple yet illustrative application of universality in high-
dimensional analysis. It will become clear that the main results here are special cases of
the general results in Chapter 4. Specifically, we consider the distributional approxima-

tion of a one-dimensional U-statistic of degree two, given by

Dy = w(Y) = s 3 ul(YLY;) 3.1)

nin —1
where Y := (Y;),<, is a collection of i.i.d. random vectors in Ré n > 2and u : R? x
R? — R is a symmetric measurable function. Here, we use the notation D,, to emphasise
the role of the U-statistic as a measure of discrepancy in our applications in Section 3.4,
but also highlight that it is exactly a special case of the degree-m U-statistic u,,(Y") to be

considered in Section 5.3. We also write the quantity to be estimated by D,, as
D = Euy(Y)] = E[u(Y1,Y3)] . (3.2)

Numerous estimators can be formulated as a U-statistic: Modern applications include
gene-set testing (Chen and Qin, 2010), high-dimensional change-point detection (Wang
et al., 2022), convergence guarantees for random forests (Peng et al., 2022) and kernel-

based tests in machine learning (Gretton et al., 2012).

The asymptotic theory of D, is well-established in the classical setting, where d is
fixed and small relative to n (e.g. Chapter 5 of Serfling (1980)). Yet, those results fail
to apply to the modern context of high-dimensional data, where d is of a comparable
size to n, and where such U-statistics are empirically observed to exhibit pathological
behaviours (Reddi et al., 2015; Ramdas et al., 2015). In the context of high-dimensional
testing, many theoretical works do study the limiting distributions of specific forms of
D,, (Chen and Qin, 2010; Wang et al., 2015; Yan and Zhang, 2022), but with efforts
mostly focused on obtaining Gaussian limits. A related line of work, building on the
seminal work of De Jong (1990), has investigated criteria for the Gaussianity of D,,
regardless of degeneracy (Ddobler and Peccati, 2017, 2019); these results complement

ours via the fourth moment theorem of Nualart and Peccati (2005), as we shall discuss
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in Section 3.2.3. Recent works (Ddbler et al., 2022; Bhattacharya et al., 2022) have also
obtained the asymptotics of D,, beyond the classical notion of degeneracy, with focus on
quadratic forms with varying weights and time-indexed sequences of U-processes. As our
primary application in this section is kernel-based testing in high-dimensions, we focus
on deriving bounds in Kolmogorov distance that are valid for any fixed n and d, which

allow us to understand how dimension d plays a role in the distributional approximation.

In this chapter, we show how universality results can be applied to obtain Gaussian
and non-Gaussian approximations of D,,, when dimension d is allowed to grow at an
arbitrary rate relative to n under a suitable assumption. As a byproduct, we show that
the effect of dimension d on the limit of D, is captured completely by a variance ratio
pq- This ratio is a high-dimensional analogue of the classical notion of degeneracy in U-
statistics: Depending on the ratio, the limiting distribution of U-statistics can take either

the non-degenerate Gaussian limit, the degenerate limit or an intermediate distribution.

The rest of the chapter is organised as follows: Section 3.1 sketches the intuition of
the main result for the linear kernel and how unexpected asymptotic limits can arise in
large dimensions. Section 3.2 presents the formal result with a finite-sample, dimension-
independent error bound, established via universality. Section 3.3 shows that this bound
is nearly tight by a pair of matching upper and lower bounds for a specific U-statistic.
Section 3.4 presents practical implications of these results in the context of high-dimensional
distributional tests with Maximum Mean Discrepancy (MMD) and Kernel Stein Discrep-
ancy (KSD). All proofs are included in Appendix A.

3.1 Intuition via the example of a linear kernel

Loosely speaking, our main result in the upcoming Section 3.2 says that as n,d — oo,

the statistic D,, converges in distribution to a quadratic form of Gaussians:
d
D, =~ Wo+Zy+ D, (3.3)

where IV, is some infinite sum of weighted and centred chi-squares, Z, is some Gaussian,
and the two variables are correlated. D is the population version of D,, defined in (3.2).
Wy + D is closely related to the classical degenerate limit, whereas Z, + D gives exactly

the classical non-degenerate limit.

To understand how W, and Z, arise, it is instructive to consider a decomposition
of D,, for the simple case of the linear kernel u(y;, ) = ¥y y». Denoting the centred
random vectors Y; = Y; — E[Y;], we have

T o Y = o S, (G BN (5 + E[Y))
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Here, D,, decomposes into a sum of three terms: (%), corresponds to 1, and, under

the CLT for d fixed, behaves like a centred chi-squared variable at the scale —=; (%)
corresponds to Z, and, under the CLT for d fixed, behaves like a normal variable at the

scale the third term is E[D,,]. Notably in the case of fixed dimension, the variance of

\/7’
(%) is always smaller than that of (x), unless (), = 0 almost surely.

Suppose d is fixed. Classical limit theorems on U-statistics say that the asymptotic
distribution of D,, (upon appropriate rescaling) depends on the notion of degeneracy: D,,

is degenerate if 0.4 = 0, where

Oeond = \/VarE[u(Y;,Y,)[Y7] . (3.5)

When d is fixed, upon rescaling, a non-degenerate [),, has a Gaussian limit, whereas

a degenerate D),, has a limit described by an infinite sum of weighted and centred chi-

squares. In the case of a linear kernel, 0.nq = /E[Y}]T Var[Y5]E[Y}] is exactly the
variance of the linear term (), of (3.4). Therefore in the case of (3.4), one way to
interpret degeneracy is that if (x) ; does not vanish, D,, is asymptotically close to Z,, and

if (%), vanishes, D,, is asymptotically close to W,.

The two key arguments in the fixed d case are (i) applying CLT to approximate av-
erages by Gaussians and (ii) determining which of (x)y and (%), dominates based on
degeneracy. In the case of a growing d = d(n) — oo, Gaussian universality effectively
substitutes (1) and allows us to replace Y;’s by Gaussians. The high-dimensional analogue
of (ii), on the other hand, is more subtle, as the variances of (x)y;- and (), are affected by
both the growing n and d. More concretely, observe that in the general case, the variance

of D,, decomposes in a similar manner to (3.4) as

Var[D,] — O( [(u(Yy,Ys) ;(S)_(lfl()YuYz) - DI E[(U(Y17Y2)—D2(U(Y1,Y3) —D)])
o Uf2ull Ugond
_O<n(n—1)jL n )’

where o2, is defined as above and corresponds to the variance of \/n(n — 1) (x)yy, and

Ofall = \/Var (X3, X5)] (3.6)
corresponds to the variance of \/n (x) ;. When d is large, o, and 0,4 can scale with d
at different rates, and how the variance of (x)y, compares with (%), depends on the ratio

. Orn
Pi = ——

Ocond
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Figure 3.1: Probability density plots of D,, under the linear kernel (3.1) with different dimension parame-
i.i.d. 1

ters d. In both plots, n = 200 data are drawn with Y; "~ N ( \/Eld’ 1,;), and one can compute g.,,q = 1.

As our result in Section 3.2 reveals, this comparison of variances is generally sufficient

to determine whether the asymptotic behaviour of D,, is driven by (%), (%) or both:

pa S ' pa~ n'’? pa 2 '
Non-degenerate limit Intermediate limit Degenerate limit
. ) . oo-sum of weighted
Gaussian Quadratic form of Gaussian ) £
and centred chi-squares

Table 3.1: Possible asymptotics of a degree-two U-statistic

In other words, the condition p,; > n'/? is the high-dimensional analogue of degeneracy.
This reveals the first unexpected asymptotic in the high-dimensional regime: Even for a
non-degenerate U-statistic D,, with o.,,4 # 0, pg can become asymptotically larger than
n'/? as d grows, causing D,, to behave like a degenerate U-statistic. This is illustrated in
Figure 3.1 for the case of the linear kernel (3.4), where the same U-statistic transitions
from a non-degenerate limit to a degenerate limit as d increases from d = 1 to d = 2000.
This degenerate behaviour is further demonstrated in Figure 3.2 for non-degenerate U-

statistics that naturally arise in the setting of distribution tests.

An additional observation from Figure 3.1 is that, as d becomes large, the chi-squared
variable % X3 in the degenerate limit becomes asymptotically Gaussian, as demonstrated
by the symmetry of the density plot. This reveals another unexpected asymptotic limit in
the high-dimensional regime. While the degenerate limit is described by an infinite sum
of chi-squares, the infinite sum is additionally affected by a growing dimension d. As a
result, the degenerate limit can itself become asymptotically Gaussian, albeit at a different
variance and scale compared to that of the non-degenerate limit. Figure 3.2 demonstrates
two cases, one where the c.d.f. of the degenerate approximation is symmetric and one
where asymmetry arises. This effect is not a result of p,, but instead of the fourth moment
theorem of Nualart and Peccati (2005): We shall discuss this briefly in Section 3.2.3 in
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Figure 3.2: Behaviour of P(X > ¢) for X = D,,, a particular non-degenerate degree-two high-dimensional
U-statistic, versus X as the non-degenerate Gaussian approximations and the degenerate approximations.
The two plots correspond to different setups detailed in Section 3.4. Both show the departure of D,, from
the classical non-degenerate limit, with the right plot additionally showing asymmetry.

the context of D, and defer a formal statement to Section 4.4 in the context of more

general estimators.

3.2 Distributional approximations with dimension-free error bounds

To formalise and extend the observations in Section 3.1 beyond linear kernels, the main
technical hurdle is to establish the approximation (3.3) in the regime where n,d — co.
In this section, we establish the asymptotics in Table 3.1 through a finite-sample bound
for (3.3), which is dimension-independent under a mild condition. The main technique

is the application of Gaussian universality to a degree-two polynomial.

L,, moment terms. As with classical Berry-Esseen bounds for empirical averages, finite-
sample bounds typically require moment controls that are slightly more than the second
moment. For v € (2, 3], our bounds will involve the L, -analogue of 0,4 and oy from
(3.5) and (3.6) as

M,

C

ondw = [|E[u(Yr, Y2)|Ya] = E[u(Yy, V)], My = [|u(Yr, Ya) — Elu(Yy, Y2)]|| .

They are respectively related to the non-degenerate and degenerate approximations Z and

W in (3.3), and also scale as d grows.

3.2.1. Non-degenerate approximation when p, = o(n'/?)

The Berry-Esseen bound for non-degenerate Gaussian approximation is well-known from
classical results (see e.g. Theorem 10.3 of Chen et al. (2011)). We restate it here for
completeness and for motivating our assumptions for the general case. If 0.4 > 0, then

for a normal random variable Z ~ N (E[D,],4n" o2 ;) and v € (2, 3], we have

cond
\/ﬁ \/ﬁ 6'1Mé/0nd;u (1 —+ ﬁ)pd
igﬂg P<Ucond D'n, < t) B IED( condZ < t) ) S ’I’L(V—Q)/2o-cvond + 2(7’1 _ 1)1/2 ‘ (37)
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This establishes the non-degenerate approximation in Table 3.1, which is only valid when
pa = o(n'/?). The ratio M ouq.,/0cona also appears in the bound (3.7); however, we do
not focus on how this ratio scales, since it appears in the Berry-Esseen bound even for
sample averages. Error bounds in our main theorem will depend on similar ratios, and
for our theorem to imply asymptotic convergence, the following assumption is required:

Assumption 3.1. There exists some v € (2, 3] and some absolute constant C' < oo such

that Mfull;u S C and Mcond;u S C .

Ofull Ocond
Remark. (i) If Assumption 3.1 holds for v > 3, it also holds for all v € (2,3]. We
restrict our attention to v € (2, 3] for simplicity.
(i1) To see an example of when Assumption 3.1 can be violated, consider the linear kernel
u(Yy,Ys) = Y,"Y,. Also denote 1 = E[Y;] and Y; = Y; — p. Then the first moment ratio
computes as
Muy, M Yalle,  1X<a®)i(2)ill, I 1<a@)i(Ya)illz,
o Ml Iica®0i0dile, /5, I (B (V)

Suppose that all coordinates of Y; have unit variance. If the different coordinates of Y; are
uncorrelated, the denominator computes as ©(+/d). Meanwhile, the numerator is on the
order O(d), and is not guaranteed to be ©(+/d) due to potential dependencies across the
coordinates that do not show up in the linear correlations. This will cause Assumption 3.1

to be violated. Note that a similar argument also applies to the other moment ratio

Mcond;u _ ”MTYlHL,, HZlgdul(Yl)lHLl,

= — AN )
Tcond e Yallz, \/Zl,l/gd E[(Y1), (YD) | L,

3.2.2. The general case

Our general approximation relies on a functional decomposition assumption. For a tri-
angular array of R? — R functions {¢,(€K)} k<K rien and a triangular array of real values

{/\,(CK) }e<re icen» we define the L, approximation error for » > 1 and a given K € N as

K K) (K K
erw = || o MU (V) (Ya) —u(V, V)|,
Assumption 3.2. There exists some v € (2, 3] such that, for any given n and d, there

exists some (n, d)-dependent choices of ( ,(CK)) and ()\,(CK)) such that, as K — oo, the L,

approximation error €., — 0.

Remark 3.1. Assumption 3.2 always holds for v = 2 by the spectral decomposition
of the Hilbert-Schmidt operator f(+) — E[u(+,Y;)f(Y;)] on the space Ly(R?, sy, ),
where fiy, is the law of Y;. For degenerate U-statistics with d fixed, the corresponding
orthonormal eigenbasis of functions and eigenvalues are used to prove asymptotic re-
sults (see Section 5.5.2 of Serfling (1980)) and finite-sample bounds (Bentkus and Gotze,
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1999; Gotze and Tikhomirov, 2005; Yanushkevichiene, 2012). In fact, these finite-sample
bounds are dependent on the specific )\,(gK)’s, making the results hard to apply. Instead,
we forgo orthonormality at the cost of a convergence slightly stronger than L,. This al-
lows for a much more flexible choice of (¢, (K) AR (K) ) and is particularly well-suited for a
kernel-based setting; see the discussion after Lemma 3.11 in Section 3.4.2. We also defer
to Assumption 5.1 in Section 5.3 for a similar assumption for a degree-m U-statistic and
a discussion on how it can be easily verified for any u« well-approximated by a Taylor

expansion.

Assumption 3.2 allows us to approximate each «(Y;,Y;) by an inner product of two
independent, high-dimensional random vectors in R¥. This reduces the study of D,,
to a degree-two polynomial of high-dimensional random vectors, which is essentially the
linear kernel case in (3.4). The distributional approximation thus depends on the structure

of the inner product, described by
AR = diag{A\, A e REE oK (2) = (6 (2),..., 0% (2)T eR¥.

Loosely speaking, they can be viewed as a diagonal matrix of the first K “eigenval-
ues” and a concatenation of the first K “eigenfunctions”, although we emphasise that
these values are not necessarily associated with a spectral decomposition in view of Re-

mark 3.1. We also denote the mean and variance of ¢* (X;) by
W = E[¢N(vy)] and S = Cov[ (1;)] -

We seek to apply Gaussian universality to replace the vectors ¢ (Y;). To this end,
let nX, with i, K € N, be i.i.d. standard Gaussian vectors in R¥. The approximation is

given by a quadratic form of Gaussians, defined as
K . 1 K\T (s K K (v K K
Un' = m Zl<z‘¢j<n(ni )T (SF) AR (35 2]
o TAR ) P 4 (D, (3:8)

The three components respectively correspond to W5, Z, and D in (3.3). We also denote

the dominating moment terms from W, and Z, by

. 1 . 1/2
Omax = maX{O'qu, (TL - 1) /2 COIld} maxu — maX{Mfull B2 (’I’L - ]-) / Mcond;u} .
We are ready to state the main result.

Theorem 3.1. There exists an absolute constant C > 0 such that, if v € (2, 3] satisfies
Assumption 3.2, then the following holds:

sup IP’(—'n(n_l)Dn > t> — lim IP’(—‘n(n_l)Uf > t)’ < Op~ e (M)%VH

teER Omax K—oo Omax Omax

Theorem 3.1 turns out to be a direct application of the general universality result
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(Theorem 4.1) in Section 4.2, proved via the Lindeberg method. We include the proof
of Theorem 3.1 in Appendix A.3, defer a discussion of the key ideas to Section 4.2, and
present a degree-m U-statistic generalisation in Section 5.3. A few observations on the

results in Theorem 3.1:

(1) The bounds are independent of specific choices of )\,(CK) and gbéK) in Assump-
tion 3.2. It therefore suffices to verify Assumption 3.2 for any choice of (gzﬁ,(f(), )\,(CK)),
which is non-unique in general;

(ii) If v = 3, the RHS is given by Cn~ 11 (%)3/ ", If Assumption 3.1 holds for
v, the RHS can be replaced by C’ n~ %2 for some constant ' and is dimension-
independent;

(iii) One may be tempted to move limy_,.. inside [P such that, instead of the cumber-
some expression of U with finite /&, one may deal with random quantities in
a Hilbert space. The reason to stick with UX is that in Assumption 3.2, conver-
gence of the infinite sum is required only in L, and not almost surely. This makes
verification of the assumption substantially simpler in practice: In Appendix A.1,
we illustrate how this assumption holds via a simple Taylor-expansion argument
coupled with suitable tail behaviour of the data to control error terms. The same

argument is not applicable if we instead require an almost sure convergence.

Theorem 3.1 immediately implies a convergence theorem. In the next result and
subsequent results in the section, with a slight abuse of notation, we use n,d — oo to
denote the asymptotic regime as n — oo and d = d(n) is some positive integer variable

dependent on n.

Corollary 3.2. Suppose Assumptions 3.1 and 3.2 hold for some v € (2,3] and the se-
V=) (UK — D) exists. Then

g

quential weak limit U = lim,, . limy_,

max

n(n —1)

. (Dn—D)i>U as n,d — oo .

Since Theorem 3.1 and Corollary 3.2 do not impose any restriction on p,, they cover
all three cases in Table 3.1. Yet, analysing the quadratic form approximation UX can
appear challenging. Indeed, U is a quadratic form of Gaussians, which does not admit
a closed-form c.d.f. in general and whose limiting behaviour depends heavily on A,EK) and
¢§€K). Nevertheless, the presence of Gaussianity still allows us to obtain crude bounds on
the c.d.f. of UX. Together with Theorem 3.1, this allows us to provide direct controls on
the c.d.f. of the original U-statistic D,,, in a way that is independent of K and specific

choices of ¢, and \,.

Proposition 3.3. Suppose Assumption 3.2 holds for some v € (2,3]. Then there exist
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constants C, Cy, Cq > 0 such that for all ¢ > 0,

—1 1/2 Y= Z\/[max‘u VL
P(’Dn_D‘>€)21—Cl(%) 61/2—02?174432(.0 ; )2-&-1’

P(|D,, — D| >¢€) < 0362(&>2 :
nin —1)
Remark. (i) The second line is a concentration inequality directly available via Markov’s
inequality, whereas the first bound is an anti-concentration result. Anti-concentration re-
sults are generally available only for random variables from known distribution families,
and we obtain such a result by comparing D,, to U via universality. (ii) In the anti-
concentration bound, the trailing error term involving M.y, /0.y is inherited from
Theorem 3.1 and is negligible. (iii) The dependence on € in the concentration inequality
is only €2, since the approximation of Assumption 3.2 holds in L, for some v € (2, 3]. If
a stronger version of Assumption 3.2 is assumed, e.g. if the approximation holds almost

surely, the result is improvable to a sub-exponential concentration bound.

Proposition 3.3 implies that the deviation of D,, from its mean is on the order Z=ex:

Corollary 3.4. Fix ¢ > 0. If Assumptions 3.1 and 3.2 hold for some v € (2, 3], then

1 lfo-max = w(”)
P(|D, — D| >¢€) — asn,d — oo .

0 if Ouax = 0(n)

Since 0,5 = max{og, (n — 1)20,,,4}, the case o, = w(n) happens only in the

high-dimensional regime, in which case D, fails to be a consistent estimator of D.

3.2.3. Degenerate approximation when p, = w(n'/?)

Recall that the stochasticity of UX in (3.8) comes from a linear term and a quadratic
term. It turns out that, unless we are at the boundary case where p; = ©(n'/?), we can
always approximate U further by keeping only one of these two terms. We have seen in
Section 3.2.1 that keeping the linear term yields the non-degenerate limit, which is valid
when p, = o(n'/?). Here, we show that keeping the quadratic term yields the degenerate

limit, which is valid when p,; = w(n'/?). Note that in this case, 0, = T

To state the result, let {£ k}z"zl be a sequence of i.i.d. standard Gaussians in 1d, and for
K € N, let {7")}K | be the eigenvalues of (S5)/2AK (2K)1/2, The limiting distribution
we consider is given in terms of
1 K _(K) (g2
WK = ——— ( ~1)+D. 3.9
n \/m Zk:l T (é.k ) + ( )

The next result adapts Theorem 3.1 by replacing UX with WX:
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Proposition 3.5. Suppose Assumption 3.2 holds for some v € (2,3|. There exists an
absolute constant C' > 0 such that

sup P(—Vn(n_l)Dn > t) — lim P(—V"("_”Wf > t)}
teR Ofull K—oo Ofull

1 Vi — 1 O—cond)g/s + n- v—2 ((Mfull;u)y + ((n B 1)1/2Mcond;u>y) 2u1+1> .

= C((” - 1)1/5 + < Otull e

v v
Otull Ofull

Remark 3.2. In the case v = 3, the error term above becomes

C’<( L + (macond>2/5 t ot ((Mfull;3)3 n ((n— 1)1/2Mc<md;3)3>§> |

14
n—1)1/5 o n op o}
full full full

In the case when Assumption 3.1 holds for v, the error term is © ( (”p—_gl) 1/ 4o e )
d

Proposition 3.5 agrees with the classical results for degenerate U-statistics. In those
results, (gzﬁ,(f()) are chosen such that they are orthonormal in L,(R?, R) and E| ,(CK) (Y] =
0. This corresponds to XX being a diagonal matrix and the expression for T,EK) can
be simplified. In the high-dimensional regime, Proposition 3.5 says that the degenerate

approximation holds so long as p; = w(n'/?).

Proposition 3.5 allows us to obtain a better understanding of the asymptotic behavior
of D,, in the case p; = w(n'/?). To see this, write Wy = limy_,.. W,X as the distribu-
tional limit of W, as K — oo (for fixed n and d). Provided that WV, exists, Proposition
3.5 says that we may approximate D,, by W, in the Kolmogorov metric. The next propo-

sition guarantees the existence of W,.

Proposition 3.6. Fix n,d. Suppose Assumption 3.2 holds for some v > 2 and that
|D|, o < 00. Then Wy exists.

It now suffices to analyse W,. In Section 3.1, we have seen that in the case of a lin-
ear kernel, the degenerate limit may become asymptotically Gaussian as d — oo. This
is connected to the fourth moment theorem of Nualart and Peccati (2005): As a special
case, their result implies that a sequence of polynomials of Gaussians is asymptotically
Gaussian if and only if its limiting excess kurtosis is zero (see Section 4.4 for a formal
statement). Since WX is a degree-two polynomial of Gaussians parameterised by K, n
and d, their result applies to W,X. Moreover, the limiting moments of W,X can be com-
puted easily when Assumption 3.2 holds for v > 4, since they depend only on moments
of the original U-statistic D,, and not on specific values of the intractable weights T,EK).
Lemma A.9 in the appendix shows that

() E[WX] = D forevery K € N,

(i) limy o Var[W,] = 25508, and
(i) lim o B[(WA = D] = Uiy uFe X ),
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provided that Assumption 3.2 holds for v > 1, v > 2 and v > 4 respectively. Upon tak-
ing the additional asymptotic as n — oo, if the excess kurtosis is indeed zero, Gaussian
is still the correct limiting distribution for D,,, but now with a larger variance (described
by o2 ) than what one may have predicted by the Gaussian CLT limit for non-degenerate
U-statistics (described by (n — 1)/20,,,q in Section 3.2.1).

Meanwhile, when the limiting excess kurtosis is not zero, the limiting distribution is

an infinite sum of weighted chi-squares. A naive example is the following:

Lemma 3.7. Suppose )\,(cK) = )\, is independent of K and there exists a finite K, such
that \,, = 0 for all k > K,. Then W~ converges weakly to a weighted sum of indepen-

dent chi-squares as K — oo.

A weighted sum of chi-squares does not admit a closed-form distribution function.
Fortunately in the case when T,SK) > 0 for all £, many numerical approximation schemes
are available and used widely. These methods generally rely on matching the moments of
W,,, which can be computed easily due to Proposition 3.6. The simplest example is the
Welch-Satterthwaite method, which approximates the distribution of IV, by a gamma
distribution with the same mean and variance, and is employed in our Figure 3.2 to
demonstrate the degenerate limit. We refer readers to Bodenham and Adams (2016) and

Duchesne and De Micheaux (2010) for a review of other moment-matching methods.

3.3 Matching upper and lower bounds for specific U-statistics

Despite their general applicability, Theorem 3.1 and Proposition 3.5 both yield an er-
ror bound on the order n~/'* (provided that a third moment exists), in contrast with
the O(n~'/2) error for non-degenerate approximation in Section 3.2.1. This calls into
question whether the n~'/!* bound is improvable. It turns out that the error bound for
quadratic form approximations of D, is nuanced even in the classical case: Known
upper bounds depend on the number of non-zero eigenvalues of the Hilbert-Schmidt
operator associated with the kernel u of the U-statistic, ranging from O(n~!) for five
non-zero eigenvalues (Gotze and Zaitsev, 2014), O(n_l/ 12) for one non-zero eigenvalue
(Yanushkevichiene, 2012) (and control of an 18 /5th moment), to our O(n~'/'*) bound in
Theorem 3.1 with no eigenvalue assumptions. Yanushkevichiene (2012) also conjectures
that the n~'/!? rate is unimprovable for degree-two U-statistics in view of a construction
by Senatov (1998).

Our next result shows that, for every v € (0, %], there exists a degree-two U-statistic

u, (X) = ﬁ > izj ku(X5, X;) on iid. R _valued vectors (X;);<,, such that the

approximation error by a quadratic form of Gaussians is O(n 7).

40



Theorem 3.8. Fix v € (2,3]. Let x? be a chi-squared random variable with 1 degree of
freedom, & ~ N(0, 1) be independent of x3 and X_% = X? — 1. There exist some absolute
constants ¢,C > 0, N € N and a sequence (0,,),en with 0, — 0, as well as some
random vectors (X;) and a symmetric function k, that depends on o,,, such that for all
n > N and d(n) € N,

e~ < supteR)P(\/n(n— 1) u,(X) < t) —]P’(Unf—i-x_% < t)‘ < On~%

Remark. (i) In the construction, we choose o, to decay as @(n_%). The approxima-
tion becomes a chi-squared approximation in the limit n — oo, but at a very slow rate.
(i1) Since & can be obtained as the limiting distribution of a partial sum of weighted and
centred chi-squared variables, Theorem 3.8 can be read as a result on the approximation

of u,,(X) by infinite sums of weighted and shifted chi-squares.

In the case when a third moment exists (¥ = 3), the approximation error is exactly
©(n~'/12), which answers the question from Yanushkevichiene (2012) in the affirmative.
An implication is that, without additional structural assumptions on the data distribu-

—-1/12

tion or the function u used in the U-statistic, the slow n rate of quadratic-form-of-

—-1/14

Gaussian approximation for U-statistics is not improvable, and the n rate of Theo-

rem 3.1 and Proposition 3.5 are not too far from being worst-case optimal.

We conclude with a few comments on the proofs, which are included in Appendix B.3.
The U-statistic used in Theorem 3.8 is a special case of a construction developed for more
generic polynomials in Section 4.5, inspired by a result of Senatov (1998). As such, we
defer the full construction and the proof technique for the lower bound to Section 4.5.1.
The upper bound of Theorem 3.8 improves upon the more general result of Theorem 3.1
by using an argument specific to the construction, instead of applying the Lindeberg
method. Due to the similarity of proof techniques, an analogous result as Theorem 3.8

holds for V-statistics; we include this as Theorem B.1 in the appendix.

3.4 Distribution tests with Maximum Mean Discrepancy and Kernel Stein Discrep-

ancy

In this section, we study the implications of the universality results (Section 3.2) and how
the different asymptotic limits manifest in high-dimensional distribution tests. Given two
probability measures P and () on R¢, we consider the problem of testing H, : P = Q
against H, : P # () through some measure of discrepancy between P and ). We focus
on Maximum Mean Discrepancy (MMD) and (Langevin) Kernelized Stein Discrepancy
(KSD), two kernel-based methods that use a U-statistic D,, as the test statistic.
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For MMD and KSD, it is well-known that o, = 0 under H and the limit of D,, is
an infinite sum of weighted and centred chi-squares (see Gretton et al. (2012) for MMD
and Liu et al. (2016) for KSD). As discussed in Sections 3.1 and 3.2.3, the infinite sum
itself may have a Gaussian limit depending on the limiting excess kurtosis of the infinite
sum, which in turn depends on the weights. Since the weights and hence the limiting
distribution is intractable in general, a common practice is to simulate D),, under H, by
distribution-agnostic methods such as a permutation test or a wild bootstrap (Schrab et al.,

2023). As such, we do not focus on the distribution of D,, under H, here.

Instead, we are interested in quantifying the power of D, given as Py (D, > t).
The test threshold ¢ is often chosen adaptively in practice, but we assume ¢ to be fixed
for simplicity of analysis. Classically for dimension d fixed, it has been shown that for
MMD and KSD, D,, has 0.,,4 > 0 under H,; and its limiting distribution is typically
taken as a Gaussian (Gretton et al., 2012; Liu et al., 2016), which is used to characterize
the asymptotic power. Those results cease to hold in the high-dimensional regime, and

our results in Section 3.2 offer two insights to this problem:

(i) Depending on the variance ratio p,;, [),, may not always have the non-degenerate
Gaussian distribution as its limit. In the non-Gaussian case, the confidence interval
and thereby the distribution curve can be wider than what a Berry-Esseen bound
predicts, and there may be potential asymmetry;

(i1)) We can completely characterise the high-dimensional behaviour of the power in
terms of p,, which in turn depends on the hyperparameters and the set of alterna-

tives considered.

In what follows, we introduce additional notation in Section 3.4.1 and show, in Sec-
tion 3.4.2, that our results naturally apply to MMD and KSD. We then investigate their
high-dimensional behaviours in an example of Gaussian mean-shift under simple kernels
in Section 3.4.3.

3.4.1. Notation

We follow the kernel definition from Steinwart and Scovel (2012) as below:

Definition 3.9. A function « : R? x R? — R is called a kernel on R? if there exists a
Hilbert space (H, («, *)4) and a map ¢ : RY — H such that x(z,2") = ($(x), (")) %
forall z, 2" € H.

We give the minimal definitions of MMD and KSD, and refer interested readers to
Gretton et al. (2012) and Gorham and Mackey (2017) for further reading. Throughout,
we let {Y;}7_; be i.i.d. samples from P and {X;}]_, be i.i.d. samples from Q. We also
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write Z; .= (X}, Y;) and assume that x is measurable. MMD with respect to  is defined
by
DMMP(Q, P) = Eyymp[(Y,Y')] = 2By px~q[r(Y, X)] + Ex xig[s(X, X')] .

A popular unbiased estimator for DMMP is exactly a U-statistic:

MMD ._ 1 MMD
Do T onn-1) Zlgi;ﬁjgn u (Z:, Zj) J

MMD ((

where the summand is given by u z,y), (@,y)) = k(z,2)+ Ky, y) — Kz, y) —

k(2',y). To define KSD, we assume that « is continuously differentiable with respect to
both arguments, and P admits a continuously differentiable, positive Lebesgue density p.
The following formulation of KSD is due to Theorem 2.1 of Chwialkowski et al. (2016):

DKSD(Q?‘P) = EX,X/NQ[UESD(Xa X/)] y
where we assume Ey_o[u5%P(X, X)] < oo and the function u5°° : R? x R? — R is
given by
uSSP(z,2) = (Viogp(x )T(V log p(z'))k(z,z") + (Vlogp(x))TVQIi(x,m')
+ (Vlog p(a’ )) Vik(z,2'") + Tr(V Vyk(z,2')) .

V, and V, are the differential operators with respect to the first and second arguments of

 respectively. The estimator is again a U-statistic, given by

KSD ._ 1 KSD
D " onn—1) Z1§z‘¢j§n up (Xi7Xj) :

3.4.2. Verification of Assumption 3.2 for MMD and KSD

It turns out that a kernel structure allows Assumption 3.2 to be fulfilled under some

“* R for some probability measure 1 on R® and r*

natural conditions. Let V;, V5,
be a measurable kernel on R®. A sequence of functions {¢;}2°, in L,(R’ R) and a
sequence of non-negative values {\,}7°; with lim,_, A\, = 0 is called a weak Mercer

representation if
}Z:;l M0 (VD)0 (Va) — *(V4, VQ)‘ — 0 almost surely as K — o0 .

Steinwart and Scovel (2012) show that such a representation exists if E[x*(V}, V})] < 0o
whose result is summarised in Lemma A.13 in the appendix. To deduce from this the L,

convergence of Assumption 3.2, we need the following assumptions on the kernel x*:

Assumption 3.3. Fix v > 2. Assume E[x*(V,V])] < oo and let {\,}?2, and {¢,}72,
be a weak Mercer representation of x* under R. Also assume that for some v* > v,

187 (Vi Va) s, < 00 and supgesy || 325, At (Vi) o (Va) .. < 00

For MMD, we can use the weak Mercer representation of ©MP to show that our

43



results apply:

Lemma 3.10. ©™P defines a kernel on R*\. Moreover, if Assumption 3.3 holds for
k* = uMMD ynder P ® Q for some v > 2, then Assumption 3.2 holds for min{v, 3} with
u=uMMPand R = P ® Q.

In the case of KSD, we use the representation of « directly. We require some addi-
tional assumptions for the score function V log p(x) to be well-behaved and the differen-

tial operation on ~ to behave well under the representation.

Assumption 3.4. Fix n, d and v > 2. Assume that Assumption 3.3 holds with v for s
under @, with {\;}72, and {¢; }?2, as the weak Mercer representation of x under () and

v* being defined as in Assumption 3.3. Further assume that

v(v+v7) |

V¥ —up )

M [[IVIogp(X1)ll2llz,,.. < oo forv™ =
(i) supgen [|0x(X1)]lL,, < o0s
(iii) ¢y’s are differentiable with sup,y ||[|V oy (X1)l2l L, < 00s

(iv) As K — oo, we have the convergence

IS, AV ou(X0))0(X2) — Van(Xp, X0, =0,
” Zszl Ak(v¢k(X1))T(v¢k(X2)) — Tr(V,Var(X7, X2))HLU — 0.

We can now form a decomposition of u55P. Given {\,}2°, and {¢;}2°, from As-
sumption 3.4 and any fixed d € N, define the sequences {ay}72, and {1, }?2, as, for
1<i<dand %k €N,

Q—1)d+l = Aw  and @Z)(k/fl)dﬂ(x) = (aa:, 10gp(£))¢k/($)+axl¢k'($)~ (3.10)

Lemma 3.11. If Assumption 3.4 holds for some v > 2, then Assumption 3.2 holds for
min{v, 3} withu = ul$°°, R = Q, )\,(ﬂK) = ay, and ¢’(€K) =1y .

Remark. We do remark that Assumption 3.4, in particular (iv), can be difficult to ver-
ify for specific kernels. We present it here only to illustrate how our Assumption 3.2
can be related to the use of Mercer representation in KSD analysis; as we discuss in

Appendix A.1, it can be much more straightforward to verify Assumption 3.2 directly.

The benefits of formulating our results in terms of Assumption 3.2 are now clear: By
forgoing orthonormality, we can choose a functional decomposition e.g. in terms of the
Mercer representation of a kernel, which is already widely considered in this literature.
The non-negative eigenvalues from the Mercer representation (Lemma A.13) also allow
moment-matching methods discussed in Section 3.2.3 to be considered. In fact, a Mercer

representation is not even necessary, as there are generally many non-unique choices of

44



(qﬁ,(CK), )\,(ﬂK)) in Assumption 3.2. In Appendix A.l.1 in the appendix, we show that for
the setup with RBF kernel in Section 3.4.3, we can verify Assumption 3.2 easily on a

decomposition obtained by Taylor expansions.

3.4.3. Gaussian mean-shift examples

We study KSD and MMD under Gaussian mean-shift, where P = N(0,X) and ) =
N (u1,%) with mean ;1 € R? and covariance ¥ € R%? to be specified. Two simple
kernels are considered in this section, namely the RBF kernel and the linear kernel. The
mathematical results in this section can be found in Section 4.3 in the joint work (Huang,
Liu, Duncan, and Gandy, 2023). As Propositions 3.12 and 3.13 are obtained mainly
via cumbersome moment computations in each of the special cases, we refer interested

readers to Huang, Liu, Duncan, and Gandy (2023) for their proofs.

RBF kernel. We consider the RBF kernel x(z,2") = exp(—||z — 2'||3/(27)), where
v = 7y(d) is a bandwidth potentially depending on d. A common strategy to choose 7 is

the median heuristic:
Tnea = Median {||V = V'|[§: V,V' eV, V £V},

where the samples V = {X;}, for KSD and V = {X;}, U {Y;}7, for MMD. In
Appendix A.1, we include a further discussion of this setup as well as the verification of
Assumption 3.2. We refer interested readers to Appendix A of Huang et al. (2023) for a

discussion and results on the verification of Assumption 3.1.

We focus on Y = [,;, where the dimension dependence of the moment ratio p,; can be
explicitly studied for both KSD and MMD. Importantly, we give bounds in terms of the
bandwidth ~y and the scale of mean shift || |3, which reveal their effects on p, and thereby
on the behaviour of the test power. The assumptions on 7 and ||x4]|3 in both propositions

are for simplicity rather than necessity.

Proposition 3.12 (KSD-RBF moment ratio). Assume v = w(1) and ||p||3 = Q(1). Un-
der the Gaussian mean-shift setup with > = 1;, the KSD U-statistic satisfies that

. /
(i) 17 = ofd"2), then p, = exp (% +0()) O (i + fy; +1)

~

N v _ of 0ty luly) ) :
(ii) If v = w(d'/®), then py = G(HMHQ(1+v—1d1/2||u||2) 1)

(i) Iy = O(d/2), then p, = © (5 + £ +1) .

HM||2

Proposition 3.13 (MMD-RBF moment ratio). Consider the Gaussian mean-shift setup
with 3 = I; and assume v = w(1) and ||p||3 = Q(1). For the MMD U-statistic, if
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5 = oll13) and 5 = o(d"2), then pg = ©(exp (£ +0(£))). Ifinstead y = w(||u3)
then

(i) For~ = o(d'/?), we have p, = ®<|I/j||§ exp (% + 0(%))) ;

g (12 _ lpllz + a2 )
(ii) For~y = w(d"?), we have p, @(||M\2+~y—1d1/2||u||g ’

(iii) For~y = ©(d"/?), we have p; = O( i )

13

The case [|i]|, = Q(||Z]],) = Q(d'/?) is not very interesting, as it means that the
signal-to-noise ratio (SNR) is high and can even increase with d. WLOG we focus on
a low SNR setting with ||u||, = ©(1). In this case, it has been shown that the median-
heuristic bandwith scales as 7, = ©(d) (Reddi et al., 2015; Ramdas et al., 2015; Wynne
and Duncan, 2022). While Propositions 3.12 and 3.13 do not directly address the case
Y = Ymea due to its data dependence, they do show that p; = ©(d"/?) for both KSD and
MMD with a data-independent bandwidth y = ©(d)". In this case, the asymptotic distri-
butions of DESP and DMMP are (i) the non-degenerate Gaussian limit from Section 3.2.1

when d = o(n) and (ii) the degenerate limit from Proposition 3.5 when d = w(n).

Intriguingly, in both results, different regimes arise based on how  compares with
the noise scale |||, = d'/2. In fact, a change from one asymptotic regime to the other
as -y drops from w(d'/?) to o(d'/?) has been reported in Ramdas et al. (2015) but with

In our experiments, the data-independent choice v = d and the data-dependent y = +,,,.q yield almost
identical plots.
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no further comments**. Our results offer one explanation: Such transitions may happen
due to a change in the dependence of p,; on 7, ||1||, and d. Figure 3.5 shows a transition

across different limits as vy varies, where the transition occurs at around v ~ d*/2,

Linear kernel. Section 3.2.3 discussed that the limit of D,, can be non-Gaussian. This
is true for MMD with a linear kernel x(z,2') = x "2’ (which, notably, is different from
the U-statistic with the linear kernel in Section 3.1). In this case, D,, satisfies Lemma 3.7
with K, = d and the limit is a shifted-and-rescaled chi-square. Figure 3.2 verifies this
for some Y # I, by showing an asymmetric distribution curve close to the chi-square
limit. We remark that a linear kernel, while not commonly used, is a valid choice here
since DMMP — () iff P = () under our setup.

Simulations. We set 4 = (2,0,...,0)T € R4 Y = I, and v = 7yeq for KSD with
RBF and MMD with RBF. The exact setup for MMD with linear kernel is described in
Appendix A.1.4. The limits for comparison are the non-degenerate Gaussian limit in
(3.7) (“Non-degen.”) and Gamma / shifted-and-rescaled chi-square (“Degen. Gamma” /
“Degen. Chi-square”) distributions that match the degenerate limit in Proposition 3.5 by
mean and variance. Figure 3.2 plots the distribution curves for KSD with RBF and MMD
with linear kernel. Figure 3.3 plots the same quantity for MMD with RBF. Figure 3.4
and Figure 3.5 examine the behaviour of KSD with RBF as d or «y varies (as a data-
independent function of d, similar to Ramdas et al. (2015)). Results involving D,, are
averaged over 30 random seeds, and shaded regions are 95% confidence intervals!. See

Huang, Liu, Duncan, and Gandy (2023) for further experiment details and code.

#Their bandwidth Ygamdas is defined to equal our \/27. The change in asymptotic regime occurs at
YRamdas = d/# in their Figure 1. While their figure is for MMD with threshold chosen by a permutation
test, ours is for KSD with a fixed threshold.

$This was investigated in Ramdas (2015, Section 10.4) in a special case when v = w(||u|3 + d) (case
(ii) of Proposition 3.13) and n = o(d®/?), where the author derived the test power of the RBF-kernel MMD
for different SNRs.

IThe shaded regions are not visible for P(D,, > t) in Figure 3.2, 3.3 and 3.5 as the confidence intervals
are very narrow.
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Chapter 4

General results on universality

The main technical tool behind the degree-two U-statistics results in Chapter 3 is a
Gaussian universality result for degree-two polynomial of high-dimensional random vec-
tors, which already leads to several unexpected observations. This leads to the ques-
tion whether these results can be extended to degree-m polynomials, especially when

m = m(n) is also allowed to grow in 7 in addition to the dimension d = d(n).

In this chapter, we first establish universality results for the case where the function f
in (1.1) is a degree m-polynomial. A key implication of the results in this chapter is that
the degree m, instead of the dimension d, presents a fundamental barrier for Gaussian
universality results. This provides an answer raised in Chapter 1 on the exact charac-
terisation of a class of functions for which universality holds, and complements the rich
body of works discussed in Chapter 1 that establish universality results on a case-by-case

basis. Additionally, we provide results or discussions that

(1) extend universality to approximately polynomial functions, as well as strictly mono-
tonic functions of these approximate polynomials;
(i1) discuss implications of block dependence on universality;
(iii) show that, contrary to the intuition in the classical setting (Chapter 2), the rate

provided by the Lindeberg method is not improvable in a general setup.

The generality of the results in this section is an immediate consequence of (i): Infor-
mally, given an estimator f(X,...,X,,), if one can find an appropriate strictly mono-
tonic function h such that f(X;,..., X)) = h(q(X,,...,X,)) and that ¢ can is well-
approximated by some low-degree Taylor expansion p,,, then Gaussian universality ap-
plies, i.e. we can replace X;’s by Gaussians. We make the notion of approximation
precise in Theorem 4.2. A special case of this heuristic, taking / to be the identity, is the
delta method; we defer to Section 5.2 to show that an application of our result gives a

generalisation of the delta method for high-dimensional data.

The rest of the chapter is organised as follows. Section 4.1 introduces the setup and
notation. Section 4.2 provides upper bounds for an exact polynomial (Theorem 4.1) and

an approximately polynomial function (Theorem 4.2). Section 4.3 introduces variance
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domination. This is a set of bounds that formalises the idea in Chapter 3 of “ignoring
some additive part of the random variable if its variance is sufficiently small”, and is used
in many of our proofs including that of Theorem 4.2. Section 4.5 provides the lower

bounds as well as the constructions used in their proofs.

4.1 Setup and additional notation

We first introduce our setup. Throughout this chapter and Chapter 5, we suppress depen-

dence on n, and use the abbreviations
d = d(n) m = m(n) X, = X, X = (Xy,...,X,).

The variables X, ..., X,, are independent (but not necessarily identically distributed)
random elements of R?, and p,, is a polynomial R"* — R of degree m. The Gaussian

surrogates are a collection Z of independent Gaussian vectors
Z = (Z,...,2Z,) where  Z; ~ N(E[X}], Var[X}]) .

Our results rely on the Lindeberg method. As discussed in Section 2.2, the Lindeberg
method is directly applicable if f,, is multilinear, but not if it is a polynomial involving
higher powers of X,;. We reduce the polynomial to the multilinear case by augmenting

the original random vectors: For each 2 < n, consider the centred tensor powers of X,

X

= X, -EX,, X&:=X2_-E[X®], ..., X7 =Xf"_-E[X2"],

where we defer the precise notation of the tensor power to (4.4). Define the concatenated

random tensor
X, = (%, X7, .. X7 @.1)

with dimension D = d + d? + ... + d™. For a suitable tensor 7, of polynomial coeffi-

cients, we then have

P(X) —E[pn(X)] = (T, (1,X)" ®...® (1,X,)") = ¢.(Xy,...,X,).
(4.2)

See the end of this section for details on tensor notation. The function ¢,,, is multilinear.
As surrogates for the “augmented” variables X = (X, ..., X,,), we choose a collection

of Gaussian vectors
== (&,..,8) where & 1L... 11L&, and & ~ N(E[X], Var[X;]) .
Choosing the function f in (1.1) as either p,, or g,, then yields the approximations

P(X) =~ pp(2) or  pp(X) = Ep,(X)]+¢u(Z) .
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Although ¢,, multiplies n coefficients, the tensor 7;, is such that no resulting power
exceeds m. The variable ¢,,(=) is thus a degree-m polynomial of Gaussians. The bound

is given in terms of the moment terms

o = /Varg,,(X) and M, = ||0igm(W) "Xl (4.3)

Whel‘e W’L = (:}(_17 e ,Xi_l,O,fi_H, e 757’1) G RRD and Ll/ = (E V)l/y.

Tensor notation. By atensor 7 of size d; x ... X d, we mean an element of R% %%,

The tensor product of k vectors z; € R% is the tensor ®,z; with entries
Rick TilJrs -5 Jk) = T1(1) - xpU)  Torjy <dy, ..., 0, < dp, 4.4)
and we write 27" := ®,, z; for short. The scalar product of two tensors of equal size is
(S, T) = Zilsdlv---viksdk S(iry .oy ip)T (g, ig) for S, T € R ™>% |

or equivalently the Euclidean scalar product in R%*~>%  Any polynomial p,, of degree

< m can be represented as

pm(xla cee 7xn) = TO + Zrl—i—...—&-rngm(Trlv"'vrn 9 x?rl ®...8 "E%rn> )

where Tj is a scalar and each T, . is a tensor of size d"* X ... x d"». Having defined

the augmented random tensor X, in (4.1), we can write p,,, as

pn(X) = E[p.(X)] + (T,,, (1L,LX)"T®...®(1,X,)") 4.5)

-----

degree m, T, is such that for m’ > m, all m/-fold products of X, ..., X,, correspond to

zero coefficients in 7),,.

Throughout the thesis, we also make use of the tensor vectorisation operator. For a

tensor 7" of size d; X ... X d,, we define the corresponding flattened vector as

vee(T) = (T(1,...,1,1), T(1,...,1,2), ..., T(dy,...,dy_1,dy)) € Ru"% .

4.2 Upper bounds

We present two results in this section. Theorem 4.1 gives an upper bound for the Gaussian
universality approximation of the multilinear polynomial g,,,, and Theorem 4.2 extends it
to functions that are well-approximated by ¢,,. The approximation of p,,(X) = ¢,,(X)
directly by p,,(Z), i.e. the universality result for the original, non-multilinear polynomial
Pm» can be obtained as a special case of these results under mild conditions; we defer the

formal result to Section 5.1.
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Theorem 4.1 (Gaussian universality for polynomials). Fix v € (2,3]. Then there exists
some absolute constant C' > 0 such that
n v _1
—1 o —1 - Zi:l Ml/;i > vm+1
[P0 4u(X) 1) = B0 ™qn(3) <1)| < Om (5085 ) 7
foreveryn,m,d € N, every t € R, and every o > 0. Moreover, we have Elq,,(X)] =
E[g,,(2)] = 0 and Varlg,,(X)] = Var(g,,(Z)].

Since the degree-two U-statistic in Chapter 3 can be approximated as a bilinear form
of K-dimensional random vectors under Assumption 3.2, the universality result of The-

orem 3.1 is a special case of Theorem 4.1. A few remarks on Theorem 4.1:

(1) Proof technique. Theorem 4.1 is proved by the Lindeberg method in Chapter 2.
The main difference from the one-dimensional case is that we avoid applying the
Cauchy-Schwarz inequality to any [, inner product of R? vectors, in order to obtain
a tighter dimension control. As we shall see in Chapter 5, this allows the bound
to be well-controlled with martingale difference bounds that exploit the structure
of the polynomial, which notably allows us to get mild to no dependence on the
dimension d. We include the proof in Appendix C.2;

(i) Dimension dependence. The upper bound depends on the dimension d only via
the moment terms defined in (4.3). For many statistics of high-dimensional data,
the moment ratio becomes independent of d (see Chapter 5). Intuitively, this is
because the only effect of the input dimension d(n) is to introduce dependence on
n in the distribution of X;’s, which manifests in a Berry-Esseen type bound only
through the first few moments;

(iii) Asymptotic normality. Since q,,(Z) is a polynomial of Gaussians, results of Nu-
alart and Peccati (2005) on the fourth moment phenomenon imply necessary and
sufficient conditions for ¢,,(Z) to be asymptotically Gaussian. See Section 4.4;

(iv) Monotone transformations. Theorem 4.1 also applies to strictly monotone func-
tions of polynomials (since it controls a Kolmogorov distance, which is invariant
under strictly monotone transforms). For example, an exponential of ¢,,(X) can be
approximated by an exponential of ¢,,(Z). In other words, the result also applies
to simple functions such as x — exp(z) that are not themselves approximatable
by any degree-m polynomial;

(v) Block dependence. Let (Y;);<, j<i be a block-dependent dataset of size N =
nk, consisting of n blocks of k¥ R¢-valued data and where the data are indepen-
dent across the n blocks but dependent within each block. By grouping each
block of data into an R*¢-dimensional vector and identifying each block as X; =
(Y1, ...,Y;), the upper bound of Theorem 4.1 still applies. However, to accom-

modate a growing block size k, one requires the dependency within each block to
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be such that the moment ratio in Theorem 4.1 remains bounded. For example, con-

ij» where the blocks are

i.i.d. and each block (Yji, ..., Y;;) is exchangeable with zero mean. Theorem 4.1

sider an 1d empirical average ¢,,(X) = ﬁ Yo Z?Zl Y;

can be viewed as a result on the approximation of ¢,,,(X) by ¢,,(Z) = \/Lﬁ Yoy i
where &, == %ngk Zi; ~ N(0, %Var[Zu] + %COV[ZH, Z19]). For v = 3, the

moment ratio is some fractional power of

1 Iz < Yl 1 K2V,

Vi Varl 2 VPR = Y (VarlYa) + (k- 1) Cov[Yyy, Yo )32

If Cov[Y},,Yis] = 0, e.g. because the dependence between Y;; and Y5, does not

manifest through linear correlation, a sufficient condition for the moment ratio to
be o(1) is k = o(n'/3).

We note that the dimension independence remark in (ii) (as well as in Chapter 3 and
the subsequent Chapter 5) does not contradict the dimension constraint observed in (v):
In all cases, dimensionality does not appear explicitly in the bound. While (v) illustrates a
pathological case of how arbitrary dependence can lead to a dimensionality constraint, for
the U-statistic considered in Chapter 3 with independent data, the moment ratio reduces
to a (3'Y moment)/(2"¢ moment) ratio on the U-statistic itself. This ratio is regarded as
O(1) for many practical U-statistics (Assumption 3.1). A similar assumption is made

implicitly in order to interpret the bounds for the estimators in Chapter 5.

Let Ly(X) = Ly(Xy, ..., X,) denote the space of square-integrable functions with
respect to the probability measure of X. The polynomials of degree < m in L,(X) form
a linear subspace of Ly(X ), and Theorem 4.1 provides universality approximations for
functions in this subspace. A simple modification extends the result to functions that are

close to the subspace in the L, norm:

Theorem 4.2 (Approximate polynomials). Fix v € (2,3]. There exists some absolute
constant C' > 0 such that, for every n,m,d € Nand o > 0,

subier [P(07' F(X) < 1) = P07 g () < 1))
< cm<(”f<X>—qm(X>L2>2ﬁ+l . (Z?_lM:ﬂVJH)

g (2

for every measurable function f : R™ — R.

Since Elg,,(X)] = 0 by Theorem 4.1, the additional approximation error above is

given in terms of a ratio of two L, norms,

) = 0, 1) — (X1l
s R PR ST (4.6)

Theorem 4.2 plays a key role in determining which polynomial to use for approximating

a general estimator. As a special case, the problem of determining the asymptotic of
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a degree-two U-statistic in Chapter 3 is reduced to determining whether a degree-one
Gaussian polynomial or a degree-two Gaussian polynomial dominates asymptotically.
The ratio of variances arises as a determining factor precisely due to the approximation
error (4.6). In Chapter 5, we will see how Theorem 4.2 can be applied to obtain a high-
dimensional delta method, generalise known results on high-dimensional and infinite-

order U-statistics, and extend results on fluctuations of subgraph counts.

4.3 Variance domination

One simple technique used extensively in our proofs and in particular, to prove Theo-
rem 4.2, is the idea of variance domination: When computing the limit of a sum of two
dependent, real-valued random variables X’ + Y, it suffices to ignore Y’ in the limit
provided that the variance of Y is negligible compared to that of X’. The next result

summarises the technique and is proved in Appendix B.4.

Proposition 4.3. Let X’ and Y' be two R-valued, possibly dependent random variables
with E[Y'] = 0. Then for everyt € R,

IP(X' +Y' < t)-P(X' <)

< inf (max{ P(X' € (t—e1]), P(X' € (t,t+€])} + Vare[f/]) .

If we further have o%, = Var[X'] > 0, then
IP(ow (X' +Y') <t) —Plog X' < t)|

. 1w 1 Var[Y”’
< igg(maX{P(ax}X €(t—et]),PlopX € (t,t+e)}+ ] )

Var[X'] €2
Remark 4.1. Several adaptations are useful: (i) To swap the roles of X’ + Y’ and X',
one may replace X’ and Y’ above by X’ + Y’ and —Y” respectively; (ii) To replace oy

by another normalisation, e.g. v/ Var[X’ 4+ Y”], one may rescale ¢ and ¢ simultaneously.

Proposition 4.3 formalises the variance domination effect: If Var[Y”] /Var[X'] = o(1),
by choosing ¢ = (Var[Y’]/Var[X'])'/3, Proposition 4.3 implies that the c.d.f. difference
IP(oyg (X'+Y") < t)—P(oys X' < t)| = o(1), provided that P(0y} X’ = ¢) = 0. Mean-

while, to get a finite-sample control, one needs an anti-concentration bound on J)_(,IX .

By the triangle inequality, it also suffices if O';(,lX is well-approximated in distribution
by some random variable Z’ with an anti-concentration bound. For polynomials of a ran-
dom vector following a log-concave probability measure, a celebrated anti-concentration
result is available due to Carbery and Wright (2001). This in particular applies to poly-

nomials of Gaussian random vectors.
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Fact 4.4 (Carbery-Wright inequality, Theorem 8 of Carbery and Wright (2001)). Let
Gm(X) be a degree-m polynomial of x € R? taking values in R, and 1 be an R%-valued
random vector following a log-concave probability measure. Then there exists a constant

C' independent of q,,, d, m or 1 such that, for every ¢ > 0,
P(lgm(n)]| <€) < Cme/™(E|g,, (n)[2]) /> .

Remark. We emphasise that under the Gaussian universality result of Theorem 4.1, we
would only need to apply Fact 4.4 to Gaussian random vectors, which satisfies log-
concavity immediately. While the proof of Theorem 4.1 also uses Fact 4.4, the argument
is such that only anti-concentration bounds on a Gaussian polynomial is needed, which

circumvents the need of checking log-concavity of the data distribution.

This immediately implies the following corollary of Proposition 4.3:

Corollary 4.5. Let X', Y' and ox, > 0 be defined as in Proposition 4.3, and q,,(n) be
given as in Fact 4.4. Suppose Var(q,,(n)] = Var[o/ X'] = 1. Then there is an absolute
constant C' > 0 such that for every t € R,

SUpPer }IP’(X’ +Y' < t) —IP’(X' < t)‘

Var[Y”] > T

< Om (Var[X’]

+ 2supep {IP’(J)_(}X’ <t) = P(gm(n) <1)].

Proof of Corollary 4.5. The result follows from combining Proposition 4.3 and Fact 4.4,
noting that E[|g,,(n)[?] > Var|g,,(n)] = 1, choosing e = (Var[Y”]/Var[X'])™/2m+1) and

taking a supremum over ¢ € R. [

Remark 4.2. The generality of Proposition 4.3 comes at a cost: It does not provide
the tightest control on the c.d.f. difference in general, as the variance ratio term comes
from Markov’s inequality. When one has more information about the tail behaviour of
Y’/+/Var[X], the bound can usually be improved.

We conclude by remarking that, in the case E[f(X)] = 0, Theorem 4.2 is essentially
proved by identifying X’ = 071¢,,(X) and Y’ = o7 }(f(X) — ¢,,(X)), and by apply-
ing the universality approximation bound of Theorem 4.1 to replace ¢,,(X) by ¢,,(Z).
When E[f(X)] # 0 and therefore Y’ # 0, a minor adjustment is made to the bound in
Proposition 4.3 to replace Var[Y”] by ||Y”||;,, which gives rise to the L, moment ratio in
Theorem 4.2.
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4.4 A necessary and sufficient condition for Gaussianity

To understand whether p,, (X ) may be asymptotically Gaussian, Theorem 4.1 reduces the
problem to studying the asymptotic normality of ¢,,(=), a degree-m polynomial of nd
1.i.d. univariate standard normal variables. This polynomial lives in the span of products
of Hermite polynomials with total degree < m, and is therefore an m-th order Wiener
chaos; see Nourdin (2013) for an introduction. If m is fixed, the fourth moment theorem
by Nualart and Peccati (2005) applies and shows that ¢,,(Z) is asymptotically Gaussian

as n — oo if and only if its excess kurtosis, defined as

Kurt[g,, ()] = E[(¢n(Z) — Elgn(E)])']/ Varlg, (S))* =3 = 0 El(g.(2))] =3 .

is asymptotically zero. Denote the total variation distance by dry. By directly using
a finite-sample bound developed by Nourdin and Peccati (2015), the next result says
that this is sufficient even as m grows, and is necessary under a uniform integrability

condition.

Proposition 4.6 (Fourth moment phenomenon). Let 1 be a univariate standard normal

variable independent of all other quantities. For every n,m,d € N and o > 0, we have

drvloan(2), ) < (Mt [Kurtlg, (2))])

Under the high-dimensional asymptotic regime, as n — oo,

dm — 4
3m

(i) Kurt[q,,(Z)] — 0 is a sufficient condition for c~1q,,(Z) KN n;

(ii) if 071q,,(2)* is uniformly integrable, then Kurt[q,,(Z)] — 0 is also necessary.

Proof of Proposition 4.6. The finite-sample bound is a restatement of Theorem 1.1 of
Nourdin and Peccati (2015) for ¢,,(Z), and directly implies (i). (ii) is proved by noting
that, when o71¢,,(2) <4 n, by continuous mapping theorem, o q,,(2)* 2 pt. Uni-
form integrability then implies the desired moment convergence (see Theorem 25.12 of

Billingsley (1995)). O

Remark 4.3. Since the bound from Nourdin and Peccati (2015) works for a general se-
quence of Wiener chaos, Proposition 4.6 also holds if the Gaussian polynomial 0 ~1¢,, (=)
is replaced by Var(p,,(Z)]™"*(p,,(Z) — E[p,,(Z2)))-

A consequence of Theorem 4.1 and Proposition 4.6 is that, even if p,,(X) is not
asymptotically Gaussian when d and m are fixed, it can become Gaussian in the high-
dimensional regime. Similar phenomenon has already been observed for U-statistics
(Janson and Nowicki, 1991; Bhattacharya et al., 2022). See Section 3.1 and Section 3.2.3

for a discussion on degree-two U-statistics of high-dimensional vectors.
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4.5 Lower bound

A question not addressed by Theorem 4.1 is whether the bound is tight. Clearly, it may be
suboptimal if additional information about f,, or the law of X is available. For example,
choose X;’s as centred i.i.d. random elements of R with unit variance, p,,(X) as the
empirical average » .., X;/n, and v = 3. The Berry-Esseen theorem then applies and

guarantees a rate of O(n~'/2), whereas Theorem 4.1 yields

1 n 1 n X1z, 1 _ ~1/8
P(EXn st -P(EXLas<t) < C(Gatam) = om.
If the only structure we know of our estimator f(X) is that f is polynomial of degree

< m, however, the bound is essentially tight:

Theorem 4.7 (Lower bound). Fix v € (2,3], and assume that m is even with m =

o(logn). Then there exist a sequence of probability measures ul(,quo , a sequence of poly-

nomials py, = Prn(n) and absolute constants ¢,C > 0 and N € N, such that

(Z)
(=)
or i.i.d. variables X, ..., X, ~ u&’i} andalln > N.

Y0

v—2

cnovm . < OSUPeg ‘P(p;‘n(x) <t)-Pp

v—2

en”2m < supye [P (X) < t) —P(q

—2
)‘ S Cmn_25m+27

—2
)‘ < Cmn72:m+2

| /\

*
m
*

m

| /\

Recall that for a generic function f : R — R, Theorem 4.2 establishes a universality
result when f is well-approximated by its m-th order Taylor expansion. Theorem 4.7
shows that this Taylor approximation, which becomes more accurate as m grows, trades
off against the Gaussian universality approximation,which deteriorates with m. In other
words, when no additional information about f or the law of X is available, the error

bound obtained from Theorem 4.1 is near-optimal, and becomes tighter as m grows.

The main technical difficulty of Theorem 4.7 is the lower bound, which cannot be
established by the techniques on upper bounds from Chapter 2. We devote the rest of the
section to a discussion on the proof techniques and the exact constructions of ,u,(ffgo and

and include the full proofs in Appendix C.3.

p ;kn = m(n
The key ingredient of the proof of Theorem 3 is a suitable sequence of heavy-tailed
probability measures ,u,(f,go and statistic p;,. Before stating the exact constructions, we

first motivate them by discussing our proof technique.

Adapting an asymmetry argument from Senatov (1998). The overall idea is to con-
struct a mixture of an average of a heavy-tailed random variable, which is poorly ap-
proximated via Gaussian universality, and a degree-m V-statistic of Gaussians, which
has good approximation by the same V-statistic of an i.i.d. copy of Gaussians at small

m but poor approximation at large m. This will be made precise in (4.7). The technical
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steps to obtain a tight lower bound, however, are non-trivial. Our strategy is inspired by
Example 9.1.3 of Senatov (1998): They construct a sequence of probability measures
on R? to demonstrate how a multivariate normal approximation bound on a chosen se-
quence of Euclidean balls may depend on eigenvalues of the covariance matrix. Two key

mathematical ingredients of their work are

(1) a heavy-tailed univariate variable, whose 1.i.d. average is poorly approximated by
a Gaussian, and
(i) an asymmetry argument by considering Euclidean balls not centred at the origin

while studying averages of mean-zero random vectors.

To adapt the construction in Senatov (1998) for our problem, we make one key observa-
tion: The probability of a mean-zero average lying in a radius-r Euclidean ball centred
at the origin is exactly the probability of a degree-2 V-statistic taking values in [0, 7). In
other words, (1) gives the heavy-tailed variable we need, and (ii) is almost our V-statistic
except that the Euclidean balls in Senatov (1998) are not centred at the origin. Unfortu-
nately, while the asymmetry in (ii) is key to the proof by Senatov (1998), it breaks the
connection to V-statistics, and a naive application of Senatov’s results gives very loose
bounds. Instead, we create a different asymmetry by asking p#,(X) to be a mixture of an
odd-degree V-statistic and an even-degree V-statistic, which allows Senatov’s argument
to be adapted. An additional distinction of our proof from Senatov (1998) is that, to

accommodate a growing degree m, we need to derive finer moment controls.

We are ready to state the constructions. For m = m(n) even, consider the polynomial
1 n 1 n m 9
Pr(T1, oo, ) = 7n Do Tt <\/—ﬁ > %jz) for z; = (i1, p) € R”.

The distribution u,(fgo is the law of a bivariate random vector with a heavy-tailed coordi-

nate and a Gaussian coordinate. We first construct the heavy-tailed variable.

A heavy-tailed univariate distribution i, ,. For » > 2 and ¢ € (0, 1], we define

p =o2/=2 € (0,1] and Ty =0/\/6p = v = \/Léa_v%,

and let U, be a discrete random variable taking values in {—z, 0, 2z} with
P(U, = —xy) = 2p, P(U; =0) = 1-3p and PU, =22y = p.
Let Z; ~ N(0,0?) and define a smoothed version of U as
V, = 272U, + 2727, .

Note that the only role Z; plays in the proof is for V; to have a continuous density func-
tion, which allows us to apply results relating distribution functions to characteristic func-

tions. Write ji, , as the law of V;. When v = 3, this is the heavy-tailed distribution
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constructed in Example 9.1.3 of Senatov (1998). Roughly speaking, the construction is
such that if we set 0 = 0,, — 0 as n — oo, then Var[V;] = 02 — 0, but the v-th central
moment of V; remains O(1).

ii.d. ~

Let Vy,...,V, ~" [i,, and draw an independent Z| ~ N (0, 0?). We now list three
results on fi, ,, which extend the results by Senatov (1998) to a general v and admit
similar proofs. Since the original proofs are highly condensed, we include proofs for all
lemmas with more detailed steps and intuitions in Appendix C.8.2. Lemma 4.8 below
controls moments of V;. In particular, E|V;|* = O(1) and the upper bound on E|V; |*
diverges for w > v. This upper bound will allow us to handle moments of polynomials

of V,’s of growing degrees.

Lemma4.8. EV; = 0and Var V] = 0. Moreover, there exist absolute constants c,, cy >
_ 2(w-v)
0 such that for all w > 1, E|V}|* < ¢fo™ =2 + Sovw /2

Lemma 4.9 below provides a finer control on the normal approximation error of an
empirical average, by performing a higher-order Taylor expansion in the space of char-
acteristic functions. This higher-order Taylor term is then inverted back to the space of

distribution functions and captured by £, below.

Lemma 4.9. Write A .= m and F,(x) = m(l — ”—2)6‘“’02/(2"2). Then
1 n 2
SupzeR ‘P(\/—ﬁ Zi:l ‘/; < .fl?) — P(Zi < .Z') — Fq(ﬂf)‘ S W .
Remark. F| is related to the higher order edgeworth expansion of the distribution of
\/iﬁ > <n Vi> except that the result above involves an approximation of the cumulative
density function whereas edgeworth expansion typically concerns the probability density

function.

Lemma 4.10 below provides a finer upper bound on the normal approximation error

of an average by exploiting the distribution of V;’s we constructed.

Lemma 4.10. Suppose there exists some constant M > 10 such that oV V=2 > Np—1/2
and n > 6M?>. Then there is some constant C,; > 0 that depends only on M such that,
forall x € R, we have

1 n , max{1,03} _ 22 1
’P(\/_g Zizl Vi < x) —P(Z1 < x)‘ < CM(nugUV/(u—z)e 165% + n3/2x40-(8—1/)/(z/—2)>

The bivariate distribution ul(,’fgo. Now for a fixed v € (2, 3] and some absolute constant
og > 0, set a standard deviation parameter

v—2

0, =min{oyn" =z ,1} € (0,1].
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With a slight abuse of notation, we consider
Voo Vi R iy, and i, Y, RN,
and define 417, as the law of (1;,Y;).

In summary, the statistic we consider is a mixture of a heavy-tailed average and an

even-degree V-statistic of Gaussian random variables:

pn(X) = =Y Vi (EXL ) = s ), @)

where we denoted V' = (V});<,,, Y = (Y;);<,, and the rescaled degree-m’ V-statistic as

1 n m
/ N / / /
v (2, x,) = <\/_ﬁ > i:1$i> forazy,...,z, e R.

4.5.1. Lower bound construction for degree-two U-statistics and V-statistics

Since py, in (4.7) is a rather specific polynomial, a natural question is its applicability
to more natural classes of statistics such as U-statistics and V-statistics. It turns out that
in the case m = 2, we can adapt p;, and Theorem 4.7 to obtain similar lower bound
results for degree-two U-statistics and degree-two V-statistics. The U-statistics result has
been presented as Theorem 3.8 in Section 3.3 and the V-statistics result is included as

Theorem B.1 in the appendix.

To state the construction, notice that in the case m = 2, p;, is a polynomial pj :
(R*)™ — R given by
2

« 1 n 1 n
pa(wy, ... wy,) = 7n D i Wit (\/—ﬁ > wi2) for w; = (wy;, wyp) € R? .

We also consider the collection of i.i.d. R? random vectors W := (W,);<,, with W; ~

,u(fgo. To adapt p3 (W), we first note that p;(1/) can be rewritten as a V-statistic:

1 n w; Wj1 -
py(wy, ..., wy,) :_Zi,jzl (2\/%—% f—l—wﬂwﬂ) = no,(wy,...,w,),

n
where we have defined, for wy, ..., w, € R? and a,, a,, by, by € R,
6n(w1>"'7 n = nQZJ 1 U}Z,UJ),
> b
ky((ar, az), (b1, by)) = Q\f + \} + asb, .

Moreover, since we have no restrictions on how d(n) depends on n, there are non-unique
choices of a function ¢y, : R*™ — R and a probability measure Hd(n) ON R4™ such
that

d
X1~ ) < ¢d(n)(X1) = Wi,

Our construction of the V-statistic is thus given by taking X RS- Lagn) and k, (21, z9) =
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l;:v(gbd(n) (x1)7 ¢d(n) (‘TQ))’ which giVCS
1 d - L

where 2 denotes equality in distribution. This makes Theorem 4.7 immediately applica-

ble, which yields Theorem B.1. For the U-statistics construction, we observe that

p§<w17 s 7wn)

1 n W;1 W;9o \/m 1 n 2
Vn(n —1) Zz’#j <2 W1 2v/n—1 + NG wi?wﬂ) T Zz’:l Wiz

= /nn—1)a,(w,...,w,) + R,(w,...,w,),

where we have defined, for wy, ..., w, € R* and a,, ay, by, by € R,

~ 1 > 1 n
un(wlv‘”uwn) = ,I,L(,n—_l)zl;é] ku(wi7wj)7 Rn(wla'”uwn> = Ezizlw%’

ay bl n—1
kul(ar, az), (b1, bo)) = =1 ayn=1 \/\FT

a2b2 .
Therefore for the U-statistic, we take k,(x;, z5) = l;:u(qéd(n)(ml), Pa(ny(T2)), Which gives

un(X) = s 3 (X X)) L) = pa(W) = Ry()
To obtain Theorem 3.8 from Theorem 4.7, the only technical hurdle is to show that
R, (W) has a negligible effect other than centering the chi-squared distribution. This
is achieved by applying the variance domination results in Section 4.3 and exploiting the

anti-concentration of the chi-squared distribution.
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Chapter 5

Degree-m polynomials of high-dimensional data

This chapter focuses on generalising existing approximation results as applications of
our universality theorems in Chapter 4, and we assume the notation used in Chapter 4.
For simplicity, we mostly consider i.i.d. data and symmetric functions. As our general
results also hold in the non-i.i.d. and asymmetric case, the interesting phenomena we
observe can be readily extended, and Section 5.4 provides one such example. Notably,
since any degree-m, symmetric polynomial of n variables can be written as a weighted
sum of U-statistics and V-statistics with degree < m, all our applications will be reduced
to studying the asymptotic distributions of U-statistics and V-statistics. The proofs for all

results in this section are included in Appendix C.

The rest of the chapter proves universality results for the following examples:

« Section 5.1 concerns a family of simple V-statistics. This example also illustrates

how universality holds for a non-multilinear polynomial p,,;

« Section 5.2 concerns a high-dimensional delta method. The resulting limit distribu-
tions for functions of sample averages may be non-Gaussian and even non-consistent,
depending on which polynomial component of the estimator dominates. See Proposi-
tion 5.5 for the result and Appendix C.1.1 for a simple example where such transition

happens in high dimensions;

« Section 5.3 provides finite sample bounds that generalise a range of existing results
on high-dimensional and infinite-order U-statistics (van Es and Helmers, 1988; Chen
and Qin, 2010; Harchaoui et al., 2020; Wang et al., 2015; Yan and Zhang, 2022;
Gao and Shao, 2023; Bhattacharya et al., 2022). The degree of the U-statistic may
grow faster than log n, provided the degree M of the approximating polynomial of

Gaussians satisfies M log M = o(logn);

« Section 5.4 provides results on fluctuations of subgraph densities at different orders,
which extend those in Hladky et al. (2021); Bhattacharya et al. (2023); Kaur and
Rollin (2021) by characterising a full range of vertex-level and edge-level fluctuations

with finite-sample bounds.
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5.1 Simple V-statistics

In Sections 4.1 and 4.2, we have motivated the approximation of p,,(X) — E[p,,(X)]
by ¢,,(Z), a polynomial of the augmented variables, by noting how ¢, adapts well to
the Lindeberg method. On the other hand, in the case of p,,,(X) = g(J= >, X)), the
continuous mapping theorem suggests an approximation by p,,,(Z), a polynomial of the
original variables, at least when ¢ and d are fixed in n. A natural question is whether
the two approximations, i.e. the two different notions of Gaussian universality, coincide.
Note that in the high-dimensional regime, it is non-trivial to show that one may replace
X,;’s by Z,;’s in p,,,: Gaunt (2020); Gaunt and Sutcliffe (2023) have used Stein’s method
and a Lipschitz argument to control the approximation error by p,,,(Z) in smooth function
bounds, but those bounds are only well-controlled when dimension d grows sublinearly

in n and are not well-adapted to the high-dimensional setting.

In this section, we confirm that the two notions of universality do coincide in the high-

dimensional regime, under a mild moment condition and for simple V-statistics. We focus

on the case where X1, ..., X,, are i.i.d. zero-mean and consider, for =1, ..., z, € R, the
statistic
1
Um(l’l, e ,xn) = e Zih.."i e[n]<s, xil ® v ® $2m> 5 (5.1)

where S € R?" is a deterministic, symmetric tensor. Note that this is exactly the dom-
inating quantity under an m-th order delta method, and when S is not required to be
symmetric, any p,,(X) of the form (4.5) can be written as a weighted sum of such V-
statistics. We also note that the centering of X;’s implies that v,,(X) is a degenerate
V-statistic, which simplifies our presentation; for distributional approximations of simi-
lar sums of uncentred variables, we refer interested readers to Temdinas et al. (2024) and

the references therewithin.

The moment condition is cumbersome to state, but can be motivated as follows. We
first notice that for the distributions of p,,(Z) and g,,(Z) to agree, we require the contri-
bution of terms like Z7™ (found in p,,(Z)) and N (E[X?™], Var[X™]) (found in g,,,(Z))
to be negligible. To make the condition well-adapted to a setting where d and the law of
X,’s may vary in n, we need careful controls for all possible m-fold products of Z;’s and

of X,’s with at least one repeated element. We coin this moment condition J-regularity:

Definition 5.1 (d-regularity). v,, is d-regular with respect to X if, for some § € [0, 1),

there exists an absolute constant C' > 0 such that for all j € [m — 1],
J o j .
ql+--.+r£i)7§1,qleN max {VarKS, §Xz ql>1 , VarKS, (§ Z, ql>] } (5.2)
< On™m™ Var[v,, (X)]
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q1+...+r£a}fn,qleNmaX{(EKS, (§)XZ®QZ>D2’ <E{<S, éz?%ﬂf} (5.3)

< Cn™ Varfv,, (X)] .

Remark 5.1. The n™ factor on the RHS balances the variance of the un-normalised V-
statistic v,,(X ). The m ™7 factor accounts for both the (m ) = O(m’*) multiplicity of
the terms in Var[v,,(X)], and the fact that the moment of a univariate standard Gaussian
n grows as E[y™] = O(m™/?). In Lemma C.8 in the appendix, we provide a verification
of d-regularity for a degree-m V-statistic of univariate Gaussians as part of the proof of
Theorem 4.7. Sufficient conditions for verifying J-regularity are deferred to Remark 5.4.
There, we show that when m and d are fixed, up to a spectral condition, d-regularity
always holds. It suggests that the requirement of J-regularity is specific to our high-

dimensional setup, where both m and d may grow in n.

We are ready to state the main result of this subsection, which confirms that under
d-regularity for the V-statistic v,, in (5.1), the approximations by ¢,,(=) and p,,(Z) —
E[p,,(X)] do agree. It also immediately implies that the universality result of Theo-
rem 4.1 holds also for the non-multilinear polynomial p,,, = v,,,. Here and below, we let

¢y, be the multilinear representation of v,,, defined in (4.2).

Proposition 5.2. Fix v € (2,3] and let (X,);<, be i.i.d. zero-mean. If v,, is 6-regular
with respect to X for some § € |0, 1), there exist some absolute constants C,C' > 0 such
that

supye |P(07 (g% (Z) + Elv,(X)]) < 1) = P00, (2) < t)| < Cmn~m1
supyeg [P(0 0, (X) < t) = P(o'v,,(Z2) < 1)| < Cmn~ 241 + C'md; |
supser [P0 (0 (X) = E[v,(X)]) <) = P(0™ ' (v,u(2) = E[v,(2)]) < 1)
< Cmn =it + C'mA;
where the error term is defined as
A = (ZZ’;V My, >ml+1 .

Remark 5.2. (i) Proposition 5.2 is proved by an adaptation of variance domination in
Theorem 4.2 together with the variance ratio bounds in Lemma 5.3. (ii) While E[v,,,(X)]
does not necessarily equal E[v,,(Z)], the third bound of Proposition 5.2 implies that
the difference is asymptotically negligible. (iii) An explicit bound on Aj is given in

Lemma 5.4.

The proof of Proposition 5.2 is included in Appendix C.6, and an illustration of Gaus-

sian universality for a toy V-statistic in Appendix C.1.1. The proof makes use of the next
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two lemmas, which are also useful for subsequent applications. Their proofs are included
in Appendix C.6. The first lemma shows that J-regularity can be used to control two vari-
ance ratios, which are similar to the moment ratio obtained from variance domination
(Theorem 4.2):

Lemma 5.3. Suppose (X,);<, are i.i.d. zero-mean. Assume that v, is 0-regular with
respect to X for some § € [0,1). Also assume a coupling between &; and Z; such that

&1 = Z; almost surely. Then there exists some absolute constants C, C, > 0 such that

g5 (2) + Elv,,(X)] = vin (2|17, L o

Var(gp, (Z)] = pl=d
and (1 — (C*>mn_(1—5)/2)2 < % < (1 + (C*)mn_(l_(s)/Q)z,

The next lemma applies Theorem 4.1 to show Gaussian universality with respect to
the augmented variables X, and use the simple structure of v,,, to bound the moment ratio
explicitly. The error bounds are given in terms of both M, ; defined in Theorem 4.1 for

qy, and

a,(S, k) = ’ > prtotpr=m <S, X, .. ®X§p’“> forv e [2,3]and k € [m] .

plr"vpkzl

L

v

We also provide upper and lower bounds on Var[v,, (X)] in terms of (.S, k).

Lemma 54. Fix v € (2,3] and let (X;);<,, be i.i.d. zero-mean. Then there exists some
absolute constant C' > 0 such that, for everyn,m,d € N, t € R and o = Var[v,,(X)] >
0,

SUD;cR |P(J_1q};(X) <t)-— ]P’(J_lq}jl(E) < t)| < Cm

MY T
2 MGy
O—I/

Meanwhile, if n > 2m?, there exist absolute constants C', Cy, Cy > 0 such that

Lk (D) (@ (S:K))
C X (W (aa(S k)2
(c)m (Cy)™

o Z::1<Z> (ay(S,k))* < Varfy,, (X)] < o ZZ;(Z) (ap(S, k)2

Remark 5.3. The moment bound in Lemma 5.4 involves a ratio of the v-th moment

) —v=2 ot
A5 < C'n~zm+z ﬁmu,TVn ) ﬁm,u

and

versus the second moment of the same quantity. In fact, the ratio is a strict generalisation
of the moment ratio from the classical Berry-Esseen bound for sample averages (m = 1),
and similar to the Berry-Esseen ratio, we expect it to be O(1) for distributions that are

not too heavy-tailed. A crude upper bound on this ratio is deferred to Remark 5.5.

Remark 5.4 (Sufficient condition for verifying d-regularity). A sufficient condition for
0-regularity can be obtained from a moment condition and a spectral condition. Recall
that vec(7") is the vectorisation of a tensor 7" (Section 4.1), and let A, (A) and A, (A)

denote the maximum and minimum eigenvalues of a real symmetric matrix A. Suppose
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there exist w,(ﬁix, wr(fix > 0 such that for all j < m — 1 and any ¢y, ...,q; € N that sum
up to m,
Amax (Var [Vec< ®_, XZ®QI>] ) < Wik |
. A T
A max (E [Vec< ®7_, Xl®‘“>vec< Ri_, Xl®ql> ]) <wl, .

and suppose A, (X) > 0, where

¥, = Var[vec(Qy)], Qx = > pttm=m XiP @ ... @ X P

P1seesPrp 21

WLOG take ||vec(S)|| = 1. Then we have
(52) < whie , (5.3) < wike Var[v,,(X)] > C™n ™A pi(52)

for some absolute constant C' > 0 provided that n > 2m?; the third bound is obtained
from Lemma 5.4. Since m = o(log(n)), C™ = O(n¢) for any € > 0, so to show J-
regularity, it suffices to check that for some constant C' > 0, some 6 € [0, 1) and some
e >0,

max{wggx , Wg;x} < Cn Amin (22) -

Notice that A ;,(3,) is the minimum eigenvalue of the covariance matrix of X; when
m = 1. Moreover, when m and d are fixed, up to a positive minimum eigenvalue con-
dition, d-regularity always holds. We emphasise that the above only gives crude bounds
on the quantities in Definition 5.1. Instead of taking the minimum eigenvalue of %,, it
can often be easier to compute Var|v,,(X)] directly: One approach is to decompose a
V-statistic as a sum of U-statistics (see Lemma C.12 in the appendix) followed by using
known moment formulas for U-statistics (see Appendix C.5). Such an approach is used

in Lemma C.8 in the appendix as part of the proof of Theorem 4.7.

Remark 5.5 (Upper bound on the moment ratio in Lemma 5.4). We again use a spectral
condition. Consider ¥, and () x defined in Remark 5.4, and the analogue of ¥, but with

a fourth moment:
Sy = B vee(QF) vee(Q5) |
Define A, and A.;, as in Remark 5.4 and suppose A, ,(¥X5) > 0. Then by noting

v < 4, an upper bound on the moment ratio in Lemma 5.4 is given as

)‘max(24)1/2

<
/Bm,u o Amin(ZQ)
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5.2 A high-dimensional delta method

We consider the classical delta method (Rao et al., 1973; Bishop et al., 1974) and show
how a high-dimensional version may be derived from our universality result. Assume
that (X;);<, are i.i.d. and, for some smooth function g : R* — R, define
. 1 n 1 n = —
§(X) = g<— > XZ-) - g(E YUK+ E[Xﬂ) . where X, = X, — E[X,] .

n
§(X) is called a plug-in estimator of g(EX;). A guiding example is g, (z) = z'z,

which yields a simple V-statistic

N 1
gtoy(X> = gtoy(ﬁg:z 1 > = n2 Z” 1 j’

To see how the distribution of the plug-in estimator behaves through variance domination,

consider a Taylor expansion

Qtoy(X) _gtoy(E[Xl = _Zz 1XTE{X1 2 Zzg 1XTX
The variances of the first and second-order expansions are respectively on the order

@(E[Xl]TVa;[XﬂE[Xl])

Var[ X" X,] Var[)_(lT)_(l]>

and @( H (5.4)

n3
Classically when d is fixed, normality of the plug-in estimator follows from the first-
order delta method whenever dg(E[X;]) # 0. For g, (X), this condition is equivalent to
E[X,] # 0, and exactly corresponds to when the first-order Taylor expansion dominates
in variance. In the high-dimensional regime, however, the moment terms above can vary
with n through their dependence on d: Take X; ~ N (u, I;) with ||u||, = 1, in which
case (5.4) becomes
@(%) and @(n% + %) .

Even though ¢ = E[X] and therefore Og(E[X]) is non-zero, the first-order term is still
dominated in variance by the second-order term when d = w(+/n): The first-order delta
method fails to hold, and the plug-in estimator is no longer asymptotically normal. We

now formalise this in a result concerning an m-th order delta method.

Derivatives. A delta method relies on the derivatives of g, and some shorthands are

introduced next. For z, x, ..., ,, € R?and m € NU {0}, we define
x 1
g (@1, ) = (0 (@), (1 —EX)) ® ... @ (2, — EX)))
EX —m IEX
g7(n 1)<(L’1,..., n =n le i G[n 1)($117“'7xim) :

which is a degree-m polynomial function. If ¢ is (m + 1)-times continuously differ-
entiable everywhere, we can perform an m-th order Taylor expansion with the integral
remainder. Let S, = n"1'Y, <n X, and draw © ~ Uniform|0, 1] independently of X.
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Then almost surely
§(X) = g(BX1) + 307, 7V (X) + (m+ DE[(1 - 0)" g (0 [ X]

Note that when ggff@s " s independent of ©, the (m + 1) factor is cancelled out

by E[(1 — ©)™"] = (m + 1)~'. The penultimate approximation will be identified by
comparing which term of the Taylor expansion dominates in variance.

