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Abstract

A typical learning problem involves training an estimator f(X1, . . . , Xn) on some data
set X1, . . . , Xn. Gaussian universality is the observation that, for many potentially com-
plicated estimators, properties of the estimator are preserved if the training data are sub-
stituted by appropriately chosen Gaussian distributions. This unlocks a wide range of
empirical and theoretical tools for analysing the trained estimator, since Gaussian dis-
tributions are both analytically tractable and computationally fast to simulate. Univer-
sality results have been observed in statistical physics, random matrix theory and other
branches of probability; in recent papers, they have been theoretically and/or empirically
established for several high-dimensional models across statistics and machine learning
(ML). One crucial question is the extent to which universality may hold under high di-
mensionality and dependence.

To address this, this thesis develops Gaussian universality results for a general class of
estimators of high-dimensional data, with nearly matching upper and lower bounds. The
results cover any f well-approximated by strictly monotone functions of polynomials,
whose degree grows not too fast with respect to the sample size n. No explicit require-
ments are imposed on the number of data dimensions with respect to n. Together with
the fourth moment phenomenon of Nualart and Peccati (2005), our results imply neces-
sary and sufficient conditions for the asymptotic normality of approximately polynomial
estimators.

The remainder of this thesis focuses on how universality results can recover, ex-
tend and establish new high-dimensional analyses across statistics and machine learn-
ing. These include: (i) a complete distributional characterisation of high-dimensional
U-statistics used for kernel-based testing via a moment ratio; (ii) a high-dimensional
delta method; (iii) a finite-sample approximation of subgraph count statistics that recover
known geometric conditions; (iv) characterising the unexpected effects of dependence
under the popular ML practice of data augmentation; (v) analysis of optimisation algo-
rithms found in ML and AI for Science.
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Impact Statement

This thesis focuses on the theory of Gaussian universality, which extends the classical
probability result of central limit theorem to more general algorithms and estimation
methods. The main contributions include the development of universality results for
high-dimensional data and for block dependence, a tight characterisation of a range of
settings to which universality applies, and the applications of universality results to pro-
vide theoretical and practical intuitions on various statistical and machine learning algo-
rithms.

In probability, statistics and machine learning theory, Gaussian approximations are
routinely used for simplifying analysis of complex models, understanding hyperparam-
eter choices and providing consistency and uncertainty guarantees for algorithms. One
direct impact of this work is the provision of several general tools and recipes, which
extend known results, that can be used to obtain new understanding for various practical
models and algorithms. This thesis also contains concrete applications where such anal-
ysis is performed, which offer additional understanding on the effects of data augmen-
tation, the behaviour of high-dimensional hypothesis testing, the prediction performance
of an optimisation problem, the stability of training algorithms and so on. These provide
additional mathematical insights that may aid practitioners in their day-to-day choice of
algorithms and models.

In critical real-world applications such as finance, medicine, scientific discovery and
social policy research, classical statistical results such as the central limit theorem are piv-
otal in providing uncertainty quantification, robustness guarantees and bias controls. This
thesis provides several extensions of such results to the setting with high-dimensional and
dependent data, which commonly arise in the modern era of “big data”. Such extensions
are vital, both for ensuring the validity and safety of the algorithms used in these domains,
and for identifying and rectifying possible points of failure with a rigorous mathematical
guidance.
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Chapter 1

Introduction

A central premise of statistics and machine learning is the ability to learn from data.
Given a finite set of observed data from some unknown mechanism µ, one seeks the
best estimators and models, trained on these observations, that are capable of inferring
various properties of µ and of making predictions about future observations from µ.
Over the last decade, the complexity and scale of these learning algorithms and datasets
have grown at an unprecedented pace, and have led to remarkable empirical successes
across many fields of machine learning (ML) and applied statistics.

A solid theoretical understanding of these algorithms, however, remains difficult.
This is in part due to the complex data and training regimes in which they operate, and
in part due to the many heuristics they require to run effectively. Many well-established
tools of statistical and ML theory are developed under the classical regime of assump-
tions, where data are typically low-dimensional and independently sampled, and where
estimators take simple closed forms with a few learnable parameters. In contrast, modern
statistical estimation and ML algorithms are usually defined implicitly through complex
optimisation algorithms, operate on data and parameters that live in a high-dimensional
space, and are heavily influenced by the engineering heuristics employed during training.