For simplicity of notation, we will assume that g,(f ) g 0-regular with respect to

(Xi)ign (see Definition 5.1 and Remark 5.4 for a sufficient condition), so that we can
apply universality directly to X and not just the augmented variables. In the case of g,
with X; ~ N(0, I,;), this corresponds to requiring the variance term involving X;" X; to

be negligible, which always holds in view of (5.4).

Moments. The result involves several moment terms. For each m € N U {0}, define
o = E g (X) .

Note that 11y = g(EX ), which is the target of estimation under the plug-in principle. We

also define, for v € (2, 3] and k € [m], the moment terms

mtl A EX,+0n"*Y, ., X;
Var[z;ngl 000 e v2E[a - e g =)

e 957 (x)] Var |35 (X)) ’

0],

0 EX
H ZP1+ App=m <M (X —EX)O @ ... @ (X — EXy)®r >

P1se-sPrp>1 m!

Zk:l (k) (am,u(k))2
E;cnzl (Z)(am,Q(k))Q '

€,, 1S a variance ratio that is small when the m-th order term dominates other terms of

L

v

and Bm,y =

Taylor expansion in variance (Theorem 4.2; see Remark 5.7 for a further upper bound).

Bm., 1s a V-statistic analogue of the classical Berry-Esseen ratio from Lemma 5.4 (see

Remark 5.5 for a further upper bound). The next result gives a bound for approximating
3(X) by g (2).

Proposition 5.5. Assume that g is (m + 1)-times continuously differentiable and that
gngl) is 0-regular (Definition 5.1) with respect to (X; — EX}),<,, for some 6 € (0,1).
Then, there is some absolute constant C' > 0 such that for all n,m,d € N with n > 2m?
and any v € (2, 3], we have
. m EX ~(EX,
SUDser ‘IP’(g(X) — DM < t) ]P)(gr(n 1)(Z) —E[gﬁn )(Z)} < t)‘ nVAVSI
where A\,

1—6 v—2 v
Im+1 —g— — 55— Q2vm+2
Gm C’m( oz +n" 2t 4T iz BT ) i

Write ® as the c.d.f. of N'(0,1) and suppose Var [ggXl)(X)] Var [g(EXl)(Z)} > 0. Then
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there are some absolute constants C',C" > 0 such that

supyes [P (Var [385 (X)] 7 (50) = X7 ) < 1) — (1)

(C//)m nf(lfﬁ)/Q Am — 4
92 _ (C//)m n—(1-6)/2 <

1/2
<Ay, +C

[Kure [0 (2)])

3m

Remark 5.6. Proposition 5.5 considers only the case when one of the derivatives dom-
inates, but can be readily extended to the case when several terms dominate at the same
time: This is done by applying variance domination (Theorem 4.2) to the appropriate

dominating quantity.

Remark 5.7 (Upper bound on ¢,,). Using the triangle inequality and the Jensen’s in-
equality, we can obtain a further upper bound on the first term of ¢,,, as

m—1 yyr [g}EXI) (X)}

(m—1>ZW

= Var|g (0]
Each summand involves variances of V-statistics, whose upper and lower bounds are
given in Lemma 5.4. As discussed in Remarks 5.4 and 5.5, these variance ratios can
either be controlled by a further spectral bound or an explicit computation. An analogous
bound applies to the second term, provided that the (m + 1)-th derivative satisfies some
stability condition: One example of such a condition is the existence of some v > 2 such
that

= o(1) .

v

m+1 m+1

~(EX, 405, ~(EX
g( 1+ )(X)—g( 1)(X)‘

L

When g is infinitely differentiable, Proposition 5.5 implies that the asymptotic dis-
tribution of §(X) is determined by its m-th order Taylor expansion for the smallest m
such that €,, — 0, i.e. the m-th order term that dominates in variance. As such, Proposi-
tion 5.5 strictly generalises the m-th order delta method by replacing the requirement that
all lower derivatives are zero with the condition that €, = o(1), whereas the finite-sample
bound introduces a second condition 3, , = o(n(”_Q)/ 2v) analogous to a Berry-Esseen
moment ratio. In particular, under these two conditions, the bound does not have any
additional dependence on d. In the high-dimensional regime, Proposition 5.5 generalises
the observations in g, to show two aspects of delta method that depart from classical

behaviours:

» Non-Gaussianity despite a non-zero first derivative. The approximation by a degree-
m polynomial of Gaussians can dominate the first-order Gaussian term, when the
first derivative is negligible compared to some m-th derivative. If the excess kurtosis
of this degree-m Gaussian polynomial does not vanish, Proposition 4.6 implies that
§(X) is not asymptotically normal under a further uniform integrability condition. In

particular, this may hold despite a non-zero first derivative term.
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» Non-consistency (under the plug-in principle). By applying a further Markov’s
inequality on P(ggxl)(Z) - E[gg‘Xl)(Z)} < t), we see that if A,,, = o(1) and
Var[§ia Y (Z)] = o(1), then

. m P
9(X) =) — 0.
Recall that under the plug-in principle, §(X) is intended as an estimator for g(EX) =

Lo- Since, by linearity,
M1 = E[<89(EX1)7X1—EX1>] =0,

§(X) is indeed consistent when Proposition 5.5 holds with m = 1 (e.g. in the classical
case with non-zero first derivative). When m > 1, however, §(X) may be non-

consistent, and the bias is exactly given by the limit of > ", /4.

Remark 5.8 (Gaussianity under a zero first derivative). Proposition 4.6 also implies that
where m and d are allowed to grow, a degree-m polynomial of d-dimensional Gaus-
sians may itself be asymptotically Gaussian: This can be seen from g, (X) with X; ~

N (u, 1), whose second-order term satisfies
L w7y, 4 d 154 2 . iid.
n_QZi,j:1 Xi X = w5 Ezjzl Ur with n; "~ N(0,1) .

This is an average of i.i.d. variables, and becomes asymptotically normal when d and n
both grow. A consequence is that in the high-dimensional regime, Gaussianity may also
occur even when the first derivative is zero. A phase transtion from the Gaussian limit to

the chi-squared limit can happen, if the second-order term dominates as d becomes large.

Remark 5.9. Theorem 4.1 and Theorem 4.2 in fact apply to a more general version of
delta method on g, (7},), where we consider a sequence of random variables {7},}2 ,,
with each 7T,, determined by X,...,X,,, and a sequence of well-behaved functions
{g9,}5>,. The only requirement is a suitable Taylor approximation of the estimator, which
yields the polynomial structure. Degree-m U-statistics, discussed next, give such an ex-

ample.

5.3 Effect of large dimensions on degree-m U-statistics

Let Y},...,Y, be ii.d. random variables taking values in some general (not necessar-
ily Euclidean), possibly n-dependent measurable space £ = £(n). Given a symmetric

function v : £™ — R, consider the degree-m U-statistic given by

1
n(n — 1) o.(n—m+ 1) Zil ..... i, €[n] distinct u(Y;l’ T ’Y;m) :

(v) = (55)
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Classically, under a technique called the Hajek projection, the asymptotic distribution of

u,,(Y") can be approximated by that of a degree-M polynomial of Gaussians, where

M = min{j € [m] : 0; > 0}, and o7 = VarE[u(Y,....Y,,) | Y1,..., Y]] .

7D

See Filippova (1962), Rubin and Vitale (1980) and Chapter 5.4 of Serfling (1980) for
references on the classical theory for U-statistics. In this section, we show how the high-
dimensional asymptotics of u,,(Y), where £ = R¢ with m and d allowed to be large

relative to n, can again be obtained with our general results.

We will invoke a functional decomposition assumption analogous to Assumption 3.2,
which was used to obtain finite-sample bounds for degree-two U-statistics. For each

K € N, we consider approximating u(y, . . ., ¥,,) by a polynomial of m vectors in R,

K
S AN o) % x 6 ()

where for each K, the coordinates of the m vectors are defined via a triangular array of
£ — R functions {¢kK Ye<k.xen evaluated at yl, ...y Ym» and the polynomial weights

are given by a triangular array of real values {)\ k Yoy, k<K, cen- We also denote the

,,,,,

L,, approximation error as

Exy = HZ,: o M 0 (7) %X BV —u(s L Y))

.....

L, "

-----

Remark 5.10. (i) As discussed in Assumption 3.2, Assumption 5.1 is very mild. In the
appendix, we show how it holds with ¥ = 2 under mild assumptions on the L, space
equipped with the m-fold product measure of Y; (Lemma C.1), and how it holds for
€ = RY and any u well-approximated by a Taylor expansion (Lemma C.2). (ii) Un-
like asymptotic U-statistics results that use the L, decomposition from Hilbert-Schmidt
operator theory (see e.g. Chapter 5.4 of Serfling (1980)), Assumption 5.1 does not re-
quire orthogonality or boundedness conditions on ¢,(€K) or )\,(ff)km and also allow them
to vary with K or n. In particular, they are generally not unique and can be chosen at

convenience for verification of the assumption, e.g. by a suitable Taylor expansion.

Penultimate approximation. To identify the dominating component, we first recall that

by Hoeffding’s decomposition theorem (see e.g. Theorem 1.2.1 of Denker (1985)),

um(y1>"'7yn) = E[U(Yla"'7 m + Z] 1( )UH yla"'ayn>7 (56)

where each Hoeffding’s decomposition U ]H(Y) is a degenerate degree-; U-statistic de-
fined by

H ._ 1 H
Uiy, s9m) = nn—1)...(n—j+1) Zil ,,,,, i,€ln] distinct ' (i 9,)
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H N J j—r
U’j (yh s 7yj) T Zr:0<_1)] Zl§l1<...<lT§j E[u(ylla s >ylra Yia s 7Ym77‘)] :

Under Assumption 5.1, each Hoeffding’s decomposition can be approximated by a poly-
nomial of R¥ vectors, to which our universality results can be applied. Let =(%) =
{§§K), o ,&(LK)} be a collection of i.i.d. zero-mean Gaussian random vectors in R™
with the same variance as (¢§K)(Y1), ce ¢%<)(Y1))T. For j € [m] and K € N, the
penultimate approximation for U JH(Y) is therefore given as a polynomial of R¥ Gaus-
sians,
1
nn—1)...(n—j+1) Zil ,,,,, i;€[n] distinct

K K K K K
Wy, vy) = > M vy o Blel) (V)] Elep) (1))

,,,,,,, i

J

a0 ey 6

Moments. By variance domination, the asymptotic distribution of u,,(Y") is determined

by the relative size of the rescaled variances, given for M € [m] as

. Ere[m]\{M} Tonmir
pm,n;M T 2 )

Um,n;M
2 m\2/n\ ! .
where oy, ,; = (j ) <j> VarE[u(Y;,...,Y,,) | Y,..., Y] for j € [m] .
a?mn; ; describes the contribution of U ]H to the overall variance of u,,(Y") (Lemma C.11

in the appendix). The bound also depends on a Berry-Esseen moment ratio, given for
v € (2,3] and M € [m] as
e (s )

udir (Ve Yad) I,

/BM,I/ :

Proposition 5.6. Suppose Assumption 5.1 holds for some v € (2, 3]. Then there is some
absolute constant C' > 0 such that for every n,m,d € N and M € [m|, we have

K—x

SUDscr )P(um(Y) —E[u(Y;,...,Y,,)] <t) — lim IF’((AWZ[) U](\f)(E(K)) < t)‘

=2 ~_ v +
< Cm(n 20 M+1) ﬁ;ﬁjl + p2M ) )

m,n; M

Moreover, writing ® as the c.d.f. of N'(0, 1), we have that

SUP;cg )P(Um(y) —Efu(Ys,....Y,)] <t) - é%@((ﬂ)lVar[U}\f)(E(K))]1/2 t)‘

< Cm(n T 4 oI, ) + lim (2 [Kun (U0 (1)) y)”z .

We emphasise that Proposition 5.6 allows the degree of the U-statistic m to be much
larger than logn: In the above bound, when BMJ, = O(1) and p,, .y = o(1), we
only require the degree of the polynomial of Gaussians to satisfy M log M = o(logn),
with no explicit requirement on m. As with Proposition 5.5, under these conditions, the
bound also does not have any explicit dependence on d. This allows Proposition 5.6 to

recover many known results on high-dimensional U-statistics. Similar to Proposition 5.5,

71



there are two cases under which a normal approximation is allowed, but with different

variances:

« When M = 1, the distributional limit lim_, Ul(K) (E(K )), when exists, is Gaus-
sian. In this case, Proposition 5.6 provides a finite-sample bound for the Gaussian
approximation of u,,(Y’), a potentially infinite-order U-statistic (IOUS). Notably if
B M, 18 bounded, the only dependence on m in the bound is through p,, ,,.5/; when d
is fixed and VarE[u(Y7,...,Y,,)|Y:,...,Y;] € (0,00) is fixed for all j € [m], we
can compute

2,2

n m mZe“\" m? . 2 n
e o Y N
Therefore when d is fixed and M = 1, Gaussianity holds if m = o(n~'/2). This
agrees with known optimal growth condition on m for Gaussianity of 1d IOUS (van

Es and Helmers, 1988). On the other hand, when d and the variances are allowed to
change, p,, ,,.1 has more complex dependence on n; this can lead to a more stringent

or relaxed condition on the size of m.

« When M > 1, U ](\f )(E(K )} is a degree-M polynomial of Gaussians. By the fourth
moment phenomenon (Proposition 4.6), the asymptotic limit can still be Gaussian in
high dimensions, for which Proposition 5.5 provides a finite-sample bound. This is
a behaviour specific to the high-dimensional regime, where the Gaussian polynomial

approximation is allowed to vary in n.

The above two cases recover many existing works on the normal approximation of a
high-dimensional degree-two U-statistic: Some of those results come without a fourth-
moment condition and require assumptions similar to those for (i) (Chen and Qin, 2010;
Harchaoui et al., 2020; Wang et al., 2015; Yan and Zhang, 2022), whereas others consider
a fourth moment condition and fall under (ii) (Gao and Shao, 2023; Bhattacharya et al.,
2022). A practical consequence of (ii) is that a degenerate U-statistic — often found in
hypothesis testing and which requires numerical approximation due to its classical non-
Gaussianity Leucht and Neumann (2013) — may be Gaussian in high dimensions. In
view of the necessity statement in Proposition 4.6, one may argue that the two cases

cover most, if not all of the situations of Gaussianity.

Meanwhile, as with Proposition 5.5, Proposition 5.6 highlights when u,,,(Y") may be
asymptotically non-Gaussian. Here, non-Gaussianity happens not according to the de-
generacy of the U-statistic, but depending on the relative sizes of the rescaled variances
Ufnvw», each corresponding to the variance of the degree-; Hoeffding decomposition. If

the ratio of the variances change as d grows, the limiting distribution of u,,(Y") can tran-

sition from one low-degree polynomial of Gaussians to a higher one, or vice versa. This
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change-of-asymptotic-limit effect generalises the observation in Chapter 3 for degree-
two U-statistics. In Section 3.4, we have also seen empirical evidences of the transition
for a U-statistic used in high-dimensional kernel-based distribution tests: There, the ratio
of variances reduces to a comparison between problem-specific hyperparameter choices,

which determine which asymptotic limit dominates.

Remark 5.11. The same argument in this section can be extended to a U-statistic of non-
identically distributed data, although a more elaborate decomposition than (5.6) is re-
quired to accommodate for the fact that E[u(y,,...,y,, Y1,...,Y,,_,)] may not be equal
to Elu(yy, ...,y Y, ..., Yy_r11)]- Section 5.4 illustrates such an example.

5.4 Finite-sample bounds for subgraph count statistics

We apply our results to characterise the possible asymptotic distributions of subgraph
counts. We shall see that variance domination (Theorem 4.2) recovers and extends the
geometric conditions considered by Hladky et al. (2021) and Bhattacharya et al. (2023)
for obtaining different limits, and our results also apply to the edge-level fluctuations
considered by Kaur and Rollin (2021).

Graph model. Given a symmetric, measurable function w : [0, 1]> — [0, 1], we generate
a graph G,, with vertex set [n] by drawing independent (not necessarily identically dis-
tributed) random variables (U;);<,, and (V;;)1<;<;<n, and joining an edge i ~ j according

to

Y, = ]I{Vijgw(Ui,Uj)}'

When U;, V;; S Uniform|[0, 1], this generates an exchangeable graph from w (Diaconis

and Janson, 2008).

Subgraph count statistics. Denote K(.5) as the complete graph on the vertex set
S Cn], K, = K({1,...,n}) and E(H') as the edge set of a graph H’. Given a non-
empty simple graph H with m = m(n) vertices and k = k(n) edges, we are interested

in the number of subgraphs in G, that are isomorphic to H, described by

.....

where G (.S) denotes the collection of all subgraphs of K'(.S) that are isomorphic to H.

Consider the conditionally centred indicator variable Y;; = Y;; —w(U;, U;). To derive
the asymptotic limit of x(Y"), we first split x(Y") into a sum over vertices and a sum over

edges:

K(Y) = w(U; ,U;,)

-----
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Dt etieaneriey On ({3 Yew) TI, YVig, = m(0) +ma(¥).
is a set of distinct edges
where (/) is the indicator function on whether the graph formed by the edge set [ is
isomorphic to H. x,(U) represents vertex-level fluctuations, and r,(Y’) represents edge-
level fluctuations. We first study the two fluctuations separately, and show how they affect

the distribution on x(Y") by variance domination.

Vertex-level fluctuations. Let U = (U,);, be i.i.d. for notational simplicity. x;(U) is

now the degree-m U-statistic considered in Proposition 5.6, with the kernel

n
Uy (xh cee 7xm) = (m) ZH'QQH({L--‘,WL}) H(is,it)EE(H/) 'lU(l'iS, xit) .
Applying Proposition 5.6 directly gives the following corollary, which approximates

k1 (U) by its M-th Hoeffding decomposition. The notation U ](é()( KN, B Mus O
and p,,, ,.s are defined in terms of the U-statistic x;(U).

Corollary 5.7. Suppose Assumption 5.1 holds for the kernel function u, with some v €
(2,3]. Then there is some absolute constant C' > 0 s.t. for every n,m,d € N and
M € [m)],

sup }P(Hl(U) —E[r,(U)] <t) — lim ]P’( (E)U](\f)(E(K)) < t)

teR K—oo

< C’m(n 2(u1\1+1)5vM+1 +pzlkiz+./1\4> .

ZTE[m]\]\/I Ugn,n;r

The variance ratio p, .\ = =

can be computed in terms of

)

m,n; M

e (1)) () e

Remark 5.12. (i) A common tool for proving limit theorems for subgraph counts (Kaur

Z H w(Uisv Ult)

nggH({lv'”vm}) (isvit)eE(Hl)

U,....U,

and Rollin, 2021; Bhattacharya et al., 2023) is the orthogonal decomposition of a gener-
alised U-statistic proposed by Janson and Nowicki (1991). Here, this assumption takes
the form of Assumption 5.1: the difference is that we focus only on vertices, and perform
a decomposition in an L, space with v > 2 (see Remark 5.10). (ii) For Gaussian approx-
imation and for v = 3 (i.e. existence of the appropriate third moments), we obtain a rate
1/3

of n~1/% in Kolmogorov distance plus an additional variance domination error of p,’" .

In comparison, Kaur and Réllin (2021) obtains a bound at the rate of n~!/(2(m+2)) in a
1/3

m,n;1

convex set distance; we expect that their approximation error to be related to our p

and that their bound, obtained by Stein’s method, is sharper.

As before, the size of a?mn; u — the variance of the M -th order Hoeffding decompo-
sition — determines whether ,(U) can be approximated by a degree-M polynomial of

Gaussians, This is known in the literature as the n™= % -th order fluctuation (Kaur and
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Rollin, 2021), as evident from the () ("~7}) = O(n*"~M) factor in 62, ,..,,. A guiding
example is when H = K, i.e. k(Y') is the edge count: In this case, the variances of the
Gaussian component and the quadratic-form-of-Gaussian component are respectively

O-TZn,n;l = n(n - 1)2 VarE[w(Ul, U2)|U1] and 072n,n;2 = @V&I’[M(Ub UQ)] ’

3/2

which are the variances of the n°/“-th order fluctuation and the n-th order fluctuation.

The next result gives conditions under which variance domination by the Gaussian

component (M = 1, or n™~3-th order fluctuation) fails.

Lemma 5.8. Let w, H and m > 2 be fixed. Then o, ,.. = O(n*"") forall v € [m).

Moreover, the following statements are equivalent:
(l) pgn,n;l = Q(]')’
(ii) O’?mn;l =0;

U 1] is constant almost surely;

.....

(iv) For almost every x € |0, 1],

1 m
E Zi:l E |: H(isvit)EE(H) w(Ui57 Uzt)

Ui :x} - E[Hwt)emmw(Uis’Uit)

Lemma 5.8(i) is the condition derived from variance domination, whereas Lemma 5.8(iv)
is the definition of H-regularity of w, introduced by Hladky et al. (2021) for a complete
subgraph H and extended to a general subgraph H by Bhattacharya et al. (2023). In-
deed, Theorem 1.2 of Hladky et al. (2021) and Theorem 2.9 of Bhattacharya et al. (2023)
establish that «,(U) exhibit fluctuations of an order higher than n™ 2 if and only if H-
regularity holds — a geometric condition that is recovered by variance domination. Mean-
while, variance domination provides more: We can now characterise all fluctuations in

m—1

k1(U) on the orders nm_%, n™ 1 ..., n%, all with finite-sample bounds. Corollary 5.7

may also be applied to a setup where w and H are allowed to vary in n.

Remark 5.13. In the case of H = K,, Lemma 5.8(iii) says that E[w(U,U,) | U] is
constant almost surely. In other words, the edge count statistic x(Y") exhibits n-th order

fluctuations if and only if the random graph is regular on average.

Edge-level fluctuations. In practice, one may want to analyse edge properties of the

random graph, which requires us to study x,(Y"). Kaur and Réllin (2021) provide error

bounds on the Gaussian approximation of x,(Y") by using the orthogonal decomposition

of a generalised U-statistic of U and V' proposed by Janson and Nowicki (1991). We con-

sider a variant of their setup. For convenience, we re-index (Y;;); je B(K,) a8 Y1, o, Yy,

where n, = |E(K,)| = (}); recall that k is the number of edges of H. Conditioning on
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U = (U;)i<n, let Z = (Z;),<,, be conditionally normal variables defined by

Z;|U "X N(E[Y;| U], VarlY; | U)) .

The penultimate approximation for k,(Y") is the incomplete U-statistic

k

KQ(Z) - Z {e1,...ex }CE(K,) 6H({68}86[k]) Hs:l Zes .

is a set of distinct edges

Proposition 5.9. If Var[r,(Z) | U] > 0 almost surely, there exist some absolute constant

C > 0 such that for every n > 2 and m, k € N, almost surely,
SUDer ‘P(@(Y} <t ‘ U) — IP’(/{Z(Z) <t } U)’ < Ay (U),
where Ay (U) = Cmn~ vitt py(U)ﬁ and

k > |V
B (U) L i1,..,0, €[n,] distinct Hl:l E[|Kl| ‘ U]
Py = - K P v/2 "
ming;, i, eln,] distinct Hl:l E HY;L ‘ ’ U}

Moreover, writing ® as the c.d.f. of N'(0, 1), we have that almost surely

sup [P(kap(Y) — Eliy(Y) | U] < | U) — ®(Varlsy(2) | U] 72 t)’

teR
4m — 4
3m

< 250+ (M [Kurtfra(2) | 0]])

where we defined Kurt|ro(2)|U] = E[(ky(Z) — E[ro(Z2)|U])*|U] / Var|ko(Z)|U)? — 3.

Remark 5.14. (i) Observe that k(Y') — E[s(Y)|U] = k,(Y") almost surely, since x;(U)
is fixed under the conditioning on U. (ii) ky(Y) is an incomplete U-statistic, where
the asymmetry arises from &y, and (Yﬂzgn conditioning on U are non-identically dis-
tributed. This is an example of how our main results can be applied to asymmetric esti-

mators and non-identically distributed data.

Remark 5.15. The max-min ratio py can be avoided by directly using the error bound
from Theorem 4.1: In exchange, the bound is given as a sum of non-identical moment
terms and the convergence rate cannot be read off directly. This tradeoff is common for
asymmetric estimators and non-identically distributed data, although simplifications may

be possible for specific statistics.

Overall fluctuations. We now consider the asymptotic distribution of x(Y) = x,(U) +

ko(Y'). Specifically, we investigate whether the vertex-level fluctuations x,(U) or the

edge-level fluctuations r,(Y) dominates in variance in x(Y"). The variances of the dif-
ferent Hoeffding’s decompositions of «,(U) have been provided in Lemma 5.8, whereas

the next result provides the variance of r4(Y).
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Lemma 5.10. There are some absolute constants c, C' > 0 such that

77777

~~~~~

Consider again the setup with w, H, m and k fixed. Let Aut(H) be the set of all
automorphisms of H. Provided that the expectation terms in Lemma 5.10 are O(1), we

have

Varlio (V)] = ©(G()) = ©( () oramy) = O™

m

Meanwhile, when the dominating term of x,(U) is its M -th Hoeffding’s decomposition,

2

Um,n;M

is assumed to be non-zero, and Lemma 5.8 implies
2 _ 2m—M
am,n;M - @(’I’L ) .

As a result, x,(U) always dominates x,(Y') in variance when M < m. This agrees
with the observation in Kaur and Réllin (2021), who provide a detailed illustration for
simple subgraphs. Consequently, analysing the distribution of «(Y") usually means that

edge-level randomness is ignored except for the case with the highest level of degeneracy.

Some difficulties persist in the most general case: (i) Due to asymmetry and non-
identically distributed data, the bounds can be loose or not immediately interpretable, as
discussed in Remark 5.15. Under specific random graph models, bounds can simplify
considerably (Hladky et al., 2021). (i1) Even if a penultimate approximation is estab-
lished, the limiting distribution for an asymmetric polynomial of Gaussians is highly
dependent on the weights and may not be immediately obvious. Different choices of
such penultimate approximations can yield natural graph-based interpretations (Kaur and
Rollin, 2021; Bhattacharya et al., 2023). In a concurrent work, Chatterjee, Dan, and
Bhattacharya (2024) obtain limiting distributions for graphon models with higher-order

degeneracies and for joint subgraph counts, and additional geometric insights.
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Chapter 6

Effects of data augmentation via block depen-

dence

The universality results developed so far focus on independent data, with a brief discus-
sion of applicability to block dependence in remark (v) after Theorem 4.1. The main goal
of this chapter is to develop universality results for analysing the effects of data augmen-
tation — an ubiquitous technique in machine learning that exhibits both block depen-
dence and high-dimensionality. Notably, while the examples in the preceding Chapters 3
and 5 are well-described by polynomials, this is not the case for the estimators we ex-
amine here. The main technical hurdle is to find the appropriate transformation under
which the estimator behaves like a polynomial (see remark (iv) after Theorem 4.1), in
the presence of block dependence and a growing dimensionality parameter. We also note
that the results in this section consider functions with R? output for ¢ fixed (instead of
g = 1 in the preceding chapters), and are finite-sample with respect to a smooth metric
but asymptotic with respect to the Kolmogorov metric. To obtain a finite-sample bound
in the Kolmogorov metric, one may apply our general results in Chapter 4 across the ¢
coordinates; we do not focus on this here to avoid the need to consider anti-concentration

bounds.

We first informally motivate the role of data augmentation in machine learning. The
term data augmentation refers to a range of machine learning heuristics that synthetically
enlarge a training data set’: Random transformations are applied to each training data
point, and the transformed points are added to the training data (e.g. Taqi et al., 2018;
Shorten and Khoshgoftaar, 2019). It has quickly become one of the most widely used
heuristics in machine learning practice, and the scope of the term continues to evolve.
One objective may be to make a neural network less sensitive to rotations of input images,
by augmenting data with random rotations of training samples (e.g. Perez and Wang,

2017). In other cases, one may simply reason that “more data is always better”.

The question how data augmentation affects learning rates remains open. It has been

argued that augmentation reduces the variance of estimates (Zhang et al., 2021), that

"This meaning of the term data augmentation should not be confused with a separate meaning in
statistics, which refers to the use of latent variables e.g. in the EM algorithm.

78



it increases the effective sample size (Balestriero et al., 2022b), and that it acts as a
regulariser (Balestriero et al., 2022a), but none of these points have been rigorously es-
tablished in great generality. Existing analysis studies the bias of estimates (Balestriero
et al., 2022a), and shows a reduction of variance for certain parametric M-estimators un-
der additional invariance assumptions (Chen et al., 2020). In the following, we study the
limiting behaviour of augmentation methods. Two mathematical obstacles are (1) that
augmentation makes independently distributed data dependent, and (2) that data may be
high-dimensional. One may therefore expect the behaviour of augmented estimates to
be highly sensitive to the input distribution. We show that, on the contrary, augmented

statistics exhibit a form of universality under general stability conditions.

The key difference of the results in this chapter, as compared to the i.i.d. case, is
that data augmentation introduces strong dependence that persists asymptotically. By
approximating (appropriately transformed versions of) the data by Gaussians, the effect
of such strong dependence manifests only through the first two moments, and the analysis
reduces to understanding how the changes in the mean and variance affect properties of
the estimator. Our findings show that a number of properties commonly attributed to data
augmentation — variance reduction, increase in effective sample size, and regularisation

— each occur in certain cases, but fail in others.

The rest of the chapter is organised as follows. Section 6.1 provides a high-level, non-
technical overview of the results. Section 6.2 defines the setup and the concept of noise
stability. Theoretical results—the main theorem and a number of consequences—follow
in Section 6.3. The remaining sections apply these results to the variance analysis of
plug-in estimators and ridge regression (Section 6.4) and the regularisation effects on an
overparameterised model that exhibits double descent (Section 6.5). We also demonstrate
the applicability of our universality results to other non-smooth and high-dimensional
estimators in Section 6.6; in view of Theorem 4.1, these provide additional examples of
how to find the “appropriate transformation” of the estimator to perform a low-degree

polynomial approximation. All proofs are collected in Appendix D.

The examples we focus on in this chapter are on regression tasks, but the same uni-
versality approximation can be obtained for estimators in classification tasks. A follow-
up work on logistic regression is considered in the joint work of Mallory, Huang, and
Austern (2025), which is discussed in Chapter 7.

6.1 A non-technical overview

Here, we sketch the results informally to provide a high-level overview. Rigorous defini-

tions follow in Section 6.2. Our general setup is as follows: Consider a dataset, consisting
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Figure 6.1: Effect of augmentation on the variability of estimates. Left: On an empirical average. Right:
On a ridge regression estimator. Each point is an estimate computed from a single simulation experiment,
and the dashed lines are the 95% 2d quantiles of the empirical distribution over 1000 simulations. Aug-
mentation reduces the variability in the left plot, but increases the uncertainty of the estimate in the right
plot. See Remark 6.3 in Section 6.4.5 for details on the plotted experiments.
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Figure 6.2: Effect of an oracle choice of augmentation on the limiting risk of a high-dimensional ridgeless
regressor under the asymptotic d/n — . A regularisation effect is observed around v = 1, whereas a
new double-descent peak shows up at v = 5 = k, the number of augmentations. See Section 6.5.1 for the
detailed setup.

of observations that we assume to be d-dimensional i.i.d. random vectors in D C R¢. We
are interested in estimating a quantity ¢ € RY, for some ¢. This may be a model param-
eter, the value of a risk function or a statistic, and so forth. The data is augmented by
applying k randomly generated transformations to each data point. That yields an aug-
mented data set of size n - k. An estimator for 6 is then a function f : D"* — RY, and we

estimate 6 as

estimate of @ = f(augmented data) .
From a statistical perspective, this can be regarded as a form of sample randomisation.
As for other randomisation techniques, such as the bootstrap or cross-validation, quanti-
tative analysis of augmentation is complicated by the fact that randomised data points are

not independent. To study such augmented estimates, we rely on the Linderberg method

discussed in Chapter 2, and assume that our statistics f satisfy a “noise stability”” condi-

80



tion (see Section 6.2). Informally, noise stability means that f is not too sensitive to small
perturbations of any input coordinate. Examples of noise-stable statistics include sample
averages (such as empirical risks or plug-in estimators), but also overparameterised lin-
ear regression, ridge regression, bagged estimators, and general M-estimators (Mei and
Montanari, 2022; Soloff et al., 2024; Montanari and Saeed, 2022). Our Theorem 6.1
shows that the distribution of our augmented estimator is identical to the distribution of
an estimator trained on some surrogate random variables. More precisely, for all A in a

certain class H of smooth functions, we show that
| E[h(f (augmented data))] — E[h( f(generic surrogate variables))] | < 7(n, k).

The surrogates are variables completely determined by their mean and variance; depend-
ing on the problem, they may be Gaussian (e.g. for sample averages) or non-Gaussian
(e.g. for ridge regression). Under general conditions, 7 — 0, hence the limiting dis-
tribution of f(augmented data) is that of f(surrogates). In other words, the effect of
augmentation on a noise-stable estimator is completely determined by two moments as
n grows large. The theorem specifies these moments explicitly. That allows us to study
the limiting estimator and its variance, and to read off the rate of convergence from 7.
For sufficiently linear estimators, we can also draw consistent confidence intervals and

evaluate their width.

Applications to specific models. The function 7 is determined by terms that quantify the
noise stability of f. For a given estimator, we can evaluate these terms to verify how fast
7 converges to O as either n or k grows large. This establishes how fast the universality
property happens, and we use this to gain insights into the effect of data augmentation

for a few different models:

1) Underparameterised models. We analyse empirical averages (Section 6.4.2), plug-in
estimators, the risk of M-estimators (Section 6.4.3) and ridge regression (Section 6.4.5).
For empirical averages and risks, we characterise exactly when augmentation reduces
variance. These results hold more generally for a class of linear sample statistics. For
non-linear estimators, the behaviour can change significantly: Augmentation may in-
crease rather than decrease variance. That can occur even in simple models, such as the

ridge regression example (see the right plot of Figure 6.1).

2) Overparameterised models. As an example of an overparameterised model, we anal-
yse the limiting risk of a high-dimensional ridgeless regressor. Without augmentation,
this model is known to exhibit double descent (Hastie et al., 2022). We show that the
behaviour under augmentation depends on an interplay of scales: If d ~ n, augmentation
acts as a regulariser. For higher dimension, namely d ~ nk, it causes the risk to diverge

to infinity. It can also shift the double-descent peak—see Figure 6.2.
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Some key findings about the behaviour of data augmentation. To place our results
in context, we note three hypotheses generally made in the existing literature of data
augmentation and are either explicitly or implicitly required by proofs (e.g. Dao et al.,
2019; Chen et al., 2020; Balestriero et al., 2022b): (i) Linearity or approximate linearity
of the estimator, in the sense that f is linear in contributions of individual data points
(typically, a sample average). (ii) Invariance of the data source, i.e. the transformations
used to perform augmentation leave the data distribution invariant. (iii) The number of
transformations applied to each data point diverges, i.e. & — co. In the context of (iii), it
is helpful to note that transformations can be applied once before fitting a model (offline
augmentation), or repeatedly during each step of a training algorithm (online augmenta-
tion). Online augmentation is feasible if each transformation is computationally cheap
(e.g. rotations in computer vision). Offline augmentation is particularly common in nat-
ural language processing, where more expensive transformations have emerged as useful
(Feng et al., 2021). The assumption k£ — oo is justified by choosing an online setup and
arguing that the number of steps of the training algorithm is effectively infinite; offline
augmentation implies k£ < oo. Theorem 6.1 allows us to drop each of these assumptions,
and overall, our results show that doing so can change the behaviour of augmentation

decisively. In more detail, our results show the following:

1) Augmentation may or may not reduce variance. Augmentation is known to reduce
variance under assumptions (i)—(iii) above, but empirical observations by Lyle et al.
(2019) suggest this may not be true in practice. Theorem 6.1 allows us to make more
detailed statements: If f is linear, augmentation reduces variance if the transformations
do not increase the variance of the data distribution (Section 6.4.3). If f is non-linear,
variance may increase, even if distributional invariance holds (Sections 6.4.4 and 6.4.5).
More generally, the effects of augmentation depend not only on the data distribution, but

also on the estimator f.

2) Invariance is not essential for augmentation, regardless of whether f is linear or non-
linear. For linear f, the relevant criterion for variance reduction is that augmentation does
not increase the variance of data variables (Section 6.4.2). The invariance assumption (ii)
is one way to ensure this, but is not required: Invariance implies all moments are constant
under transformation. What matters is that the second moment does not grow.

3) Augmentation and regularisation. It has been argued that data augmentation can be
interpreted as a form of regularisation (e.g. Balestriero et al., 2022a). Our results show
that augmentation can indeed act as a regulariser, but whether it does depends on details
of the application—specifically, on how the sample size n, the dimension d, and the num-

ber k of augmentations per data point grow relative to each other (Section 6.5).

4) Whether augmentation is performed offline or online matters. If k£ < oo, data
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augmentation may not regularise (Section 6.5). This manifests for d ~ nk in the double-

descent peak of the risk in Figure 6.2.

In summary, Theorem 6.1 can be used to derive statistical guarantees for a range
of augmented estimators. Several hypotheses on augmentation considered in machine
learning turn out not to be either true or false, but rather depend on the data distribution,
the properties of the estimator, and the interplay of sample size, number of augmenta-
tions, and dimension. The results may also be a step towards making data augmentation

a viable technique for statisticians who seek guarantees for the methods they employ.

6.2 Definitions

Data and augmentation. Throughout, we consider a data set X' := (X, ..., X,,), where
the X; are i.i.d. random elements of some fixed convex subset D C R that contains 0.
The choice of 0 is for convenience and can be replaced by any other reference point. Let
T be a set of (measurable) maps D — D, and fix some k € N. We generate nk i.i.d.

random elements ¢, ..., ¢, of T, and abbreviate

D, = (pyld < k) Pi=(dyli <n,j<k) DX, = (0aX,, ..., 0uX;) .
The augmented data is then the ordered list

X = (O Xy,...,0,X,) = (011 Xqye oy DXy ooy Pt Xy e -+, O X)) -
Here and throughout, we do not distinguish between a vector and its transpose, and regard
the quantities above as vectors ®, X, € D* and ®X € D" where convenient.

Estimates. An estimate computed from augmented data is the value

f(<I>X) = f(¢11X17 cee ¢nan)

of a function f : D"* — R, for some ¢ € N. An example is an empirical risk: If S is a
regression function RY — R (such as a statistic or a feed-forward neural network), and
C(y,y) is the cost of a prediction g with respect to y, one might choose ¢,; = (m;;,7;;) as
a pair of transformations acting respectively on v € R¢and y € Rand X; = (V,,Y;), in
which case f(®X) is the empirical risk - i<nj<i C(S(m;Vy), 7;Y;). However, we

do not require that f is a sum, and other examples are given in Section 6.4.5, 6.5 and 6.6.

Norms. Three types of norms appear in what follows: For vectors and tensors, we use
both a “flattened” Euclidean norm and its induced operator norm: If x € R%**dm and
Ac Rdxd

1/2
Il = (X o, Joiin ) and Al = sup
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Thus,

real-valued random variables X, we also use L,-norms, denoted by | X ||, = E[|X|"] p,

v/|| is the Euclidean norm of v for m = 1, the Frobenius norm for m = 2, etc. For

Covariance structure. For random vectors Y and Y’ in R™, we define the m x m

covariance matrices

Cov[Y,Y'] == (Cov[Y;,Y/])i j<m and Var[Y] = Cov[Y,Y].

]

Augmentation introduces dependence: Applying independent random elements ¢ and 1
of 7 to the same observation X results in dependent vectors ¢(X) and ¢(X). In the
augmented data set, the entries of each vector ®,;X,; are hence dependent, whereas ¢, X,
and ®,X; are independent if i 7 j. That partitions the covariance matrix Var[®X] into
n X n blocks of size kd x kd, and makes it block-diagonal. This block structure is visible
in all our results, and makes Kronecker notation convenient: For a matrix A € R™*™ and

a matrix B of arbitrary size, define the Kronecker product

A® B = (Al-jB)

i<m,j<n

We write A% .= A® ---® A for the k-fold product of A with itself. If v and w are
vectors, v ® w = vw | is the outer product. To represent block-diagonal or off-diagonal
matrices, let I;, be the £ x k identity matrix, and 1, a k£ X m matrix all of whose entries

are 1. Then
BOO - 0BB -
1k®3=(8§g_) and <1kxk—1k>®32(535_)-

Measuring noise stability. Our results require a control over the noise stability of f and

smoothness of test function h, which we define next.

Write F, (D¢, R?) for the class of r times differentiable functions D* — R®. To con-
trol how stable a function f € F, (D", RY) is with respect to random perturbation of its
arguments, we regard it as a function of n arguments vy, ..., v, € D*. That reflects the
block structure above—noise can only be added separately to components that are inde-
pendent. We write £(.A, B) as the set of bounded linear functions .4 — B, and denote by
D" the mth derivative with respect to the ith component,

D f(vy,...,v,) = g::—n‘f (Vi,. ., V) € E((Dk)m,Rq) C Ro}ER™

For instance, if ¢ = 1 and g is the function g(+) == f(vy,...,Vi_1, *, Vig1, ..., V,), then
D} f is the transposed gradient Vg ', and D? f is the Hessian matrix of ¢g. To measure the

sensitivity of f with respect to each of its d x k& dimensional arguments, we define
W’L( .) = (q)lea LR (I)iflxiflv *s Zi+17 cet Zn) )

where Z; are i.i.d. surrogate random vectors in D* with first two moments matching those
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of ®,X;: Defining the d x d matrices >, := Var[¢p,;X,] and 2,5 := Cov[¢p; X, $12X,],
EZ; = 1,1 @ E[¢pnXy] and VarZ; = L, @ Xy + (L — L)) @ Zpp . (6.1)
Write f, : D"* — R as the s-th coordinate of f. Noise stability is measured by
o= Y maama{ | sup DLW, || s D2 (W,

i<n
(6.2)
where we have used [a, b] to represent the set {ca + (1 — ¢)b : ¢ € [0,1]}. Thisis a

[yii

s<q

non-negative scalar, and large values indicate high sensitivity to changes of individual
arguments (low noise stability). Our results also use test functions i : R? — R. For

these, we measure smoothness simply as differentiability, using the scalar quantities
(b)) = sup {[|0"h(v)[||v € R},

where 0" denotes the rth differential, i.e. O/ is the gradient, 9*h the Hessian, etc. In the

result below, these terms appear in the form of the linear combination
A(n, k) = v3(h)ad + 3y (h)ajay + 1 (h)as . (6.3)

An(n, k) can then be computed explicitly for specific models. We note that the depen-
dence on n and £ is via the definition of «,., and that derivatives appear up to 3rd order
and moments up to 6th order. Notably, these conditions require that the effect of chang-

ing one data point on the first derivative of f is o(n'/3).

Moment conditions. Our results also require the following 6th moments on data and the

surrogate variables: Write Z; = (Z,;)<x.<q Where Z;; € R, and define

1 1 ZialP+ o 1 Zyeal?\ B
Cx = ng“leleHG and ¢z = g\/EK' 11 A 1211 ) ] . (6.4)

6.3 Universality under block dependence

We now state our main theoretical result and several immediate consequences. With the
definitions above, the error bound is a term that measures the noise stability of f and

smoothness of A.

Theorem 6.1. (Main result) Consider i.i.d. random elements X,,...,X,, of D, and
two functions f € F3(D™ R?) and h € F3(RY,R). Let ¢4, ..., by be iid. random
elements of T independent of X, \,(n,k) be defined as in (6.3), and moment terms
Ccx,cy be defined as in (6.4). Then, for any i.i.d. variables Z,, . .., Z,, in D* satisfying

(6.1), |ER(f(®X)) — Eh(f(Zy,...,Z,))| < nk**\,(n,k)(cx + cz) .
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Hence if nk®2\,(n, k)(cx + cz) — 0, this means that the value Eh(f(®X)) only
asymptotically depends on the mean and variance of the augmented samples. We will see

that this implies that the distribution of the augmented estimator is universal.

Let v; denote the [-th coordinate of a vector v € RY. Note that if we choose the test
function h : R? — R to be the coordinate functions h(v) = v, for 1 < [ < ¢ as well as
the product coordinate functions h(v) = vy for 1 < [,1" < ¢, we can use the triangle

inequality to establish:
Corollary 6.2 (Convergence of variance). Assume the conditions of Theorem 6.1. Then
n||Var[f(®X)] — Var[f(Zy, ..., Z,)]|| < 6n°k**(agas + ayas)(cx +¢z) -
Note that similar derivation can be made for many statistics of f(®X’) such as the

expectation. To compare the distributions on R9, we use all functions 5 in a suitable class

‘H of test functions. In the context of the noise stability definitions above, we choose
H :={h:R? = R | his thrice-differentiable with v, (h),v,(h),v3(h) < 1} .
The distributions of two random elements X and Y of R? are then compared by defining
dyu(X,Y) = sup,ey [ER(X) — ER(Y)]| ,

that is, the integral probability metric determined by . We note that it metrises weak

convergence.

Lemma 6.3 (d;, metrises weak convergence). Let Y and Y,Y,,... be random vari-

ables in R? with q € N fixed. Then dy(Y,,,Y) — 0 implies weak convergence Y, LY.

This metric is similar to the generalised Dudley distance of Grigorevskii and Shiganov
(1976), but unlike the latter, d; controls all three derivatives simultaneously. For a com-
parison of d,, to other probability metrics, see Appendix D.3.1. Since H is a subset of
F3(RY,R), replacing f with /nf in Theorem 6.1 yields:

Corollary 6.4 (Convergence in dy ). Under the conditions of Theorem 6.1,

dy(Vnf(QX), Vnf(Zy, ..., 2,)) < n*?k(naf + 3n'?ara; + as)(cx + ¢7) -

Thus, Theorem 6.1 exactly characterises the asymptotic variance and distribution of
the augmented estimate f(PX’) by showing universality of its distribution, as summarised
in the next corollary. That allows us, for example, to compute consistent quantiles for
f(@X).

Corollary 6.5. Fix q. Assume the conditions of Theorem 6.1 hold, and that the bounds in
Corollary 6.2 and 6.4 converge to zero as n, k — co. Then
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n||Var[f(®X)] — Var[f(Z,,...,Z,)]|| = 0.

The next lemma simplifies notation throughout—it shows that, if the scaling by y/n be
dropped, one can still study convergence of both E[f(®X)] and of the centred estimate.

Results can hence be stated without explicitly centering terms.

Lemma 6.6. Let X and Y be random variables in RY. Suppose d,(X,Y) < € for some
constant € > 0. Then |[EX — EY|| < ¢"/?c and dy(X — EX,Y —EY) < (1 + ¢'/?)e.

Remark 6.1 (Comments on the main theorem). (i) Gaussian surrogates. In most of our
examples, the data domain D is the entire space R?. If so, one may choose the Z, as

Gaussian vectors matching the first two moments of ®;X;.

(ii) Generalisations. The proof techniques still apply if some conditions are relaxed.
Generalised results are given in Appendix A, and appear in some of the applications
we study below. For example, Z; may be matrix-valued (e.g. in ridge regression, in
Proposition 6.8). The range and domain of ¢;; may not agree (Theorem 13), and the ¢,;

do not have to be i.i.d. We may also permit ¢ to grow with n and k.

(iii) Distributional invariance. A common assumption in machine learning is that the

data distribution is invariant under 7. That means that, for all ¢ € T,
X, L X, or equivalently E[f(X,)] = E[f(¢X;)] forall fe L;(X;).

From a statistical learning perspective, this is one way to ensure that augmentation does
not alter the limiting estimator, although the speed of convergence to that limit may differ.

In light of Theorem 6.1, invariance implies that the variance in (6.1) can be replaced by

VarZ,; = I, ® E[Var[¢; X [¢11]] + (Lgxx — I) @ E[Cov[g11 Xy, ¢12X |11, d12]] -

Note the off-diagonal terms are now covariance matrices that are smaller than those in

(6.1) in the Loewner partial order.

(iv) Different number of augmentations per data point. At the cost of more cumbersome
notation, our universality approximation can be extended to the case where the number
of augmentations for the i-th data point, k;, differs across © < n. To achieve this, we
may first identify & = max; k;, which allows us to write each i-th augmented data block
as a size-R*? vector by padding (k — k;)d many zeros. The problem is reduced to a
Gaussian universality approximation for functions of n independent R*? random vectors.
This can be proved by Lindeberg’s technique as was done in Chapter 4 for polynomial
functions: the relaxation of i.i.d. assumption to independent assumption only results in a

more cumbersome moment bound analogous to that of Theorem 4.1.
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In conclusion, if the conditions of Theorem 6.1 hold and the bounds in Corollaries
6.2 and 6.4 converge to zero, then the asymptotic distribution of y/n f(®X) only depends
on the mean and covariance of the augmented samples ®X'. Hence, under general condi-
tions, the effect of data augmentation on the learning rate only depends on how it affects
the first few moments of the augmented variables, e.g. how strong the correlation between
the augmented samples is. This universality greatly simplifies the asymptotic analysis of

data augmentation.

6.4 Variance reduction and variance inflation

In this section, we consider estimators of the form

1
f(X117 cee 7Xnk) = g(% Zign,jgk’ XU) (65)

for a smooth function g. The simplest is an empirical average, which we analyse first
and which exhibit the known variance reduction effect in the literature (e.g. Chen et al.
(2020)). The results we obtain for such averages still hold if f is approximately linear,
in the sense that it can be approximated well by a first-order Taylor expansion. The risk
of an M-estimator in fixed dimensions is an example. The behaviour changes, however,
when f is non-linear. We illustrate this by a toy example in Section 6.4.4 and concretely

in the example of ridge regression in moderate dimensions (Section 6.4.5).

6.4.1. Comparing limiting variances

A natural measure of the effect of data augmentation on the convergence rate is the
variance ratio comparing estimates obtained with and without augmentation. To de-
fine a valid baseline for estimates without augmentation, we must replicate each input
vector k times, since the number k of augmentations determines the number of argu-
ments of f, and also enters in the upper bound. We denote such k-fold replicates by
Xi = (X,,...,X;) € D*. No augmentation then corresponds to the case where T
contains only the identity map of D"*. By setting each ¢;; to identity in Theorem 6.1,

we can approximate the distribution of f (5(1, ey Xn) by that of f (Zl, ..., Z,), where
Z.....,Z, are any i.i.d. variables in D* satisfying

EZ,L — 1k><1 ® EXl and Vaer — 1k‘><k‘ ®VaI'X1 3 (6.6)
and substituting into Theorem 6.1 shows

[ER(f(X,,...,X,) —Eh(f(Zy,...,Z,))| < nk**Ny(n,k)(cx +cz). (6.7
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The effect of augmentation versus no augmentation can now be compared by the ratio

If) =\ IVarf (Zo, .. Z,)|| | Varf (2, ... Z,)] 6.8)

If ¥(f) > 1, augmentation is beneficial in the sense that it speeds up convergence of the
estimator (though it may or may not introduce a bias). If J(f) < 1, it is detrimental,

which is possible even if invariance holds.

Notation. We write ® X’ for augmented data, and Z = {Z, ..., Z,} for i.i.d. surrogates
satisfying (6.1). X = (X,,...,X,,) denotes the unaugmented, replicated data defined
above, and Z = {Zl, ceey Zn} surrogates satisfying (6.6). We refer to Z and Z as

Gaussian if Z;,...,Z, and Z,, . .., Z,, are Gaussian vectors in R?.

6.4.2. Empirical averages

The arguably most common choice of f is an empirical average—augmentation is often
used with empirical risk minimisation, and the empirical risk is such an average. By Re-
mark 6.1(i1) above, empirical estimates of gradients can also be represented as empirical

averages. An augmented empirical average is of the form
1 n k
f(X117 cee axnk) = %Zi:l Zj:lxij 5 (69)
where D = R?, and d and k are fixed. Specializing Theorem 6.1 yields:

Proposition 6.7 (Augmenting averages). Require that E||X,||® and E||¢1, X ||° are finite.
Let Z and Z be Gaussian. Then f as above satisfies

dy(Vnf(®X),Vnf(2)) =0 and dy(v/nf(X),V/nf(Z£)) =0 asn—oo.

The Gaussian surrogates can be translated into asymptotic quantiles as follows: The

ratio 9 of standard deviations here takes the form

9 — \/(%Var[Xﬂ) / (%Var[ngXl] + %COV[¢11X17¢12X1]) -

To keep notation simple, assume d = 1. To obtain a/2-th asymptotic quantiles, for
a € [0, 1], denote by z,/, the (1 — a/2)-percentile of a standard normal. Then the lower
and upper asymptotic quantiles of f(®X) and f(X) are given respectively by
1 1

Tl s
For empirical averages, the quantiles can be inverted to obtain asymptotic (1 — «)-confidence
intervals for E[¢,;X,] and E[X,], given by

\/%za/g Var[Xl]] and [f()?) +

Remark 6.2. We note some implications of Proposition 6.7:

ElpnXy] + Var[X;] and E[X,] £ Var[X,] .

1

[f(q)X) + \/_EZQ/Q

Var[X,] ]
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(1) In terms of confidence region width, computing the empirical average by augmenting

n observations is equivalent to averaging over an unaugmented data set of size 9¥?n.

(ii) Augmentation is hence beneficial for empirical averages if || Var[¢p,; X, ]|| < ||[Var X, ||

To see this, observe that augmentation is beneficial if ¥ > 1, and that
1 k—1
[Varf(Z)| = HEVar[ngHXl] + TCOV[¢11X17¢12X1]H < ||Var[¢, X,][| . (6.10)

(iii) If the data distribution is invariant, in the sense that ¢;X; 4 X, augmentation is
always beneficial, since VarX, = Var[¢;X,] = Cov[p1 X1, $12X4].

6.4.3. Parametric plug-in estimators

Most of the observations for empirical averages still hold for plug-in estimators if the

dimension is fixed, and more generally for any approximately linear function of averages,

such as the risk of an M-estimator. To see this, note that if we choose g in (6.5) as a
sufficiently smooth function, f can be approximated by a first-order Taylor expansion
TG0 = g(Elon X)) + 0g(Elon X)) (o Y, o — ElonX)) -

(6.11)

The key observation is that the only random contribution to f7 behaves exactly like an

empirical average. Lemma 19 in the appendix shows that

dy(Vnf(®X),v/nf'(Z2)) =0 and n (||Var[f(@X)]]| — ||[Var[f"(2)]]]) = 0,
6.12)

provided that g is sufficiently well-behaved and noise stability holds. That is even true if
d grows (not too rapidly) with n.

The variance of f7 now depends additionally on dg(IE[¢;X,]). If the data distribu-
tion is not invariant under augmentation, it is possible that ||0g(E[¢1; X1])|| > [|09(EX,)]|.
If so, the overall variance may increase even if augmentation decreases the variance of
the empirical average. If invariance holds, augmentation reduces variance, as observed
by Chen et al. (2020).

6.4.4. Non-linear estimators

We have seen above that, in the linear case, invariance guarantees that augmentation does
not increase estimator variance. If the estimator (6.5) is not well-approximated by the

linearisation (6.11), that need not be true, which can be seen as follows. Theorem 6.1
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Figure 6.3: Left: The standard deviation \/V (s) = \/Var[f,,(Z)] = /Var[gioy (s + E[X;])] as a
function of s. Right: The difference D(s) between the 0.025-th and the 0.975-th quantiles for g (s& +
E[X,]) as a function of s. The functions are calculated analytically in Proposition 20. Since neither is
monotonic, the parameter space contains regions where data augmentation is beneficial (green example),
and where it is detrimental (red example). Notably, J(f) < 1 is possible even if o, standard deviation of
the augmented average, is smaller than o, standard deviation of the unaugmented average.

shows that

Varlf(@)] ~ Var[g(CEENE + BlonX )] foré ~ N(OT).

The same holds, with ¢ = 1, for the unaugmented variance. Assume for simplicity that
d = 1 and invariance holds, which implies E[¢;,X,] = E[X;] and ¥ > 1. By a well-
known result characterizing the variance of a function of a Gaussian (Proposition 3.1 of
Cacoullos (1982)), we have

o?E[dg(0¢ + E[X,))]” < Var[g(c€ + E[Xy])] < o?E[dg(0€ + E[X,])?]

for any 0 > 0. When g is non-linear, Jg is not constant, and Var [g (af + E[Xl])] is
not necessarily monotonic in ¢. Thus, in the non-linear case, invariance of the data
distribution does not imply variance reduction. Figure 6.3 illustrates the variance and

quantiles for a highly non-linear toy statistic, defined as

Jioy(T115 -+ - Tpk) = Groy (% Zij xij> = exp ( — <ﬁ Zij xij)2> . (6.13)

In both plots of Figure 6.3, the behaviour of augmentation changes from one region of
parameter space to another. See Appendix D.2.1 for formal statements and simulation

results.

6.4.5. Ridge regression

This section studies the effect of augmentation on ridge regression in moderate dimen-
sions. In light of the discussion in the previous section, this is an example of an estimator
that is not approximately linear, which complicates the effect of augmentation on its vari-

ance.
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Figure 6.4: A simple ridge regression example, where variance of the risk is not monotonic in data variance
despite invariance. Variance of RZ in Lemma 6.9 is plotted as a function of the augmented covariance
v = Cov[(m, V1)?, (m15V1)?] for A = 0.1 and E[V%] = 0.1. As no closed-form formula is available, the
plot ie generated by a simulation over 10k random seeds.

In a regression problem, each data point X; := (V;,Y;) consists of a covariate V;
with values in R%, and a response Y; in R’. We hence consider pairs of transforma-
tions (7;;, 7;;) as augmentation, where 7;; acts on V; and 7;; acts on Y. A transformed

T, (mi;v;)(7ijy;) "), and hence an

data point is then of the form ¢;;x; := ((m;;v;)(7;;v;)
element of D := M? x R%*®, where M denotes the set of positive semi-definite d x d
matrices. For a fixed A > 0, the ridge regression estimator on augmented data is there-

fore

A 1 11
B(¢11X1, e 7¢nkxn) = (% Zij (Wijvi)(mjvz’)T + )‘Id> k Zij(ﬁijvz')(Tijy@')T .
(6.14)
It takes values in R, and its risk is R(B) = E[|| Y pew — BT View|l3 | B].

The next result shows universality of the asymptotic distribution of the risk of a ridge
estimator in a moderate-dimensional regime, for any choice of augmentation. In particu-
lar, one can study the effect of augmentation on the variance of the risk, which measures

the speed of convergence of the risk to its infinite-data limit.

Proposition 6.8. Suppose max;, max{ (7, V1), (711 Y1)} is almost surely bounded by
Cd='"? for some absolute constant C > 0 and that b = O(d). Then there exist i.i.d.

surrogate variables Z.,, . . . , Z,, such that
dy(VnR®¥ /nR?) = O(n~Y2d%)  and n(Var[R**] — Var[R?]) = O(n~'d") ,
where R®Y = R(B(CDX )) is the risk of the estimator trained on augmented data, and

R? = R(B(Z)) the risk with surrogate variables.

In this case, the surrogate variables Z, are random elements of (Md x RAxb )k , whose
first two moments match those of the augmented data. As part of the proof of the propo-

sition, we also obtain convergence rates for the estimator E(CIDX ) (in addition to the rate
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for its risk above); see Lemma D.32 in the appendix.

A detailed analysis of a simple illustrative example. We consider a special case in
more detail, which illustrates that unexpected effects of augmentation can occur even in

very simple models: Assume that

Y, =V,+¢e where V, % N(u1,Y) and e "< N(0,EL) . (6.15)

7

This is the setup used in Figure 6.1, where d = 2. Detrimental effects of augmentation

can occur even in one dimension, though. To clarify that, we first show the following:

Lemma 6.9. Consider the one-dimensional case (d = 1), with ¢ = 0 and 7,; = m;;.

: . PP . d
Assume that the augmentation leaves the covariate distribution invariant, 7;;V; = V,.
Write the covariance v, = Cov[(m1 V)%, (m12V1)?], and generate surrogate variables

ii.d. E[V2]2 E[V?
Z1117---,Zn11 ~ F<Q>M)

Un Ur

and setting Z;;; = 211, forall j < k and | = 1,2. Then

by drawing

dy(vnR* , \/nR?) =0 and n(Var|[R**] — Var[R?]) — 0 asn,k — oo .

Moreover, denoting the Gamma random variable X,,(v) ~ F(M M), we have

v )

1
Var[R?] = oi(v;) = E[VIPA™Var| 5 |

where o,, is a real-valued function that does not depend on the number of augmentations

k, or on the law of the augmentations ;.

Note the surrogate distribution can be determined explicitly, and is non-Gaussian.
The main object of interest is the variance o2 of the risk of an augmented ridge regressor.
For any choice of augmentation, the augmented covariance v, is always bounded from
above by the unaugmented variance Var[(V;)?]. This does not generally imply the the
augmented ridge regressor is a better estimator—the simulation in Figure 6.4 shows that
0,, 18 non-monotonic, that is, even though augmentation reduces v,, it may increase the

variance of the risk.

Remark 6.3 (Details on simulations). (i) The simulation in Figure 6.5 uses the model

(6.15) and two forms of augmentation are both adapted from image analysis:

(a) Random rotations. We represent the elements of the size-d cyclic group by matrices
C,...,C4,, generate random transformations

QS,L] - 7TZ_] Z’?Vd UnifOI‘m{Cl, ey Cd} 3
and set ¢;;x; = ((m;;v;)(mi;vi) ", (m;v:)(7557:) ), i.e. we cycle through the d coordi-
nates of Y; and V; simultaneously. The invariance (¢, V1, ¢1,Y1) < (V1,Y;) holds.

(b) Random cropping for d = 2, where a uniformly chosen coordinate of both Y, and V,
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Figure 6.5: Augmentation can decrease the variance of an estimator, but at the same time increase the
variance of its risk: Shown are simulations for ridge regression under (6.15) with . = 0 and varying k.
The augmentations on each pair of V,; and Y ;; are set to be the same, i.e. 7;; = 7;;. For random cropping,
n =200 and ¥ = (5 %%). For uniform rotations, n = 50 and ¥ = I;, ¢ = 2, A = 9. Top Left. Standard

deviation of (B(®X'))y;, first coordinate of ridge regression estimate under random cropping. Top Right.

Standard deviation of R(B(®X)) under random cropping. Bortom Left. Std (B(®X));; under uniform

rotations. Bottom Right. Std R(B(®X)) under uniform rotations.

is set to 0, i.e. we have

Gij = i s Uniform{C, M, ..., C;M} where M =

(i1) We can now specify the setting used in Figure 6.1 in the introduction: It shows the
empirical average function and the ridge regression estimate computed on the random

cropping setup in Figure 6.5, for £ = 50 and A = ¢ = 0.1.

6.5 Non-regularisation in high-dimensional linear regression

We next consider the effect of data augmentation on the limiting risk of a ridgeless re-
gressor in high dimensions. Without augmentation, such regressors are known to exhibit
a double-descent phenomenon (Hastie et al., 2022). We show that augmentations can
shift the double-descent peak of the risk curve, depending on the number of augmenta-

tions (see Figure 6.2 in the introduction). Such a shift has been observed empirically by
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Dhifallah and Lu (2021).

Specifically, we consider the linear model where the univariate response variable Y;

is related to the covariate V, in R? by
Y, = V/B+¢ fori=1,...,n, (6.16)

where the variables V, are i.i.d. mean-zero random (not necessarily Gaussian) vectors,
and the noise variables ¢; are i.i.d. mean-zero with Varle;] = 02 and a bounded fourth
moment. The dimension d grows linearly with n, and the signal 3 and noise variance are
assumed non-random with ||3]| = ©(1) and 62 = ©(1). Following standard assumptions
in random matrix theory, we assume that V,; has independent coordinates (V};);<,4. For
simplicity, we assume that E[V}] = 0 and E[V,}] = 3Var[V};]?, i.e. the first four moments
of V;; matches those of its Gaussian surrogate; a similar assumption was used in Tao
and Vu (2011) for applying the Lindeberg method to obtain universality of eigenvalue
statistics of large matrices. We expect that the fourth moment condition can be replaced
by a sub-exponential tail in view of known results on universality of covariance matrices,
but this may require additional proof techniques involving the Dyson Brownian motion
(see e.g. Theorem 5.1 and the subsequent discussion of Pillai and Yin (2014)) and we do

not pursue it here.

6.5.1. Double descent shift under oracle augmentation

We first consider an oracle setup, where /3 is assumed known. This is a theoretical device,
but we will see that it is informative. The setup is motivated by the fact that, once we
have chosen transformations 7,;; to augment the covariates V;, we must also specify a
reasonable way to augment the responses Y;. Since the covariates and responses are
related via (3, a known value of (3 allows us to “pass” transformations from the covariates

to the responses according to the model, by defining

T<(<Ora) Y.

] 7

=Y, + (m;V; — Vz‘)Tﬁ = (m; V)" B+e .
If invariance holds for the covariates, it extends to responses,

TijVZ % Vz < (ﬂ'UV T(Ora)Yi) g <V27YZ> . (617)

Ry
The augmented estimator is then

~(ora 1 f1 ora
gl <& > (g Vi) (g V)T + >\Id> 3 V)Y (6.18)

This is a ridge estimator for A > 0, and ridgeless for A = (0. Following Hastie et al.
(2022), we study the risk

B B[ -9 Ve ] Roraz0. 19
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in the asymptotic regime where

n,d — oo, d/n—vye€l0,00), d/(kn) =+ €0,00), k=on"Y), (6.20)

and k is allowed to be fixed or grow with n. In the unaugmented case, 5" and L{"™

are precisely the quantities studied by Hastie et al. (2022), who show that for A = 0, the

risk reproduces the double-descent phenomenon also observed in neural networks.

To illustrate the effect of augmentations in a simple model, we focus on the augmen-

tation

where (§;;); ; is a set of i.i.d. mean-zero noise vectors, each having independent coordi-
nates (£;;,)1<q with E[§};] = 0 and E[¢;] = 3Var[¢;;,|*. This form of randomization is
also known as noise injection in other contexts.

The main challenge in analyzing the risk is that the augmented risk depends on two

strongly correlated high-dimensional sample covariance matrices,
-
S 1 S 1 1 1
K= g VIV K= 15 (V0 ) ()
i<n j<k i<n J<k i<k

For comparison, X; = X, in the unaugmented case, and therefore existing analysis of
double descent only involves one such matrix (e.g. Hastie et al. (2022)). To address this,

we consider the Gaussian surrogate vectors Z,’s, where

We denote the corresponding sample covariance matrices by

= 1 ok T = 1l [(Ik 1k T
Z, = SN 22, Ty = Y (z > z,j) (z > zij) .
Applying Theorem 6.1 allows us to approximate X, and X, by Z; and Z,, whose spec-
tral distributions are in the universality regime of compound Marchenko-Pastur laws

Marchenko and Pastur (1967). This can be used to investigate the limiting risk. The

universality result requires several regularity assumptions, which we state next.

Assumption 6.1. There exists some absolute constant ¢, > 0 such that foralln, k,d € N,

the following quantities are bounded from above by c;:

max HXijl”Lma HHXQH

i<nj<hi<d 017HL60 ) ||HZ2H0PHL60 )

Remark. Note that the use of Lg, norm arises from a crude Cauchy-Schwarz bound, and

we expect this to be improvable.
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Assumption 6.2. The following quantities are O.,(1) with probability 1 — o0.,(1):
HXIH HZJ{H HXQHOp ) ||22Hop )
d o TG S d - Th _
> =0y (u(X)) "Xy u(X))) > L@y —op (v(Z,)"Zyv(Zy)) |

where () (A), v;(A)) denotes the [-th eigenvalue-eigenvector pair of a matrix A € R4,

op op

and O.,(+) and o.,( ») indicate that the bounding constants are allowed to depend on .

Proposition 6.10. Fix A > 0 and assume Assumption 6.1 holds. Then under the asymp-
totic regime (6.20), we have

_ _ _ _ 2m X -7
du(13(X0. Xs) (20.2,)) = oA

If additionally Assumption 6.2 holds, then

dP(fO<X1:X2)v f0(21;Z2)) = o(1).

While the assumptions are complicated, Lemma D.17 in the appendix verifies them
for the isotropic Gaussian case. For simplicity, we now focus on the isotropic setup: For

some fixed o4 > 0, let
Var[X,] =1, and Varl¢;;] = o3l . (6.22)

We defer to Lemma D.16 in the appendix to show that, under (6.22), both Z, and Z,
are simple functions of the same d x nk rectangular matrix with i.i.d. standard Gaus-
sian entries, whose limiting spectral density is the Marchenko-Pastur law. However, the
correlations introduced by augmentations mean that, even in the isotropic case (6.22),
the limiting spectra of Z, and Z, obey some compound Marchenko-Pastur laws — typ-
ically found in the anisotropic setup without augmentation — and the limiting risk is
cumbersome to state, as seen in Hastie et al. (2022). Nevertheless, the Gaussian matri-
ces allow us to derive meaningful surrogates for the risk in settings where the compound
Marchenko-Pastur laws do simplify to a simple Marchenko-Pastur law. To specify this
surrogate risk, we define, for 3 € R% and o, X,y > 0,

R(ﬁa g, >‘>7) = HBHQ>‘2 am7<_)‘) + ‘727 (mw(_>‘> - )‘am'y(_)‘)) )

where m.(z) = ey (217;7_‘2)2_4%3. For A = 0 or v = 0, we define the above as
the respective limit as A — 0% or v — 07. Hastie et al. (2022) shows that this is
the limiting risk of Bgora) in the unaugmented case (k = 1 and 04 = 0). The next
proposition shows that, under an additional asymptotic constraint, the limiting risk of the
augmented estimator can be expressed through R. This is possible because the additional
constraint allows the risk to be characterised only by Z,, the Wishart-distributed surrogate
of X,; see the proof in Appendix D.7.2 for details and for an explicit bound on the

approximation.
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Figure 6.6: Left. Risk of the oracle ridgeless estimator Bo . Right. Risk of the oracle ridge estimator
Af\ora) with A = 0.1. In both simulations, the data are generated as (6.16) with n = 200, varying d, ||3]| = 1
and o, = 0.1. The augmentations are noise injections defined in (6.21) with ¥ = 5 and 0 4 = 0.1. The risk
used for simulation is defined in (6.25) while the theoretical risks are obtained from Proposition 6.11.

Proposition 6.11. Consider the isotropic setup (6.22) and let k > 2 and 0% < 1. Write
A\ = % + Xand o} = k+k0124
o(1) and we allow X\ > 0. Then
S < P o,. A e A
fk()cla)(Q) — lim }2<Er_%37£;_7 gafY) )
k k

O}

. . . g 04 Vd
. Consider the asymptotic regime (6.20) with NV

i Vd

where lim denotes the limit under (6.20) with —2. 2 = o(1).

Proposition 6.11 is meaningful in two regimes: When o2

— 07, ie. little to no
augmentations, or when y/k — 07, i.e. infinitely many augmentations compared to the
dimension-to-sample-size ratio v = lim d/n. When the risk surrogates from Proposi-
tion 6.11 are valid, two effects of augmentation are visible: An additional regularization
by (k —1)0? /k, and a shrinkage of effective size of 3. The latter can be seen as a debias-
ing effect, as 3 only plays a role in the bias term of the risk. This mainly arises from the
use of oracle augmentation, which introduces additional information on 5. Section 6.5.2

shows that if we additionally need to estimate /3 in the augmentation, a bias term arises.

For the double-descent case A = 0, the results can be interpreted as follows. As Hastie
et al. (2022) explains, whether the unaugmented risk diverges to infinity is determined by

the stability of the pseudoinverse. This stability is measured by the random quantity

X0, = | (2, Vi e (vi+ 67

In the isotropic case, since both Gaussianity and the operator norm are invariant under or-

op

thogonal transformations, one may show (Lemma D.16 in the appendix) that the quantity

above is distributed as

1 0 T 04 " k T\ . oh t
H (ﬁ Zz=1 Ml + % Z¢=1 ijl 77ij7h‘j> Hop = H (W1 + ?WQ) ||Op ,  (6.23)
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where 7);; are i.i.d. standard Gaussians in R? (see Lemma D.16 in the appendix for the
derivation). The two matrices in (6.23) are differently scaled sample covariance matrices,
one of n data and another of nk data. These matrices are correlated through {n;, }? ;. The

behaviour of the risk can then be broken down as follows:

(1) If v =1 (i.e. d = n asymptotically), the pseudoinverse of W is unstable, whereas
since v/ < 1 (i.e. d < kn), Wy, is asymptotically full-ranked and close to EW,,.
Since EW, is a scaled identity matrix, it acts as a regularization of the pseudoin-
verse. The regularization effect is evident in Figure 6.6, where the risk curve of
an augmented ridgeless regressor exhibits a small local maximum around v = 1—
similar to what is observed for a ridge regressor in Hastie et al. (2022)—instead of
the spike towards infinity observed for the unaugmented risk curve. The same regu-
larization effect can be seen from the surrogate risk formula from Proposition 6.11,
computed based on the limiting Marchenko-Pastur law of W; in Figure 6.6, the
surrogate is a good approximation even when v = 1 and k = 5, due to the small
noise scale o 4 used.

(ii) If v exceeds k, 7' exceeds 1, and d asymptotically exceeds kn. In this case, the
sample covariance matrix W, also becomes unstable, and is no longer regularises
W, . That causes the risk to diverge, as illustrated in the left plot of Figure 6.6.
The surrogate risk fails to be a good approximation in this regime, as the true
risk is now characterised by a compound Marchenko-Pastur law arising from the
limiting spectra of W + W,

(iii) As this stability issue does not occur for A > 0, no risk spikes are observed for ridge
regression. When A > 0, the pseudoinverse is also less sensitive to the minimum
eigenvalue of the matrices, allowing for the surrogate risk from Proposition 6.11 to
serve as a good approximation for larger range of values of . This is evident both
in the improved rate of the approximation in Proposition 6.11 and in the right plot
of Figure 6.6.

The analysis shows that the interpretation of augmentation as a regulariser suggested
in the machine learning literature (Dao et al., 2019; Chen et al., 2020; Shorten and Khosh-
goftaar, 2019; Balestriero et al., 2022b) depends on the interplay between the number of
augmentations £, the number of data points n and the dimension d. Online augmentation
(where the approximation k£ = oo can be justified) behaves like regulariser, as pointed
out in previous work. In offline augmentation (where k£ < 00), the risk still shows a spike
towards infinity that is not regularised, although this spike now appears around d ~ nk

rather than d =~ n.

Remark 6.4 (Related work). (i) The proofs of Hastie et al. (2022) use the fact that the

random matrices in the unaugmented risk are all rescaled and shifted versions of X,
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whose eigenspace align. That is a consequence of independence between data points,

and no longer true if £ > 1.

(i1) Noise injection is studied by Dhifallah and Lu (2021) for a small A > 0, where
double-descent is observed in a classification problem with a random feature model
but not in regression. Although their work is phrased as a regularization approach, it
can be regarded as augmentation. They employ a remarkable proof technique based on
tools from convex analysis, and their results and ours are complementary: They assume
Gaussian data and noise, and obtain two separate limiting expressions of the risk for
an augmented estimator and an unaugmented estimator with a different regularization.
Our analysis, on the other hand, shows that the shift in double-descent peak is in fact
a combination of two effects: A regularization by noise injection around d ~ n, and a
non-regularised instability around d ~ nk. Additionally, our results apply in the non-

Gaussian case.

6.5.2. Double and triple descent for sample-splitting estimates

Augmenting the response variables requires knowledge of 3. If we drop the oracle as-
sumption, we can use a two-stage estimation process with sample splitting, where an
initial estimate B(m) is computed on part of the data. On the remaining data, this value
is used to augment both covariates and responses, and a final estimate B (m) is computed.
Consider m 1.1.d. fresh draws of the data {\Nfi, }N/;}f;l obtained e.g. via data splitting, and

form an unaugmented estimator with parameter A > 0:
’“(m) o 1 m o~ T T 1 m ~ -~
) (E "V + >\Id> S VY
In the case m = 0, we write 5’/(\0) = 0. The augmentations applied to Y;’s are given by

My,

] 1

= }/z + (levz — \/—l)T ~§\m) — 7—4(‘0r3‘)}/i + (szvz _ V@)T<B/(\m) _ 5) .

v

In this case, invariance of the covariates does not imply invariance of the entire data as in

(m)

(6.17). The final augmented estimator is the two-stage estimator defined with 7,;"" as

H(m v 1 m
,(\ D =X+ AId)T% Zij(’ﬁijvi) Ti(j Y, .

Thus, m = 0 corresponds to not augmenting the response variables. Observe that the

two-stage estimator is related to the oracle estimator by
BY = B 4 (X + ML) X (B - 8) (624)

where the difference arises from the estimation error of the first-stage estimator, Bgm) -0,

as well as the difference arising from augmentation,
S L (1k 1k T
XA = E Zi:l (E Zj:l 7TZ]V1> <E Zj:l (7T1]VZ — Vz))
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Figure 6.7: Risks of the two-stage ridgeless estimator Bém). In all figures, 7a,s = 200 data are used for
the unaugmented estimator and k = 5 augmentations are used for the augmented estimator. The number
of data used for the two stages of the augmented estimator differ: Top Left. m = n,,, = 100; Top Right.
m = 50 and n,,, = 150; Bottom Left. m = 150 and n,,, = 50; Boftom Right. m = 0 and n,,, = 200.

In each figure, risk of the first-stage unaugmented estimator Bém) and risk of the oracle estimator Béom)

trained on {V;},-*%% are also plotted for comparison.

We consider the risk R defined in Section 6.4.5, which simplifies under the linear model
(6.16) as
— (B Voo 2L B = 118 = BI + 02 .

We are again interested in the double-descent case A = 0.

R(B™) = E[(Yaew (6.25)

Proposition 6.12. Assume that | X[, || Xs|

probability 1 — o(1). Then

Xallop and |8V — B are O(1) with

op’ op’

P

R(BI™) — (02 + LY™ + | X' XA (B = B)|) & 0.

In other words, the limiting risk R(3{™) can be separated into the the risk L™ of
the oracle estimator, a noise term o that arises due to a different choice of the risk, and
the term HXleA(Bgm) — B)HQ. Adapting our universality result allows one to show
that (X, X ) behave like correlated matrices with Gaussian entries, and in the isotropic

case, we expect delocalization of the eigenvectors of X' X, in the sense that

X XA = B[~ STr(XaX2X,) 18— 1. (6.26)
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A formal justification requires developing anisotropic local laws similar to Knowles and
Yin (2017) but for matrices of the form XJ{X A, Which we leave to future work. Under
(6.26), the main difference between the two-stage risk R(3\™) and L{"™® is a rescaled
risk of the first-stage estimator. We expect L™ to diverge near 7 = 1 (i.e. d ~ kn) and
R,, to diverge near v/p = 1 (i.e. d &~ m), leading to two spikes in the risk curve of Bém).
One spike is due to augmentation as discussed in Section 6.5.1, and hence not observed if
k — oo. The other is due to the first-stage, unaugmented regressor on m data, and hence
not observed if m = 0. Figure 6.7 shows empirical results for fixed £ and A = 0. Both

double-descent (for m = 0) and triple-descent behaviours are clearly visible.

Remark 6.5. (i) The results above can be generalised from the ridgeless regressor con-
sidered here to two-layer linear networks. Indeed, Ba et al. (2019) and Chatterji et al.
(2022) characterise the risk of such a network after training in terms of the pseudoinverse

in (6.23). Our proof technique can be applied to this risk, at the price of more notation.

(i1) For simplicity, we have assumed the same value of ) is used in both stages, although
our approach can be extended to distinct values. Since both stages use A = 0, we see two
peaks in the risk, and hence triple-descent. If a positive value is used in the first stage

instead and A = 0 in the second, one of the peaks would vanish.

6.6 Universality for other non-smooth and high-dimensional estimators

So far, we have demonstrated universality for properties of the ridge regression and linear
regression. In this section, we present two additional results that show how the univer-
sality results also apply to a non-smooth statistic and a high-dimensional statistic. The

second example also illustrates how augmentation may increase effective sample size.

6.6.1. Maximum of exponentially many correlated random variables

As an example of non-smooth statistic, consider the function

1 d
f(Xlla . >Xnk) = maXy<i<d, ke Zign ngk Tjj1 for xiq,...,%,, € R,

where the dimension d,, grows exponentially in n as specified below. This function
occurs in the context of uniform confidence bands (Deng and Zhang, 2020) and high-

dimensional central limit theorems (Chernozhukov et al., 2013).

Proposition 6.13. Consider i.i.d. Gaussian variables {Z;},<,, that satisfy (6.1). Suppose

E[¢11X,] = 0 and the moments || max;<y |(¢11X,)| ||, and || maxi<q, [(Z11)i] ||, are
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finite for each d,, € N. Then

(Vi f(®X),Vif(2) 50 and  n||Varlf(®X)] ~ Varlf(Z)]]| - 0

whenever d,, grows as log(d,,) = o(n'/10).

Thus, the maximum coordinate of the high-dimensional augmented average can be
approximated by the maximum of a high-dimensional Gaussian. Similar results are
available in the literature on high-dimensional central limit theorems, and suggest that

the condition on d,, can be improved.

6.6.2. Softmax ensemble of exponentially many estimators

Let B, ..., By, be RP-valued functions, for some m,, € N. We think of these as es-

timators or predictors previously calibrated on a separate sample. Fix a loss function
L : RP x RY — R and a scalar ¢, and define

m, exp (— ¢80 570 SE | L(B,. %))
X 7"'7Xn = T m og(m n
f( ! k) ZT:IB Ry exp( lg( - >ie 127 1 L(Bs, ZJ))

For k = 1, this is a softmax version of the super learner built on the base estimators [3,,

for x;; € RY .

see e.g. Van der Laan et al. (2007). For large values of ¢, the function f approximates

f ~ argmln{ﬁ |1<r<m} Zz 1Z] 1L 57” Z] :

The number m,, of estimators is typically permitted to grow exponentially with n. The
result below shows that augmenting f can effectively increase sample size. To make

that precise, we define an “effective sample size” n* = cyn, for some c, > 0, and write

w, = E[L(5,,X;)]. Consider
. exp (— tlog(my,) (5= 2oy (L(By %) — py) + 11y))
f (Xl’ o ZT 1BT 71 eXp(—tIOg(mn)(%Z ( (ﬁsa l) _Ms)+us)) .

If an augmented ensemble f(PX’) behaves like f*(X’) for some c, > 1, then augmenta-

tion increases effective sample size.

Proposition 6.14 (ensemble of exponentially many estimators). Assume that the data
distribution is invariant, i.e. ¢11X, 2 Xy, and that || max, <., |L(B,, $11X4)||r, and
H max,<m,, |L<ﬁr7 Xl)‘ HLG are bounded. If

L1 (sup,<, [(B,)i)) = O(1)  and  logm, = o(n'")

then there exists c, > 1 such that

dy (Vo f (PX),v/nf*(X)) = 0 and n||Var[f(®X)] — Var[f*(X)]|| = 0.
An explicit formula for ¢, is given in Appendix D.6.6, and shows that there are cases
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where indeed c,, > 1. The scaling log(m,,) is justified in Lemma D.39 in the appendix.

104



Chapter 7

Implications of universality in optimisation anal-

ysis

In all applications considered so far, the estimator f in (1.1) admits an explicit closed-
form formula in terms of the data. There, we have seen how universality greatly sim-
plifies analyses, since one may extract various theoretical properties just by studying a
closed-form expression of Gaussians. In day-to-day machine learning, however, many
estimators do not admit a closed-form formula. A common example is some estimator

B(X ) that depends implicitly on the data via some optimisation

B(X) € argming.paloss(B; Xy, ..., X,) . (7.1)
When there are non-unique minimisers, the estimate B(X ) additionally depends on the

specific choice of optimisation algorithm used for obtaining 3(X ).

Universality results have now been established for various 1-dimensional properties
F(X) of the estimators (X)) in (7.1), e.g. when f(X) is the training or test risk of 3(X),
mostly by the Lindeberg method and its variants. A non-exhaustive list of examples
includes random feature models (Hu and Lu, 2022), regularised regression (Han and
Shen, 2023), block dependent linear models (Lahiry and Sur, 2024), generalised linear
models (Dandi et al., 2023), max-margin classifiers (Montanari et al., 2023) and general
classes of empirical risk minimisers (Montanari and Saeed, 2022). In a recent joint work
(Mallory, Huang, and Austern, 2025), we also establish universality for the risks of high-

dimensional logistic regression classifiers, where data are allowed to be dependent.

Once universality results are established, one can already empirically investigate the
behaviour of the estimators by substituting the data X with a set of Gaussians Z, which
are computationally fast to generate. However, the non-closed-form nature of f means
that f(Z) is still complicated to analyse, and obtaining a rigorous theoretical statement

can be much more difficult than the closed-form cases.

This chapter discuss several tools that, in setups where Gaussian universality does

hold, can aid the analysis of quantities that arise in optimisation:
» Section 7.1 examines the convex Gaussian min-max theorem (CGMT), a theoretical
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tool that is particularly well-suited for analysing optimisation problems on Gaussian
data. We shall develop an extension of known CGMT results to accommodate de-
pendence both across dimensions and across different data points, and briefly discuss
its usage in Mallory, Huang, and Austern (2025) for analysing the effects of data

augmentation on high-dimensional classifiers;

« Section 7.2 examines the stability analysis of stochastic optimisation algorithms used

for training B(X ) in the context of two specific examples.

— The first is contrastive divergence (CD), an ML algorithm used for training energy-
based models. We briefly discuss how universality plays a role in obtaining the
necessary moment control for a multi-step stability analysis and obtaining the
consistency of B (X). The discussion is used in a particular setting as part of
the broader analysis of a joint work (Glaser, Huang, and Gretton, 2024), which

provides near-optimal error bounds for the convergence of CD in various settings.

— The second is variational Monte Carlo (VMC), an algorithm used in training
large-scale neural network solvers to the Schrodinger equation. We briefly exam-
ine how the maximum CLT (a tight version of Proposition 6.13) can be applied to
analyse the stability of a high-dimensional gradient update under data augmenta-
tion. This result is used as part of the broader analysis of a joint work (Huang,
Zhan, Ertekin, Orbanz, and Adams, 2025), which examines the effects of differ-
ent symmetrisations in neural network VMC solvers under a particularly intricate

case of symmetry in crystals.

7.1 Dependent convex Gaussian min-max theorem

Many modern tools have been developed for a system of equations or an optimisation
problem that involves only Gaussian random variables, such as the cavity method (Op-
per et al., 2001), approximate message passing method (Donoho et al., 2009), the replica
method (Mézard et al., 1987) and the convex Gaussian min-max theorem (CGMT) (Gor-
don, 1985; Thrampoulidis et al., 2014). Among them, the CGMT is a framework that
converts a complex optimisation problem on Gaussian data to a much more analytically
tractable auxiliary problem. The auxiliary optimisation is often further simplified into a
deterministic equation involving only a few scalars, and under the CGMT, its solution

completely characterises that of the original problem.

In this section, we first provide an informal overview of the standard CGMT recipe
for risk analysis in the case when X, ..., X, are i.i.d. random vectors with i.i.d. coor-

dinates (Thrampoulidis et al., 2014; Thrampoulidis, 2016); we refer interested readers to
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Thrampoulidis (2016) for a detailed technical introduction. We proceed to present our
extension to the dependent setup, and briefly discuss its usage in Mallory, Huang, and
Austern (2025) for analysing the effects of data augmentation in logistic regression. A
diagrammatic illustration of the universality-CGMT receipe is included at the end of the

section in Figure 7.2.

7.1.1. An informal sketch of the universality-CGMT recipe

Let X,,..., X, be mean-zero R%random vectors (not assumed to be i.i.d. or isotropic
for now). Suppose the corresponding labels y;, . . ., ¥, are generated as y; = y(X,'3,)
for some link function 3 : R — R and some unknown vector 3, € R? to be estimated.
Consider the optimisation problem
1 T T
min Y X8 y(XB)
where [ : R x R — R is some loss function. We first discuss the analysis of the training
risk, i.e. the global minimum of the above optimisation; it shall become clear in Sec-
tion 7.1.2 how this can be utilised to analyse the test risk or other 1d properties of the

minimiser.

The first step is to reformulate the optimisation problem, such that most of the techni-
cal difficulties are captured by a multilinear term involving a high-dimensional Gaussian
matrix. CGMT then allows one to, informally, replace this Gaussian matrix by Gaussian

vectors, which allows for easy downstream processing.

To this end, denote the concatenated R4*™ data matrix X = (X;,...,X,) and y :

R™ — R as the coordinate-wise application of y, i.e.

y(XT8.) = WX B,y BT = W) |

Then for some appropriately chosen L : R" x R" — R, we can express the original

optimisation (OO) as

mingers L(X'8,y(X"8,)) - (00)
When Gaussian universality holds, we can WLOG study (OO) via the Gaussian optimi-
sation

mingegs L(Z'B,y(Z'5,)) . (GO)
where Z = (Z,,...,Z,) is the matrix of Gaussian surrogates with the same mean

and covariance structure as X. (GO) can be rewritten as a constrained optimisation
mingega egn L(v,y(Z'f3,)) subject to v = Z' 3. By introducing the Lagrange mul-
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tiplier © € R", we can further rewrite (GO) as

i Lwv,y(Z"B)+ (B"Z — v )u .
peiin max L{v,y(Z B)) + (B Z—v )u

So far, we have successfully extracted a multilinear term involving the Gaussian ma-
trix Z. However, a subtle technical difficulty persists due to the dependence of the R"
random vector y(Z'3,) on Z. In the case where the data are i.i.d. with i.i.d. coordi-
nates, zero mean and identity covariance, a standard trick (see e.g. Thrampoulidis (2016);
Salehi et al. (2019)) is to consider the projection P, := 3,8 /||5.||*> € R¥*4: Since Z
has i.i.d. (0, 1) entries, the projected matrix H := (I — P,)Z is independent of P,Z
and y(Z' 3,). This allows us to rewrite (GO) further as

min = max 8 'Hu+ ' P.Zu — v u+ L(v,y(Z'5,)) .

BERY yeR™ ueR™
Assuming that L is convex in the first argument, and writing 1(3, u) = min, cgn 3 P, Zu—
v'u+ L(v,y(Z"3,)), one can apply the min-max theorem of Rockafellar (1970) to ob-
tain

min  max ' Hu + ¢(8,u) . (PO)

BER vER™ uER™
Note that the only source of randomness in ¢(/3, u) is from a high-dimensional R" vector
Z' 3,, which by construction is independent of H. Optimisations of the above form are
called the primary optimisation (PO) in CGMT. A direct analysis of (PO) can be rather
cumbersome: One needs to consider how the limiting spectrum of the high-dimensional
random matrix H interacts with the function ¢ over the high-dimensional spaces R? and
R™.

Suppose for simplicity that H is a matrix with i.i.d. N'(0, 1) entries, and ignore
the stochasticity in ¢ (5, u). The standard CGMT (Thrampoulidis et al., 2014; Thram-
poulidis, 2016) says that, under mild conditions on v and by restricting the domains
of optimisation appropriately, one may study the minimised value and properties of the
minimisers of (PO) via the auxiliary optimisation

pein max (|5l Tu + 8 gllull +¢(8,4), (AO)
where h and g are two independent standard Gaussian vectors, each taking values in
R"™ and R?. The formal result is proved by applying Gordon’s Gaussian comparison
inequality (Gordon, 1985) to two suitably constructed Gaussian processes, and we defer
the technical discussion to the proof of Theorem 7.1 in Appendix E. As a simple heuristic,
we note that the formulation (AO) is expected: As the matrix H has i.i.d. N'(0, 1) entries
and are thereby invariant to left-multiplication of R%*¢ rotations and right-multiplication

of R™ ™ rotations, one may expect 3 and u to only contribute to the term 5" Hu only
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through the Euclidean norms || || and ||u||. (AO) essentially formalises this, since
ii. d
181", B glull "~ N, [1B]7]|ull?) -

The main practical advantage of analysing (AO) in lieu of (PO) is that (AO) no longer
involves a high-dimensional matrix and only depends on high-dimensional vectors. In-
deed, even when one considers the stochasticity of ¢/, (AO) only depends on the three
high-dimensional Gaussian vectors h, g and Z ' 3,, all of which appear in the loss through
some 1d quantities. Without the maximum and the minimum over the high-dimensional
spaces R? and R", one would be able to apply the law of large numbers directly to ob-
tain a deterministic formulation of the objective. In the CGMT literature, the min-max
operators are handled on a case-by-case basis depending on L. A common pattern is that
they typically involve introducing additional auxiliary variables e.g. r = ||| to reduce
the min-max operators to be over a low-dimensional space, after which an appropriate
notion of law of large numbers is applied. The end result is typically a low-dimensional,
deterministic (but not necessarily convex) optimisation, which may be investigated nu-

merically or used to prove theoretical statements about (OO).

A diagrammatic illustration of the above recipe is included in (7.2). We do not fo-
cus on the direct analysis of (AO) in this thesis, but refer interested readers to the many
successful applications of CGMT to the risk analysis of high-dimensional models (Sto-
jnic, 2013a,b; Thrampoulidis et al., 2015; Thrampoulidis, 2016; Thrampoulidis et al.,
2018; Mignacco et al., 2020; Dhifallah and Lu, 2021; Aolaritei et al., 2022; Javanmard
and Soltanolkotabi, 2022; Akhtiamov et al., 2024a,b). Our focus will be to generalise
the standard CGMT, which only works for H with i.i.d. entries, to a setup that allows
for dependent rows and columns in the Gaussian matrix H. In particular, this enables
us to extend the above recipe to allow dependence both across data points and across

coordinates.

7.1.2. Dependent CGMT

We shall develop a more general CGMT framework that accommodates a “low-rank as-

sumption” on the dependence structure of H. More formally, we assume the following:

Assumption 7.1 (Low-rank dependence). Let H be an RY*" Gaussian matrix. There
exist M € N and symmetric positive semi-definite matrices (X, i(l)) 1<m> With »b ¢
R4 and ¥ € R™*", such that

Cov[H,;, H;, Zl 9275 foralli,7/ <mnandj,j <d.

]l? ]]
Remark 7.1. (i) When M = 1, we can re-express H = (X(1)/2H/($(1)1/2, where
H' is an R™™ matrix with i.i.d. A’(0, 1) entries. In this case, by redefining 3 and u in
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(PO), the standard CGMT still applies. Assumption 7.1 can therefore be understood as
a generalisation of this argument in the case where the re-expression is not possible, but
the dependence structure of H is still fully specified by a sum of M matrix products, each
involving an R¥“ matrix and an R™ " matrix. (ii) We call Assumption 7.1 a low-rank

assumption due to the restriction on the size of M in Theorem 7.1.

The primary optimisation we study takes the form

Vs, s, = m18n max Ly(w,u) with Lg(w,u) =w Hu+ f(w,u), (7.2)
n wWESy UES,

where S; C R% and S,, C R are the domains of optimisation and f : S; x S,, — R
is some function that plays the role of ¢ in (PO). Denote |[v||sy = Vv T¥v. Under

Assumption 7.1, we shall compare Vs s to the risk

‘= min max L, (w.u 7.3
de,Sn wes, ueSf 7,/1( ) )7 ( )

M ad 1/2 1/2
where Ly (w,u) == 3 (wllzob! (59)u+w™ (50) g lulso ) + f(w,u).

Here, (hy, g;);<)s are independent standard Gaussians respectively in R” and R?. No-
tice that (7.3) is analogous to (AO), except that the M pairs of covariance matrices are
retained in (AO).

Our next result formalises the equivalence of Vs s and 9g, s , and additionally

controls wy € Sy, the minimiser of ¥ s .

Theorem 7.1 (Dependent CGMT). Suppose Assumption 7.1 holds, and that S; and S,,

are compact and f is continuous on S; x S,,. Then the following statements hold:

(i) Forall c € R,
P(Us,s, <c) < 2YP(Ys,s, <o) .
(ii) If additionally S; and S,, are convex and f is convex-concave on S; X S,, then for
all c € R,
P(Ps,s, >¢) < 2YP(Ys,s, > ¢,
and in particular, for all p € R andt > 0,

P(\Us,s, — il 2 1) < 2V P(bs,s, —ul > 1) (7.4

(iii) Assume the conditions of (ii). Let A; be an arbitrary open subset of S; and A =
Syq \ Ag. If there exists constants ?st’ &Ag and n, e > 0 such that IEAE > ?st + 37,
P(¢s,s, <ts,+1) > 1—eandP(Yue s, > buag —1) > 1 — ¢ then

Py € Ag) > 1—4e. (1.5)
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Remark 7.2 (Compact and convex domains S; and S,,). CGMT operates on compact and
convex sets S; and S,,. To extend the result to the case with S; = R? and S,, = R", one
typically shows that for the particular problem of interest, the minimiser and maximiser
lie in some compact sets with high probability; see e.g. Montanari and Saeed (2022);
Lahiry and Sur (2024).

Remark 7.3 (Comparison to existing CGMT results). The standard CGMT in the 1.i.d.
isotropic case is exactly the same as above with X(1) = I, M = [ and M = 1;
see Theorem 3.3.1 of Thrampoulidis (2016). Our result also recovers the multivariate
CGMT of Dhifallah and Lu (2021) by setting ©() and > as block diagonal matrices
with M equal-sized subblocks, such that the [-th subblock is identity and the other blocks
are zero. Akhtiamov et al. (2024a) generalises the block diagonal setup to allow non-
identity subblocks, which is a special case of our Assumption 7.1, but they also allow for

transforming w and u, which we do not address here.

Remark 7.4 (Comment on the 2 factor). Similar to the i.i.d. isotropic CGMT, our The-
orem 7.1 is proved by applying Gordon’s Gaussian comparison inequality to two suitably
chosen Gaussian processes, one of which corresponds to (7.3) whereas the other corre-
sponds to (7.2) with M additional univariate Gaussian terms. The factor 2 arises from
approximating the M univariate Gaussian terms away. See Theorem 3.3.1 of Thram-
poulidis (2016) for the proof in the i.i.d. isotropic case, and Appendix E for the proof in

the general case.

The interpretation of the results are similar to that of the standard CGMT. For readers
unfamiliar with the CGMT literature, we note that for most practical purposes, (7.4) and
(7.5) are the two key CGMT results, whereas the rest can be viewed as intermediate steps

to obtain these results. Roughly speaking, they can be interpreted as follows:

+ (7.4) implies that if the risk of the auxiliary optimisation 95, s is close to some value
p with high probability, then necessarily the risk of the primary optimisation Vs s

is close to p with high probability. This allows us to analyse the risk 95, s in lieu of

Vs,.s,

« (7.5) concerns an “important set” A; C S,. It says that, if the inclusion or exclusion
of A, results in a substantial change of the risk of the auxiliary optimisation (from v ;
to 1) 4), Which automatically implies a substantial change of the risk of the primary
optimisation, then the minimiser wy, of the primary optimisation must lie in the set A,
with high probability. This allows us to use the analysis of the auxiliary optimisation
to make a statement about the minimiser of the primary optimisation, and thereby the

original optimisation.
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Figure 7.1: Figure 1 of Mallory, Huang, and Austern (2025). Universality of risks of a logistic regressor,
trained with different number and amount of random permutations. See the paper for the detailed setup.

A more convenient version of (7.5) is the next asymptotic concentration statement. The