The gap between theory and practice leaves many practically important questions un-
solved: How sensitive is my algorithm to specific hyperparameter choices? Do specific
training heuristics help or hurt my models? How confident should I be about the answers
returned by my models? These questions underline a broader set of theoretical proper-
ties we desire for our algorithms and models, such as uncertainty quantification, robust-
ness and bias control (Abdar et al., 2021; Mehrabi et al., 2021; Freiesleben and Grote,
2023). The ability to obtain such theoretical guarantees is critical in high-stake applica-
tions e.g. finance, medicine and social policy research, where verifying the correctness of
model outputs is expensive, difficult or ethically and legally challenging (Grimmer et al.,
2021; Giovanola and Tiribelli, 2023; Blasco et al., 2024).

One of the many attempts to address this gap is the theoretical framework of univer-

sality, which has gained substantial interests across statistics and machine learning over
the last decade. This thesis constitutes a modest effort to contribute to its development.
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Specifically, the goal of this thesis is to develop theoretical characterisations and applica-
tions of universality in the modern regime of high-dimensional and dependent data, for
estimators at various levels of complexity, and in pursuit of partial answers to some of
the aforementioned practical questions.

To give a high-level introduction of universality, from now on, we treat estimators
and algorithms as functions of the inherent randomness in the observed data. To be more
concrete, we study objects of the form

f(X) := f(X1, . . . , Xn) . (1.1)

X = (X1, . . . , Xn) are random observations taking values in a high-dimensional Eu-
clidean space Rd, where d = d(n) is typically of a comparable size to n. The function
f : (Rd)n → Rq describes a chosen property of interest of a learning algorithm trained
with X . Examples in this thesis range from estimators used in high-dimensional hy-
pothesis testing, prediction risk of high-dimensional estimators, to stability estimate of
gradients of large neural network models used in AI for physics.

Universality is the probabilistic phenomenon that, for many potentially complicated
functions f , properties of (1.1) resemble those of the surrogate estimate

f(Z) := f(Z1, . . . , Zn) .

Z = (Z1, . . . , Zn) are random vectors that take substantially simpler forms than X . Such
results are “universal” in that it typically holds for a wide class of data distributions of
X , allowing for the influence of complicated datasets to be reduced to simple surrogates.
When Z consists of Gaussian random vectors, we refer to this phenomenon as Gaus-

sian universality. Most of this thesis concerns Gaussian universality (except for parts of
Chapter 6), and we use the two terms interchangeably unless otherwise specified.

A special case of Gaussian universality is the celebrated central limit theorem (CLT).
For i.i.d. univariate random variables X1, . . . , Xn, the CLT can be viewed as a universal-
ity result by taking f to be a rescaled empirical average:

1√
n

∑n

i=1
(Xi − E[X1]) ≈ 1√

n

∑n

i=1
(Zi − E[X1]) in distribution as n→∞ .

Zi’s are i.i.d. Gaussian variables with the same mean and variance as X1, and one con-
cludes that the above sum has a normal limit by noting that an average of Gaussians is
again a Gaussian. The CLT approximation error can be further quantified at finite n by
the celebrated Berry-Esseen theorem, which gives a finite number C such that
∣∣∣P
(

1√
n

∑n

i=1
(Xi − E[X1]) ≤ t

)
− P

(
1√
n

∑n

i=1
(Zi − E[X1]) ≤ t

)∣∣∣ ≤ C

n1/2

E|X1|3
Var[X1]3/2

.

The CLT was first developed by de Moivre (1733) for Bernoulli random variables Xi’s
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and extended to general Xi’s by a series of work throughout the 19th and early 20th cen-
turies. When first established, it confirmed the many numerical findings at its time about
the emergence of Gaussian distribution as a “common error curve” for an average; see
Fischer (2011) for a historical account. To date, the CLT has served as one of the most
fundamental results used in statistics, probability and machine learning in both theoreti-
cal and applied domains. Normal approximations of averages are now routinely applied
in hypothesis testing, confidence intervals, regression analysis, statistical modelling, op-
timisation algorithm analyses and, indeed, any general setting where one expects a sum
of weakly dependent, low-dimensional and mildly well-behaved random variables.