proofs for both Theorem 7.1 and Corollary 7.2 are included in Appendix E.

Corollary 7.2 (Asymptotic CGMT). Assume the conditions of Theorem 7.1(ii) and let
Ay, AS be defined as in Theorem 7.1(iii). If there exist constants {» < 1) s.t. g .S, 5 Y
and A5.S, L Y°, then

IP)(UA)\I/ c Ad) — 1.

In practice, for both the standard CGMT and the dependent CGMT, one choose A,
depending on the desired properties of 1y, to investigate. For instance, if 1wy corresponds
to some estimator 3(X ), one may let A, be the set {5 € R? | [E[l(X,}0, 3, Yaew )] — x| <
e} for some test loss function [ : R? — R, some conjectured value of the test risk
X € R, and an arbitrarily small ¢ > 0. (7.2) then allows us to make high probability
statements about the test risk of B (X)) by analysing only the auxiliary optimisation, which
can often be replaced by low-dimensional, deterministic optimisation, as discussed in
Section 7.1.1. We also do not need to know the value of x a priori, as this is typically

deduced directly from the auxiliary optimisation analysis.

This approach of choosing .4, was used in the test risk analysis in the joint work
of Mallory, Huang, and Austern (2025), which considers a high-dimensional logistic re-
gression problem with dependent data. This is also the work where Theorem 7.1 and
Corollary 7.2 were developed. In that work, Corollary 7.2 is used in conjunction with
a training risk universality result under dependence to prove fest risk universality. We
also show that data augmentation (see e.g. Chapter 6 for the precise definition) corre-
sponds exactly to Assumption 7.1 with M = 2. This enables us to derive a set of low-
dimensional, deterministic fixed-point equations that completely characterise the effects
of DA on high-dimensional logistic regression, which also recover the fixed-point equa-

tions derived by Salehi et al. (2019) for the isotropic i.i.d. setup as a special case. As a
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practical application, we have applied this universality-CGMT recipe to investigate the
effectiveness of data augmentation, and observe that the benefits of data augmentation
can be highly reliant on the full knowledge of invariance. We refer interested readers to

the paper for more details.
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Figure 7.2: A diagrammatic illustration of the pipeline of high-dimensional risk analysis via Gaussian
universality and our dependent CGMT.
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Figure 7.3: Figure 4 of Mallory, Huang, and Austern (2025): Initial training loss curves for the random
permutation setup in Fig. 7.1 with p,e,, = 0.8, k = 11 and learning rate LR = 0.1.

7.2 Stability analysis in stochastic optimisation

One intriguing observation of Mallory, Huang, and Austern (2025) is that in the same
experiment setup, universality is observed for the global minimum of the risk (Fig-
ure 7.1) but not for the training trajectories (Figure 7.3). Specifically, we observe a
discrepancy in training trajectories under the same set of hyperparameters (Figure 7.3),
and a different learning rate is required for the Student’s t and uniform setups to obtain
convergence to the global minima. Underneath this observation is the crucial distinc-
tion that the global minimiser of a loss and the training iterates to optimise the same
loss can be two different mathematical objects. The former takes the form /3 (X) €
argming pa loss(3; X, ..., X,,); when the minimisers are unique, B (X)) can be analysed

directly via the loss function. The latter typically takes the form

Or = frxe ©froixe.,©---0 fixe (6), (7.6)

i.e. the composition of some R? — R? stochastic update functions Ji.x¢,- The update
functions are X -dependent, and (&;);<7 is some sequence of i.i.d random variables that
represent per-step randomisation such as the use of stochastic mini-batches. The limit
of 6, as T — oo may not exist, and even if it exists, it may not necessarily converge to
B(X).

In this section, our choice of f(X) in (1.1) is 6 itself or some coordinate of 6. Prov-
ing the universality of A, in general, can be a much more difficult task. As with the pre-
ceding chapters, we are faced with the obstacles of dependence and high-dimensionality,

but now in the context of a composition of many stochastic functions:

« Dependence. Notice that, had the composition been formed by a sequence of deter-
ministic functions, the asymptotic behaviour of (7.6) would be a well-studied problem
in the dynamical systems literature (Collet and Eckmann, 2009). Alternatively, had
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it been a composition of i.i.d. random functions, results from iterated random func-
tions (Diaconis and Freedman, 1999) and Markov chains (Norris, 1998; Levin and
Peres, 2017) would have been applicable. The dependence across all f;. x.,, due to
the presence of X, makes out-of-the-shelf applications of standard tools from those

literatures challenging;

+ High-dimensionality. In a machine learning setup, the update functions typically op-
erate on a high-dimensional space R?. Even if one ignores X -dependence and studies
(7.6) as a Markov chain, the problem of high dimensionality is a known challenging
and ongoing area of research within e.g. the Markov Chain Monte Carlo community
(Katafygiotis and Zuev, 2008; Girolami and Calderhead, 2011; Betancourt, 2017).

In this section, instead of tackling these challenges in full generality, we shall focus
on two specific machine learning applications and briefly discuss how universality results
and heuristics played a role in those analyses. Specifically, we review two of the authors’
joint works, Glaser, Huang, and Gretton (2024) and Huang, Zhan, Ertekin, Orbanz, and
Adams (2025), and highlight parts of their analyses where either the result or the heuristic
of universality plays a role. In the former, universality is used to decouple the multi-
step dependence across f; y¢,’s with a small number of moment controls; in the latter,
universality is used for one-step stability analysis of a high-dimensional gradient. As the
nature of this section is a discussion, we will focus on sketching out the intuitions rather

than presenting the full setups in both papers.

We emphasise that universality is not the key message of either work. We include a
brief discussion of the key content of each work at the end of each subsection, and refer

interested readers to both works for further reading.

7.2.1. Multi-step dependence decoupling in the contrastive divergence algorithm

Consider the problem of fitting the unknown natural parameter ¢, € R? given n i.i.d. data

Xi,...,X,, drawn from an exponential family distribution (Brown, 1986; Wainwright
et al., 2008)
po(dx) = € 9@ ~108ZO) (g | Z(0) = / e’ YW e(dx) .
X

Here, X C R%is the sample space, the function ¢ : R? — R is the sufficient statistic,
and c is the base probability measure on X'. We also take d to be fixed throughout this
subsection. A standard approach for estimating 6 is by running the iterated update (7.6)

with the maximum likelihood gradient update

M) =0 —n (5 Y, 6(X) — Vieg Z(6))
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=0 m (L3, 6(X) ~ iy, [6(X)])

Here, 1, > 0 is the learning rate at step ¢. Note that this can be viewed as a finite-sample

estimation of the population update

PP0) =0 — 0 (Exep, [0(X)] — Exry, [6(X)]) -

In many applications, however, the log-normaliser log Z () is not assumed to be admit
a closed form. This allows for a flexible design of the model class, but prevents us from

using the update scheme f,'y".

The contrastive divergence (CD) algorithm (Hinton, 2002) is a popular method for
fitting unnormalised models. In its most vanilla form, at each gradient update, CD sim-
ulates n i.i.d. Markov chains that target p, initialised from X,,..., X, and run for m
steps, to obtain the samples X {”’9, ey X Then, CD replaces the intractable gradient

L

update f* by computing

1 1 .
RO =0—n(5 X, 000) — 3 6(K)
Let 07" be the final iterate of (7.6) under the CD updates by Y. The goal is, informally,

to obtain a high-probability bound or moment bound on the difference from the true

parameter,
1677 — 0.1 - (1.7)

If both the number of steps m and the number of data points n are large, under suitable
conditions on the Markov chain sampling algorithms, CD yields a good approximation
of the update fP°". However in practice, since the Markov chains have to be run at every
gradient step, m is never chosen to be large. This introduces a potential source of bias,

which can affect the convergence rate of 03P to 6,.

The prior work of Jiang et al. (2018) establishes an asymptotic O(n~'/3) high prob-
ability bound on (7.7) for unnormalised exponential families for a finite m. In the work
of Glaser, Huang, and Gretton (2024), one of our main goals was to obtain the paramet-
ric rate of O(n~'/2)-consistency (i.e. a high probability or moment bound on (7.7) with
O(n‘l/ %) error). Additionally, we aimed to obtain finite-sample moment bounds in (7.7)
with explicit dependence on m, which allow one to interpret the interaction of m with

other problem-dependent parameters e.g. the learning rate 7, and properties of py .

One key technical challenge is the dependence of X;’s across ft%? for different ¢’s,
which manifest both explicitly through the data term £ 3. ¢(X;) and implicitly through
the initialisations of the finite-length Markov chains. To a&dress this, note that our goal is
to prove a consistency result, which amounts to showing that the iterates produced by ff}?

are close to the “oracle” iterates fF°P. As such, it suffices to decouple the dependence
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across the fS? ’s, 1.e. to show that fg}? ’s are approximately independent functions.

The decoupling step, which appears in Section 4 of Glaser, Huang, and Gretton
(2024) in the form of a tail condition, is achieved by universality. Notably, to show
the independence of two generic variables, it does not suffice to consider only finitely
many moments. In the case of the iterates of ft%?, however, we are only concerned with
functions of empirical averages of conditionally i.1.d. quantities, which allows for a con-
ditional Gaussian approximation. In particular, we can achieve decoupling and thereby
consistency by only assuming a v-th moment control for v > 2 — analogous to the mo-
ment condition imposed in the earlier universality result of Theorem 4.1. Moreover, the
more moments we can control, the stronger the decoupling result is and the sharper the
rate we may obtain for CD. Section 4.1 of Glaser, Huang, and Gretton (2024) provides a
range of rates for different fixed values of v, and shows that under the sub-Gaussian tail
condition assumed in Jiang et al. (2018), we can in fact achieve an O(+/logn/+/n) bound
on the Ly norm of (7.7).

We do emphasise that the key messages and the many other results of Glaser, Huang,
and Gretton (2024) are not tied to universality. For example, the regime discussed above,
where the data X;’s are reused across iterates, is known as the offline CD. A substantial
amount of work in Section 3 of Glaser et al. (2024) is devoted to the study of online CD,
where data are not reused across iterates and where no decoupling is required. There,
we show that one does achieve O(n~'/?)-consistency, and a CD iterate with Polyak-
Ruppert averaging (Polyak and Juditsky, 1992) can even achieve an error bound that is
close to the Cramér-Rao lower bound. Additionally, we also prove results for stochastic
gradient descent versions of CD with and without replacement. The key tools behind
these results are combinations of both known and new tools for stochastic optimisation
analysis. Indeed even in the decoupling argument above, universality is not sufficient to
yield the joint dependence control over all time steps, and the structure of the optimisation
algorithm in CD plays a key role. We refer interested readers to the paper for the full

picture.

7.2.2. One-step high-d stability analysis for large-scale neural network solvers to

the many-body Schrodinger equation

Consider the problem of finding the ground state wavefunction ¢ : R* — C to the
n-electron Schrodinger equation. One essentially seeks the eigenfunction v with the

minimal eigenvalue F for the Hamiltonian operator H,

Hy(x) = Ey(x), x:=(2q,...,2,) € R, (7.8)
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subject to some additional physical constraints that we do not specify here for simplicity.
The Hamiltonian H is given by Hi(x) := —3A¢(x) + V(x)¥(x), A is the Laplacian
operator representing the kinetic energy and V' : R®" — R is the potential energy of the
physical system.

For many practical physical systems of interest, (7.8) is solved numerically by finding
the best solution within a parametrised class of functions {1, |6 € R?}, e.g. a class of
large neural networks (Hermann et al., 2020; Pfau et al., 2020; Li et al., 2022). A brute-
force search of 1)y is computationally difficult, since 1)4’s are functions living in a high-
dimensional space. To circumvent this, one typically takes advantage of a nice physical
property of the wavefunction that p¢( ) = “f( )|> gives the probability distribution of

the n electrons. Here, ( = [ f(x)*g(x) dx denotes the complex inner product.

One class of methods that utilises p,, is Variational Monte Carlo (VMC), which seeks

to solve the minimum eigenvalue problem of (7.8) by the optimisation

. (v, Hby)
algzglgzln <'ZF)7¢9§ - argg;:;qln I[.EXNZM, [Elocal it (X)] ) (7.9)

where Eocar.y, (X) = H1p(X)/15(X) is called the local energy. In the simplest case,
the optimisation may be performed by a first-order method, which can be represented by
a generic function Fy.,, = F(1y(x), Apy(x)) € R? as

9 — ft(e) — 9 - EXprg[FX;we] .

Here we again use f; from the notation of the composition (7.6) at the start of Section 7.2.
Notably, the expectation formulation above converts the expensive integral over the entire
space into an expectation, which can then be approximated by Monte Carlo averages

computed on finitely many samples from p,, .

A key distinction of VMC from standard machine learning problems is that there are
no training data, and Monte Carlo samples are generated on-the-fly at every gradient step.
More precisely, let i), being the iterate from the last training step. The new training step
is performed by first running NV MCMC chains for m steps, with p,, as the target distri-
bution, and initialised at the samples from the last iterate. Denote pz(;::) as the distribution
of one of these m-th step MCMC chain (conditionally on initialisation and on )y). Then
the obtained samples as X, ..., Xy are i.i.d. drawn from quf:), and the original (OG)

gradient update rule is given by

0 s f(OG ( ) — 56(OG) , 50(OG) — %ZZSN FXiﬂ% . (710)

The main goal of the joint work of Huang, Zhan, Ertekin, Orbanz, and Adams (2025)
is to examine a large class of difficult symmetries that arise naturally in modelling ¢, in

infinite periodic crystalline solids, and to examine the strengths and limitations of vari-
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ous standard symmetrisation techniques in machine learning. Among those, one of the
approaches considered is in-training data augmentation. This is the same data augmen-
tation (DA) approach discussed in Chapter 6. Perhaps surprisingly, however, we observe
that DA can lead to variance inflation and instability in VMC even for empirical averages,

in contrast to the observations in Section 6.4.

The main difference arises from a unique computational-statistical tradeoff in VMC.
Specifically, the per-step training cost of VMC consists of two parts: (i) the sampling
cost of each m-step MCMC chain, cg,,p1e, and (i1) the cost of evaluating the gradient of a
large neural network on each sample, ¢,,,4. In particular, (i) typically involves computing
only 0,1, whereas (ii) involves at least dy1)y and 921}, (due to the presence of Laplacian
in the training objective). The computational cost of the original update rule (7.10) is
therefore N cqample + N Cgraa- To implement data augmentation, one may sample N’ DA
samples X, ..., X/ ~ pgz) and draw N’k i.i.d. augmentations g; ; (as described in
Chapter 6), which gives the update rule

00— 000 | 50PN = ST ST Fe o (7.11)

This leads to a per-step computational cost of N’ cgumpie + N’k Cgraq. Since the main

bottleneck in training is the computational cost (e.g. the number of GPUs to parallelise

sampling over), for a fair comparison, we need to choose N’ and k such that
~ / /
Ncsample + Ncgrad ~ N Csample + N kcgrad .

This, for example, necessitates N’ < N as the number of augmentations is typically
k > 2. In the neural network considered in Huang, Zhan, Ertekin, Orbanz, and Adams
(2025), we find that cgpq > Ceample 1IN general, and restrict our attention to the case
N’ = N/k, assuming the divisibility of N by k. In particular, the augmented batch size
is the same as the original batch size IV, which is in stark contrast to the augmented batch
size Nk considered in Section 6.4. Note that this arises because in the standard ML
setup considered in Chapter 6, the main bottleneck is the size NV of the finitely many real-
life data, and augmentations are assumed to be computationally cheap; here, the main
bottleneck is computational rather than number of samples, and each augmentation can

incur a similar computational cost to that of acquiring a new data point.

An immediate consequence of the choice N’ = N/k is that each step of (7.11) now
involves an average of fewer i.i.d. summands. As expected, DA here leads to variance
inflation and instability of the gradient, even for an empirical average, as observed in
the normalised variance plot in Figure 7.4. Huang et al. (2025) then proceeds to validate
empirically that the performance of DA does not improve from that of the original update;

see the paper for the full experiment setup.

To derive a rigorous theoretical statement for this effect, one faces the additional tech-
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Figure 7.4: Figure 3 of Huang, Zhan, Ertekin, Orbanz, and Adams (2025): Normalised variance of differ-
ently symmetrized gradient updates against GPU hours.
nical challenge of analysing a high-dimensional empirical average, which is not expected
to behave like a high-dimensional Gaussian vector in general. Nevertheless, universality
results in the preceding chapters tell us that one may expect Gaussianity if the property
of interest is a suitably stable univariate function of the high-dimensional inputs. Here,
since we seek to analyse stability, given a random R”-valued gradient update 66, we may

focus on the object

max [(66), — E[(60),]] , (7.12)

I<p
i.e. the maximum deviation from the mean of the gradient update J6 over the p co-
ordinates. Since 60(P*) takes the form of an i.i.d. augmented average, an analogous
result to Proposition 6.13 applies. In Appendix D of Huang, Zhan, Ertekin, Orbanz,
and Adams (2025), we directly used the finite-sample bound of the high-dimensional
CLT from Chernozhukov et al. (2017) to show that the limiting distribution of (7.12)
is completely captured by Var[66)], provided that p = o(exp(N'/7)) for (7.10) and p =
o(exp((N")'/7)) for (7.11). Under an exact invariance condition, we further showed that
Var[660(PY)] > Var[66(©%)], where > is the Loewner order of non-negative matrices; under
an approximate invariance condition, we provided a corresponding error bound. These

results helped to provide theoretical support for the instability observed for DA in VMC.

We conclude by stressing that the main messages and results of Huang, Zhan, Ertekin,
Orbanz, and Adams (2025) are not tied to universality. A substantial amount of work in
Huang et al. (2025) is devoted to analysing the type of symmetries that arise in a many-
body wavefunction for crystalline solids, and the possible symmetrisation techniques one
may employ to a large-scale VMC neural network. Besides in-training data augmenta-
tion, we also examine a group averaging and a smooth canonicalisation approach both
during training and inference. A main discovery of Huang et al. (2025) is that post-hoc
group averaging can be a simple and effective method for substantially improving the
chemical accuracy of the learned wavefunction within the same amount of computational

resources: We validated this finding across graphene, lithium hydride (LiH) and metallic
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lithium systems, with a 10 x computational speedup in the LiH system compared to state-
of-the-arts neural network solvers. As these results are obtained on large neural network
solvers parallelised over many GPUs, a significant amount of work in Huang et al. (2025)
is computational rather than theoretical in nature. We refer interested readers to the paper

for the full picture.
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Chapter 8

Conclusion and future directions

Consider, for one last time, an empirical average of i.i.d. zero-mean 1d variables,

X3
Frns = G ) ()

One way to interpret the CLT is that the behaviour of the R? random vector X =
(X1,...,X,)T, when viewed through the 1d projection (—=, ..., —=), is completely de-

scribed by the first two moments of X and therefore substitutable by a Gaussian vector.

In the same spirit, Gaussian universality can be viewed as a set of general Gaussian
approximation results on the input space of some function f: It says that the behaviour of
a sequence of random vectors (X, ..., X,,), when viewed through some possibly non-
linear and complicated function f, is also completely captured by the first two moments.
Various examples of such f’s have been examined in this thesis in the context of high-
dimensionality and dependence, and universality has been used to provide theoretical
and practical intuitions in each of them. We have also developed a general set of uni-
versality results for the L, space spanned by degree-m polynomials of high-dimensional
random vectors, and provide nearly optimal upper and lower bounds to show how the

approximation error deteriorates as 1m grows.

The applications considered in this thesis are merely a subset of the rapidly expand-
ing body of work on universality, where a constant quest is to push the boundary on the
types of high-dimensional estimators and dependence structures one may accommodate.
For instance, Section 5.4 and the references therewithin are part of a growing body of
works that use Gaussian approximations to characterise the limiting behaviours of sub-
graph count statistics by Wiener chaos. An interesting extension is to consider whether
Gaussian universality may be a useful perspective for unifying and extending results in
other network-related statistics and in dynamic graph models such as the preferential at-
tachment models (Barabasi and Albert, 1999; Albert and Barabasi, 2002; Berger et al.,
2014; Pekoz et al., 2017; Bloem-Reddy and Orbanz, 2018). On the other hand, the prob-
lem (7.6) of analysing the iterates of random functions in a high-dimensional space, is
partially solved by a recent line of work on the limiting spectral behaviour of products of

many large random matrices (Hanin and Paouris, 2021; Hanin and Jiang, 2025), and such
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results have seen applications in the analysis of deep neural networks (Hanin and Nica,
2020; Li et al., 2021; Noci et al., 2023; Favaro et al., 2025).

An open question remains as to whether and when Gaussian universality can break
in practical machine learning applications. The simple maximum example (2.4) in Sec-
tion 2.1 and our lower bound construction in Section 4.5 provide theoretical examples,
but neither of them yields an immediate connection to a practical machine learning setup.
Meanwhile, several lines of works have emerged in the literature to examine negative
results on universality. For example, Pesce et al. (2023) show, both theoretically and
empirically, that the behaviour of a high-dimensional generalised linear model changes
when the input Gaussian mixture data are replaced by their Gaussian surrogates. We
do note that, in view of the discussion in Section 2.2, Gaussian universality does not
always replace the input data of the estimator directly by Gaussians, and the Gaussian
mixture case may still be viewed as a type of universality with appropriately transformed
data. On the other hand, universality with respect to heavy-tailed rather than Gaussian
distributions is also observed in neural network layer weights and training iterates un-
der stochastic gradient descent (Martin and Mahoney, 2020; Hodgkinson and Mahoney,
2021; Gurbuzbalaban et al., 2021).

For systems that do exhibit Gaussian universality, another vital question is whether
these systems can be too restrictive or harmful in practice. Broadly speaking, Gaus-
sian universality results apply to systems in which the stochasticity is approximately
Gaussian-generated. One particular example of such systems is the large family of deep
generative models built on transformations of Gaussian distributions, such as variational
autoencoders, generative adversarial networks and diffusion models. In this literature, an
emerging line of work (Salmona et al., 2022; Pandey et al., 2024; Tam and Dunson, 2025;
Ghane et al., 2025) has shown that the use of Gaussian distributions can in fact restrict
the representative power of these models, and cause them to struggle with modelling
multimodal and heavy-tailed data. Ghane et al. (2025) also empirically observe that, for
the same diffusion model with a restrictive representation power, a notion of Gaussian

universality is satisfied by the test risk.

Another interesting mathematical problem is whether explicit and sharp constants
may be obtained in the universality approximation bounds. Such constants, if known,
are useful in practice, as it allows for an explicit computation of the approximation er-
ror. For empirical averages, considerable efforts have been made to obtain and sharpen
these constants; see e.g. Shevtsova (2011) and references therewithin, and see Austern
and Mackey (2022) on how such explicit constants facilitate practically computable and
efficient concentration bounds. To obtain explicit constants for the results of this thesis,

one may use the explicit numeric constant in the proof of the anti-concentration inequal-
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ity from Carbery and Wright (2001) and combine it with our proofs. However, since the
constant obtained would apply to a large class of statistics, it is unlikely to be sharp for
specific applications. It remains an interesting question whether one may obtain sharp
and explicit constants if, for example, one can restrict our attention to particular classes
of U-statistics, or if suitable tail conditions or coordinate-wise dependence conditions are

imposed on the data distribution.

In view of these open questions, an interesting direction of future work is to build a
better understanding of the limitations and failure modes of Gaussian universality. One
may also ask if a more general universality framework is necessary, in order to obtain a

better theory for the behaviours of modern statistical and machine learning algorithms.
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Appendix A

Additional results and proofs for Sections 3.2, 3.4

This appendix provide additional results and proofs that concern the upper bounds and
the applications of degree-two U-statistics in Chapter 3. The appendix is organised as

follows. The first two sections provide additional content:

Appendix A.1 states additional results for the Gaussian mean-shift setup of Section 3.4.3,
including a demonstration of how Assumption 3.2 can be verified by a simple Taylor

expansion.

Appendix A.2 presents auxiliary tools used in subsequent proofs.

The remaining sections consist of proofs:

Appendix A.3 proves the main upper bound result, Theorem 3.1. Appendix A.3.1 states

a list of intermediate lemmas that provides a proof overview.
Appendix A.4 proves the remaining results in Section 3.2.
Appendix A.5 proves the results in Section 3.4.

Appendices A.6 and A.7 present proofs for the results in Appendices A.1 and A.2 re-

spectively.

To standardise notation in this appendix, unlike Section 3.2, we shall use D,, = uy(Y)
for both the general degree-two U-statistic defined in (3.1) and the specific U-statistic D,,
arising from MMD and KSD.
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A.1 Additional results for Gaussian mean-shift in Section 3.4.3

In this section, we consider the Gaussian mean-shift setup defined in Section 3.4.3, where
Q = N(u,Y) and P = N(0,%) with mean p € R? and covariance matrix ¥ € R4,
We derive analytical expressions of the moments of U-statistics for (i) KSD with RBF,
(i1)) MMD with RBF and (iii) MMD with linear kernel. We also verify Assumption 3.2
for the three cases, which confirm that our error bounds apply. We refer interested readers
to Huang, Liu, Duncan, and Gandy (2023) for a discussion and results on the verification
of Assumption 3.1.

A.1.1. A decomposition of the RBF kernel

For both MMD and KSD, the key in verifying the assumptions for the RBF kernel is a
functional decomposition. The usual Mercer representation of the RBF kernel is avail-
able only with respect to a univariate zero-mean Gaussian measure and involves some
cumbersome Hermite polynomials. Since we do not actually require orthogonality of the
functions in Assumption 3.2, we opt for a simpler functional representation as given be-
low. We also assume WLOG that the bandwidth v > 8, since we only consider the case

v = w(1) in our setup.

Lemma A.1. Assume that v > 8. Consider two independent d-dimensional Gaussian
vectors U ~ N(uy, I;) and V ~ N (s, 1) for some mean vectors piy, pi, € Re. Then,
forany v € (2,4] and p, 15 € RY, we have that

B[ exp (- 551U = VIE) =TT, (Zisy Moi@ei0)[ ] #22 o.

where ¢ () = z*e=*/N) and N = ﬁfor each k € NU{0}.

To see that Lemma A.1 indeed gives the functional decomposition we want in As-
sumption 3.2, we need to rewrite the product of sums into a sum. To this end, let g,
be the d-tuple generalisation of the Cantor pairing function from N to (N U {0})? and
[94(k)]; be the [-th element of g,4(k). Given {)\;}2, and {¢]}°, from Lemma A.1, we
define, for every k € Nand x = (z4,...,24) € RY,

d 4 d
Qg = Hl:l [94 (k)]s and ¢k(X) = Hl:1 ¢[gd(k)]l($l) : (Al)
With this construction, for each K € N, we can now write
d K * % *
[T, (S hidieiv)))
K * * * * *
= O MO, (T) - , (U) (@, (V) - 64, (Vi)
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Since the Cantor pairing function is such that min;,[g4(K)]; = oo as K — oo, Lemma

A.1 indeed gives a functional decomposition in terms of {«; }7°, and {1, }?2, as

Ef|exp (= 5 I0-VIE) - X0 awn(Oue(V)[ ] =00 a2

We remark that both «;, and v;, are independent of the mean vectors p; and p,, which

makes this representation useful for a generic mean-shift setting.

A.1.2. KSD U-statistic with RBF kernel

Under the Gaussian mean-shift setup with an identity covariance matrix, gradient of the
log-density is given by Vlogp(x) = —x for x € R? and the U-statistic for the RBF-
kernel KSD is

uSSP(x,x') = (Vlogp(x))T(Vlogp(X’))m(x,X’) + (Vlogp(x))Tvgn(x,x’)
+(V logp(x’))TVm(x, x') + Tr(V,Vyk(x,x))

_ 12 1 1 d 2
= exp ( - w> <XTX, + ;XT(X' - x) + ;(X/)T(X —x') + <; _ lx=xs WQX ”2>>

—oxp (= B (- e ). (A3)

2y
We first verify that Assumption 3.2 holds by adapting {«,}72; and {¢;.}32, from Ap-
pendix A.1.1.

Lemma A.2. Assume that vy > 24. For k' € N, consider

AR —1)(d+3)41 = — 2 Plr—1)(a+3)+1(X) = Yp(x )(Ixl3+ 1),
A(ku1)(d+3)+2 = 7;10%/7 k' ~1)(d+3) +2( ) = Yp(x )HXH%v
AR —1)(d+3)43 = (% + 7;1>04k/ o O—nyars+3(X) = Yp(x),
and forl =1,...,d, define
Ak —1)(d+8) 4341 = W%,, G —1y(ar3)+3+1(X) = Y (X)a,

Then Assumption 3.2 holds with any v € (2,3] for u = ulS5P, {\}22, and {¢;,}32,
defined above.

A.1.3. MMD U-statistic with RBF kernel

Under the Gaussian mean-shift setup with an identity covariance matrix, the MMD U-
statistic with a RBF kernel has the form

UMMD(

z,7') = k(x,X)+k(y,y) - r(xy) - wX,y)
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_ I — 13 ly —¥'lI3 I — '[13 I’ — I3
= exp (— 2 +exp| — 2y —exp | — o —exp | — % )

(A4)

forz = (x,y),2z = (x/,y’) € R*. We first verify that Assumption 3.2 holds again by
adapting {ay,}32, and {¢,,}32,; from Appendix A.1.1.

Lemma A.3. Assume that v > 8. Then Assumption 3.2 holds with any value v € (2, 3]

MMD((

and the function u((x,y), (X,y’)) = u x,y), (x,y)) for x,y,x",y € R% with

the sequences of values and functions given for each k € N as v, = «y, and ¢(x,y) =

(%) = i(y).

A.1.4. MMD U-statistic with linear kernel

In this section, we consider the mean-shift setup with a general covariance matrix X €
R qe., Q = N(1,X) and P = N(0,3). The MMD with a linear kernel x(x, x’) =
x 'x’ has the form

uMMD (

z, Z/) _ XTX/ + yTy/ _ XTy/ _ yTX/ ’

where z = (x,y),7z = (x,y’) € R*. In this case, Assumption 3.2 holds directly
because we can represent u™MMP as

WP (z,2) = (x—y) (X' ~y) = ijl(xz—yz)(l“f—yf) = ;l:17l¢z(z)1/)l(zl)7

(AS)

where v, = 1, ¢,(z) =, — y, and ¢y (2z') = 2] — .

Details on the choice of linear kernel in simulations. In the last example in
Section 3.4.3, we chose = (0,10, ...,0) € R? and a diagonal 3 with 31, = 0.5(d+1),
Y = 0.5 for¢ > 1and ¥;; = 0 otherwise. Note that by the invariance of Gaussian
distributions under orthogonal transformation, this is equivalent to choosing > as 0.51;+
0.5J 4, where I, € R4 is the identity matrix, J; € R%*? is the all-one matrix and y is
transformed by an appropriate orthogonal matrix of eigenvectors. Notably, this choice

ensures the limit of ¢MMP

MMD
Dy

remains non-Gaussian. Indeed, when () and P are Gaussian,
the statistic can be written as a sum of shifted-and-rescaled chi-squares, where
the scaling factors are 0.5(d + 1),0.5,...,0.5, the eigenvalues of ¥. As d grows, the
eigenvalue 0.5(d + 1) dominates, and the limiting distribution is then dominated by the
first summand, thereby yielding a chi-square limit up to shifting and rescaling. This
is numerically demonstrated in the right figure of Figure 3.2. As a remark, we do not
expect this exact setting to occur in practice; it should instead be treated as a toy setup to
demonstrate the possibility of non-Gaussianity and convey an intuition of when this may

occur.
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A.2 Auxiliary tools

A.2.1. Generic moment bounds

We first present two-sided bounds on the moments of a martingale, which are useful
in bounding r-th moment terms of different statistics. The original result is due to
Burkholder (1966), and the constant C), is provided by von Bahr and Esseen (1965) and
Dharmadhikari et al. (1968b). We also include Burkholder’s original upper bound in the
second line, which is used when a finer control is required in Chapter 4. The bounded-
ness of C, over a bounded interval is because Burkholder (1966)’s constant arises from

Marcinkiewicz interpolation theorem and the Khintchine inequality.
Lemma A.4. Fix v > 1. For a martingale difference sequence Y1, . ..,Y, taking values
in R,

min{0,v/2—1 n v n v max{0,v/2—1 n v
¢,y L BIV] < B[RS Y] < GO BV

for C, = max {2, (8(v — 1) max{1,2"*})"} and a constant ¢, > 0 depending only on

v. Moreover, there exists some constant C), > 0 depending only on v such that

B[S YT < B[ v

where sup,,c; C;, is bounded whenever I C (1,00) is a fixed bounded intervall.

The next moment computation for a quadratic form of Gaussians is used throughout

the proof:

Lemma A.S (Lemma 2.3, Magnus (1978)). Given a standard Gaussian vector 1 in R™

and a symmetric m x m matrix A, we have that E[n" An] = Tr(A) and

E[(n" An)?] = Tr(A)? + 2Tr(A?) , E[(n' An)®] = Tr(A)* + 6Tr(A)Tr(A?) + 8Tr(A?) .

A.2.2. Moment bounds for U-statistics

We first present a result that bounds the moments of a U-statistic D,, = u,(Y") defined as
in (3.1).

Lemma A.6. Fix n > 2 and v > 2. Then, there exist absolute constants c,,C,, > 0
depending only on v such that

EHDn - EDn‘V} S Cl/ nu/2<n - 1)71/ g’ + CI/ (TL - 1)7VMfIflll;u )

cond;v

EHDn - EDn‘V} > Cun<n - 1)7V cuond;u =+ Cuni(yil) (TL - 1)7(V71)Mfl:111;1/ .
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In other words,

EHDn - EDn’V] = O(nil//2 " + niquIiﬂl;l) 3

cond;v

E[|D, —ED,|"] = Q(n " DM, +n 2 ME,) -

cond;v

The next two results summarise how the moments of variables under the functional

decomposition in Assumption 3.2 interact with the moments of the original statistic u
under R:

Lemma A.7. Let {¢,}72,, {\}i2, and €y, be defined as in Assumption 3.2. For
Xy, Xy "X R, write . = Elop(Xy)] and let the moment terms D, M on4.,, M.,
be defined as in Chapter 3 and Section 3.2. Then we have the following:

(i) | Cpes Mt = D| < excas
(ii) for any v € [1, 3], we have that

1 v v K
Z(Mcond;y) —EKw <E H Zk:l )‘k((bk(Xl) - :uk):uk’

(iii) there exist some absolute constants ¢, C' > 0 such that
K v
E H Zk:l Ak(Gr(X1) — 1) (D1(X2) — ) }
v 1 14 v
< 4C (M) — §<Mcond;1/) + (4C + 2)ek, ,

E H Z:Zl Ae(0r(X1) = ) (01, (X) — Mk)H
> 7 (Mya)” = 8(Meonaz)” — (¢ +8)ekcy, -

| < 4(Meonan)” + )

The next result assumes the notations of Lemma A.7, and additionally denotes

AY = diag{)\,,..., A} eRFF o (z) = (¢1(2),...,0x(zx))" € RF.

Lemma A.8. For uf .= E[¢* (X,)] and XX = Cov[¢'(X,)], we have

O-zond - 4O-condgK;Q - 48%{;2 S (/’LK)TAKEKAK(MK) S (O-cond =+ 2€K;2)2
(0t — €xc2)” < Tr((ARSF)?) < (opn +ex0)? -

In particular, for v € [1,3] and two i.i.d. zero-mean Gaussian vector Z, and Z, in R¥

with variance XX, there exists some absolute constant C' > 0 such that

EH(MK)TAKzlly] < 7(O-é/ond +86VK;2) ’ EHZIAKZQlV] < 6(O-fyull+€?(;2) )
EH(QSK(Xl) - MK)TAKZI{V] S 8C<Mfull;1/>y - (Mcond;u)y + (80 + 4)€VK;V .

The next lemma gives an equivalent expression for WX defined in (3.9) and also
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controls the moments of WX,

Lemma A.9. Let {nX}"_, be a sequence of i.i.d. standard Gaussian vectors in R, Then
(i) the distribution of WX satisfies

WL s (300 )T (55) AR (29) 2 — nTr(SAR) ) + D

n3/2(n — 1)1/2 ij=1
(ii) the mean satisfies E[WE] = D for every K € N;
(iii) the variance is controlled as

2
n(n —1)

(0t — €x0)” < Var[WK] <

2
n(n—1) (Ofun + €K;2)2 ;

(iv) the third central moment is controlled as

S(E[U(Xh Xo)u(Xs, Xg)u(Xg, Xy)] — Mfin;s + (Mfull;S + 51{;3)3)
n3/2(n — 1)3/2 ’

8(E[u(Xy, Xo)u(Xy, Xz)u(Xs, X,)] + M5 — (Mpas + £r3)?) )

n3/2(n — 1)3/2 )

E[(W,' — D)’] <

E[(Wy —D)*] >

(v) the fourth central moment is controlled as

12
E[(er( - D)4] < m<4E[U(X1=XQ)U(XzaX3)U(X3,X4>U(X47X1)]
- 4M§111;4 + 4( My, + 51{;4)4 + (Opan + 51(;2)4) ;
12
E[(Wr{{ - D)4] > m<4E[U(X1,Xz)u(XmX3)U(X3,X4)U(X4,X1)]

+ 4M§1u;4 - 4<Mfu11;4 + 51{;4)4 + (Ufuu - 51{;2)4) ;

(vi) we also have a generic moment bound: For m € N, there exists some absolute

constant C,,, > 0 depending only on m such that

m Cm m m
E[(Wr{{)Q ] <—_1)m<0fu11+5}<;2)2 +C,, D*™

— nm(n
(vii) if Assumption 3.2 holds for some v > 2 then limy_, . Var[WE] = ﬁafmll. If
Assumption 3.2 holds for some v > 3, then

: SE[u(X, Xy)u(Xy, Xg)u(Xs, X, )]
%EHOOE[(WT{( - D)3} - - ni/g(ni 1)5/2 ° - )

and if Assumption 3.2 holds for some v > 4, then

lim E[(WT{( . D)ﬂ _ 12(4E[U<X17X2)U(X2,)gg)u(X3,2X4)U(X4,X1)] —I—U?uu) .
K—o0 n?(n—1)

A.2.3. Distribution bounds

The following is a standard approximation of an indicator function for bounding the

probability of a given event; see e.g. the proof of Theorem 3.3, Chen et al. (2011).

142



Lemma A.10. Fix any m € NU {0}, 7 € R and § > 0. Then there exists an m-times
differentiable R — R function h,,...s such that hy,,.ss(x) < Tery < hps(o).
For 0 < r < m, the r-th derivative thT; 5 1s continuous and bounded above by 6.

Moreover, for every € € [0,1], h(™ satisfies that

) () = B ()] < O 69 |z — y|€

m;T;0 m;T;0

with respect to the constant C,, . = (Lm% J) (m + 1)m*e.

The next bound is useful for approximating the distribution of a sum of two (possibly
correlated) random variables X and Y by the distribution of X alone, provided that the
influence of Y is small.

Lemma A.11. For two real-valued random variables X and Y, any a,b € R and € > 0,

we have

pac]
IS
A
S
_l’_
>~<
A
=
IA

Pla—e< X <b+e)+P(JY|>¢),
Pa<X+Y<b) >Pla+e<X<b—e)—P(]Y|>¢).

Fact 4.4, i.e. Theorem 8 of Carbery and Wright (2001), gives an anti-concentration
result for a polynomial of random variables drawn from a log-concave density. The next
lemma restates the result in the case of a quadratic form of a K'-dimensional standard

Gaussian vector 7).

Lemma A.12. Let p(x) be a degree-two polynomial of x € RY taking values in R. Then
there exists an absolute constant C' independent of p and 1 such that, for every t € R,

P(lp(n)| <t) < CEP(E[p(m)) " < Ct2(Var[p(n)]) /"

A.2.4. Weak Mercer representation

In Section 3.4.2, we have used the weak Mercer representation from Steinwart and Scovel
(2012). We summarise their result below, which combines their Lemma 2.3, Lemma 2.12
and Corollary 3.2:

Lemma A.13. Consider a probability measure RonR®, V{,V, "% R and a measurable

kernel k* on R®. If E[k*(V;, V;)] < o0, there exists a sequence of functions {¢;, }2°, in
Ly(R®, R) and a bounded sequence of non-negative values {\,}3 | with lim,_, ., \, =
Zszl M0u(V1) (V) — m*(Vl,V2)| — 0. The series

converges R @ R almost surely.

0, such that as K grows,
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A.3 Proof of the main result, Theorem 3.1

In this section, we prove Theorem 3.1. The proof is necessarily tedious as we seek to
control “spectral” approximation errors (i.e. the error from a truncated functional decom-
position) and multiple stochastic approximation errors at the same time. The section is

organised as follows:

« In Appendix A.3.1, we list notations and key lemmas that formalise the steps for

proving Theorem 3.1;

« In Appendix A.3.2, we present the proof body of Theorem 3.1, which directly com-

bines results from the different lemmas;

 In Appendix A.3.3, A.3.4, A.3.5 and A.3.6, we present the proof of the key lemmas.
Each section starts with an informal sketch of proof ideas followed by the actual proof
of the result.

A.3.1. Auxiliary lemmas

Recall that our goal is to study the distribution of
1
The three results in this section form the key steps of the proof. We fix o > 0 to be some

normalisation constant to be chosen later.

1. “Spectral” approximation. For K € N, we define the truncated version of D,, by

Dy = n(nl— 1 2rsizicn 3 M (X0 (X))

(6™(X,) AR O™ (X;) .

1
n(n—1) Zlgi;ﬁjgn
We also denote the rescaled statistics for convenience as

p, = Y=l prE = V=l pie

g g
The first lemma allows us to study the distribution of DX in lieu of that of D,, up to some

approximation error that vanishes as K grows.

Lemma A.14. Fix),0 > 0, K € Nandt € R. Then

3nt/4(n — 1)1/45}</i

o1/281/2

P(DE >t +6) — ey <P(D, >t) <P(DE >t —0)+ey, e =

2. Gaussian approximation via the Lindeberg method. The distribution of DX is

easier to handle, as it is a double sum of a simple quadratic form of K'-dimensional
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random vectors. Let Z, ..., Z,, be i.i.d. Gaussian random vectors in R¥ with mean and
variance matching those of ¢* (X,), and denote Z,;, as the k-th coordinate of Z,;. The

goal is to replace DX by the random variable

K ._ 1 TAKrg 1 K
bz = n(n —1) Zléiijén Z; A Zj  n(n—1) Zlgiyéjgn Zk:l )\kZiijk

Notice that D% takes the same form as DX except that each ¢* (X;) is replaced by Z,.

Analogous to Dn and [)ff , we also define a rescaled version as
D? . /n(n—1)DE '
g
The second lemma replaces the distribution DX by that of D? , up to some approximation
error that vanishes as n grows:
Lemma A.15. Fix,0 >0, K € N, t € Rand any v € (2, 3]. Then

P(DE >t —6) <P(D¥ >t—20)+ Es.x ,
P(DE >t+6) >P(DE >t +20) — Esy ,

where the approximation error is defined as, for some absolute constant C' > 0,

Eé;K =

C ((Mfull;u)y + 6?(;1/ (Mcond;u)y + 5;(;11)
dvnv/2-1 oV (n_ 1)711/2 oV

3. Replace DY by UE. As in the statement of Theorem 3.1, let {n/*}7 ; be the
i.i.d. standard normal vectors in R”, and recall the notations p = E[¢*(X;)] and
YK = Cov[¢¥ (X;)]. We can then express D% as

K 1 V2K 4K TAK 1/2 K

Dz = n(n —1) Zlgi;éjgn (%) P+ ) AR((EF) Pyl 4 )

1 K\1/2 \K (yWK\1/2, K )TAK (DK)/2K
= a1 Laingeal) (2 )N () o 4 Z AR(SF) 2y,
() TAE
This is similar to the desired variable UX except for the third term:
K 1 KN\T (yE\1/2 A K (vWK\1/2, K
Un' = n(nf 1) Zl<i¢j<n(nl’ ) (57) /ZA (%) / nj
+ = ZZ . TAK EK)l/ZnK_'_D )
~ /n n K

As before, we denote UX = VAL ~ DU The next lemma shows that the distribution of

D? can be approximated by that of UX, up to some approximation error that vanishes as
K — oo.

Lemma A.16. For any a,b € R and € > 0, we have that

Pla<DE<b) < Pla—e<UX <b+e)+ en_l/z(;K_”l)_l/% ,
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P(a < D? <b) > Plate< 075( <b—e¢)— 6n71/2(ZK,;11)—1/20 :

4. Bound the distribution of Uf over a short interval. If we are to use Lemma
A.14 and Lemma A.15 directly, we would end up comparing P(Dn > t) against the
probabilities P(UX > t 4 26) and P(UX > t — 26) for some small § > 0. It turns out
these are not too different from P(Uf > t): As UK is a quadratic form of Gaussians,
we can ensure it is “well spread-out” such that the probability mass of U,{{ within a small
interval (f — 20, ¢ + 20) is not too large. This is ascertained by the following lemma:
Lemma A.17. Fora < b € R, there exists some absolute constant C such that

~ 1
Pla<UXK <b) <COb- a)l/Q(ﬁ(Ufuu — 5K;2)2

n—1 2 *1/4
+ o2 (0-cond - 2o-condf‘:K;Q - 451(;2)) :

A.3.2. Proof body of Theorem 3.1

3n1/4(n—1)1/4€}(/;21
o1/251/2 >

Fixd,0 > 0, K € Nandt € R. By Lemma A.14, we have that for ¢}, =
P(DE >t+6)—e < P(D,>t) < P(DE >t —6)+¢ .
By Lemma A.15, we have
P(DX >t —6) <P(D§ >t—20)+ Es ,
P(DE >t+6) >P(DE >t+20) — Esy ,

where the error term is defined as, for some absolute constant C” > 0,

E . C/ <(Mfull;1/)u + 6?{;1/ (Mcond;u)y + €?<;y)
5K Svnr/2—1 oV (n _ 1)—u/2 oV

To combine the two bounds, we consider the following decomposition:
P(DY >t —20) = P(DE >t)+P(t—25 < D§ <1),
P(DY >t+20) = P(D§ >1t)—P(t < D¥ <t+26). (A.6)
This allows us to combine the earlier two bounds as
|P(D, >t) —P(Df >1t)| < max{P(t—25 <D} <t),P(t <Dj <t+26)}
+ Esx + €k

which gives the error of approximating the c.d.f. of D, by that of Dg . Now fix some
e > (. By applying Lemma A.16 and taking appropriate limits of the endpoints to change

<to <, > to > and taking the right endpoint to positive infinity, we can now approximate
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the c.d.f. of D by that of UX:

EK;l
P(t—25 < DE <t) < ]P(t—25—e< UX <t+e)+ 20 1) 1%
EK;I
P(t < DE <t+20) < P(t— <t+20+¢€)+ (1) g
€K;1
(DZ >t) < P( >1— 6) + en-12(n—1)-1/2g ’
P(DE >t) > P(UX >t+e)— Kl

en~1/2(n —1)"12¢
Substituting the bounds into the earlier bound and using a similar decomposition to (A.6),

we get that the error of approximating the c.d.f. of D,, by that of UX is
IP(D,, >t) = P(UX >t)] < max{P(t —e <US <t),Plt <UK <t+e)}
+ max{P(t —20 —e < UK <t+e),
Pt —e < UK <t+20+¢€)}

4&‘[{;1
en~1/2(n —1)"12¢

+ Es i + €k +

To bound the maxima, we recall that by Lemma A.17, there exists some absolute constant
C" such that for any a < b € R,

P(a < UK < b) < C"(b—a)? <U (O — 5K;2)2

n—1 2 —-1/4

+ o2 (Ucond - 2O_condgK;2 - 45))

Substituting this into the above bound while noting (26 + 2¢)'/2 < 2512 + 2¢'/2, we get
that

IP(D,, > t) —P(UF >t)|
n—1 2 71/4

< C// (661/2 + 461/2) ( (Ufull 5K;2)2 + T(O—COHd - 2UcondgK;Q - 4€K;2)>

4k

/
+ s + ek + en12(n—1)"1725

We now take K — oo. By Assumption 3.2, .o — 0 in the first term and the two trailing
error terms vanish. The second error term becomes

c’ <(Mfu11;u)y (Mcond;u)u )

Esx —
K ovnr/2—1 gV (n _ 1)71//2 ov

By additionally taking e — 0 in the first term and taking a supremum over ¢ on both
sides, we then obtain
0.2

0—21,1 CcOon _1/4
supyeg |[B(D, > t) — lim P(UK > t)’ < 40”5“%% v m)

K—oo

c’ <(Mfu11;u)u (Mcond;v)y >

dvnv/2-1 oV (n_ 1>—V/2 oV
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Finally, we choose

6 = n_ 21/1/121 <(Mﬁlll§l’)’/ (Mcond;y)y )2:/2-0—1
n ov (n_l)—V/Q oVv

i 2 ~1/4

and 0 = Oy = max{og,y, (1 — 1)"?0onq}. Then (23 + (n:%) < 1, and by

redefining constants, we get that there exists some absolute constant C' > 0 such that

SUDcRr ‘P(—”n(nl)Dn > t) — lim P(MUf > t)‘

max K—oo Omax
=2 (Mfull-y)y (Mcond'z/)y ﬁ
< On w( » ond; ) (A7)
Jﬁlax (n_l) V/2 arynax
v
< 9mTCp tas (Mm_X> T
- O max

where we have recalled that M., = max{ My, (n — 1)2M_.,q,,}. This finishes
the proof.

A.3.3. Proof of Lemma A.14

Proof overview. The proof idea is reminiscent of the standard technique for proving that
convergence in probability implies weak convergence. We first approximate each prob-
ability by the expectation of a 6! Lipschitz function / that is uniformly bounded by 1.
This introduces an approximation error of ¢, while replaces the difference in probability
by the difference E[h(D,,) — h(D)]. The expectation can be further split by the events
{|D,, — DE| < €} and {|D, — DX| > €}. In the first case, the expectation can be
bounded by a Lipschitz argument; in the second case, we can use the boundedness of A
to bound the expectation by 2P(|D,, — DX| > ¢), which is in turn bounded by a Markov
argument to give the “spectral” approximation error. Choosing € appropriately gives the

above error term.

Proof of Lemma A.14. For any 7 € R and 6 > 0, let h, s be the function defined in

Lemma A.10 with m = 0, which satisfies
heyss(®) < Lpnry < hes(2)
By applying the above bounds with 7 set to ¢t and ¢t — J, we get that
P(D, >t)— P(Drfz{ >t—0) = Ellip, o1y — Lprsigl < E[ht;é(bn> - ht;(;([?ff)] ;
and similarly

]P(vaz( >+ 5) - ]P)(Dn > t) S E[ht-i-&é(brlf) - ht+6;6<Dn)] .
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Therefore, defining &, := |E[h,.;(D,,) — h,.;(DX)]|, we get that
P(DEX >t+6) — &5 < P(D,>t) < P(DX>t—08)+§.
To bound quantities of the form &, fix any € > 0 and write §, = &, ; + &, » where
§ra = ‘E[(hT;(S(Dn) - hT;é(Df))H{|ﬁn—D§|Se}i|
§ro = ‘E[(hﬂé(bn) - h7;6<zv)rll<))]1{|ﬁn—f)§|>e}:| ‘ :

The first term can be bounded by recalling from Lemma A.10 that /.5 is 6~ '-Lipschitz:

)

&1 <OTE[|D, — DY Lyp _pri<q] < 0€P(ID, — DX <€) < 6.

The second term can be bounded by noting that /.. is uniformly bounded above by 1

and applying Markov’s inequality:
&o < 2Elyp _prpsqgl = 2P(|D, — DX| > €) < 2¢'E[|D, — DF|] .

By the definition of Dn and f)ff , the triangle inequality and noting that X, ..., X, are
1.1.d., the absolute moment term can be bounded as

E(1D, - D] = Y"—2ED, - D]

= | D (40X X)) = T ManlKon(X,) ||

< w“u(xbxﬂ - 22{:1 )\k¢k(X1)¢k(X2)‘ L
Combining the bounds on &, 1, &, 5 and E[|D,, — DX|] and choosing

e = (Vn(n—1)o"ex)"?
we get that
& <o ler2y/nn—1)eto ek = 3n1/4$/2611)/12/4€%;21 = ek,
which yields the desired bound
P(DE >t+6)—e) < P(D,>t) < P(DE >t—-0)+¢).
0

A.3.4. Proof of Lemma A.15

For convenience, we denote V; := ¢ (X,) throughout this section.

Proof overview. The key idea in the proof rests on Lindeberg’s telescoping sum argu-
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ment for central limit theorem. We follow Chatterjee (2006)’s adaptaion of the Lindeberg
idea for statistics that are not asymptotically normal. As before, the difference in proba-
bility is first approximated by a difference in expectation E[h(DX) —h(DX)] with respect
to some function h, which introduces a further approximation error §. The next step is to
note that both D,If and D§ can be expressed in terms of some common function f , such
that

DE = f(V,,...,V,), DY = f(z,,....Z,) .

Denoting g = h o f , we can then write the difference in expectation in terms of Linde-

berg’s telescoping sum as
E[h(f)r[z() - h(f)?)] =E[g(Vy,..., Vi) —9(Zy,...,Z,)]

= Zj:l (E[g(vla - 7Vi717Vz'7Zi+17 e aZn)
_g(Vlw"aVz'fla Zia Zi+1a"'7zn)}) .

Since each summand differs only in the i-th argument, we can perform a second-order
Taylor expansion about the i-th argument provided that the function & such that A is
twice-differentiable. The second-order remainder term is further “Taylor-expanded” to
an additional e-order for any € € [0, 1] by choosing h” to be e-Holder. Write D, as the

differential operator with respect to the ¢-th argument and denote

]EZ(X) = f(Vlﬁ"‘7VZ'717X7Z’L'+17"'7Z1’L) .

Then informally speaking, the Taylor expansion argument amounts to bounding each

summand as
(summand),| < E[D,(ho [})(0)(V; - Z,)] + SEID¥(h o [)(0)(V? - 22)]
+ é(Hélder constant of h”) X IEHDifi(O)VZ-FJre -+ |szi(0)Zi|2+€} ,

where we have used the fact that f, is a linear function in expressing the last quantity.
The first two terms vanish because A o ﬁ is independent of (VZ-, Zi) and the first two
moments of V,; and Z; match. The third term is bounded carefully by noting the moment
structure of V; and Z; to give the error term %E(;; - Summing the errors over 1 < ¢ < n

then gives the Gaussian approximation error bound in Lemma A.15.
Proof of Lemma A.15. For any 7 € R and § > 0, let h,; be the twice-differentiable

function defined in Lemma A.10 (i.e. m = 2), which satisfies

hT+5;§(x) < H{$>T} < hT;(S(x)'
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By applying the above bounds with 7 set to ¢ — § and t — 24, we get that
MDrIz{ >t—0) - P<DIZ( >t —20) = IE[H{DK>1t 6t I[{[)K>t 25}]
< Elhy_s;s(DR) — hi_ss(DZ)] ,
and similarly
P(D} >t +26) —P(Dyf >t +6) = Bl pxsirasy — Liprsiis)
< E[ht+25;5(1~7§) - ht+26;6(Dr€()] .
Therefore, we obtain that
P(DE >t —0) <P(D} >t—26)+ Ejy ,
P(DE >t +6) >P(Df >t +20) — Ejy (A.8)
where Ej.,c = sup,cg [E[h,s(DE) — h,;(D%)]|. The next step is to bound Ej, ., to
which we apply the Lindeberg method for proving central limit theorem. We denote the

scaled mean as

B _ BV _ B[z
T o12(n(n—1))1/4 o1/2(n(n —1))1/4

and define the centred and scaled versions of V, and Z; respectively as

c VZ ~ > o ZZ o~
Vi = o2 (n(n— 1)1/4 K Z; = o2 (n(n — 1))1/4 K-

We also define the function f : (R¥)" — R by

P va) = Y vk )TAR (v, + )

where we recall AKX = diag{\,..., A\ }. This allows us to express the random quanti-
ties in (A.8) as

DE = f(V,,...,V,), DY = f(Z,,....Z,) .
By defining the random function

E(v) == f(Vy,....V,_1,V, Zi“, 7)) forveRfand1<i<n,
we can write Fj ;- into Lindeberg’s telescoping sum as
Ec/S;K = sup,cg [E[h 5Of(V17~ \ ) 6Of(z Z,))]
= sup,cx | S Bl (F(VS) = heo(F(Z))]
< SUPcg Zi:l [hris 0 Fz(Vz) —hys0 F’L<Zl)” :

Since h,.5o f is twice-differentiable, by a second-order Taylor expansion around 0 € R¥,
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there exists random values 6y, 6, € (0, 1) almost surely such that

¥ . 8h7’;6 o FZ(X) ¥ 1 82h7‘;6 o Fz(x) 7 ®2
ey o Fi(Vi) = — % | _Vits a2 b, Vi,
> o ah‘r;& o Fi(x) 1 athgé o Fl(x) 72
hT;6 © ‘Fz(zl) - Ix %0 ) 5 Ix2 x=0,7, Zz .
Substituting this into the sum above gives
n
A5 0 Fi(x) -
El. < Sup< (E[— V»—ZZ”
6K e ; % %—0 ( % )
1 0 h7;5 o Fz(x) T R2 62h7‘;5 o F’L(X) 72
* 2 Z )E[ ox? x=0yV, Vl B ox? x=0,Z; Zz ] ) > '

The first sum vanishes because the only randomness of the derivative comes from F;,
who is independent of (\~7,~, Zi), and the mean of \~7i and Zi match. To handle the second
sum, we make use of independence again and the fact that the second moment of V, and
7, also match: By subtracting and adding the term

E |:82h7';5 © FZ(X) a2h‘r;§ © Fz(x)
ox2 Ox2

(Vi)®2] = E[

x=0 x:0<zi)®2] ’

we can apply the triangle inequality to get that

1 n a2h7;5 © Fz(x) aZh‘r;ﬁ © FZ(X) L7 R2
E(/S;K < 5 SUPrer <ZZ—:1 E[( Ox2 o Ox2 _0> V;@ ”
X=by V;, X=
n 82h7’;6 © ‘F?(X) 62h7’;6 © ‘F?(X) 7®2
T Zi:l E|:( 0x?2 XZQZZi B ox? x:0> ZZ i| > ’
(A9)

The final step is to bound the two sums by exploiting the derivative structure of /.5 and

F;. Note that F; is a linear function: its first derivative is given by
K~ K K~ K
OF,(x) = 2 lem ARV, +2 ZKM AZ;4+2(n— 1A p € RY

which is independent of x, while its higher derivatives vanish. By a second-order chain
rule, this implies that almost surely

82h‘r;§ © FZ(X)
‘ < 0x2

aQh‘r;é © Fz(x>

v
= [(0h-s(Fi6y V) = 0%h.s(Fi(0))) (OF(0) V.
< [0%h,5(Fi(0yV,)) — 0,5 (F,(0)) | [0F;(0) V|

For v € (2, 3], by the Holder property of 82h7;5 from Lemma A.10, we get that almost
surely,
(02h,5(F(8y V) — 0%he s (Fi(0)| <18 x 3772677 |F(6,V,) — F,(0)]"2
= 18 x 325 |0F;(0) T (6 V)"
< 5467 |OF,(0) TV, |72 .
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In the last inequality, we have used that 0y, takes value in [0, 1]. Combining the results,

we get that each summand in the first sum in (A.9) can be bounded as

82]7’7';6 © FZ(X) 82]7‘7‘;6 © FZ(X) LT R2 ) T~x7 |V
(5 e e ) V| <590 B lOR OV
The exact same argument applies to the summands of the second sum to give
82}17;5 OFi(X) a2h7;5 OFi(X) 7 Q32 —v Try v
(e s = T ) B[ <50 El0R @72,

so a substitution back into (A.9) gives
Ere <2167 Y1 (E[I0F(0)TV "] + E[|0F(0)TV,"]) .

We defer to Lemma A.18 to show that there exists an absolute constant C’ > 0 such that

the moment terms can be bounded as

E[|0F,(0)"V '] + E[|0F;(0)"Z;|] <

— nv/2

o ((Mfull;l/)y + EVK;I/ (Mcond;l/)y + 6VK;V>
oV (n—1)"v/2gv

(A.10)

Combining with (A.8) and defining Ej,g to be the upper bound for Ej ;-, we get that

P(DE >t —0) <P(D§ >t—26)+ Fs ,
P(DX > t+6) >P(DE > t+20) — Esp ,

where we have made the /K -dependence explicit and define, for C' := 27C",

E . C ((Mfull;u)u + 5?(;u (Mcond;u)y + E?(;u)
5;K L 6VTLV/2_1 oV (’I’L _ 1)—u/2 oV

Lemma A.18. (A.10) holds.

Proof of Lemma A.18. We seek to bound E[|0F;(0)"V,|"] + E[|0F;(0)"Z,|"] for v €
(2, 3] and

OF,0) = 237 _ ARV, +23 . ASZ; +2(n— 1)AR € RY.

v
’

<SE[6Y  VIARV] + SE[6Y  ZTARV,|"] + 3E[[6(n — DATARV,|]

<R[ Y, VINVITT+E[| 3 2] AV T+ E[[(n - DR"ASV[T])

We first focus on bounding the first expectation. By convexity of the function z +— |z

we can apply Jensen’s inequality to bound

E[|0F,(0)"V,]"] = E HQ S L VIARY 423 ZIARV 4 2(n - 1) ARV,

where we have noted that » < 3. Since Vz-’s are 1.1.d., Zi’s are 1.1.d. and all variables
involved are zero-mean, (VJTAK \7@);;11 forms a martingale difference sequence with re-

spect to the filtration o(V;, V,),...,0(V;, Vy,..., V,_,), and so is (Z]-TAKVi)?:iH
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with respect to the filtration o (V;, Ziﬂ), oV, Ziﬂ, ..., Z,). This allows the above
two moments of sums to be bounded via the martigale moment inequality from Lemma

A.4: There exists an absolute constant C; > 0 such that
E[|0F(0) V.|
< Co((i = 1) Y EIVIASV (0= )2 Y B2 ARV
+ (n = 1) E[|3T A%V, ]))
< Cyln = 1) (E[[VT ARV + BI|ZI ARV ] + (0 — 1)"PE[|3T ARV, 7))

By the exact same argument, the other expectation we want to bound can also be con-

trolled as
E[|0F(0)"Zi|"]
< Coln— 1) (BIZ] A Zol") + EI|Z] ANV, + (n = 1)"2E[J2T A2, "] )

Finally, we relate these moments terms to moments of u(X;, X,), up to error terms that

vanish as K — oo: Denoting y;, := E[¢, (X, )], we have that by Lemma A.7,
~T v 1 K v
E|a' ARV, ] = T l)V/QEH Zk:1 Ak (X1) = poe) bk ]

4((Mcond;1/)y + 6;(;1/)
O-an//Q(n_]_)V/Q ’

and for some absolute constant C'; > 0,
1 K

e[| e MOk = ) (64(Xs) — )

< 46(1 (Mfull;l/)y - %(Mcond;l/)y =+ (401 + 2)6?(;1/

— o-z/nu/Z(n _ 1)1//2

< 4Cvl (Mfull;V)V + (401 + 2)€UK;I/

— O-Vnu/2(n_ 1)1//2

E[[VIARV,] =

|

For the moment terms involving the Gaussians Z, and Z,, we apply Lemma A.8 to show
that

E[|iTAKZ, '] — E[(EV,)"AFZ, ] _ 7(0¢ona + 8% 2) < T((Meonaz)” + 8%,
1 O-l/nu/Z(n _ 1)u/2 = O-an//Q(n — 1)/ = O-l/nu/Z(n _ 1)u/2 )
EHZTAKZ ‘V] _ E“ZIAKZQVJ] < 6(0';';11 + 6VK;Q) 6((Mfull;u)y + 5?(;1/)
1 2 O-unl//Q(n _ 1)1//2 = O-l/nu/Z(n _ 1)1//2 = O'VTLV/Q(TL —1)¥/2

In the last inequalities for both bounds, we have noted that L, norm is dominated by L,
norm since v > 2. Meanwhile by Lemma A.8 again, there exists some absolute constant
C5 > 0 such that

E['(Vl — E[Vﬂ)TAKZﬂV] < 802(Mfull;u)y + (802 + 4)5;(;1/
a-unu/2(n7 1)V/2 — O’VTLV/Q(nf 1)1//2

EHZIAKVHV] =

Substituting the five moment bounds into the earlier bounds on E[|0F;(0)TV,|*] and

E[|0F;(0)TZ;|] and combining the constant terms, we get that there exists an absolute
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constant C' > 0 such that

T~7 |V Trr v C (Mfull;y)u + E?{;u (Mcond;l/)y + 5?{;1/
O
A.3.5. Proof of Lemma A.16
Proof of Lemma A.16. For convenience, we write
1 2 n
Uy = D) 1<;< (niK)T(ZK)lﬂAK(EK)IDUJK + = ZiZI(MK)TAK(EK)U%ZK :
SFEISN

so that
D¥ = @UO+@(MK>TAKMK7 0K — n(z—l)UO+ n(z_l)D-

To approximate the distribution of Dg by that of U, the proof boils down to replacing
(1)
is separate from the distribution terms.

TAK 5 by D. We use a Markov-type argument so that we obtain an error term that

Recall that Lemma A.11 allows us to approximate the distribution of a sum of two

random variables by a single one provided that the other is negligible. Writing

n(n

- ~ - ~ ~ -1
DE = O +(Df — UF) = 08 + YU () Tk K~ Dy

we can apply Lemma A.11 to obtain that for any a,b € R and € > 0,

Pla < DE <b) <Pla—e<UX<b+e) +IP>(—”‘(Z_1)\(MK)TAKMK—D\ >c)
P(a <Df <b) >Plat+e< U <b—e) —P<—”1(Z_D}(MK)TAKMK—D\ = 6) :

Note that |(puf)TAXu® — D| is deterministic. By a Markov inequality and the bound

from Lemma A.7, we get that

€0

p( | () AR D = ) < YD) TAK K p]

K
_ ! Z}c:l A i}, — D! €K1
en 12(n—1)"120 — en"1/2(n—1)"12 "
Combining the two results gives the desired bounds. []

A.3.6. Proof of Lemma A.17

Proof overview. The key ingredient of the proof is Theorem 8 of Carbery and Wright
(2001), which gives an anti-concentration bound for the distribution of a polynomial of

Gaussians in terms of its variance. In Lemma A.12, we have rewritten the result in the
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special case of a degree-two polynomial, which allows us to control the distribution of

UX in terms of its variance.

We introduce some matrix shorthands: For any m € N, denote O,,, as the zero matrix
in R™*™ J, . as the all-one matrix in R™*" and I, as the identity matrix in R"*".
Define the n K x nK matrix M as

Ox AE .. AK
A Op -
M:: K :AK®(Jn_In)’
ST e AE
AL AR O
as well as
Ho= ((/’LK>T7"'7(/1’K)T)T€RTLK, o= EK@L-LERRKXHK’

A — AK ® ]n c RnKXnK )
We also consider the concatenated n/-dimensional standard Gaussian vector

no= ()7,

Proof of Lemma A.17. The goal is to bound the distribution function betweena < b € R
of

ko Vnln=1) g 1 Z ENT (sEK\1/2 A K (vEN1/2, K
JTAK (SR /2pK 4 Ve 1)
.y AR (X))t + D

oy/n(n—1)

1 T\1/2 1/2 2vn =1 1,41/2 n(n—1)
=——n XN/"MXY n+—0\/ﬁ,uAE n+-—0 D .

For convenience, define
1 2v/n—1

L TNl/2 5012 . T As1/2 oo
Q, = Y EMYS Q, = AY U, = Q, +
1 n n, 2 M n, 0 or/n(n = 1) 1 o/

Qs -

Denote o := b’T“ and § = ‘LT“’ Rewriting the probability in terms of Uy, v and /3, we get
that

n(n —1)

P(a <UF <b) =P((8—a) <Ty+ D< (B+a))

(|0 gy lp 5| < a).

Since U, + D — 3 is a degree-two polynomial of 7, we can apply Lemma A.12

v/ n(n—1)
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to bound the above probability: For an absolute constant C’, we have
Pla < UK <b) < C'a'?(Var[li)) ", (A.11)
where the variance term can be expanded as

Var[UO] = n<n+ ar[Q,] + Var[Q,] + iz Cov[@, Q] .

We now provide bound the individual terms in the variance. By noting that each summand

in (), is zero-mean when i # j and that each summand in (), is zero-mean, the covariance

term can be computed as

Cov[Q1, Qo) = ) ZE[m (SR EAR ()20 () TAR ()12 |

1<i#j<n I=1
1
— S| (nf)T (SR 2AR (SR 20 x (uF)TAR (SR 2]
Denote &, as the k-th coordinate of n{<. Then the above expectation is taken over a linear
combination of terms of the form &, &, &y, . If any of ky, ks, k5 is distinct from the other

two indices, the expectation is zero; if k;, = ky = k3, the expectation is again zero by

property of a standard Gauassian. Therefore, we have

Cov[@, @] = 0

On the other hand, the first variance can be computed by using the moment formula for a
quadratic form of Gaussian from Lemma A.5 and the cyclic property of trace:
Var[Q,] = 2Tr((SY2MEY?)?) = 2Tr((SM)?)
=2Tr((S*A%) ® (J, — 1,)?)
=2Tr((SF A% @ J2) —4ATr(S5A%)? ® J,) + 2Te((S5AF) @ 1)
= (2n* — 4n + 2n) Tr((ZXAF)?)
= 2n(n — 1)Tr((A*XF)?)
> 2n(n — 1)(ofm — €x2)”
In the last inequality, we have used the bound from Lemma A.8 on Tr((AK »K )2) The

second variance is on a Gaussian random variable and can be bounded by Lemma A.8

again as
Var[(Qy] = MTAZAM = n(MK)TAKZKAKNK = n(afond — 20condfr2 — 4€K2) -
This implies that

~ 2 4(n—1
Var[Uo} > p(gfuu - 5K;2)2 + ( o2 >(0-c20nd — 200nd€ K2 — 45K;2) .

Substituting this into (A.11) and redefining the constants, we get that there exists an
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absolute constant C' such that
o2

P(a < U <b) <O - )" (5500 — 2x0)?

n — 1 2 _1/4
+ o2 (Ucond - 20cond€K;2 - 45}(;2)) .

A.4 Proofs for the remaining results in Section 3.2

A.4.1. Proofs for variants and corollaries of the main result

The upper bound in Proposition 3.3 is a concentration inequality and is obtained by a
standard argument via Chebyshev’s inequality. The lower bound is a combination of the
anti-concentration bound for a Gaussian quadratic form from Lemma A.17 and Theo-

rem 3.1.

~ /’Vl n— K
Proof of Proposition 3.3. Denote UX = VDU g | emma A.17, we have shown

Omax

that for any a, b € R with a < b, there exists some absolute constant C’ such that

~ 1
P(a < U <) < C'(b— a)""* (55— (0 — exc2)’
n—1 —1/4
+ o2 <0C20nd - 20cond5K;2 - 45[(;2)) :

Take K' — oo and using Assumption 3.2 for v > 2, we get that £, — 0. For a fixed
€>0,seta = —V:(n_DD —ecand b= V"""V p + €, we get that

Om

lim ]P( Vn(nil)‘UK . D‘ < €> < \/50/ 61/2(0—f2ull 4 (nl)ggond)_1/4
K—oo Omax " - - 02
S \/50/ 61/2 .

2
max Omax

Now by Theorem 3.1, there exists an absolute constant C” such that

- = bs [ My \ 57
sup P(@Dn > t) — lim P(mUi( > t)‘ < C'/n_ﬁ( max,u) + .

Omax K—oo Omax Omax

teR

By the triangle inequality, we get that

P(—”;(”_l)mn ~D|> e> > P(—Wwf ~D|> e)

max max

—20" n_ﬁ <_MmaX;V> BT
Umax
> 1 V202 = 20" <_Mmax;”> i

Umax
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By replacing e with —V:(n_Ue and redefining constants, we get the desired lower bound

max

that there exists absolute constants C}, C; > 0 such that

)\ 1/2 Vs S Mo N s
P(|D,, — D| > ¢) 21—01<M> 61/2_(/~2n—m( max,y>z+1_

max Omax
For the upper bound, we apply a Chebyshev inequality directly to D, and bound the

variance by Lemma A.6: There exists some absolute constant C; > 0 such that

_ — O—gon( J211
P(|D,, — D| >¢€) < ¢ *Var[D,] < Cje 2(n—l(n—il)2 + (nili)z)

2 2
<o) < ()

nin —1

In the last inequality, we have noted that —~ < 2 for n > 2 and defined Cy = 2C%. This
finishes the proof. O

Theorem 3.1 provides an approximation of the distribution of D,, by that of a Gaus-
sian quadratic form. Proposition 3.5 combines Theorem 3.1 with a Markov argument,
which makes a further approximation of the Gaussian quadratic form by a weighted sum
of chi-squares UX. The approximation error introduced vanishes as n, d grow provided

1/2

that Pd = OJ(nl/Q)’ Le.n” Ofull = w(acond)'

Proof of Proposition 3.5. We first seek to compare W,X to the distribution of
K 1 K\T (v K\1/2 A K (vK\1/2, K
Un' = n(nf 1) Z1<z‘7éj<n(77i ) (E7) 2\ (2%) / 1
+ - Zz 1 TAK ZK)1/2771,K+D,

where {7}, are i.i.d. standard Gaussian vectors in R¥. The first step is to write

Vi1 Vi1
UK = YWyt D+ (1= Yo ) Wo + Wy 4 Wy
where we have defined the zero-mean random variables
1 n
Wo = oy (30, ()T (2)2A (25) 2 — nTe(FAK) )
1 n
W, = m(zl () TSRO VAR ()2 — i Tr(9AK))

W2 —— Zz ) TAK ZK)I/QT]K
Fix €y, €;, €5 > 0. We first use the bound from Lemma A.11: For any a,b € R, we have

() <1

n(n—1)

Otull

P(ag

Otull

SP(G—EO—Gl—CQS UK<b+€0+€1+€2)
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+ IP’(—"(" —1) (1

Otull

( ‘W2| > 52)

Otull

D)Wl 2 o) + (YW 2 )

Otull

and

P<a< n(n—l)(x/m

o W0+D> Sb)

Ofull

2P<a+60+61+62 < MUK <b—60—€1—€2>
Ofull
n(n —1) Vn — Vn
_P( Tfull (1 - n >|W0’ z 60) B < Tfull ‘Wl| z 61)
( Otull ‘W2| z 62) )

We now bound the error terms. By the Chebyshev’s inequality, the variance formula of a
quadratic form of Gaussians from Lemma A.5 and the bound from Lemma A.8, we get
that
P T 2) = ] = s
2(0gan + 5K;2)2
— e(n—1agy

Similarly, by the Chebyshev’s inequality, the variance formula of a Gaussian and the
bound from Lemma A.8, we get that

(V Y >e) < 6 QVM[MW = A0 DR () TAKSK AR K]

22
Otull

Otull 2 €20ull
< 4(” - 1)(Ucond + 2€K;2)2

2 2
€20 tull

By Lemma A.9, we can replace W, by using the following equality in distribution:

n—1 1 n
W = ey (0 () TS AR () o — T (AR )
LwK_-D.
Finally, using a Chebyshev’s inequality together with the moment bound in Lemma A.9,
we get that
n(n —1) vn—1 n(nfl 2
P( Otull (1 B \/ﬁ >‘WO| Z EO) S 6()Ufun ( > Var WO
n2 /n
= 1— ) Var | W,
il ( \F [ ]

IN

2n(0gan + €1c;2)° (1 _ Vn-— 1)
6%(” - 1)Uf2u11 Vn
2(0gun +5K;2)2

= n—1)o,

In the last inequality, we have noted that v/n — y/n — 1 < 1. Combining the above
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bounds, we get that

/ _1 \/ -1
IP’(élS %Wf §b> SIP’(a—eo—el—eg < :L)Uf Sb+eo+el+62>
full full
2((’Tfull + €K'2)2 -2 -2 4(” - 1)(Ucond + 2€K:2)2
+ ——€y " +€ + ' ,
(n— 1)Uf2ull ( 0 ! ) E%Uf2ull
\/ -1 -1
IP’(aS %Wf Sb) 2P<a+60+61+62 < %Uf <b—e€y—€ —€)
full full
2 )2 4(n —1 2 pe.g)2
_ (Taan + €x:2) (60_2 4 61_2) _ (n = 1)(0cona + 26 k;2) .

(n— 1)0f2u11 6g""fzun

Taking b — oo and a — t from the right, we get that

’P(—V”(”_”Wf > t) —P(—W‘_”Uf > t)‘

Ofull Ofull
\/ -1
< max{IP’(t—eO—el — €y < %Uf §t> ,
full
-1
P(t < —“ﬁ”)Uf <e+e+ €2>}
full

2(ogn + 51{;2)2

4(” - 1)(Ucond =+ 2{‘:K;2)2
(n— 1)‘7?1111 .

2 3
€201

+

(€ +e?)+

This allows us to follow a similar argument to the proof of Theorem 3.1 to approximate
WX by UX. To bound the maxima, we apply Lemma A.17 with o = oy,: There exists
some absolute constant C” such that for any a < b € R,

P(a <—Vn(n—1) UT{{ < b)

B Ofyll

/ 12( 1 2, n-1, 9 —1/4
<C (b - a) (U? | (Ufull - 51(;2) + ﬂ(acond - ZUcond€K;2 - 481(;2)) .

By additionally noting that (e, + €, + €;)"/2 < /&5 + (/€] + /€2, we get that
‘]p<—\/n(”1)w7{< > t) _ ]}»<—Vn(nl)Uf > t)‘

Otull Otull
1
< C'(Veo + va +va) (5 (o — o)
n—1 —1/4
+ E(O—gond - 2000nd€K;2 - 45K;2)>
4(” - 1)(0C0nd + 2€K;2)2

2 2
€20 a1

2(0tan + €x2)?
(n— 1)Uf2u11

+ (%+e?)+

Taking K — oo on both sides, the inequality becomes

lim P(—wa > 1) - lim P(—V”(”_”Uf > t)(

K—o00 Otull K—oo Ofull
-1 2 —]_/4 2 _ _ 4 -1 2
< C(o+ Ve + e (1+ g%t ) Ty 2 (2 ) 4 Ay
full 2% full

n—1
_ _ 4(n —1)o?
(602+€12)+ ( - 2) cond

€20 fun

2
n—1

< CVa+ Ve + V@) +

2/

Choosing ) = ¢; = (n — 1)"*® and €; = ((n — )02 ,4/0%y) . redefining constants
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and taking a supremum over { € R, we get that there exists some absolute constant
C" > 0 such that

—Vn(n_l)Wf > t) — lim ]P’(—”n(n_l)Uf > t)‘

sup ‘ lim IP’(
teR K—00 Tfull K—oo Ofull

1 V1L — 1O-cond 2/5
(n—1)1/° * ( Tfull ) > '

The final step is to relate this bound to D,,. Consider the last step (A.7) of the proof of

<c(

Theorem 3.1 in Appendix A.3.2. If we set 0 = oy, instead of o,,,,, we get that there

exists some absolute constant C" > ( such that

SUD;cRr ‘IP’(—‘n(nl)Dn > t>— lim ]P)(—”n(nl)Uf > t)‘

Ofull K—o0 Otull

1
< C/// n—ﬁ <(Mfull;u)V + (Mcond;u)V > 2v+1
- Tl (n—1)="2afy

Setting C' = max{C"”,C"} and using the triangle inequality, we get the desired bound
that

sup P(—‘n(n_l)Dn > t) — lim P(—n(n_l)Wf > t)‘

Otull K—o0 Otull

teR

< O( 1 + < VT — 1Jc0nd>2/5 + n_4uu_+22 ((Mfull;u)u + (Mcond;l/)y ) 21/14-1> .
- (n—1)1/5 Otul

Otull T (n—1)=v/2

]

A.4.2. Proofs for results on IV,

Proof of Proposition 3.6. To prove the existence of distribution, we seek to apply Lévy’s
continuity theorem. We first verify that there exists a sufficiently large K™ such that the
sequence (W) K>k~ 18 tight. Since Assumption 3.2 holds for some v > 2, we get that
as K — oo,

cin = E[| 300 Mdn(X1)op(Xa) — u(Xy, Xo)[*]* = 0.

In particular, there exists some sufficiently large K™ such that e < 1 forall K > K™.
By Lemma A.9, we have that for all X > K™,

2
Var[W] < m(Ufuu +ega)’ < (opa +1)° .

n(n—1)
Note that by assumption, we have |D|,oqy; < oo. This implies that the sequence

(WE) k> k- is tight by a Markov inequality:

li_)rn (supKZK*IP’(‘Wf| > 91:)) < lim (3572 SUPKZK*EKWJ(Y])

T—r00
. 2nl(n—1)"1 1)2 4+ D?

S lim n (n ) (qull+ ) + = 0.
T—00 X
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We defer to Lemma A.19 to show that the characteristic function of (WX — D) converges
pointwise as K — oo. This allows us to apply Lévy’s continuity theorem and obtain that
W,, exists. ]

Proof of Lemma 3.7. The result holds by noting that for all & > K*, WX = WX" almost

surely, and the latter random variable does not depend on K. ]

Lemma A.19. The characteristic function of (WX — D) converges pointwise as K — oc.

Proof of Lemma A.19. Define a;, == \/ﬁ%d and T}, := a;,(£? — 1), which allows us

to write
1 K K
W' = Vn(n—1) Do Tal@—D+D =3 T+ D.

Denote 7 = /—1 as the imaginary unit and Y as a chi-squared random variable with
degree 1. Since each 7T}, is a scaled and shifted chi-squared random variable with degree

1, it has the characteristic function
Ur (1) = Elexp(it T})] = Elexp(ia,Yt)]exp(—iayt) = (1 — 2iayt) "2 exp(—iaxt) .

Since T}.’s are independent, by the convolution theorem, the characteristic function of
WX — D is given by

K K -
Ywr_p(t) = exp ( — sz:1 akt> szl(l — 2iayt) "V

We want to prove that for every ¢t € R, ¢y x_p(t) converges to some function as limit
K — oo. By taking the principal-valued complex logarithm (i.e. discontinuity along

negative real axis), we get that

log Yy _p(t) = Zszl ( — tat — %log(l — 2iakt)> + 2imym = Sk + 2imgm
(A.12)

for some mj € N for each K that adjusts for values at discontinuity. Now consider the

real part of the logarithm:
1 K .
Re(log ¢W,{<—D(t)) = Re(Sk) = —5 Zk:1 log |1 — 2ia,t|

1 K / 1 K

Recall by Lemma A.8 that

K 1 K K—oo
Zk:1 a% - n(n —1) Zk:1 T’id = Tr((EKAK)Z) o Uf2u11 . (A.13)
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Fix € > 0. The above implies that there exists a sufficiently large K™ such that for all
K, Ky > K", kQK a? < e. Then for all K, K, > K*, we have

0 < Zkifg log(1 + 4ait?) < 4t° Zk X, a; < 4% .

This implies that (Re(Sk))gen is the Cauchy sequence and therefore converges. Now

we handle the imaginary part. First let m/ € 7Z be such that

Im( Zszl log(1 — Qiakt)) = Zsz1 arctan(—2at) + 2mem .

Then we have
m(Syg) = Z:Zl ( —ait + %arctan(Qaﬂ)) —mhm = Ix —mkm. (A.14)

To show that I converges, we first note that by a third-order Taylor expansion, we have

that arctan(z) = z + Ew ll) for some z, € [0, ] (we use this to denote [0, z| for

x > 0 as well as [z, 0] for x < 0, with an abuse of notation). This implies that for all
K., Ky > K*, where K* is defined as before,

K 1
‘ ZkiKl < akt+ arctan(2a,t) > ‘ ) Z ( —at+ 3 arctan(?akt)> ’
1 24b2t2 2 4
2 6aRE T 1 O ‘

3 24b2t2 +6—38
=4 Zk K, |ak| (SUPbke[O ag) m )
- 4t3 Zk K, |ak’ (SUPbke[o,ak] )

1 4
) K, 3/2
<2083 oy < 20t3(§j (ak)2> < 208363/
—H1

2
< Zk:K SUPy, [0,a,.]

(40212 + 1)2  3(4b2(2 + 1)2
k=K,

where, in the last line, we have used the relative sizes of [, norms. This implies that [
converges. To show that Equation (A.14) converges, we need to show that m in Equa-
tion (A.14) is eventually constant. By using Equation (A.14) and the triangle inequality,
we have that

Tlmy s —my| < g — Ig|+ ‘Im(SKJrl) - Im(SK)‘
1 .
= g1 — Il + |ag it + 3 log(1 — 2iagt)| .

The first term converges to zero, since we have shown that [, converges. Since a; — 0
by Equation (A.13) and the complex logarithm we use is continuous outside {z : Re(z) >
0}, the second term above also converges to zero. Therefore |m, , —m/’| — 0, and since
(m)) ken 18 an integer sequence, (m'y) kcn converges. By Equation (A.14), this implies
that Im(Sx ) converges, and since we have shown Re(Sy) converges, we get that Sy
converges. Finally, to show that ¢y« (t) converges, since Re(Sg) = Re(¢wx_p(t)),

we only need to show that Im (v x_p(t)) converges. By Equation (A.12), this again
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reduces to showing that my is eventually constant. As before, by the triangle inequality,

+ [Im(log ¢y xe1 (1)) — Im(log Yy _p(t))|
1 .
= ‘Im(SK+1) — Im(SK>| + ‘CLK+1t + 5 10g(1 — 2@@]{_}_115)‘

K—oo

—0,

where the convergence of both terms has been shown earlier. This proves that the char-

acteristic function 1y x_p(t) converges for every ¢ € R. O

A.5 Proofs for results in Section 3.4

A.5.1. Proofs for the general results

Proof of Lemma 3.10. To prove the first result, note that since  is a kernel, there exists
a RKHS # and a map ® : RY — H such that we can write

MMP((x,y), (X, y") = (®(x), @(y)w + (B(y), P(y))3 — (P(x), D(y"))%
—(2(x), 2(y))x
= (P(x) — O(y), ®(x) — (y'))5 -

Defining @, ((x,y)) = ®(x) — ®(y) proves that «™™P is a kernel. To prove the second

u

result, note that by the definition of a weak Mercer representation, we have that almost

surely

S N Z)on(Zo) — M (Z,,Z,) K 0,

which in particular implies convergence in probability. The argument uses the Vitali

convergence theorem. By Assumption 3.3, there exists some v* > v such that

Sup EH Zszl Ne@r(Z1) b1 (Zs) )

K>1

] <oo and  E[uMMP(Z,,Z,)"] < oo
By the triangle inequality and the Jensen’s inequality, we have

K vt

supicon || S, An(20)00(2a) — 0(21,2:)]

< SUPKzlEU }Zszl No®r(Zy) i (Z ’ + |UMMD 7,7 ‘ ‘ ]

S 21/**1 SupK>1 |:| Zk 1)\k¢k ¢k( )‘ *:| +2V**1]E|:‘UMMD(ZDZ2)|V*:| < 00.

This implies for any v € (2, v*), the sequence

(( Z Ne®r(Za)bi(Zy) — UMMD(Zh Z2))V)K€N
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is uniformly integrable, and therefore converges to zero in L, (R*!, P ® Q) by the Vitali
convergence theorem. Since convergence in L, implies convergence in Ly, 1,3, We get
that Assumption 3.2 holds for min{v, 3}. O

Before we prove the next result, recall that {\,}72, and {¢;}2, are defined as the
weak Mercer representation for the kernel « under (), and we have assumed that ¢;,’s are
differentiable. We have also defined the sequence of values {«, }?2 ; and the sequence of
functions {1, }32, in (3.10) as

A —1)d4l = Aw and ¢(k'—1)d+z(x) = (@cl log p(x))dp (x) + a:pl¢k’ (x),

for 1 <1 < dand k" € N. For convenience, we denote ¢, = ¥ (3_1)a4; in the proof

below.

Proof of Lemma 3.11. Recall that ¢y, (x) = (0,,log p(x))¢w (x) + 0,05 (x). Write
U (x) = (Vg (X), - - -, U (x)) 7. We first consider the error term with ¢’ summands
dK’

for some K’ € N:
B>, cnthu(X)ee(Xo) — up™P(Xy, Xs) }
M| —d K’
=E lel Zklzl A pra (X ) (Xg) — UI;SD(XM Xy)

=E[| S0, de (X)) (90 (%) = uf (X, X) ||

=E[|T, + T+ T3+ T, — up™(X,, Xo)|']

o . j.id.
where the random quantities are defined in terms of X, X, " Q:

Ty, = (Vlogp(Xy)) (Vlogp(Xy)) 25:1 Ao (X)) P (Xs)
T, = (Viegp(X1) (X0, b (Vo (X)) du(Xy))

1 = (Viegp(Xa)) " (X, (Ve (X)) du(Xa))

7= Y (VX)) (Vor(Xy)) -

Recall that by Assumption 3.3, there exists some v* > v such theta

|

*

] <oo and  E[uMMP(Z,,Z,)["] < oo .

sup H Zszl k@i (Z1) Or(Zsg)

K>1

By using the proof of the second part of Lemma 3.10 above, for v* = 2= € (v,v%),
we have

A

E[‘ Zill Mo (K1) i (X) — u(Xy, Xy)| ] Koo,
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Meanwhile by (X1)||2HL2 _ < 00, where

o _vlvtv) (12 NP L)‘l -
voF Ty _<u_u+u*> _<V_VA v
By the Cauchy-Schwarz inequality and the Holder’s inequality, we have that
T
H(V IOgP(Xl)) (Vlogp(Xg))HLy** < H ||VI0gP(X1 Hz HL2 R

Now by the Holder’s inequality and noting that (v**)~! + (v*)~! = v, we can now
KSD

bound the error of using 7} to approximate the first term of up>" as

E[|E]"] = EHTl - (VIOgP(Xl)) (VlOgP<X2)) U(Xth)m
= |7 = (Viogp(Xy) ' (Viog p(Xa)) u(Xy, Xy) ||}

< [[(Viogp(X0) (Viog p(X))I;, . || D2 A (K)o (Xa) — (X Xs)||

k=1 v

K'—o0

0.

For T5, we consider a similar approximation error quantity and apply the Cauchy-Schwarz

inequality:
E[|B,)"] = E[|T, — (Viogp(Xy)) V,r(Xy, X,)|]
— E[|(V1ogp(X1) (L), M (Vo (X)) 00(X1) = Vor(X0, X)) ||

119 10g pX )l 17, || S0y M (V60(Xa)) 65 (X,) = Frl(Xo, X)

K'—o00

14

IN

21 Ly,

0,

where we have noted that the first term is bounded since 2v < 2v** and used Assump-
tion 3.4(iv). By symmetry of « and the fact that X; and X, are exchangeable, we have
the same result for 75:
v T v K'—oo
E[|E|"] =E[|Ty — (Viegp(Xy)) Vix(X,,X,)|["] =— 0.
Meanwhile, the second condition of Assumption 3.4(iv) directly says that

B[ E,|] =E[|T, — Tr(V,Var(Xy, X0)) "] £=2% 0.

Combining the results and applying the Jensen’s inequality to the convex function = +—>

|z|”, we have

H Zk 1 Oékl/}k De(Xs) — UESD<X17 X5)

< E[|1(4E1) + 1(4E2) + 3(4E3) + 3(4E4)H

] — E[|B, + By + By + E|']

< 4V (E[|Ey"]) + E[| EyJ"] + E[| Bs|"] + B[ E,"]) 22 0.

Now consider K € N that is not necessarily divisible by d, and let K’ be the greatest
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integer such that X' > dK’. Then by the triangle inequality and the Jensen’s inequality
similarly as above, we get

EH Z,f L g X1)¢k(X2) —up™P(X,, Xy) V]
<27 IEH Zk ) 041#/% DYe(Xs) = up™ (X, Xy) ]
2B ]| 0 e (X0 ] (A.15)

The first term is o(1) as K — oo by the previous argument, so we only need to focus on

the second term. The expectation can be bounded by noting that o, = Ag/,y > 0 for all
dK' +1 < k < K and using the triangle inequality followed by the Jensen’s inequality:

EH ZZ(:M,H (X)) YR (Xs) V}
< o) E| (7= S € = dE (X)X ) |
< g (K — dK) 00 B[ (X )i (X))

(Agrg1)"d” SUPke{dK'+1,...,dK'+d} E[|5,(X1) ¥ (X2)"]

= ( )

IN

.....

Airy1)’d” SUP1gzgdE[WdK/H(Xl”VP .

In the last equality, we have noted that X; and X, are identically distributed. Now by the
definition of v, the Jensen’s inequality on z — |x|” and the Cauchy-Schwarz inequality,

we have

El[Yar 1 (X)[] = E[[(0,, log p(X1))Prr41(X1) + O, O 41(X1)]Y]
< 2V_1E[|(axl log p(X1))Pxr1(X)|"] + 2V_1E[|axl¢K’+l(X1>|V]
< QV_IEHaa:, log p(X,)[*]'/? E[|¢K'+1(X1)|2V]1/2 + 2V_1E[|aa:l¢K’+l(Xl)|V]
< 2”_1IE[||V IOgP(Xl)Hgy]l/QE[|¢K'+1(X1)|2V}l/z + 2V_1E[||V¢K'+1(X1)H5]
= 2'/_1””V10gp(X1)H2”Egu ’|¢K'+1(X1)”22V + QV_lHHV¢K’+1(X1)H2HEV )

By Assumption 3.4(i), (i) and (iii), all three norms are bounded, so E[|¢gx(X,)["] <
0o. By the definition of )\, from the weak Mercer representation, as K — oo and there-

fore K’ — 00, Ak, — 0, which implies

E[| Y e st (X)uXa)| ] = of1).

This means that both terms in (A.15) converge to 0 as /' — oco. In other words,

H Zk 10%@% De(Xy) — UESD(XM Xs)

Since L, -convergence implies L, 3)-convergence and we have assumed that v > 2,

V:| K—oo 0.

we get that Assumption 3.2 holds for min{v, 3} with respect to the u'5°°, a, and ¢,. [
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A.6 Proofs for Appendix A.1

A.6.1. Proofs for RBF decomposition and verifying Assumption 3.2

In this section, we prove Lemma A.1, Lemma A.2 and Lemma A.3.

Proof of Lemma A.1. We first focus on the one-dimensional RBF kernel, denoted as x4,

which can be expressed for z, 2’ € R as
ki(z, @) = |exp(—(z —2")%/(27))] = ’ exp (%)6—12/(27)6—(&?’)2/(27) _

By applying a Taylor expansion around 0 to the infinitely differentiable function z —
exp(Z) for z € R, we obtain that for any K € N and every =, 2’ € R.

K1 (aa'\F o200 @20
)Hl(%x,)_ S y<7> o~/ (27) o= (@)?/(27)
L (x_CE/>K+1€Z/W
(K+ 1)\ ~
Fix v € (2,4]. Consider two independent normal random variables U ~ N (b;,1) and

V ~ N (by, 1) for some b, b, € R, and recall that ¢} (z) == zFe~*"/®1) and X} = T

o=/ (27) = (@) /(2)

< SUP ¢ [0,z2/]

The above then implies that
K * * * v
E||m(U,V) = Y Ao @)si(V)] |

1 Uv\ EK+1 .
< E[SUPze[QUV} ‘m <T) e/
1

= BT Ty E“UV|V(K+1)e—VU2/(2v)—Wg/(2v)+supze[o,w1 VZ/’Y]

v

e—vU2/(2v)e—VV2/(27)]

! v(K+1) —v(|U|-|V2/(2
< ((K+1)!7K+1)VEUUV\( 1) o=v(IUI=IVD*/( 7)}
1
= (K 4 1)! y K+

E[|U|V(K+1):| ]EUV|V(K+1)] )

In the last inequality, we have noted that U and V' are independent and bounded the

exponential term from above by 1. By the formula of absolute moments of a Gaussian,

we get that
v(K+1 v(K+1 2002 (VK +1
B0 — by 4] = B[V -] = 20 (T
By the Jensen’s inequality applied to the convex function x ~ |z|**1), we get that
1 v(K+1)
E[UPS ] = Ellby + (U = by)["5HY] = EH%(%Q +52(U - bﬁ)‘ ]

S 2V(K+1)—1 (bu(K+1) + EHU . b1|y(K+1)D —

(2by )V EFD - 9Rr(K+1) r (y(K +1)+ 1)
2 * 2/7 2 '
Similarly, we get that

(A.16)

E“V‘V(K-‘rl)] < (2bg) KD i Q%V(KH)F<V(K+ 1)+ 1) '

2 27 2
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Substituting these moment bounds and noting that (K + 1)! = I'(K + 2), we get that

E| | w.v)- S, i) |
1 (2by )/ B+ 93v(EHD (K 1) 41
= ,YV(K+1)(F(K+2))V< 2 + 2w F( 2 ))
(2by)V (KD 93w (KHD (R 4+ 1) + 1
X ( > T o F( 2 ))

As K grows, the dominating terms are the Gamma functions, so we only need to control

their ratios. By Stirling’s formula for the gamma function, we have
I'(z) = V2ra™ e (1+O0(x™))

for x > 0. This immediately implies that

(4by by /) K+ — o1
(K+2)I/(K+3/2)6—V(K+2) - O( )

TAA, — @(

as K — oo. Meanwhile,

v(E+1) v
oy o) = o(k).

which implies that
TAB = O((4V2h, /1) K~12) = o1)

since the dominating term is K ~*%/2. Similarly, TA,B = o(1). On the other hand,

another application of Stirling’s formula gives that

(=) = (2m) "=/ (A o~ V(E+1)—14u(K+2) (1+O0(K™)°
(D(K +2))" (K +2)7(Fe+s/2) (1+0(K))"
(v/2) K KK e
:@<W) = O((v/2" K~*"?) .

This implies that
TB> = ©((8/7)" (/2" K~*/2) = ©((2v/7)" K~*") = o(1),

where we have recalled that v < 4 and used the assumption that v > 8. In summary, we
have proved that for v € (2, 4] and any fixed b, b, € R,

E|[m (U, V) = 300 Xk (U)6i(V)

To extend this to multiple dimensions, we note that for the vectors X = (z,...,z,) € R?

] < T(A, + B)(Ay + B) X2 0.

and x’ = (x1,...,14) € R? the multi-dimensional RBF kernel can then be expressed as

a(x,x) = exp (=[x —x|3/(2) =TT, exp (— (m — 20)*/(27))
= H;lzl /€1<.Tl,$2) :
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Recall that we have defined the independent normal vectors U ~ N(0,1;) and V ~
N(u, 1;). Let Uy, ..., Uy, be the coordinates of U and V..., V, be those of V, which
are all independent since the covariance matrices are ;. For 0 < [ < dand K € N,

define the random quantities

Sir = S MeiU)e(V) and Wi = (T, m(@;, ) (TL1, S ) -

In particular (U, V) = W, x. Now by expanding a telescoping sum and applying the

triangle inequality followed by the Jensen’s inequality, we have
EU“(U’V) WOK‘ Hzl 1 Wi = Wiiik) ]

< E[(Zld:l Wik — VVlfl;K|> }

_1xd y
<@ EWi — Wil

= Y (TL Bl (U, V) Ela (U V) = Sirl ) TL, . BOSsc])

In the last equality, we have used the independence of U;’s and V;’s. To bound the

summands, we first note that x; is uniformly bounded in norm by 1, which implies that
El|x1(U;,V;)|"] < 1. By the previous result, E[|x,(U;, V) — S.x|"] = o(1) as K — oo.

AR
By the triangle inequality and the Jensen’s inequality, we have that

EHSj;K‘V] <EH|’€1( iz ])’+’ - J’ J H}
<l 0, )+ Bl ] < 7,

This implies that each summand satisfies

(Hl lE [[k1(U;, V)" ])EHM(UlaVl) _SI;K|V]<HJ 1 E[|S;.k| ]> o(1)

as K — oo. Since d is not affected by K, we have shown the desired result

E[|n(U, V) =TT, (S Mdi@ei(V)] | = E[I6(U, V) = Wil

K—oo

0.

Proof of Lemma A.2. We first rewrite u55P as
USSP (x, %) = e IR13/2) (XTX/ _ VW_+21HX X+ é)
_ e*llex’II%/(%)( 7+1(H 12+ [|x]2) + %XTX/ 1 %)
— el ”“(H I3+ )13 + 1) + 33

V2 +2y+42 y+1
e e (5 75)
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For K’ € N, write Sy == Zg;l U (X)) (Xy), and define the following random

variables comparing each set of eigenvalue and eigenfunction to the corresponding term

in ulS5P:

K/
TK’;l = Zk’:l A(k’fl)(d+3)+1 Cb k-1 (d+3)+1<X1) ¢(k’71)(d+3)+1<X1)
— XX (- TEL (1 3 + 1) (X3 + 1))

+1
— (X 12+ 1) (X )13 + 1) Sk

K/
TK’;Q = Zk’:l )‘(k’—l)(d+3 +2 ¢ k' —1 (d+3)+2(X ) ¢(k/—1)(d+3)+2(X1)
_ e IXi=Xs03/(27) (7+1||X1|| 11X, |2 )

||§ SK’ )

K,
Tirs = D0y ANr—1)(@+3)+3 Plhr—1)(a+3)+3(X1) 1) (ar3)+3(X1)

_ o IXi=Xs3/2y) (é 4 V_“)

¥ 72
d 7—|—1>
- + S ’
(7 2 )UK

K/
Tz = Zk’:l A1) (d+3) 4341 Pk —1) (d+3)+3+1(X1) Plhr 1) (a+3)+3+1(X1)

2
_ B 2 A2y +2
_ eI/ ‘2”)<T(X1)1(X2)1)

2 42y+42
= (%(XI)Z(XQ)O Sk

forl =1,...,d, where we have denoted the [-th coordinates of X; and X, by (X;); and
(Xy), respectively. We now bound the approximation error with (d + 3) K’ summands
for K’ € Nand v € (2,3]. Fix some v, € (v,4] and let v, = 1/(v~* — v;'!). By using
the quantites defined above, the Jensen’s inequality to the convex function x — |z|” and

the Holder’s inequality to each E[|T,|"], we have

E[| Z O ek (X (Xs) — ufSO(X, X,)|]

= S ]
(d+3)"" 1Zd+3E | Txral”]

< (d+ 3Byl (((T) B + 1) Bl + 1))

7+1> 2057 V/ Vo 2wy v/ Vo <g 'y+1)V
+ () B ) E[IXal3) " + (5 + 2

+ Z;lzl (#) E|:|(X_1)Z|V2:|V/VQE[l(XQ)l|U2j|V/U2> ‘

The only K’-dependence above comes from E[| Sy [*1]"/*1 = ||Sk/||¥ , which converges
Y1

to 0 as K’ grows by Lemma A.1. Therefore
(d+3)K’ vy K'—=oo
B[, Abn(X0)dn(Xa) — uf (X1, X0)[ ] 550,

172



Now for K € N not necessarily divisible by d + 3, we let K’ be the largest integer such
that dK’ < K. By the triangle inequality and the Jensen’s inequality, we have

B[ 300, Mo (K1) (Xs) — uf™ (X, X,)|"]
<E[<|Z(d+3 Aror(X )¢k(X2)—U§SD(X17X2)|
X T Neu(X1)65(Xs) )|
< 2B T Nk (X )6 (Xa) — ukSO(X4,X,)]]
2B Y gy MO (X)0k(Xa)[ ]

The goal is to show that the bound converges to 0 as K grows. We have already shown
that the first term is o(1), so we focus on the second term. The expectation in the second

term can be bounded using the Jensen’s inequality as

H Z =(d+3)K’+1 Ak (X )¢k(X2>\V} < E[(ZK (d+3)K'+1 |/\k¢k(X1>¢k(X2)|)y}
< (K —(d+3)K')" Z (3K 41 E[(Arr(X1) (X)) ]
< d” SUDLe{(d43)K/41,....(d4+3) K7+ (d+3)} E[(Mor(X1)r(X2))"]
= d” sup;j<gp3 B[ (MNarsy w10 s 11 (Xn) sy 1(Xa) ] -

By observing the formula for A\, and ¢,, we see that there exists some K -independent
constant C,; ., such that for 1 <1 < d + 3,

Narnyrri] < Cayarryr and  [daiayrnl < Cosrra () (x5 + %]l + 1) .
This allows us to obtain the bound
B[S sy wOE(X)d(Xo)|']
< d'C a4
X B[ (X)Prr1(X2))” (1K ll2 + 13X ll2 + 1) (Xl + [[Xellz +1)"]
D @ Cly (T, Noatroeon,) B[ (TLL, G, ((K01) G, (O200)
X (X3 + 1%l + 1) (X3 + [ Xalls +1)°]

® y V1172
< A ClE[(1Xall3 + 11Xl + 12 (1Xl3 + [ Xall, + 1)

. . 2071/2
% <Hz:1 (94 (K'+1)] ) [(Hl 1 Plou wrrop, (X)) ¢[gd(K’+1)]l((X2)l))> ]
D et B3 + 1Kl + Dl + [XKalls + 1]
d % v
< T2y Mouaron)
d % v * v
(lel E[(¢[gd(K’+1)]z ((Xl)l) )2 }E[(gb[gd(K,‘i'l)]l ((XZ)I) )2 D
D @l BB + Xl + D (1Kl + [Xal + 1)*]Y

1/2
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< TT, (s EL @ (X00)™])

where we have used the definitions of oy, and 1)), from (A.1) in (a), the Cauchy-Schwarz
inequality in (b), the independence of (X;); and (X,); for 1 <[ < d due to the identity
covariance matrix in (¢) and finally the fact that X; and X, are identically distributed in

(d). The only quantity that depends on K’ now is

Mgt sn)” B[ (@ (X01) )]

for 1 < [ < d. We now seek to bound this quantity. Recall from Lemma A.l that

A= k%k, and for V ~ N(b, 1), we have

E[(4;(U)*] = E[|U*e V"] < E[JU*] < (2b)>* 23”kr(2yk+1>

SERRING 2
where we have used a bound similar to (A.16) in the proof of Lemma A.1. By Stirling’s
formula for the gamma function, we have I'(z) = v2r 2"~ /2¢7* (1+O0(z7")) forz > 0,

which implies

(A" E[(0x(U)*]

IN

1 (20)2vk 2%k ok 41
(e st ()

8\ V¥ (vk)ke—vE
(’Y) (k+ 1)V(k+1/2)efu(k+1)>

((2)) = of(2)") = v

as k — oo, where we have used the assumption that v > 24. By construction of g, in

(A.1), as K" — 00, miny<;<4[g4(K" + 1)]; = oo, which implies that

( E‘ld(K,"‘l)]l)V E[(nggd(K’-i-l)]z ((Xl)l) )21/} @i) 0.
Therefore
E H Zf:(d"r?))l(’-l—l Ak¢k(X1)¢k(X2) ‘Z/:I I(—)_oo) 0 ’

which finishes the proof that

B[] T, Medn(0)04 (%) — ulP(%,, %0)| ] 2% 0.

In other words, Assumption 3.2 holds. U

Proof of Lemma A.3. Fix v € (2, 3]. Consider the independent Gaussian vectors X, X, B

P = N(O,[d) and YI,YQ Z’l\Jd Q = N(IU/, [d). erte Zl - (X17Y1)’ Z2 - <X27Y2)
and

Te(x,x) = e T3/ _ Zszl ah (X) (X))
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for K € N, and recall that

UMMD<Z17 Z,)

_ o IXmXl3/20) _ o IXa=YalB/20) _ o~ 1K= YaIB/(2Y) | o~ 1= Yal3/(2)

Then by the triangle inequality and Jensen’s inequality, we get that
K v
B[0P (2, 2) = 30,0, Mn(Za)on(Z0)] |
K v
= B[[0™(Z,,2,) - 371 e ((Xa) — (Y1) (94(Xa) — 05(Y) | |
= EHTK(X17X2) — T (X1, Yy) — T (X3, Y1) + TK(X27Y2)‘V]
S 4V_1 (EHTK(XD XZ) |V] + EHTK(XD YZ) |V]
+E[|Tx (Xo, Y1)"] + E[| Tk (Y1, Y5)["]) -
Since each expectation is taken with respect to a product of two Gaussian distributions

with identity covariance matrices, by Lemma A.1 and (A.2), they all decay to 0 as K —

oo. This proves that

B[0P (2, Z,) = 3 Aen(Z)n(Z)

and therefore Assumption 3.2 holds. ]

0,

Vi| K—oo

A.7 Proofs for Appendix A.2

A.7.1. Proofs for Appendix A.2.1

The proof of Lemma A.4 combines the following two results:

Lemma A.20 (Theorem 2, von Bahr and Esseen (1965)). Fixv € [1,2]. For a martingale

difference sequence Y, . ..,Y, taking values in R,

E[| >, Y] < 2> E[Vi|].

Lemma A.21 (Dharmadhikari et al. (1968b)). Fix v > 2. For a martingale difference

sequence Yy, ..., Y, taking values in R,

E[| Y7 Y] < Cn? Y B[V,

where C,, = (8(v — 1) max{1,2"3})".

Proof of Lemma A.4. Since the second line directly follows from Burkholder (1966)’s
original result, it suffices to prove the first line. We first consider the upper bound. For

v € [1,2], the result follows directly from the Von Bahn-Esseen inequality as stated
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below in Lemma A.20, and for v > 1, the result follows directly from Lemma A.21.
As for the lower bound, by Theorem 9 of Burkholder (1966), there exists an absolute
constant ¢, > 0 depending only on v such that

E[| Y, Y = e E[(XL, v

v/2

For v € [1, 2], by applying Jensen’s inequality on the concave function x — /%, we get
that
n v 1 ¢ 2\v/2 v/2-1 \ " v
EHZz:lYZ‘ } ZCVE[(EZZﬂ”YZ) } Z CVn/ lel]EHY%’ ]
For v > 2, by noting that (a + b)"/2 > a*/? 4 b*/? for a, b > 0, we get that
n v/2 n v
E[| >0, %] 2 E[30, 03)"] = o 30 BV
Combining the two results above give the desired bound. ]

A.7.2. Proofs for Appendix A.2.2

Proof of Lemma A.6. Consider the sequence of sigma algebras with F being the trivial
sigma algebra and F; := o(Xy,...,X;) fori = 1,...,n. This allows us to define a
martingale difference sequence: Fori =1,...,n, let

}/i = E[Dn|]:z] _E[Dn|]:z—1] .

This implies that E[|D,, — ED,|*] = E[| Y1, Vi|"]. By Lemma A.4, we get that for

some universal constants ¢, C/,
¢, > E[Vi[] < E[ID,—ED,|"] < C,n* '3 " E[|Yi]"]. (A.17)

To compute the v-th moment of Y}, recall that D,, = ﬁ > el Al u(X;,X;), which
implies
E[Y;]"] —E[IE D, |F;] = E[D,|F; 1]\ }
=1 ng et gt (BLU(X, X)) F] —E[“(vaxl)mfl])ﬂ
L o T [ i (BLOK X)) F] = Elu(X,, X)) F]) ]
w1y Bl ]

In (a), we have used that each summand is zero if both j and [ do not equal 7, and that u

is symmetric. In the case j < 7, we can compute each summand of .5; as

E[U(Xw Xj)|]:i] - E[U(Xiaxj”'/?ifl] = u(X;, Xj) - E[U<Xl7 Xj)lxj]
= A;; — B; + B,
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where A;; := u(X;, X;) — E[u(X;, X;)|X,] and
B; = Elu(X;,X,)|X] — E[u(X,,Xy)] = Elu(Xy, X;)[X] — Elu(X;, X,)]

(2

by symmetry of u. In the case j > 7, we can compute each summand as
Elu(X;, X;)|F] = Elu(X;, X)[Fioi] = Elu(X, X5)[X] = Elu(X,, Xy)] = B;.
Therefore

Consider R, := nB; and R, := }_,_,(4;; — B;), which forms a two-element martin-
gale difference sequence with respect to the filtration 0(X;) C 0(X;,X;...,X;_;). By

Lemma A.4 again, there exist constants c;, and C; depending only on v such that

IS = E[|X° R[] < C*(E nBil" ]+ E[| > »A~—Bj>\”}>

= Cy(n” conduHEHZ - B)[']) .
ElSi] = E[|X,, Rl'] 2 c(EInB]+E[ Y, (4, - B)|'])
= a(n” condﬁEHZ B)[']) -
Now consider T} := A,; — B, for j = 1,...,i — 1, which again forms a martingale dif-

ference sequence with respect to o(X;, X;),...,0(X;,X;...,X;_;). Then by Lemma
A.4 again, there exist constants c>* and C2 depending only on v such that

E[| 3, (Ay = B)'] <C -1 X EllA4y - Byl
=Cy (i - )V/2Mfullu )
E[| Y (A =Bl = & X EllA; - Bl") = ¢& (i = )M, -
Therefore
E[Si]"] < Cyn’Mlq, + CoCo (i — 1)V/2Mfl1311;u ;
E[|S;["] > cin’ Mynay + ey (i = 1) Mgy,
which yield the following bounds on the v-th moment of Y;:

EH}/ZV] S 20:((” - 1)_V Condl/ OA _V( - ]')_V (Z - 1)V/2Mf7111;y) )
E[|Yi]"] > 2¢5((n — 1) Mgy +cn™"(n = 1) (i = 1) Mgy, ) |

To sum these terms over i = 1, ..., n, we note that since /2 > 0,

14v/2

no,. y no n no,. nin —1)
Zi:1<l_1) < /OJ; Pdv = 14v/2° Zizl(l_l) - 2
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20!,C% 1,08 . .
Define C, := %’;g“} and ¢, := c,c;min{l,c2}. By summing the bounds on

E[|Y;|”] and substituting into (A.17), we get the desired bounds

E[|D, —ED,|"] < C,n"*"" (n(n —1)7" Migpay +n"(n = 1)t 2 Mg, )
= CI/ ny/2(n - ]')_V “ + Cl/ (n - 1)_VMfTJH;V )

cond;v

EHDn - EDn’V] 2 Cun(n - 1)_V cVond;V + Cun_(V_l)(n - 1)_(V_1)M1£1/411;u :

Proof of Lemma A.7. The first result is directly obtained from linearity of expectation

and Jensen’s inequality:
D=3 k| = [Elu(X,, Xo)] = Y0, MEL6 (X)) [Elg (X))
= |B[u(X), %) = 3500, Mn(X1)n(Xs)|

< E‘U(Xh X,) — Zszl Ae@r(X1)0r(Xs)

= €K1 -

To prove the next few bounds, we first derive a useful inequality: For a,b € R and

v > 1, by Jensen’s inequality, we have
1 1 v 1 v 1 v v— v v
la+b]" = }5(2a)+§(2b)| < §|2a| +§|2b| = 2" Y|al]” 4 |b]") .

By the triangle inequality followed by applying the above inequality again with a re-
placed by |a| — |b| and b replaced by |b|, we have

la+0" > [la| = [bl|" = 27¥V]a” —[b]" .
Since v € [1, 3], we have 27! € [1, 4]. Therefore
1
Flal” = 16" < la+ 0" < 4(lal” +[b]") . (A.18)

Now to prove the conditional bound, we make use of the fact that X, X, are i.i.d. to see

that
E[| S0, M%) = ] |
—E[| 30, M Eldn(X0)0n(X) X — Elgn(X)en (X)) |
= B[ [B[u(Xy, X0) [X,] — Elu(Xy, Xa)] + Arca — Arca| ] (A.19)

where

AK;l = Zle MeE[0r (X)) 0 (X)X ] — Elu(X, X)Xy ],
Ao = Y0 MEGL(X1)6(Xs)] — E[u(X,, Xs)] .
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Moments of the two error terms can be bounded by Jensen’s inequality applied to x —

X,] and the expectation E[«|:

v

|z|” with respect to the conditional expectation |

Bl Akl ElAkal’] < E[[u(X,X0) = 3,7, Man(X1)ou(Xs)

= [0 %) = 350, Mo (Xn)on(Xa)|

On the other hand,
(Mcond;l/)y = EHE[u(XlaX2)‘X1] - E[U<X17X2)Hy] :

Therefore applying (A.18) gives

}L(Mcond;uyj - gl/K;I/ < ]EH Zszl )‘k(gbk(Xl) - /“Lk):u’k

] S 4((Mcond;l/)y +8?(;V)

For the last bound, we start by considering the following quantity, which can be

thought of as the truncated version of Mg,

mic = Bl S0 M(6eX0)63 (%) — )| |

= B[| S0, Ml04(X0) — )05 (Xa) + 3 Apa(03(Xa) — )
= E[|T, + T1]"] .

|

Since {717, T, } forms a two-element martingale difference sequence with respect to (X,) C
(X, X,), by Lemma A.4, there exists absolute constants c,,, C], > 0 depending only on
v such that

A (EBITT+ENTLP]) < myx < CLE[T]"] +E[|T3]]) -
Similarly, by writing

EITo] = B[ 3, Aon(Xa) = ) (Xo)] |

= EH Zszl Ak(06(Xy) = 1) (91 (X3) — pi) + Zle N (0 (X)) — p)
=E[[R, + Ry|"],

|

and noting that { R;, R,} forms a two-element martingale difference sequence with re-
spect to 0(X;) C (X, X,), by Lemma A.4, there exists absolute constants ¢, C} > 0

depending only on v such that
o (BlIR["] + E[|R["]) < E[T]"] < CU(E[R "] +E[Re]"]) -
Combining the results and setting
A = sup,eq g C, max{C,, 1} and a = inf,eq 5 ¢, min{cy, 1},
we have shown that

a(E[| "]+ E[| R[]+ E[|Re]"]) < mi < A(E[T "] +E[|R|"] + E[|Ro["]) -
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Notice that the quantity we would like to control is exactly

B[R] = E[| 3000, Ml0x(X0) = 1) (06(Xs) = )| ]

and that E[|T}]"] = E[|R,|"]. By setting c = A~! and C' = a ™, this allows us to obtain
a bound about E[| R,|"] as

em = 2B < E[| 320, M(0n(X0) = 1) (@x(Xa) = puy)| | < O = 2B[I T3]

Now notice that

EITi"] = B[ 3, Aelox(X0) = ] ]
which has already been controlled by the second result of the lemma as

1 v v 14 174 14
Z(Mcond;u) —E&Kw < E[|Tl| ] < 4((Mcond;u) +€K;u)'

On the other hand, we can use an exactly analogous argument by using (A.18) and ap-
plying Jensen’s inequality to control the errors to show that

i(Mfull;u)V —ekw < mig < A(Mpay)” + k) -
Applying these two results to the previous bound gives the desired bounds:
sz 1 Cbk Xl) Nk)(¢k(X2 Mk) V}
< AC(Mpanw)” — 5 (Meonaw)” + (4C + 2)e
E[| 00, M(0e(X) = 1) (@(Xs) = )| |

Z z(Mfull;u)V - S(Mcond;u)y - (C + 8)5VK;V .

|
) -

Proof of Lemma A.8. To compute the first bound, we rewrite the expression of interest as

a quantity that we have already considered in the proof of Lemma A.7:
() TARSRAR () = () TARE | (9(X) = 1) (6% (X)) = 1) T | AR ()

—E|((¢" (X)) - MK)TAKMK)Q]

= E[( T, M) — pom) |

= E[(Blu(X,, X)[Xs] ~ Elu(X;, Xo)] + A — Ax) |

where we have used the calculation in (A.19) with v = 2 and defined the same error

terms
Agy = Zle ME[0r (X1) 01 (Xo) [Xo] — Elu(Xy, X5)[Xo]
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Agg = Zszl AE[04(X1) 01 (Xo)] — E[u(Xy, X,)] -

Since we are dealing with the second moment, we can provide a finer bound by expanding

the square explicitly:
(1) TARSEAR (1) = VarE[u(Xy, Xp)[Xo] + E[(Agy — Ag)?]
+ 2E[(B[u(Xy, X5)[Xo] — E[u(Xy, X)) (Axy — Axa)’] -
Then by the Cauchy-Schwartz inequality, we get that
()T ARSEAR () — VarE[u(X,, X)X,
= 2[E[(Elu(Xy, X5) | Xy] — E[u(Xy, X5)]) (Axi — Axp)?’]| + El(Aga — Axp)?]
< 2y/Var[u(Xy, Xo) Xal {/E[(Ax — M) + El(Agca — Agc)?

The variance term is exactly o2, ,. Since the individual error terms have already been
bounded in the proof of Lemma A.7 as E[A%,], E[A%.,] < e%,, by the triangle inequal-

ity and the Cauchy-Schwarz inequality, we have

E[(Axa — Axa)?]| = [EIAL ] — 2E[A g Ao + E[AL]|

< [E[A%]] + 24/ [BIAL[EIA )| + [B[AR)| < 4ck,
Combining the bounds gives
{(IMK)TAKEKAK(MK) - (Ucond)Q‘ S 45%{;2 + 4O-condgK;Z )

which rearranges to give

2 2 KNTANKSGKAK/(, K 2 2
Ucond_40—cond€K;2_4EK;2 S (lu ) ATYRA (lu ) So_cond+4acond€K;2+45K;2

S (O_cond + 25K;2)2 .
The second bound is obtained similarly by giving a finer control than the bound in

Lemma A.7. We first rewrite the expression of interest by using linearity of expectation

and the cyclic property of trace:
Tr((A"E5)?) = Tr(AME[¢" (X)0" (Xy) 'JARE[¢" (X5)0" (X5)'])
= E[(6"(X) A (X,)"] = E[( T, MonXnonXa)) |
Again by expanding the square explicitly, we get that
(A7) = E[( 30, Mo (X)on(Xa) — (X1, Xo) + (X, X)) |

= B[( S0 Mt (X)ae(Xa) — 1(X0, X)) | + E[a(X, X))
+2Ak3

2 2
=€k + Of + 20k,
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where we have defined the additional error term as
K _ _
A = B[ S0, Mon(X1)on(Xa) - a(Xy, X)) a(X, Xs)|
By the Cauchy-Schwarz inequality, we get that
|Tr<(AKEK)2) - Uf2u11 - 5%(;2| = Q‘AK;?)'
< 2\/]E[(Zk:1 Ak (X1)op(X2) — (X, X2)) }\/]E [U(le Xs) } = 2ex20 -

Combining the above two bounds yields the desired inequality that

(Opan — 5K;2)2 < Tr((ARSF)?) < (oga +5K;2)2

To prove the third bound, note that (u*) " AXZ; is a zero-mean normal random vari-
able with variance given by (uf)TAXYXE 4 | which is already bounded above. By ap-
plying the formula of the v-th absolute moment of a normal distribution and noting that

v < 3, we obtain

y v/2_ v +1 v/2
B (1) ARZ ") = oD (5 ) (u)TARSR AR )
2y/2 v (a) 2y/2 v—1 v v_v ®) v v
S ﬁ (Ofull + 25K;2) = ﬁ max{l, 2 }(Ucond +2 5K;2) S 7(Ucond + 8€K;2) :

In (a), we have noted that given a,b > 0, for /2 € (0,1], (a + b)*/? < a¥/? 4 b/
and for v/2 > 1, the bound follows from Jensen’s inequality. In (b), we have noted that
v < 3. This finishes the proof for the third bound.

To prove the fourth bound, we can first condition on Z,:
]E[|Z1TAKZ2\”] = IE[]EHZIAKZQ]”\ Z,] } :

The inner expectation is again the v-th absolute moment of a conditionally Gaussian ran-
dom variable with variance ZJ AX X5 AXZ,, so again by the formula of the v-th absolute
moment of a normal distribution, we get that

E[|Z] AKZ,]"] < % E [(z;AKzKAKZQ)”/ 2} < % E [(ZJAKEKAKZQﬂ v
We have noted that » < 3 and used the Holder’s inequality. The remaining expectation is
taken over a quadratic form of normal variables. Writing 3, = (X%)Y2AK(X5)Y/2 for

short, the second moment can be computed by the formula from Lemma A.5 as
(a)
E| (ZJAFSRARZ,)"| = Tr(E2)? +2Tr(B2) < STe(E2)? = 8Tr((AFTF)?)”

Note that in (a), we have used the fact that the square of a symmetric matrix, Y2 has non-

negative eigenvalues, and therefore Tr(X{) < Tr(X2)2. Since we have already bounded
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Tr((AXXE)?) earlier, substituting the above result into the previous bound, we get that

2u/23u/4
p— ﬁ

Tr((AKEK)2)"

A\

v/2 v/4
E[|Z]ANZ,"] < “= E[(Z]AFS¥ARE,)’]
2u/23u/4
ﬁ
2V/23V/4
N

In the last two inequalities, we have used the same argument as in the proof for the third

< (o + 5%{;2)”2

< max{1,2"° 7} (ofy + €%2) < 6(0km + %) -

bound to expand the term with v-th power. This gives the desired bound.

To prove the final bound, we first condition on X;:
E[|(¢"™(Xy) — p®)TARZ,|"] = E[E[|(¢"(Xy) — 1) "ARZ,|"|X,]]

The inner expectation is the v-th absolute moment of a conditionally Gaussian random
variable with variance (¢ (X;) — u)TAEKSEAR (K (X)) — p), so by the formula of
the v-th absolute moment of a normal distribution with v < 3, we get that
E[ (6" (Xy) = ) "AKZy|"]
ov/2 v/2
< T E[((07(X0) — i) TARERAR (65(Xy) — 1)
2V/2
= S E[((0"(X)) - #F)TARE[(6% (Xa) — 15)(9" (Xa) — #*)]

AR (6 (%) — )]

= B[ (6% (X1) — 1) TAR (65 (Xs) = 1)

21//2 K v
= Z2E[| X, MonX)6(Xa)|]
(b)
S SC(Mfull;u)V - (Mcond;u)V + (80 + 4)5?(;1/ .
In (a), we have applied Jensen’s inequality to the convex function z + |z|*/? to move
the inner expectation outside the norm. In (b), we have applied the bound in Lemma A.7

and noted that % < 2 for v € [1, 3]. This gives the desired result. []

Proof of Lemma A.9. For the first equality in distribution, we recall that {Tk;d}szl are the
eigenvalues of (X5)1/2AK(XK)1/2 and {¢, 1 | are a sequence of i.i.d. standard Gaus-
sian variables. Let {n;; };cn ke be a set of i.i.d. standard Gaussian variables. Since

Gaussianity is preserved under orthogonal transformation, we have

1 (Zn (nf)T(EK)l/QAK(EK)l/Z%K—nTr(EKAK)>

n3/2(n —1)1/2 ij=1

d 1 K n
= m ( Zk:l Zm:l Ti;dNik ik — nTr((EK)I/QAK(EK)1/2)>
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1

K n n
= A ST 2t Thid (0 m) (5 ) =)
1 K
< W2~ 1)1 Yoo ThalGe—1) = Wi =D,

which proves the desired statement.

We now use the expression above for moment computation. The expectation is given
by E[W,X] = D forevery K € N. The variance can be computed by noting that the quan-
tity is a quadratic form in Gaussian, applying Lemma A.5 and using the cyclic property
of trace:

1
Var[W] = m\’ar[(nf{)T(EK)1/2AK(ZK)1/2?7§}
_ 2 K K\2
= s 1)Tr((A 25)?) .
By Lemma A.8, we get the desired bound that

2 2
n(n—1) (Ufull - 5K;2)2 < Var[Wf] < n(n—1) (O'fuu + €K;2)2 .

The third central moment can be expanded using a binomial expansion and noting

that each summand is zero-mean:

S — I |

= Bl s hal = 1))

8 K 3
T nd/2(n—1)3/2 Zk:1 Tkid -

Meanwhile, the sum can be further expressed as

_ Tr<(<EK)1/2AK(ZK>1/2)3> _ Tr((EKAK):a)
= Tr(

(B[ (X,)(6" (X)) T]A%)°")
(6 (X)) AR 65 (X5) (67(X2)) TAR N (X5) (6 (X)) AR 95 (X,) |

(
(30, M (X (X)) (3, At (X) 4 (X)) (X0, Me(Xs)u(X,)) |
=t E[S12523551] -

We now approximate each S;; term by u(X,;,X;). For convenience, denote U;; =
K
Zk:l Tia = E[(Urz + A12)(Uss + Ag3)(Usy + Asy)]
= E[U1oUp3Us1] + E[U15Us3A51] + E[U13853Us1] + E[U15895A3]
+ E[812Uz3Us] + E[A1Un 1] + E[A185Un] + E[A1Az0]
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Recall that ex.5 = E[|A,;]%]'/3 for i # j by definition. Then by the triangle inequality
followed by the Holder’s inequality, we get that
‘ Zszl Tl?;d — Elu(X, Xo)u(Xy, X3)u(Xs, Xl)]‘
< |E[UnUssAs1]] + |E[U12803Us1]| + [E[U12A0505]|
+ |E[A12U23U31]| + ‘E[A12U23A31H + ‘E[A12A23U31]| + }E[A12A23A31H
< BE[Ju(Xy, Xa) P e + SE]u(Xy Xo) '] ks + e
= 3Mf2uu;35K;3 + 3Mfu11;35%(;3 + 5%{;3 .
This implies that
Zi; Tl?;d < Elu(Xy, Xo)u(Xy, Xg)u(Xs, X)) — Mf?fm;3 + (Mfull;S + 51{;3)3 )
25:1 Tl?;d > Elu(Xy, Xo)u(Xy, X3)u(X;, Xq)] + Mf?iln;:s - (Mfull;3 + 5K;3)3 )
which gives the desired bounds:

8(Eu(Xy, Xy )u(Xy, X3)u(X3, X, )] — Mfin;s + (Mpps + €1.3)°)
n3/2(n — 1)3/2 )
8<]E[U(X17XZ)U(X%XS)U(X&XQ] + Mfiu;3 - (Mfull;3 + 5K;3)3>

n3/2(n — 1)3/2

E[(W,; —D)’] <

E[(W;" —D)’] >

The fourth central moment can again be expanded using a binomial expansion and

noting that each summand is zero-mean:
E[(W,X — D)*]
1 K 4
= B (T e = 1)) |

1 K

- n2(n — 1)2 (E[ZkZI Téd(fi - ]‘)4:| + 3]E|:Zlgk7ék;’§[( TI?;d(fl% - ]‘)27—73’;(1(5]%’ — 1)2}>
. 1 K 4 5 o
= ng(n _ 1)2 (60 Zk:l Tk;d + 12 Zlﬁk;ﬁk)’SK Tk’;di’;d)
1 K 4 9 o
T (1) (48 2o T T 1220 Tk;di’%d)

= nz(nli 1)2 (4 Zf;l Tl?;d + (Zle Tl?;d)2> . (A.20)

Since we have already controlled "1 | Teq = Tr((E%AK)?), we focus on bounding the

first sum. Using notations from the third moment, we can express the sum as
K K K
S T = B[ (X Adr(X0)6e(Xa) (30, Autoe(Xa)4(X5))

(Y, Meu(Xs)o (X)) (X, Mei(X)o(X0)|
= E[512523534541]
= E[(Um + Ay3)(Usz + Ao3)(Usy + Agy) (U + A41)} .
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A similar argument as before shows that
K
’ Zk:l Tl?;d — Elu(X, Xo)u(Xy, X3)u(Xs, Xy)u(Xy, X))
< AMgnae s + 6Minaeis + 4Mpnucics + €xca -

This implies that

K
Zk:l Tl?;d < Elu(Xy, Xy)u(X, Xa)u(Xs, Xy)u(Xy, X;)] — Méﬂl;ll + (Mpaa + 5K;4)4 5

K
Zk:l Tl?;d > Elu(Xy, Xo)u(Xy, Xg)u(Xy, Xy )u(Xy, Xy)] + Méﬂl;zl - (Mfull;4 + €K;4)4
On the other hand, by Lemma A.8, we have

K
(Orn —ex2)” < D, Tha = Tr((AREF)?) < (op +ex2)” -

Plugging these calculations into (A.20) give the desired bounds:

12
E[(Wr{( - D)ﬂ < m<4E[U(X1,X2>U(X2aX3)U(X37X4)U(X4»X1)]
— 4Ming + A(Mis + €x.0)* + (O + 5K;2)4> ;
12
E[(er( - D)ﬂ > m<4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)]

+ 4Mf4u11;4 — 4( Mg + 5K;4>4 + (o — €K;2)4> .

For the generic moment bound, we first use the Jensen’s inequality to get that

. 1 K 2m
E[(Wf)Q ] = E[(m Zk:l Tk;d(fl% -1+ D> }
22m71

< (S ) e

Denote the set of all possible orderings of a length-2m sequence consisting of elements

from [K] by P(K,2m) and denote its elements by p. Consider the subset
P'(K,2m) = {p € P(K,2m) : every element in p appears at least twice } .

By noting that &, — 1 is zero-mean and {£, }X_, are independent, we can re-express the

sum first as a sum over P (K, 2m) and then as a sum over P’ (K, 2m):

EKZ; T (6 1)>2m} - ZpeP(K,2m) (er;; Tk;d)E[erp(ﬁg - 1)]
- ZpeP'(K,M) (HkEp Tk;d)E[erp(flz - 1)]
+ ZPG (P 2m)\ P (K 2m)) (erp Tk;d)E[erp(fiz - 1)]
- ZPGP’(K,M) (erp Tk;d)E[erp(fi -1)].

Write C}, as the 2m-th central moment of a chi-squared random variable with degree 1,

which depends only on m and not on K or 7;.,. By the Holder’s inequality and the bound
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from Lemma A.8, we get that

K 2m ,
E [( Zk=1 T (&5 - 1>> ] < Cn ZpEP’(K,Zm) (HkEp Th:a)
2 K m
< G () (i, i)
=Cp, (2777? Tr((AKZK)Q)m <, (27:) (ot + 5K;2)2m :

Writing C,,, == 2™~ max{1, C}, (*")}, we get the desired bound that

m

C"YL m m
< —1)m(0fuu + 5K;2)2 +C,, D™ .

K\2m
E[(WTL ) i| — nm(n_
Finally, if Assumption 3.2 is true for some v > 2, we have .5 — 0 as K grows.

Taking K — oo in the bound for second moment gives

- K| _ 2 2
I}I—{noo Var[Wn } - n(n _ 1) Ofunl -
If Assumption 3.2 holds for v > 3, similarly we have

: SE[u(X, Xy)u(Xy, X3)u(Xs, X
Jlim E[(WE - py] = n§32(<nil)§/>2( 2X1)]

If Assumption 3.2 holds for v > 4, we have

lim E[(WK _ D)4:| _ 12(4E[U(X17X2)U(X2,X3)U(X3,X4)U(X4,Xl)] +J?ull) .

K—o00 n?(n —1)>

A.7.3. Proofs for Appendix A.2.3

Proof of Lemma A.10. Write §' := §/(m + 1) for convenience. Define the m-times dif-

ferentiable function

—(m 1‘+(5, y1+6l ymfl+6/ ym+§,
hm;T;(S(x) = (5/) ( +1)/ / / / ]I{y>7'} dy dym .- dyl .

U1 Ym—1 Ym

In the case m = 0, the function is hg.,s(z) = 07! fzﬁa I~ dy. By construction,
Poprs(x) = 0foraz < 7 =96, hyppps(x) € [0,1] forz € (7 — 6, 7] and by, 5(x) = 1 for
x > 7. This implies Iy,~ 4 < hypr5(2) < Iy r_sy and therefore the desired inequality

hm;T+5;§(x) < H{:L‘>T} < hm;r;é(‘r)'

Next, we prove the properties of the derivatives of /,,...s. Denote recursively

46" 46’
Jm+1($) = /m H{y>7}dy ) Jr('r> = / Jr-‘rl(y) dy for 0 <rs<m.

x
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Since hy,..5(x) = (8') ") Jy(z) and 2 J;(z) = Jipa(z+6) — Jipa (@) for 0 < i <m,
by induction, we have that for 0 < r < m,

m " —(m r
(2) = (&)~ o) = ()DL

1=

h(’”)

m;T;0

0(;) (=1)" Ty (z + (r —4)0')

(A.21)
Note that J,,, .| is continuous, uniformly bounded above by ¢’, and satisfies that J,, ., (z) =
0 for x outside [T — ¢’, 7]. By induction, we get that for 0 < r < m, .J,.,, is continuous,
bounded above by (¢’ )m“*” and satisfies that .J, +1( ) = 0 for x outside [T — (m + 1 —
r)d’, T]. This shows that h -5 1s continuous and h +s(7) = 0 for z outside [T — 6, 7],
and the uniform bound

W s@)] < @7 (0) = () e < 6

Finally to prove the Holder property of hw’;lﬂ s(z), we first note that .J,,,; is constant
outside x € [ — ¢’, 7| and linear within the interval with Lipschitz constant 1. The
formula in (A.21) suggests that hSZ? 3; s(x) is piecewise linear and the Lipschitz constant
in the interval [T — (m — i + 1)6’ T — (m —14)d’] is given by the Lipschitz constant of the

1-th summand. Therefore, h 5 is also Lipschitz with Lipschitz constant

Ol maxogiém@) = @ ()

For z,y € [t — §, 7], we then have

|hm’r(5( ) h’(m

mT5

W < Lplr—y

L0z —y|°, (A22)

where we have noted that ‘x_y| <lande € [0, 1] (A.22) is trivially true for z, y both
outside [T —§, 7] since h 5 evaluates to zero. Now consider x € [7—4, 7] andy < 7—90.
We have that
(m) (m) (m) B2 e e
|h’m7'(5( )_hm;T;(S(y)| = |hm’r5( ) hmT5<T_5)| < Lm(S ($—T+5)
< L0 |l —yl°.
Similarly for x € [T — §, 7] and y > 7, we have that

h — 1™ (@) =|h B o) ) L8 — a)
| mT&( ) mré( )| | m’r&( ) m75(7)| — m (T ‘T)

< Lm61 E’x - y’ :

Therefore (A.22) holds for all x,y. The proof for the derivative bound is complete by

computing the constant explicitly as

e () e (M (S et
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and therefore

|h7(’::7)',5<x> B hf:zr;)'ﬁ(y)l < Cm,e 57(m+6) ’SL’ - y’6 ) (A23)
with respect to the constant C,,, . = (Lm% J) (m + 1)+, O

Proof of Lemma A.11. By conditioning on the size of Y, we have that for any a,b € R

and € > 0,
Pa<X+Y <b) =Pa<X+Y <h, [Y[<e)+Pa<X<h, [Y][>e¢)

<Pla—e< X <b+e)+P(|Y]|>¢),

and by using the order of inclusion of events, we have the lower bound

Pla<X+4+Y <b) >Pla+e< X <b—¢,|Y|<e
=Pla+e< X <b—¢)—P(lY]|>¢).

A.7.4. Proof for Appendix A.2.4

Proof of Lemma A.13. By Lemma 2.3 of Steinwart and Scovel (2012), the assumption
that x* is measurable and E[x*(V, V)] < oo implies the RKHS # associated with ~*
is compactly embedded into L,(R?, R). By Lemma 2.12 and Corollary 3.2 of Steinwart
and Scovel (2012), for some index set Z C N, there exists a sequence of non-negative,
bounded values {\, },c7 that converges to 0 and a sequence of functions {¢;, }c7 that

form an orthonormal basis of L,(R¢, R) such that

ZkeIAk¢k(V1)¢k(V2) = k*(Vy, V),

where the equality holds almost surely when Z is finite and the convergence holds almost
surely when 7 is infinite. We can extend Z to N by adding zero values of )\, and ¢,
whenever necessary and drop the requirement that {¢; }7°, forms a basis, which gives

the desired statement. ]
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Appendix B

Proofs for Section 3.3 and Section 4.3

This appendix concerns the proof of the tight upper and lower bounds for degree-two U-
and V-statistics. Key ingredients of the proof are the degree-m polynomial construction
used for proving the lower bound in Section 4.5 and the variance domination result of

Section 4.3, which is also proved in Appendix B.4.

B.1 Matching upper and lower bounds for degree-two V-statistics

The next result states that the slow rate of approximation in Theorem 3.8 also holds for
some V-statistic v, (X ) = n(; > i ko(Xi, X5).

n—1)

Theorem B.1. Under the same setup as Theorem 3.8, there exists some k, : RIxR? — R
that depends on o,, such that

2 v—2

en” T < Supsep ‘P(nvn(X) <t)—P(o,+xi < t)‘ < Cn™ v .

B.2 Construction of £, k£, and X

We first recall the lower bound construction from Section 4.5 in the case m = 2. The

construction involves a polynomial p}, : (R?)" — R given by

" 1 n 1 n 2
Pn(Yrs oY) = 7n Zi:l Yi1 T+ <\/—ﬁ Zi:l yi2> for y; = (yi1, yio) € R?.

The collection of R? random vectors Y = (Y;,...,Y,,) are generated as follows. For a
fixed 0, > 0 and v € (2,3], write 0, = min{oon~*=2/2" 1}, Note that this is the
sequence o, — 0 in Theorem 3.8. Let U, be the discrete random variable supported at

three points with

2v/(v—2)

—6~126,2/"2  With probability 202 ,

Us, = {0 with probability 1 — 322/~ |

2 x 67126, with probability o2/~ |
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U,, 1s constructed such that it becomes increasingly heavy-tailed as o,, — 0. Now

let Uy, ,...,U,, beiid. copies of U, . The ii.d. random vectors Y = (Y;);<, are
generated by

1 o, iid.
}/;';O'n = <7§Ui;an + 75511 ) 512) where 5117 élQa s 757117 §n2 ~ (07 1) :

To adapt p;;(Y") to our setup, we first observe that p;, can be rewritten as a V-statistic:

* 1 n Y; Y ~
pn(yla--'ayn> :EZ - <2\;ﬁ+2\]}+y22yj2> = nvn(yla"'7yn)7

3,j=1

where we have defined, for vy, ...,y, € R? and a,, as, b;, by € R,

ﬁn(ylr N 7yn T n2 le 1 " ymyj) ) ];;1)((@170’2)7 (bbe)) T \/* f

Moreover, since we have no restrictions on how d(n) depends on 7, there are non-unique
choices of a function ¢g,,) : R¥™) — R and a probability measure Hd(n) ON R ™) such
that

d
Xl ~ Hd(n) g ¢d(n) (Xl) - }/l;crn :

Our construction of the V-statistic is thus given by taking X £ Hagn) and k,(xq, T5) =

v (¢d(n) (xl)v ¢d(n) (‘TQ))’ which glves
1 d - 1,
where < denotes equality in distribution. This makes the lower bound from Theorem 4.7

immediately applicable. For the U-statistics construction, we observe that

* _ 1 n Yi1 Yi2 vn—1 ) l noo2
pn(y17~-.7yn) - \/’rme&] (2\/n—1+2\/n—1+ \/ﬁ %2%2 +nzi:1yl2

- n(n_l)ﬂn<yla>yn)+Rn(y1>7yn)a

where we have defined, for yy, ... ,y, € R? and a,, as, b;, b, € R,

~ 1 > 1 n
un(y17'-'7yn) = mzz¢]ku(yzayj)7 Rn<ylaayn) = Ezizlyé’

~ a1 b1 n—1
ku((ahaQ)v(bl’bZ)) = 2\/,”71 + 2\/an \/;

Thus, our construction of the U-statistic is to take k,(z,zy) = l%u(qbd(n)(xl), Pany (72)),

which gives

u, (X) = X5, X;) £0,(Y) = pi(Y) = Ry(Y) .

1
n(n —1) Zlﬁi#ﬁn (X,
The main technical task is thus to show that p},(Y") approximates a chi-squared distribu-
tion and that R, (Y") has negligible effect other than centering the chi-squared distribu-

tion.
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B.3 Proofs for Theorems 3.8 and B.1

Throughout this section, we denote the collection of Gaussian vectors

7 =(Zy,.... %) where Z, " N(E[Y;, |, Var[Yi, ]) = N((S),("ﬁo)).

01

We state three intermediate results used in the proof of Theorems 3.8 and B.1. The first
two results concerns the Gaussian universality approximations of 0,,(Y") and w,,(Y"). We
improve the upper bound of Theorem 4.7, n‘ﬁ, by using an argument specific to the
construction instead of the generic the Lindeberg method. Note that the o(-dependence

below arises because Y and Z are implicitly parameterised by oy.

Lemma B.2. Fix v € (2,3]. Then there exist some absolute constants c¢,C, 0, > 0 and
N € N, such that for alln > N,

v—2 v—2

n” < supyeg |P(n0,(Y) <t) —P(no,(Z) <t)| < Cn~ % .

Lemma B.3. Fix v € (2, 3] and let o be given as in Lemma B.2. Then there exist some
absolute constants ¢,C" > 0 and N' € N, such that for alln > N’,

dn~% < sup P(MQR(Y) < t) —P(\/m&n(Z) < t)‘ < Cn %

teR

Now observe that the universality approximations can be expressed as
- 1 n 1 n d
nv,(Z) = 7n 21:1 Zi + - Zid:l ZigZis = 0,8 + X1
- 1 n 1 d 1
vn(n—1)a,(2) = 7n Zi:l Zi + o Zi#j ZinZis = 0,6 + o Zi# ZisZjs -

The next result allows the quadratic part of /n(n — 1) @,,(Z) to be approximated by the

centred chi-squared variable X_% plus a small Gaussian component o,,§.

Lemma B.4. There exists some absolute constant C" > 0 such that for all n € N,
SUPreR ’P<v"(n -1Dau,(2) < t) - P(oné 2 < t) ‘ < 'V

These results allow us to state the proofs for Theorems 3.8 and B.1.

Proof of Theorem B.1. Recall that by construction, u,, (X) L U, (Y), v,(X) < 0,(Y)

and nv,,(2) < 0,€ + x3. The V-statistic bound then follows directly from Lemma B.2:
There exist some constants o, c;, C; > 0 and N; € N such that for all n > Ny,

2

en” W < SUD;cR ‘]P)(nvn(X) < t) - P(0n§ +x3 < t)‘ < Cln’%2 )

O

Proof of Theorem 3.8. By using the triangle inequality to combine the U-statistic bounds
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from Lemma B.3 and Lemma B.4, there is another absolute constant C'; > 0 such that

[

sup [P(v/n(n — 1) u,(X) < t) — P(anf +2 < t)’ <O~ 4+ Cyn
teR

sup [P(v/n(n — 1) u,(X) < t) — < 0.l +x3 < t>) > e~ — Oyn’s .

teR

: v—2 1
Since oo S 3 <

particular, there exist ¢ € (0, ¢;], C' > C| and an integer N > N, such that foralln > N,

L for v € (2,3], the n=/° term can be ignored when n is large. In

v—2

en” W < SUPyeg ‘]P’(nvn(X) < t) — P(an§ +x2 < t)‘ < Cn~ %

The rest of the section proves the intermediate results, i.e. Lemmas B.2 to B.4.

B.3.1. Proof of Lemma B.2

The lower bound follows directly from Theorem 2 of Huang et al. (2024) by noting that

nv,, = p;,, so it suffices to prove the upper bound. Denote
1 n 1 Op
Sn — \/_ﬁ Zi:l <7§Ui;a’n + Ele)
such that, for & ~ N (0, 1) independent of all other variables,
i, (Y) £ 8, +x3 and ni,(Z) £ 0,6+ X3

By Lemmas 19 and 20 of Huang et al. (2024), under the choice of o, and N in Theorem
2 of Huang et al. (2024), we have that for all n > N ,

A 22\ —a2/(202) 2
ilel]g P(S, <z) —P(0,§ <) — nl/2g2 =) (1 - J_%>€ = ho2v/—2)
1 —x2 /1602 1
‘]P)(Sn < I‘) - ]P)(O-ng < x)l S B( n1/20'71;/(y_2)6 + n3/2$40'7(18_’/)/(1/—2)

for some absolute constants A, B > (. By splitting an integral and using these bounds,
IP(no,(Y) < t)—P(nit,(Z) <t)

‘/ P(S, <t—y)—P(0n§<t—y2))e:/?;2dy‘

< B(S, < t — ) — Blont <t — )| e
/|t o, y o, v s dy

+ IP(S, <t —y?) — P t—1)| e
<t—y°)— <t-
/t—yzlzan " Y oné y V2T y

22 2
A (- y?)? —7“252) e 4./c,
< —2) 2 |¢ " dy+ — 0
V2 nl/2qgh/ T lt—y2|<o, On noy 'V

B _(t7y2)2_ 2

Y
2 2
e 160_n
2
V2rni2ah/ D ) 2120,

dy
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+ b / ! e’%d
V2 n3/207(L8_V)/(V_2) [t—y2|>0,, (t—y?)* Y

2A./c,, n 4./, B.\/o, / Ik p
e 16
= 2rnl/2gt/ D /D) Brpyegn/(v=2) lon tt—y2|>1 Y
+ Dyon / S
V2r 032680254 [ gty 2isy (o0t — y?)t v

In the last line, we have used a change-of-variable y — /0,y and noted that e V2 < 1,
Now fix N > N such that o, = ogn~ 2/ for all n > N, which only depends on the

absolute constant o, > 0; in this case,

1 v 1 3v
Von 3Ty g, —¥=2 Von _ 32 o3, —u=2
0

—_— = = 4v
1720/ (=2) gy T 70

Then there exists some constant A’ that depends only on o, such that, for all n > N,
|P(no,(Y) <t)—P(nv,(Z) < t)}
. lt 2)2 1
< A (1+ Sy + [ —— dy)
- |0',:1t7y2\>1 i ot t—y2[>1 (o't — y?)?! Y
= A~ (14 L(07't) + L(o7'1)) |

where we write [, (1) := f|7_y2|>1 e~ (T /16y and I,(7) == flT_yQ‘N(T —y?)~dy. To
handle I;(7), we split the integral further and use a change-of-variable with z = 3 to

obtain

L(r) < / e Ty = / e~ TV 18y 4 9 / e~ TV /16,
y?<1 2>1,4>0

1
<2+ 2/ e (TD6__ g,
- 2>1 2vz
o= (r=2)?/16

§2—|—/ Tz/16dz<2+\/27r>< / dz:2+4ﬁ.
z>1

A similar strategy applied to I5(7) gives

1
I :/ d 2/ .
2(7) Ir—y2|>1,y2<1 (T*y) y+ r—y2>1,y2>1y>0 (T—y?)* Y
1 1
<2+ 2/ ————d
- r—z|>1,2>1 (T—2)*2/z :

1 1
I L L e L
Substituting these two bounds back and noting that the resulted bounds do not depend
on t, we get that there exist some constants C' > 0 and N € N that depend only on the
absolute constant o, > 0 such that foralln > N,

v—2

supe [P(n,(Y) < ) = B(n5,(2) < )] < CnF
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B.3.2. Proof of Lemma B.3

Notice that

and we already have the universality approximation bound for nv,, from Lemma B.2.
It suffices to apply variance domination to approximate \/mﬂn by nv,,, which
requires us to compute the relevant variances. Write Z; = (Z;;, Z;,), where Z;; is the
Gaussian component that match the first two moments of U;,, + 27124, &, and Z,, is the

Gaussian component that matches &;, ~ N(0, 1) in distribution. Then by independence,
" % 1 n 1 n 2
o? = Var[p:(Y)] = Var[p,(Z)] = Var [\/_ﬁ Zi:l Zil} + Var[(\/—R Zi:l Z; ) }
1 n 2
> Var[(\/—ﬁ > ZQ) } — Var[Z%] = 2.

By independence again,

Var[R,(Y)] = Var[R,(Z)] = Var[% Z:;l Zfz] L %,
and also note that
E[R,(Y)] = E[R,(2)] = 1.

We now prove the upper bound by combining the variance domination result in Corol-

lary 4.5 and the upper bound of Lemma B.2. Let o, be given as in Lemma B.2. Since

Van=1)a,(Y) = (po(Y) = 1) = (R, = E[R,(Y)]) ,

there are some absolute constants C’ > 0 and N € N such that for all n > N and every
teR,

IP(v/n(n—1)4,(Y) <t) =P@L(Y)-1<1)]

~, (Var[R, (Y)]\ 5 . .
< O/ (V)" 4 2supeca [P0 () ~ 1) £ 7) — B0 ((2) - ) < 7)]

v—2 —

~ 1 ~ v—2
< C'n5+20n" % < Cin~ o

for some absolute constants (), C’; > (0; in the last line, we have used that %2 <2<

=
ot

for v € (2, 3]. Similarly we have

v—2

P(v/n(n— )i, (2) <t) —P((pi(2) - 1) <t)| < Cln~ %

Combining both bounds with the upper bound of Lemma B.2 by the triangle inequality,

we get the desired upper bound that for some absolute constant C’ > 0 and all n > N,

v—2

SUDPeg ’IP’( n(n—1)a,Y) < t) —]P’( n(n—1)a,(2) < t>’ < On~ o .
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For the lower bound, we apply Lemma 21 of Huang et al. (2024): There exist some
constants ¢, > 0 and N € N depending only on the fixed constant c,—which is chosen
to be the one used in Theorem 2 of Huang et al. (2024) and also Lemma B.2—such that
for any n > N ,

—2

P(p}(Z) < —20,) —P(ps(Y) < —20,) > c, n~
To exploit this lower bound, we shall apply Lemma A.11 directly: For any € > 0,
P(v/n(n—1)4,(2) < =20, —o.e — 1) = P(y/n(n — 1) 4, (Y) < =20, — 0,e — 1)
=P(v/n(n—1)a,(2) < =20, —o,e— 1) —=P(pj(Z) — 1 < —20,, — 20,6 — 1)
—P( - 20, — 20,6 < p;(Z) < —20,)
+P(py(Z) < —20,) = P(pi(Y) < —20,,)
+P(py(Y)—1< =20, —1) =P(y/n(n—1)a,(Y) < —20, — 0,6 — 1)
(

—2

> —2P(|R,(Y) — 1| > o.€) = P(|p;(Z) + 20, + 0.€| < 0,€) +con”

@ 2Var[R,,(Y)] & (o.e)t/? L n- 2
B ol (Ellpi(2) + 20, + ouePHA -
(b) 2 v—2
~ 1/2 _vr=2
> — o C;E / +c,n W

for some absolute constant &, > 0. In (a), we have used the Markov’s inequality and
the Carbery-Wright inequality (Fact 4.4); in (b), we have plugged in the bounds on
Var[R,(Y)] and o,, and noted that E[|p}(Z) + 20,, + o.¢|?] > Var[p;(Z)] = o2. Taking

—2/5

E=n gives

P(Valn— D (v) <t) = P(v/nln = 1)2,(2) < t)‘ > e % - (342

Since X2 < 1 < 1, there are some absolute constants ¢ > 0 and N’ > N such that the
desired lower bound holds for all n > N'. O

sup
teR

B.3.3. Proof of Lemma B.4

Recall from the proof of Lemma B.3 that E[R,(Z)] = 1, Var[R,(Z)] = 2 and that
Var[nt,,(Z)] = Var[p:(Z)] > 2. Since

Vil =1)i,(2) = n0,(2) = Y Zh = (n8,(2) = 1) = (3 1, Za - 1)

we can again apply variance domination (Corollary 4.5) to obtain that

sup [P(Vn(n = 1) in(2) < 1) = P(n,(2) ~ 1 <1)| < C(%)é

teR

1
—= On_g
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for some absolute constant C' > 0. Noting that nv,(Z) — 1 < 0,€ + X2 finishes the
proof. [

B.4 Proof of Proposition 4.3

By Lemma A.11 followed by the Markov’s inequality, we get that for every ¢ € R and
e >0,
Var[Y]

PX'+Y'<t) < P(X'<t+e)+P(JY|>¢€) < P(X'<t+e)+ =aalt
PX'+Y' <t) > P(X' <t—¢)— 2]

Subtracting P(X’ < t) from both sides, we get that
IP(X'+Y' <t)—P(X' <)
< max { P(X' € (t - e,1)), P(X' € (1,0 + )} + 0

and taking an infimum over ¢ > 0 gives the first bound. The second bound follows by

rescaling ¢ and € at the same time by o’y > 0. [
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Appendix C

Discussions and proofs for Chapters 4 and 5

This appendix provides additional results and proofs concerning both the general univer-

sality results in Chapter 4 and the applications considered in Chapter 5. The appendix is

organised as follows:

Appendix C.1 includes additional discussions. Appendix C.1.1 illustrates the intuition
behind variance domination and changes in asymptotic regimes through a toy degree-
three V-statistic. Appendix C.1.2 discuss when one expects Assumption 5.1 to hold;
Appendix C.2 proves the upper bound result in Theorem 4.1;

Appendix C.3 proves the pair of upper and lower bounds in Theorem 4.7;

Appendix C.4 proves the variance domination result of Theorem 4.2;

Appendix C.5 includes several results from Denker (1985), useful for computing the
moments of higher-order U-statistics;

Appendix C.6 proves the results in Section 5.1, which concern the universality of a
simple V-statistic under d-regularity;

Appendix C.7 proves the results for the remaining applications in Chapter 5. Ap-
pendix C.7.1 proves Proposition 5.5 for delta method, Appendix C.7.2 proves Propo-
sition 5.6 for U-statistics, and Appendix C.7.3 proves the results concerning subgraph
count statistics in Section 5.3.

Appendix C.8 proves the properties of several univariate distributions discussed in
Section 4.5.
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C.1 Additional results

C.1.1. A toy degree-three V-statistic

Given a feature map ¢ : R? — R and i.i.d. R%valued random vectors Y;’s, consider a
V-statistic

1
= Y BYO(Y)6Y)

Write 1, == E[X]]. Since v(Y) is a degree-three polynomial in the random variables
X, = ¢(Y;), Theorem 4.1 approximates p(X ) := v(Y") by replacing the R? block tensors
X = <XiaX_i2>X_13> - (Xi_:ula X7 — o, Xz‘g—,u:%)
by Gaussian surrogates &; with the same mean and variance as X;. To understand the
structure of the multilinear representation ¢(X) defined in (4.2), we consider the decom-

position
v(Y) —=Ev(Y) = p(X) - Ep(X)

1 (n=1)(n—-2) 3 3(n-—-1) 1
=3 Zi,j,kén XXXy — 2z M Hifbe — 75143

! (n—=1)(n—2) 3 3(n — 1)
- (F Zi,j,k distinct XXXy — TN?) + <F Zi# Xisz - TMMQ)
1 n 1
+ (2, X - ws)
_3(n—1) o
B n? Zi<" 4 n2 ZZ] dlgtht X T n3 Zzg kdmtmct XZXX
3
+ ﬁzilefﬂl I X+ 32 XPX; + Y X
= q1(X) + (X) + qg(X) + u(X) + g5(X) + qG(X) +¢:(X) = ¢(X).

Note that ¢;(X), ¢»(X) and ¢3(X) correspond to the Hoeffding’s decomposition of the
U-statistic associated with p(X) = v(Y) (see (5.6) in Section 5.3).

Theorem 4.1 gives the error of approximating ¢(X) by ¢(Z), where we recall that
= denotes the collection of the Gaussian surrogates (&1, ...,¢&,). Variance domination

(Theorem 4.2) says when we can make a further approximation by some ¢;(=), depending

on how the variances of ¢, (X), ..., ¢;(X) compare: They can be computed respectively
as
3n"3(n — 1)%uf Var[X,] = n"'o?, 3n"3(n — 1)ui Var[X,]* = n"?03 ,
n~°(n —1)(n —2) Var[X,]® = n"%03 3n"3u? Var[X{] = n %07,
3n"3u3 Var[X,] = n302, 3n~°(n — 1) Var[X{]Var[X,] = n""0F ,
n~oVar[X37] = n""0% .

Theorem 4.2 then provides the error of approximation by each ¢;(=): For example, we
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have

sup IP’( ' (v(Y (Y)]) < t) —P(l—/qu(E) < t)‘

teR
<<n3/202+”03+04+05 ) + 0o +a> +n2 +22(HX1”LV>VVH>
n2oy ||X1||L2 ’
=) <1)]

sup P(U—Q (v(Y) —E[u(Y)]) < t) (

teR
noy +n(os + 04 +05) + ' %06+ 07\ 5 5 1Xilz, 6T
<C 573 + :
n3/20, 112,

We may also characterise the different limits. ¢, (Z) is a Gaussian. Writing &, = + Z?:l &ils

where &;; is the first coordinate of ¢; (corresponding to X;), we have

6@ = €)' -31(GX.8) ~ @) -ElE)7]. (€1

i.e. ¢(Z) asymptotically behaves like a centred and rescaled chi-square. An analogous
argument shows that ¢;(Z) behaves like a centred and rescaled cubic power of a Gaussian,
¢s(Z) behaves like a centred and rescaled chi-square, and ¢4(=), ¢5(Z) and ¢;(=) are

Gaussian.

Classically with d fixed and all o7 bounded, the limit of v(Y") can be read off from
variance domination: ¢;(Z) always dominates when o; # 0, ¢,(Z) dominates when
o, = 0 and 0, # 0, and so on. Meanwhile, provided that X is not constant almost
surely, the only way to set some o0; to zero is by requiring j; to be zero. The only

possible limits are therefore

(i) the Gaussian limit given by ¢;(Z) when p; # 0;
(ii) a mixture limit corresponding to ¢3(Z) + ¢5(=) when 1, = 0 and 5 # 0.

Notably since d is fixed, d-regularity holds directly for the V-statistics associated with
each ¢;(X), and Lemma 5.3 allows these two limits to be expressed equivalently by re-
placing each §; by (Z; — EX;, Z? — EX?, Z? — EZ}). This agrees with classical results
on asymptotics of non-degenerate (14; # 0) and degenerate (1; = 0) V-statistics. We also
remark that the presence of ¢5(Z) in (ii) shows that the limit of a degenerate V-statistic

differs from that of its associated degenerate U-statistic.

In the high-dimensional setting, however, o7 are large relative to n through their

dependence on d = d,,. Since d is only an implicit parameter affecting the variances, d is
allowed to be much larger than n (e.g. with exponential growth). In particular, we may
have the mixture limit from ¢3(Z) + ¢5(Z) even if p; # 0: It suffices to ask x,; to be
asymptotically negligible, and the threshold for comparison is exactly given by variance

domination (Theorem 4.2).

Meanwhile, if ¢;(X) dominates, the implied limit from ¢, (=) (Gaussian universality
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with the augmented variables) is different from the limit given by replacing X;’s with

Z;’s (Gaussian universality the original variables):

n®2q(2) = %Z;l & ~ N(0, Var[X7]) ,
but
1
7

This is a case where 0-regularity is violated, and the limits obtained from the two notions

Var[ ijl(zf—xaxf)] = Var[Z%] = E[X,]® + 3E[X,]Var[X,] .

of Gaussian universality disagree. In view of the continuous mapping theorem applied
too(Y)= (13", Xi)g, we believe that ¢;(X) never dominates in v(Y") for reasonable
distributions of X;. Notably if X, is sufficiently light-tailed such that \/iﬁ Yo X s
asymptotically normal, Var[v(Y")] is either ©(n ') or ©(n~3), i.e. larger than Var[g;(X)] =
O(n=>).

C.1.2. Assumption 5.1 in L,

Denote Ly(E, 1) as the L, space of £ — R functions under p. We first show that As-
sumption 5.1 in Section 5.3, used for U-statistics, is very mild and holds under mild

conditions when v = 2.

Lemma C.1. Fix n,m,d € N, v > 1 and (€, 1) a separable measure space. Assume

that ||u(Yy,...,Y,;,)|lr, < oo. Then there exists a sequence of orthonormal Ly(E, 11)

,,,,,

fen = || M O (V3) i (V) — (Vi Y

-----

K—oo

0.

Ly

Proof. Separability of (€, 1) implies that L, (&, 11) is a separable Hilbert space (see e.g. Ex-
ercise 10(b), Chapter 1, Stein and Shakarchi (2011)), which implies the existence of
a countable orthonormal basis {¢;}%2,. Consider the m-fold product space (E™, u™).
mal basis in Ly (E™, ™). The stated assumption implies u € L,(E™, ™), which implies
the desired result. O

Remark C.1. We emphasise that the moment boundedness assumption is only required
for every fixed n, m and d. Therefore, this does not contradict our overall analysis, which
considers how the moments can be large relative to n (through e.g. dependence on d and

m).

In the next lemma, we give another choice of approximating functions provided that

u is well-approximated by its Taylor expansion in L,. For each & € K, let M, € N be
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the largest number such that

SN < o< SOV gM

M=1 M=1
For y € RY, let (y®™), be the t-th coordinate of the tensor y®* according to a fixed total

order on N, and define

&k(y) = (y®Mk)k_ZA1k_1dM :

M=1

For example, ¢;(y), ..., q(y) are the d coordinates of 3/, Gy.1(y), ..., Guraz(y) are the
d? coordinates of y®2 and so on.

Lemma C.2. Fix v € (2, 3]. Assume that u is infinitely differentiable and

i Vo) = 320 @)Y V), 2 0.

seevm

Proof of Lemma C.2. Each coordinate of (Y,...,Y,,)® can be written as a product of
Ge, (Y1), O, (Vi) for some ky, ..., Ky, < S0, @M. By identifying A, s as the
corresponding coordinate in &'u(0), we see that the Taylor approximation error above is

exactly €g.,,, which converges to zero by assumption. [

C.2 Proof of Theorem 4.1

The proof idea is standard: We first compare the distributions on a class of smooth func-
tions via the Lindeberg method (e.g. Chapter 9 of Van Handel (2014)). The smooth func-
tion bound is then combined with the Carbery-Wright inequality (Carbery and Wright,
2001), an anti-concentration bound for a polynomial of Gaussians, to obtain the bound in
the Kolmogorov metric. In this section, we also include several lemmas that will simplify

subsequent proofs.

The next result allows us to control the difference in expectation of the above ap-
proximation functions evaluated at independent random quantities. We will be using the

smooth approximation of an indicator function from Lemma A.10.

Lemma C.3. Fixt € R, > 0 and define hy5 = hy,. 5 as in LemmaA.10. Let V,Z, W be
some random vectors in R® and Y be a random variable in R, with dependence allowed.

Then there exists an absolute constant C such that for any v € (2, 3] and § > 0, we have

]]E[hm(WTV +Y) — ht;é(WTZ +Y)]| £ Q1 +Q,+Qs,
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where

= (B[ WT(V=2)]|, Q=+ [E[hs(Y) (W (VVT = ZZT) W)]

2
Qs =540~ (W' V|, +[W'Z|7,) .

)

Assume additionally that (V, Z) is independent of (W, Y ). IfE[V| = E[Z|, then Q; = 0.
If Var[V] = Var[Z], then Q, = 0.

Proof of Lemma C.3. Since h,s is twice continuously differentiable, by a second-order

Taylor expansion with the integral remainder, we get that for any w, r € R,
his(u) = hys(r) + his(r) (w—r +/h ) (u—t)dt
= hys(r) + hls(r) (u—r +/ ((w—=7)0+7) (u—r)2(1—0)do
= Dy (r) + Hs(r) (u—1) + E[ 2w =)0 +7) (u—r)*(1 - @)] . (C2)

where © ~ Uniform[0, 1]. By applying this expansion once withu = W'V + Y. r =Y
andonce withu =W 'Z +Y,r =Y, we get that

E[hus(W'V+Y) = h s(WTZ+Y)]|
= [E[s(V) (WTV) = s (V) (W 2) 4+ B (OW TV + ) (WTV)2(1 - ©)
—W(OWTZ+Y) (W'Z)%(1 - @)] ‘ .

By adding and subtracting two second derivative terms evaluated at ¢, we can further

obtain
IE[hs(WTV +Y) = hs(WZ+Y)]|
= [E[ns (V) W (V- 2Z)] + E[ ;’.5(1/) (WTV)’ = (W'Z)*)(1 - ©)]

+E[(his(OW 'V +Y) — hi;(Y)) (WTV)*(1 - 0)]
—E[(h5(OW Z +Y) — hl; Y) (WTZ)(1 - 0)]|
= Q1+ Q2+ Qv — Qz| < Q1]+ Q2] +[Qv| + Q2| - (C.3)

We handle the four terms individually. @), is already in the desired form. (), can be
simplified by noting that © is independent of all other variables:

Qu = SE[H() (W' (VVT —22T) W)] .

Now to handle )y, and ()5, we use the Jensen’s inequality to move the absolute sign

inside the expectation and note that 1 — © is bounded in norm by 1:

Qv] = |E[(his(OW TV +Y) — hi5(Y)) (W'V)*(1 - 0)]|
B[, (OWTV +Y) — H(v)] x (WTV)?)
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Recall the Holder property of A5 from Lemma A.10: For any ¢ € [0,1] and z,y € R,

we have
|his(z) — his(y)| < 54672 |lo —y|°

Applying this to the bound above withe = v —2 € (0,1],2=OW'V +Y andy =Y,
while noting that |©| is bounded above by 1 almost surely, we get that

Qul <546E[OWTVIE(WTV)?H < 5467 [WTV[;
To deal with (), the argument is the same except V is replaced by Z:
Qz| < 54077 ||[WTZ| .
Applying the bounds to (C.3) then gives the first desired bound:
[E[hys(WTV +Y) = hys(WZ +Y)]|
< 1@ +1Qs] + 547 (WYL +[[WTZ][,) -

In the case where E[V]| = E[Z] and (V, Z) is independent of (W,Y"), we get that
Qi =E[n;(V)W'(V-Z)] = E[hs(Y)W'E[V-Z]] =0.
Similarly in the case where Var[V] = Var|Z] and (V,Z) is independent of (W,Y"), we

have Qy = %E[ 1s(Y) (WTIE,[VVT —Z7Z'] W)] = 0. O

The next lemma is convenient for simplifying moment terms involving Gaussians:

Lemma C.4. Consider a zero-mean R°-valued Gaussian vector 1. Suppose Var|n] =
Var[V] for some R® zero-mean random vector V and let W be a random vector in R®

independent of n and V. Then for any real number v > 2, we have

T o 2T
B[] < 2 gy
where T represents the Gamma function. In the case v = 2, we have Var[W 'n| =

Var[W V).

Proof of Lemma C.4. Note that W is independent of 1 and V. Conditioning on W, W p

is a zero-mean normal random variable with variance given by
W Var[p]W =W Var[VIW = E[WVVIW|W] = E[(W'V)*|W] .

Applying the formula of the v-th moment of a Gaussian random variable followed by the
Jensen’s inequality with v > 2, we get that
2y/2 F( v+1

B[ 7o) = R[E[W W] = 2 S R [Ty w]
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T
< — = E[WIVI].
For v = 2, the above becomes an equality and we get Var[WW "n] = Var[W "V]. O

Proof of Theorem 4.1. We first note that since g, is affine in each argument, E[q,,(Z)] =
Elg,,(X)] = 0. Meanwhile, by applying Lemma C.4 repeatedly, Var|q,,(X)] = Var|g,,(Z)].
This proves the second part of Theorem 4.1.

To prove the first part, we denote ¢,,, := o 'g,, for simplicity. We first approximate
the probability terms. For 7 € R and 0 > 0, let h, 5 = ho...5 be the twice continuously
differentiable function defined in Lemma A.10, which satisfies that /., 5.5(7) < Tpnry <
h..s(x) for any 7 € R. This allows us to bound

P(G,y(X) > t) = P(Gn(Z) > t —6) =E[Iy; x> — Lig, @518}
< Efhes (4n(X)) = i (40 (5))]

and similarly

P(G(Z) >t +06) — P(¢,(X) > 1) < E[ht+6;6 (qm(E)) — Nytsi (qm )}

(E) >t)+ Pt -6 < ¢,(E) <t)and

By expressing P(G,,(Z) > t —0) = P(G,
performing a similar decomposition for P(g,,(Z) > t + ), we obtain that
P04 (X) <t) ~ B0 4u(2) < 1)] = [B(§0(X) > 1) — P(4n(E) > 1)|
< max{P(t = 6 < 4,(2) 1), Pt < G(3) <+ 0)} + max{E,, By}
<Pt—-0<qn(E)<t+d)+E, +FE.s, (C.4)
where we have defined £, = |E[h,5(G,(X)) — hr5(G,(Z))]| for 7 € R. The next
step is to control quantities of the form £ by the Lindeberg method. We recall W, =
(:}(17 e 7Xi717 0, §i+17 e 7511) c RTLD anddeﬁne‘ﬂf;|< — <X17 e ’X’L'717Xi7€i+1’ . e 7€7L)'
Then by expanding the difference into a telescoping sum and applying the triangle in-
equality,
< Z ‘E T 5 (W:)) - h’T;ﬁ(gm( :—1))”
(a) ~ * ~ % n
= Zi:l |E[h7,6(Qm(Wl )) - hT;&(qm(Wifl))” = Zi:l ET;i .
We focus on bounding each F_;. Since g, is affine in the i-th argument, we get

Gm(W7) = 0iGn (W) "X, 4+ G (W,)  and G, (Wi ) = 9,Gn(W,) & + G (W)

Note that X; and §; are zero-mean with the same variance, and are independent of W.
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This allows us to apply Lemma C.3: For any v € (2, 3] and § > 0, we have
<5467 (”ai(jm(wi)TXiny + ”aidm(wi)Tfi‘ ZV) -
Since &; is a Gaussian with the same mean and variance as X; and both are independent

of 0, f(W;), by Lemma C.4 and noting that v < 3, there is an absolute constant C" > 0
such that

E[10:Gm(W:) &[] < C'[|0,0,(W:) X7
By additionally noting that M,,; = 0||9;q,,(W,) X[, by definition, we get that
B, <54(C"+1)0"o MY, .

Summing over ¢ = 1, ..., n then gives

n oMY
E. < Zi:l Emr < 54(0/4_1)@. (C.6)

oYov
On the other hand, by Lemma 4.4, there exists an absolute constant C* > 0 such that
P(t— 6 < Gu(Z) <t +0) < C*m 6V (E[|G,n() — 2)) /2
@ m 8™ (0 Varlg,, (B)] + £2) 72 2 Crm s (1 4 2
(C.7)
In (a) and (b), we have used that E[f(Z)] = 0 and Var[f(Z)] = Var[f(X)] = ¢%
Substituting (C.6) and (C.7) into (C.4), we get that there exists some absolute constant
C' > 0 such that

[Blo™4,(X) < 1) — B0 g, (5) < 1)] <

cm< gt/m Z?leV”-,i>
(1+t2)1/2m SVov :

Finally by choosing § = (1 + ¢?) T2 (o>, My,) #“, we get the desired bound
< D MY > s

[Plo f(X) <) =P(e™'f(E) <0)| < Om (5 s

]

C.3 Proofs for Theorem 4.7

Recall that ¢, is the multilinear representation of pj,, with respect to X. The proof con-

sists of three main steps:

(1) By carefully exploiting the heavy tail of V;’s and the asymmetry of v}, ,, we can ob-
tain the first lower bound for the approximation of p, (X) by p},(Z) (Lemma C.5);
(ii) By applying Theorem 4.1 to approximate p;;, (X) = ¢;,,(X)+E[p;, (X)] by ¢, (Z)+

E[ps,(X)], the upper bound involving ¢, in Theorem 4.7 reduces to a moment
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control (Lemma C.7);
(iii) By verifying d-regularity and modifying the argument of Proposition 5.2, we can
approximate ¢, (=) + E[p;, (X)] further by p;,(Z) (Lemma C.8).

We introduce some more notation. Note that we can express X; = (V;,Y;) and X; =
(Vi,Y;), where Y; = (Y;,..., Y/ — E[Y;™]). Correspondingly, we express

Z; =(Zvi Zy,;) where  Zy,; ~ N(0,VarV;) and Zy; ~ N(0, VarY;)
& = (gv;z‘agY;i) where fv;z‘ ~ N(O,Var V;) and fY;z‘ NN(OavarYi) .

Denote the collections Zy = (Zy;)i<p, Zy = (Zy.i)i<n and Sy = (§y.i)i<p. It is also
convenient to denote ¢;,.,,, as the multilinear representation of vy, with respect to Y, since

0(X) =vi(V) + (YY) and g (3) <

'UT(ZV) + q:,m(EY) .

Lemma C.5. Fix v > 2. Assume that m is even with m = o(logn). Then there exist
some absolute constants c,o, > 0 and N € N such that, for any n > N,

v—2

P(pi(Z) < —20,) — P(pn(X) < =20,,) > cn 5o |

Proof of Lemma C.5. Since the second coordinate of X; is already Gaussian, the main
hurdle is to approximate the heavy-tailed average by a Gaussian. Let [y, be the c.d.f. of
% > » Vi — an empirical average of the heavy-tailed coordinates — and F, be the
c.d.f. of == ZZ | Z;, where Z;’s are i.. d zero-mean random variables with the same
variance as Vl Write ¢ be the p.d.f. of = ZZ . Yi ~ N(0,1). Recalling that m is even

and denoting
[('T) = FZ<_20n - xm) - FV<_20n - xm) )
we can bound the quantity of interest as

P(pi(Z) < —20,,) — P(pn(X) < —20,) = / oo, @)

> | z)dz — ‘ / Yo(z)da
ogxmgnman |:13\>m71/m

=Ji—Jy,
for some x > 1 to be chosen later.

Bounding J;. Recall that for y € R, Lemma 4.9 provides an error bound for
approximating the difference F(y) — F),(y) by
___ 4 Y ~2/(203)
—F(y) = n1/2g7=2) <g - 1) e’
for some absolute constant A > (. Therefore
m 2
Ji 2 /m< = Fy(=20, — 2")p(x)dr — W/ e PlE)dT

Nnon
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w_ a4 / (M _ 1) o~ @ te™2/(298) (1) gy
xm<o,

= pl/2g%/(v72) o2
o 2V3(l/—2) / 90<:C>d:c
Non zm<kMo,

(b) 3@79/214 2

= 1725 /) /xm@n pla)de — RETIO) /xwma” pla)ds .
In (a), we have restricted the first integral to a smaller ball by noting that x > 1; in
(b), we have noted in the first integral that 402 < (20,, + 2™)? < 902 in the domain of

integration. Since both integrals involve c.d.f. of a standard normal, we obtain

3e79/24 2071,,/m a?/m 41{071/7”
p(-7) -

2 20/ =2)

>
S =2 nl/QO.Z/(V*Q) o ex

U’rll/m A _ %O_EL/WL AZK’
= v/w—2) \“11€ - v/ (r—2)
nl/QO-n nl/QO-n

for some absolute constants A;, A, > 0.

Bounding J,. Recall that o, = min { oo~ 1}, which implies

v

_v_ _v_
oy > min {00”’271_1/2, 1} > 00”’271_1/2.

Suppose we choose o, such that of > > 6-'/2, Since 6(67'/2)2 = 1 < n, by applying
Lemma 4.10 with M = 6=/, there exists some absolute constant C' > 0 such that

b=\ (a2, =) ~ Fy(~20, —a™)) p(a)da]
T >K"o,
c _ Qo tem)?
=~ n1/2o_71;/(1/—2) /xm>,{mo.n e 1607 gp(l’)d.’ﬂ
c 1
n3/2gE1)/(v=2) /$m>ﬁman (20, + a™)* C,O(I)dx
=y + Joa -

By applying a change-of-variable, we get that

2m

o1 < L/ e i o(r)dr
T >KMo,

n1/2071;/(y—2)

1/m m
__Con e_%gp(ml/mx) dx

)
n1/2g%/ =2 J pms om

—
S
=

200_711/"1 22m
[ 16
= 1/2p0/(=2) / o dz
200_71/7" z\2m—1 2m
= e /D) (2m) <E> e dy
n On T>K
A, U}L/m

- n1/2az/(l'*2)ﬁ2m—1

for some absolute constant A; > 0. In (a), we have noted that ¢(z) < 1 and the integrand
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1s symmetric in x. Similarly, we can bound
C 1
==t A oL

C
< - =
>~ n3/20_£8—u)/(1/72) /$m>ﬁm0 rim
(4m —-1)C
n3/20(8—1))/(v—2) Ji—l/m /434m71
Ayor/™(4m — 1)
n3/2530 (V=2) am—1

for some absolute constant A, > 0.

Combining the bounds. Combining the bounds, we get that if ;> > 67'/2, then
P(pr(Z) < =20,) = P(pp(X) < —20,,) > J1— s

= _nl/QUZ/(V_z) nl/QJZ/(”_Q) T og2m—1 nai”/('/—m (oAm—1

Recall that 0, = min {aon*VTf , 1} and m = o(logn). Take the absolute constant
—2
N, € N sufficiently large such that oy, = 0N, % < 1 and therefore

1/2 v/(v—2 v/(v—2
NQ/ N/2( ) _ Uo/( )
Also take the absolute constants x > 2 sufficiently large such that % < lAl, 09 >0
sufficiently large such that V‘;‘(i” 5 < A1 and %:ﬂn L < 1A1, and finally N; >

2/m =2

2/m ml/
N, sufficiently large such that A,e N — = A e~2%0 "Ny > %Al. Then we get the
desired bound that, for some absolute constant ¢ > 0 and all n > N := N,

1/m
Al O'n/ v—2

P(p;kn(z) < _20n> - P(pfn(X) < —20n> > FW > cn” wm o, O]

To obtain the desired moment controls, we will need to use tight bounds on the mo-
ments of a univariate Gaussian. The proof of the following result is included in Ap-
pendix C.8.1.

Lemma C.6. Let Z ~ N (0,1). Then there exist some absolute constants C, ¢ > 0 such
that

(i) foranyv > 1, E|Z|V < Cv¥/?;
(ii) for any m,,my € N with different parities, Cov|Z™ , Z™2| = (;

(iii) formy, ms € Nwith the same parity, Cov[Z™, Z™2] > ¢™F™2(my 4m, ) M1+m2)/2,

The next result controls the moment ratio arising from Theorem 4.1.
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Lemma C.7. Fix v € (2, 3] and let n > 2m?. Then for some absolute constant C' > 0,
Z?:l ||5i an(wi)TXi||;

v < O™ —”7_2
Nl O)

3 Wherewi = (Xla'"7Xi7170a€i+17"'7€n) .

Proof of Lemma C.7. First note that by independence,

o = VVarlg(X)] = y/Varlvi (V)] + Varlgzyn (Sv)] 2/ Varlgsn(Ex)]

Next to bound the v-th moment, denote Wy, .= (V4,...,V;_1,0, Zy.;11,..., Zy.,,) and
Wy = (Yy,..., Y, 1,0,{v.41, - - -, &) By the triangle inequality, we get that

Haz q;"b( TX HL - Ha Ul WVZ)V +a QUm(WYz TY
S n 1/QHV;HLU + Haz%),m WY;i TYiHLV :

iz,

Since v € (2,3], the quantity to control can be bounded for some absolute constant
C; >0as

> iy ||ai q;kn(wi)TXinV (a) 4717”772”‘/1”% + 42?:1 Haz q:;m(WY;i)TYiHZV

(Var[pjn (X)])V/2 S (Var[q:;;m(EY)])y/2
®) o A0 g (Wy ) TY
S Nalon 2 (Narlur, (V)72 €8)

In (a), we have used the Jensen’s inequality to note that (a + b)Y < 2" !(a” + b”) <
4(a” + b”) and noted that V;’s are i.i.d.; in (b), we have used the moment bound on
Vj from Lemma 4.8 and noted that Var|g;.,,,(ZEy)] = Var|g;.,,(Y)] = Var[v;,(Y)] by a
repeated application of Lemma C.4 and property of the multilinear representation. The

first term can be controlled by using the lower bound from Lemma C.6:

Var[vs, (V)] = Var[(\/iﬁ > Y)m] — Var[Y?"] > (d)"2m)"™ > ¢ (C.9)

for some absolute constants ¢4, ¢, > 0. The second term can be controlled by applying

Lemma 5.4: Since n > 2m?, there exists some absolute constant C5 > 0 such that

10 @ Wy ) TY| v—2 i1 (1) (o A%
Zz:l” Qy; ( Y,) HLV S (Cg)m n- 2 (Zkl (Ic)< (k)) ) , (ClO)

(Var[q;j;nt (E‘Y)] )V/2

where

— H Zp1+ T — Hl . (Ypl EYZPZ)

P1se-sPr>1

L

v

We are left with bounding o(k) and o} (k). Since Y;’s are i.i.d. standard normals, the
proof is down to using the moment bounds for standard normals from Lemma C.6. For

convenience, we denote ;' := Y;” — EY;” from now on. We can then express

(Og(k‘ Zp1+ A= mZChJF +Qk—1m COV[Hleﬁa Hle ﬁ:| :

P1se-sPrp>1 q1se-sqr >
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We now show by induction that for some absolute constant ¢ > 0,

E — E — k
Cov {H11 Ylpl ) Hl:1 Ylpl] = Hl:l H{pzzqz (mod 2)} cha (pl + %)mﬂl)ﬂ .

For k = 1, this directly holds for all p;,q; € [m] by the lower bound of Lemma C.6.
Suppose this holds for £ — 1. By the total law of covariance and noting that all variables
are centred and independent,

k k ko — [ —
Cov[Hl 1Ypl I 1Y”l] :ECOV[lelyﬁ,lelyﬁ Yl,...,Ykl}

— B[77 7] cor| 1., 777 1,2, 77
k—1
Z COV[Ykpk , quk] lel H{Plffh (mod 2)} cpz"rlﬂ (pl + ql)(Pz+Qz)/2

k
& szl Lip =g (mod 2} &% (P + g) Pt/

This finishes the induction, and in particular implies

(as(k))® > ™ Zpﬁ- Fpr=m Zqﬁ- “Ha=m Hl 1 Ltp,=q; (mod 2)} (o + a )(lerq’)/

P ’pk> q1;s-- »qk
@ .
> ™ pitetp=m D g tetag=m
P1y-- apk>1 q1s-- )qk>1
(p, + ql)(Perqz)/? + ()Pt (p, 4 g, + 1)(Pz+lh+1)/2
X Hl 1 H{Pz:‘ﬂ mod 2) } 2
// 2 + 2
> " Zp1+ pi=m Zq1+ = m(p + q )(pl o)/
P15+ 7pk q15-- 7Qk

for some absolute constant ¢ > 0. In (a), we have noted that

(o1 + )P/ = (p, + )"V (p, + q)PrratH/?
> (C/)szqu (pl +q + 1>(pl+ql+1)/2

for some absolute constant ¢ > 0. On the other hand, by the triangle inequality and

noting that Y;’s are i.i.d., we have

(s (k) ‘ Zm+ Api=m Hl 1sz

7pk_
l/
<> > I, Y7 |11, %"
p1+.. +pk m q1+-. +qk 1=1 l =1 l
I qr s> = L, L
Dl
= D pieme=m Dt mHl . ‘Y1
P1yeesPrp>1 Q1 qi>1 L, L,

By noting that ¥ < 3 and using the moment bound in Lemma C.6, we get that for some
absolute constants C’, C" > 0,

—
iz

_qI/
Yy
L,

L,

— E[|¥? ~ B E(]Y ~ B

< CEWE[Y|™] < "2 < C"(p+q)®HO2.
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This implies that

(as(k)” < Y S I Y o+ @) < (@2 (a5 (k)

P1tetPE=m g1 +...+q=m
PiyoPE>l Qg >1

for some absolute constant ¢ > 0. (C.10) then becomes
. m n 2 %
= < (03)m n - V;2 <Zk—1 (k) (o (K)) ) < (61/03)1/m n- u;z .

Plugging in this bound and (C.9) into (C.8), we get that

|10 @ (W) TX| 2 L Y
Eic [0 an (W) Xl cyn FAFC) T < O
(Varlpy, X)) T &P ’ -

Z?:l Haz q;;m(WY;i)TYi
(Var[q;;m (EY)])V/2

for some absolute constant C' > 0. This finishes the proof. [

The next result allows ¢, (=) + E[p;, (X)] to be approximated by p, (7).

Lemma C.8. Let C' and c be the absolute constants in the upper and lower bounds in
Lemma C.6, and assume that m < §(logn)(2 + max{log ¢, 0} + max{log C,0})~" for
some 6 € [0,1). Also assume that Zy and = are coupled such that Zy; = &y, almost
surely. Then there exists some absolute constant C' > 0 such that

42 (2) + Elpn ()] = p (DI, _ ()
Varlg;, ()] =

Proof of Lemma C.8. We first compute the quantities from (7) and (8) in the definition of
d-regularity in Section 5.1, which can be bounded together as

. 2 .
max max { <]E [nm/ 2 H;: . qulD , Var [nm/ 2 szl Yl‘”] }

q+..+g;=m,q €N
2

< m ) J qu“ — m J qu 2
= e e Y= e L I,
< nm max 7 C(2g)™) < n™(2C)™ max S
- @1+ Fg;=m, qEN Hl:l( (2a)") < (2€) @1+ +q;=m, g €N HZ:l &

for some absolute constant C' > 0. Note that we have used independence followed by
Lemma C.6 again, and that we only need to bound the above for j € [m — 1]. We shall
now perform an induction to show that

~ o Ia iyt
Q(]u m) . q1+...+I£i§n,ql€N Hl=1 q; (m J + ) .

This holds trivially for 5 = 1 < m. To prove this for j > 2 and m > j, suppose the
statement holds for all j* < j and all m’ > j’. By applying the pigeonhole principle, ¢,

can only take values in [m — j + 1], and

Q(]?m) = max qgl (j - 17m - QI>
q €[m—j+1]
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= max gf'(m—q —j+2)" "7 = max ¢, ;(q),
q1 €[m—j+1] q1€[m—j+1]

where we have denoted 1),/ () = x%(m’ —2)™ %, defined for = € [0, m/]. Since 1), ()
is strictly convex with a minimum at x = m’/2, its maximum is obtained at the boundary,

SO
QU,m) = Yp_ja(l) = (m—1—-j+ )M = — j 1)

This finishes the induction. By additionally recalling that, by using the lower bound from
Lemma C.6 (as proved in Equation (C.9)), we have

Var[v;, (V)] = Var[(\/iﬁ Z?Zl Y;)m} = Var[V7"] > (1/¢)"™m™

for some absolute constant ¢ > 0. This implies that
max max { <]E [nm/ 2 Hj qul} ) i , Var [nm/ 2 Hj Yﬂl] }
a1+-..+q;=m,qEN =1 =1
n™ (2C)™ m™m It
n™ (2max{C, 1})™ m™ 7 ™ m " Var[v}, (V)]
(4max{c, 1} max{C, 1})™n"m "’ Var[v, (V)]

6m(log 44+max{log c¢,0}+max{log C,O})nmm—j Var [U;kn (Y)]

INIA A

6m(2—|—1’nax{log ¢,0}+max{log C,O})nmm—jvar[v;kn (Y)]

IN A

n™m I Var[v}, (V)] ,

where we have used the assumption on m in the last line. This implies that v}, in (6) of
Section 5.1 is d-regular with respect to Y. By Lemma 5.3 in Section 5.1, there is some
absolute constant C’ > 0 such that
5. (Ex) + Elvy, (V)] — v (Zy )11, <
Var[qz;’m(EY)] - n1_5 ’
Recall that v, (Zy ) — E[v},(Y)] = pi,(Z) —E[p;,(X)] —vi(Zy,) and, by the coupling as-
sumption, 1, (Sy) = q5(2) —vi(Zy) . Also, since v, (V) = (n™V2 30 ¥,)" £ ¥y™,

by Lemma C.6, Var[g;,.,,(Ey)] = Var[v;,(Y)] > ¢™ (2m)™ for some absolute constant

¢ > 0. These imply the desired bound that

45 (E) - 03 (2) ~ B (ODIE, _ lahin(Ex) + B (V)] —vi(Z0)IE, _ (@)
Var[f*(Z)] N Var[v§(Zy )] + Varlg;.,,(Ey = 1-5

We will also make use of the result in Lemma A.11, which effectively plays the role
of Proposition 4.3 for ignoring random variables with negligible variances. Combining

the results in this section allows us to prove Theorem 4.7.

Proof of Theorem 4.7 . By a direct application of Theorem 4.1 to ¢, (X) = p},(X) —
E[ps,(X)] followed by the moment bound computed in Lemma C.7, we get that if n >
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2m?, there is an absolute constant C’ > 0 such that
supyer [P(g5,(X) < 1) — P(¢5,(2) < t)| < C'mn~ mmiz . (C.11)

Since m = o(logn), there is some absolute constant N’ € N such that the above holds
for all n > N’. Meanwhile since m is even, by Lemma C.5, there are absolute constants
;00 > 0and N” € N such that, for any n > N”,

supsep [P0 (X) < 1) — P(ph(Z) < )| > =5 (C.12)

We are left with applying J-regularity. WLOG assume that Zy-; = £y ;; almost surely. By
Lemma C.8, there are absolute constants c,, C,, C,, > 0 such that, if m < §(logn)(2 +
max{log c,, 0} + max{log C,,0})~"! forany § € [0,1), we have

g (Z) + Elp}, (X)] = pi(2)1, (Co)™
Var(g;,, (2)] -t

(C.13)

Since m = log(n), there is some absolute constant N € N such that the above holds for
alln > N"" and any fixed 6 € [0, 1) to be specified. Now by Lemma A.11, for any € > 0
andt € R,

P(p;,(Z) <t)

IN
=

(@ (2) + E[pr (X)) <t +

2
_|_
=
=
i
@
_.I_
=
=)
i
=
|
ks
S
N
v
™

P(pr(Z2) <t) > P(gn(E) +EpL(X)] <t —€) = P(lgn(E) + E[ph(X)] —pn(Z)] > ) .

This implies that

[P(g:,(Z) + E[p;, (X)) < 1) = P(pin(2) < 1))
< P(t—e < gn(E) +EPL(X)] <t +e) + P(lgn(E) + Elprn(X)] = pr(Z2)] = ¢)

@ e UM gh(E) +Epi(X)] - ph(2)]E,
< Cun( Var[q:n@]) " &

(b) ¢ Ym:(C,)™ (/Varlg;, (E)]\ 2
<o) e e )

for some absolute constant C; > 0. In (a), we used the Carbery-Wright argument in
(C.7) in the proof of Theorem 4.1 for the first term, and Markov’s inequality for the
second term. In (), we have applied (C.13). Choosing

€ = (CLuym By D g ()]
we get that for some absolute constant C',,, > 0,
[B(g50(E) + Elpi(X)] < ) = B(pia(2) < 1)] < (Cim +1)(CL) 7rin~amis
< Cypomn” 71 (C.14)
Combining this with (C.11) via the triangle inequality, we get that for all n. > max{N’, N},

supyer [P0y (X) < t) = P(piy(Z) < 1) < C"'mn~mmiz + C,,mn~2mi1 |
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whereas combining the bound with (C.12) via a reverse triangle inequality, we get that
for all n > max{N’, N"},
1-6