One of the first efforts to develop universality results beyond averages are the works
of Rotar (1976), Rotar et al. (1979), Mossel, O’Donnell, and Oleszkiewicz (2005, 2010)
and Chatterjee (2006). A shared observation was that Lindeberg’s swapping technique
— used for proving the CLT in Lindeberg (1922); Trotter (1959) — can be extended to
well-behaved multilinear polynomials as well as general functions with suitable stability
properties. Meanwhile, the Malliavin-Stein method has also been shown as a powerful
alternative to Lindeberg’s technique for establishing universality in Gaussian variables
(see e.g. Nourdin et al. (2010)). These immediately led to a body of fruitful universality
results for spectral properties of large random matrices (Chatterjee, 2006; Tao and Vu,
2011, 2015; Wang and Paul, 2014; Wood, 2016; Basak et al., 2018). At the same time,
the notion of universality has been developed and widely applied in many problems in
statistical physics; see Kadanoff (1990) for a survey of the area. Building on these under-
standings, a wave of universality results started emerging for estimators found in com-
munications and statistical learning (Korada and Montanari, 2011; Wen et al., 2012), sta-
tistical physics (Bayati et al., 2015; Caravenna et al., 2016) and high-dimensional statis-
tics (Chernozhukov et al., 2013, 2017; Montanari and Nguyen, 2017; Dobriban and Liu,
2019). In parallel to the course of this thesis, universality results are being rapidly estab-
lished theoretically and/or empirically for estimators found in machine learning: A non-
exhaustive list includes random feature models (Hu and Lu, 2022), regularised regression
(Han and Shen, 2023), generalised linear models (Dandi et al., 2023), perceptron mod-
els (Gerace et al., 2024), max-margin classifiers (Montanari et al., 2023), general classes
of empirical risk minimisers (Montanari and Saeed, 2022), representations of data gen-
erated by generative adversarial networks (Seddik et al., 2020), student-teacher models
(Loureiro et al., 2021; Pesce et al., 2023) and diffusion models (Ghane et al., 2025).

In almost all of the aforementioned results or their subsequent extensions, universality
has proved to be successful in characterising various properties of the estimator f(X).
This is often no mean feat: Unlike the case of an empirical average, f(Z) may still follow
an intractable distribution. Numerically, f(Z) is typically analysed by simulations with
Gaussian variables, which are computationally fast to generate. Theoretically, further

17



analyses are made possible thanks to the wide range of tools developed specifically for
addressing Gaussian data, such as the cavity method (Opper et al., 2001), approximate
message passing method (Donoho et al., 2009), the replica method (Mézard et al., 1987)
and the convex Gaussian min-max theorem (Gordon, 1985; Thrampoulidis et al., 2014).
These techniques are grounded on the well-understood properties of Gaussian processes
and Gaussian matrices, and are constantly evolving to adapt to new complicated settings.

In view of these developments, this thesis sets out to address the following questions:

(i) For what class of functions f can universality results of the form f(X) ≈ f(Z) be
established, and are there examples where universality ceases to hold?

(ii) Is the finite-sample upper bound on the universality approximation, typically given
by the Lindeberg method, improveable?

(iii) How do universality results behave under high-dimensionality, i.e. when dimension
d of the data is comparable or large compared to n?

(iv) How do universality results behave under dependence, i.e. when X1, . . . , Xn are
not i.i.d.?

(v) How may we use universality to gain theoretical and practical insights on statistical
and machine learning applications?

The core theoretical results of this thesis, which seek to address (i), (ii) and (iii),
are presented in Chapter 4. Informally those results imply that, if f ≈ h ◦ q is well-
approximated by some strictly monotonic function h of some low-degree polynomial
function q, universality applies, even when the dimension d = d(n) of data is large
relative to the number of samples n.

The rest of the thesis investigates (iii)–(v) across a diverse range of examples and ap-
plications in Chapters 3, 5, 6 and 7. These include estimators trained with the ML tech-
nique of data augmentation, U-statistics found in high-dimensional kernel-based testing,
subgraph count statistics, plug-in estimators, ridge and ridgeless regressions, softmax en-
semble estimator, the contrastive divergence algorithm (typically used for energy-based
model training) and the variational Monte Carlo algorithm (used in large-scale neural
network solvers to the many-body Schrödinger equation). Examples of the properties
we analyse include variance and stability properties, consistency, training and test risk
behaviours e.g. the double-descent risk curve of high-dimensional estimators, and other
effects of hyperparameter choices.
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1.1 Thesis outline and relation to the author’s works

In the rest of this chapter, Section 1.2 clarifies notations and terminology. Chapter 2 re-
views the Lindeberg method, a core proof technique of universality, and briefly discusses
its comparison to other distributional approximation techniques. Chapter 8 concludes the
thesis by discussing some ongoing developments in the literature and future directions.

The remaining chapters are based on works completed over the course of this thesis.
Note that the chapters below are organised in the order of ease of presentation, rather
than in the order of completion of the corresponding works.

Chapter 3 motivates the applicability of universality in high-dimensional analysis by
studying the distributional approximation of a degree-two U-statistic. As a consequence,
we establish how commonly used kernel-based test statistics can exhibit different asymp-
totics as a result of their hyperparameter choices. Most of Chapter 3 is based on the
publication

K. H. Huang, X. Liu, A. Duncan, and A. Gandy. A high-dimensional con-
vergence theorem for U-statistics with applications to kernel-based testing.
In The Thirty Sixth Annual Conference on Learning Theory (COLT), pages
3827–3918. PMLR, 2023,

except for tightness results on the error of approximation, which is based on the work

K. H. Huang and P. Orbanz. Slow rates of approximation of U-statistics and
V-statistics by quadratic forms of Gaussians. arXiv:2406.12437, 2024.

Chapter 4 develops a set of general universality results that characterise the class
of functions for which universality holds. As direct applications, Chapter 5 presents a
higher-order delta method with possibly non-Gaussian limits, and generalise a number of
known results on high-dimensional and infinite-order U-statistics, and on fluctuations of
subgraph counts. Both chapters are based on the work

K. H. Huang, M. Austern and P. Orbanz. Gaussian universality for approx-
imately polynomial functions of high-dimensional data. arXiv:2403.10711,
2024.

Chapter 6 analyses the effects of data augmentation, a ubiquitous machine learning
technique, by developing universality results under block dependence and for estima-
tors beyond polynomials. This enables us to show that variance reduction and regular-
isation, two effects commonly associated with data augmentation, can be nuanced and
hyperparameter-dependent. This is based on the work

K. H. Huang, P. Orbanz and M. Austern. Gaussian and Non-Gaussian uni-
versality of data augmentation. arXiv:2202.09134, 2022.
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Chapter 7 considers the role of Gaussian universality in optimisation analysis, es-
pecially in the case where the object of interest may not admit a closed-form formula
in terms of the data. Section 7.1 presents a convex Gaussian min-max theorem under
dependence, which is useful for analysing the risks of a high-dimensional optimisation.
This is developed as part of the joint work

M. E. Mallory∗, K. H. Huang∗ and M. Austern. Universality of high-dimensional
logistic regression and a novel CGMT under dependence with applications
to data augmentation. arXiv:2502.15752, 2025. (∗equal contribution)

Section 7.2 discusses the implications of Gaussian universality in one-step and multi-step
stability analyses of training algorithms employed in practical machine learning prob-
lems. The results presented are partially used in the publication

P. Glaser, K. H. Huang and A. Gretton. Near-optimality of contrastive di-
vergence algorithms. The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2024,

as well as in the work

K. H. Huang, N. Zhan, E. Ertekin, P. Orbanz and R. P. Adams. Diagonal
symmetrization of neural network solvers for the many-electron Schrödinger
equation. arXiv:2502.05318, 2025.

We emphasise that universality is not the key message of either work, and our focus will
primarily be on highlighting the connection of universality to their analyses.

1.2 Notation and terminology

Asymptotics. Throughout this thesis, we use the asymptotic notations o,O,Θ, ω,Ω de-
fined in the usual way (see e.g. Chapter 3 of Cormen et al. (2009)) under the limit n→∞.
The dimension parameter d = d(n) is always allowed to depend on n, and we omit the
dependence on n for simplicity. With an abuse of notation, we write n, d → ∞ to mean
that the n-dependent sequence d(n) → ∞ as n → ∞. We also use the terminology
finite-sample bounds to mean error bounds that hold for finite n and d, without taking
asymptotics. The error bounds often involve unspecified numerical constants that do not
depend on n, d or any other properties of the data or the estimators. These are referred to
as absolute constants in our results.

Norms. We use ‖ • ‖ for the Euclidean norm, ‖ • ‖op for the matrix operator norm,
‖ • ‖Lν := E[| • |ν ]1/ν for the Lν norm and ‖ • ‖∞ as the infinity norm (typically for a
function).
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Terminology: Gaussian universality. We use the term Gaussian universality to refer
to the approximation of a function of (Xi)i≤n by the same function of Gaussian vectors
(Zi)i≤n; this matches the nomenclature of most of the literature surveyed in the intro-
duction. Some texts—for example, in the context of Gaussian approximation of Wiener
chaos—use the term instead to indicate that the overall function is asymptotically nor-
mal, see e.g. Chapter 11 of Nourdin and Peccati (2012). Since our approximation f(Z)

still involves n-dependent quantities, it may have Gaussian or non-Gaussian limits (Sec-
tion 4.4).
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Chapter 2

Brief review on the Lindeberg method

This phenomenon, when the final asymptotic result

proves to be insensitive to the fine details of the

original problem, is known as universality.