SUPer |]P>(q;kn(X) S t) - ]P)(q;kn(E’) S t)’ 2 C//n_ﬁ - C***mn_m :

Now choose d = 3. Since v € (2, 3] and m is even, this implies

1-6 1 1 v—2 v—2
2m +1 4dm + 2 6m — 2vm — 2vm+2°

and that the mn 21 = o((log n)n‘ﬁ) term can be ignored. This finishes the proof.
[

C.4 Proof of Theorem 4.2

By Lemma A.11, for any € > 0 and ¢ € R, we have

P(o f(X) > 1) <P(0'gu(X) >t —€) +P(0f(X) = gu(X)[ > ),
Plo ' f(X)>1t) >P(o7'qu(X) >t+e€) —P(o7"f(X) — gn(X)| > ¢) .

By additionally expressing

we can bound

IP(c™' f(X) <t)—-P(07'qn(E) < t)| = |P(c7" f(X) > 1) = P(0 "', (E) > t)]
<P f(X) = 4u(X)] = €) + P(l0 g, (Z) — 1] < ¢)

+ se?igli,}il} IP(07'qn(X) >t + se) —P(07'¢n(E) >t + se) |

= T1+T2+T3.

By Markov’s inequality, we have

< 1/F(X) - qn;(X)H%z ‘

T

o2e
By the Carbery-Wright inequality from Lemma 4.4 and noting that Eg,,(X) = 0 and
Var ¢,,(X) = Varg,,(Z) by Theorem 4.1, we have that for some absolute constant C" >
0,

61/m

T, < C'md /™ (El(o gn(2) = 07D < O e

By Theorem 4.1, there exists some absolute constant C” > 0 such that

n v 1
Zi:l Mu;i vm+1
v/2 gv

T; <C"m max <(1+(t+36)2)

se{+1,-1}
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Combining the bounds and choosing € = ¢, = (—”f(X)fqm(X)HL"’ )2m/(2m1) (1 4.42)1/2C2m+1)

o

we obtain the non-uniform bound: There exists some absolute constant C' > 0 such that

P(c™' f(X) <t) —P(0 "' (E) < t)]

1£(X) = 4 (X))l 1, \ Zoert S MY, T
< 2 i ; '
B Cm< ( o(1+12)1/2 ) * SE?}F?}EI} <(1 + (t + s€4)2)v/2 U”> )

Taking a supremum over ¢ gives the desired bound. ]

C.5 Moment computation for U-statistics

The proofs for Sections 5.1 to 5.4 rely extensively on moment formula for U-statistics,
which are collected next. We follow the notation of Section 5.3: Y = (Y;),<, are
i.i.d. variables in a general measurable space £, and U'(Y') and u} (yy, ..., y;) are de-
fined as in Hoeffding’s decomposition (11) of wu,, in (10). The next result states that

Hoeffding decompositions of different orders are orthogonal in L.

Lemma C.9 (Lemma 1.2.3 of Denker (1985)). Fix some j # j' € [m]. Suppose
U (Y)| 1, and U (Y)|| 1, are bounded. Then E[U (Y )UN(Y)] = 0.

Denote 02 := VarE[u(Y;,...,Y,,) | Y1,...,Y,], where u is the kernel of u,, in (10).

The next two results compute the variances associated with u?, U jH and u,,,.
Lemma C.10 (Lemma 1.2.4 of Denker (1985)). For each j € [m|, we have

Var[ull(y;,...,v})] = 3 ( J )(-1)]‘—%—3.

r=1 j—r

Lemma C.11 (Theorem 4.1.2.2 of Denker (1985)). We have that
~1 1 _
Var[UH(Y)] = (7;) 02 and Var[u,,(Y)] = (;) > (’;’}) (’?; j)az .

C.6 Proofs for Section 5.1

The proofs for §-regularity are mathematically straightforward but tedious, as it involves

expanding out a degree-m V-statistic and comparing moment terms of different orders.

Throughout, we express & = (&1, - - -, &), Where each &;; matches X;-X)j = Xl@j —
E[X i®j | in mean and variance. We require two auxiliary results. The first is the martingale
moment bound of Lemma A.4 used in Appendix A.2, and the second expresses a V-

statistic as a sum of U-statistics:
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Lemma C.12 (Theorem 4.1, p.183, Lee (1990)). Given a function u : (RY)™ — R, we

have

1 —-m
n_mzil7,,,7,-me[n] U’(yila"'ayz = Z] 1( > Ujim ylv-"vyn)a

where 1;.,,, is a degree-j U-statistic defined by

i _ 1
Ujom (Y1s- -3 Yn) = nin—1)...(n—j+1) Zz‘l,...,ije[n} distinct Ui (Yiy - - ’yij)
uj;m(gla e 7y]) = Z (plv'“vpm)e[j]m u(yp17 T 7ypm> :

with exactly j distinct elements

C.6.1. Proof of Lemma 5.3

By Lemma C.12, we have
Cmx—m (0 -
O (21, .oy m,) =07 j:1<.>uj;m(x1,...,xn),

J

where

1
uj””(a:l’ ) = nn—1)...(n—j7+1) Zi17-~.7ij€[n] distinct uj?m(xil’ T ’xij)
j;m<x1’ e 7$]) = Z (plz"'vp'm)e[j]m <S7 xpl ® T ® :'Epm> .

with exactly j distinct elements

u

By the symmetry of S, we can express

® ®q;
Wi (T1, - T5) = Zq1+...+qj=m,q,eN (S, ;" ®..@x;")
= > (S, (@ —EXPU 4 EX) @@ (o - E[X7Y] + E[X7Y))).
q1+...+qj=m
q €N
Analogously, we can express, for y; = (1, ..., Yim) With y;; € RY,
qgn(ylaﬂl/n)—i_E[ = —mzj 1( ) jmyla"'vyn)’
where

~q L 1 q
uj?m(yl’ oY) = nn—1)...(n—j+1) Zil,...,ije[n} distinet uj;m(yil’ T ’yij)

ug‘;m(ylv cee 7yj) = ZQ1+~~-+CIj=m <S> (y1q1 +E[X1®q1]) ®...8 (yjq +]E[X®q]])> .

q €N

This allows us to express the difference of interest as a sum of centred U-statistics:

16:.(2) + Elon(X)] - vn( D)3, = [ ZL(“)@ME) .

< (v (0) la@ll,,)

<m”_2m2j 1( ) H )HLQ’

2
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where we have noted the coupling §;; = Z; —[EZ; a.s. and defined the degree-;j U-statistic

~A _ 1 A
uj;m(yl’ U ’yn) o n(n — 1) . (n -7+ 1) Zil i;€[n] distinct uj;m(yi17 o ’yij> !

.....

U]A;m(yla c.. ,y]) = qu-i-...—i-qj:m <<,S'7 (qul + E[X?%]) R...Q (yjq + E[X®q]])>

q €N

(S, . ®y®%>) .

The task now is to control ||@Z,,(Z)|r,. By the variance formula in Lemma C.11, we
have that

|5 (32, = ( [ﬂ mE]) +Var[ m(E)]
= E[u2@) + (] ) ()OI VarE [ &) |66

To compute the moments of u first note that we can express

E[ujA;m(flw--?gj)‘517"'757‘} (CIS)
r J
- Y ({5 @ +Exr) o @ sXv)
q1+..-+g; =1 U'=r+1
q €N

T

(s gere gmer)

'=r+1

Meanwhile, recall that &;; = Z; almost surely,
Eléi] = E[X)] = 0,
and, since E[X??] = E[Z?] = E[¢3?] and E[¢;,] = 0, we have
Elgo +E[XP]] - E| (6 + EX.])®| =E[E[XP] - (2, - EIZ,])** - E[X,]*?]
=0.
This implies that the summand in (C.15) vanishes if

(i) gqo =1foranyl=r—+1,...,j,0r
(i) ¢g=1foralll=1,...,randqy =2foralll =r+1,...,7

For (C.15) to be non-zero, (i) and (ii) imply that r + 2(j — r) < m by the pigeonhole
principle. In other words, 7 > 25 — m + 1, which allows us to rewrite

-1 . .
~A = n J ] n—
Var[uj§m<‘:')] = (]) Zr:2j—m+1 (T) (J _ ) VarIE[ Uy, m(€17 cee 7§j) { 517 cee 757‘] )
A (= A /=
E[ufin(E)] = E[ufin(E)] Ljgmayy -
Therefore by the Jensen’s inequality combined with the above bound, we get that

Hq;]n(E) + ]E[vm(X)] - Um(Z)||%2
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< (1) @uE)’

+ n% ZT=1<n> Zi:2j—m+1<i) <?:i) VarE[“jA;m(fl’ &) |51’ o ’g”}
< 2 S S (B @)

+ Z;”__ll ! Zi:%_mﬂ (i)nm**j Var [uft, (&1, -, &)
< YT S ElE))

o S S vl 6] 19

J

To get a further control on the moment terms, note that
Var[UjA;m(fb e 75]‘)] = Var[“?;m(&, e 759‘) - uj;m(glh e 75]‘1)]
< 2 Var [U?;m({fla e 753‘)] + 2 Var [uj;m<§117 ces 7§j1)} )

and similarly

2

(E[ufn(®)])” < 2E[L,,(3)])" +2(E[um(E)])” .

Meanwhile, note that for any j € [m — 1],

Vel 60)] = o S (5. ) (6, 20

@EN =1

-1 2 J
< <T_ 1 ) q1+A.,+I£i§,qlngar{<S’ ® (&ql + E[X?%DH

=1

<o e wl(5. @6, vEL) )

q1+...+g;=m,geN =

J
@ 2 max Var KS, ®Xl®‘”>}
q1+-+g;=m, €N =

® . -
< m* (C'n™m ™ Var[v,,(X)]) = C"m! n"™* Var[g;,(Z)]

for some absolute constant C’ > 0, where we have used Lemma C.4 in (a) and 0-

regularity in (). Similarly by d-regularity again,

Var [, (&1, - .-, §1)] < m? max Var KS, ® Zl®ql>]

q+-..+q;=m,q eN —1
< O ™ Varlgh (B)]
whereas

max { (E[u,n(@)])?, (E[ujm(Z)])%}
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2j

s {(2[(s. @ e, +Ep<;®m1>>})7 (=|(s <§>Zz®‘“>])2}
St oG ) (Gl @) )

< C'm* n™ Var[gs, (2)] .
Substituting these bounds into (C.16), we get that

g (E)+E[v,n (X)) = v(Z)I11,
m 1 27 2j+m+6 27
<4C"'mn™m ZL : MTVM[C]Z@(E)]

m+5
]J

Var[qm( )]

(s o )
)

1 (2¢)imin

+4C" mn 1 Z

(1]

< 4C" mn~ %) Var[gy, (

jJ

< 4C" mn~" Var[gs, ()] (ZZLO 62]'(7;1)2 + Z?=0<2€)j<? >
<acmn Vg @)X, @ (7)) + X0 (™))

< C™n~ 9 Var[gh, (2)]

(1]

[1]

for some absolute constant C' > (. This proves the first bound. To show the second

bound, we use the triangle inequality to get that

Vatlo(2)] = [142(E) + Elvn(X)] = 0(2) + Elo(2)] - ¢(Z) — Elvn (X3,
< (102(2) + Elon (X)] = 021, + 0532, + [Elon(2)] - Elo, (X)]))*
— (1g2.(2) + Blon(X)] = vn(Z)lls, + /Varlg (@)

+|E[vm(2) = gin(E) = B0, (X)]] !)2
< (21423 + Eln(X)] = 021, + v Varlgin @) )
< Varlg,()](1+ (C.)™n~92)" = Varfv,, (X)] (1 + (C,)"n~(=9/2)*

where we have written (C,)™ = 2C™/2. Similarly by a reverse triangle inequality,

Varlv, (2)] = (vVarlgh(@)] — 2] () + Elon(X)] — va(2)]),)?

Varlu,, (X)] (1 = (C.)"n=972)*

v
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C.6.2. Proof of Lemma 5.4

The first result holds directly by Theorem 4.1: There exists an absolute constant C' >
such that

n 1
Zi:l Mlllj,z vm+1
ov ’

SUD;cr {P(U‘qun(X) <t)-— P(a_lq}jl(”) < t)‘ < Cm (C.17)

We now show that, if n > 2m?2, there exists some absolute constant C’ > 0 such that

<Zi_1VM,Ij;i>Vrn+l < O'n =2 (Zk 1( )( (S, k))2> ' (C.18)

o 2t () (@a(S K))?

We proceed by induction. For i < n and Z,,Z; C [n] with |Z;| < m and Z, N Z; = ),
define

T(iy:ZO)Il) -
m ®p Q®p;
i S X @ @XF@E . ®...0E, >
Zozlp—l_<7jz_lee[n]< --pn)< ! St Snp,
pl/>1 Vl’eIl
=0 VZ/GIO
where (m " ) = 1#-!1)! is the multinomial coefficient. The quantities of interest be-
come
|7(n,0,0)]] . 17, {2}, 0)
g = Var[vm(X)] = n—mL7 Mu;i = ||aiqm(wi)TXiHLV = n—mL"

Write o, (k) = o, (S, k) for short. We first show by induction on |Z,| that for v € [2, 3]

) m—|T, el k+1
(AT 1 A=A LD i i W A AR P (AR )
(C.19)
/I k+1
|76 T 1)}, = (( ) (aa(|T,] + k)Y (C.20)

X max{(n — || — |Z,| + 1)*
— K n = |Tp| = [T, + 1,0} .

C, > 1is the supremum of the constant in the upper bound of Lemma C.4 over v € |2, 3],
C” is the supremum of the constant in the first upper bound of Lemma A.4 over v € [2, 3],

and ¢” is the constant in the lower bound of Lemma A.4 when v = 2.

For the base case, if |Z,| = n — |Zy|, i.e. Z, = [n] \ Z;, by using the independence
of X, ..., X, and applying Lemma C.4 to replace each & by (X*',..., X"™), we get
that

2

m! -
||T(Z IOv:Zl ||L2 - ’ ZZZGI p=m m <S7 ®X[®pl>

p>1 VieT, l€T,

> (ap(|Z1)))°

Ly
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By applying Lemma C.4 again with v € [2, 3], we get that

Z Hlez Pl < ® X®pl >

Zlell = leZ; L,
p>1 VlEIl

< (C)™(an, (1T]))™

Meanwhile, if |Z,| = m, we automatically have |Z,| = n — |Z,,

T Lo, )17, < (C)™

For the inductive step, fix Z; C [n] with |Z;| < min{n — |Z,|,m}. Suppose (C.19)
and (C.20) hold for all disjoint Zj,Z{ C [n] with |Z{| > |Z;|. For convenience, write
V(Z =X, for j <iand V( = ¢, for j > i. We also denote V.(;z = Xj@pj for 7 <iand
Vjpj = fjpj for j > 1.

Notice that by definition, 7'(i,Z,,Z,) does not depend on V§i) for j € Z,. We enu-
merate the elements of[ I\ (ZoUZy)asi; < ... <iyfor N =n—|Zy| — |Z,|. Also
denote V) := {V |j € T}. Since E[T'(i,Z,,Z;)] = 0, we can define a martingale

difference sequence by

Dy(i,Ty,Z;) = E[T(i710711)

24
and, for1 < j7 < N,
Di(i, Ty %) = E[T(, 7, 7,) | VI, VD, v
- E[T(@',IO,L) ‘ VO v ,V(j)_l]
Then almost surely,
- N = .
T(Z7‘,Z’.O7II) = Zj:o Dj(Z?IO7:Z’-1) :

By applying Lemma A.4 with v € [2, 3] followed by the triangle inequality, we get that

. 2 N : N _

HT(Z71-07:ZI)HLV S Ci/ Zj:() Dj(fl?IO’Il)z‘ L) S C// Z]’:O ‘|Dj(l7z-07zl)|’%V )

(C.21)
. 2 N .

176,20 T, = ¢ X ID;(, T, T3, - (C.22)
To control the martingale difference terms, recall that ]E[V](;J)} = 0 forall i,j € [n].
Therefore

DO(i7107II Z Pt Py =m E[<S V1p Vn(zli)n> ’V(Z?]
0<p;<m VI€[n]
ppy>1 VIEL
py=0 VI€L,

= T<Z7 [n] \Ila Il) )
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i.e. there is no dependence on V]@ for any 7 ¢ Z,. Similarly for 1 < 5 < N,

Dii.T0. 1) = X mem-m (E[(S, Vil @, 0 Vi) [ VO, VD, VD]
0<p;<m Vle[n]
pl/>1 v GZl
py=0 YI'E€T,

_ JE[(S, VO ... o V) \vg’g,vg?, . VQ])
=T(,Zy U {ijs1,. . in}, Iy U{i;})
By noting that N = n — |Z,| — |Z,| and applying the inductive statement , we get that
>0y T, T,

= |7, 0]\ T,.T,) HL + 3 T T U i, inh T U G

< (CO (@ T )+ (o N Sy e (0
<n—<|zor+N—j>—<|Il|+1>+1>’f<ay<|zl|+1+k>>2)
= (M@ TN + (€ S (o (T + B2

= (@ UT? + (€ T L (Y A (T + R

Since £ — 1 > 0, we have

N g Nt g N DR (N + 1)k
Zj:1J < Zj:l /j " dr = Zj:1 - <

k

Substituting these into (C.21), we get that
. 2 N .
HT(LIO?:Z’-I)HLU S C//ZjZOHD'(Z 1071-1)"2

< ey PO N 1) o (1T + ))?

k=0
m m_‘Ill C// k:+1
— ()P g~ T+ DM (1T + R)?

which finishes the induction for (C.19). Similarly for (C.20), using the inductive state-
ment gives

N .
Z~, ||D'(Z IOazl)H%Z

= ||TG, )\ Z,, Ty) HL2+Z TG T 0 i, in b LU G,

—(|Z1]+1)

k+1
> TP+ > (L (@a(Ti] + 1+ ) max{j* — K1, 0}
7=1

m—|T, | N
052 ’1.1 (Zma}({jk L 2 k=2 O}) Ay ‘Il|+k)) .
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Since kK — 1 > 0, we have
Z;V:l max {jkil — (k—1)%2, 0}
> max {3 (7*7 = (k= 1)%*2), 0}
= max { YT - (N4 D) =0T (k- 1% 0f
- =1 J =1 J )

> maX{ZNH/j e = (N ) = Y (k- 1) /: W2z, 0}
= max{ij — = (N+1)*" = g:(k — (G +D =, o}
> ma,x{(N;” — (N + )R = (k= (N + 1), 0}

= Lmax {(N + 1)} = (N + 1)}, 0},
Substituting these into (C.22), we get that
TG, 20, T, > ¢ 30, 10,6, T, T,
> YO s (N 4+ 1)F = KN + 1), 0} (1T, + F))?
= () eT 4 B)Y
x max {(n — [T = |T,] + 1" = k*(n — | Ty| - [T +1)*,0}) .

This finishes the induction for (C.20). In particular, we can now obtain

Y My, X 1T {07,

av T, 0,07,
m—1 (C")**1(a, (k+1))? B
n((Cm sy (C g e

> (ZZL:O wmax{(nJr Dk — k2(n+ 1)1@,170})

[N

Since n > 2m? by assumption, we have

(n+ 1) — R+ D8 2+ D 1 —m?) 2 S+ 1)
By further noting that a,(0) = 0, we can simplify the ratio as
. m C// v/2
s, 200X Ch et 0)P)
v — m RALES v/2
’ (S, S+ 1>k<a2<k)>2)
. C v/2
(0¥ T, (N @ )?)
- m k+1 v/2
(S0, S+ D4 (aa(0)2)
ey [ S e )\
n T\ S S D)2 )
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Meanwhile by Stirling’s approximation, (k”Tkl), < A™(}) and (”41;,1 S’ 7;—’: > B™(}) for

some absolute constants A, B > 0. Since v < 3, we get that for some absolute constant
C’" >0,

n v 1 - m n 2 2V77V7,+2 . v
(B2 ™ < orpaita (S D050 _ Ot g
a’ > k=1 (k)(az(& k))? ’

By applying (C.19) and (C.20) to 0? = Var[v,,(X)] and using the same argument as
above, we also get that if n > 2m?, there exist some absolute constants C;, C, > 0 such
that

S () (0alS, B < Varlo, (X)) < SIS (V) (au(S, 07 O

C.6.3. Proof of Proposition 5.2

Recall that ¢}, is the multilinear representation of v,,,, and WLOG assume the coupling
between ; and Z; considered in Lemma 5.3. By the exact same argument as the proof of
Theorem 4.7 leading up to (C.14) (-regularity, Lemma A.11, a Markov’s inequality and

choosing € appropriately), we get that for some absolute constant C'; > 0,
IP(c7 (gm(E) + E[v,,(X)]) < t) =P(07 v, (2) <t)| < Cymn~ i1 . (C.23)

By applying Lemma 5.4 to replace ¢, (=) by ¢2,(X), noting that v,,(X) = ¢ (X) +
E[v,,(X)] and using the triangle inequality to combine the bounds, we get that for some

absolute constant C’ > 0,
SUPeg [P0 0 (X) < 1) = P(00,0(2) < 1)] < Cymn 257 + C'mAs .
To prove the final bound, we first note that by Lemma 5.4, (C.23) and the triangle in-
equality,
supser [P0 (0 (X) = E[v,,(X)]) < t) = P(0™ (vu(2) = E[v,(2)]) < 1)
< C'mAs + supes [P0 (E) < 1) — P07 (v0(2) — Elon(2)]) < 1)
< C'mAg + C’lmn_;m;fl
+supyeg [P(0 g (E) <) = P07 (g (E) + E[v,(X)] — E[v,(2)]) < 1)] -

By the same Carbery-Wright inequality argument used in the proof of Theorem 4.1 in
(C.7), the last term can be bounded by

supre P(lo g (2) — ] < 07 [Efv, (X) — v (2)]])
0™ Elom (X)) = 0~ Elon (2)] ™
El(0 a5 (2) — 7)1/

— Cymo Y™|E[¢(Z) + E[v,(X)] — v,(2)] |

1/m

< Cgm

= Como ™" |Efv,,(X)] — E[v,(2)]|
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142(E) + Efv, (X)] = v (2)|[5\ /@™ s ey
= CQm( Vel ) Lz) = Camnsm s Gymn e

for some absolute constants Cy, C5 > 0; in the last line, we noted that 0 = Var|v,,(X)] =

Var|qY,(Z)] and applied Lemma 5.3 again. By taking C' = C + C5 > 0, we get that
supeg [P(0 (0 (X) = E[v,,(X)]) < ) = P07 (1,u(Z)~E[v,,(2)]) < 1))
< Cmn~ +C'mAs . O

C.7 Proofs for Sections 5.2, 5.3 and 5.4

C.7.1. Proof of Proposition 5.5

Since g is (m + 1)-times continuously differentiable, by an m-th order Taylor expansion

around EX, we have that almost surely
" m EX,
9(X) =3 = (987 () = )|
EX,+0n"!
= |1+ Z 5P (X) + (m+ DE[(1 - @+ g e 5 | x]

"= (98 (X) - um)‘

EX;+On~ 13, o
| G0 - ) + e+ DE[(1 - @ g e ) () ]|
=R.
Now let X, = (X, ... ,Y? ™) and ¢, be defined as in Theorem 4.2, f be the multilinear

(EXy)

representation of gy (EXy)

and denote 0, = Var|[gm~ "(X)] = Var[f,(X)] . Then by
Theorem 4.2, there is some absolute constant C’ > 0,

supyer [P(9(X) = " < t) = P(fi(E) < 1)

IRIZ,\ 7
I
SCm(( =)

. (2?_1Haifl(xl,...,Xi_l,E[Xl],ém,...,5n>(xi—E[Xﬂ) L)*)
oY )

The first term can be controlled by applying the triangle inequality twice, using the
Jensen’s inequality and noting the definition of €,,:

2
IRIL,

0-2

(H St (@ (X) - ) L Hm y|E[a-eym gfﬁl*@"’l T %)

X)(X]

2
L)
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ma1 A (EXi+On7 S X, 2
Var[ Y7 g (0] 2m 12 |E[0-©) gl =) o] |
2 2
= 2¢,, .

By noting that Lemma 5.4 applies to gﬁﬁ‘? X (X), the second term can be bounded by

Zk 1 ( )( (S))2 e o V=2 ol
C" n~wwr = ('n"wmiz g2mT
n ( Zk:l (k)( m72(k))2 ) n B )

for some absolute constant C”” > 0. Moreover by the d-regularity assumption, the first

bound of Proposition 5.2 implies that for some absolute constant C"” > 0,
supies | P(/1(2) < ) = P(§°)(2) ~ Elgn™(2)] < 1) | < C"mn~amr

Combining all three bounds gives that, for some absolute constant C' > 0,

supiez [P(9(X) = D07 i < t) - P(@fEXWZ) ~Elgn(2)] <1)]

< Om( 2m+1 _|_n 2m+1 +n 2um+2 /82um+2)

To prove the fourth moment bound, applying Proposition 4.6 and Remark 4.3 imply

that

sup ]P’( (IEXl)(Z) —E[ggfxl)(Z)] < t) _ (I)(O,Elt)’ < <4m 4 |K rt[ ]EXl)(Z)} ‘>1/2 |

teR o

where 0% = Var [g,%EXl)(Z)]. Write 0% := Var [gg‘Xl)(X)}. Note that if t = 0,

|@(07't) = ®(o')] = 0.
Suppose ¢ # 0 and write 7 ~ A/ (0, 1). By Fact 4.4, we have that
loz't —ox't] /2 Lozt — o't
(E[(n - (a§1t+0§1t)/2)2] )1/2 - ’0§1t+0)}1t|

for some absolute constant C’ > 0. Rearranging and applying the second bound of

|®(0,'t) — D(oy't)] <

Lemma 5.3,

-1 -1 /’1 Ox UZ| , (C7ymp—(1=0)/2
2(07'1) — @(ox'0)] < O < O T

for some absolute constant C” > 0. Applying the triangle inequality and replacing ¢ with

o xt, we obtain the final bound that
supyes [P (o (3(X) = 307 ) < t) = ()|

(C//)m n—(1-0)/2 4m (EX,) 1/2
< A?]ym + 0/2 _ (C”)m n—(1-8)/2 + ( ‘Ku t[ ' (Z)] ’) : u
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C.7.2. Proof of Proposition 5.6

Fix K € N. Denote
meo= B (V) eR, @ = Efu(Y,,....Y,)] and V¥ = {VF . V<,
where VX = (8" (Y) — ..., 85 (V) — 1) -

By Hoeffding’s decomposition (5.6) and writing j # M in short for j € [m] \ {M}, we

have
_ m K m m K
U, (Y) -1 = <M> U(vE) + Z#M<j> UNY) + (M) (UAI}(Y) Uk >(VK)> .
By Theorem 4.2, we get that for some absolute constant C’ > 0 and for every t € R,
- m K) (=
’P(um(Y) —a<t) - IP’((M> Uiz < t) ‘

1
n K K M1
o Zi:1Hain(w)(‘GK""’%I_(“O’Q(*I)’”" ,(L )VKHL MF1
~0m 7
sl

2

o ( | S () U+ () (Uﬁ(YQ) — U W) i) S i+
|G w0,

Before proceeding, first note that U ](é( ) (VE) is a U-statistic with the kernel

K K K
Ugw)(vl,...,vj) = Zkl & :1)\](%“).]?7”7]1]?1...1)]\4161” = <TM,U1®...®'UM>

rfvm

for some deterministic tensor 7, € R¥ M, and where ViK ’s are zero-mean. By Lemma C.11,

K 1 K
UV, > [, v

= M HL2 :
We defer to Lemma C.13 to show that for some absolute constant C', > 0,
v C ||uwm (V.. VE
<

i)z,
L= (Mt 1)v/2

v

[ (G NSV 17
(C.24)

LetY/,...,Y, beii.d. copies of Y;. Now by the definition of V¥, the binomial theorem,

the triangle inequality and Jensen’s inequality, the truncation error satisfies

|k - v o) < |ulion, v =05 v
M M—r
=I> (-1 Zl<ll< L <M]E[u(Yll,...,Y}T,Y1’,..., ) |Yi, - Y
K (K)
_Zkl ..... k= kl k (¢k1 (Vi) — Mkl)---(¢kM (YM)_Nk:M),ukMH”-Nkm‘L
M M—r
= ZT:()(_l) Zl§l1<...<l7.§M]E|:u(}/il"'"S/lr’ifl/""’ m—r ‘}/177YM]

M _
- Zr_o(_l)M ' Zlgll<...<lT§M
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K K
(300 s A0, 0000, 00 TLeon )|
M (M
Szr:()(T)Hu Yo, Y YY)

_Zkl, o —1( by, O, (Y1) - B (V) [T weran qﬁk/(Yk’,))‘L

'l Vs

v

@ 2M€K;V .

In (a) above, we have noted that for any permutation 7 on {1,...,m}, the L, approxi-

mation error satisfies
K K K K
e = [0 o Nl O (V) X X G (V) — (Y, V)|

b) K K K K
= H Zkl,...,k _ Al(fl)k ¢I(€ )(Yﬂ_ 1) ) X ... X (bl(c )(Yﬂ_ (m) ) — U(Yﬂ,(l), . 7Y7r(m))‘

L,
() K
- H Zkl,m,km k:l k Cb _1(1)( 1) X ... X ¢ _1(m>( m) — U(Yw(l)) e ;Yﬂ(m))’ L,
@) K ()
- H Zkl,...,k kl k ¢ _1(1>( ) - X ¢ _1(m)( ) - u(iflv s ’Ym>HLV )
where we have used that Y7, ..., Y,, are i.i.d. in (b), the commutativity of scalar product

in (¢) and that u is symmetric in (d). Combining the bounds above, we get that there is
some absolute constant C” > 0 such that

K
. SIOWVE, L VE)
Rl < O~ 20D

o )|+ @M e\ T
< (O'"n 2vmn L,
B0 ], e
2
Denote 07 := VarE[u(Y},...,Y,,)| Y;,...,Y;]. By the truncation error bound again, we
have

m\2 _1
2 S () ]+ () 2 e\
R, < 2
|G esenll;, - (i) 2nd
M Ly M K;v
H 2 m\2o M1 2 SN
QZ#M HU )HL2+ M 2 €K
(Y Imo, - (5) 2o
M M L, M K;v
2 -1 2 1
o5 () 5+ (. 7
2 —1 2
() Go) b= () 2 ek
2 m 2 M+1_2 WlJrl
) (22j¢MJm,n;j+ M 2 6K;V>
2 .
m
U?n,n;]V[ - <M> 2M+16%(;1/

In (a), we have used the orthogonality of the degenerate U-statistics of different degrees

by Lemma C.9; in (b), we have used the variance formula of U}'(Y") in Lemma C.11;

—
S
Nl

—
=

—
3
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in (c), we have plugged in the definition of am n.;- Combining the bounds and taking

37"
K — oo, we get

Pun(V)-a < 1) - Jim P((}) U0 ES) <))

K—o0
v _1
Upy Yl?‘ . YM vM+1 2 O\ 2MAT
< Cmn e H ) Ly +Cm —Z#QMUT""W
HUM Yl,...,YIW)HL Um,n;M
2

v—2 ~_—V _ 1
_ — STy QM+ IM+1
=Cm (n (vM+1) ﬂM’V + P

for some absolute constant C' > 0. This proves the first bound. The Gaussian approxi-

mation bound is obtained by combining the above with Proposition 4.6. ]
Lemma C.13. (C.24) holds.

Proof. Write W; = VJK forj <1, W; = 0and W; = fj(K) for ;5 > 4. Then we can

express

K K v K
|0 U5 (VS viEL 0,68 e = e v v W,
(n —m)\¥ v
S
) distinct and in [n]\ {7} L

v

where we used the symmetry of 7;, in the last equality. Now by the independence of ;s
and VX and noting that ETW; = 0 and v € (2, 3|, we can use Lemma C.4 repeatedly to

get
o, U3 (V<. vKl,o §l+l7...,f£K>>Xi| .
<@ () n| S s @ evEe. o)
distinct and in [n]\{:} L

. K (=) ._ y/K . :
V"*E["VL’ },Vj _7‘/} for 5 < 1,

v = VA, forj >iand V) = v j<n—1. We can further express the above as
distinct and in [n]\{¢}

J J
m M v
(C> n”EU L,,|i:|
Ll,|i:| '

(V(=9)) is now a degree m — 1 degenerate U-statistic of n —

for some absolute constant C’ > 0. Denote

(n —m)! ‘ ‘
(n—1)! o Jbedmo

(T, ViFeoVie...oVE

Im— 1>

U1

e

(4)

. . . K
Conditioning on V;*, u,

. V(:i). By a standard moment bound on

1 i.i.d. zero-mean random vectors, X/l(ﬂ), o

degenerate U-statistics (Theorem 4.1.1 of Ferger (1996)), there is some absolute constant
C"” > 0 such that

e

Lyl
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-1
1\ym—1 n m=1 m—1 2
< (¢7) (m—1> ne <Hl=1 (l—l)u+2>
< (T V<0V 0. @ V”
1m1\m—1 mT_l(m_l)m_l m—1 v
i =)
< (T, VEeV T a. . eV

(C//)ml ml((_lml

< (") tnmT e (T, VEeV e .. mii1>}|L y almost surely ,

HUMVK@%Z) W’Hhh

where we have used Stirling’s approximation of the factorial in the last line. Combining

the two bounds finishes the proof. [

C.7.3. Proofs for Section 5.4

The results on vertex-level fluctuations concern a U-statistic of i.i.d. variables, which has

already been studied in Proposition 5.6.

Proof of Corollary 5.7. The first bound follows directly from the proof of Proposition 5.6
in Appendix C.7.2 by replacing u,,(Y) by x,(Y). The variance computation follows
from substituting wu, into the definition of am n; 10 Proposition 5.6, and computing

(VG = ()G s it = (GG
[l

Proof of Lemma 5.8 . By the variance formula in Corollary 5.7 and the fact that w is
bounded, o7, ..., = O(n*™") for all r € [m], which implies (i) < (ii). We also have
(i1) < (ii1) in view of the formula in Corollary 5.7. To prove (ii1) < (iv), recall that
|Aut(H)| is the number of automorphisms of H, and let P,, be the set of permutations
of {1,...,m}. Also denote P;;”* C P, as the set of permutations that sends {7} to {1}.

Then we can write

2er, E[Has,z‘t)eE(H)w(UU“ )2 Yot ’Ul - }
m 2er, E[Hus,iaeE(H) (U, Us,) ]
- |Aut1(H)| Zil Zaepf;rl E[Hwt)eE(H)w(Uis’Uit) ‘Ui B x}
>

(m —1)! B
|Aut(H)| i=1 E |: H(is,it)GE(H) w(Uisa Ult) ’ Uz = l’] .

.....

1
[Aut(H)]
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(iii) says the above is constant for almost every = € [0, 1], whereas (iv) is equivalent to

requiring that

1 «—m
m Zi:l E[H(isvit)EE(H) wUi,, U;,) | U; = 37}

is constant for almost every x € [0, 1]. This proves that (iii) < (iv). [

To prove the results on the edge-level fluctuations, we first present a stronger lemma,
which will imply Lemma 5.10 and greatly simplify the proof of Proposition 5.9. For
i € [n,], write Wj(i) =Y for j < iand Wj(i) = Z; for j > i. Denote ¢; as the edge
in K, indexed by j € [n,]. Let [ and E be edge sets. Recall that d; (/) is the indicator
of whether the graph formed by [ is isomorphic to H. Also define ny(k, I, E) as the
number of subgraphs of K, that are isomorphic to H and can be formed with k edges

from [ and all edges from F.

Given i € [n,], 0 < k' < k, the edge subsets [ C [n,] with |I| > k" and E,_,, C
E(K, ) with |E,_;/| = k — k', as well as some random variable W that are either zero-

mean or constant almost surely and are independent of {VVj(i) | j € I}, we define

SOW 1, By g W) =3 e 1 0 e U Bis) W T Wi for b > 1,

.....

]1<...<_]k/

SO0, 1, E,, W) :=65(E,) W .

Notice that x,(Y) = S™)(k,[n,],0,1). The next lemma controls the conditional mo-
ments of these quantities given U, by exploiting that }7]-’5 and Z;’s are conditionally

independent and zero-mean given U:

Lemma C.14. There are some absolute constants ¢,C > 0 and v € (2, 3] such that

almost surely
E[|SOW, 1, By, W)[" | U] < C¥ (ng(W, 1, By_p))""” B[W|" | U]
x maxi, e 1] E[X, 7| U]

.....

all distinct

E[|S(n*)(k/7[7 Ek—k’7 W)|2 ‘ U} > Ck/ nH(klvja Ek—k’) ]EHW|2 ’ U}
X max, iy €1 H;i1E[|Xlz|2 | U] .

-----

all distinct

Proof of Lemma C.14. The proof proceeds by induction on £ > 0. We claim that the
constant in the upper bound is specified by C' = (), where (] is the maximum of the
absolute constant C}, in the second upper bound of Lemma A.4 over v € [2,3], and C,
is the absolute constant in Lemma C.4. The constant ¢ in the lower bound is the absolute

constant in the lower bound of Lemma A.4 with v = 2.
The base case k' = 0 is straightforward by noting that §; (E},) = ng(0, I, E},) for all
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I C [n,]. Suppose that the inductive statement holds for &’ — 1. To prove the statement for
k', we enumerate the elements of [ asi; < ... < i,, and consider a martingale difference

sequence (S )7, conditioning on U: For I’ € [n/], define

Sy =E[SOW 1, B . W) | UW, WY, W]

iy

— B[SO, I, By, W) U, W, W0 W T

iy

Since (W(Z)) j<i are zero-mean and (W(j)) j<v U {W} are independent conditioning on

’LJ 3

U, for k' > 1, we have
E[S(i)(k’, I,E, 1, W) | UW] =0 almost surely .

This allows us to express, almost surely,
,nl

S(i)<k/,l, Ek,’—k’?W) - Zl’:l Sl(/Z) .

Now notice that for I’ < k/, Sl(,i) = ( almost surely. Since the non-zero terms in each

difference S l(,i) must involve V[/i(;), for I’ > k' > 1, we have that almost surely

Sl(/Z) - Z 5H({€jl}l6[k’—l] U Ek‘—k’ U {eil/}) w M/z(;) Hle[k’—l} VVj(lZ) P
Jusesdn -1 6{2:1 ----- i1}
]1<"'<]k’—1

and for I’ > k' = 1, we have that almost surely

Sl(/i) = 6H(Ek’fk/ U {6' }) WW(Z) .

iy n

This in particular implies that for I’ > £/, almost surely

S = SO —1, {ir,..vip 1}y BewU{e,}, WD), (C.25)

U

Now by the martingale moment bound in Lemma A.4 with v € [2, 3], we get the almost

sure bound
¢S JEISYI U] <E[|SOK, 1, By, W)|"| U]
<GE[(X)_, 15| u] (C.26)

and since W x W(;) is independent of Wi(f), cee W.(ill, we may apply the inductive

7 1/

statement to control the individual S l(/i) term. Now notice that the moment bound on each
Sl(,i) will introduce a constant wy = ny (k" — 1,{iy,...,ip_1}, Ej_p U {ey}). Denote

their sum as wy = Z?;k, wy, which satisfies
Wy = nH(k/, _[, Ek—kz’) . (C27)

By reweighting the sum in the upper bound in (C.26) and the Jensen’s inequality, almost

surely

EHS(Z)(]{/’ ]’Ek—k’7 W)‘V | U] S Cl (wH)V/QE[<Zn/ i L‘S(,z)|2>u/2 ‘ Ui|

U=k Wy Wy
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v n’ Wi ]- 7 V/Z
< Cy (wa)? Y ﬁEKwT,'S(’)IQ) ‘U}
(i) v
vz~ wp B[S U]
= Cl (wH) / Zl/:k/ E vz

wy,

By applying the upper bound in the inductive statement to (C.25), we have that almost
surely

4

U]
< CV T PE[[W x W)

iy

| U]
X man ..... Jt —1€{41,5.-58 _1 } distinct Hl 1 [ jl|y ‘ U}
CoC Ly P E|W*|U] E[| X, U]

x  max H;:lIEUle]”\U}

J1seesdi —1 €401y _q } distinet

-----

S CQCk/ ! l//2 [|W| |U] male 1, €1 distinct Hl 1 UX”|V’U} ’

where we have noted that W is independent of W and used Lemma C.4 in (a) to replace
VVZ-(N) by X;,. By noting that C, = ¢',C}; and usmg (C.27), we get that almost surely

E[|SO(K, 1,E, 1, W)|" |U]
< C¥ (w) Y R U) . max T E[IXZ,|”|U]

v 11,40, €1 distinct

-----

which proves the upper bound. Similarly by the lower bound in the inductive statement

and noting that we do not need to use Lemma C.4, we get that
E[’S(n*)(k/, I7Ek—k’7 W)’Z | U]
Z Ck, nH(k‘J? [7 Ekfk’) [|W| | U] mlnll ,,,,, 1,0 €1 distinct Hl 1 ’le| | U]

which proves the lower bound. [

Proof of Lemma 5.10. Since E[r,(Y)|U] = 0 almost surely, by the law of total variance,

_ _ _ 12
Varlry(V)] = E Varly(V)|U] = EHZM ..... seetn O ({eg hiew) T i

)
1< <gk Ly|U

where we have denoted [« |7, = E[|-

J. Since (Y;)()emx,) is a collection
of n, random variables that are conditionally independent and zero-mean given U, the
quantity inside the conditional norm can be identified with S (k, [n,],®, 1). Applying
Lemma C.14 conditionally on U, we get that for some absolute constants ¢, C' > 0,

almost surely,

Var["iZ(Y)lU] S Ck nH(kv [n*]7 ®> male i €[n,] distinct Hl 1 Var[ i |U] )

.....
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Noting that n(k, [n,],0) = |Gy ([n])| and taking an expectation yield the desired bounds.
[

Proof of Proposition 5.9. Observe that r(Y') is multilinear in (Y;);c[,,,; and a degree-k
polynomial. Moreover, as Y;;’s are conditionally centred given U, E[k,(Y) |U] = 0.
Since Var[ky(Z)|U] > 0 almost surely by assumption, by applying Theorem 4.1 and
noting that the bounding constant is absolute, we get that for some absolute constant
C' > 0, almost surely

SUD;cR ’IP’(F;Q(Y) < t|U) —P(ko(2) <t U)‘

1
< C/m<2?—*1E[aiﬁ2(Ylv" '7)71'717072i+17~'-azn*))7i’y | U] > v

Varlry (V) [ U]7/2
(C.28)

Lemma C.14 implies that, for some absolute constants C,, c, > 0, we have that almost

surely

E[ai’%Q(?la ce 71/;—17 07 Z'H—l? tr Zn*> Y/;‘V | U]
-k H et On({es hiew— U ) W T W3

J1<e<Jg—1

= E[|SP(k — 1, [n.]\ {i}, {e:}, V)" | U]
< (COF (k= 1, [\ {i}, {e:})) P E[ V] | U]
X max,-l 77777 ij,—1€[n,]\{¢} distinct Hl;ll EHY/M ‘V | U]

|7]

and

_ n 2
Varl,(Y) | U] EHZh ..... jneln) Or ({e5 hiew) ng[k]VVj(z 5 ‘U]

J1<--<Jpg

E[|S™)(k, [n.),0,1)|*| U]
. K’ >
(C*)k nH(k’ [n*]a Q)) min,;, 1, €[n,] distinct Hl:l EHY;llQ | U] :

77777

>

Now recall that [n, | indexes all edges of an complete graph K, whereas ny(k — 1, [n,]\
{i},{e;}) counts the number of subgraphs in K, that contains e; and is isomorphic to H.
By symmetry, ny(k — 1, [n,] \ {i},{e;}) is the same for all i € [n,], and

S (k= L\ {i} {e;}) = kIGu(In])| = k (nu(k. [n].0)) .

since each subgraph of K, that is isomorphic to H has been counted exactly k = |H|
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times. Thus

S (= L \ i} eh)™ = 07, (k= 1)\ {1}, {er)) "
= (£ (G ()"

Combining the above, we get that for some absolute constants C”, C' > 0, almost surely

supycxB(ra(Y) < 1) — B(na(2) < 1| V)
" Z:lz*l ( H( [n*] \{ } {e })) aXh ----- ix €[n,] distinct Hl 1 | | |U] #H
<C m( Gu([n ])‘V/2 rnini1 ..... i1 €[] distinct Hl ) | |2 | U]
" (Zz (k=1 I\ {i}, {e; }))V/2 uk+1 ) ﬁ
=¢ m( [PDIRE ) py(U)

—C"m kQuk+2 o ~akt2 p?(U)TH < Cmn~ ve+L p?(U>m )

In the last line, we have noted that n, = (Z) < n?. This proves the first bound. The

second bound follows by applying Proposition 4.6 while conditioning on U'. ]

C.8 Properties of univariate distributions in Theorem 4.7

C.8.1. Proof of Gaussian moment bound in Lemma C.6

Since E|Z|" = n~1/22v/2T'(252), the proof boils down to approximating the Gamma
function: Alzer (2003) proves that for all z > 0,

" 1/6 2\T /o ) 1\1/6
\/7_T<E> <8x + 42° +x+m> F(m—|—1)<ﬁ(—> (890 + 4z —|—x+—) .

Since v > 1, “H > 1. As 823 + 4% + x + 55 < 14(1 + x)? for z > 0, we have
v+1 1/6 <V—1>(V_1)/2(l/+1>1/2
F( 2 > < 1470Vm 2¢ 2
1/6 u—1>5—1(y2—1>1/2 1/6 ( )2
<140/ (Y= =) < uyE

which implies the desired bound that, for some absolute constant C' > 0,

E|Z|" < Cv'/?.
For the second bound, we note that if m, and m, have different parities,
Cov[Z™ 7™ = E[Z™*™] —E[Z™]E[Z™] = 0

since odd moments of Z vanish. Now focus on the case when m; and m, have the same

parity, and recall that m; > m, by assumption. For z > 0 and o € [0, 1], we define the
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X

function R(x; ) = 272 (g> (823 + 42% + x + )"/%, which implies that

v—1 1 v v—1 1
R(“ i) < El2l < R("ig) -

Then we can bound
Cov[Z™,Z™] > E[Z™ "] — E[|Z|™]E[|Z|™]
my+my—1 173\ m; —1 1 my—1 1
= R( 2 ’100) R( 2 ’30>R< 2 ’30) ’

First suppose m, > 2, and denote « = 1/100 and 3 = 1/30. Note that for x > y > 3/4,

R(z +y; )
R(z —1/4; B)R(y — 1/4; B)
— U2 (x +y)otv
(z — 1/4)e=V4(y —1/4)y—1/4
X 8z +y)?® +4(z+y)* + (x+y)+a)1/6

o=

(8(x — 1/4)3 + d(w — 1/4)% + (w — 1/4) + B)"/° (8(y — 1/4)3 + 4(y — 1/4)2 + (y — 1/4) + B)

—12( Tty )y_1/4
Z € (y—1/4

-

« < 8(x+y) +4(x+y)° + (x+y)*+alz+y)3 )6
(8(z —1/4)3 + 4(z — 1/4)2 + (z — 1/4) + ) (8(y — 1/4)% + 4y — 1/4)? + (y — 1/4) + B)
. b(x,y)\/©
= ate)(y)
Note that since > y > 3/4, we have

—1/4
a(z,y) = e’”%%)y > o 20— 1/4 > om1/292 5 9

On the other hand, a lengthy computation gives

c(z,y) < 642y + 322%y* + 82y + 8B2° + 322%y* + 162%y* + 42y + 4827
+ 8zy® + day® + vy + Bx + 8By° + 4B8y* + By + B2
< b(z,y) — (96x3y3 — 42y — (88 — a)a® — 102%y* — 2%y — 482° — day® — day?
—ay — fa — 8By’ — 4By* — By — §?)
< b(z,y) — 462°y° < b(z,y)
where we have used that z,y > 3/4, o = 1/100 and § = 1/30 in the last line. Therefore
b(x,y)/c(x,y) > 1and, forx >y > 3/4,

R(z + y; a)
R(z —1/48)R(y — 1/4;8)

By identifying z = %> —  and y = %2 — 1, we get that for m; > my > 2 such that m,

and m, have the same parity,

Cov[Z™, 7] ZR<m1+m2—1‘ 1 )_R(ml—l'i>R<m2—1.i>

> 2.

2 100

2 730 2 730
]. m1+m2_1. ].
>§R< 2 ’100)‘
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Meanwhile for m, = 1 and m; odd, since E[Z] = 0, we obtain directly that

my rma] _ my+mao—1 my+my—1 1 l,(mi+my—1 1
Cov[Z™, 7™] = E[zm+m-1] > R( ” ,100) > 23(—2 ,100).

Therefore for any m, and m, with the same parity, we get the desired bound that

n + 1 m1+m271 + 1 m1+m271
mitmy (m mo — 2 1/m mo — 2
Cov[Z™,Z™] > 2™ (#) — 93 (;)
2e e
my+my Ay my+my (M1 +mg —1 2 mytmy
> ¢ (mi+my—1)"72" 2> ¢ <W (my +my) ™ 2
mqi+moy

> ™2 (my +my) 2

for some sufficiently small absolute constants ¢;, ¢ > 0. [l

C.8.2. Proofs for properties of the heavy-tailed distribution in Section 4.5

Proof of Lemma 4.8. The first two moments of 1/ can be obtained directly from con-
struction. To control the w-th absolute moment for w > 1, first note that

E’Ul‘ :2p’x0| +p|2‘1’0‘ = (2+2 )pl’o = 6w/2pw/2—1 = 6w/20-2(w—u)/(y—2) '

(C.29)

Moreover, by Jensen’s inequality, we have |a + b|* < 27 (]a]* + |b]*) for a,b € R.
Combining this with the upper bound on E|oc~!Z; | from Lemma C.6, we get that

_ 2(w-v)

27w/2 20.)71 9 4 9w _ _ _
E|Vi|© < 2+ )+2 w2901V Rl Z|1Y < Som T 4 ovw?

— gw/2g2(w-v)/(v=2)

for some absolute constants c;, co > 0 as desired. [

Lemma 4.9 approximates an empirical average of V;’s by a Gaussian Z1, and gives a
finer control by considering an additional remainder term. The key idea is to perform a
fourth-order Taylor expansion in the characteristic functions of both n~!/2 >orViand
Z1, before turning back to the distribution functions. Note that the smoothing by Z; in the

construction of V| makes the distribution of V; continuous, which enables this approach.

Proof of Lemma 4.9. Write S, = n=/23"" V., F (z) = P(S, < z) and Fy(x) =
P(Z] < x). By the inversion formula for continuous random variables (Theorem 4.2.3.1.,
Cuppens (1975)),

1 0o _efitw 1 [e’9) _efit:zz

F,(x) = Xn(t)dt and Fy(x) =5/ = xz(t)dt (C.30)

where y,, and Y, are the characteristic functions of S,, and Z. We first compare the

oo U 00

characteristic functions. Denoting # := 2~'/2 for simplicity, the characteristic function
of V satisfies

xv(t) = E[eit(GU-‘rGUZ)] - 6—92g2t2/2(2p6—i0x0t+(1_3p>+p62i6m0t)
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= ¢V (1 — 3p + 2pcos(fzot) + pcos(20z4t) + i(—2psin(fzgt) + psin(20z,t)))

(@) _0252¢2 0%x3t2  9*aitt cos(th
+ p(]_ i 2t202x(2) + 294$%t4 COS(2t0$/1))
3
, O3ajt® | 0*xgtt sin(tfx
—i(2p) (Azot — 20 + 2o ;14n( IQ))
. 403233 20%xitt sin(2t0x))
+ ip (20t — 5 2 ))
4,..414 2 4,414
= PP/ (1 — 3pf*ait? — ip@Pait® + 1)9%@ cos(tlz}) + % cos(2t0z))
ip@izgtt 2ipfizitt |
- % sin(t0xh) + % sm(2t93:’2)> :

In (a), we have performed Taylor expansions on the real and imaginary parts with some
xh, 2 € [0, 20). Since zy = o /+/6p and p = 0*/“~2), we have that

bry = 6’ bry = 63/25(6—2v)/(v=2) pry = 625(8-2v)/(v—2) *

Then the characteristic function of S,, can be expressed as

Xa(t) = Oov(n™2))"
_ 6_9202t2/2<1 B 3pf2xdt?  ipf3aitd  poradtt

12n2

2p0tadtt
3n?

- -

n n3/2
04,444 0d, A4 n
_ —pr;zgt 2ipt-zot? gnﬁot sin(2t9:1:'2)>
_ P02 (1 PP 0313 644 cos(tfz))
m 63/2n3/25(6—20)/(v—2) | 439720 (8—20)/(v—2)
64t cos(2t0x)) 10t sin(t0xh) 104t sin(2t0xh) >"
54n20(8—2v)/(r—2) 432n20(8—2v)/(v—2) 54n2q(8—2v)/(v—2)

2 242 2 242

cos(t0xh) + cos(2t0x7)

sin(tfzh) +

where we have defined
93t3
Qu(t) = 63/2n1/25(6—20)/(v—2)
044 cos(tox)) 044 cos(2t0x))
T 43920 —20)/(v—2) | 5an2g(8—2v)/(v—2) °
644 sin(t0x) 044 sin(2t0x})
T 439n20(8-2v)/(v—2) 54n20(8—2v)/(v=2) °

Now define

0%0%t?

6%0t? ZQn(t) + Ry(t) + iRQ(t>) + 5 +1iQn(t) -

R,(t) = nlog(l— 5 i

—o2t? /4 1/2

By multiplying and dividing e and recalling that § = 27/=, we get that

0'2152 _

Xa(t) =€ 2

iQn(t)eRn(t) — XZ(t) efiQn(t)eRn(t) .
Now define ¢(t) :== —iQ,,(t)xz(t). Then

n(t) = x2(0) = a(®)] = ez () (70O —14iQ, (1))
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< xz(t)e @O (e — 1) 4+ x5 (1) (e — 1 +iQ, (1))

S 6702t2/2<’6Rn(t) . 1| + |e*iQn(t) -1 + ZQn(t)D

< e (e 1)+ Q1)) . (C.31)
We seek to control R,(t) by a Taylor expansion of the complex logarithm around 1,

which is only permitted outside the branch cut R~ U {0}. Set T), := n!/2g(4=¥)/(2v=4),
For |t| < T,

_ 0 an< )

+R(t) + iRy ()

2n
92 2t2 93t3 04t4
— 2TL 65/2n3/20—(672l/)/(1172) 24n20—(872l/)/(1172)
< itta <l

In this case, the quantity in the complex logarithm in R,,(t) is outside the branch cut, so
by a Taylor expansion,

R,(t) =nR,(t) +inRy(t) + nRy(t)

where R3(t) is a remainder term that satisfies, for |t| < 7,

620> cz,< ) NEUNE
| Rs(t)] < ‘ - S 4 Ry (t) + iRy(t)

@ t19tot 1696 808

B 3( dn? 63n30(12—4v)/(v—2) 242n40(16—4u)/(y—2)>
(b) 1 1

4,4

< 307 ( + 63n2g(8—3v)/(v-2) + 2427120—(8721/)/(1/—2))
(c) 4

< t

5n2g(8—20)/(v—2)

In (a), we have noted that (A + B + C)* < 3(A4% + B? + C?); in (b), we have used
[t| < T, and # < 1; in (c), we have compared the powers of o € (0, 1] by noting that
28 < 3-8 and 28 < 4, and combined the constants while noting that * = 1/4. By

a further Taylor expansmn of the complex exponential, we obtain that for |¢t| < 7,

e ® 1| < R, ()] < n|Ry(t)] + n|Ry(t)| + n|Rs(t)]

gt t4 0.22t4
S e D) T a2 = gD
. . 93 3 .
By plugging this and Q,,(t) = m7-7zswm = into (C.31), we get that for [t| < T),,
1 _p22/9 0.22t4 0.03t°
alt) = x2(0) —a(t)] < be (OB L M) e
Now note that F, is a function analogous to (C.30) for ¢:
1 00 _e—itib 1 [e'e) e—itm
_ i 00 it 93ti 7 6—02152/2 it
21 oo 63/2nl/25(6—2v)/(v—2)
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B : (1= 7)o = ).

(2233/271/2) p1/2gv/(v=2) o2

_ 0° /°° 2= /2=t gy

(25/233/27) n1/2¢(6-2v)/(v=2)

where we have recalled that the constant A in the definition of F|, satisfies A = 2235%
since § = 21/2. Therefore by (C.30), a bound on the distribution functions can be given

as

| Fy(x) — Fy(z) — Fy(z)] < — /°° () = xz(t) —a(®)]

1 = o) o 2]
1 IXn(t) = xz(t) — q(t)] 1 IXn(t) = xz(t) — q(t)|
= — dt + — dt = I, + 1, .
27 /|t|<Tn |t] tor >, 2] 1

(C.32) allows the first integral to be controlled as

1 —o22/2 0.22[t]3 0.03t[5
ho <55 < ¢ <g<872v>/<u—2> g<12—4u>/<u—2>>dt

1 70.44(2 — (0°T2 +2)e 7 T2/2)  0.06(8 — (T2 + 40°T2 + 8)e~7 Ti/?)
%( 520/ (r—2) + 3 —2) )
0.22

no2v/(v=2) °

<

To deal with the case |t| > T,,, we first let {(U;, V;)}I_; be i.i.d. copies of (U, V') while
applying independence and Jensen’s inequality to obtain

)] = B[ B e 2 )
_ 625242
= e

< [Ble o 2 )

1 —0 - 343 .
By noting xz(t) = e /2 and lq()] = |Qn(t)]e < 63/2n1/25(6t—2u)/(1/—2)e e

we can bound I, via the triangle inequality:

I Nl @] . L)
I, < — dt
2 —%/mm i +

2| It
—o?t?/2 934200t /2

o =T, t] It] + 63/2n1/25(6—2v)/ (v—2) dt

1 2 2,2 1 2,2

< (/ te=0°o% /th) n (/ te=o"t /th>
- w13 t>T, T3 t>T,,

2 3 —02t2/2
+ 7(12)3/2n1/20(6=20)/(v=2)T,, (/0 t’e dt

2670'2T3/4 670'2Tﬁ/2 4

= 71202 + 7 T22 +71.(12)3/2711/20(6—2@/(u—2)+4Tn

2 2.2
1 efeo't/2 e

< +

3 1 1 1
< (; + 77(12)3/2) max{no-u/(y—Q) ) na-?;l//(2u—4)} < no2v/(v=2) -
In the last line, we have recalled that T}, = n'/20(4=*)/(2»=4) and noted that & € (0, 1].
Combining the bounds for /; and /5, we get that

)IP’(\/LH S Vi< x) P(Z <) Fq(x)‘ = |Fy(w) — Fy(x) — F,(2)]

2
— no-Qu/(l/—Q)
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as desired. O

Lemma 4.10 provides a normal approximation error with tighter x-dependence than

a typical non-uniform Berry-Esseen bound. The proof is tedious, but the key ideas are

the following:

(ii)

(iii)

(iv)

f M>
of the Gaussian from the mean, Berry-Esseen bound is sufﬁciently tight so we can

apply it directly. The interesting case is when x f i

by symmetry).

To give a tighter control in the region x > f Ve
a telescoping sum of n~1/2 >, V; and successively replacing the non-Gaussian
part of each data point, i.e. U; in V, = 272U, + 27%/2Z,, by a Gaussian.

Since the support of U; has size @(J_ﬁ), which is made to grow slower than
n'/2 by assumption of the lemma, the support of n~'/2U; shrinks. Therefore on
most part of the real line, the Gaussian approximation error is determined solely
by the mass of the Gaussian counterpart of n~'/2U;. By carefully choosing a region
moderately far from the origin, we can make use of the exponential tail of n~'/2U;.
This is the argument leading up to (C.33), and gives rise to the first exponential
term in Lemma 4.10.

At places where we cannot exploit the tail of n~'/2U;, we make use of the approx-
imate Gaussianity of the remaining sum n=%/23"7_ V,, — n=Y/2U,, which is the
proof starting from (C.34). The idea is that when n~/2U; is close to the origin,
the remaining sum n~Y2%""_ V,, — n~Y2U; is allowed to be far from the ori-
gin, and we can obtain a sharper tail. This is achieved by symmetrising the sum
nY23" Vi — n~Y2U; in (C.35) and then exploiting the improved n~*/? rate
of normal approximation of a symmetric sum via the Lindeberg method in (C.36).
This yields the second n~3/22~* term in Lemma 4.10; as suggested by the z—*

term, this error is only well-controlled at regions far from the origin.

The proof below is an elaborate version of the arguments in Example 9.1.3 of Senatov
(1998) and with their final step replaced by the Lindeberg method.

Proof of Lemma 4.10. Recall that V := 27120427127, Let {U;, Z;}7_, be i.i.d. copies
of (U, Z) and let { Z/}_, be an independent copy of {Z;}7_,. Write

1 n i—1 n
TV ( Zj:l Zi+ ijl Ui+ Zj:z‘+1 Zi)

and denote its probability measure by iy, . By expressing the quantity to be bounded as a

telescoping sum and noting the independence of (1W;, U;, V;) across different i’s, we have

|F,(z) — Fy(x)| = [P(W, + (2n) 72U, < z) —P(W; + (2n)""?Z, < 2|
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< > |P(W; + (2n )‘1/2U4 <z) —P(W,+ (2n)""?Z, < 2|
<> / )20, < @ - w) — P((20) V22, < & — w) [dpuay, (w)

- Z, 1/ 1/2U <T—w ) ]P’((Qn)_l/2Zi < x—w)‘duWi(w)

_Zl 1/ w) dpyy, (w) = Z?:1</$/;J( ) dpy, (w +/ w) dpyy, (w )>‘

We first focus on the case =z > % where M is the constant in the assump-

tion o*/"=2 > Mn~1/2. Since (2n)~'/2U; is bounded in norm by (2n)~'/?(2z,) =
< £ almost surely, the probability P(n~'/2U; > z — w) forw < z/2

g < g
V3nov/(v=2) — \/3M
is zero. Therefore

[ )i, ()

—00

m/
—/ ) YV2Z >0 — w)dpy (w) < ]P’((Zn)’l/zZZ> m)
(a) 22 (0) 2 a2 (9 33/2p8 a2 3 na?
< e < O 80 g o 3TM ey o 3M i

(C.33)

In (a), we used a standard bound for the complementary error function. In (b), we have

noted that y = m; > 6# >1 since n > 6M? and applied the bound e™¥ < i for

y > 1. In (¢), we have used = >

f 3M
Berry-Esseen bound,

0 E|U;]2 [oo 10
/x/2 Jz‘(w)dﬂWi (w) < n3/243 /%/2 dUWi (’LU) = 63/2n3/20y/(y_2)P(VVz’ > :L‘/Q) )

(C.34)

where we have used the moment formula from (C.29) to get that

10
63/25(6—2v)/(v=2) *

E|U/ =

To handle the probability term, we first consider rewriting the sum W; = &, + S; with

a Gaussian component &; and an independent non-Gaussian component 5; given by

. L n n / (2n — Z) 2
& == (X 2+, 2) ~N(0.55007) and s = =Y U
We also write W/ = & + 5!, where &/ and S] are i.i.d. copies of §; and S;, and denote the

symmetrisation W; = W, — W/. Let pyy, be the measure associated with W;. Then

B, 22/2) = [~ Bz /2= t)duw(t) = [ BW] = /2 =) duw, ()

z/2

> (infyege oy P(—WV] > 2/2 = ) P(W; > 2/2) = P(—W] > 0)P(W,; > 2/2)
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This rearranges to give
P(W; > x/2) < P(=W] > 0)"'P(W; > z/2), (C.35)
The first probability can be lower bounded by
P(—W; >0) =P(&+5; <0) > P(§ <0)P(S; <0) .

Note that P(¢§; < 0) = 1/2 since &; is symmetric and P(S; < 0) = 1. Fori > 1, by a
Berry-Esseen bound and the assumption that /=2 > Mn~'/2 and M > 10,

1 232E|U,3 1 10
]}D(Sig()) > __# —

9 nl/2g3 9 33/2p1/25v/(v—2)

>1— >
= 3 =

o

33/2M
This implies that P(—T/ > 0) > ¢ and therefore

P(W; > z/2) < 8P(W,; >z/2).

In other words, we have shown that P(WW; > x/2) in the bound (C.34) can now be

controlled in terms of the symmetric variable ;.

The final step is to compare W to Z ~ N(0, WH). We apply the standard
Lindeberg’s argument with a smooth test function h. By Lemma A.10 with 6 = z/4
and m = 3, there is a three-times differentiable function h such that for some absolute

constant C” > 0,
Lisasay < h(t) < Tysamy and IR () — K" (s)] < C"z 7|t —s|.

Consider the symmetric variable U, = \%(Ui — U]), where {U/}" , is an independent
copy of {U;}_,. Write Y}, = Zf;ll U;+&;, where & ~ N (0, wﬁ) is independent
of U;. Also denote ¢; ~ N (0, %02). Then

P(W; > x/2) < P(Z > x/4)+ [E[L(W;) — h(Z)]] (C.36)

<P(Z>ax/4)+ Y [EhYi+ ) —h(Ye + Gl = P(Z > 2/4)+ Y, _ A,

. > 02(2n—1) 9 . 02(2n—1) 9 2 2
Since Z ~ N(0, —~—0?), by noting —=—"—0* < 0” and = > i we have

= o _ a2 V6M _ 2% _ a2
> < —_— 20’2 < 20‘2 < 20‘2
P(Z >z/4) < \/ﬂ(x/él)e < & e < 2Me )

By performing two third-order Taylor expansions around Y}, each A, satisfies

A = [E[H (YO, — ) + h"YGOF — )+ gh" (Vi + T)TE — h" (Vi +G)cd] |

for some U, x €0,U,] and Q:k € [0, ¢;] that exist almost surely. The first two terms vanish
by independence of Y}, and (U, (;,) as well as the fact that U}, and ¢;, match in mean and
variance. Since U,, and (}, are both symmetric, they both have zero third moments. By

adding and subtracting a third moment term and applying the Lipschitz property of h"”,
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we obtain

Ay = B[ (Vi + 0 = W (00)0F = (1" (Y + &) — 1(6) <]

< @0 +ED) 2 o (s +0Y) € s
where " is an absolute constant; in (a), we have noted that |U; — U/|* < (|U;| +|U}|)*
8(|U;|* + |U!|*) and applied the moment bound from (C.29) in the proof of Lemma 4.8.
Combining the bounds gives

C/
n$40-(8721/)/(u72) )

- 22
P(W; > z/2) < 8P(W; >x/2) < 2Me 27 +
and therefore

1'2
10P(W; > x/2) 20Me™ 202 10C’
/x/2 Ji(w)d/“LWi (w> = 63/20,3/25v/(v=2) = §3/2p3/25v/(v—2) 63/21n5/2p458—1)/(v=2)

Combining this with the bound for ffc/j Ji(w)dpy, (w) in (C.33), we get that for v >

20
V3M’

Fae) = Foa)l < X, ([ awidi, )+ [ i) (w)

71.7)2
3M3e 5% 20Me™ 202 262 10C’
= nl/z 63/2n1/20v/(1—2) | §3/2,3/2445B—0)/(v—2)
1 22 1
L Y iy
< C’]\/[(nl/20-1//(u—2)6 so% + n3/2x40'(8_’/)/(”_2)> !

where (', > 0 is a constant that depends only on M. Now for |z| < \/25"]\4, we can use
the standard Berry-Esseen bound directly and the moment bound from Lemma 4.8 to get
that

amax{l,0%} _ _»
S TR

E|X|3 a _6—2v
‘Fn<x)_FZ($)‘ S /203 S n1/20'3(a v—2 _|_1)

for some absolute constant @ > 0. Since in this case, e~= /(%) > ¢=1/6M e aoain

obtain the desired bound that for some constant C', > 0 depending only on M,

22 22
Chymax{1l,03}e 5.2 y (max{l,o3}e 32 1
|Fo(x) — Fz(2)] < nl/2gv/(v—2) < CM( nl/2qv/(v—2) + n3/2x40—(871/)/(1/72)> :
The proof for x < — \/23‘;\/[ 1 \/25\4 [
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Appendix D

Proofs for Chapter 6

This appendix concerns additional results and proofs that concern data augmentation in
Chapter 6. The appendix is organised as follows:

Appendix D.1 states several generalisations and additional corollaries of the main result.
Appendix D.2 states additional results for the toy statistic in Section 6.4.3 and the ridge-
less regressor in Section 6.5.

Appendix D.3 states and proves auxiliary tools used in subsequent proofs.

Appendix D.4 proves our main theorem. A proof overview is given in Appendix D.4.1.
Appendix D.5 presents the proofs of the results in Appendix D.1.

Appendix D.6 proves all results in Section 6.4 and Appendix D.2.1, all of which concern
the asymptotic distribution and variance of the estimator.

Appendix D.7 proves all results in Section 6.5 and Appendix D.2.2, which concern the

limiting risk of an estimator.

Notation. Throughout the appendix, we shorten o, (f) to .., whenever f is clear
from the context, and write Z° := {Z9,...,Z%} € D"* .

D.1 Variants and corollaries of the main result

This section provides some additional results. Theorem D.1 below generalises Theorem
6.1 such that (i) transformed data ¢(x) and z are allowed to live in different domains,
and (ii) an additional parameter ¢ trades off between a tighter bound and lower variance.
Corresponding generalisations of the corollaries in Section 6.3 follow. We also provide
a formal statement for the convergence of estimates of the form g(empirical average)
discussed in Section 6.4.3 (see Lemma D.7), and a variant of Theorem 6.1for non-smooth

statistics in high dimensions.

Throughout this section, the big-O and small-o notations are stated under the asymp-
totic that n — oo, and dimensions d and ¢ are treated as variables that may depend on n,
which manifest through v,.,,, terms. The leading constants are always absolute constants

and independent of n.
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D.1.1. Generalisations of results in Section 6.3

We first allow the domain and range of elements of 7, i.e. augmentations to differ: Let
T’ be a family of measurable transformations D’ — D, and the data X;,...,X,, be
i.i.d. random elements of D' C R?. An example where this formulation is useful is the

empirical risk, where we study the empirical average of the following quantities
X)), X)) s for some loss function [ : D' — R .

Note that Theorem D.1 remains applicable by setting ¢;;(X;) = I(7;;X;), with the
augmentations used on data are determined through 7;;. This is used in the softmax

ensemble example in Proposition 6.14.

Next, we introduce a deterministic parameter ¢ € [0, 1], and redefine the moment and
mixed smoothness conditions. Recall X, := Var[¢,; X, ]| and X, := Cov[¢;; X, p12X4],
the d x d matrices defined in (6.4) in the main text. Consider the following alternative

requirements on moments of surrogates {Z{},,:

EZ) = 1;,, ® E[¢, X,], VarZ) = I, ® ((1 —0)% + 5212) + (Tpxr — L) ® o
(D.1)

Note that when ¢ = 0, this recovers (6.1). Write Z} = (Z3),<;, where Z{; € D. In lieu

of the moment terms defined in (6.4) , we consider the moment terms defined by

€1 = %HEV&YWHXJXJH: Cx = %VE||¢11X1||67 Czs = é\/]E[HZ%HG}‘

Again when 6 = 0, the last two moment terms are exactly those defined in (6.4). Finally,
we also use a tighter moment control on noise stability. Denote W?¢ as the analogue of
W, with {Z; },; replaced by {Z¢ },~;, and define

sup_ [|D] f,(W2(w))]|

we(0,9;X,]

Y
L

.

@ (f) is related to a,.(f) defined in (6.2) by ,.(f) = ,.(f) in the case 6 = 0. The
mixed smoothness terms of interest are in turn defined by
Ar(n, k) = 72(h>041;2(f)2 + Rz (f)
and Ay(n, k) = 73(h)041;6(f)3 + 372 (h) a4 (faga(f) + 1i(h)asa(f) - (D.2)

The choice of L norm in Theorem 6.1 is out of simplicity rather than necessity.

i<n
s<q

Qe (f) = max max{

sup || D] f (W2 (w))]

we0,Z7]

Theorem D.1. (Main result, generalised) Consider i.i.d. random elements X, ..., X,
of D', and two functions f € F3(D" RY) and h € F3(RY, R). Let ¢y, .., ¢, be iid.
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random elements of T', independent of X. Then for any i.i.d. variables 7S, . .., Z° in D*
satisfying (D.1),

|ER(f(®X)) — ER(f(Z3,...,Z5))| < onk'?Ai(n,k)e, +nk®?Xy(n, k) (cx + czs) .

The proof of Theorem D.1 is delayed to Appendix D.4. By observing the bound in
Theorem D.1 and the moment condition (6.4),we see that J is a parameter that trades off
between a tighter bound at the price of higher variances Var[Z;| (for 6 = 0), versus an
additional term in the bound and smaller variance (6 = 1). In particular, setting § = 0

recovers Theorem 6.1:

Proof of Theorem 6.1. In Theorem D.1, setting D’ = D recovers T from 7, and setting
§ = O recovers {Z;},,, cz from {Zf}ign, ¢ys. Moreover, only the second term remains
in the RHS bound. Since for m < 12 and § = 0, each «,.,,(f) is bounded by o,.(f),
we have that \,(n, k) is bounded from above by A, (n, k), which recovers the result of
Theorem 6.1. O

Next, we present generalisations of the corollaries in Section 6.3. Corollary 6.2 con-
cerns convergence of variance, which can be proved by taking / to be the identity func-
tion on R, replacing f with coordinates of f, f,.(«) and f.(+)f,(*) for r;s < ¢, and
multiplying across by the scale n. We again present a more general result in terms of Z°
and noise stability terms «,.,,, defined in Theorem D.1, of which Corollary 6.2 is then an

immediate consequence:

Lemma D.2 (Variance result, generalised). Assume the conditions of Theorem D. 1, then
n|[Varlf(9.)] = Var[f(Z0)]|| < 4007k (gt + ad)ey
+ 6n2k‘3/2(a0;4a3;4 + apg0n)(cx +czs) -
Proof of Corollary 6.2. Since a,.,,,(f) < a,.(f) form < 12 and § = 0, the second term
in the bound in Lemma D.2 can be further bounded from above by the desired quantity
6n° k> (s + g (cx + ¢)

Setting § = 0 recovers {Z;}"_, from Z° and causes the first term to vanish, which recov-

ers Corollary 6.2. O

Corollary 6.4 concerns convergence in dy. We present a tighter bound below:

Lemma D.3 (d4 result, generalised). Assume the conditions of Theorem 6.1, then

dyu(Vnf(RX),v/nf(Z°))

< on*PkV2e, (nl/Qa%;Q +ag,) + (nk)*?(naf + 3n? oy 4y + azs)(cx + cz0) -

248



Proof of Corollary 6.4. We again note that setting § = 0 recovers {Z,}"_, from Z° and
cz from czs. The required bound is obtained by setting 6 = 0 and bounding each .,

term by «, in the result in Lemma D.3:
(”k)gm(”(aw)g + 3"1/2041;4042;4 + agp) < (nk)*?(naf + 3n'2agon + ag) (cx + ¢z) -

]

As discussed in the main text, the result for no augmentations in (6.7) is immediate
from setting the augmentations ¢,; to identity almost surely in Theorem 6.1. Equivalent
versions of Lemma D.2 and Lemma D.3 for no augmentation can be obtained similarly,
and the statements are omitted here. This means that to compare the case with augmen-
tation versus the case without, we only need to check the conditions of Lemma D.2 and

Lemma D.3 once.
D.1.2. Results corresponding to Remark 6.1

As mentioned in Remark 6.1(ii), one may allow ¢ to grow with n and k. While Corollary
6.2 still applies if ¢ grows sufficiently slowly, Lemma 6.3 does not apply unless q is fixed.
The following lemma is a substitute. As is typical in high-dimensional settings, we focus
on studying the convergence of f,, a fixed s-th coordinate of f for s < ¢. The lemma
gives a sufficient condition on f for convergence of variance for f and convergence in

d4, for f, to hold when ¢ grows with n and k.

Lemma D.4. Assume the conditions of Theorem 6.1 and fix s < q. Assume that coordi-
nates of ¢11 X, and Z are O(1) a.s., a; = o(n~%%(kd)~1/?), ag = o((nkd)=%/?) and
oz, vy = o(n~2(kd)~3/?), either as n, d, q grow with k fixed or as n, d, q, k all grow.

Then under the same limit,

Ay (Vi f(@X), Vi fo(Zy, ... Z,)) 5 0, nl|Var[f(®X)] — Var[f(Zy. ..., Z,)]| = 0.

The proof is a straightforward result from Corollary 6.2, Corollary 6.4 and Lemma
6.3. In practice, one may want to use Lemma D.2 and Lemma D.3 directly for tighter
controls on moments and noise stability, which is the method we choose for the derivation

of examples in Appendix D.6.

Remark 6.1(ii1) discusses the setting where data is distributionally invariant to aug-

mentations. In this case, Theorem D.1 becomes:

Corollary D.5 (7 -invariant data source). Assume the conditions of Theorem D.l and
X 2 X for every ¢ € T. Then

|ER(f(®X)) —ER(f(Z3,...,Z3))| < onk'*X(n, k), + nk®Xy(n, k) (cx + czs)
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where 73, . .., 20 are i.i.d. variables satisfying
EZ] = 11 @ B[ Xy], VarZ] = L, @ ((1 = 6)Sy; + 651) + (L — 1) @ Do,
where we have denoted

i11 = EVar[¢1, X, |¢11] ,
Yig = COV[¢11X1a ¢12X1] = ]ECOV[¢11X17¢12X1|¢117¢12] .

This result is connected to results on central limit theorem under group invariance
(Austern and Orbanz, 2022), by observing that when 7 is a group, the distribution of
Z is described exactly by group averages. We also note that since Y, < 2y, the in-
variance assumption leads to a reduction in data variance, although this does not im-
ply reduction in variance in the estimate f. Finally, the invariance assumption implies
E[¢1,X,] = E[X,], in which case the augmented estimate f(®X) is a consistent estimate
of the unaugmented estimate f (Xl, e Xn).

Remark 6.1(iii) says that a stricter condition on f that typically requires k to grow
recovers a variance structure resembling that observed in Chen et al. (2020): variance
of an conditional average taken over the distribution of augmentations. This is ob-
tained directly by setting 6 = 1 in Theorem D.1 and noting that, by Lemma D.19,
Cov[py Xy, 912Xy ] = VarE[¢p, X, X ] :

Corollary D.6 (Smaller data variance). Assume the conditions of Theorem D.1 with § =
1. Then

’Eh(f(q)‘)()) - ]Eh’(f(zla R Zn))| S nk1/2)\1<7’b, k)cl + nk3/2)\2<n7 k)<CX + CZ) )
where 2, ..., 7, are i.i.d. variables satisfying

EZ; = 1,4 @ E[p1X,], VarZ; = 1;,, ® VarE[¢y; X[ X,] .

Note that the data variance is smaller than that in Theorem D.1 in the following sense:
By Lemma D.19, Var[¢;X;]| = Cov[¢; X, $12X,] = VarE[¢p,;X;|X,] and therefore
we have I;, ® (Var[¢;X;] — Cov[¢1 X, $12X;]) = 0. This implies VarZ; in Corollary
D.6 can be compared to that in Theorem D.1 by

Ljr, @ VarE[¢1 X[ Xy] = 1y @ Cov]gy Xy, ¢15X,]
= I, ® Var[¢; X, + (1 — L) ® Cov(py1 Xy, 19X,] .
The stricter condition on f comes from the fact that, for the bound to decay to zero, on
top of requiring \,(n, k) to be o(n~'k~3/2), we also require \,(n, k) to be o(nk='/?).

In the case of empirical average in Proposition 6.7, one may compute that A, (n, k) =

v2(h)n~'k™1, so a smaller data variance is only obtained when we require k — oo.
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D.1.3. Plug-in estimates g(empirical average)

We present convergence results that compare f(®X) = g(empirical average) to two
other statistics. One of them is f(Z°), which is already discussed in Theorem D.1, and
the other one is the limit discussed in (6.12), which is the following truncated first-order

Taylor expansion:

fT(9€11,--->$nk) = g(E[¢11X4]) + 0g(E[pn X, ] (nk Zl 1Z] 1 Xij — E[¢1, X, ])

Since we need to study the convergence towards a first-order Taylor expansion of g, we
need to define variants of noise stability terms in terms of g. Given {¢;;X,},<, ;< and

{Z2},<,, = {2Z2;},< j<k» denote the mean and centred sums

: < o 1L 75 ._ 1 5
po= ElpnXy], X = %Z” i Xi — 1 Z° = EZ” L3

For a function g : D — RY and s < ¢, we denote the s coordinate of g(+) as g,(+) as
before, and define a new noise stability term controlling the noise from first-order Taylor

expansion around /i

frm(9) = 2, [supwerx[079s (n+ W],

The first-order Taylor expansion also introduces additional moment terms, which is con-

trolled by Rosenthal’s inequality from Corollary D.22 and bounded in terms of:

1/2
en = (X max | 50 X =il I3 S e X -l )

Finally, since we will compare f ((IDX ) to f(Z°), we consider noise stability terms that

resemble «,.,,, from Theorem D.1 but expressed in terms of g:

ent) = 3 e { | sup 070, (Wi
<1 isn wel0,8,X,]
| sw s, Wi, |
we(0,Z9)
:ZSSqmaXiSTLCi;m(Hargs(Wf H >maXz<nsz(Har H

(D.3)

where

5 1 i—1 =k k n ko s
Wi (W) = & ( Zi’:l Zj:l ¢Z’jXZ/ + Zj:l Wj + Zi/=i+l Zj:l Zl’j) .
We omit g-dependence in ,.,,, and v,.,,, whenever the choice of g is obvious.
Lemma D.7. (Plug-in estimates) Assume the conditions of Theorem D.1. For g €
F3(D,RY), define the plug-in estimate f(X1.n,) = (== > i<nj<k x;;) and its Taylor

expansion fT(Xy1..;) as in (6.11). Then, for any Z° satisfying the conditions of Theorem
D.1,
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(i) the following bounds hold concerning the approximation by f*(Z°):
dy (Vi f (®X),v/n f1(27))
= O(n_l/zfiz;g E% + 5k 1/2 2 1C1 + n- /2H1 1(CX + CZ(S)) s
n||Var[f(®X)] — Var[f7(2°)] 1
= O(6k™M|10g(p)|13 ¢ + n™ 2Ky kot + 07 K560

(ii) the following bounds hold concerning the approximation by f(Z°):

RF@X)VRF(ZD) = O(3(k™ 22 4+ n 2k 2 )e,
+ (n T2+ 3T gy + /2y3;2)
X (CX + 025)) )
IVar[(920)] — Varlf(Z)]]| = O(3k~ (v + vy )er

+ 0 (Voavzg + ViaVaa)(Cx + Czé)) .

Remark D.1. The statement in (6.12) in the main text is obtained from Lemma D.7(i)
by fixing ¢, setting 6 = 0 and requiring the bounds to go to 0, which is a noise stability
assumption on g and a constraint on how fast d is allowed to grow. Weak convergence

can again be obtained from convergence in d;, by Lemma 6.3.

D.1.4. Non-smooth statistics in high dimensions

Our results can be extended to non-smooth statistics that are well approximated by a se-
quence of smooth ones. To deal with high dimensions, instead of using moment terms
that involve a vector-2 norm of a high-dimensional vector, we use moment terms involv-

ing a vector-oo norm. This gives the following variant of Theorem D.1:

Theorem D.8. (Main result adapted for non-smooth statistics in high dimensions) For a

function f : D™ — RY, suppose exists a sequence of functions ) € F; (D" R9) that

satisfy
(1) = max {|[ /(@) — fO@)||lp,. | 1£(2) ~ FO@) 1} 0.

1 be the vector-1

norm. Then,
[EA(/(®X)) ~ ER(f(2))] < nk*?(ex + &)
x (ya(h) (@) + 3yp(h)at’ 4y’ + 4 (h)as’)
+ 27y, (h)e(t) .
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Here, we have defined the new noise stability terms in terms of vector-1 norm || « ||, as

k 1/2
~ a’r‘
alt) = ZZ:1 max max { sup ( | Z ||6x1—8x”f§t) (W;(w)) Hi)

i<n

I

wel0,2; X\, j.=1 Y Lg
k
o (5 T sowef) | )
)
WE[O’ZZ] jl 7777 ]’r:1 8X1jl o aXiJT LG

where fs(t) is the sth coordinate of f®, and the new moment terms as

i L N 1 1k
Cx = 6\/E[mangd|(¢11xi)z|6] , Cz = 6\/E[E ijl maXISdKZ”)l’G} '

A similar argument to Lemma D.7(ii) then yields an analogue of the result for plugin-
estimates, which is useful for the derivation of maximum of exponentially many averages
in Appendix D.6.5:

Corollary D.9. For a function g : D — RY, suppose there exists a sequence of functions
g® € Fy(D™ RY) that satisfy e(t) =2 0 for

1 1
e(t) = max {|[lg(-2>2 0,Xi) =9 (22 X ., -
1 1

G220, Zi) = 9 G 2o, Za) L, T

Define the plug-in estimate f(X11..1) = 9(= > icn i<k x;;). Then, the following conver-

gences hold:

dyy (V1 f (DX), Vi f(2)) = O((n™ /(7
et

(

)’ + 30710 28 ()+n_3/2’7§t))(5x+52)
)

é + o) (Ex + )

HF@X) Iz, + £ Iz,)e(t) + ne(t)?) -

Here, we have used the moment terms cx and c5 from Theorem D.8 and the modified

{
(t
n|[Var[f(@X)] — Var[f(Z2)]|| = O(n~'(
+n(

noise stability terms as

sup [0 (W(w))ll;

wel0,®,X,]

sup [|87gt" (W;(w))

w€el0,Z;]

q
ﬁ(t) = max max ’
ro

i<n

s=1

1 ’
LG}

where ggt) is the sth coordinate of g®*)
For smooth statistics, a similar argument to Lemma D.7(i) also yields an analogue
of the result for plugin-estimates compared to first-order Taylor expansion in high di-

mensions. The following result is useful for the derivation of softmax ensemble in Ap-
pendix D.6.6:
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Corollary D.10. For a function g € F3(D,RY), define f(x11..1) = 9(:x > i<nj<k X,;)
as the plug-in estimate. Let ®X and Z be defined as in Theorem D.I with 6 = 0, and
the first-order Taylor expansion fT be defined by (6.11). Let ¢x and ¢, be defined as in
Theorem D.8. Then if log d = o(n®) for some o > 0, the following bounds hold:

dy(Vf(@X),v/nfT(2)) = o(n "/***&y max{L, (éx)"*})
+O0(nV2R(Ex +¢y))
n||Var[f(2X)] = Var[f7(2)][] = o((n™/*+22 R fy + 0~ 253) max{1, (6x)¥°}) |

We have defined the modified noise stability terms in terms of the expectation |1 =
E[¢1,X,] and the centred average X := n—lk Z” ¢i;X; — pas

Ky = ngq HsupwE[O,X]Hargs(M + W) Hl HLG ’

D.1.5. Repeated augmentation

In Theorem 6.1, each transformation is used once and then discarded. A different strategy
is to generate only k transformations i.i.d., and apply each to all n observations. That
introduces additional dependence: In the notation of Section 6.2, ®,X; and ¢;X are no
longer independent if ¢ # j. The next result adapts Theorem 6.1 to this case. We require
that f satisfies

f(X117 s Xy e Xply e 7Xnk) = f(x].ﬂ'l(].)7 s X (k) X, (1) - - 7Xn7rn(k))
(D.4)
for any permutations 74, . .., m, of k elements. That holds for most statistics of practical

interest, including empirical averages and M -estimators.

Theorem D.11. (Repeated Augmentation) Assume the conditions in Theorem 6.1 with
D = R and that [ satisfies (D.4). Define ® = (¢ijli < n,j < k), where ¢y; =
.= Gy = Qjand ¢y, ..., ¢y are i.i.d. random elements of T. Then there are random
variables Y1, ...,Y, in R* such that

[ER(f (X)) — EA(f(Y1..... Y,)|
< nyp(h)agmy + nwy(n, k) (va(h)ad + i (h)as) + nk3/2)\h(n, k)(ex +cy) -

Here, )\, cx and «, are defined as in Theorem 6.1, and cy is defined in a way analogous

1 Yil? 4. 4 Y\ 3
oy = 6\/E[<I 111]° + - + Y14l > }

tocy:
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The additional constant moment terms are defined by m, = \/ 2TrVarE|[¢p, X, |¢,], and

VarE | (¢1X1),(91X1)s |91
My = Z [(¢ )2(¢’ )s|@ ]7 Mg = \/Z 12VarE ¢1X1 (X ‘¢1,¢2] .

r,s<d r,s<d

The variables Y; are conditionally i.i.d. Gaussian vectors with mean E[VX,|¥,] and

covariance matrix Var[VX, |V, ], conditioning on V := {1y, ... 1} i.i.d. distributed as

{¢17 s 7¢k}

The result shows that the additional dependence introduced by using transformations
repeatedly does not vanish as n and k£ grow. Unlike the Gaussian limit in Theorem 6.1
(when D is taken as R%), the limit here is characterized by variables Y, that are only con-
ditionally Gaussian, given an i.i.d. copy of the augmentations. That further complicates
the effects of augmentation. Indeed, there exist statistics f for which i.i.d. augmentation
as in Theorem 6.1 does not affect the variance, but repeated augmentation either increases
or decreases it. Lemma D.12 gives such an example: Even when distributional invariance
holds, augmentation may increase variance for one statistic and decrease variance for the

other.

Lemma D.12. Consider i.i.d. random vectors X, X, in R? with mean ;i and ¢, ¢y €
R4 pe i.i.d. random matrices such that ¢;X, L X. Then for f(x1,X5) = X; + Xy

and fy(X1,X3) = X — Xa,

(i) Varf)(Xy,X,) = Varf; (¢, Xy, 9 X,) = Varf, (¢, Xy, 9, X,), and
(ii) Varfy(Xy,Xy) = Varfy (91X, $2X5) = Varfy (01X, $1X).

D.2 Additional results for the examples

D.2.1. Results for the toy statistic

In this section, we present results concerning the toy statistic defined in (6.13). For

convenience, we write f = fi,,. To express variances concisely, we define the function
V(s) = (1+4s*) 712 — (1 +2s?)7!, and write

. 1 k—1 1/2
g = Val‘[Xl] and g = (Evar[¢11X1] + TCOV[¢11X1,¢12X1]> .

The next result applies Theorem 6.1 to derive closed-form formula for the quantities

plotted in Figure 6.3:

Proposition D.13. Require that E[X,] = E[¢,,X,] = 0, and that E[| X, |*?] and E[| ¢, X |*?]
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Figure D.1: Simulation for f, with n = 100 and varying k. Left: The standard deviation Std f,(®X’). The
dotted lines indicate the theoretical value of Std f5(Z) computed in Lemma D.14, in which we also verify
the convergence of fo(®X) to fo(Z) in dyy. Right: Difference between 0.025-th and 0.975-th quantiles
for fo(®X). In all figures, shaded regions denote 95% confidence intervals for simulated quantities.

are finite. Let Z, 2" be Gaussian. Then f = f,,, defined in (6.13) satisfies
dy(f(®X), f(Z)) =0 and Var[f(®X)] — Var[f(Z)] -0 asn— o

and the same holds in the unaugmented case where ®X and Z are replaced by X and

Z. The asymptotic variances are

Varf(Z) =V (o) and Varf(Z)=V(5) andhence 9(f)=+/V(5)/V(o).
For any a € [0, 1], the lower and upper «/2-th quantiles for f(Z) and f(Z) are given
by

(exp ( — 0'27Tu), exp ( — 0'27Tl)) and (exp(—&27ru), exp(—627rl)) ,

where T, and T, are the upper and lower «/2-th quantiles of a x3 random variable.

As discussed in the main text, the behavior of f under augmentation is more compli-
cated than that of averages as both V (s) and D(s) := exp(—s?m) — exp(—s?m,) are not

monotonic. This phenomenon persists if we extends f to two dimensions, by defining

fo(Xa1, X)) = f(@1a1s - Topa) + f(@T112, -, Toga) - (D.5)

Figure D.1 shows results for
X, %EN0,0%(E0) ~1<p<1, and ¢; =" Uniform{(}9),(93)} (D.6)
under p = 0.5. In this case, the data distribution is invariant under both possible transfor-

mations. Thus, invariance does not guarantee augmentation to be well-behaved.

For completeness, we also include Lemma D.14, a result that confirms the applicabil-
ity of Theorem 6.1 to f,. We also compute an explicit formula for the variances of f(Z)
and f (2 ) under (D.6) for a general p.
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Lemma D.14. Under the setting (D.6), the statistic [, defined in (D.5) satisfies

(i) asn — 00, fo(BX) — f,(Z) L 0 and ||Var[fo(®X)] — Var[f,(Z)]| — 0, and
the same holds with (X, Z) replaced by the unaugmented data and surrogates
(X, 2);

(ii) Z; has zero mean and covariance matrix

1+ p)o?
0'21k ® (117 ?) + ( 2P)U <1k><k - Ik) ® 12><2 )

o . : 1
while Z,; has zero mean and covariance matrix 01, @ ( o 1 ) ;

(iii) write o = % and o3 = (Hzp_)ﬂ, then variance of the augmented data is
given by
402 -1/2 402\ —1/2
Var[f,(Z)] = 2<1 +==+ 403) + 2(1 + %) (14 402)71/2

202
—4(1+ % +203)7".
In particular, at p = 0.5, limy,_,, Var[fy(Z)] = 4(1 + 30%)~/2 —4(1 + %(72)71
Remark D.2. Note that (i) above only verifies the convergence under n — oo with

k fixed. Nevertheless, one may easily check that f, satisfies the stronger Corollary
(1+p)o?
2
In that case, the asymptotic variance of the statistic is given exactly by the formula

limy,_, . Var[f,(Z)] in (iii) above.

D.6 corresponding to a smaller variance of Z, given by 1ojxor s n, k — oo.

D.2.2. Additional results for ridgeless regressor

This section complements Section 6.5 and provides tools for simplifying the risk of ridge-

less regressors.

Notation. For A, B € R**? symmetric and \ > 0, we denote

10(4) — AT (A + )\Id)jﬁ forA>0
H(ATA—IdWH for A\ =0
f>(\2)(A, B) = %STI‘((A -+ )\Id)_QB) , f)\(A, B) — f}(\l)(A) + f>(\2)(A’ B) :

where (+)~2 is a shorthand for the square of the pseudoinverse (+)'. Observe that by a
standard bias-variance decomposition as in Hastie et al. (2022), the risk under the oracle

augmentations can be expressed as, for both the case A > 0 and the case A = 0,
B = [B[(2)|2] — 8 + Te[Cov [3 ()] 4]]
_ _ 2 _ o
= | (X, + ML) X, —1,)8|° + P Tr((Xy + AL) X, (X, + A1)
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= fX) + (X, Xy) = [(XL,X)

Throughout, we write e; as the [-th standard basis vector of R¢ and denote X i1 as the [-th

coordinate of m;; V;.

The general case. The next lemma approximates f,(X;,X,) by fo(X;,X,) in the
Lévy—Prokhorov metric dp defined in (D.8). The proof exploits the assumption below on
the distribution of the extreme eigenvalues of X;, X,, Z; and Z,, as well as the alignment

of their zero eigenspace.
Lemma D.15. Under Assumption 6.2, if d = O(n) and \ > 0, then
dp(f{7 (X1, X)), f§0(X1, X)) = 0,,(N)
C 1
ap (X1 %), P (X0 X)) =00 (A+ 55 ) -
I 1
dP(f)\(XlaXQ)a fo(X4, 2)) '\//<)‘2+)‘+W> ;
dp (fA(Zla Z,+ Eyy), fo(Zy,Z, + E12)> 7'(

where O.,, indicates that the bounding constant is allowed to depend on +y.

The isotropic case. In the isotropic case, one may exploit the property of Gaussians
to express Z; and Z, explicitly in terms of the same rectangular Gaussian matrix. This
allows the risk to be completely characterized by moments and Stieltjes transforms of
the Marchenko-Pastur law under appropriate transformations, and simplifies how the two
strongly correlated matrices affects the risk. The risk formula then extends to the non-
Gaussian case by our universality results. The alternative expression for Z; below also

formally justifies (6.23) in the discussion in the main text.

Lemma D.16. Assume (6.22). Fix any mutually orthogonal unit vectors vy, ...,V,_, €
R¥ such that the sum of coordinates of each v; equals zero. Consider the orthogonal
matrix Q, € R*** and the diagonal matrix D,, € R***, defined as

=12 p—1/2 (k+02)/k
«~ v = o2 Jk
Qr = . and D, =
— v, = o2 [k

Also define the R " matrix

1.1 T
K= 11,01, = — bt
. \/En k \/E ,.'1 1 .

Then almost surely,

Z, - H(L,9D)H and Z, = “H(1,» DY*Q,)KKT(1,® Q[ DY*)HT .
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for some H that is an R matrix with i.i.d. standard Gaussian entries. As a conse-

quence, we have

7 1 n T, 9 k T = o’ n k T

almost surely for some i.i.d. standard Gaussian vectors 1;; in R4,

The next result verifies Assumptions 6.1 and 6.2 for isotropic Gaussian data.

Lemma D.17. Suppose X; ~ N(0,1;) and &;; ~ N(0,0731,), and consider the asymp-
totic (6.20) with v' = limd/(kn) # 1. Then Assumptions 6.1 and 6.2 hold.

D.3 Auxiliary results

In this section, we include a collection of results useful for various parts of our proof.

D.3.1. Convergence in dy,

The weak convergence lemma Lemma 6.3 shows that convergence in d;, implies weak
convergence. The gist of the proof is as follows. Assuming dimension to be one, in Step
1, we construct a thrice-differentiable function in ‘H to approximate indicator functions
in R. This allows us to bound the difference in probabilities of two random variables
X and Y lying in nearby regions by their distance in d,,. In Step 2, we consider a
sequence of random variables Y,, converging to Y in d;;, and use Step 1 to bound the
probability of Y, lying in a given region by the probability of Y lying in a nearby region
plus dy(Y,,,Y), which converges to zero. This allows us to show convergence of the
distribution function of Y,, to that of Y. Finally, we make use of Cramer-Wold and

Slutsky’s Lemma to generalise our result to ¢ > 1 dimensions.

Proof of Lemma 6.3. Step 1. Assume ¢ = 1. Let A C R be a Borel set, and € € (0,1) a
constant. We will first show that

P(Y € Ag.) > P(X € A) — dy(X,Y) /" . (D.7)

where A, == {z € R | Jy € As.t. |z — y| < €}. To this end, define a smoothed approx-

imation of the indicator function of A as

1 x s t Yy
h(z) = 6—4/ / / / I{z € Ay }dzdydtds .
r—€ Js—e Jt—e Jy—e
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Then h, is three times differentiable everywhere on R, and its first three derivatives are
bounded in absolute value by 1/¢?. It follows that €*h, € H, and hence that

Eh(X) — Eh(Y)] < dyy(X, Y)/e*

Since h, = 0 outside Ag.and h, = 1 on A, wehave P(Z € A) < E[h (Z2)] < P(Z € Ag,)
for any random variable Z. It follows that

Eh (X)—Er(Y)>P(X € A) —P(Y € Ag,.) ,
which implies (D.7).

Step 2. To establish weak convergence for ¢ = 1, denote by F' the c.d.f of Y. To show
Y, -5, it suffices to show that P(Y, < b) — F(b) at every point b € R at which F is
continuous. For any € € (0,1), we have

P(Y <b+8¢) > P(Y, <b) —dy(Y,,Y)/e" > limsupP(Y, <b),

where the first inequality uses (D.7) and the second dy(Y,,,Y) — 0. Set a =b — 8e.
Then

P(Y, <b) =P(Y, <a+ 8¢)
> P(Y <a) —dy(Y,,Y)/e" = P(Y <b—8¢) —dy(Y,,Y)/e",
and hence lim inf, P(Y,, < b) > P(Y < b — 8¢). To summarize, we have
P(Y <b—-8¢) < lirrhinf P(Y, <b) < limsupP(Y, <b) < P(Y < b+ 8e)

for any € € (0,1). Since F' is continuous at b, we can choose ¢ arbitrary small, which
shows lim P(Y,, < b) = P(Y < b). Thus, weak convergence holds in R.

Step 3. Finally, consider any ¢ € N. In this case, it is helpful to write 7 (q) for the class
‘H of functions with domain R?. Recall the Cramer-Wold theorem (Kallenberg, 2001,
Corollary 5.5): Weak convergence Y, ——Y in R? holds if, for every vector v € R, the
scalar products v'Y,, converge weakly to v'Y. By Slutsky’s lemma, it is sufficient to
consider only vectors v with |[v| = 1. Now observe that, if » € H(1) and |jv]| = 1,
the function y — h(v'y) is in H(q), for every v € R% It follows that dy(,)(Y;,Y) = 0
implies dyy(1)(v"Y,,,v"Y) — 0 for every vector v, which by Step 2 implies v Y, ~5v 'Y,

and weak convergence in R? holds by Cramer-Wold. [

Comparison of d;, with known probability metrics In this section, let X, Y be ran-
dom variables taking values in R, and define A€ as in the proof of Lemma 6.3. We present
a result that helps to build intuitions of d;, by bounding it with known metrics. Specif-

ically, we consider the Lévy—Prokhorov metric dp and Kantorovich metric dj, defined
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respectively as

dp(X,Y) = info{e | P(X € A) <P(Y € A) +¢,
P(Y € A) <P(X € A,) + ¢ forall Borel set A C R},
(D.8)

dig(X,Y) = sup{E[h(X)] — E[h(Y)] | A : R — R has Lipschitz constant < 1} .

The Kantorovich metric is equivalent to the Wasserstein-1 metric when the distributions

of X and Y have bounded support. We can compare d,, to dp and dy as follows:

Lemma D.18. dp(X,Y) < 8%5d,, (X, Y)Y and dpy(X,Y) < dx(X,Y).

Proof. For the first inequality, recall from (D.7) in the proof of Lemma 6.3 that for > 0
and any Borel set A C R, P(Y € Ag) > P(X € A) — dy(X,Y) /6% Setting § =
(dy(X, Y)/8)1/5 gives

P(X € A) < P(Y € Agusg, (xyys) +87dy (X, Y)/7 .

By the definition of dp, this implies that dp(X,Y) < 8/°d,(X,Y)Y°. The second
inequality dy (X,Y) < dg(X,Y) directly follows from the fact that every A € H has its
first derivative uniformly bounded above by 1. [

Remark D.3. The proof for dp(X,Y) < 8°d,,(X,Y)Y? in Lemma D.19 can be gen-
eralised to R? so long as ¢ is fixed. Since the inequality says convergence in dq, implies
convergence in dp and dp metrizes weak convergence, this gives an alternative proof for

Lemma 6.3.

Convergence in d,, implies convergence of mean Lemma 6.6 is useful for translating
the convergence in d,; of uncentred quantities to centred versions, and we present the

proof below.

Proof of Lemma 6.6. The first bound can be proved by noting that each coordinate func-
tion that maps an R¢ vector to one of its coordinate in R belongs to H:

1/2 1/2

IEX -EY| = (37 [EX] - EW])"* < (qdu(X,Y)?)"* < ¢/%.

To prove the second bound, notice that the class of functions 7 is invariant under a
constant shift in the argument of the function, which implies dy (X —EX,Y —EX) <.

By the triangle inequality, we have

dy(X —EX, Y —EY) <e+dy(Y —EX, Y —EY)
< €+ supyey [E[R(Y —EX) — A(Y —EY)]]

(a) - s
<e+ |EX-EY| < (1+qg7 ).
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In (a), we have applied the mean value theorem to / on the interval [Y — EX|Y — EY]
and used ||Oh|| < 1. This finishes the proof. O

D.3.2. Additional tools

The following lemma establishes identities for comparing different variances obtained in
Theorem 6.1 (main result with augmentation), (6.7) (no augmentation) and other variants
of the main theorem in Appendix D.1.2.

Lemma D.19. Consider independent random elements ¢, of T and X of D C R%,
where ¢ = 1). Then

(i) Cov[pX,X] = ECov[¢X, ¢X|¢, v] = VarE[pX|X],
(ii) Var[¢pX] = EVar[¢pX|¢] = Cov[¢X,X], where = denotes Lowner’s partial or-
der.

Proof. (i) By independence of ¢ and 1, Cov[E[¢X|¢], E[¢'X]|¢)]] = 0. By combining
this with the law of total covariance, we obtain that
Cov[¢X,¥X] = E[Cov[¢X, ¢X|¢, ¢]]+Cov [E[¢pX|¢], E[tX|¢]] = E[Cov[pX, ¥ X][s,]].

Moreover, independence of ¢ and v also gives Cov[¢pX, )X |X] = 0 almost surely.

Therefore by law of total covariance with conditioning performed on X, we get
Cov[¢pX, ¢ X] = Cov [E[¢X|X],E[¢X\XH @ VarE[pX|X] ,

where to obtain (a) we used the fact that as ¢ £ 4 we have E[¢X|X] € E[¢X]|X].

(i1) By the law of total variance we have:
Var[¢X] = E[Var[¢X|¢]] + Var[E[¢X] 4] (D.9)

We know that Var[E[¢X|¢]] = 0 almost surely, which implies that Var[¢pX] = E[Var[¢pX|¢]].

For the second inequality, note that for all deterministic vector v € R? we have
vT (EVar[¢X|¢]—ECov[¢X, vX|é, ¢])v 2 E[Var[v" (¢X)[¢]—Cov[v" (6X),vT (4:X)|, ¥]]
where (b) is obtained by bilinearity of covariance. By Cauchy-Schwarz, almost surely,

Cov[v' (¢X), v (¥:X)[¢,v)] < v/ Varl[vT (¢X)[¢]\/ VarlvT (¢ X)[9].

This implies that

vT (EVar[¢X|¢] — ECov[¢X, ¥ X6, ¢¥])v > 0.
Therefore we conclude that

EVar[¢pX|¢] = ECov[¢pX, ¢ X][¢, ] = Cov[¢X, ¢ X],
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where the last inequality is given by (i). This gives the second inequality as desired. [

The function (;.,,, defined in the following lemma enters the bound in Theorem 6.1
and its variants through the noise stability terms «, defined in (6.2) and «.,,, defined in
Theorem D.1, and will recur throughout the proofs for different examples. We collect

useful properties of (;.,,, into Lemma D.20 for convenience.

Lemma D.20. For 1 < i < n, let ?,X,;, Z; be random quantities in D. For a random

function T : D* — Ry, where R is the set of non-negative reals, and for m € N, define

Lm } ’

Then for any deterministic o € RY, random functions T;: D* — R, and s € N,

Cz,m(T) = Inax { H Supr[O,CIDlXi] T(W) HLm’ Supr[O,Zi} T(W>‘

(i) (triangle inequality) C;,,,(T1 + T3) < Cip(T1) + G (To),
(ii) (positive homogeneity) (,.,,(aT) = a(.,,(Ty),
(iii) (order preservation) if for all w € R%*, T (w) < Ty(w) almost surely, then
Gim(T1) < Gm(To),
(iv) (Holder’s inequality) C;..,(IT;_; T;) < [T;_; Cims(T;), and
(v) (coordinate decomposition) if g : D* — RY is a r-times differentiable func-
tion and g, : D* — R denotes the s-th coordinate of g, then (i, (||0"g(+)|]) <

ngq Cz,m(Hargs( ¢ ) H)

Proof. (i), (ii) and (iii) are straightforward by properties of sup and max and the triangle

inequality. To prove (iv), we note that

T(w))

H sup

.
wel0,8,X,] " 7

. .

m

< Hl_[sf1 sup T]-(W)H
Ly, 7 wel0,2,X;]

By the generalised Holder’s inequality we also have
<]I_,

Similarly we can prove that H SUDwe(0,2,] szl T,;(w) HLm < szl Gims(T;). This di-
rectly implies that (.., ([T;—; T;) < [];_; Ciims(T;). Finally to show (v), note that

179 = /el < X 1070l

‘) S ngq Ci;m(”args( * )
required. u

I, o, T
we(0,2,X;]

T, H <TT° . Cina(T,).
L,, WE[?)I}QEXJ ](W> L _HJ:1C7 ( ])

ms

for every v € D*. By (iii), this implies (;.,,,(||0"g(+)

) as

The following result from Rosenthal (1970) is useful for controlling moment terms,
and is used throughout the proofs for different examples. We also prove a corollary that

extends the result to vectors since we deal with data in D C R¢.
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Lemma D.21 (Theorem 3 of Rosenthal (1970)). Let 2 < m < oo, and X4, ...,X,, be
independent centred random variables in R admitting a finite m-th moment. Then there

exists a constant K, depending only on m such that

IS X, < Kumax {20 IXllE)™ (20, I1Xl2,) 7}

Corollary D.22. Let 2 < m < o0, and X4, ...,X,, be independent centred random

vectors in R? such that for all i, | X;|| admits a finite m-th moment. Denote the s-th
coordinate of X; by X,,. Then, there exists a constant K,, depending only on m such

that

[ i

d n m \2/m n 2 1/2
<K (L max (X Xl )Y XA

Proof. By the triangle inequality followed by Lemma D.21 applied to || Y7 | X[, .

there exists a constant K, depending only on m such that

n d n
HHZZ:1XZ” L, = (“Zszl(zizl){is)z‘
d n 1/2 d n 1/2
< <Zs:1 “(21:1 XiS)QHLm/2> = <25:1 HzileiSHin)
n m n 1/2
Ko (S0 ma { (X0 Il )™ S0 1%, )

1/2
) (D.10)
Lm/2

IN

]

The following lemma bounds the moments of vector norms of a Gaussian random

vector in terms of its first two moments, which is useful throughout the proofs.

Lemma D.23. Consider a random vector X in R? with bounded mean and variance. Let
€ be a Gaussian vector in R with its mean and variance matching those X, and write

| * || @s the vector-infinity norm. Then for every integer m € N,

il Iz, < Cull Xl 2, v/ 1 +logd .

Proof. Denote ¥ := Var[X], and write ¢ = E[X]+X'/2Z where Z is a standard Gaussian
vector in RY. First note that by triangle inequality and Jensen’s inequality,

[Ny
Write 0, == /%, the square root of the (I,[)-th coordinate of ¥. If o; = 0 for some

| < d, then the I-th coordinate of ¥./2Z is zero almost surely and does not play a role

Ly S EX] o + 11222 |

L S X oo Iz, + HIZY2Z | |

L’rn :

in |X'/2Z|| .. We can then remove the [-th row and column of Y. and consider a lower-
dimensional Gaussian vector such that its covariance matrix has strictly positive diagonal

entries. If all 0;’s are zero, we get the following bound

Ml Nz, < THIX oo Iz,
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which implies that || ||{]|« ||, satisfies the statement in the lemma. Therefore WLOG
we consider the case where o; > 0 for every [ < d. By splitting the integral and applying

a union bound, we have that for any ¢ > 0,

1 ||21/2Z||oo ||TLR = E[max;q |(21/2Z)l|m] - /0 ]P)(HlaXKd |(21/2Z) | > xl/m) dz

§c+d/oo]P’ El/QZ)]>x1/m)da: = c+d/ (ZI/QZ)|> Vm)da:
(a) zZ/m
<c—|—d/ \ﬁl T p(—W)dx
dUl 00 x?/m
i [ e (= ) de (D.11)

In (a) we have noted that Uil(El/ 2Z), ~ N(0,1), and used the standard lower bound for

the c.d.f. of a standard normal random variable Z to obtain
2

1
P(|Z] > u) = 2P(Z >u) > mxexp(—g).

Choose ¢ = (202(1 + logd))?. Then by a change of variable, the integral in (D.11)
becomes
oo z2/m 00 m
o _ m/2 -y, -1
/C exp ( 207 )dz = (20;) /1+10gd e Vy2dy
< Qo) [T Y ety = (o)l
1+logd 2

We have denoted [;, := ffjbg d y*e~Ydy. By integration by parts, we get the following

recurrence for k > 1,
I, =(14+1logd)fe 78 L kT, | = (14 logd)*(ed)™ + kI, ,

and also I, = (ed)~!. This implies that there exists some constant A,, depending only

on m such that

0o m2/m m
/c exp (= Gz) dv < (207)"" Ly

m m 12 —(mip1-p LB
< (207)™2(ed) 5 J'+( Y (ed) T WE IR I (1 4 log d)
< A, d~to(1 +logd)ls

Substituting this and our choice of ¢ into (D.11), while noting that o; = /3, ; < [|3[|6 u2
we get that

doy
V27 (202 (1 + log d)) #
< Bu([Zlloo(1 + log d))™?

=22 |17, < (207 (1 +logd))* + Apd o' (1 + log )L

for some constant B,, depending only on m. Finally, by the property of a covariance
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matrix and Jensen’s inequality, we get that
[S)2° < masxicq VarlX)]'? < maxic BIXFY? < EXXT)) < 1Koz, -
These two bounds on || [|Y/2Z]|, ||7* and 1|32 imply that, for C,, == B,, + 1,

Il Nz, < IHXlloo 1, + 1IE2Z) o0 I,
<X lloo e, + Buall 1Xloo 11, (1 + log )2
< Coll 1IX|oo I, (1 +log d) /2 .

]

The next result controls the norm of the largest eigenvalue of a sum of i.i.d. zero-mean

(not necessarily symmetric) matrices.

Lemma D.24. Let (A;);<, be i.i.d. zero-mean random matrices in R™>% and m > 1.

There exists some absolute constant C' > 0 such that

=1 L

o Bl (|15 ]

1/2

LA EEL A L)
op WL,

Proof of Lemma D.24. As A;’s are not symmetric, we consider the symmetric matrices

H = 0 A’L c RZdX 2d
(] A;r 0 )

which satisfies the identities

AAT 0
H? — < ) and [Hillop = [[Aillop

’ 0 AJA,

This allows us to express the quantity of interest in terms of a sum of symmetric matrices

1 n 1 n
n Zi:l A, - H n Zi:l H;

Leteq,...,¢, bei.i.d. Rademacher variables. By the symmetrization lemma for random

op op

vectors (see e.g. Exercise 6.4.5 of Vershynin (2018)), we have that for m > 1,

. 2252
Lm

:Q(E{Ew;z o)

and by the matrix Khintchine’s inequality (see e.g. Exercise 5.4.13(b) of Vershynin (2018)),

1/2)

there exists some absolute constant C' > 0 such that almost surely

1 n
E[Hﬁziﬂg Zz 1H2

Hz " ‘ (Hz z<n:| = ( m+10g
op
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Combining the bounds yields

1 n s 1 n 9 1/2
H HEZi:lAi op ||, = Cvmtlogd H‘EZZIHZ op ||,
1 «—n [AA] 0 1/2
— C\/m +logd )— , i
g H n2 Zz:l < 0 A;FAZ) oo |,

1/2 1/2

op ‘Lm) ’

1 n
- > AA]

Cvm+logd 1 n T
<=7 PR | PO

op

D.4 Proof of the main result

In this section, we prove Theorem D.1. Theorem 6.1 then follows as a special case. We
begin with an outline of the proof technique.

D.4.1. Proof overview

We quickly recall the Lindeberg method from Chapter 2, and point out the adaptations
in the block dependent case. The original Lindeberg method is as follows: The goal is
to bound the difference |E[g(y, ..., &,)] — Elg((i, - - -, )], for independent collections
&,...,&, and (,...,(, of ii.d. variables and a function g. To this end, abbreviate

Vile)= (&, .-, &-1, *, Gig1s - - -5 (), and expand into a telescopic sum:

Elg(&, - &) = Elg(Gr, -, Gl = D Elg(Vi(&)) — 9(Vi(G)]
=3 (Elg(Vi(&)) — 9(Vi(0))] — E[g(Vi(¢:) — 9(Vi(0))]) -

By Taylor-expanding the function g;(+) := g(V;(+)) to third order around 0, each sum-

mand can be represented as

E[agi(o)(fi - Cz)] + E[82gi(0)(5i - Q)Q] + E[83gi(§i)§f’ + 5392'(@)4“3] )

for some &; € [0,&] and ¢; € [0,¢;]. Since each (&;, ;) is independent of all other pairs
{(&;, )} expectations factorize, and the expression above becomes

E[0g:(0)E[¢ — ¢G] + E[0°g:(0)E[(& — ¢)*] + E[0°0:(&)& + 0°0:(G)E] . (D.12)

The first two terms can then be controlled by matching expectations and variances of &;
and ;. To control the third term, one imposes boundedness assumptions on 3%g; and the

moments of £ and ¢}.

Proving our result requires some modifications: Since augmentation induces depen-

dence, the i.1.d. assumption above does not hold. On the other hand, the function g in our
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problems is of a more specific form. In broad strokes, our proof proceeds as follows:

We choose g := h o f, where h belongs to the class of thrice-differentiable functions
with the first three derivatives bounded above by 1. Since the statistic f has (by

assumption) three derivatives, so does g.

We group the augmented data into n independent blocks ¢, X, = {¢;; X, ..., 0:.X;},
for © < n. We can then sidestep dependence by applying the technique above to each
block.

To do so, we to take derivates of ¢ = h o f with respect to blocks of variables. The
relevant block-wise version of the chain rule is a version of the Faa di Bruno formula.

It yields a sum of terms of the form in (D.12).

The first two terms in (D.12) contribute a term of order k to the bound: The first
expectation vanishes by construction. The second also vanishes under the conditions
of Theorem 6.1, and more generally if § = 0. If § > 0, the matrices Var[Z?] and
Var[®,X;] may differ in their k& diagonal entries.

The third term in (D.12) contributes a term of order k3: Here, we use noise stability,
which lets us control terms involving 9g; on the line segments [0, ®,X,] and [0, Z,],

and moments of (®,X,)*3 and (Z,)®3. The moments have dimension of order k.

Summing over n quantities of the form (D.12) then leads to the bound of the form
nk x (second derivative terms) + nk> x (third derivative terms) .

in Theorem D.1. In Theorem 6.1, the first term vanishes.

Whether the bound converges depends on the scaling behavior of f. A helpful ex-

ample is a scaled average vn (n,c > PuX ) Here, the second and third derivatives are

respectively of order — 2 and — /2 3 (see Appendlx D.6.1 for the exact calculation). The

bound then scales as — /2 for > 0, and as — /2 for o = 0.

D.4.2. Proof of Theorem D.1

We abbreviate g := ho f, and note that g is a smooth function from D"* to R. Recall that

we have denoted

Wf(.) = (q)lxl"'wq)i—lXi—l? '7Z?+17"'7Z§1) .

By a telescoping sum argument and the triangle inequality,

[EA(f(2X)) = EBA(F(Z3,...,Z0)| = [EX_ | [g(WI(®,X,)) - g(WI(Z]))]]
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<> [E[g(WE(@X,)) - g(Wi(Z)]| -
(D.13)

Each summand can be written as a sum of two terms,

(g(W?(®;X,)) — g(Wi(0))) — (9(Wi(Z])) — g(W(0))) -

Since DF is convex and contains 0 € R*?, we can expand the first term in a Taylor series

in the 7 argument of g around 0 to third order. Then,
|9(W3(2:X,)) — g(W?(0)) — (Dig(W;(0))) (@.X,)
— 5(D2g(W(0))) ((#,X,)(2.X,)")]
Dig(Wi(w))(®,X;)|

1
< 6 SUPwel0,0,X,]
holds almost surely. For the second term, we analogously obtain
1
9(W3(ZD)) — g(W7(0)) — (Dig(W?(0)))Z — 5 (Dig(W7(0))) ((Z5)(Z)")]
1
< G SUWweo,z) }D?g (Wf(w)) (Z?)@)S}

almost surely. Each summand in (D.13) is hence bounded above as

[E[g(W(@,X,)) = g(WEEZD)]| < vl + 3l + glrisal (D.14)
where
Ky = E[(D19<Wf(0>)) ((I)in‘ - Z?)}
ko = E[(D7g(W7(0))) ((2,X;)(,X,)" — (Z)(Z))")]
ki =E[ sup |Dig(W)(w))(®;X,)®*|+ sup |Dig(Wi(w))(Z])**|] .

wel0,8,X,] wel0,Z7]
Substituting into (D.13) and applying the triangle inequality shows
n 1 1
[EA(f(®X)) — EA(f(Z9,...,2Z3))] < Zi:l (I#14 + 3 lka] + g’“3,¢|) :

The next step is to obtain more specific upper bounds for the «, ;. To this end, first
consider £, ;. Since (®,X;,Z?) is independent of (®,X;,Z?%);;, we can factorize the
expectation, and obtain
Rii = E[Dlg(WZ(O))} (E[q)zXz] _E[Z?]) =0,
where the second identity holds since EZ? = 1,,, ® E[¢,;X;] = E[®,X,]. Factorizing
the expectation in k5 ; shows
oy = E[D}g(W;(0)] (E[(2:X,)(2,X,)"] —E[(Z])(Z)"]))
< |[E[DFg(W )] [|[[E[(@:X)(@X)T] - E[(Z)(Z)"

I

@ E[D2g(W,(0))] ]| Var[®,X,] — Var[Z]]|.
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where to obtain (a) we exploited once again the fact that EZ? = E[®;X,]. Consider the

final norm. Since the covariance matrix of ®,X; is

Var[®,X;] = I, ® Var[¢p1, Xy] + (1pxr — It) ® Cov[p Xy, 919Xy ]
the argument of the norm is

Var[®,X;| — Var[Zﬂ = o, ® (Var[ngXl] — Cov|[¢; X, ¢12X1]) .
Lemma D.19 shows Cov[¢; X, $1oX;] = VarE[¢,;X;|X,]. It follows that

| Var[®,X,] — Var[Z!]|| = 6|, ® EVar[¢,,X,[X,]|| = 26k'%c, ,

and hence %|/<;2Z |E[D?g(W?(0))]||6k"/2¢,. By applying Cauchy-Scwharz in-
equality and Holder’s inequality, the term x5 ; is upper-bounded by
Kz < H||(I)1Xz||3||L2 HSUPwe[o,cbixi} ig(W?(W )||HL2

 ZEP ], tPweio s I DI (W,
Since the function z +— 2% is convex on R, we can apply Jensen’s inequality to obtain

HH‘PiXiHBHLQ - E[H(I)iXiHG]
1
= B[S o)) = e R[S lasX )
< kSWE[% S louXillo] @ 2 VEonX [P = 6k ey |

where () is by noting that for all i < n,j < k, ¢,; X, is identically distributed as ¢; X;.
On the other hand, by noting that Z? is identically distributed as Z,

29,17+ Z
HHZ(SH HL2 /E E[||Z2|] k3/2\/ 1 Z3n* + Jr| Dkal® > ] — 6k 2y .

We can now abbreviate

M; - o (WIw))II . | g(Wiw)Illl,,}

and obtain 5’H3’i| < E*?(cx + czs)M;. In summary, the right-hand side of (D.13) is
hence upper-bounded by
(D.13) < 5k1/2c1<zj:1 [E[D2g(W?2(0))] H) ey + ey (Z M)
< dnk'?e, max;, HE[D?g(Wf(O))] || + nk3?(cx + ¢z) max;<, M; .
Lemma D.27 below shows that the two maxima are in turn bounded by
maX; <y, HE[Dz W6 } H < 72(h>a1;2(f)2 + 71(h)042;1(f) = /\1(n, k), (D.15)

max;<y M,; < 73(h)a1;6(f) + 372(h)041;4(f)oz2;4(f) + 71(h)043;2(f) = /\2(n> k)
(D.16)
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That yields the desired upper bound on (D.13),
[ER(f(DX)) — ER(f(Z3,...,Z5))| < 6nk'*A (n, k)c; + nk®*Xy(n, k) (cx + cz)
which finishes the proof.

Remark D.4. We remark that both Theorem 6.1 and Theorem D.1 can be generalised
directly to independent but not identically distributed vectors X,,...,X,,. , and that
the suprema in the derivative terms can be removed by using a Taylor expansion with
integral remainders instead. The resultant bound is the following: For some absolute

constant C' > 0, we have

[ER(f(2X)) — ER(f(Z3...., Z,))|

—~ e IEVar[¢,; X, | X, ]| 2 ( w@u%x [+ VETZI®
< " SK2%,(n, k) L L4 ZCk -

where

Xi1(n, k) = 72(h)‘§1;2(f)2 +71(h)021 (f)
Xo(n, k) = 73(h)é1;6(f)3 + 372(h)9~1;4(f)0~42;4(f) + 71(h)é3;2(f) )

= Y maemax{ [0rscwiee x| iocsowiez|

m m

s<q L

where © ~ Uniform[0, 1] is independent of all other random variables and plays the role

of the variable to be integrated against in the integral remainders.

D.4.3. The remaining bounds

It remains to establish the bounds in (D.15) and (D.16). To this end, we use a vector-
valued version of the generalised chain rule, also known as the Faa di Bruno formula.

Here is a form that is convenient for our purposes:

Lemma D.25. [Adapted from Theorem 2.1 of Constantine and Savits (1996)] Consider
functions f € F3(D" R?) and h € F3(RY,R), and write g := h o f. Then
Dig(u) = 0*h(f(w)(Dif(u >>®2 + Oh(f(w)) D} f (u),
Dig(u) = *h(f(w))(Dif () + 30°h(f(w)) (Dif(u) ® Df(u))
+0h(f(u)) D} f(u)
for any u € D*.
We also need the following result for bounding quantities that involve (;.,, in terms

of noise stability terms ., defined in Theorem D.1.

Lemma D'26' maXign Cz,m(HD:f(Wf( * )) ||) S ar;m(f) .
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Proof. Note that almost surely

IDEFOWECDI = /S0 IDFWE )2 < 32 IDEA(WEC))]] -

Therefore, by triangle inequality of (;.,,, from Lemma D.20,

sup || D f,(W7 (w))

we([0,0,X;]

i<n

@ (f) =) max max{
s<q

sup || Df f,(W7 (w))

we[0,Z9)

=2, max G (| D7 f (W ())I])

i<n

2rgl&XCi;m(!|D§'f(W?('))H) ,

which gives the desired bound. [

m

We are now ready to complete the proof for Theorem 6.1 by proving (D.15) and
(D.16).

Lemma D.27. The bounds (D.15) and (D.16) hold.

Proof. For a random function T : D¥ — R, define (;,,,(T) as in Lemma D.20 with

.t
We first consider (D.15). By Lemma D.25, almost surely,
D2g(W3(0)) = 0*h(f(W2(0))) (D, f(W5(0))) ™ + Oh(f(W?(0))) D2 f(WE(0)) .

respect to ®,X; and Z? from Theorem D.1,

L. 7

m

Ci;m(T) = max { || Supwe[O,q)lXi} T(W>‘ Supr[O,Z‘ﬂ T(W>‘

= [D? }H < G ([D2g(Wi(-))]))
< Gia (/|97 ( DL WE+ [[on (s (WD) DEFWEC))])
< G (7a( HDfW‘S( DI+ (W)ID? f (W?(-))H)

€ a(h) GUDFWE DI + 11 (h) G (12 WE()])
€ o) ora(F) (B s (f) = M. k)

where (a) is by Holder’s inequality in Lemma D.20 and (b) is by Lemma D.26. Since
A1(n, k) is independent of 7, we obtain (D.15) as desired:

maxj<;<n HE[DZQQ(W?(O))] H < >‘l<nv k?) .

We now want to establish that (D.16) holds. Using Lemma D.25 and the triangle
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inequality, we obtain that || D}g(W?(w))|| < T, (w)+ Ty;(w)+ Ty;(w), where
Ty y(w) = [[Ph(f(WI(WD)IIDsf (WE(W)II* < (W) | Dof (W (W)

Ty i(w) < 37(h) || Dif (W2 (w))[[|DF f (Wi (W),
Ty,(w) < n(WIDIFWI(w))] -

Then, by triangle inequality of ¢;, from Lemma D.20 (i),

M - €12(||D3 (VV(S )H) < Cz2 le +Cz2(T2z)+Cz2(T31) :

Holder’s inequality of (,,, from Lemma D.20 allows each term to be further bounded as

below:
Ci;Z(Tl,i) <7 ( )Cz2(||Df<W6( ))”3) S73(h)fi;6(||Dif(W?(‘))”)3
< s(h)ane(f)?
Cia(Taz) < 37°(h) G (I Dif (WE(IIDEFWE()]])
< 372 (h) G (1D (W (D)D) Gaa (1DFF (W2 D)

< 3y(h )0414( )%;4(]”);
Ci;Q(Tg,z') <m(h )Ci;Q(HD? (W?(‘))H) < %(h >a3;2<f)'

We have again applied Lemma D.26 in each of the final inequalities above. Note that all

bounds are again independent of 7. Summing the bounds and taking a maximum recovers
(D.16):

max;<, M; < ~3(h) 041;6(f)3 + 372 (h)ara(f)aga(f) +(R)aso(f) = Aa(n, k) .

]

D.5 Proofs for Appendix D.1

D.5.1. Proofs for Appendix D.1.1

The proof for Theorem D.1 has been discussed in Appendix D.4. In this section we
present the proof for Lemma D.2 and Lemma D.3, which shows how Theorem D.1 can
be used to obtain bounds on convergence of variance and convergence in d;,. They are

generalisations of Corollary 6.2 and Corollary 6.4 in the main text.

The main idea in proving Lemma D.2 is to apply the bound on functions of the form
h o f from Theorem D.1 with A set to identity and f set to an individual coordinate of f

and a product of two individual coordinates of f, both scaled up by /n.

273



Proof of Lemma D.2. Choose h(y) = y for y € R and define

frs(Xllznk) = fr(Xllznk)fs(Xllznk:> ) X11mk € an .

Let [+ ], ; denote the (7, s)-th coordinate of a matrix. The difference between f(®X’) and
f(Z?) at each coordinate of their covariance matrices can be written in terms of quantities

involving ho f, and ho f,:
(Var[f(®X)]),., — (Var[f(Z°)]),.
= Cov[f,(®X), f{(PX)] — Cov[f.(2°), f,(Z°)]
= E[h(fos(PX)) — h(f.a(2°))] (D.17)
— (E[R(f(@X)E[L(f,(®X))] — E[A(f.(Z°)E[(f,(Z°))])
lE (fos(®X)) = h(frs(Z)]] + |[E[R(f.(®X)) = A (Z°)]|[E[(f,(2X))]|
+ [E[R(f:(Z2°)]|[E[R(f,(2X)) — h(f,(2°))]]

(b)
S T(frs) +T(f7‘)a0;1(fs) +T(fs)a0;l(fr> ) (D18)
In (a), we have added and subtracted E[h(f,.(Z))|E[h(f,(PX))] from the second differ-

ence before applying Cauchy-Schwarz inequality. In (b), we have used the noise stability
term «,.,, defined in Theorem D.1 and defined the quantity 7'(f*) := E[h(f*(®X)) —

h(f*(2))]-

We now proceed to bound 7'( f) using Theorem D. 1. First note that v, (h) = |0h(0)| =
1 and 7,(h) = v3(h) = 0. To bound T'(f*) for a given f* : R — R, making the depen-
dence on f* explicit, the mixed smoothness terms in Theorem D.1 is given by

)‘l(na k? f*) = Oé2;1(f*) ) )‘Q(na ka f*) = 043;4(][.*) )
and therefore Theorem D.1 implies
T(f*) S (5”]@1/2052;1(][.*)01 + nk3/2053;2<f*)(CX + CZ&) . (D19)

Applying (D.19) to f, and f, allows the last two terms in (D.18) to be bounded as:

T(fr>a0;1(fs) + T(fs)a();l(fr)
< onk*/? (042;1(fr)040;1(fs) + @2;1(fs>@0;1(fr))01

+ nkS/Q (a3;2<fr)a0;1(fs) + O‘/3;2(f8)a0;1(f7”)> (CX + CZE) ’
(D.20)

To apply (D.19) to T'( f,,), we need to compute bounds on the partial derivatives of f,:

||Difrs(xllznk)|| < |fr(xllznk)| ||8fs<xllznk)|| + ||afr(xllznk)|| |fs(X11:nk)| ’
HDzzfrs(Xll:nk)H < |fr(xll'nk)‘ ”ans(Xll'nk)H + 2Ha.fr(xllznk)” Hafs(xllznk)u
1107 o (a1m) | 1fs(Karene)]
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HD?frs(Xllznk:)H < |fr(xllznk)‘ ”83fs(xllznk)H + 3H8f7'<xllznk)” Ha2fs(xllznk)”
+ 3Ha2fr(xllznk)’| Hafs<xllznk)|| + ”agfr(xllznk)n ’fs(xllznk” :

Since f, and f, both output variables in 1 dimension, recall from Lemma D.26 that noise

stability terms can be rewritten in terms of ¢;.,,, in Lemma D.20:
aR;m(frs) :r{l<anX<z,m(HDﬁf7‘s( Z( ))H) OéRm( 7‘) I{EZXCZ,mG’DZRfT(WZ(.))”) :

By triangle inequality, positive homogeneity and Holder’s inequality of (,,, from Lemma
D.20, we get

062;1<frs> = maXignCi;z(HD‘ers( (DD
< maxicy (Gl F (W) Gl G2 (Wi(+ D)
+ 2G4 (10F (W DI Gl £ (Wi )]
Gl £, (W DI Geal LW+ D)D) )
< agu(fr)ana(fs) + 2004 (fr)onu(fo) + aga(fr)aoa(fs) (D.21)
g = maxicy Ga(1D} (W)
< maxicy (Gl £ (W) G0 (W D)
+ 3G (104, (Wi () ) Gia (107 £, (Wi ()
+ 3G (10° £ W DID Gua (101, (W)
+ Gua 10 £ W DID Ga L£ (W ()]

S a0;4<fr)a3;4(fs) + 3a1;4(fr)a2;4(fs) + 3a2;4(fr)a1;4(fs) + a3;4(fr)a0;4(fs) .
(D.22)

Therefore by (D.19), we get
T(f,,) < onk'? x (D.21) x ¢; +nk®? x (D.22) x (cx + czs) .

Substitute this and the bound obtained in (D.20) for T'(f,.) and T'(f,) into (D.18), we get

(Var[f(@X)]), s — (Var[f(Z)]),
< onk?e; x (062;1(fr)040;1(fs) + a1 (fs)aoa (f;) + aoa(fr)aza(fs)

+ 2a1;4(fr>a1;4<fs) + a2;4(fr)a0;4(fs))
+ TL]{?3/2(CX + CZ5) X (a3;2(fr)a0;l(fs) + a3;2(fs>a0;l(fr> + a0;4<fr)a3;4<fs)
+ 3a1;4<fr)a2;4(f5) + 3a2;4(fr)a1;4(fs) + a3;4(f7")a0;4(f5)) .

Note that summation of each term above over 1 < r, s < ¢ can be computed as

(Zzzl QRy5my (fT)) ( Zzzl Q'Ryimy (fs)) (a:) QRysmy (f)aRz§m2(f) :

Therefore,

[ Varf(@X)] = Var[f(2)]]| < 327 [[Varl[f(DX)]],,, — [Var[f(2)]].s|
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< onke; (200, (o (f) + 2004 (f)ana(f) + 2004 (f)ona(f))
+ k2 (ex + ¢20) (2035 f)aoa (f) + 2a04(fasa(f) + 6ara(f)aza(f))
(%) 4571]{;1/2(040;4042;4 +afy)er + 6nk3/2(a0;4043;4 + . q0.)(cx + ¢zs)
In (a), we have used Lemma D.26. In (b), we have omitted f-dependence and used that

Q1001 < Qp4Qo,y and Q300 < a3.400.4. Multiplying across by n gives the desired
result. [

To prove Lemma D.3, we only need to apply the bound on h o f from Theorem D.1
with f replaced by \/nf.

Proof of Lemma D.3. Recall that for any h € H, y'(h),v*(h),~*(h) < 1. Moreover, for
Gi:m defined in Lemma D.20,
ar;m(\/ﬁf) = maXiSn Cz,m(H\/ﬁD:f(Wz( ° )) H)
= Vnmaxic, G (|| DI fF(Wi())) = vVna.(f) -
Therefore, Theorem D.1 implies that for every h € H,
[ER(vnf(®X)) — Eh(vnf(2°))|
< onk'?e, (n&l;z(f)Q + nl/Qaz;l(f))
+ nk3/? (n3/20z1;6(f)3 + 3noy 4 (f)oga(f) + n1/2a3;2(f)) (cx +cys) .
Taking a supremum over all ~ € H and omitting f-dependence imply that
A (Vi f(@X)NTf(2)) = suppey|ER(Vif(BX)) — Eh(v/if(27))
< 5n*PE Ve (n'2ady + agy) + (k)32 (nads + 30 ay 40 + asg)(ex + czs)

which is the desired bound. OJ

D.5.2. Proofs for Appendix D.1.2

We give the proofs for Lemma D.4, which concerns convergence when dimension of
the statistic ¢ is allowed to grow, and for Corollary D.5, which formulates our main
result with the assumption of invariance. Both proofs are direct applications of Theorem
D.1. The proof of Corollary D.6 is not stated as it is just obtained by setting 6 = 1 in
Theorem D.1.

Proof of Lemma D.4. By assumption, the noise stability terms satisfy

ap = o(n—5/6k;—1/2d—1/2)’ Qs = 0(n_3/2k;_3/2d_3/2), g, Oyl = o(n_2k:_3/2d_3/2).
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Since each coordinate of ¢;;X; and Z, is O(1), the moment terms satisfy
ex = ¢(EllonXa|)” = SE[(XL (elonX)?) )™ = 0@,
¢y = %(E[(% ngk,sgd ‘led|2)2})3/4 — O(d¥?) .
The condition on «,.’s imply that the bound in Corollary 6.2, with ¢ set to 0, becomes
n||Var[f(<I>X)] — Var[f(Z,,...,Z,)] H < 6n2k3/2(cx + cz)(apas + ajay) = o(1).

Since «,.(f,) < a,.(f) by definition of «,., the above bounds hold for «,.(f,). Applying
Corollary 6.4 to f, gives

d’r’-[(\/ﬁfs(q)‘)()a \/ﬁfs(zlv ceey Zn))
< n*PEY (nag (f,)P 4 30" Pan (f)aa(fs) + as(f)(cx +¢z) = o(1).

By Lemma 6.3, convergence in d,, implies weak convergence, which gives the desired
result. O]
Proof of Corollary D.5. By law of total variance,

S o= Var[pXy] = Sy + VarE[¢y, X, [611]
and by distributional invariance assumption, almost surely,

E[¢11X1‘¢11] = E[¢12X1‘¢12] = E[X1]~

This implies VarE[¢;,X,|¢,;] vanishes and therefore ¥,; = ;. The equality in X, is
directly from Lemma D.19. ]

D.5.3. Proofs for Appendix D.1.3

We present the proofs for the two results of Lemma D.7 for plug-in estimates. The
following lemma is analogous to Lemma D.26 but for x,.,,, and will be useful in the

proof.

Lemma D.28. ||supwe[07x}||3”g(u + W)||HLm < Krm(9) -

Proof. By the definition of ,.,,, and the triangle inequality,

Frm(9) = D [[suPwciox |07 9: (i + W[l = Iswpweios |09+ Wl

s<q

which is the desired bound. ]

For the proof of Lemma D.7(1), we first compare ¢ to its first-order Taylor expansion.

The Taylor expansion only involves an empirical average, whose weak convergence and
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equality in variance are given by Lemma D.2 and Lemma D.3 in a similar manner as
the proof for Proposition 6.7. We recall that D is assumed to be a convex subset in R?

containing 0, which is important for the Taylor expansion argument.

Proof of Lemma D.7(i). We first prove the bound in d;,. Using the triangle inequality to
separate the bound into two parts, we get

Ay (V] (@X) /1 fT(2°)) = supyey [E[R(v/nf(@X)) — E[h(vn " (27))]
< duy(Vuf(@X), Vi fT(®X)) + dyy(VifT (@), T (27)) .
(D.23)

Consider bounding the first term of (D.23). Since f(®X) = g(X + p) and f7(®X) =
g(1t) + 9g(1)X, a Taylor expansion argument on g (X + ) gives

1/(@X) — [T(@X)|| < supyepx [|0%9(+w)| X

Recall that v, (h) = supy,cga{]|0Oh(W)]||}. By mean value theorem, the above bound and
Holder’s inequality, we get
[ER(Vif(2X)) = ER(Vnf" (X)) < Vny(h) E[f(@X) - f1(2X)]
<V (h) E[supyepox; 0790+ w)|l [IX]]
< V)| supwem 10900+l I,
< \/_71(h) R, H ”XH HL3 :
In the last inequality we have used Lemma D.28. To control the moment term, we use
Rosenthal’s inequality for vectors from Corollary D.22. Since ¢;;X; have bounded 6th

moments, for each 2 < m < 6, there exists a constant K, depending only on m such
that

<Zm{(2

=1

i Sy oXe—
1 k m \ 2/m
% Z(¢inz‘ - N)s ) )
j=1 Ly,
. k , 1/2
Z % Z(¢ini - N>5HL2}>

1/2
(Zmax{nm g 00X = 05 5 300X — w17, })

= O(n_1/2ém) . (D.24)

n

Substituting this into the bound above, we get

[ER(Vnf(@X)) — ER(Vaf " (@X)))] = O(n >y (h) ras(g) ) -
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Since for all h € H, v'(h) < 1, taking supremum of the above over h € H gives the
bound for the first term of (D.23):

dy (Vnf(@X), Vnfh(@X)) = O(n 2 kys(g)c3) - (D.25)
The second term of (D.23) can be bounded in the usual way by applying Lemma D.3 to
ST (X11on) = g(p) + 0g(p) (% X — ). Let fI denote the sth coordinate of f7.

The partial derivatives are given by.

8fs Xllnk 1
|| = plog el |
This 1mphes that for s < g,
1
1D [ (%10i) | = nkl/guags(ﬂ)Ha 1D? £ (11l = I1DF S (Kavi) | = 0

Thus we have ay,,,, (f7) = Y7_, n= 'k~ 1/2||0g, ()| < n='k~'/?k,,1(g) by Lemma D.28,
and ay.,,, (f7) = a3, (f7) = 0. The bound in Lemma D.3 then becomes

H ajfs Xllnk)
| 0% 0% 0%,

iJ1 iJ2 iJ3

82fs (Xll nk
0%,; 0x;

iJ1 12

=0.

5”3/2k1/201 (nl/z(@m)z + 042;1) + (nk)3/2<”<041;6)3 + 3711/2041;4042;4 + 043;2)(6)( +¢zs)
= 0(5/{71/2/?1;1(9)201 + nfl/Q"fl;l(g)g(CX + 026)) ;

which implies

dy(VnfT(®X), VnfT(2%)) = O(6k " Pria(9)’cr + 17 Pri(9)* (ex + cz0)) -
Substituting this into (D.23) together with the bound in (D.25) gives the required bound
dy (Vnf(@X), v/ fT(2°)) = O(n_lﬂ@;s &+ 6k PRT e + PR (ex + cz0))
where we have omitted g-dependence.

Recall that ¥, = Var[¢;X,] and ¥,, = Cov[p;X;, ¢5X,]. For the bound on
variance, we first note that by the variance condition on Z? from (D.1), we get

S = 1/1 k—1
Var[X] — Var[Z°] = ( 21 + E12) - g(—((l —0)%1; +6%15) + Tz1z>

k
= &(211 - E12) .

This implies

n|Var[f*(®X)] — Var[fT(2)]| = nl[Varlg(u) + dg(11)X] — Varlg() + 0g(11) Z°]
) - )"

= an?g )Var[X]0g(n) " — dg(1e) Var[Z°]0g (e

= nH& 0g(p) (X141 — 12)9g (1 TH

< Llog(w . (D26)
where in the inequality we have recalled that 2¢, := ||EVar[¢, X | X ]| = |11 — 2ol
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by Lemma D.19. Next, we bound the quantity
n|Var[f(®X)] — Var[f* (2X)]|| .

for which we use a second-order Taylor expansion on each coordinate of the covariance
matrix. For every s < g, let f(Xq1.,,) and g4(X;1.,;) be the s coordinate of f(x11.,x)
and g(xi1.,,) respectively, i.e. f;, g, are both functions D — R. Then there exists
X € [0,X] such that

Fo(@X) = g,(1) + (9g,(1)) "X + Tr((8%g,(p + X)) TXXT) . (D.27)
Denote for convenience
R! = (9g.(0)'X, R2 = Tr((0%g,(n+ X)) TXXT),

The Taylor expansion above allows us to control the difference in variance at (r, s)-th

coordinate:

n(Var[f(@X)]— Var[fT(@X)]) = n((Var[f(®X)),, — (Var[g(n) + Dg()X]), )
= n(Cov[f,(BX), f,(®X)] — Cov[g, (1) + R}, g,(1) + RY])
@ (Cov[R! + R2, Rl +R2] — Cov[RL, R}])

= n(Cov[R;, R3] 4+ Cov[RZ,R{] + Cov[R}, RY]) . (D.28)

In (a), we have used (D.27) and the fact that g,.(x) and g,(u) are deterministic. To

control the first covariance term, by noting that E[X] = 0, Cauchy-Schwarz and Holder’s

inequality, we get
Cov[R;, R}] = E[R;R]] = E[(9g,(1)) "X Tr((8°g,(u + X)) T XXT)]
< | 0g, () |E[[10% g, (1 + X)) X1*]
< 109, ()| 162, (e + XN, (1K
Q O(”_3/Q’f1;1(9r)“2;4(93) ci)

In (b), we have used the definition of s, and the bound on moments of X computed in

(D.24). An analogous argument gives
Cov[RLRE = O(n~*2k,4(g.)aa(9,) &) |
and also
Cov[RZ, R?]
< [E[Tr((&%g,(n+ X)) XXT) Tr((0%g,(n + X)) T XXT)]|
+ [E[Te((0%g, (1 + X)) T XX | [E[Tr((0%, (1 + X)) TXXT)]|
< 2|12, G+ X[, (1187, (e + XN, (I3
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= O(n72’€2;6(gr)/£2;6(gs) 561) .

Substituting the bounds on each covariance term back into (D.28), we get that

n((Varlf(DX)]),., — (Var[f7(@2)]). )

= O("fl/Q("‘i1;1(gr)/€2;4(gs) + 51;1(95)52;4(%))52 + n71’€2;6(gr)/€2;6(gs) C%) .
Note that by the definition of k., in Lemma D.7,
Ziszl KRysmy (gr)’iRQ;mz (9s) = KRysm, (9) K Rysmy (9)
so summing the bound above over r, s < ¢ gives the bound,
nHVar[f(q)X)] — Var [fT(@X)} || = O(”_1/2ﬁ1;1(9)“2;4(9)52 + ”_1@;6(9)25%) :

Combine this with the bound from (D.26) and omitting g-dependence gives
n||Var[f((I>X)] - Var[fT(Zé)} H = O<5k’_1||89( )||2 01 +n ’431 1R, 404 +n /<J2 606) .

]

For Lemma D.7(ii), we only need to rewrite the noise stability terms a,.,,,(f) in

Lemma D.2 and D.3 in terms of v,.,,(9).

Proof of Lemma D.7(ii). We just need to compute the bounds in Lemma D.2 (concern-
ing variance) and Lemma D.3 (concerning d;) in terms of v,.,,(g), which boils down to

rewriting «,.,,(f) in terms of v,.,,,(g). As usual, we start with computing partial deriva-
tives of f,(X11.01) = g(% Zign,jgk Xz’j)3

9 1 1 k
o) = ST )
0? ~
9x.. Or fs(xllznk) = n2k2 (nk Zz 12] 1 Zj),

1J1 l]z

83
0x;: 0%, 0%, fS(XH:"k) - n3k’3 (nk ZZ 12] 1 ”)'

1J1 ij2 1j3

Norm of the first partial derivative is given by

1D; fo (X1 1m) | = \/Z] , (nkzl 123 1 )

and therefore, by the definitions of «,.,,, from Theorem D.1 and v, from (D.3),
al;m(f) = ngq maXiSn Ci;m (|szs(wz( ¢ )) D
1

1 -
= mzsgqma}(ign Ci;m(|Digs(Wi(.)D = ml/l;m@)-

.. 1 1
Slmllarly we get a2;m(f) = WVQ;m(g)’ a3;m(f) = Wyfﬂ;m(g) and aO;m(f) =

?

2
Xll nk)H ]421/2
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Vo.m(g)-The bound in Lemma D.3 can then be computed as

5n3/2k1/261 (nl/QOdig + 052;1) + (nk)3/2(nai6 + 3”1/2061;40(2;4 + 063;2)(0)( + Czé) .

= 5(1{:_1/21/12;2 + n_l/zkz_l/QVQ;l)cl + (n‘l/%iﬁ + 3n_11/1;4y2;4 + n_3/2V3;2) (cx +cgs)
while the bound in Lemma D.2 can be computed as

45”2/{71/2(040;4%;4 +aj)e + 6712]{?3/2(040;4043;4 + apany)(cx +czs)
= O(ék_l/Q(Vo;4V2;4 + via)er + 07 (Voavsa + viavaa) (ex + czs)) -

These give the desired bounds on the differences dy, (v/nf (®X), v/nf(Z2°)) and n||Var[f (PX)]—
Var(f(2°)]]. 0

D.5.4. Proofs for Appendix D.1.4

We present the proof for Theorem D.8, which concerns non-smooth statistics in high-
dimensions. We also prove Corollary D.9 and D.10, which are respectively variants
of Lemma D.7(ii) for non-smooth statistics and Lemma D.7(i) for high-dimensions.

lth

Throughout this section, we use x;;; to denote the [ coordinate of a d-dimensional vector

The general idea for proving Theorem D.8 is to apply an intermediate result of the
proof of Theorem D.1 to f*), some smooth approximation of f. By taking Holder’s
inequality differently, we obtain vector-oo norm for the moments as desired. The final
bound is then obtained by combining a bound analogous to that of Theorem D.1 and an

approximation error term using £(¢) and moment terms of f®.

Proof of Theorem D.8. Recall from an intermediate equation (D.14) in the proof of The-
orem D.1 (for which Theorem 4.1 is a special case), with g replaced by 4 o f®) and § set
to 0, that

[BA(fO(@X)) ~EA(fO(2))| < 3 (ol + 5lmail + glral) . (D29)

where we have shown x,; = 0 and x,; = 0 for § = 0 in the proof of Theorem D.1, and

written

K3; = E[ SUPwel0,,X;] D?(h o f(t)) (Wl(w)) (‘I)in‘)m‘
+ SUDwe[0,2,) ’Df(h o f(t))(wi<w))<zi)®su .

We now seek to bound 3 ;. We apply the same argument as the original proof, except

that in step (a) below we provide a bound with a vector-1 norm and a vector-co norm
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instead of the Cauchy-Schwarz inequality:

|D}(ho fO)(W,(w ))(<I>X )@

Z Z iy 1, 0%y Oy g (ho f(t)>(Wi(w»)(¢ijlxi)ll<¢ij2Xi)12(¢ij3Xi)13
J1:92:03=1 14,l5,l3=1 11 Lijoly Oijaly
(@) &

SZ(Z‘axlax

)
J1.J2,J3=1 ly,lo,l3=1 '

(> (x

1ty OTiu1, (ho f(t))(Wi(w)) |) Hi:1 max;<q | (¢, X, )i
83(hof(t)( (W)) 2\ 1/2 k 2 3/2
2\ 2 ) nglng\%
J15J25]3= 1:l2,l3=1
k ,\3/2
=: U;(w) (ijl max;<q ‘(¢ini)l| ) .

x5, 0%
This together with the Cauchy-Schwarz inequality implies

ijala 8%‘”313

E[ SUPwe(0,®,X,] }D?(h o f1) (WZ(W)) ((I)iXi)®3H
(o)
< G, H( i maXZSd‘<¢inz‘)l’2>3/2‘ L

Moreover, by the Jensen’s inequality on the convex function z — x® defined on R™ and
noting that ¢,; X, is identically distributed as ¢;; X;, we have

|(32h, maxical(0,%0) |2)3/ 2‘ - k:3/2\/E[<% S mase |(<bin@-)zl2)3]
< K2 \/E[(% ijl Max; <g |(¢ini)l|6>:|

=k \/E[mangd |(¢ini)l|6] = 6k33/20x )

which implies that the term in x5 ; involving ®;X; can be bounded as

E[SUPWG[, X,

P(ho fO)(Wi(w)) (@:X) %] < 652 (Us(+)) Ex.
On the other hand, the same argument applies to the term in x5 ; involving Z; to give

E[ supyefo.z, | Di(h o f“))(Wz'(W))(@X‘)mH

) 3/2
<C12 H( . maXl<d|(Z )l|> ’

The moment term can similarly be bounded by the Jensen’s inequality as

5\ 3/2 3/2 1k 5\°
H ( . maXl<d |(Z )l| > ‘ . = Gk E |:(E Zj:l maXlSd |<ZZ]>I| > i|
2
1 k -
< 6k%? \/E [E ijl max; < |<Zij)l‘6:| = 6kY%¢,

Ly
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Therefore, we get the following bound on the x5 ; term in each summand of (D.29),

1 - -
g”f3;i| < kg/QCi;Q(Ui<°)) (x +¢z) .

Now to bound (;»(U;(+)), which involves a third derivative term, recall the chain rule

from Lemma D.25,

Di(ho fO)(w) = °n(f(u))(D; f(t (w)** + 30*A (O (w)) (D:f " () @ D2f (u))
+ Oh (O (w)) D} O (u) .

h(f®(u))|| < 7.(h). By Cauchy-Schwarz and triangle

inequality, this implies that almost surely

k
viw) < (32 ( ()| 2o | 2L H H |
Jd2sds=1 1yl lz=1
af (W
H mll wzlz /wsls ’
3 £(t) 1/2
+71(h)’ 83@?]35:8;”12(633)133[3 >> )
<000 (s (S |72 ) (e |2
<Zi:1 W‘Y)lm
(3 (S 3 IS

J1:J2,J3=1 lg,l3=1

k d PBFO (W, (w)) 1/2
+ ’Yl(h> ( Zj1>j2:j3:1 (le?l%l?):l axlj3l38xlj2lzaxlj3l3 > )

= 3(h) T1(w)* + 37 (h) Ty i (W) Toi (W) + 71 (h) Ty (w)

where forr = 1, 2, 3,

o = (5 (S

..........

s DN
8xl]111 axlj I,

a k d 3Tf(t)( Wi(w) [\ /2
< o—1 <Zj1 77777 jp=1 (le L=110x;j 1, - Oxy; g ) >
(o 0 LW ) %)

- Zs:l (Zh 77777 Jr=1 (2 '

(t)

0x;; ...0x%;
Therefore, by properties of (;.,,, and the definition of &, ', we get

1 - ~ ~ ~
glail < K2 (a(R)(61)° + 370" as” + 7 (h)ay”) (@x +22) |
which then yields the bound

[EL(fY(2X)) - ER(fY(2))]
< k2 (y(h)(al")? +3v (M)aad + 4y (h)ad) (Ex +éz) .
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To bound the approximation error introduced by replacing f with f®, we apply mean

value theorem and Cauchy-Schwarz inequality to obtain

|ER(f(®X)) — Eh(f" (cb)c))]

<[E] s onw)llf@x) - fO(@x)]]|
ELf(2X),f(D(2X)]

< m(h)e(t).

An analogous argument shows that |Eh(f(Z)) — Eh(fP(Z))| < ~,(h)e(t), and the
desired bound is obtained by triangle inequality. ]

We now prove Corollary D.9, which is a variant of Lemma D.7(i1) and concerns

convergence for a non-smooth plug-in estimate in high dimensions.

Proof of Corollary D.9. Write f®(x1.,,) == ¢ (% > icn <k Xij)- An argument anal-
ogous to the proof of Lemma D.7(i1) shows that &\ defined in Theorem D.8 satisfies

~(t ~(t ~(t 1 @ ~(t 1 @ ~(t 1 @
048) = V(g)> O‘E) kL2 ()7 ag) = %Vé)’ O‘Z(%) - n3k3/2y?(,)

Notice that the above substitutions of dff) by 17,@ are of the exact same form of those from

the proof of Lemma D.7(ii), and the following bound from the proof of Theorem D.8 is
of the exact same form as Theorem 4.1 except that «,. is replaced by &' and ¢ x + ¢z s
replaced by ¢x + ¢5):

[ER(f (D)) - Eh( )\

< 0k (a(h) (@) + 37 (365" + 7 ()as)) (Ex +27)

Therefore, a repetition of the proof of Lemma D.7(ii) with 6 = 0 yields the analogous

bounds
dy (VW f O @X),VnfO(Z)) = O((n (") + 307155 + 070 (x + 60))
n||Var[fO(@X)] — Var[fO(Z2)]|| = O(n @G5 + o5l ey + &7)) -

Now by an argument analogous to the proof of Theorem D.8, we can bound the difference

between f; and f in d;, as
dyy(Vf(®X),V/nf (X)) = suppey [ER(Vrf(PX)) — Eh(vnfP(2X))]
< supyen [ s0Pretymson.viso oy [0RwW) VAl F(@2) = fu@X)]|
< Vnsupyey n(h)e(t) < Vine(t) .

Moreover, by the triangle inequality of || « ||, the Jensen’s inequality to move || « || inside

the expectation and the Cauchy-Schwarz inequality,

n|Var[f (®X)] — Var[f (@)]|
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= SIE[(f(@X) + FO@X))(f(
+E[(f(2X) - f ”(M))(f@vc)
—E[f(2X) + fO(@X)]E[f(2X) - f! (M)JT
—E[f(2X) — fO(@X)E[f(2X) + O (2X)]" |
< al[[IF(@X) + fO @) ||, [HIf(@x) = fO @) .
+ |l [ f(@x) + fO @) |, | 1£(@x) - FO@x)] ],
< 2n [[2f(®X) + fO(@X) — f(@X)|[ ]| || 1f(@X) = fO@)][ ||,
< 2n(2|| [ F(@X)] |z, +£()e(t) = 4n||f(@X)|[|,(t) + 2ne(t)* .

The same argument applies to f(Z), and the desired bound is obtained by applying tri-
angle inequalities. O

We now prove Corollary D.10, which is a variant of Lemma D.7(1) and concerns
convergence for a plug-in estimate in high dimensions to the first-order Taylor expansion
defined in (6.11):

s xu) = g(ElonXy]) + 9g(El¢n X,] ( ZZ L ZJ L El¢11X4]) -

Proof of Corollary D.10. Similar to the proof of Lemma D.7(1), a Taylor expansion argu-
ment followed by Holder’s inequality and noting the definition of %, and that v, (h) = 1

gives

Eh(v/nf(9X)~Eh(yafT (@) < vy (h) E|f(®X) — f7(0X)]

< V31 (h) E[supaeio xq 1879 + W)l (maxicy | (X)])7]

< V) [ supuctos 10+ Wl | maosca GO I,
(D.30)

< VN kg H maXlgd‘ l‘ HL3 :

Note that by properties of a maximum and the triangle inequality,

H maX;<g |(X)z| ||L3 = H maX{mangd(X)za max;<4(— }HL3

< H max{| max;,(X);| , | max;<,(—X);|} ”L3

< || [ max; <o(X),] + [ maxj<y(—X),| HL3

< || max;<4(X + || max; <4 (—X)

)ZHL3 lHL3 :

X is an average of n i.i.d. zero-mean terms % > i ¢i;X; — p, and —X is an average of
n 1.1.d. zero-mean terms —% > ; ¢ijX; + p. Therefore, Lemma D.38 applies and we get
that there exists a universal constant C),, such that

I?S%X(_X)l HL

<inf,cp [Qn_(l_”) + log(d)n™ M3 + n_l/QCMm],

m

[maxx ],
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where for m < 6,

M, = || max;<;|(¢;X; — E[¢;; X, ix )3

|HL <2HmaXl<d (bz] H

The bound on M,, together with the assumption log d = o(n®) for some o > 0 implies,
form <6,

< inf,cp [4n” 7Y + 481log(d)n ™ (¢x)*® + 24n~2C (Ex) "]
< o(inf,cp [4n U7 + 480277 (6x)¥® + 24n~ Y20 (ex)?])

< o( max{1, (5X)2/3}(4n’(1*a)/2 + 48p~(m/2 24n’1/20))
= o(n~ 1" 2 max{1, (¢x)¥?}) , (D.31)

H max;< |(X),| HLm

so by substituting into (D.30) and noting that the bounds are independent of H,

dy(Vnf'(2),Vnf' (2X)) = supyey [ER(Vnf' (2)) — Eh(vnf (2X))]
= o(n~ V" &y max{1, (¢x)*?}) .

Now to bound dy, (v/nf (PX), /nfL (®X)), we seek to apply Theorem D.8. First define
f® = fT which is thrice-differentiable with approximation quality €(¢) = 0. Note that

for &" defined in terms of f®
o = n kT og()ll < Tt 2hy &) =al =o0.

Notice that the above substitutions of &."” by &, are of the exact same form of those from
the proof of Lemma D.7(1). Then the following bound from the proof of Theorem D.8

applies, which is of the exact same form as Theorem 4.1 except that «, is replaced by

a" and cx + ¢y is replaced by ¢x + ¢):

[ER(fP(0X)) —ER(fY(2))]
<k (73(h) (@)% + 375(h)a G + 71 (h)ay)) (x + &) -

Therefore, a repetition of the proof of Lemma D.7(i) with § = 0 yields the analogous
bound

dy(Vf' (@X),V/nf'(2)) = du(VnfP(2X),V/nf9(2)) = O(n 2R (ex +¢5)) -

By the triangle inequality we get the desired bound
Ay (VR f(®X), Vi fT(2)) = o(n~V/* Ry max{1, (6x)¥}) + O (0~ 27 (ex + 7)) -
For the variance bound, by the proof of Lemma D.7(i) with § = 0, we get

Var[f7(@X)] = Var[f"(2)] .

Moreover by an analogous argument to the proof of Lemma D.7(1), almost surely there
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exists some X(®) € [0, X] that depends on f,(®X), and f7(PX), such that for
RI = (0p()'X,  R? = Tr((@g,(n+ XO)TXXT)
we have

n(Var[f(®X)] — Var[f"(®X)]) = n(Cov[R;,RZ] + Cov[R?, Ri] + Cov[RZ,R7]) .

8

The only part that differs from the proof of Lemma D.7(i) is how we bound the covariance

terms, which is similar to how the bound on (D.30) is obtained:
Cov[RL,R? = E[RIR?] = E[(dg, (1)) X Tr((0%g,(n + X)T XX )]
< 1109, (1) L E[[10°g, (1 + X)) 4[| maxi<q [ (X),] ]
< 09, ()l 1979+ X)[|, || masi<q [(Xl],

= o(n #2302, (g,)Ra(g,) max{1, (¢x)*}) .

In the last bound, we have specified &, (g, ) to be the quantity %, defined in terms of g,., and
used (D.31) to bound || max;< 4 [(X);|||, = o(n~'=*/2max{1, (¢x)*?}). Analogously

Cov[R?, Ry] = o(n*/*"/%k; (g,)R(g,) max{1, (¢x)*}) ,
and also
Cov[R?, RZ] < [E[Tr((8%g,(n+ X)) T XXT) Tr((0Pg,(n + X)) T XXT)]|
+ |E[Tr((0%g, (1 + X)) T XX)]| [E[Tr((0%gs (1 + X)) T XXT)]|
< 2[[[10%g, (1 + X[l (1079, (1 + XD []|, || masiea[(X)l]|7,
= 0o(n"?"Ry(g,)Ra(g,) max{1, (¢x)**}) .
Therefore
n(Var(f(@X)] — Var[fT(2)]), |
= o((n™12F2R (g,)Ra(ga) + T P Ra(9,)Ra(gs)) max {1, (ex)*°}) .
Since 331, &g, (9,)n, (95) = Fp, R, Where & is defined in terms of g, we get
n|[Var[f(®X)] — Var[f*(2)]|| = o((n™/2"3/2k &y + n~"2%3) max{1, (¢x)**})

as required. This completes the proof. ]

D.5.5. Proofs for Appendix D.1.5
In this section, we first prove Lemma D.12, a toy example showing how repeated aug-

mentation adds additional complexity, and then prove D.11, the main result concerning

repeated augmentation.
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Proof of Lemma D.12. By the invariance ¢; X, < X, and the fact that X, X5, ¢; and

¢, are independent, we get that
Varf (X, Xy) = Varfi (91X, $:Xy) . Varfy(X,Xy) = Varfy(d:Xy, ¢2Xs) -
For repeated augmentation, notice that for any v € R,

v Varfy (91 Xy, 0, Xs)v = v Var[p; X, + ¢, Xo]v
= v Var[y X, ]v + v Var[¢y X,]v + 2v Cov]p; X4, ¢ Xs]v
= 2v ' Var[X,]v + 2v ' Cov[p, X, 0, X, v
= v Var[p; X; + ¢, X,]v + 2v ' Cov[; Xy, ¢, Xo]v
= v Varfy(é1 X1, $:X,)v + 2v Covlgy Xy, 6, X,]v

and similarly
VTvaer((lela P Xp)v = VTVﬂff2(¢1X1, P X))V — 2VTC0V[¢1X17 P11 XV .
Now note that for all v € R¢,
-
v Cov[pi Xy, o Xolv =E[(X{ 6] V) (X30{ V)] —E[X{¢{v] E[X;¢; V]
T
=E[(u o1 v) (" o{v)] —E[p"o{v] Elu ¢ v]
= Var[v'¢] >0,
and therefore for all v € RY,

VTvarfl(Cle;CleQ)V > VTVﬂIf1(¢1X1>¢2X2)V,
VTVarf2(¢X1,¢1X2)V < VTVarf2(¢1X1,gb2X2)v,

which completes the proof.

O

The broad stroke idea in proving Theorem D.11 for repeated augmentation is similar
to that of our main result, Theorem 4.1, and we refer readers to Appendix D.4 for a proof
overview. The only difference is that in proving Theorem 4.1, we can group data into
independent blocks due to i.i.d. augmentations being used for different data points. In
the proof of Theorem D.11, the strategy must be modified: The additional dependence
introduced by reusing transformations means moments can no longer be factored off from
derivatives, so stronger assumptions on the derivatives are required to control terms. This

is achieved by using the symmetry assumption on f from (D.4).

Proof of Theorem D.11. Similar to the proof for Theorem D.1 (a generalised version of
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Theorem 4.1), we abbreviate ¢ = h o f and denote
Vi( ') = (Ci)le, R (i)i—le‘—h ';Yz‘+17 SR 7Yn) .

The same telescoping sum and Taylor expansion argument follows, yielding

[EA(f(X)) = BA(f(Y1,..., Y,)| = [EX [9(V; <I>X>> g(Vi(Y2)]]
<Zr ‘E[ (Vz 9( Z(Yzm )
(D.32)
and each summand is bounded above as
[E[g(Vi(@:X)) = g(ViXD]| < [ral + 57l + gl
where
1= E[(Dig(Vi(0))) (#:X; - Y,)]
=E[(D}g(V;(0))) ((@iXi)(éiX-)T -Y,Y/)]
:E[HCI’XH?’ sup || Dig(Vi(w))|| + 1Yl oo [Dig(Vi(w))|[] -

we(0,9;X]

With a slight abuse of notation, we view D,g(V;(0)) as a function R%* — R and
D?g(V,(0)) as a function R%>*4* s R Substituting into (D.32), and applying the trian-

gle inequality, shows
|Eh(f(&)‘)())_Eh(f Yla"'a } = ’lel_'_ ‘7—21’+ ‘7—31’) :

The next step is to bound the terms 7 ;, 75 ; and 73 ;. 73 ; 1s analogous to x5 ; in the proof
of Theorem 4.1. Define

M; = maX{||Sllpwe[0,<i>ixi]HD;{‘](Vi(W))HHLQ7 Hsupwe[ Y

W))HHLQ}

we can handle 73 ; in the exact same way as in Theorem 4.1 to obtain
1 3/2
6’7371" < B2 (ex + cy) M.

However, bounding 7 ; and 7,; works differently, since (<i>X Y,) is no longer inde-
pendent of (CI> X;,Y;);.; and therefore not independent of V;(0). To this end, we
invoke the permutation invariance assumption (D.4) on f, which implies the function
g(V;(+)) = h(f(V;(+))) that takes input in R*? satisfies (D.50) in Lemma D.31. Then

Lemma D.31 shows that, for each i < n and for x;;, ..., x;, € RY,
0 0
axﬂg(vim)) =T o (V.:(0)), (D.33)
9? 92
aTlglg(Vi(O)) = ... = @g(vi(o))v (D.34)
2
—8x488x' g(V;(0)) is the same for all 7 # 5,1 < r,s < k. (D.35)
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Consider bounding 7, ;. Rewrite 7, ; as a sum of % terms and denote Y,; € R? as Yiiijar
the subvector of Y, analogous to ¢,X; in $,X;. Since that (D.33) allows 8% g9(V;(0))
71

to be taken outside the summation in (a) below, we get
il = E[Y), g 9(Vi(0) (6, - Y)]
< E[@Q(Vz‘(o)) > (90X = Yy)]
O :E[ailg(Vi(O))ﬁ), WE[YY (6% - Y,)[8, \I/]]

Ewmg—vmmamwmz;wﬁﬁvm&wm

IN

<|

‘E

XL ex- vl |

ale

=: (t14) (£21) .

where to get (b), we apply conditional independence conditioning on ¢ and W, the aug-
mentations for X and Y, ..., Y,, respectively, and to obtain the final bound we exploited
Cauchy-Schwarz inequality. We will first upper bound (#2) by the trace of the variance

of the augmented (.X;). Moving the summation outside the expectation,

120 = || [EIL, (% - vu) @9l ||

#E[E[zh_m ¥, 0] B[S (0% Vo]

= \/Zh ]2—1 ¢J1X YU1 ’¢J1’ wh] [(bjin - Yij2 ‘(b]é’ ¢j2}i| :
(D.36)

In each summand, the expectation is taken over a product of two quantities, which are
respectively functions of {¢; ,v; } and {¢; ,1;,}. For j; # j,, the two quantities are

independent, and are also zero-mean since
E[E[6,X; — (Yi);|05,05]] = E[Elg,Xilo)]] - E[E[Ylv]]
= E[E[¢;Xil¢;]] — E[E[;Xy]¢;]] =0
Therefore, summands with j; # j, vanish, and (D.36) becomes

@2 = || [E[S, (6x - v)le. 0] |

= \/Zfl E [E (6% = Y05, 0] 'E[6;X; — Yy5le, %’]]

= \/E\/E [E[61X; = Yir|o1,01] 'E[61X; — Y61, ¢]]
\/E\/TrVar [E[(blxi‘(bl] — E[YﬂWlH
\/E\/TrVar [E[¢1X1|¢1] — ]E[%Xlwfl]]

—
S
=
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(©) \/ﬁ\/TrVar[E[gleﬂqblH = VEm,.

where we have used that (¢1,v,),. .., (¢, ;) are i.i.d.in (¢) and that E[¢;X,|¢,] and
E[¢1 X, |¢,] are i.i.d. in (d) and (e). Define

o= et

a%11 sild

we note that (¢17) < C;. Therefore we obtain
T < VEm,C; .

Ty; can be bounded similarly by rewriting as a sum of k? terms and making use of condi-

tional independence. We defer the detailed computation to Lemma D.29. Define

E—HHEazg ople ]|, . Fo= || 18

axllale

g(vi(0)[a, 9] ||
2
(D.37)
Lemma D.29 below shows that
Smil < KV, By 4 K mgF, (D.38)
In summary, the right hand side of (D.32) is hence bounded by
n 1 1
(D.32) < > |l + Il + 51l
< nk™?m, max C; + kY?m, max E;, + k3/2m3 max F;, + nk3/2(02 + ¢3) m<ax M.

Lemma D.30 below shows that the the maximums max;,, F;, max;, C;, max;,, D,

max; <, M; are in turn bounded by

max;o,, C; < k2 (h)ay, (D.39)
max;<, b; < k_l/g(%(h)a%+%(b)0@)a (D.40)
max,<, F; < k732 (yy(h)af + v, (h)ay), (D.41)

That yields the desired upper bound on (D.32),

[ER(f(DX)) — ER(f(Y1,...,Y,))|
< nyy (h)aymy + nwy(n, k) (v (h)ad +y1(h)as) + nk3/2)\h(n, k)(cx +ey) .

which finishes the proof. [

We complete the computation of bounds in Lemma D.29 and Lemma D.30.

Lemma D.29. The bound on |1, ;| in (D.38) holds.
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Proof. Rewrite 7, ; as a sum of k? terms,

il =E[ Y o g(Vi0)) (6, X0 (6,X)T — (Y,,)(Y,))]. (D43)

271 ]2
Consider the terms with j; = j,. (D.34) says that the derivatives are the same for j; =

1,...,k and allows 33—101 g9(V;(0)) to be taken out of the following sum,
17147

B[ Y, sz a(ViO) (0,X)(0,X)" = (Y5)(Y;))]

= E[%Q(Vz(o)) ijl ((¢in)(¢in)T a (Y”)(Y”)T)]

B E[E[j_iﬂvi(o))ﬁam[z’? ((6:X0)(0,X0)T = (Y;)(Y3)T) |2 ]

| 125 a2 9V HH (D1

=B ijl HT]’J'HHLQv (D.44)

where we have used conditional independence conditioning on ® and VU in (a), defined
E; as in (D.37) and denoted

T, = E[(¢;,X)(6,X) " — (Y3;,)(Yy,) |2, ‘I’}
= E[(¢j1Xi)(¢j2Xi)T’¢j1’ ¢j2] [ 2)1 ij2 T’¢j1’ ij]
= E[(¢j1xl)<¢j2X1)T‘¢j1’ (bjz} [(thl wﬂz ‘wh’ wh] :

Consider the terms in (D.43) with j; # j,. (D.35) says that the derivatives are the same
for 1 < j;, 7o < k with j; # js, so by a similar argument,

B[S, ., e 9(VA(0) (6, X0(6, X0 = (¥,,)(¥,) )]

171 )2
2
E[ax 10%; 29(Vi(0>) Zjﬁ% ((¢11Xi)(¢jgxi)T - (Yijl)(Yijz)T)}
o’ .

= E[E[ 550 (Vi) |8, WIE[S, | ((6;,X)(6;,%) = (Y45, (Yy5,) )] &, ]|
62
0;11:11a0%21:424 Lo H Zjﬁéjz Hlej?” HLQ

= E H Zjﬁg]é ||Tj1jz|| HL2 ) (D.45)
where we have used F) defined in (D.37). To obtain a bound for (D.44)and (D.45), we
need to bound || Y% _, ITy511][ , and || 32

IA

<l e 9(Vi(0))|2, 9] |

i 15 | HL To this end, we denote

A, = vec(E[(0:X1)(9:X1) 61]), Ay = vee(E[(0X0) (1 X0) " [vn]),
B, = vec(E[(¢1X1)(¢2X1)T|¢1,¢>2]), B, = VeC(E[Wle)(%Xl)TWu%D,

where vec({M,s}; j<a) = (Myy, Ms, ..., My) € R% converts a matrix to its vector

representation. Then WLOG we can write Ty; = Ay, — A, T, = B, — B,,. Before we
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proceed, we compute several useful quantities in terms of T’s. Recall that

Varl (¢1X1)r(¢1x )s|®
- \/er<d : [ 1 | 1]’
\/Z s<d 12VarE[(gz51X1 (P2 X ‘¢17¢2] .

Since A, and A, are i.i.d.,

E[|| T[] = E[|Tul]"] = E[T«(T,T1)] = TE[T, T}
= Tr(E[A,A;] - E[A,A)] - E[A,A;] + E[A,A])
= 2Tr(E[A,AS] — E[AGE[A]T)
=2 ZT o1 (El(Ay)7] —E[(Ay),])
=2 Z _ VarE [(61X0), (91X )| d1] = 4(ma)*. (D.46)
Similarly by noting that B, and B, are i.i.d., for j; # j,

E[|T E[|| Ty |] = T[T, TH]
= TT(E[quB; | - E[ByB,] - E[B,B,] +E[B,B;])
- 22 ( Bqﬁ rs] - E[<B¢>r5]2)

=23 VarE[(6,X),(6:X) 0] = 5(my). (D7)

'] =

On the other hand, by Cauchy-Schwarz with respect to the Frobenius inner product, for
J1 7 Jpand by # Iy,

[EITe(T,,, D] < (B[ /Tr(T,, T /1T, 7))

< \/ETH(T;,,, T} )\ /ETe(T,,,, T}, )

1
= VEITPIVENTLT < o2, @49

which can be computed using the above relations for each 7, j5, 1, l; < k. Moreover we

note that, since E[A,] = E[A,] and E[B,] = E[B,)] this directly implies that E[T,;] =
k k

E[T 5] = 0. We are now ready to bound || D i HTjo”L2 and H > =1 1T HLQ:

ISl |, = B ) (5, 1) )]

k a) k (b)
- \/ > TET,, T \/ > TE[T,; T ;1= 2V kms,
and (b) uses (D.46). On the other

where (a) uses the independence of T; ; and T,
hand,

J2,J2°

H H Zh;ﬁh J1J2H H = \/Zh#h LA, TI‘E TthTT ] (D.49)

Consider each summand in (D.49). If j;, j», (1, [, are all distinct, the summand vanishes
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since T, ; and T, ; are independent and zero-mean. Otherwise, we can use (D.48)
and (D.47) to upper bound each summand by %(m3)2. The number of non-zero terms is
k' — k(k —1)(k —2)(k — 3) = 6k — 11k* + 6k < 6k3 + 6k < 12k3, so (D.49) can be
upper bounded by 2k%/?m;. In summary,

sl < 5Bl Tl + 513, L 1Ty, S K2maBr 4 k2my F,

which finishes the proof. [

Lemma D.30. The bounds (D.39), (D.40), (D.41) and (D.42) hold.

Proof. The argument is mostly the same as Lemma D.27, except that we use the permu-
tation invariance assumption (D.4) and Lemma D.31 to handle C;, F; and F;. To obtain

(D.39), note that the vector norm || « || is a convex function, so by Jensen’s inequality,

§ SHE[ °>>H\<f>ﬂlf}

15)
Ha—ﬂg“’

Pt

= [z
o 8Xi1
In the last equality (a), we have invoked the permutation invariance assumption on f and

Lemma D.31, which implies that

2 2
VElozavio| = B} W) = &2 VETD VAN
This allows us to apply a similar argument to that in Lemma D.27. By chain rule, almost
surely, D;g(V;(0)) = 0h(f(V,(0)))(D;f(Vi(0))). For a random function T : R —
R and m € N, define

2

Cin(T) = max { | supy, 0,5 T, » || stPweiozy TOW)|l,, }-

which is analogous to the definition of (;.,,, in Lemma D.20 and satisfies all the properties
in Lemma D.20. Then

1 ID VAN s £ CallDig V(D)
< Co(Jon(FVANDF V(D) < Caln WDV )]])

2 WDV < n(h)ay

where we have used Lemma D.20 for (a) and (b). Therefore we obtain the bound (D.39)

as _
<k 1/271(]1)041

max; <, C; < max;<, kT [ [1Dsg(Vi(0)]| |z,
To obtain (D.40) for the second partial derivatives, we use Jensen’s inequality and Lemma

D.31 again to get

5 = | [l

ox3 g
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_(Hbﬁg ¢%§j4 meﬂr
S%J;%%w V)| = J 1 ID2 Vi) I,

By the same argument for the mixed the derivatives, in (D.41),

—WE QWWMQMM%S

H Haxﬂang HH

({‘)Xdax i2

< __?TW\ o)l Iz, -

H HD? g(Vi0)]| || 1, is bounded similarly in Lemma D.27 except that we are bounding

an L, norm instead of an L,; norm.

[11D7g(ViO)II][ ]

< Cé(HDi29<Vi('))”)

2GRV MDAV + or(F VA IDEFV)])
scx%wm < VDW+%(mWﬂVw»D

(

% Y2 (h) GUID (W )ID? + 7 (R) GUIDEF (W)
< yo(h)ai + 7 (h)ay ,

—~
=

where we used Lemma D.25 to obtain (a) and Lemma D.20 to get (b). Therefore, the
bounds (D.40) and (D.41) are obtained as

max;<y E; < kil/Q(%(h)Oé% + 71(h)042) ,  MaX;<, F; < k73/2(72(h)04% + 71(]1)042) .
Finally for (D.42), recall that

W))HHL2}

and notice that it is the same quantity as M, from Lemma D.27 except that W is replaced

M; = maX{Hsupwe[ &,X, [Subyep.y,

DL

by V,, ®,X, is replaced by ®,X; and Z; is replaced by Y,. The same argument applies
© oi
o 8ive max;<y M,; < )\h(na k) )

which completes the proof. [
Finally we present the following lemma that describes properties of derivatives of a
function satisfying permutation invariance condition:

Lemma D.31. Suppose f € F(R* RY) is a function that satisfies the permutation in-

variance assumption

f(Xl, . ) = f( (1)s -+ - 7X7r(k:)) (DSO)
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for any permutation 7 of k elements. Then at 0 € R, the derivatives of f satisfy, for

Xi,..., X, € RY
. 9 . _ 9
() A f(0) = .. = 1 (0),
(ii) {;’—x% (0):...:88—)(13 (0),
(iii) 8x?2xsf(0) is the same forr # s, 1 <r,s < k.

Proof. For j < k,l < d, denote e;; as the ((] —1Dd+ l)th basis vector in R¥? and T as
the /th coordinate of x,;. Without loss of generality we can set ¢ = 1, because it suffices
to prove the results coordinate-wise over the ¢ coordinates.. Consider 84:;_ f(0), which
exists by assumption and can be written as

o1 10) = (52-1(0) .. 52 1(0)

ale

For each [ < d, the one-dimensional derivative is defined as

% (0) = limeﬁo—f(eejl)_f(()) @ hme—>of(ee”)_f(0) = 0 f(0>

€ € 0xq;

In (a) above, we have used the permutation invariance assumption (D.4) across 7 < k.

This implies % (0)=...= 3%;9 (0) as required. The second derivative a% f(0)isa

R% matrix with the (I, 1,)™ coordinate given by 5—%— _lagz — f(0), which is in turn defined
Jby Jto
by

0? _ ﬁf@eﬂz) - ﬁf(o)
mf(o) = lims g 5

(b) lim;_,olim (f(oe;,, +ee; ) — f(de;,)) — (f(eej,) — £(0))

- —0 €e—0 €

(:C) limg_lim,_,q (f(deyy, +eeqy,) — f(dey,)) — (fleey,) — £(0))
— €E— 6(5
82

- 8x1128x151 f(O)

We have used the definition for the first derivatives in (b) and assumption (D.4) in (c).

This implies, as before, % f(0)=...= % f(0). For the mixed derivatives, notice that
1 k

assumption (D.4) implies, forr # s, 1 <r,s,< kand 1 <1[;,l, <d,

f(de,, +eey ) = f(dey, +eey ),

by considering a permutation that brings (r,s) to (1,2). Therefore, by an analogous

argument,
82 X ax{ill f(5e8l2) - aﬁll f(O)
mf(o) = lims g 5
_ 1 . (f((seSZQ =+ Eerll) - f((seslg)) - (f(eerll) - f(O))
- 1m5~>0hm6~>0 0
0 . (f(0eqy, +eeq ) — f(deyy,)) — (f(eey,) — f(0))
- 1m5—>0hm6~>0 0
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02
N al’uﬁ%zl F0).

This implies 8x82x f(0) is the same for r # 5,1 < 7,5 < k. O

D.6 Derivation of examples

Different versions of Gaussian surrogates are used throughout the computation in this

section. For clarity, we denote X;.,,,, '= {Xi1,- .-, X, } and define

W(') = ((plxlv"'aq)iflxiflv '7Zi+17"'azn)7
W(') = (le"'vxla'7Zi+17"'7zn)7

where:

« &, X,,...,9,X, € D" are the augmented data vectors and Z, . .., Z,, € D are the
ii.d. surrogate vectors, both defined in Theorem 6.1 (corresponding to Z? defined
with 6 = 0 in Theorem D.1);

« X,,...,X, € DF are the unaugmented data vectors (k-replicate of original data)

whereas the surrogate vectors are denoted Zl, R Zn € D*, both defined in (6.7).

As before, we write ®X = {&,X,,..., &, X, }, Z ={Z,...,Z,}, X = {X,,...,X,,}
and Z = {Zl, cee Zn} In the case Z and Z are Gaussian, existence of Z and Z is auto-
matic when Z; and Zi are allowed to take values in R? and the only constraints are their
respective mean and variance conditions (6.1) and (6.6). Therefore, we omit existence
proof for all examples except for the special case of ridge regression in Appendix D.6.3.
Finally, for functions f : D" — R?and g : D — RY, and for any s < ¢, we use
fs: D™ — Rand g, : D — R to denote the s-th coordinate of f and g respectively.

D.6.1. Empirical averages

In this section, we first prove Proposition 6.7 by verifying that for the empirical average,
the bounds in Lemma D.2 and D.3 decay, and by computing the relevant variances and

confidence intervals.

Proof of Proposition 6.7. We first apply Lemma D.3 to compare the distance in dy of
f(@X) to f(Z). To do so, we need to compute the noise stability terms for f(X;1.,) =

43 Z?Zl x,;. We first compute the derivatives: for any v € R%, almost surely,
Dif(Wi(v)) = —(Ip... . )T €R™  and  D}f(W,(v)) = 0.
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Then, for all m € N we have

ain = D maxmax{ || swp ALV, s 0w}
SS =n WE[O,@Z
1 - d
= ngd%H(IdP”’Id) eSH e —nkl/Q’

and the noise stability terms associated with higher derivatives are as,,, = as,, = 0.

Since d is fixed and ¢;; X, and Z; have bounded 4th moments, we get

Cx = é EllgnXy[|® =0(1), ¢z = é\/]E[<%Z]‘Sk,SSd|Z1jS|2>3:| = o).

Therefore, the bounds in Lemma D.3 (concerning weak convergence) with § set to 0

become, respectively,
(”k)3/2(”(a1;6)3 + 3nl/2a1;4a2;4 +ago)(cx +cz) = O(n™'?). (D.51)

Note that while the above calculation uses ®,X;, Z,, W, in the case of augmentation, the
same calculation holds for f(i, Zi, V~Vi in the case of no augmentation. Therefore, (D.51)

and Lemma D.3 lead to the required convergence in (i) that as n — oo,

dy (Vi f(®X),/nf(Z)) S0, dy (Vi f(X),Vnf(Z)) %

To prove the statements on variances and confidence intervals, we first note that the
equality in variance can be directly obtained by noting that moments of Z; match mo-

ments of ®,X;, which implies
1 1 k
Varf(®X) = Var[ 3 0X0| = Svar[ 3 7] = varf(2).

The same argument implies Var f(X) = Varf(Z). The next step is to obtain the formula
for variances and asymptotic confidence intervals. Since Z; is Gaussian in R% with mean
141 ® p and variance I, ® Var[¢; X ] + (1 — I;) ® Cov[p1 X4, ¢15X,], we have

S Zy= 1 (1 1) 2~ N (Elpn X)L V)

k copies of I;

where 1 k—1
V= EV@I[¢HX1] + TCOV[¢11X1> P12X4].
We also remark that as the Gaussian vectors (Z, ..., Z, ) are independent, the empirical
averages % Zle Zyj,..., % Z§:1 Z,,; are also independent. This directly implies that
1 n k 1
= — > ijl Z;; ~ N (E[¢p1,X,], EV) . (D.52)

This gives the desired variance for f(Z). On the other hand, since each 7, is a Gaussian
in R% with mean 1,,; ® E[X;] and variance 1, ® Var[X,], it can be viewed as a k-

replicate of a Gaussian vector V; in R? with mean E[X] and Var[X,]. By independence
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of Zi’s, V,’s are also independent and therefore

= Ly Zj‘:l Zy £ L3 Vo~ N(EX] S VarX))), (D53)
giving the variance expression for f (?3 ). Finally, for d = 1, the normal distributions
given in (D.52) and (D.53) imply that the lower and upper «/2-th quantiles for f(Z) and
f(Z) are given respectively as

1

Elp;1 X,] £ \/_ﬁza/2\/v = Elp Xy] = ;ZQ/Q\/ Var[X,] ,

I(f)*n
El¢1X,] £ \/Lﬁza/2 Var[X] .

These quantiles are asymptotically valid for f(®X) and f(X) respectively since con-
vergence in dy; implies convergence in distribution by Lemma 6.3, which finishes the

proof. O]

D.6.2. Exponential of negative chi-squared statistic

In this section, we prove Proposition D.13 for the one-dimensional statistic defined in

6.13):
( ) f(wlb s xnk) eXp ( (\/%k Zign Zjﬁk 'Tij)Q) )

We also state a 2d generalisation of this statistic used in our simulation and prove an
analogous lemma that justifies convergences and analytical formula for its confidence

regions.
Proof of Proposition D.13. For convergence in dy, and variance, define
_ 1 2 ; (1

Then, the required statistic in (6.13) satisfies f(211.,1) = /7f (Z11.01), and applying

Lemma D.7(ii) with ¢ set to 0 to f and g will recover the convergences

dy(Vnf(2X),Vnf(2)) = du(f(2X), [(2)) .
n(Var[f(®X)] — Var[f(2)]) = Var[f(®X)] — Var[f(2)] .

It now suffices to compute the noise stability terms v/,.,,,(¢) used in Lemma D.7(ii) defined

for g. The derivatives for g can be bounded by

dg(z) = —2n*2zexp(—na?), ?g(x) = —2n"% exp(—na?) + 4n®22% exp(—na?),
Pg(x) = 12032z exp(—na?) — 8n*%2® exp(—na?) .

Note that exp(—nz?) € [0,1] for all € R, so only z, 2% and x3 play a role in the bound

wl], |

for vy,,,,. The noise stability terms can now be bounded by

Y

o = | oo,

i<n
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7n

i<n

SUPwe(0,2;] ‘WZ(W) | HL }

(D.54)

< 2n'? maxmax { Hsupwe[

S 2n1/2

We need to bound the absolute value of W,(w). Define A, = Zle ¢#; X and By =
25:1 Z;;, and write Z = [0, ®,X,] U [0, Z,]. Then by triangle inequality,

H sup [W(w)| ‘ (D.55)
weL
1 i—1 k n k
"k ir=1£j=1 "7 X+ Zj=1 Wi+ Zi’:i—l—l ijl Zy, ‘Lm
1 i—1 k n
= k|| PPwer ’ Zi’=1 Av t Zj:l Wit Zi/:i+1 By Lp,
1 i—1 n
< — 1> Av| + max{|A,[,|B;|} + }Zi,:m B, | ‘Lm . (D.56)
Note that A, ..., A,_; are i.i.d. random variables with zero mean and finite 12th mo-

ments by assumption. Also, for m < 12, by triangle inequality,

1Az, <> 160 Xillr,, = Ok).

Rosenthal’s inequality from Lemma D.21 implies, for m < 12, there exists a constant

K, depending only on m such that

b, < Knmax {0 [[A], LA} = OWE).

11 <q
The exact same argument applies to B, ¢, ..., B,,, implying that
IBillz, = O(k), 1> .. = O(n'?k).

Substituting these results into (D.56) gives the following control on W, (w):
O(Tb_l / 2)

Isupwer [Witw)lll,, = ,
and finally substituting the bound into (D.54) gives, for m < 12,
Vl;m - O(l) .

The arguments for v,.,, and ., are similar, except that v,.,, involves 22 and vs.,, involves
2m 3m 2:m 3;m

a3, Vs, then requires bounding terms of the form

(120 Al + max{ AL B} + Y., By

)2

2 0 1
L2m B <n ) ’

[ sup [Waw)[ll,,, < 7

Lm
i—1
i'=1

5!

B
i'=i+l "

2k
where the argument proceeds as before but now hold only for m < 6. vs,, similarly
requires controlling

i—1
=1

[ supaer [Witw) "], <1 Tl
m
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=0(n~?),
which holds now for m < 4. Therefore,

Vo = O(n'? + 0% x n™1) = O(n'?) form <6,

Vaim = O<n3/2 X n_1/2 + n5/2 X n_3/2) = O(n) for m <4.

Note also that the moment terms ¢y = O(1) by assumption and ¢, = O(1) since the
4th moment of a Gaussian random variable with finite mean and variance is bounded.
Moreover, g(z) = = exp(—na?) € [0,n7Y/?] and therefore vy, = O(n~*/?) for all

m € N. The two bounds in Lemma D.7(ii) then become:
(n71/2yi6 + n71V1;4V2;4 + n73/2y3;2) (cx +¢z) = O(nfl/Z) )
n (0.4(9)vs:a(9) + via(9)v2a(9)) (ex +ez) = O(n™?)

both of which go to zero as n — oco. Applying Lemma D.7(ii) to f then gives the desired
convergences that

z z d

f(@X) = f(2) = Vn(f(2X) = f(Z)) = 0,

3 3 d

Var(f (DX)] - Var[f(2)] = n(Var[f(@X)] - Var[f(2)]) % 0.

The exact same argument works for X and Z by setting ¢;; to identity almost surely and
by invoking boundedness of 8th moments of X; and E[X;] = 0. Therefore, the same
convergences hold with (PX', Z) above replaced by (X, Z).

Next, we prove the formulas for variance and quantiles. Recall the function V' (s) =
(1+ 4s?)~Y2 — (1 + 25%)~! and the standard deviation terms

~ 1 k—1
o = /Var[X,], 0 = \/EVar[@le] + TCOV[¢11X17¢12X1] :
Recall from (D.52) and (D.53) in the proof of Proposition 6.7 (empirical averages) that
1 n k 1
Ezizl Zj:l Zij ~ N(E[¢11X1]a 502) = N(0> o ) )
1 n k5 1. _
% ZiZl ijl Z?,j ~ N(E[Xl], 50'2) = N(O, EO' ) .
Thus, the following quantities are both chi-squared distributed with 1 degree of freedom:
1 1 1 n k 2
——log f(2) = ;(W D2 L)
1 = 1 1 n kg5 \2

Let U be a chi-squared distributed random variable with 1 degree of freedom. We can

now use the formula of moment generating functions of 3 to get

Var[f(Z)] = Varlexp(—0?U)] = E[exp(—20°U)] — E[exp(—c>U)]?
= (1+40?) 2~ (1+20%)7" = V(o),
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as desired. The same argument gives the desired variance for the unaugmented case:
Var[f(2)] = V(5),
and the ratio ¥( f) defined in (6.8) can be computed by:

— Varlf(2)]Varlf(2)] = VV(E)/V(o).

Finally, notice that (7, 7, ) are the lower and upper «/2-th quantiles for the quantities in

(D.57). The corresponding quantiles for f(Z) and f(Z) then follow by monotonicity of
the transforms = — exp(—o2x) and z — exp(—a2z): They are given by

(exp ( — 027ru), exp ( — 0271)) and (exp(—&Qﬂu), exp(—&27rl)) ,

as required, and are asymptotically valid for f(®X) and f(X) respectively since conver-

gence in dy, implies convergence in distribution by Lemma 6.3. ]

We next prove Lemma D.14 concerning the 2d generalisation of the toy statistic
(6.13):

fo(Xi1mg) = ijl exXp ( - (ﬁ Z?Zl ijl xij8)2) :

Proof of Lemma D.14. The proof for (i) is similar to the 1d case. Recall that in the proof
of Proposition D.13, we have defined g(z) = L exp(—nz?). Define g, : R* — R and

By vn
fo i R?" 5 Ras

2

< 1
Then as before, fo(X11.01) = /7fo(X11.5), and applying Lemma D.7(ii) to f, and g,

will recover convergences for

d%(\/ﬁfz(@){)a\/ﬁfz(z)) = d%(f2(q)X)>f2(Z))’ (D.58)
n(Var[fo(®X)] — Var[f,(Z)]) = Var[fo(®X)] — Var[f,(Z)] . (D.59)

To compute the noise stability terms for g, recall from the definition in (D.3) that

7 ) 1 i—1 k k n k 9
WZ(W) = % ( Z’i’:l Zj:l ¢21]X’L’ + Zj:l W] + Zi'=i+1 Zj:l ZZ’]) - R- .
Denote its two coordinates by W ; (w) and W ,,(w). Then by linearity of differentiation

followed by triangle inequality of (;.,,, from Lemma D.20,

Vr;m(92) = maXKnC@m(HargQ( * )H)
= maXiSnCz‘;m(ngg(W‘ (')) +0"g (Wi« )”)
< maXi<n<@'m(H@T~g(Wﬂ ° H) —|—max2<n§2m Har )H)

1 2
= vim(g) + vin(g)
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Note that V,El,n)n(g) is v,.,,(g) defined with respect to the sets of 2d data ®X" and Z but
restricted to their first coordinates, and u@z (g) with respect to the data restricted to their
second. The model (D.6) ensures existence of all moments, so the same bounds computed
for v,.,(g) in the 1d case in the proof of Proposition D.13 directly apply to V,g;l,%(g),
V7(27)71(g) and consequently v,.,,(g2). Since we also have c,,c; = O(1), the bounds on
(D.58) and (D.59) are O(n~'/?), exactly the same as the 1d case. Applying Lemma

D.7(ii) proves the required convergences in (i) as n — oo as before.

For (ii), by Lemma D.19 and linearity of ¢,;, ¢,

Cov[py1 Xy, 019X, = ECov[dy Xy, 1oXo[¢11, ¢12]
1+ p)o®
= E[¢y]Var[Xy|E[¢1y] = %1%2 .
Meanwhile, note that ¢;;X; £ X, which implies that Var[¢;; X;] = Var[X;] = o2 (ll, )
and E[¢;,X,] = E[X;] = 0. Substituting these into the formula for moments of Z; from

(6.1) gives the mean and variance required:

1 2
EZ, = O, VarZ, = ¢°’I, ® (,1) ’1’) + ( +2p)0 (L — Ii) ® Loys

Similarly, substituting the calculations into the formula for moments of Z,; from (6.6)
gives E[Z;] = 0 and Var[Z,] = 621, ® (}) 7).

To compute (iii), first re-express the variance of Z; above as

1—p p—1 2
- 5 14+ p)o
VarZ, = o0’I;, ® ( 2 132) + %12kx2k
2 2

(1+p)o?
2

(1-p)o? 1 -1 2 1 -1 2
le ® (—1 1 ) + lopwor = 021, ® (—1 1 ) + 03 1opscon

Notice that the structure in mean and variance of Z; allows us to rewrite it as a com-
o . . . . j.i.d.

bination of simple 1d Gaussian random variables. Consider U,; " N(0,02) for
. . j.i.d. . ,

i <n,j < kandV,; "< N(0, 02 ) independent of U,;’s. Define the random vector

in R% as

& =Un+Vy, Uy +V, Uy +V, U+ V... Uy + V, — Uy + V) T
Since EZ,; = E¢; and VarZ, = Var§;, we have ¢, L Z,;, which implies

fo(Z2) = fal&rs-- 0 60)

exp ( - (ﬁ Zm(Uij + Vi)>2> +exp ( - (ﬁ Zm(_Uij + Vi)>2>
— exp(~5,) +exp(~S_) |

1=
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and therefore

Var(f,(Z)] = Varlexp(—S, )] + Var[exp(—S_)] + 2Cov[exp(—S, ), exp(—S_)] .
(D.60)
Notice that S, = fk >ij(Uy+V;)and S_ fk >:j(=U;+V;) are both normally

distributed with mean 0 and variance 0% = — —1— o2 . This means =% 5+ and U— are both
S S

chi-squared distributed with 1 degree of freedom, and the formula for moment generating

function of chi-squared distribution again allows us to compute
Elexp(—S,)] = Elexp(—=S_)] = (1 +20%)""*,
Var[exp(—S, )] = Varfexp(—=S_)] = (14 402)" "2 — (1 +20%)7!

Moreover, write U := ﬁ Z” U,; ~ N(0, %) and V = \/Lﬁ Zign V; ~ N(0,0%).
We have

Elexp(=S, —S_)] (—(U+ V) = (-U+ V)]
(—2U0% - 2V?)] = Elexp(—2U?)|E[exp(—2V?)]

1/2
i

Elexp
E [exp
(1

which implies
Covlexp(=S,),exp(=S_)] = Elexp(=S; = S_)] — E[exp(—S.)]E[exp(—S_)]
= (1) a2

Substituting the calculations for variances and covariance into (D.60), we obtain

Var[f,(Z))]
= 2((1+408) 2 — (14 208) ) +2((1+ ﬁ)mu +403) 72— (14 203)7")

/2
= 2(1+40%)7 V2 ¢ 2(1 + —) (1+402)712 — 4(1 + 202)7"

1/2 402

2\ 12 _ 202 _
+2(1+25) (o) - a1+ 2= 200

40’% 2
= 2<1+T+40+> B

which is the required formula. [

D.6.3. Ridge regression

In this section, it is useful to define the function g5 : M x R4xb _y RAxD.
gp(2,A) = 271A (D.61)

which allows the ridge estimator to be written as

A

B = B(dX) = gB(% Ziﬁj(mjvi)(m-jvi)ﬂ%Z”(W Vi), Y5) )
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Similarly, we can use gp to rewrite the estimator with surrogate variables considered in

Theorem 6.1 and the truncated first-order Taylor version in Lemma D.7:

R 1 A 1
BZ = gB(E Zi,j ZZ]) and BT = gB(/L) + agB(M)(% Ziyj ZU - 'u) ?

where p1 = (i, pp) = (E[(W11V1)(7T11V1)T]uE[(Wllvl)(TnVl)T])- Similarly, con-
sider the function g, : M? x R¥® — R defined by

gR(EvA) = E[”Ynew - (i_lA)TVnewH%] . (D62)
This allows us to write the risk as
1 1
R* = 9R<% Z” (Wijvi)(ﬂ'ijvi)Ta Tk L—ij (Wijvi)(Tz‘jYz’)T> 5

while the estimator considered in Theorem 6.1 and the first-order Taylor version in

Lemma D.7 become

1 1
R? = QR(% Zl] Zy;), and R" = gp(p) +89R(’u)(% Zw Zij = 1) -

In this section, we first prove

(i) the convergence of B*¥ to BZ and B7, and the convergence of R®* to RZ and
RT, with each convergence rate specified, and

(i1) existence of surrogate variables satisfying those convergences.

The proof for (i) follows an argument analogous to previous examples: we compute
derivatives of the estimator of interest, and apply variants of Theorem 6.1 to obtain con-
vergences. The results are collected in Lemma D.32 in Appendix D.6.3. The comment

on different convergence rates in Remark 6.3 is also clear from Lemma D.32.

(i1) 1s of concern in this setup because the surrogate variables can no longer be Gaus-
sian. Appendix D.6.3 states one possible choice from an approximate maximum entropy

principle. Combining (i) and (ii) gives the statement in Proposition 6.8.

Finally, Appendix D.6.3 focuses on the toy model in (6.15). We prove Lemma 6.9,
which discusses the non-monotonicity of variance of risk as a function of data variance.
We also prove Lemma D.35, a formal statement of Remark 6.3 that Var[R®*] does not

converge to Var[R”] for sufficiently high dimensions under a toy model.

Proof for convergence of variance and weak convergence

Lemma D.32. Assume that max,, max{(my; Vy);, (111 Y1),} is a.s. bounded by C for
some T to be specified and some absolute constant C > 0, and that b = O(d). Then, for
any i.i.d. surrogate variables {Z;} <, taking values in (M¢ x R>®)* matching the first
moments of ®,X, with all coordinates uniformly bounded by C'7* a.s. for some absolute

constant C' > 0, we have:
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(i) assuming T = O(1) and fixing r < d, s < b, then the (r, s)-the coordinate of B®*

satisfies
dy (Vn(B™), .vn(BT), ) = O™ 2d%)
du(Vi(B*Y), Va(B?),)) = O )
(ii) assuming T = O(d~/?), then B®* satisfies
n|[Var[B*¥] — Var[B”]|| = O(n~V2d" +n~'d%)
n||Var[B**] — Var[B7]|| = O(n™'d") ;

(iii) assuming T = O(d~'/?), then R®¥ satisfies

dy(VnR™ W/nRT) = On™"2d) , dy(VnR*™,V/nR%) = O(n~'/*d) ,
n(Var[R®*) — Var[R"]) = O(n Y2d" +n~'d®) ,
n(Var[R**] — Var[R?]) = O(n~'d") .

Remark D.S. In the statement of weak convergence of the estimator B® we only con-
sider convergence of one coordinate of B®¥ since we allow dimensions d, b to grow with
n; this setting was discussed in more details in Lemma D.4. The assumption 7 = O(1)
for (1) is such that the coordinates we are studying do not go to zero as n grows, while the
assumption 7 = O(d~'/2) for (ii) and (iii) is such that ||;; V|| and |7, Y| are O(1) as

n grows, which keeps || B®¥|| and R** bounded.

Remark D.6. The difference between the convergence rate of Var[ R®?] towards Var[R”]
and that towards Var[R] is clear in the additional factor (n'/2 4 d) in Lemma D.32(ii).
If we take d to be ©(n®) for 1 < o < 1, we are guaranteed convergence of Var[R**] to
Var[R”] but not necessarily convergence of Var[R*?] to Var[R”]. Note that the bounds
here are not necessarily tight in terms of dimensions, and we discuss this difference in

convergence rate in more details in Appendix D.6.4.

Proof of Lemma D.32(i). We first prove the weak convergence statements for (E‘M )rse
Let e, be the r-th basis vector of R? and o, be the s-th basis vector of R®. We define the
function gp.,, : M? x R*>? — R as

gB;'rs(EaA) = e'rTgB(EaA)Os = ejiiles )

i.e. the (r, s)-th coordinate of 5. The (r, s)-th coordinate of B*¥, BZ and B can then

be expressed in terms of g, similar to before:
AOX 1 T 1 T
(B ),,’s = UB;yrs <E Z” (Wijvi)<7rijvi) s Z” (Wz'sz')<Tz‘jYz') ) )

A 1 A 1
(BZ)T’S = gB;rs(% Zi,j Zz]) ) (BT)T’S = gB;rs(N) +agB,7“s(:u)(% Zi,j Zij - :u) .
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To obtain weak convergence of (B*¥), , to (B?),, and (BT),, it suffices to apply the
result for the plug-in estimates from Lemma D.7 with § = 0 to the function gp.,, with
respect to the transformed data ¢;;X; == ((m;;V,)(m; V) T, (m; Vi) (m Y) 7).

As before, we start with computing the partial derivatives of gp.,(2, A), which can
be expressed using > =Y 4 A, and A as:

gB;Ts(ZJ A) = e:iilesa
893;7'3(27 A) Tw—1 TS-—1 agB;T.S(Z, A)
oy = e X eye,X Ao, —or——

7151 7151

0?9p..5(2, A) ~ - -
’ 1 T o1 T -1
—_— E e e. e, X e. e, x Ao
0%y 5,055, Llae{1,2y h#l, T Ty 78y Ty Sy s

8293;7’5(27 A) < — — 8293 TS(Z A)

Ty—1
= € by €, ]I{s:sl}v

T 1 T -1
——— = —e, X e.e, n e Il —F— =20