Andrei Okounkov

Symmetric functions and random partitions, 2003

In this chapter, we briefly review the Lindeberg method (also known in the literature
as Lindeberg’s swapping technique or Lindeberg’s principle) for proving upper bounds
on a universality approximation. Some of the earliest developments of these results trace
back to Rotar (1976), Rotar et al. (1979), Mossel, O’Donnell, and Oleszkiewicz (2005,
2010) and Chatterjee (2006), and we also refer interested readers to Van Handel (2014)
for a more comprehensive introduction to the method.

The chapter is organised as follows. Section 2.1 presents a full walk-through of the
Lindeberg method in the independent univariate case. Section 2.2 discusses possible
modifications to the Lindeberg proof, which are formalised and used in the rest of the
thesis for various applications.

2.1 The Lindeberg method for functions of independent univariate random vari-
ables

Let X1, X2, . . . be independent (not necessarily identically distributed) and mean-zero
univariate random variables with finite third absolute moments. The surrogate variables
are independent random variables Z1, Z2, . . . such that Zi ∼ N (0,Var[Xi]). Fix a thrice-
differentiable function f : Rn → R. The objective is to show that the two random
variables

f(X) = f(X1, . . . , Xn) and f(Z) = f(Z1, . . . , Zn)
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are close to each other in distribution. This can be measured by, for example, the Kol-
mogorov distance, where the universality approximation result concerns a difference in
cumulative distribution functions (c.d.f.):

supt∈R |P(f(X) ≤ t)− P(f(Z) ≤ t)| n→∞−−−→ 0 . (2.1)

The Lindeberg method typically provides universality approximation with respect to
an integral probability metric (Müller, 1997) on a class of smooth functions. Specifically,
consider the following class of thrice-differentiable functions with bounded derivatives

H :=
{
h : R→ R

∣∣ ‖∂h‖∞ ≤ 1 , ‖∂2h‖∞ ≤ 1 , ‖∂3h‖∞ ≤ 1
}
,

and consider the induced metric dH on two probability measure µ and ν in R as

dH(µ, ν) := suph∈H |EU∼µ[h(U)]− EV∼ν [h(V )]| .

For the rest of the thesis, with an abuse of notation, we also write the above interchange-
ably as

dH(U, V ) ,

which is taken as the probability metric dH evaluated on the laws of U and V . Since
appropriately rescaled elements of H approximate the indicator functions, one can show
that convergence in dH implies convergence in the Kolmogorov metric*. It therefore
suffices to prove

dH(f(X), f(Z)) = suph∈H |E[h ◦ f(X)]− E[h ◦ f(Z)]| n→∞−−−→ 0 .

The key step of the Lindeberg method rests on building a discrete interpolation path
from h ◦ f(X) to h ◦ f(Z)†. This is done by considering the telescoping sum

h ◦ f(X)− h ◦ f(Z) =
∑n

i=1

(
h ◦ f ◦W−i(Xi)− h ◦ f ◦W−i(Zi)

)
, (2.2)

where we have denoted the random function W−i : R→ Rn as

W−i(y) := (X1, . . . , Xi−1, y, Zi+1, . . . , Zn) .

Each summand is a difference of functions that differs only in the i-th data point. Since
h ◦ f ◦W−i is thrice-differentiable by construction, we may perform a Taylor expansion
with respect to Xi around E[Xi] = 0 to obtain

∣∣E
[
h ◦ f ◦W−i(Xi)− ∂i(h ◦ f)(W−i(0))Xi −

1

2
∂2
i (h ◦ f)(W−i(0))X2

i

]∣∣

≤ 1

6
‖∂3

i (h ◦ f)‖∞ E|Xi|3 . (2.3)

*More details can be found in Section 6.3 as well as the proof of Theorem 4.1 in Appendix C.2, with
the exact choice of h given in Lemma A.10. Also see Section 2.2 for a brief discussion

†For Lindeberg method with a continuous interpolation path, see e.g. Montanari and Saeed (2022).
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The same argument also applies to Zi. This allows us to substitute h ◦ f ◦W−i(Xi) and
h ◦ f ◦W−i(Zi) by their second-order Taylor approximations, and obtain

∣∣E[h ◦ f ◦W−i(Xi)− h ◦ f ◦W−i(Zi)]
∣∣

≤
∣∣E[∂i(h ◦ f)(W−i(0)) +

1

2
∂2
i (h ◦ f)(W−i(0))X2

i

− ∂i(h ◦ f)(W−i(0))Zi −
1

2
∂2
i (h ◦ f)(W−i(0))Z2

i ]
∣∣

+
1

6
‖∂3

i (h ◦ f)‖∞ E|Xi|3 +
1

6
‖∂3

i (h ◦ f)‖∞ E|Zi|3 .

Since Xi and Zi match in mean and variance, and W−i(0),W−i(0) are independent of
Xi, Zi, the above difference in second-order Taylor approximations vanish. Therefore
for all 1 ≤ i ≤ n,

∣∣E[h ◦ f ◦W−i(Xi)− h ◦ f ◦W−i(Zi)]
∣∣ ≤ 1

6
‖∂3

i (h ◦ f)‖∞
(
E|Xi|3 + E|Zi|3

)
.

Substituting this control into (2.2) gives us the approximation bound

dH(f(X), f(Z)) = suph∈H

∣∣∣
∑n

i=1
E
[
h ◦ f ◦W−i(Xi)− h ◦ f ◦W−i(Zi)

]∣∣∣

≤ 1

6

∑n

i=1
suph∈H ‖∂3

i (h ◦ f)‖∞
(
E|Xi|3 + E|Zi|3

)

≤ 1

6

∑n

i=1
(‖∂if‖3

∞ + 3‖∂if‖∞ ‖∂2
i f‖∞ + ‖∂3

i f‖∞)
(
E|Xi|3 + E|Zi|3

)
.

In the last line, we have applied a higher-order chain rule and used that the first three
derivatives of h are bounded from above by 1. In summary, we obtain:

Lemma 2.1. Let X = (Xi)i≤n be a set of independent, mean-zero univariate random

variables. Let Z = (Zi)i≤n be independent normal variables with Zi ∼ N (0,Var[Xi]).

Fix a thrice-differentiable function f : Rn → R. Then

dH(f(X), f(Z)) ≤ 1

6

n∑

i=1

(‖∂if‖3
∞ + 3‖∂if‖∞ ‖∂2

i f‖∞ + ‖∂3
i f‖∞)

(
E|Xi|3 + E|Zi|3

)
.

Remark 2.1. Note that we have omitted the condition E|Xi|3 <∞, as in the case where
E|Xi|3 is unbounded, the above bound is interpreted as a vacuous bound. This convention
is assumed throughout this thesis.

Lemma 2.1 is a typical universality approximation bound obtained by the Lindeberg
method. To see how it may be small as n → ∞, consider the case where Xi’s are
i.i.d. mean-zero and f(X) = 1√

n

∑n
i=1 Xi. In this case, the partial derivatives of f can be

evaluated as

‖∂if‖∞ =
1√
n

and ‖∂2
i f‖∞ = ‖∂3

i f‖∞ = 0

for all 1 ≤ i ≤ n. Provided that E|X1|3 <∞, Lemma 2.1 implies

dH

(
1√
n

∑n

i=1
Xi ,

1√
n

∑n

i=1
Zi

)
= O(n−1/2) .
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For a general f , in order for the bound in Lemma 2.1 to imply convergence, we
require that for all 1 ≤ i ≤ n,

‖∂if‖∞ = o(n−1/3) , ‖∂2
i f‖∞ = O(n−2/3) , ‖∂3

i f‖∞ = o(n−1) .

Since each partial derivative measures the influence of the i-th input to the function, this
says that the universality approximation is valid if the contribution of the i-th data point
to the overall statistic f(X) is vanishingly small. Conditions of this nature are called
stability conditions (Mossel et al., 2005, 2010). One example of an unstable estimator is

f(X) = max{X1, . . . , Xn} . (2.4)

In this case, the generalised extreme value distribution is a suitable surrogate forXi’s and
approximation results are found in the extreme value theory literature (Haan and Ferreira,
2006). We do not consider this case and focus only on stable estimators in this thesis.