82T1318AT232 r r sy rot{s=so}» 8AT1518 rass ’
8393 rs(ZaA) N N
_ T a1 T a1
E G ) - _211712,136{17273}63 5 eTz esz 5 €r, €5 by €8s % Ao,
T181 T8y T3Sy l1,l5,l5 distinct ! 2z 3
a gB"rs(EvA) S N S
, . To-1 T &-1 T &-1
5%, 0%, 94 = Dtnezning O On 8 e ey X e Iy

T181 T2S82 383

(D.63)
To bound the norm of the derivatives, it is useful to have controls over the norms of n-t
and A. Suppose the coordinates of A are uniformly bounded by C'72 for some absolute

constant C' > 0, which is the case when we compute the derivatives in v,.,,,. Then since
b= O(d), we have

[l < 14 = 0(dr), [ Ao,|l = O@*7),

-~ 1
”EHop = ||Z+/\Id||op = m = 0(1)7

where o, > 0 is the smallest eigenvalue of the positive semi-definite matrix A. We also

note that for any matrix M € R™*"2 and vectors u € R"2, v € R"3,
[Mul| < [[M][gp ]l , lav "o, < Jullv]l-

Making use of these bounds, we can bound the norms of partial derivatives of g as fol-

lows:

H agB;rs(Za A) H
ox

270, llled, ST AL < IZ7M 5 1All, = O@dr?) .

181
We can perform a similar argument for the remaining derivatives. It suffices to count the

number of A in each expression and use the bound ||4]|,, < ||A]| = O(d7?):

‘ a2gB;rs(Z7A ‘ gB re(z A) ‘ gB TG(Z A) =0
aArlslaszez azrlslaArzsza T353 aArlslaArszaArg;sg, -
0 TSEA 02 TSZA Pgp.s(E, A
H 9B; H gB H 9B;rs(E, A) — 0(1),
7"151 7"252 azrlsla rzszaAr3sa
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aQQB;rs(E,A gB TS(E A)

99p.rs(2, A)
l950e(S: A, | 2255 =2 |Gz (g e = || = oar)
TS 7181 T9So 7‘181 r252 T383
This implies
agB re Z A 3g3 m E A)
HagB;Ts(Z7 A)” = \/Zrl s1=1 azﬁs H Zrl—l Zsl—l aArlsl H
= O(d*7* + d)
d
8gTsEA 829T§EA
Ha2gB;Ts(ZaA)|| - Z H 823 Z Z ‘ -
71, 7151 7‘262 r1,81,r9=1 so=1 7151 7252
81,59=1
= O(d’1* + &%),
3g(%, A 2
795,540 = | > o505 o5 Ly EEI\\az
T1,79,T3 151 7252 7363 T1,72,73; 85 7151 7252 7353
51,5,535=1 51,59= Y

= O(d'7* + d%) .
Recall that the noise stability terms in Lemma D.7 are defined by, for § = 0,

Fism (g ZII sup 10wl vins Zmaxém 19°9: (W) 1),

where ¢ = 1 in the case of gp.,, and the moment terms are defined by
_ d db 1k . 1/2
e = (S max {n 0 o Xi = w0 X —ullly})

1 1 1 Z111 P + - [ Zgazan P\ 2
ex = gVElouXi[F. %ZE%Q(M e

By the bounds on the derivatives of gp.,., from above, we get

Ho3m(gB?T5)’ Vo?m(gBﬂ"S) - O(dTQ)a Hl;m(gB;rs)a Vl;m(gB;rs) = O(d27'2 +d),
FLQ;m(gB?TS)’ VQ%W(QB;TS) = O<d37—2+d2)7 ’%3;m(gB;rs)> V3;m(gB;rs) = O(d47—2+d3)7

and since the coordinates of ¢;X; and Z, are uniformly bounded by C"72 for C" =

max{C, C'} almost surely, we get that
Em = O(de) s Cx,Cy = O(d37'6) .
Applying Lemma D.7(i) to gp.., with 6 = 0 and the assumption 7 = O(1) then gives

d'H(\/ﬁ(B(DX)T’S? \/E(BT>T7S) - O(n_l/Z’iZ;?)(gB;rs) 5?’) + n_1/2"€1;1(gB;7"5)3(CX + CZ)))
= O(n™"Pd +n ' 2d°d®) = O(n™*d),
and applying Lemma D.7(ii) with ¢ set to 0 gives

dH (\/E(B(I)X)r s? \/E(BZ)T,S)

= O(( 2y, (98 rs) + n71V1;4(gB;rs)V2;4(gB;rs) + ”73/2V3;2(QB;7~5)) (ex + Cz))
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— O((n™2d + 07 @) = O(n ) |

These are the desired bounds concerning weak convergence of (§¢X )rs. dy indeed

metrizes weak convergence here, since (B X )T , € Rand Lemma 6.3 applies. ]

Proof of Lemma D.32(ii). For convergence of variance of B® we need to apply Lemma
D.7 to gp instead of gp.,;. Notice that the noise stability terms of g can be computed in

terms of those for g, already computed in the proof of (i):

d b d b
Kjt;m(gB) = Zr:l 28:1 K’t;m(gB;rs) ) Vt;m(gB) - Zr:l 28:1 Vt;m(gB;rs) .
This suggests that
Fom(98): Vom(95) = O(dT") . Fiom (95); Vin(gp) = O(d'7* +d°)
Kam(98)s Vam(98) = O +dY) . Kym(9p): vam(gs) = O(d°T* +d°)

The moment terms are bounded as before: ¢,, = O(d7?) and cx, ¢, = O(d*7%). Apply-

ing Lemma D.7 with § = 0 and the assumption 7 = O(d~'/?) gives

n|[Var[B**] — Var[B"]|| = O(nil/Q'Lil;l(gB)/@A(gB)éi + 1" Rog(95)Ra6(98) C%)
= O(n 2 4 )
””Var[B(bX] - Var[E’Z] | = O(n_1<VO;4(gB>V3;4<gB> + v14(98)v24(98)) (cx + CZ))
= O(n'd")
which are the desired bounds for convergence of variance of BeY, ]

Proof of Lemma D.32(iii). We seek to apply Lemma D.7 to gi. Define

" = B Yol O = (E[View Yo

new new])rs )

CYy = (E[Vpew Vo,

new Vew)) g »
This allows us to rewrite g as
9r(3,A) = Ell[Y e = 95(5, A) Ve [I3]
= E[[Yoew 3] = 2T0 (E[Vew Ynewl95(3, A) 1)
+ Tt (E[View Vaewl95(E, A)gp(Z, 4) 1)
= =23 S CRY gpa(BA) + Y Cgmn(D, A)gsn (5, A)

As before, we first consider expressing derivatives of gp in terms of those of gp.,.;. Omit-

ting the (X, A)-dependence temporarily, we get
d b d
891% = -2 Zr:l 28:1 CXSY agB;Ts + er,t:l C’IYS (8gB;rth;ts + gB;rtagB;ts)7
-2 Zi:l ZZ:l ny 8293;7’5
d
+ er,t:l CXS (a2gB;Tth;ts =+ 28gB;rtagB;ts =+ gB;rta2gB;ts)7
8391% = -2 Zle ZZ:I CXSY 8393;7‘3

3293
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d
+ er,t:l CX@ (aSgB;rth;ts + 38293;1"7&893;1‘,5 + 38%;rt8293;ts + gB;rta3gB;ts) .

Since the noise stability terms of g are given by
Ky, m(gR - H Sl[lp Hath 1% + W) H HL » Vi m(gR) - maXz<n sz(”ath( ) H

they can be bounded in terms of those of gz.,, computed in the proof of (i). With the
assumption 7 = O(d~'/?), the noise stability terms of g.,, become
ﬁO;m(gB;rs)a VO;m<gB;7‘s> = O(l) 3 /il;m<gB;7‘s)7 Vl;m<gB;Ts> = O(d) )
KQ;m(gB;’rs)a V2;m<gB;7"s) = O(d2) ) RS;m(.gB;Ts)a V3;m<gB;7"5> = O(ds) .
Also note that ¢ = O(dr) = O(1) and CY)',CY, = O(r) = O(d™') by assumption.
Then, by the triangle inequality followed by Holder’s inequality,
KVO m(gR < C + 2 Z Z K‘O m gB TS + Zr s,t=1 RO;m(gB;’rth;ts)
S C + 2 Zr:l Zs:l CXSYHO;m(gB;rs + Zr,s,tzl CT‘,SK’O;Q’ITZ(gB;T‘t)/{O;Zm(gB;tS)
=01 +d+d*) = O(d?).
Similarly, by triangle inequality and Holder’s inequality of (;.,,, in Lemma D.20,
VOm(.gR <C +QZ_1Z Crs VOm gBrs +ert 1CTSV02m(gBTt)VO2m(gBts)
=0(1+d+d*) = O(d2) :

The same reasoning allows us to read out other noise stability terms of g directly in

terms of those of gp.,., and bounds on C)/} and CY.:
51;m<gR)> l/l;m(gR) = O(d2 + d3> = O(d3> )
K2;m(gR)7 V?;m(QR) = O(d4> ’ ﬁS;m(gR% V3;m(gR) = O(d5) .

The moment terms are bounded as before: ¢,, = O(d7) = O(1) and cx, c; = O(d*73) =
O(1). By Lemma D.7 with § set to 0, we have

d (\/_RCM \/_RT) = O( /f2 3(9R) 03 +n 12 /11;1(93)3(0)( +CZ))) )
_ O( 1/2d4 +n 1/2d9) — O<n71/2d9) 7
d (\/_R(DX \/_RZ> = O(( V1 6(9R) + 3n_1V1;4(9R)V2;4(9R> + n_3/2V3;2(9R>)
X (ex + CZ))
_ O(n_1/2d9 + n—1d7 + n_3/2d5) — O(n—1/2d9) 7
which are the desired bounds in d;;, and by Lemma D.7 with § = 0 again, we have
n(Var[RCDX} - Var[RT]) = O(”_1/251;1(91[2)52;4(91%)53 + ”_1@;6(9}%)52;6(9}%) 5%)
— O(n~ V20" +n7'd) |
n(Var[R**] — Var[R?]) = O (n™! (ouvsa + 11uvaa)(cx + cz))
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—O(n'd")

which are again the desired bounds for variance. O]

Existence of surrogate variables from a maximum entropy principle As discussed
after Proposition 6.8, the surrogate variables Z; = {Z;;} ;<. = {(Z;;1, Z;j5) } j<; cannot
be Gaussian since they take values in (M¢ x R%*?)* Recall that the only restriction we
have on Z, is from (6.1): Z, should match the first two moments of ®;X”. A trivial choice
is @, X7 itself, but is not meaningful because the key of the theorem is that only the first

two moments of ¢, X* matter in the limit.

The main difficulty is finding a distribution py; on M<, the set of d x d positive semi-

definite matrices, such that for Z;;; ~ py,

E[Zm] = E[(W11V1)(W11V1)T} and Var[zijl] = Var[(ﬂllvl)(ﬂllvl)—q .
(D.64)

When d = 1, the problem reduces to finding a distribution on non-negative reals given the
first two moments, and one can choose the gamma distribution. When d > 1, a natural
guess of a distribution on non-negative matrices is the non-central Wishart distribution.
Unfortunately, one cannot form a non-central Wishart distribution given any mean and

variance on M?, as illustrated in Lemma D.33.

Lemma D.33. Let d = 1. There exists random variable V with EV? = 1 and VarV? = 4,
but there is no non-central Wishart random variable W with EW = 1 and VarWW = b.

Proof. Recall that V ~ T(a, v) has EV? = 2 apd By = 2@tler2(ed3)  cpooge

V4

a:\/TéandV: %égives
o _ V6(V6+2)/4 4 _ (V6+4)(6+6)/4
EVE = (B+v6)/2 L BV = (3+6)/2 o

which gives the desired mean and variance for V2. On the other hand, when d =
1, the non-central Wishart distribution is exactly non-central chi-squared distribution
parametrised by the degree of freedom m and mean  and variance o2 of the individ-
ual Gaussians. We can form the non-central Wishart random variable 1/ by drawing
Zy, .o Zo "5 N(0,1) and defining

W = Z;L(Iu+aZl)2 .
Suppose E[W] = 1 and Var[I¥] = 4. This implies

m(u®+o°) =1, m(4pPo® +20%) = 4.
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Write z = 02 and pi? = = — x, we get m(4 (L — z)x + 22%) = 4, which rearranges to

R (D.65)
m

m
LHS equals (z — =)* + 2251, which is strictly positive since m is a positive integer.
Therefore there is no solution to (D.65) and hence no non-central Wishart random vari-
able W with EW = 1 and VarW = 5. This finishes the proof. [

The choice d = 1 for the proof above is for simplicity and not necessity. Wishart dis-
tribution fails because of specific structure in its first two moments arisen from the outer
product of Gaussian vectors, which may not satisfy the mean and variance required by
(D.64). A different approach is to show existence of solution to the problem of moments
via maximum entropy principle. In the case D = RY, Gaussian distribution is a max
entropy distribution that solves the problem of moments given mean and variance. In
the case D is a closed subset of R%, the following result adapted from Ambrozie (2013)

studies the problem of moments from an approximate maximum entropy principle:

Lemma D.34. [Adapted from Corollary 6(a-b) of Ambrozie (2013)] Fix ¢ > 0. Let
T C R? be a closed subset and define the multi-index set I := {i € Z% | i +...+iq < 2}.
Let (g;);cr be a set of reals with gg = 1. Assume that there exist a probability measure py;

with Lebesgue density function fi; supported on T such that, for every (iy, ... ,i4) € I,
Evuop, JUL - Ul < 00 and By, [UT...UY] = g;. (D.66)

Then, there exists a particular solution py; of (D.66) with Lebesgue density f{; that max-

imizes the e-entropy over all measures p with Lebesgue density f,

H.(p,[) = —Ey,llog(f)] — By, [|U]] .

We can now use Lemma D.34 to construct the surrogate variables Z; in Proposition

6.8 if the distribution of ¢; X7 admits a Lebesgue density function.

Proof for Proposition 6.8. Assume first that the distribution of ¢,; X} admits a Lebesgue
density function. Fix d, b. Note that DF is closed since D = M¢ x R is a product of
two closed sets and therefore closed in R%*? x R%*®. The distribution p x4, of @1 X7 and
its Lebesgue density fy 4, then satisfy the assumption of Lemma D.34 with T" = D* and

the condition (D.66) becoming a bounded moment condition together with
Ey,[U] = E[®,X]] and Ey.,[U%] = E[(;X7)%] . (D.67)

Then by Lemma D.34, there exists a distribution py.,4, with Lebesgue density function
J 7.4, Which maximizes the e-entropy in Lemma D.34 while satisfying (D.67). For each

fixed (d,b), taking Z, 4, ~ pz.q, then gives a choice of the surrogate variables. If the
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coordinates of Z;.;, are uniformly bounded as O(d~') almost surely as d grows with b =
O(d), we can apply Lemma D.32(iii) to yield the desired convergences, which finishes
the proof. If either ¢,; X7 does not admit a Lebesgue density function or if there is no
uniform bound over the coordinates of Z,.;;, as O(d™1), we take Z; to be an i.i.d. copy of

®, X which again gives the desired convergences but in a trivial manner. ]

Simulation and proof for toy example In this section we focus on the toy model stated

in Lemma 6.9, where d = 1 and
Y, =V, where V, kS N (p,0%), and m;; = 7;; as. . (D.68)

Recall that we have taken the surrogate variables to be Gamma random variables. We
now prove the convergence of variance and dependence of variance of estimate on the

variance of data for the toy example in Lemma 6.9.

Proof of Lemma 6.9. To prove the first convergence statement, note that in 1d, M" is the
set of non-negative reals, and Z; = {Z;;,, Z;;} ;). takes values in (M' xR)* = D* which

agrees with the domain of data. Moreover, denoting p» = E[(V;)?], the moments of

Z; satisfy
EZ] =10 ® (Z‘V/;) , = 11 ® <]E[[(:1111¥1) ])
— Up Up N Cov[(m11V1)2,(m12V1)?] Cov[(m1 V)2, (112Y1)2]
Var[Zi] - 1k><k @ (v,r v,r) - 1k><k ® (COV[(T1111Y1)2 (wlljv )2 COV[(Tllllyll)z’(Tllell)g]> .

This corresponds to the mean and variance of Z? in Lemma D.7 with § set to 1. While
the earlier result on ridge regression in Lemma D.32 does not apply directly, an analo-
gous argument works by computing some additional mixed smoothness terms in Lemma
D.7(ii). Recall from the proof of Lemma D.32 that ford = 1, v,.,,, = O(1) for 0 < r < 3.
Therefore by Lemma D.7(ii) with 6 = 1, the following convergences hold as n, k — oo:

=O((k™"2 +n 26 ep + (02 + 307 + 0¥ (ex +¢z)) — 0,

n| Var[f(®X)] — Var[f(Z;,...,Z,)]| = O Y?c, +n " (ex +¢z)) — 0.
For the second statement, we first note that

1 n k 1 n k
Sz = Ezizlzjzl Zij = ﬁzz 1Zj 1 Zij2
n(py2)? npye
:_Zz IZ’HNF( v: ’ v: ) '
Then we can write the variance of R in terms of Sy:
Var[R?] = Var[E[(V e, — BV 1e00)*| B7]]
= Var[-2E[V;.,] B? + E[V}.,](B%)’]
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— (y2)?Var|—2B7 + (B

S S,)?
= (uy2)"Var| 23, ot (S(Z JZr)A)2]
B oo [—52 —2)S,
= (py2) Var_ (S, + N2 }

[ SZ +2)\S

= (,uw)QVar _1 — é’z——’—A;}

1

1

= E[V%]%?Var[m} = 0'721(1)) .

In the last line, we have denoted the random variable X,,(v) ~ F(”(“TVQ)Q, =) and

recalled the definition of o, (v), which is independent of % and the distribution of ;.

This completes the proof. [

D.6.4. Departure from Taylor limit at higher dimensions

In Lemma D.32, we have shown convergences of the form

n(Var[R**] — Var[RT]) = O(n™'2d" +n~'d%) ,
n(Var[R**] — Var[R?]) = O(n™'d") .

While the bounds are not necessarily tight in terms of dimensions, they hint at different
rates of convergences to the two limits. Var[R”] has a simple behavior under augmen-
tations as discussed for plugin estimators in Section 6.4.3, and in particular is reduced
when data is invariant under augmentations. On the other hand, Var[R?] has a complex
behavior under augmentations as discussed in Section 6.4.5. In the main text, the sepa-
ration of convergence rates is illustrated by a simulation that shows complex dependence

of variance of risk under augmentation at a moderately high dimension.

In this section we aim to find evidence for a non-trivial separation of the convergence
rates by focusing on the following model: For positive constants o, A independent of n

and d, consider

Y. =V, where V, i N(0,0°1454), i

=71, =idas., and \ = d\, (D.69)

where id is the identity map R? — R? and v/ is an increasing function describing the rate
of growth as a function of d. The parameter ) is chosen to be O(d) instead of O(1) for
this model so that the penalty does not vanish and the inverse in ridge regression stays
well-defined as d grows to infinity. Focusing on a specific model allows us to have a
tight bound in terms of dimensions. The following lemma characterizes the convergence

behavior of Var[R*¥] to Var[R”] and Var[R”] in terms of a function depending on n.
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Lemma D.35. Assume (D.69). Let {Z;},-,, be i.i.d. non-negative random variables with
mean 1, variance 2 and finite 6th moments, and define Z; = {0>Z;14,1, U2Zi1dx1}j§k-
Then

(i) for RT defined on {Z;};<,,

N i - Ry
Vel ) = Varl 1| = ot Nar ]~ ol

where X2 is a chi-squared distributed random variable with n degrees of freedom;

(ii) there exist a constant C; > 0 not depending on n and d and a quantity C, = O(1)

as n, d grow such that
n|Var[R**] — Var[R"]| > nd*E(n)C, —n~'d*C, ,

— oG —n)® 2 - : 2

where E(n) = ‘E[ R )4} | and x is a random variable between x;, and
n g A n

n,

(iii) for R? defined on {Z;};<,,

n|Var[R**] — Var[R?]| = O(n 'd?) .

In Lemma D.35, while E(n) is a complicated function, if we compare it to E[n =3 (2 —
n)?], we expect the term to be on the order n~%/? as n grows. A natural guess of the or-
der of the first term in Lemma D.35 is ©(n~'/2d?). This suggests that if d = n® for
some ; < o < 3, we may have n|Var[R**] — Var[R"]| not converging to 0 while the
convergence of n|Var[R**] — Var[R?]| still holds due to Lemma D.35(iii). A simulation
in Figure D.2 shows that this can indeed be the case in an example parameter regime:
if {Z;}i<, in Lemma D.35 are Gamma random variables, Var[R?] = Var[R®¥] exactly,
whereas no matter how the distribution of {Z;},-,, are chosen, the gap between Var[R*¥]
and Var[R?] may not decay to zero as shown in Figure D.2. This suggests that for a
moderately high dimension, it is most suitable to understand Var| R®**] through Var[R?]
instead of Var[RT]. This completes the discussion from Remark 6.3. It may be of interest
to note that in Figure 6.5, the regime at which augmentation exhibits complex behavior

despite invariance is when d = 7 and n = 50, i.e. when d is close to n'/2.

The proof of Lemma D.35(1) is by a standard Taylor expansion argument followed
by a careful lower bound. The essence of the proof of Lemma D.35(ii) is by applying
Theorem 6.1 while considering the particular structure (D.69); we spell out the proof in
full for clarity.

Proof of Lemma D.35(i). Denote ¢,(X) = gr(X,X) where gp is as defined in (D.62)
and p1g == E[(m;; V) (m;;V,) '] = 0214,4. We first seek to simplify the expressions of

316



—_— ] = TZO'4 —_— ] = n0.44 — ] = n0.48

—_— 4= 042 — = 046 —_— 4 = 049
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Figure D.2: Plot of difference in variances computed in Lemma D.35(i) against n for A=o=1.

the variances:

Var[R"] = Var [QR(MS, ts) + Ogr(us, ps) (% Z” Zi; — (s, /‘5>)]
= Var [8gR(uS, 1hs) (% > Zij— (i, NS))] :

Since ZZ matCheS the two moments Of (I)’LX’L = {(WZ]VZ) (ﬂ'l‘]VZ)T, (ﬂ-’L]VZ)(ﬂ-Z]V’L)T}]Sk
and {Z,},<,, arei.i.d., we get that

Var[RT] = Var [agR(N& ) (% Zi’j(ﬂijvi)(ﬂijvi)Ta (Wijvi)(ﬂijvi>—r) — (ps, MS))}
= Var [591 (1s) (% ZZ”j(WijVi)(Wz’jvi)T - MS))} .

Under (D.69), we can replace each 7;;V; by 0&,;1, where {;},,, are i.i.d. standard nor-
mal variables. Denote \?2 := ijl £2. Then

i7j

n

T a*x
Var[RT] = Var[@gl(,us)< "1dxd)] . (D.70)
On the other hand,
R = g, (% VA VT) = g (DX
- gl(nk‘ Z,L'J(/]T”Lj z)(ﬂ-z] z) ) - gl( n d><d)-

Given ¥ = x1,,, for some x > 0, the explicit form of g, (X) and its derivative are given
by Lemma D.36 as

do? \? 2d%02\?
n(X) = O+ da)2 991(X)14xq = T Ot da)
This implies
o | 2d%0%N a2X,%] _ Ad'otM! 07 8d%0S)\!
Var[R'] = Var Ntdo2) n | n2()\+d02)6var[Xn] T Ot o2
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where we have used Var[x2] = 2n and A = d\. Moreover

242 2312
Var[R**] :Var[L} = Var[L]
(A +0%x7/n)?

(A + do?x2 /)2
= d?o*\*Var [;} .
(A+0?x3/n)?
Taking a difference and multiplying by n gives the desired result:

- ! 82053
n|Var[R**] — Var[RT]| = n‘d204)\4Var[(5\ s /n)z} v

]

Proof of Lemma D.35(ii). Note that a second-order Taylor expansion implies that almost
surely there exists x4 € [n, x2] such that

dx 1 T o*xa
R = 91(% Zivj(ﬂ-z‘jvi)(ﬂ-ijvi) ) = 91( o 1d><d)
202
= g1(0%1xq) + agl(a2ldxd)wldxd
1 o2y 2 o2 — )2
+ 50701 (— 2 1axa) (%)(de)@ :

This implies

2.2 2.2 4002 N2
Varl R*) = Var 0, (1) =2 1 g + 021 (22 150) (TR0 (10)72]
2.2 4002 2
— Var [591 (1) 1d><d} + Var [8291 (U :fA Lixa) (U(X;Tn)) (1d><d)®2]
2. 2 2.2 402 2
+ 2Cov [891(N5)w1dxda 8291 (U 2(A 1d><d) (%) (1d><d)®2]

where the first term equals Var[R”] by (D.70). Therefore by the triangle inequality, the
difference in the variances of R®*¥ and R’ can be written as

2,2
0" Xn
n

n|Var[R**] — Var[RT]|

o*(xz —n a?x3 o*(x3 —n)?
> QH‘COV [891(021dxd)¥1dxd> &g ( nA Liva) (%)(1dxd)®2] ‘

D.71)

2.2 4.2 . \2
— n‘VaI‘ [8291(%1dxd) (%)(1dxd)®2i|

(D.72)

Given X = 21,4, for some = > 0, the explicit form of derivatives of g, (%) are given by
Lemma D.36 as

2d2 0 \?

6d3 2/\2
091 (X)14sq = ) g1 (D) (Lgxa)®® = m‘

Note that E[yz —n] = 0and A = d\. The covariance term can be computed as

2 2v2 2/ 2 3 242 4002 2
(D.71) = 277,’COV[— 2d°0* N (x5 —n) 6d°o?\ o*(xz n)}

(A + do?)3 n T (A +do?xi /n)t 2n?2
19nd5 010\ 2 _ 2 _ N2
(A +do?) n?(A+ do?x3 /n)*

318



_ 12ndPotON? [ (x2 —n)3 ] _ 12nd%0'ON [ (x2 —n)? ]
(A+do?)® |7 Ln3(A + do*x4 /n)* (A+02)3 | Ln3(A + 02x3 /n)
2 1014
= R B = nd G Em)
g
1251031
where C| = m is a constant not depending on n and d as required. The minus-
g
variance term can be bounded as
3 2412 4002 N2 232 4002 N2
(D.72) = —n‘Var[ 6d 02)\2 o*(xz —n) )” _ —n’Var[ ~3dc72)\2 (g (xz —n) )”
(A + dZXa 4 2n? (4 ZXh ) n2
@ ]E[ Ind2ot ! (Jg(xi - n)4)}
- (3 + ZXay8 n*
(Q B 9nd2012E[(X% — n)‘j
- X4 n4
(© 4 59012 _ 1/4 1/29\*
> — 2 (Kamax {n (62 = 101,) 7 (6t - 13,) 7))

= —n 'd*C,.

where in (a) we have upper bounded variance with a second moment, in (b) we have note
that Y4 > 0 and in (c) we have used Rosenthal’s inequality from Lemma D.21 to show

that there exists a universal constant X 4 such that
[0t = L@ -l
< L(Eamax (X0, 1€ —10E) " (0, 18~ 113,) 7))
= (Km0 (16 - 15 (1 - 1013,) ) = €.

Therefore C, is O(1) as required, and we obtain the statement in (i) from the bounds on
(D.71) and (D.72):

n|Var[R*¥] — Var[RT]| > nd*C,E(n) —n 'd*C, .

Proof of Lemma D.35(iii). Write w? := > | Z;. Note that
2,,2
)] = Var[gy (52 10.0)]|
X a*xa o’wy,
< ’E[%(Tldxdﬂ - E[gl( 1d><d ‘ ‘E 91 1d><d)} ‘HE[ ( 1d><d)]‘

2.2 2
+ ’E[gl(aTxnldxd) 91(0 -

|Var[R®Y] — Var[R?]| = }Var[ (02 -

"10a)]| (D.73)

We aim to bound (D.73) by mimicking the proof of Theorem 6.1 but use tighter control

on dimensions since we know the specific form of the estimator. Write
= 1 —1 2
Wilw) = (S, & 4w+ 7).
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and denote Dj gy ;(w) = 0"g ("zV_[/i(w)ldxd) for r = 0, 1,2, 3. Then analogous to the

proof of Theorem 6.1, by a third-order Taylor expansion around 0 and noting that the first
two moments of 2 and Z,;; match, we obtain that

ok o

B0 ("X 10)] ~ B0 (2 1000)]|

= | Z;l E[Ql(%Wi(gz?)ldxd) - 91(0 Wi(Zz')]-dxd)] ’

n

n n

< Z" B D3 a%(&)? 1. @3 D3 a%(Z;)° 1. @3
> =1 sup ! igl;i(w)T( dxd) ‘4’ sup ‘ igl;i(w)T( dxd) ‘ :
wel0,£2] wel0,7Z;]
(D.74)
Similarly,
o?x2 2 o2w? 2
|E[91(Tldxd) - gl(Tldxd) ”
n o5(e2)’
<2y Ef s, | (914(0) D g1(1) + Digni (1) D () ) (140)®
we(0,€;
3 2 a(Z;)? ®3
+ sup |(gl;i(w)Di91;i(w) + Digl;i(w>Digl;i(w)) 3 (Laxa) H :
wel0,Z;]
(D.75)
Given ¥ = z1,,, for some z > 0, the explicit forms of g, (¥) and its derivatives from
Lemma D.36 imply that
do?\? 2d?02\?
AW = e e D;gyi(w)1 = T oW(w)a?
gl, ( ) ()\+dg [/I:Z(w))2 gl, ( ) dxd ()\+do I/I;;(w))g
2 R2 6d30'2)\2 3 ®R3 24d40'2>\2
Dig1i(w)(Laxa)™” = peAme Dy g1i(w)(1gxa)™” = Tt aT s

Therefore, by noting A = d\, we get

_ n (5.2)3 (Zi)3
(D.74) = 24n~3d4 )2 S E[ sup |—&" |4 sup ‘—]
Zz:l wE[O,{?} ()\+ do V’Zi(w))g) wel0,7;] (A+ do V:L/i(w))5

(a) n
< 24n3d*oSA 3 21:1 E[(&)° + Z7)
= 2n"2do* N\ PE[(€2)? + 23] = O(n"2%d) .

where in (a) we have used that W;(w) > 0 almost surely for w € [0,£2] and for w €

0, Z;]. By the same argument,

(D75) =720 X Y B[ sup [ & | 4 ]
= Leg A+ aRE)T oz (A4 AT
<120 220N TR (€)% + 28] = O(nT%dP) .
Moreover,
2.2 2,,2
‘E[Ql(ggnldxd” +E[91(%1dxd)]’ = |E[g1..(&) + 91.1(2))]] = O(d) .
(D.76)
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Finally the above three bounds imply that

n|Var[R**] — Var[R?]| < n(D.73) < n(D.74) x (D.76) + n(D.75) = O(n~'d?),
which is the desired bound. []
Lemma D.36. Consider ¥ = 1, for some x > 0 and g,(X) = gr(X,X) where gp

is defined as in (D.62) under the model (D.69). Then, the following derivative formulas
hold:

d 2)\2 2d2 2)\2
gl(z) = (/\j——dx)Q ) 891(2)1d><d = _()\ +de)3 )

6d302\2 24d4 o2 \?
0?91 (2)(Laxa)® = Ddnt’ 9’91 (2)(Lgwa)®® = " Ot dn)p

Proof. First note that
E[[Yoewl3] = EllVaewl3] = 0%d,  E[ViewYiew] = E[ViewView] = 0*1aa s
which allows us to write
0(2) =% =203 955 ) + 230 05 (D D)0 (5, D),
where we have recalled the expression
IBrs(X, %) = el (+ Mya) ' Se,

Denoting & = (X + Myyg) ' = (S + A,) 7!, the partial derivative of g, has been

computed in the proof of Lemma D.32(i) as

99;rs(%, ) T—1 T -1 T—1
T:—eTE erlele dYe,+ e, X erlﬂ{s:sl}
181
= e/ X 'e, el (—XT'S+X7'Y)e, = Y(d)re/ X e, el X e, ,
Similarly
0°gp:rs(, %) -1 T $-1 T $-1
0%,,5,0%, 5, - 2117526{172}§11¢l2 <er2 erllesllE e”zeslzx e,
T -1 T $-1
— €, by erllesll b)) e’“lQH{SZSz2}>
- _ 3 s—1 T y-1 T -1
- ¢(d))\zl1712€{172}§l17512 e erllesllE erlzest s
and
9p.rs(2,%) Too1 T -1 T &-1 T o1
5%, 0%, 0%, = —Zl%,l%,l?e}l,g,g} (e,,E erllesllE e%e%Z erl3e5132 Ye,
1,t2,l3 distinct

T -1
51 2 e7"l3H{5:Slg}>

e
1 2
_ 3 T&-1 T &1 T &1 T &1
= P(DAD  ptsefi23 € 2 erllesllE e e, X e ,© 32 e, .

l1,l5,l5 distinct
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On the other hand, since > = z1,,, a calculation gives

~ _ 1
Y= (2lgg AL = m(()\—kdx)ld—xldxd), (D.77)

in which case, denoting J, ,(7) = (I, (A + (d — 1)x) — I}, .5 7), we have

Ipirs(2,8) = )\()\—_Hi)(()\—i—dx) dr) = AfM :
99p:rs(%,5) _ Jrr, (2)ds 5, (2)
%y s, A\ +d)?
P9p,s(X,5) > Jr (@) s, (@) T, 5 (@)
0%, 5,08, ,, I la€{1,2}; L #l, A2 (X + dx)3 )
P gpas(, D) Try, @),y (@) T 3y (@) T, ()
0%, 4 05, 0%, . Zl}l’fiﬁfé}sﬁ;i} X3 (N + dz)?

Note that J, ((z) = J; ,.(x) and Zle J,.s(x) = A. These formulas and the above deriva-
tives imply that

n(E) = 2022 1937«3 (3,%) +022 ot L 98:1(3,X)gB,45(5, X)

9 o?wd? 22243 do?\?
=o0°d—2 + =
A+ dz ()\ + dx)? (A + dx)?

0
0g1(X)1gea = Zd 9,(%)

r,81=1 8270181

09p;rs(2,X) Agprt (2, 3)
— 2 ; 2 :
N 20 ZTSTM% ox +20 ertrl 51 ) gBﬂfS(E’ E)

T181 T181
- 2d20% )\ n 2d35% 2\ o 2d202\?
A+dz)2 "~ (A+dz)®? (A +dx)3’
d P, (%)
%91 (D) (1gua)®? = T
91( )( dxd) Zrl,sl,r2,52:1 9%, 5, 0%,
?9p.rs(E, %) 95 (X, %)
= — 20?2 0°9p.5+(5 %) 2 Z IBrt T 7
- 20 ZT‘»S 71,51,72,82 82T15182T252 +20 ertrl,sl,rQ,SQ 8Zr1818§]r232 gB;ts(sz)
09501 (2, X) 0g.5(5, %)
2 B;rt\~» Bits\ &
T 20 ZT,S,t,Tl,Slyrzysz 3Er131 827,252
o 4d3o? N B 4d*o? Nz n 2d302\? - 6d302\?
(A +dr)d (A+de)t T (N+do)t (A +da)t?
93g (%,%)
3 ®3 _ 2 B;rs
0°91(3)(Lgea)®” = — 20 277577«1781,,,2,32#3753 %, . 0%, . 0%,
Pgp. (2, %)
2 Birt\~»
+20 ZT,S7t7T1:5177‘2732,T3,83 8Er13182r2s282r3s3 gB;ts<27 E>
+ 60_2 Z 8293;rt(2a 2) 893;755(2, 2)
T937t7T17517T27827T3753 827‘151827"252 827,353
. 12d*0% ) 12d°02\x 12d*o2 N2 . 24d*2\?
A+dx)t " (A+dx)5  (A+dx)> (A +dz)®
which completes the proof. []
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D.6.5. Maximum of exponentially many correlated random variables

The challenge in Proposition 6.13 is that f(X;1.,;) = max;<j<q - Zign ngk T €
R is that the statistic is non-smooth and we also need to have careful control to deal
with growing dimensions. We employ Corollary D.9, a result that adapts Theorem 4.1
to this setting by introducing smooth approximating functions f®). In this section, we
first propose an appropriate choice of f(*) to yield a suitable bound similar to Theorem
4.1. The use of Corollary D.9 introduces additional moment terms of f to be controlled
as n, d,, grow, for which the bounds are obtained via a martingale difference argument in
Lemma D.38. Finally, putting the results together allow us to compute a bound for d,

and for difference in variances in both the augmented and unaugmented cases.
The function of interest can be written as f (X1, ..., X,;,) = g(7 >, ; Xi;) Where
g(x) = max;<<4 7, ER. (D.78)

We first propose the choice of approximating function g; for g and present its approxi-

mating quality in terms of ¢ and explicit forms for its derivatives.

Lemma D.37. Consider g : R% — R defined in (D.78). Define, fort > 0,

tlog(d,, )z
g(t) (X) . 1Og (ZSSdn € )
tlog(d,)

Then for every t, g% is infinitely differentiable, and |g" (x) — g(x)| < L. Moreover,

t
exp(t log(d,)x;)
S0 exp(tlog(d,)z,)

defining

wi(x) =
the derivatives of g, are given by
(i) 509" (x) = w(x),

(ii) 579" () = —(t1og(d,)) wi, (%) wy, (%) + Ly, i,y (Hlog(d,)) wy, ()

(lll) 09613 a.’l?lz alﬂll g (X>

=(tlog(d,))? wy, (%) wy, (%) wy, (%) — Lg,—,y (tlog(d,))? wy, (x) wy, (x)
— I,y (tlog(d,))? wy, (%) wy, (x) — Ty, i, (tlog(dy,))? wy, (%) @y, (%)
+ H{l1:l2:l3}(t 10g(dn))2wl1 (X11:nk) -

In particular, this implies that e defined in Corollary D.9 with respect to g\*) satisfy

Proof. g is infinitely differentiable as it is a composition of infinitely differentiable
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functions. The approximation error is given by

0() — 6000 |18 (i, exp(tlog(d,)zy)) — log (exp(tlog(d,) max, g, ,)) ‘
B tlog(d,)
log ( Y2if2, exp (tog(d,) (@ — max,<q, M,))) @ log(d,) _1
B tlog(d,) = tlog(d,) t

The inequality at (a) is obtained by noting that exp (¢log(d,,)(z; — max,,4_ x,)) € (0,1]
and that it attains 1 for some /. The sum inside the logarithm therefore lies in [1, d,,].

The derivatives are obtained by repeated applications of chain rule.

For the final identities, note that Y0 w,(x) = 1 and w,(x) € [0,1]. Therefore we

8 n
lszg® @), = |37 @) =1,

for any x € R Similarly for the second and third derivatives,

get

< 2tlog(d,) , ||1 < 5t*log(d,)? .

g0l FAYER

Recall that for ¢} with output dimension 1, the noise stability terms are given by

A0 = macn Gona([| 59 (W),

Since the bounds above apply to || % g (W,(+))||; almost surely, we obtain the desired
~ (1) ~(t)

bounds for 77, 1, " and V(t) []

Recall that in Theorem D.8, the terms || f(®X) ||, and || f(Z)]|, are introduced in the
bound and needs to be controlled. Bounding the moment of a maximum of exponentially
many correlated coordinates is made possible by the following lemma, which makes use

of Rosenthal’s inequality for a martingale difference sequence (Dharmadhikari et al.,
1968a).

Lemma D.38. Consider i.i.d. zero-mean random vectors Y1, ..., Y, in R%. Denote Y,
as the " coordinate of Y, for | < d,,. For any m > 3, if M,

00, then there exists a constant C,, that does not depend on d,, or (Y;);<, such that

m

L, < inf,cp [Qn*(lf”) +log(d,)n~" M3 + n*1/2CmMm} :

1
I max o > Y
In particular, this implies that for f(®X) and f(Z) defined in Proposition 6.13, if
log(d,,) = o(n®) for some a > 0, then

A = o ) @) (), = o(n ).

Proof. The general idea is to apply the triangle inequality to the following quantities:

‘E |: max > Zz<n i l} ’ H maXZSdn % Zz<n il ‘E |: = ZZ<” Yi’l} ‘ HL ’

<d, N <d, n
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which are controlled separately. The first quantity is controlled by a second-order Taylor
expansion on a smooth approximating function of the maximum, and the second quantity

is controlled by martingale bounds.

The first step is to bound E[ max;<, + 3. Y;,]. Fory,,...,y, € R, consider

1<n 2,
the following function which can be expressed in terms of ¢ from Lemma D.37:
log (Zlgdn exp(t 10g(dn)7%a Zign yil)) —(1—a) () (1L
Ft;a(Ylv s ayn) = nl-atlog(d,,) =n g (_ Zign yz) ’

na
For g defined in Lemma D.37, F}, then satisfies
1

= nl—(x

1 1
gt (n—a > yz-) —g (n—a > e Yi>
1

— nl—at )

1
Ft;a(yla s 7Yn) - maXlSdn E Zign Yil

and recall the intermediate bounds in the proof of Lemma D.37 that for any y € R,
1099 < 1, 1189V < 2tlog(d,),  [0°(y)ll < 5t°log(d,)? .

Therefore

}E[Ft;a(Yl,...,Yn)]—]E[maxlgdn%ZiSnYi,l}H < ﬁ

and by expanding a telescoping sum followed by a Taylor expansion, we get

1 1
’E[Ft;a<Y17 s ’Yn)” — pla ‘E[g(t) (n_a Zign Yl)} ‘
1

1 n 1 i 1 i—1
nl—a |9(t)(0)| + nl-a Zz‘:l ‘E [‘q(t) (n_a Zi’zl Yi’) - g(t) (n_a Zi/:1 Yi’)} ‘

1 1 1 i—1
nl-at + n Zign |]E[8g(t) (n_a Zyzl Yi’)Yi] |
1 1 i1
T gpite Zign [E[sup,epo,v,) 9" (n_a Zile Yy +2)Y,Y/]|

IN

IN

@ 1 1 1 —i-1

S e T gnita ZignE[Supze[OvYJ 9%g" (n_(’ Zilzl Y, +2) ||y (maxi<y [Y;])?]
® g tlog(d,) 1 tlog(d,,)

S nl—at + ne H maXlSdn |Y1,1’H%2 = nl-at no M22 :

To get (a), we have used the fact that (Y,),;<,, are i.i.d. with E[Y,] = 0 followed by ap-
plying Holder’s inequality. To get (b), we have used the bounds on the second derivative
of g, from Lemma D.37. Now by triangle inequality and taking ¢ = n®~", we obtain a

bound on the mean of the maximum as

1 . 2 log(d,,)
‘E[ma‘xlgdn E Zzgn Yi7li| ‘ S lanER [nlfanafu + nonp—otv M22i|
= inf,cp [2n 07" + log(d,)n~" M3] . (D.79)
The second step is to control
1 1
| max;<g - Zign Y, — E[max;, - Zign Y] ||Lm . (D.80)
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Define the filtrations (F;)", by F; = o(Y,...,Y;), and consider the martingale
(S;)i, with respect to (F;)!, defined by S; := 0 and, for 1 < i <mn,

S, = E[maxlgdn % ngn Yj,l‘ﬂ] - E[maxlgdn % ngn Yj,l] .

Note that the quantity to be controlled in (D.80) is exactly S,,. We also define the martin-
gale difference sequence (D;), by

1 1
Di = SZ - S’L’*l = E[ma}(lgdn E Z]Sn Y],l“;.l} - E[maxlgdn E Z

Then by a bound on moments of martingales (Dharmadhikari et al., 1968a), there exist

Y| Fioa]-

Jj<n

constants C;, that do not depend on n, d,, or (Y;),<, such that
(D80) = [S,lls, < Con*(- 3" E[D"])"". (D.81)
Moreover, by independence between Y, and {Y},;, we have that almost surely
E[max;< Zj i Y | 7] = E[max;<,, Zj i Y | Fiza] - (D.82)
To control the martingale differences, we note that n D; satisfies, almost surely,
.E] - ]E[maxlgdn > Y
Fia| ~ B[ maxieq, 3, Y

Y, +max;<q (—Y;,) "/—_.ifl]

n Dn S E |: maXlSdn Yi,l + maXlSdn Z];ﬁ@ Yj,l

Fis

(D.82)
= maxlgdn Yi,l + E [ maxlgdn Z]?ﬁl Yj,l

Fia]
< maxj<q, Y, +E [ max;<g Z

— E[maxlgdn Z]Sn Yj,l E_1:|
= max;<y Y;; +E [ maxj<q, (_Yi,l)]

j<n

< max<q Y|+ E[max<, |[Y;|].

Similarly by expanding the E|

F;i_1] term, almost surely,

.7-}_1} — E[maxlgdn ngn Y,
E[max;<y, Y;;] + E [ max;<, Z#i Y, ‘]-"Z} —E [ max;<q ngn Y, ‘-7:1]
= E[maxj<q, Yi] +E [ max;<q ngn Y, + max<y (—Y;,) ‘]:1]

— E[maxlgdn ngn Y, —7:2}
= E[maxls@in Yi,l} +maxj<q, (=)

—n Dn S E[maxlgdn Y“ + maxlgdn Z];ﬁz Yj,l

(D82)

7

S E[maxlgdn |Yl,l|] + maxlgdn |Yi,l| .
This implies the m*™ moment of |n D,| can be bounded by
E[|”Dz|m] < E[(E[mangdn |Yi,l” + max;<g, |Yzl|)m}

= 3 (1) B[y, (Y]] B[ (maxicy, [Yol)" ]
S ZmE[(maXlgdn |Yl7l|>m] = Qm(Mm)m .
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Substituting into (D.81) yields the bound on (D.80):
_ 1 n m1\1/m —
(D.80) < Cpn'2(=3 0 E[nDy|"])"" < n7'2C, M,

where we have defined C,,, := 2C7,. Therefore by applying triangular inequality together
with (D.79), the bound on the mean of a maximum, we get

l
n

H max;<q_ Zign YiJHLm < inf,cp [Zn*(lf”) +log(d,)n™" M3 + nil/QCmMm} ,

which is the required bound. For the final bound, note that if we choose Y; above to be

% Zé?:l ¢;;X; from Proposition 6.13, (Y;);", are indeed i.i.d. zero-mean, and

(d)
< o0,
6

1 k
pt T e, <

My = |
6 1<d, k

?Sl%nx(éﬁnxl)l‘

where (d) is by the assumption in Proposition 6.13. Then applying the bound above and
plugging in log(d,) = o(n®) gives

1
IF(@X)le, <[f(@X)s, = [|maxicq, ~> . Lg
— o(inf,cp [207 0 4tV ME 4 0 V2C,M))

© 0(27{1% T M2+ n=2CyMy) = o(n”(T2)

il

where we have set v = +£% in (¢). This is the desired bound for || f(®X)||,. Applying

the exact same argument to f(Z) yields the same bound:

1), <IUFE2)e, = oln=07972).

By definition of Dét),

7 = Omax{|[f(@X)llr,, 1 F(2)r,} +2(8) = o(n™"=4171).

We are now ready to prove Proposition 6.13.

Proof of Proposition 6.13. Consider the approximation function g, defined in Lemma

1

D.37, which satisfies the condition of Corollary D.9 with approximation quality £(t) = ;.

By assumption we have log(d,,) = o(n'/1°). Take t = o(n'/?°). Then by Lemma D.38,
1 (@)1, 1 (2)]2, = o(n=*/?") and

and by Lemma D.37,
<1, 5P <2tlog(d,) = o(n'™?), & <5l0g(d,)? = o(n*?) .

Moreover, by the assumption || max;<q [(¢11X4),|| 1, || max;<q [(Z11),]||r, < oo, the
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moment terms in Corollary D.9 satisty
~ 1
Cx = g\/E[mangdn [ |6} o(1),
~ 1 1 k a)
Cy; = 6\/1[3[% Zj  maX;<q, (Zy;)i] ] = \/E[maxlgd |(Z1;)°]

(®)
= O(|lmax;<q, |(¢,X)i[[2, (log d,)%?) = o(n¥?),

In (a) we have used that the moment conditions (6.4) and the fact that Z, is Gaussian

implies that Z,, . . ., Z,,, are identically distributed. In (b) we have used Lemma D.23 to

bound the moment of maximum of a Gaussian. Therefore by Corollary D.9, we get that

dy(Vrf(@X),v/nf(2)) = o((n™ (") + 30715 5 + n=325) (Ex + ¢4)
+ V/ne(t))

_ O(n—7/20 + n_4/20 + n_3/20 + n—1/20) 0,
and
n|Var[f(®X)] — Var[f(2)]| = o(n (55 + V5" (ex + ¢5)

+ ([ f(@X)|z, + | f(2)ll1,)e(t) + ne(t)?)
= o(n~¥0 4 70 1 4T YW) 12X

which are the desired convergences. [

D.6.6. Derivation of examples: softmax ensemble
In this section, we examine the effect of augmentation on the softmax ensemble estimator

f(X117"'7X

for x;; € RY .

-y g, exp(—t% it St LB i)

=T e (- S ST S LB %)
The log(m,,) scaling is justified in Lemma D.39. To prove Proposition 6.14 about the
effect of augmentations on testing data size, we consider the modified augmentations
Tij» Tij : R? — R™~ defined by

z](Xz) = (L(ﬁl, ¢inz')> cee L(ﬁmn, ¢ini)) )
5K = (L0 X) = ) + g (LB, X0) = i, )+ i, ) - (D83)

Uy

T

Then defining the function g : R™» — RP by

exp(—tlog(m,) z,)
= X A et logm) 7 D.34)

we can write the two quantities of interest as

F@X) = g(2 3 S w(X)) L £ = g Y (X))

(D.85)

328



This allows us to invoke Corollary D.10 to study convergence of each estimator to their

first-order Taylor expansions and provide an explicit formula of c,:
(99(s >>T<3211)ag< )
(Og(u)) ( Yy +k Z12)59( )

The fact that Corollary D.10 is adapted for hlgh dimensions is what allows m,, to grow

C¢) =

—_

(D.86)

exponentially in n.

In the proof of Proposition 6.14, we first compare f(®X) to a first order Taylor ex-
pansion f7(Z) that is equal in distribution to f7(Z?) for some surrogate variables Z¢ to

be specified, which is in turn compared to f*(X’) defined in Proposition 6.14.

Proof of Proposition 6.14. Recall from (D.84) that
Z ﬁ eXp tlog(mn) IT)
r=17T Y )xs)

o exp(—tlog(m,) x

Denote w, = —otloelma)z) = onq yee (B); to denote the Ith coordinate of a R?
> oty exp(—tlog(m,,) )

vector. To apply Corollary D.10 to g, we first compute the partial derivatives of each [th

coordinate of g as

dg;(x
%m) = —tlog(m )(ﬁrl)lz +t10g( B 1(5s)ma
0%¢g,(x W, W,
B = 108(m, (8 i Ly — £ log(m, (8, )i s g
— t*log(m,,)? (ﬁ@)zm — t*log(my,)* Z?;(ﬁw)z(zgﬁﬂ{m o}

Wy Wy Wy,
— -
O, ws)?

Since w, > 0 for all » < m,,, we get by triangle inequality and Cauchy-Schwarz that

] o 5, (] + 2 )
)<Z:«?"1w +Z:rz?slws’wrl>

Tji Wy (Z:n:nl ws)2

+ 2t log(my,)* 30" (Bu )

< tlog(m,,)( Bl
= 2tlog(m,,)(Sup,<p,, [(Br)il)

Recall that &, = Y, ||subwep.x7]|0"9: (11 + W) || ||L Since logm,, = o(n'/?), t is

and similarly

82
20| < 6t tog(m, )2 (s, <y, 151

fixed and Zl L(sup, <, |(B,)i]) is assumed to be O(1), the above bounds imply

’%1 S 2t 10g<mn) Z?Zl(suPrgmn |(ﬁ7‘)l|) = O(n1/9> )
’%2 < 6t2 log(mn>2 Zle (SUPrgmn ‘(5r)l’) = 0<n2/9) ’
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where we have used the assumption )} | (max,<,, [(53,),|) = O(1). Now recall from
(D.85) that

1 n k
f(@X) = g(n_k Zi:l ijl Tij (Xz)) )
where 7;; is as defined in (D.83). Take the surrogate variables Z to be {Z,},,,, where

Z,,...,7, arei.i.d. copies of the Gaussian vector Z; specified in the statement in Propo-

sition 6.14. The moment terms in Corollary D.10 can be bounded as
- 1 1 s @
Cx = 6\/E[max7“§mn (11 (X)) ilf] = EH max, <, |L(ﬁ“¢11X1)|HL 9 0y,

- 1 1 k (b)
¢z = 6\/E[E Zj:l maXTSmn ‘(le)r‘6:| = 6\/]E rnaXr<m |(Z11) ‘ :|

(9
= O(|| max, <., |L(B,, 1 X;)

[}, (logm,)*/%) = o(n'/%),

where (a) is by assumption of Proposition 6.14 and (b) is by noting that the Gaussianity
of Z, and its specified moments imply that Z,,, ..., Z,; are identically distributed. In
(c), we have used Lemma D.23. By Corollary D.10 and that log m,, = o(n'/?), we get
that

dy (V' f(RX), VnfT(2)) = 0(7”071/%1/9’?62) + O( 1/2/1162) = o(1),
(D.87)
n||Var[f(®X)] — Var[f7(2)]|| = o(n /> 0k &y +nTR3) = o(1). (D.88)
Next we compare f7(Z) to f7(Z?) for some Z¢. Writing yt = {, },<n = E[m1,(X,)] =
E{ LB, ¢11X1) }r<m, ] = E[Z1,], we can express
1 n k
11(2) = )+ Oa(w) (7 S0, X0 Ziy — 1)
where we have viewed 0g(11) as a vector in R instead of a map R™» — R as before and
hence included a transpose. On the other hand, write Z = {Zi}igm where 22, ceey Zn
are 1.i.d. copies of the Gaussian vector Z, specified in the statement in Proposition 6.14.

Then by distributional invariance assumption ¢;; X, 4 X and the assumption on Zl, we
getthatfor 1 < 75 <k,

E[le] = E[Zn] = E[Tll(Xl)] = E[{L(ﬁraxl)}rﬁmn] = ]E[{L(Bm ¢11X1)}r§mn] =M.
Therefore, writing
Yy = Var[m(Xy)], Yo = Covm (Xy), ma(Xy)]

we get that (== >" Zle Z;; — ) and (X370 ijl Z;; — ) are both zero-mean

Gaussian vectors in R™» with variance given by

1 n k
Var [% Zi:l ZJ':1 Zij o ,u] 211 + 212 )
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Var[ﬁ Zy:l ijl Ziy— ] = %Var[Tll(Xl)] + %COV[Tll(X1>7Tl2(X1)] 2 %211 ;
where (a) is because
Var[ry;(X,)] = Cov[r(Xy), 712(Xy)] = Var[{L<ﬁr7X1)}r§mn]
= Var[{L(B,, p11X1) }r<m,] = Var[m (Xy)] = Xqy

In particular, this implies that f7(Z) is a Gaussian vector with mean g(u) and variance

satisfying

—~

a 1
Var[f7(2)] = (9g(1))T (S + I 80)09(0) < (D9(w)T (-01)0g(n)
where we have noted in (a) that ¥,; = Var[ml(Xl)] = Cov[m1(Xy), m2(X )] = 39
by Lemma D.19. This suggests that if we define ¢, as in (D.86),
(99(n ))T(izu)acm )

C¢ = Z 17
(Og(p)) " ( 211+ 212)8 (1)

~

then f7(Z) is equal in distribution to the Gaussian vector
1 T/ 1 n E 5 L T3
o) + 00 (o D0 2y — ) = ().

where we have defined 29 := {Z{},.,,, where Z{ := i(zz — p) + . This together with
(D.87) and the triangle inequality implies

du(Vnf(@X),v/nf" (27))

< dy(Vnf(@X), Vnf" (2)) + suppey [E[R(Vnf(2X)) — h(vnf (2°))]]

= o(1)+0 = o(1), (D.89)
and similarly by (D.88),

n|[Var[f (®X)] — Var[f(Z°)|
< o[ Var[f(®X)] — Var[fT(Z)]|| + n|[Var[fT(Z)] — Var[fT(Z°)]]
— o(1)+0 = of1). (D.90)

Finally, note that Zf’ match the first two moments of

LG X, =)+ = { LX) ) b} = ).

TSmTL
where we have invoked the definition of 7;; from (D.83). We check that the bounds on
é}"( and 6¢Z) (i.e. ¢x and ¢ defined as in Corollary D.10 but for 7;;(X;) and Z?) holds:

X = 6\/E maXr<m [(11(X ))l|6]

= EH maXr<m ‘ (/B’!’JX ) lu’f’) +MT| H?I)JG

3
< g (ol mascm, 1203 X [, +72 v l1r])
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1/1
< 5 (gl mosssn, 124801, +

< 2| max, ., [L(B. X[} = 0(1)

C¢—1

3
| macp, LB X0) 1, )

Co

where the last bound is by assumption of Proposition 6.14. Similarly for the moment

term of the surrogate variable, by noting that Zf’ = i(zl — 1) + p, we have

N 1 1 «—k - 1 7
& = 6\/E[E p maXrSmnKZfa‘)rP] - 6\/E[max’"§mn|(zf1)’”|6]

B} —1 3
(s ], + 5 I, 050,

IN

- 3
< tmasx { || mas, [ Z0] |, |l max o, L5 X)), }

= 3
= O(|| max, <, |Zui|[[;,) = O((logm,)*?) = o(n'/®),
where in the last display line, we have used Lemma D.23 similar to how we have bounded

¢z. The bounds on derivative terms of g are the same as before, and therefore we get an
analogous result to (D.87) and (D.88) for X' = {7, (X5) Ficn i<k

d(Vf(X),vnfT(29)) = o(1), o Var[f(X)] — Var[fT(Z?)][| = o(1).

Observe that by construction, f(X) = f*(X) as noted in (D.85). Combining the above
bounds with (D.89) and (D.90) by the triangle inequality, we get

dy (VR f(RX),/nf* (X)) = o(1), n||Var[f(®X)] — Var[f*(X)]| = o(1).

This completes the proof of Proposition 6.14. ]

The following lemma justifies the log(m,,) scaling in the definition of softmax en-

semble in Proposition 6.14:

. My, €xXp ( - tlogT(LTkr:Ln) Z?:l Z_];:l L(Bra Xij))
Bt = Zr:l ﬁr Zm

log(m,, n k :
eepexp (— t% Doie 2oj=1 L(Bs, x;;))
Lemma D.39. Fix n, k, m,, the training set on which f3,’s are trained and the testing set

{X11,..., X1} Denote L(B3,) = lk Sy 2521 L(B,,x;;) and L = ming,, L(B,).
Define the minimizing set S .= {r € {1,...,m,} | L(B,) = Ly}, i.e. S is the indexing

set of B.’s that minimize L. Consider 3°(Xq1.,,) = ﬁ > res Br(X1., ), an average of
B,’s within the minimizing set S, and define L, = mingg L(B,). Then, if |S| = m,,

B (X11:k) = 5S(X11;nk) and otherwise

Hﬁt(xnznk) - /BS(Xllznk>H

1
< — _ _
< 2maxeen, |5 (X1 (1 1+ exp(log(my,) — t10g(m,) (Ls — L)) )

NOtably ifmaxrgmn Hﬂr(xllznk)H is bounded, then as t — oo, Bt(xllznk> - 5S(X11:nk)'
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— exp(—tlog(my,)L(5,)) — ;
Proof of Lemma D.39. Denote w, = ngmi s temarmyy I |S| = m,,, the equality

holds since w, = mi for all r. If | S| # m,,, w, < ﬁ for r € S. By triangle inequality,

18 (tani) = 85 Gneas) | = [| 20 G i = B, B, )|
= || 32 Bty = 22, B ) (757 — ) |
S SN LRCRTA TS i RGN CEns ]|
< maxig o, |8, (%1, (ngs Wt Y g (ﬁ - w,,>>
= maxizyam, |8, 060 )| (g 0 + 1= 32, )

= 2maxi<rem, |8, )[|(1- X, ) - @I

w, = 1. For r € S, by construction, L(f3,) = L,,;,,» 0

The final equality is by »

r<m,,

res =7 reS | S| exp(—tlog(my,) Linin) + - g exp(—tlog(m,,)L(B))
1
1+ ﬁ ES\ZS eXp(_tlog(mn)(f/(ﬁs) - Emzn))
1
1+ 5L exp(—tlog(m, )Lz — Lynin)
< 1
- 1+ exp(log(mn) - tlog(mn)(E’Q - Emin)) ‘
Substituting the bound into (D.91) recovers the desired result. The last statement is ob-

IN

tained by noting that if |S| = m, S(Xi1.mk) = B°(X11.ne) by definition, and if not,

Ly — L, > 0, so the bound proved above goes to zero as ¢ — oo. O

D.7 Proof for Section 6.5 and Appendix D.2.2

We follow the notation in Section 6.5 and Appendix D.2.2. We first prove a list of results
on fA(l) and f)(\2), collected in Lemma D.40, that are useful for subsequent derivations.
Section D.7.1 presents the proofs for results in Appendix D.2.2 and Appendix D.7.2

presents the proofs for Section 6.5.

Throughout, for a real symmetric matrix A € R"*", we denote A\;(A) < ... < \;(A)

as its eigenvalues and denote the associated eigenvectors as vy (A), ..., v4(A).
Lemma D.40. Let A, A’ and B be R™? symmetric matrices and fix \ > 0.

(i) The following bounds control the sizes of fil) and f§2):

/\2
RV < max s 8P for A0,

= <d; A (A)#-x (N
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P (A)]
I12(A,B)| <

IN

S Iy 111
o _dot|Bl,
1<d; q(A)#-xn (N (A) +N)?
(ii) The following bounds hold for the approximations of fo by [, W and féQ) by f)(\Z),
where X > 0:
A 2218117
} 0 (A)] < maxicg g, o) + 02

062 d
| (A B)| <2537 Tiywep—aplu(A) Bu(A)]
Ad o2 A A+ 20(A)[ 1Bl op
noi<d A\ (A)g{0,- A} M(A)2(N(A) + N)?

Now suppose additionally that X\ > 0, A\;(A) > —\/2 and \{(A") > —\/2. Then we

have

(iii) the following bounds hold on the effect of perturbing the argument of f )(\1) and f§2):

AV (A) - AP < 4181714 - A,

, 16 02d /
KA B) = [P B)| < SEEIA = Al 1Bl

Proof of Lemma D.40. To prove (i), we first note that for A > 0,

| A (A) | = 22|87 (A + L) 8]

d 2282 221812
_ _AIBIE < e
2o D)+ P Moy S max o mn

whereas for A = 0, we have
@] = [l -1 5
= Y (0= 1%L ey + (1= Dy sy ) B
= 3L Toa-o I8P

Meanwhile for A > 0, we have

2 _
AP B)| =% |1e((4+ A1) *B)]
o2 ||Bl|op d T{NA) £ -2} da?||Bllop
< e @ | T e P wOu) AT

To prove (ii), note that by assumption A > (. The first difference can be bounded as

FPA) = 124 = |87 ((ATA —1,)° = N2 (A +A1,) 7))
< |BIP|[(ATA = 1,)* = N2(A+ \L,)~

(a) A2
DY) max {|(-1)* - 55

Il

NI{N(A) # A} }
(M(4) + )

2
; MAX;< g ), (4)£0 ‘0 -
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) U
S IMaXj<g: n, (A)g{0,—A} (Mi(A4) +A)?

In (a), we have noted that all matrices involved share the same set of eigenvectors. The

second difference can be controlled as

r(((A+ A1) "~ 472)B)|

2
[1K2(AB) = (A B)| = T|Tr

e I{A( )7’é -Ab {N(A) #0} AT
< Zl 1 ( A) + N)? A (A)? )(U Bu(4)) ‘
0? d H{A( ) € {0, =A}} IAZ + 220, (A)]
< n Zl:l ( : A2 + Lo ygio.-an N(AZ(, (Al) T2 >|UI(A)TB u(A)]
2 d
< % lel Lox ayefo,-an v, (A)TB v (A)]
A a2 || Bllop |A+2)0(4)]
n 1<d; 0 (A)210,~ 2} M(A)2(N(A) + )2

To prove (iii), we first note that by assumption, \;(A) > —\/2 > —Aforall [ < d, so the
map A — (A 4 AI;)~" is smooth in the local neighbourhood of the line segment [0, AJ;
the same holds for A’. We can now apply the mean value theorem to fil) and ff) by
computing their first derivatives: Writing A, = t(A — A’) + A’, we have

(A7) = KPA)] < supegoy [T (A + M)~ (A = A) (A, + ML) '8
N2[1BIPIIA = A'llop
- (A/2)?
In the last line, we have noted that all eigenvalues of ¢(A — A’) + A’ are bounded from
below by —\/2. Similarly we have

= 4[p*[A - A

”op .

|f§2’ A ,B) — f2(A', B)]
< qu wen sup |Tr((A, + M,) "0 (A — A) (A, + AL) "B)|

q1+92=3 t€[0,1]
202d

IN

lop | (A, + AId>—1Hip||BHop

160d
i 1A= Aol Bllop

IN

D.7.1. Proofs for Appendix D.2.2

The proof exploits the assumption below on the distribution of the extreme eigenvalues

of X, X, Z; and Z,, as well as the alignment of their zero eigenspace.

Proof of Lemma D.15. First note that by the triangle inequality, almost surely

|fA(X1aX2) _fO(XbXQ)}
< ‘f)(\l)(XMXQ) - f(gl)(XhXZ)‘ + ’f)(\2)(X17X2) - féQ)(X17X2>‘ :
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Applying Lemma D.40(i1), we get that almost surely

(%, X,) — fO(X,, Xy)| < 28] N —
|f>\( 15 2) fO ( 1 2)‘ = ”BH l<d>\l(1)l(lla)é{0 _3) (AZ(X)"‘)‘)z’

and

) o < ) o < 02 —d o \ T <
’f)(\ (X, Xy) — fo )(Xsz)‘ < =3 Y oxeo,-ap (0(Xy) "Xy (X))
)\dO’? HX2||0;D |)‘+2>‘Z(X1)‘

4 el max S
n 1<d; \(X 1) 210,21 A(Xq)2(N(Xq) +X)2

The above bound can be simplified by noting that all eigenvalues of X, are non-negative,

which implies that almost surely forall 1 <[ < d,
{N(Xy) € {0, -A}} < I{\(X,) # 0} < HXTHQ
> Llop

Ion&oeo,-a = Tpyx)=oy

M) +22 T (X))
I (X)) {0, A x A+ 20X 2{N(Xy) # 0} B,
1>‘I(X1)2()‘1(X1) +)\)2 : S )\l(xll)?’ S 2H}(lnop

Combining the bounds above and applying Assumption 6.2 gives that
A (X1,Xo) = f5 (X1, Xo)| = O

_ 1
‘f)(\z)(X17X2)_ (2) X17X2 ‘ = ( ) )

|fA(X17X2) - fO(XhXQ)‘ =0, ()\ + )\2 + %)

!

with probability 1 —o.,(1). By the definition of the Lévy—Prokhorov metric dp (D.8), we

obtain

dp(£(X1, X)), £ (X1, Xy)) = 0,(3?),
ap(F7 (X1, %), f7(X1, X)) =0y (A4 255 )
dp(HL(Xy,Xy), fo(X1, X)) =0, <>\ + A%+ %) ;

which proves the first bound. The second bound follows from applying the same argu-
ment with X, X, replaced by Z;,Z; + Es. O

The next proof exploits orthogonal invariance of isotropic Gaussians.

Proof of Lemma D.16. Consider the R**"*-valued random matrix
U = (V1 +&1, Vi+&ie,--, Vi +§nk) ;
We can then express
_ . L T
Z, = — Uuu .
Notice that under (6.22), U have i.i.d. rows, each of which has a covariance matrix

I,® (1k><k + UE&L@) = L, ® kQ DyQy, .
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o : pi.d.
This implies that we can express, for some choice of 7}, ..., 7, "< N(0,L,,), almost

surely

— )T -

U = Vk ( )(In ® D/*Q,) = VEHI,® D;/*Q,)

— T —

and therefore almost surely we have
> k 1/2 1/2 1
Z, = —H (I, D,/*QQD/*)H" = ~H(L,® D)H',

where H is an R*™* matrix with i.i.d. standard Gaussian entries. Meanwhile, observing
that

Z, = ~UKK'U’

proves the second statement. The final statement follows by identifying 7,4, ..., n,, as

the column vectors of H, which yields

— 1 n k+0 o2 k
1= Eziﬂ( 3 =gy + 22 ZjZQ 77@'3'77;) :

By recalling that

and observing that
(V1 +&1, Vit+&ig,--, Vi + fnk) =U = \/E("} ’%k ) (I, ® D;/QQk) )
we obtain that
Nt = %ijl(vi + &ij) ¥ \/:2

and therefore we can express
1 1 <& Tk
g
:ﬁz<< ZV"—’_&J)(EZV"FfU) +?AZ771J772J>
—1 st
_ o2 .
=22t n_z Zz‘:1 ijg NigNij -

Proof of Lemma D.17. We first verify Assumption 6.2. Under (6.22), we can apply

Lemma D.16 to express

Z, = “H(I,® Dy)H'

where D, € R¥** is a positive diagonal matrix with minimum eigenvalue 0% /k > 0
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and H is an R%*"* matrix with i.i.d. standard Gaussian entries. Given a real symmetric
matrix A, let 0,,;,(A) denote its minimum non-zero eigenvalue and 0,,;,.~.0(A4) denote its

minimum non-zero eigenvalue. Then almost surely

S d = > -1
||XJ{||op = ||ZJ{||op = (Umin;>0(zl>)
1 -1
— (Fuino (5 (1L ® DY) HHT (1, @ D) ))

1 1 -1
< E (Umin;>0 (%HHT>>

where 7y, ..., 7, are some i.i.d. standard Gaussian vectors in R™. Meanwhile, by the
minimum singular value bound from Theorem 6.1 of Wainwright (2019), for any fixed
€ > 0and nk <d,

1§ (nk)t/2\2 —de2
P<0min<gzl:1nml—r> > <(1—€)— iz ) > > 1 — e 42

soif nk < d with 7/ = limd/(kn) € (1,00), we get that o, (- Zfil mm,') is bounded
from below by some constant ¢, € (0, 00) that only depends on +". This is still true if

nk > d with v’ € [0, 1), since in this case

—n =
1 d T 1 T T
O min;>0 ok Zl:l mm = Omin;>0 nk 711 nf T

—n, —

B A WS

N4
and the same argument applies to the R%*¢ Wishart matrix W,,.. This implies that || X! llop

and ||Z! |op are both O.,,(1) with probability 1 — 0.,(1) under the stated assumptions.
Meanwhile, by Lemma D.16 again,
X, £ 2, H(,©D”Q)KK (I,®Q[D/*)H
where @, € R¥*¥ is an orthogonal matrix. Therefore almost surely

_ _ 2
1Z.]],, < G (KK )0 (Z1) € 22 % 0 (S0 ), ©92)

n

where we have recalled from the definitions in Lemma D.16 that

O-max(KKT) = O-maux(%ln(8 1k><k> =1 and HIn®Di/2QkH S \/ k—zgi )

Applying the maximum singular value bound from Theorem 6.1 of Wainwright (2019)
to 250 myn/ implies that | X, ||, is O,/(1) with probability 1 — o.,(1) provided that
nk < d with v’ = limd/nk > 1, and by noting again that

1 d
Omax <& zl:l TIﬂhT) = Umax<Wnk>
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for the R Wishart matrix W,,;,, we get that the same holds when nk > d with 7/ =
limd/nk < 1. This implies that ||X,||,, and ||Z,]|,, are both O.,(1) with probability

1 — 0.,(1) under the stated assumptions.

The final quantity in Assumption 6.2 can be expressed as

d - \T S, d
> Tony)=0p (0(X) "X (X))

= > Lw@-oy (v(Zy) " Zyvy(Zy))

d 1 d T
— Zl:l ]I{)\l(% Zl:l 77l771 ) = O} .
Since Z; = %H(In ® D,)H', where I, ® D, is positive-definite, if v;(Z,) is a zero
eigenvector of Z;, then we must have H'v,(Z,) = 0 almost surely. This implies
w(Z) Zyu(Zy) = +u(Z) H (1, © D*Q) KK (1,0 QI D" H u(Z,) = 0

almost surely, and therefore with probability 1 — o(1),

d — — — d _ _ _
> Touy =0y (X)) " Xou(X)) = >0 Lz =y (0(Z1)  Zow(Zy)) = 0.

This verifies Assumption 6.2.

To verify Assumption 6.1, we first note that since the entries of the matrices are
all Gaussian, we automatically have max;,, j<x<a [|Xijillz,, = O(1). Meanwhile by
(D.92),

kJrJA - kJrJE‘

ool = NZallopll,,, <

11Xl

el |, Wil L

where W, is the R%*? Wishart matrix defined above. By Theorem 4.6.1 of Vershynin
(2018), there exists some constant C'; > 0 such that, for all ¢ > 0,

(W1, > 200 L ) < e

Using that d/(kn) = O(1), we get that for every fixed m € N, there exists some constant
C,, > 0 depending on m such that

E[|1Z:~Lll3) < [T B(IWoui =Ll > s")ds < G,

This implies
HHX?HOPHL60 - HHZ?||OPHL6O < ”HWnk _IdHOPHLGO + ”Id”0p = O<1)7
which verifies Assumption 6.1. [

D.7.2. Proofs for Section 6.5

Proof of Proposition 6.10: Universality for oracle augmentation The proof adapts

the two-moment matching argument from Theorem 6.1 to utilize the matching of four
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moments. For 1 < i <mnand1 <[ < d, define the R* vectors
Xil = (X, -0y Xig) and Zil =Za, - Zi) -

We also rewrite

X nk Zz 1 le 12—1 Zl2ellelg Sl(X117 o Xna)

Xy = W Zi:l le =1 Zh Jp=1 nglzl thlz %% 52(X11, X, d) )
Zy =S(Zy1s  Zng), Ty = So(Zny,. .y Lna) -
As mentioned in Remark D.4, Theorem 6.1 can be directly extended to the independent
but non-i.i.d. case, and we shall use it to replace the sequence of independent vectors
(X414, Xa) by (Zyy, ..., Z,,) (note that in this case, k in Theorem 6.1 is set to 1).
We also seek to exploit the fact that Xij and Zij matches in the first four moments by
assumption. By replacing the third-order Taylor expansion in Theorem 6.1 by a fifth-
order Taylor expansion and a fifth-order Faa di Bruno’s formula, we obtain that

dH (f)\(xh X2> ’ f)\(zb 22))

< zn:zd: \/]E(Zle z]l + \/E j 1 z]l
i=1 1=1
X (B0,x + 106?;8;X92;8;X + 1067 6,x 036 + 1501,6,x05,6,x + 1003,4,x 05,0, x

+ 5014, x0s4.x + O50,x
+ 00,2 + 10075, 205,5,7 + 100%6,205.6.2 + 1501,6,203.6,7 + 1005,4,203.4.7
+ 501;4;Z€4;4;Z + QS;Z;Z) )

where, for m > 2, ¢ € Nand r € {1, 2}, we define

ymix = max ||| A(Wfﬁ(@xz» )H H
0 = o £, (W ez
am;Z - ig}f}}éd i il ( zl) Z;)

WEZ)(X) = Sr(Xgil>X> Zziz)-

© ~ Uniform|0, 1] is independent of all other random variables, Xgﬂ is the sequence
formed by X,,;’s such that (i’,1') is before (i,1) in the lexicographical order, and Zzu
corresponds to Z;,’s such that (7/,1') comes after (,1). Now note that by the Jensen’s

inequality, we have

\/ (ZJ 1 l]l) :k5/2\/ ( Zj 1 zgl) k‘5/2max|| ]lHLlo k5/200’

where we have used Assumption 6.1 for the last inequality. Similarly

5
\/ (ZJ 1 Wl) < k5/2r§laX” JZHLw < CkS/Q 0
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for some absolute constant C* > 0; in the bound above, we have used that Z,; matches
X in the first two moments, the moment formula of a Gaussian and that || X, ||, <

1 X5l o, <11 X4llz,,- This implies that for some absolute constant C” > 0, we have

G (51X, Xs) , [1(Z0,2,)
< C"ndk® (07 10,x + 1007 5,x0a;5,x + 1007 6, x056x + 15016, x05.6,x + 10054, x05.4,x
+ 501.4,x 050, x + Os.0.x
+ 10,7 + 10075, 702,8,7 + 1007670367 + 1501620567 + 10004, 705,47
+ 5014, 20442 + 95;2;2) . (D.93)

The remaining proof controls the derivatives. We will perform a detailed calculation
of the first derivative, comment on the shared pattern and state the remaining derivatives.

We first write x,;; as the [-th coordinate of x,; and note that

951( ) 1 —d 1 mon ! o
1\X11, -+, Xpq T T . . T
o - . = % Zl/:l ,Z'ijl/ (elel/ + € e ) = % (el : + : € ) >
v x Tijd

ijd
8251()(11, "axnd) i(
amm nk

3

T T 9”51 (%11, - - - Xpa)
eey + (SIS ) s aaj n =0
ijl

852 (Xll o X d) 1 d k -
3;, 1 — - nk2 lezl Zj’:l Lijy (elel/ + ey )
)

ij'1 T Tijl1
:nkQZ’l( <) +<>el—r)’
xij/d xij’d

5352("11» e Xpa)

895”1

Y

8252()(11» e aXnd)

aa:m

= #(ele; + el/elT) , =0.

Meanwhile, since ngl) (tf(il) is positive semi-definite almost surely for all ¢ € [0, 1], the
map A — (A + M)~ is differentiable in the local neighborhood of the line segment
[0, Wz(ll )(tfiz-l)] with respect to the Euclidean norm. For positive semi-definite matrix
A € R%9 and another matrix B € R%*?, denoting A, := A + M, we can compute

6f(1)(A) - B
BAA~ - Z‘Ih‘ZQGN >‘25TA)\q1EijA>\q2B )
4 q1+q2=3
@f)(?) (A7 B) —q —q af§2) <A7 B) 0_62 H
ZU Zlefgf_li Tr(A3" By 4, B) o,  oa T (A3 E;) -

Fix m € [2,10]. Using a chain rule with the derivatives computed above, we can calculate

Dit fA( il (@Xll) Zl @X” )H H

o 1" (W ©X) |||+ flou s (W u@&mW?@&wwhn

el;m;X

<

k
- H (Z — M) gpen (W 1)(@le) + L) ql;—k@(el(mjvi)T + (m;Vi)e))

q1+4¢2=3
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1 = Y 2
x =0 (e)(m;X;) T + (wijxi)ef) x (WP (OXy) + ML) "W (0X,))

) B R 2 1/2
+ %TI((WS)(@XzZ +)\Id Z@ el z]’X ( z]’Xl)elT)> > )
J'=1 Lm
< 2N2 ||»6’|\2 H Zl @Xll)"’/\Id) 1 jpx <Zk I Vi ) HLm
Wil ©X,) + 1) | x| Wi ex,)
op

k
* (ijl HWUXiHZ) HL

1112

< (X Impxil)|, -

To simplify this bound, notice that since Wfll )(GXZ,) is positive semi-definite, almost

+

n2k3/2 H zll)(@X )+ )‘Id) op

surely

- - _ 1
|owiexn )| <5

Meanwhile since m > 2, by the Jensen’s inequality,
1/2 1 k m/2 1/m
(0 imgvali?) | = w2 (e[ (0 Imvali?) ™ )
1/m
< K2 max;<, (E[Im; Vi)

m/27\ 1/m
= d1/2k;1/2 HlaXJSk ( |:< Zl 1 XZ]l) :|>

< d2E? maX;<p j<k,i<d ||Xz'jl||Lm = O(dmkm) )

L

where we have applied Assumption 6.1 by noting that m < 12. Similarly
| S Xl = o).

Applying Assumption 6.1 again and noting that |@] < 1 almost surely, we have

[Iwesal, I, <135 (o) Gy |,
)G mm) L,
Al (2 L

1—1 1 n—1
< n Co + ECO + " Cy = O(l) .
Combining the above calculations and noting additionally that || 3| = O(1), o, = O(1)
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and d = O(n), we get that the first derivative term can be bounded as

O(dl/ﬂx—l dl/Q(/\‘3+/\‘2)> _ O(max{l,)\_g}>

nkl/2 n2k1/2 nl/2k1/2

el;m;X =

By using the same argument and additionally bounding [|Z;; |, by C"| Xl for
some absolute constant C”, we also have

Ormsz = O<M>

nl/2k1/2

To handle the higher-order derivative terms up to the fifth order, notice that in the

above calculation, differentiating fil) and f§2) with respect to Wl(ll )(@X“) results in

« an additional (ngl) (©X;) 4+ AI;)~" term, which contributes an 1/ factor, and

oW (eX, o . .
« an additional % = — (e,(m;X;) " + (m;X;)e/ ) term, which contributes
ijl

an d*/? /nk factor,
whereas differentiating f A(Q) with respect to V_Vz(l2 ) (@f(il) results in

« an additional sz(lz )(@Xﬂ) term, which is O(1), and

op

oW, (0X,)
8X7,]l

tributes an d'/2/nk factor.

« an additional = % Zf,zl (e)(m;5X;) "+ (m;;X;)e/ ) term, which con-

We also note a few additional points:

« The initial sizes of f{" and f*) before differentiation are O(1) and O(n~'A~2) re-

spectively, and that the norm we compute in ¢,.,,,. x has a persisting k'/2 factor;

+ The higher derivatives will also involve higher derivatives of W (6X,) and W' (6X)
with respect to X;;;. But since the third derivatives vanish, the only additional terms

are their second derivatives, which brings the sizes of the first derivatives down from
O(d"/? /nk) down to O(1/nk);

 The ¢-th derivative involves at most one copy of Wff )(@Xﬂ) and g copies of m;;V;,
so the bounding constant involves at most (g + 1)m-th moments of X,, Z and i Vi
As Assumption 6.1 controls moments up to the order 60 > (¢ + 1)m for ¢ < 5, it

yields the necessary moment controls for computing up to the fifth derivative.
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One can therefore perform a tedious calculation to verify that each further differentiation

—-1/2

brings a multiplicative factor of at most max{1, \~'}n to the overall upper bound,

re. forl <q <5,

max{1,\"279}
max{Omx » Ogmiz} = O(W)

Plugging the bounds into (D.93) implies

dy (fA(X1.X) s [A(Z1, Zy))
< C"ndk"?
X (0310,x + 10607 5, x 0,5, x + 10076, x03,6,x + 15016, x056,x + 10054, x03.4:x
+ 5014, x0s4.x + Os50,x
+ 010z + 10075, 70.5.7 + 1003.6,205.6,7 + 1501,6,7056,7 + 1000,4, 7034,
+ 501,4,70150,7 + O5:2,7)
_ O(ndk5/2 o max{l,)\25}> _ O(k2 max{l,)\7}) ’

nb/2k1/2 nl/2

where we have again used d = O(n). This proves the universality statement for A > 0
fixed.

For the ridgeless case, recall from Lemma D.18 that dp(«,x) < 8%°d, (+,%)!/°. By
the triangle inequality and Lemma D.15, we have that for every A € (0, 1],

dP(fO(X]_7X2>7 fO(ZbZ?))

< dp(fo(X1, Xy), (X, X)) + 8%dH(fA(X1’X2)’ INZ1.25))
+dp(fA(Z1, 22)7 fO(Zla 22))

= oA Lo (el AT Y

nA nt/2
Since d = O(n) and 1 < k% = o(n'/?), setting A\ = k'/7n~1/?% implies that the above
bound is o(1), which finishes the proof.

]

Proof of Proposition 6.11: Oracle augmentation via unaugmented risk The proof

consists of three steps: We first quantify the error of approximating Z, by

(k — 1)01%1 Id

Zy + 3

in the risk in the case A > 0. This is followed by a similar approximation for the case

A = 0. Then we compute the limiting risk by reducing the risk to that of an unaugmented

ridge regressor.
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Step 1: Replace Z, in f,(Z,, Z,) for A > 0. Recall from Lemma D.16 that
Z, = Z,+ A,
where we denote the following rescaled Wishart matrix
02 n k T
and 7,;’s are 1.1.d. standard Gaussians in R?. Also note that

Wld = E[A].

This allows us to control

‘f)(\l)(zl (1) (22 n (k 1)0A1d>‘
((21 P L) — (Zy + E[A] + L))" )5‘
21(Zy + M)~ ((ZQ +E[A] + ML) — (Z, + /\Id)Q) (Zy + E[A] 4+ M)~

bl o1 s
(bt + )]

18112 (
(bt od +2)°

By adapting the proof of Lemma D.17 and using the maximum singular value bound

< N

op
_ (k

— 1o _
< Z, + L2001, 4 01, + 2,401 IS - A,
op

(k

= —1)0?
< 1Zallop + 12 lp + 272 + 2 [E[A] - Al

from Theorem 6.1 of Wainwright (2019), we see that for any ¢ > 0, with probability

op k \/ n n

for both [ = 1, 2. Meanwhile, by noting that A is a rescaled sample covariance matrix of

1 — € we have

n(k — 1) i.i.d. isotropic Gaussians, by Theorem 4.6.1 of Vershynin (2018), there is some
absolute constant C’ > 0 such that for any ¢ > 0, with probability 1 — ¢ we have

< otk —kl)ai (\/3 +Vlog(2/9) (Vd + \/log(2/e) )2) ‘

HA_E[A]HOP = n(k—1) n(k —1)

Also note that since & > 2, % € [%, 1]. This implies that for some absolute constants
C",C" > 0 such that with probability 1 — 3e,

02 - (2 + B0 %Id)y

/" 9 k+0A 2log (1/e) d —1 O’A
< OB g (A (1 [ ) ok

[E[A] = Al

C///”ﬂH2 k+UA 2log 1/6 é )
S (J _’_)\ n +1+O'A+)\
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2 (\/g +/log(2/e) | (Vd +/log(2/e) )?
0 A + ) .

n(k—1) n(k —1)

Notice that by recycling the bound above, we have

‘fA ZlaZQ) f,\ (ZQ-I—ﬂId,Z)‘

_ 2 -2 _
=Dy, M) Z,)

((z1 +A,) 2, — (z2 +
Zo||op || (Zy + A1) —<Z2+£51iEiLr+Ah>

n
c k+UA 210g 1/e€) >
< RICCES\E \/ \/ +1+aA+A

UA<W+¢W+ W+JW )

(k—1) n(k —1)

< oZd -2 -2

op

for some absolute constant C"” > (0 with probability 1 — 3¢ for any ¢ > 0. By a union
bound, we obtain that there exists some absolute constant C' > 0 such that for any € > 0,

with probability 1 — 6e, we have

‘ NV f,\<zz + wldvz )

k:—i— 21log(1 d
< € (1012 + 272 (R (2 ) ot )

XA<f+¢logi2/e+f+\/W>.

(k—1) n(k—1)

In particular this implies that for A > 0 fixed, d = O(n), k > 2 and 0% < 1,

2= A2 =0 2] )

-0(G 7 max{1.717)

with probability 1 —O (e~ ™4} By the definition of the Lévy-Prokhorov metric (D.8),

we have

dp(fA(Z ), fA<ZQ+&1d,z )) - o(%\% maX{l, 2}3/2>.
(D.94)

Step 2: Approximate f,(Z,,Z,) by f\(Z, + (kfi)ai 1;,Z,). By Lemma D.17, we
get that the assumptions of Lemma D.15 are fulfilled, and in particular in the proof of

Lemma D.17 we have shown that the 1/(nA?) term in fact vanishes. This implies for A

small,

dP(f)\<Zlvz2>> fO(ZhZ2>) = O()‘) :

Setting A = 0%/ *k~1/6(d/n)"/? and combining this bound with the d» bound from above,
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we obtain

_ _ E— 1)o2 _ o2/3 q1/6 dy1/2
(1422 3 (2 E50,2)) = 0 2 (1. £)).

%1/6 ,1/2

Step 3: Compute the limiting risk of /) (Z, + (e DUA =741,, Zy). Define

(k = 1)o? o . k+o7 5 n T
TA‘F/\y Of = TAa Z = gzizlmlmu

where 7);;’s are the i.i.d. standard Gaussians defined in Lemma D.16. Recall also that

= ]{3+U 1 2
Z2 - k —4 ZZ 177z17711 = UkZ7

where 7,;’s are i.i.d. standard Gaussians. Observe that

Ak =

f)\ <Z2 + & Id’ Z ) = )\QBT <Z2 —+ )‘k Id) B + E Tr((zz —+ Ak Id)7222)

f<1> (2 + 512 (2.2).

Denote the bias and variance parts of the risk defined in Hastie et al. (2022) as
W(B,A,7) = [|B]PA? 0m. (=) and R (a,\,7) = 0%y (m,(=X) — Adm,(=N)) ,
1—7—z—\/m
Corollary 5 of Hastie et al. (2022), \;gzget that almost surely as d,n — oo withd/n — 7,

1 a.s. A2 A 1 A
f)\ <ZQ + w1d722> ? VR(I) (ﬁ ];77> + )\_2R(2) <O-e7o,_§>7)
k k k

(2

- ) (30
( B, —’; ) (D.96)

where we recall m.,(z) = . Now suppose k is fixed and A > 0. By

for every k > 2 and 0% < 1. Note that Lemma D.17 shows that Assumptions 6.1 and
6.2 both hold under the isotropic setup, so the universality bounds in Proposition 6.10
hold. In the case A > 0, combining the above first with (D.94) under the assumption that

i’/fl % = 0(1) and then with Proposition 6.10, we have

X1 Xs) 5 lim R(508. 7, 2%9)

where lim denotes the limit under (6.20) with :7/4 \*? = o(1). For the ridgeless case A\ = 0,

the same argument applies: Proposition 6.10 shows that f,(X;, X,) and fy(Z,, Z,) have
the same distributional limit under (6.20), whereas (D.95) shows that fy(Z;, Z,) and

f o2 e <22 4 = I)UA I, Z ) have the same distributional limit under \/“l\‘? o(1).
A
W1/6 172

The distributional limit of f »/s )
oA d /2

%1/6 172

(Z2 ERUSSLZS Zz) under (6.20) is given by (D.96),
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and we note that

. A
R(070-e70-12477) = )\lif(l)l+ R(mﬁuaeu)\+012477)

exists by continuity as shown in Hastie et al. (2022).

Proof for Proposition 6.12: Two-stage augmentation The proof expresses the differ-
ence R(B™) — L™ — |XixX A(BY™ = B)||2 — 52 as two quantities involving averages

and uses a concentration argument to show that they both converge to zero in probability.

We first recall from Appendix D.2.2 that
7 (ora ot~ 2 62 viv Vv
Ly = (XX, —1,) B+ 2= Tr(XIX,X]) .
Meanwhile, recall that we have defined
1 <k T
= XL G ) (XL 6)
and denote x, = 2 3" (4 E (Vi +&;))e. Then we can express
=X (L T (Ve 6 (VI B e+ €L
= X|X,8 + X{XA (B - B) + Xix. |
and therefore the risk of interest can be expressed as
R(B5™) = ol + 155 — B
e - _ 2
=02 4 | (XIXy ~ 1) 8+ XIXA (B - ) + Xix,
(a)

o2+ 5T (XIX, —1,)78 + | X Xa (B - B)|°
+2(80™ — B)T X, X—%z + XTX—%@
=02 + L™ + | X7 XA (57 - )|

—2( 3 — B) XX’

J/

- (;—fo %, — ZT(XIX,X])
€ 4} e n 1432431 ) :

-~

=Q V.
=:Q9

In (a), we have noted that (X, X! —I,)X! = 0 by the property of pseudo-inverse, which

allows some cross-terms to vanish.

We now prove that (); and (), converge in probability to zero. By assumption,
11X lop 4 11X lop 1 X a llop 113 = B]| < € for some constant C' < oo with probability
1 — o(1). Define the event

= {I1Xllop + 1Xallop + X llop + 1B = Bl < C} .
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By the expression of X, we can write
n 1

Q1 = (B - B)TXa X%, = %Zizl(ﬁim) - B)TXAXI2<k > Vit &j))ei :

Conditioning on X = (V;, &ij)i<n j<k» We get that almost surely

E[Ql | ‘)E'] =0 ’
- 02 — L,
Var Q| X] = %) ((%Z(Vi +65) X XAB" - 5)
i=1 <k
i<k
= (A - B) KX KX KA (B - )

< %Kol 1K K s 3,015 — 512
=, 2lop 1llop Allop P ) )
which is O(n™!) on the event E. Therefore by splitting the probability according to £
and applying the Markov’s inequality, we obtain that for any ¢ > 0,
P(l@y| >t) <P(|Q| > t, E) + P(E)
—E[P(Q:| > | X)) +o(1)
<t E[ VarlQ | X]T5] +o(1) = o(1),

i.e. (), converges to zero in probability. (), can be handled by a similar argument: First
note that E[Q),] = 0 since

/ﬂ = % ijl E [52‘ (% Z(Vz + Qj))TXIZ (% Z(Vz + fz’j))ﬁi

2 = =
= ZTr(X]X,X]) .

E[x! X%,

d

While the expression of Var [QQ ‘ X } involves a complicated expansion of four sums, we
note that since ¢; is zero-mean and independent, the only non-vanishing terms are of the
form e?e% with ¢ # ¢/, with a multiplicity of O(n?), and €}, with a multiplicity of O(n).

Therefore, conditioning on the event £, we have that
Var Qs | /ﬂ = 0O(n?) = o(1),

and applying the same argument of splitting the probability according to £ followed by
Markov’s inequality gives that (), converges to zero in probability. In summary, we have

proved the desired statement that

R(BI™) = (02 + LY™ + | X' Xa (B = B)||") = 0.
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Appendix E

Proofs for Section 7.1.2

In this appendix, we prove Theorem 7.1 and Corollary 7.2. The proof recipe is similar
to that of a standard CGMT: We start by proving a Gaussian min-max theorem (GMT)
on discrete sets in Lemma E.1, proceed to extend it to compact sets in Lemma E.2,
and then prove the results in Theorem 7.1. Corollary 7.2 then follows directly from
Theorem 7.1(ii).

As with the standard CGMT, the Gaussian min-max theorem (GMT) on discrete sets
is proved for a surrogate optimisation problem. Let (§;);<,, be a collection of univariate

standard Gaussians independent of H, and define

s ‘— min max LS (w.u
Sa:xSn weS,y ues, \I;( ’ )’

M
where L5 (w,u) = w' Hu+ Zl:1 &llwllsollvllso + flw,u) .
We also recall the risk ¢)s 7 of the auxiliary optimisation defined in Theorem 7.1.

Lemma E.1 (GMT on discrete sets). Let Z; C R Z, C R™ be discrete sets, and f be
finite on L; X I,,. Then for all c € R,

P(\Ifgdln >c) > P(yr,z >c).

Proof of Lemma E.I. Similar to the proof for the standard GMT (see e.g. proof of Lemma
A.1.1 of Thrampoulidis (2016)), the proof relies on an application of Gordon’s Gaussian
comparison inequality (see e.g. Corollary 3.13 of Ledoux and Talagrand (1991)) applied
to two suitably defined Gaussian processes. Consider the two centred Gaussian processes

indexed on the set Z; X Z,,:

M
You =w Hu+d " &llwlsollulse
. M ~ (N 1/2 1/2
X = 2, (lwllsob (E9) u+w" (59) gllullso) -

To compare their second moments, we use the independence of H and {¢;},<,, as well

as the independence of (h;, g;);<,s: For w,w’ € Z; and u, v’ € Z,,, we have

E [Yw,qu’,u’] -E [Xw,UX’lU/M']
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@ Blw Hu(w) B + 3 wllyo oo lulso [@so
=3 (e ' lso u" SO0 +wTSO0w fullso [v']s0)
2 (0TSO W TEOW + fullso 0 lso lellge ldlso
— lwllgo w'llso u SO0 — w00 |julgo v/l )
= 30 (lwlso lw'llso —w"SOw) (lulso @llso —u"SO0) . ©1)

In (a), we have used that &’s, h;’s and g;’s are all standard Gaussians; in (b), we have

used
E[w Hu(w') " Hu'] ZZ o Z”, | Wiwiu gy B[H; Hig)

_ Zl 1211_1 Z]]/ 1 wZZ“,w/ujzyj)/u//
= lel w 'S Ow 4RO

By the positive semi-definiteness of »® and i(”, (E.1) is non-negative, and equals
to zero when w = w’. This shows that the Gaussian processes (Y, )uyez, uez, and
(Xw,u)werz, uez, verify the conditions of the Gaussian comparison inequality (Corollary

3.13 of Ledoux and Talagrand (1991)) and therefore for any real sequence (A, ;) wez, uez, »

IF)( mweld veL, {Y > )‘w u}) Z IP)( mweId UUEIn {Xw,u Z Aw,u}) .
Choosing A, , = —f(w, u) + cyields that

IP’(mmmax(Y + f(w,u)) > c) > P(mlnmaX(qu+f(w u)) > c> .

weZy veL, - weTy veL,

Noting that the two min-max quantities correspond to ‘I’Id,zn and 17, 7 concludes the

proof. O]

The next result extends Lemma E.1 to compact sets.

Lemma E.2 (GMT for compact sets). Suppose S; C RP and S,, C R™ are compact and
f is continuous on S; X S,,. Then for all ¢ € R,

P(US 5 >0) > Plis s >c) .

Proof of Lemma E.2. The proof is almost identical to the proof of standard GMT results
for compact sets, now that we have established Lemma E.1: We show by a compactness
argument that both losses only change a little when replacing S, and S,, by their 6-nets Sg
and S, induced by the Euclidean norms on R" and R? respectively. The only difference
from their proof is that we use a slightly different concentration inequality. Therefore we
only set up the essential notation, highlight the differences and refer interested readers to
the proof of Theorem 3.2.1 of Thrampoulidis (2016), found in Pg 185-187.

351



First fix some € > 0. Since f is continuous and thereby uniformly continuous on the
compact set S} x S, there exists some § = §(e) > 0 such that for all (w,u), (w',v) €
Sy x S, with ||[(w,u) — (w',u')|| < 0, we have ||f(w,u) — f(w',u')|| < e. Use this ¢
to form the d-nets S and Sj. We also write ||« ||, as the operator norm of a matrix, and

write

o 0) (1) o
§ = gm0 [0} and K= mas { sup ol sup o}

K is bounded since S, and §,, are compact, and for w € Sy, u € S, and [ < M, we have

lwll < K, wllso < SKE, - ull < K, luflge < SK.

Then by the same argument as the proof of Theorem 3.2.1 of Thrampoulidis (2016), there
exists w; € Sy, wi € 8§ with [|w; — wi|| < § and w; € S such that
NS, = min,csy MaX,cs; LS, (w,u) — min,es, MaX,es, LS (w, u)

< pr(w,hul) - Li(“’la“l) :
Computing the difference gives

M
Ay < (W) —w) Huy + Y& (lwillso — llorllso)llullso + (@l w) = fwr,u)
=1

M
<OHIE + SK &l llwi —willso + [f(wh,u) = f(wr,w)]
M
< OK|H[| +0S*°K Y &l +e.
We seek to control ||H|| and Zi\i . [&| via concentration inequalities. Let vec(H) denote

the RP"-valued vector formed from the entries of H, and ¥y := Var[vec(H)]. Then we

can express, for some RP"-valued standard Gaussian vector 7,
IH|* = [lvec(H)|* = 0" Zun.
Then by a Chernoff bound, we have that for any ¢ > 0,

2

P(|H|| > t) < inf,5 e_atQE[ea”HHQ] = inf,ooe E[ea”TEH”]

Applying the formula of the moment-generating function of a Gaussian quadratic form

(see e.g. Rencher and Schaalje (2008)) followed by setting a = m, we obtain
op
P(|[H| > t) < inf o < el
inf,, <
>1) < >0 Jdet(T,, — 2aSy) \/det(Ipn ~ ofsaT SH)
< 9p/2 =12/l Zullop) (E.2)

On the other hand, a standard concentration result on univariate Gaussians yields

P(|&| > t) < 2772
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Taking a union bound, we obtain that for any ¢ > 0,
P(AY < 0Kt +0S°KMt+e) > 1—2m/2e "/ WBnllor) _gppe=t/2
and therefore for any c € Rand ¢ > 0,
P( min,cs, max,cs, L5 (w,u) > ¢ — 6Kt — 652K Mt — €)

> P( min,esy Max,es; Lﬁ,(w,u) > C) _ 9pn/2 o=t /(4IZullep) _ 9p—1?/2

(E.3)

A similar argument as in the proof of Theorem 3.2.1 of Thrampoulidis (2016) shows that,

there exists wy € 89, uy € Sy and u) € S, with |Juy — uh|| < § such that

gé{g max Ly(w,u) — Inin max Ly(w,u) > Ly(wy, us) — Ly (ws, up)

M ad 1/2 1/2
= 3 (lwallsohd (50)(us — wa) + d (20) Pl — ualso) )

+ (f(w27ul2) - f(w27u2))
> —6S°KY (Il + lgll) — e

Applying (E.2) to each ||h;|| and ||g;|| yields that, forany ¢t > 0and 1 <[ < M,
P(|[hy)| > t) <27/ and P(|gll > t) <2/ /.
Taking another union bound, we get that for any ¢ > 0,

P(min,cs, max,cs Ly(w,u) > c+ 265 KMt +¢)
< P(min,ess max,esy Ly(w,u) > c¢) + 22 e/t 4 P2 Me Y (E4)

Now by Lemma E.1, we have
P(min,es; max,ess Ly(w,u) > ¢) < P( Min,csy MaX,ess L5 (w,u) > c) .
Combining this with (E.3) and (E.4) yields

P(min,es, max,es, Ly(w,u) > ¢+ 265* KMt +¢€)
< P( minges, max,cs, L5, (w,u) > ¢ — 6Kt — 652K Mt — €)
Ny P2 e | el WSl 9122

The above holds for all ¢ > 0 and ¢t > 0. Sett = §~'/2, take ¢ — 0 and choosing a
sequence 0(e¢) — 0, we obtain that

P(min,cs, max,cs Ly(w,u) > ¢) < P( min,es, max,cs, LS (w,u) > c),

ie. P(U5, s =) > P(vg s, > o). O

We are now ready to prove Theorem 7.1 and Corollary 7.2.
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Proof of Theorem 7.1. The proof is almost identical to the proof of Theorem 3.3.1 of
Thrampoulidis (2016) given the GMT result from Lemma E.2, and we focus on high-
lighting the differences. To prove the first bound in (i), we first apply Lemma E.2 to
obtain that for all ¢ € R,

. M
P(min max Ly(w,u) + 3 &llwlzollullzo <€) < Plvs,s, <¢),

where (§;);<y/ is a collection of univariate standard Gaussians independent of H. First
notice that, by conditioning on the event M;,,{§, > 0}, we have that

(s, s, <¢) (ur)rég}z mex w(w,u) < c)

. M
< P(féfsri max Ly (w, w) + Yo Gllwllsollullse <clé, .. 6 <0)

which holds almost surely. Since &;’s are all independent and symmetric about zero, and

there are 2 possibilities for the signs of (&1, ..., &), we obtain that

. P(¥s s, <¢)

oM

A

1 . M
< g P(min max Ly(w,u) + 32,7 & [wllsollullso < c| &, & 0)

. M
< P(min max Ly(w,u) + 3, & lwlsollullzo < )

<P(vg, s, <),

which gives the desired statement.

The proof of the bound in (ii) is exactly the same as the proof of Theorem 3.3.1(i1)
of Thrampoulidis (2016): It relies on the ability to apply a min-max theorem or a min-
max inequality for swapping minimum and maximum under the stated convex-concave
assumptions, as well as the invariance of the random term of the loss under a sign change.
Both hold for our losses Ly and L, since H in our Ly, is still zero-mean Gaussian, L,
is a linear sum of independent mean-zero Gaussian terms and all additional matrices ¥.()
and X0 are positive semi-definite. We refer readers to the proof of Theorem 3.3.1(i1) of
Thrampoulidis (2016) for a detailed derivation, and note that the only difference in our

result is in that the coefficient from the first bound in (i) is now 2" instead of 2.

The proof of (iii) is also exactly the same as the proof of Theorem 3.3.1(iii) of Thram-
poulidis (2016), which only relies on the three assumptions, the statements (i) and (ii)
proved above and a union bound. We again refer readers to the proof of Theorem 3.3.1(iii1)
of Thrampoulidis (2016) for a detailed derivation. O

Proof of Corollary 7.2. The result follows directly from Theorem 7.1(ii); see Corollary
3.3.2 of Thrampoulidis (2016). [l
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