Comparison to other proof techniques for distributional approximation. The
Fourier method, Stein’s method and Edgeworth expansion method (see e.g. Tao and Vu
(2011); Chen et al. (2011); Ross (2011); Hall (2013)) are all techniques that have been
routinely used for proving central limit theorems and their variants, as well as distri-
butional approximations beyond normal variables. Beyond CLT for empirical averages,
a wealth of results are available in the Stein’s method literature for Gaussian univer-
sality approximations in the Wiener space and random matrix ensembles among others
(Nourdin et al., 2009; Nourdin and Peccati, 2010). These methods typically require the
knowledge of the limiting distribution family of f(X): For example, Stein’s method re-
lies on the availability of Stein’s kernel for the distributional approximation of f(X), and
techniques to control the approximation are typically specific to the different Stein kernel
choice; extensions do exist in certain cases, see e.g. Gaunt (2020); Gaunt and Sutcliffe
(2023). In comparison, the Lindeberg method directly targets the approximation of the
input variable by Gaussians without knowing what the limit of f(X) or f(Z) may be,
which is natural for our universality-type approximations. The Lindeberg method is also
more flexible with rather mild assumptions on the function f . This flexibility is known
to come at a price: The Lindeberg method is known to result in sub-optimal error rates
in the Kolmogorov distance (2.1) for a range of specific problems (see the discussion
after Theorem 3.3 in Chen et al. (2011) for empirical averages, the remark in Section 4
of Brailovskaya and van Handel (2022) for random matrices, and the example at the start
of Section 4.5). At a high level, this sub-optimality is due to too much smoothing: the
approximation of the Kolmogorov metric by dH with thrice-differentiable test functions
prevents one from obtaining finer controls for well-behaved estimators like the empirical
averages. One important finding in this thesis, Theorem 4.7, is that this sub-optimality is
a necessary price of generality: If the data are generated by some general n-dependent
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probability measures (which occurs, for example, when data are Rd(n)-valued and the
dimension d = d(n) are of comparable size to n), the bounds obtained by the Lindeberg
method are, in fact, near-optimal.

2.2 Modifications and extensions to the Lindeberg proof

In this section, we provide an informal discussion on how various aspects of the proof in
Section 2.1 may be adapted to accommodate a more complicated setup. For each adapta-
tion, we also provide pointers to the relevant sections of this thesis that takes advantage
of the adaptation.

Finite-sample bounds on the Kolmogorov distance. For practical purposes such as
hypothesis testing and confidence intervals, it is desirable to obtain distributional controls
on the Kolmogorov distance (2.1). To relate the dH-control in Lemma 2.1 to (2.1), one
needs to approximate the indicator I{f(X) ≤ t} by ht(f(X)) for some smooth function
ht. If H is just the class of bounded Lipschitz functions, one example of ht is ht(x) :=
1
δ
ht;δ(x) for some sufficiently small δ > 0, where

hτ ;δ(x) :=





1 if x < τ − δ ,
τ−x
δ

if x ∈ [τ − δ, τ) ,

0 if x ≥ τ .
x

τ − δ τ τ + δ

hτ ;δ hτ+δ;δ

For the class H of thrice differentiable functions considered in the Lindeberg method,
we adapt this construction to obtain a thrice differentiable approximation (Lemma A.10
used in Chapters 3 to 5). Asymptotically, the approximation of I{ • ≤ t} by ht al-
lows one to prove that convergence in dH implies convergence in Kolmogorov metric
(Corollary 6.4 used in Chapter 6). To obtain a finite-sample bound in addition, one
needs to account explicitly for the error made in the interval [τ − δ, τ + δ]. This can
be achieved if an anti-concentration bound for f(Z) is known, i.e. if one can control how
fast P(f(Z) ∈ [τ − δ, τ + δ]) decays in δ as δ → 0+. In Chapters 3 to 5, we follow
Mossel et al. (2010)’s approach to utilise the Carbery-Wright inequality (Carbery and
Wright, 2001), which gives an anti-concentration control for degree-m polynomials of
Gaussians. This typically yields a sub-optimal rate, but as we show in Chapter 4, the rate
can be nearly optimal in a general class of approximately polynomial functions, when the
data probability measure also depends on n (e.g. by d = d(n)). The lower bound cannot
be proved by the Lindeberg method; see Section 4.5 for our proof technique.

Beyond multilinear functions. Rotar (1976); Rotar et al. (1979); Mossel et al. (2010)
use the Lindeberg method to prove universality results for multilinear polynomials. This
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is the most natural case for the Lindeberg method, as multilinearity would immediately
yield ‖∂2

i f‖∞ = ‖∂3
i f‖∞ = 0 in the bound of Lemma 2.1. To extend this beyond

multilinear functions, two common approaches are as follows:

(i) We may approximate f by a suitable multilinear function. This is considered in
Section 5.1 for approximating V-statistics by U-statistics.

(ii) We may obtain explicit bounds on ∂2
i f and ∂3

i f . This is considered in Section 6.4.5
for ridge regression in moderate dimensions, where universality is shown to hold
but the departure from linearity is the source of an unexpected observation.

Two additional preprocessing techniques on X and f are also useful:

(i) The dependence of f(X) on Xi may be completely described by some feature
vectors Yi := φ(Xi), and f(X) may be linear in Yi even though it is not linear in
Xi. This is used in Chapters 3 and 5 for rewriting U-statistics in terms of degree-
two polynomials in appropriately transformed versions of the original data.

(ii) Since the Kolmogorov distance is invariant under a strictly monotonic transforma-
tion τ̃ , it suffices for us to have f = τ̃ ◦ f̃ , where f̃ is a multilinear function. We
comment on this observation in the remarks after Theorem 4.1.

Unbounded derivatives of f . Bounding terms like ‖∂if‖∞ in Lemma 2.1 requires
a uniform control on the derivatives of f , which is too strong for most practical estima-
tors. Notice that the ‖ • ‖∞ arises from a crude bound on the third-order Taylor remain-
der in (2.3). Instead, it suffices to control ∂if( • ) only on the intervals [E[Xi], Xi] and
[E[Xi], Zi], where the Taylor approximation was performed. This notably implies only
local control of the derivatives in the two intervals of most interest to our problem. All
Lindeberg-based proofs in the thesis use these local controls, which are also a staple in
the universality literature (e.g. Montanari and Saeed (2022), Han and Shen (2023)).

ν-th moment for ν ∈ (2, 3]. If Xi’s only have bounded ν-th moments for ν ∈ (2, 3],
we can choose h to be a twice-differentiable test function with a (ν − 2)-Hölder second
derivative rather than a thrice-differentiable function. The only modification in the proof
is that, instead of controlling the Taylor remainder in (2.3) by the third-order Taylor
remainder, we use the Hölder condition. This is used in Chapters 3 to 5 and an explicit
construction of our choice of h is also in Lemma A.10.

High-dimensionality. Suppose Xi’s are Rd-valued instead of R-valued, where the
dimension d = d(n) may grow in n. The step in (2.3) can introduce rather crude
dimension dependence, if we use the Cauchy-Schwarz inequality to obtain quantities
such as ‖Xi‖3 and ‖∂if(X)‖, where ‖ • ‖ is the Euclidean norm. To obtain a more
careful control, we may keep the vector product ∂if(X)>Xi and exploit concentration
properties of this product. For example, in the case of a simple degree-two U-statistic
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f(X) = 1√
n(n−1)

∑
i 6=j X

>
i Xj , whereXi’s are Rp-valued, mean-zero and i.i.d., this prod-

uct evaluates to

∂if(X)>Xi =
1√

n(n− 1)

∑
j 6=iX

>
j Xi ≈

1√
n

(
1√
n

∑
j 6=iXj

)>
Xi . (2.5)

Suppose for j 6= i, E[X>j Xi|Xi] is O(1) with high probability. Then by the central limit
theorem, (2.5) is O(n−1/2) with high probability, regardless of how large the dimension
d is with respect to n. This is heavily exploited in Chapters 3 to 5 for removing the
dependence on the dimension d in the universality approximation bound.

However, this approach does not help with getting rid of dimension dependence in
the ridge regression and ridgeless regression examples in Chapter 6. There, the high-
dimensionality manifests through the pseudo-inverse of a large sample covariance matrix
( 1
n

∑n
i=1XiX

>
i )†, which necessitates a careful control on the smallest non-zero eigen-

value of a large Rd×d random matrix. In those settings, we need to combine the Lindeberg
proof with concentration results from random matrix theory, and impose the condition
that d = O(n), i.e. the dimension grows at most proportionally to n.

Dependence. Say n is divisible by k and write n = mk. Suppose (Xi)i≤n satisfies
block dependence, i.e. we can form the blocks

X1 := (X1, . . . , Xk) , . . . , Xm := (X(m−1)k+1, . . . , Xmk) ,

such that Xl’s are independent with each other but arbitrary dependence is allowed within
each block Xl. Provided that m→∞, the Lindeberg method of Lemma 2.1 still applies
for approximating f(X) by f(Z); the only differences are that (Zi)i≤n are also block-
dependent to match the dependence structure of (Xi)i≤n, and that the moment bounded-
ness condition on E|Xi|3 needs to be replaced by the stronger control on E‖Xi‖3. The
remarks after Theorem 4.1 discuss the implication of requiring E‖Xi‖3 to be bounded
and the implicit condition it may impose on the size of k. Chapter 6 develops a universal-
ity result for block dependence and applies it to study the effects of data augmentation.
Lahiry and Sur (2024) also builds universality results for high-dimensional regularised
linear models under block-dependent coordinates.

While not covered by this thesis, we remark that once an approximation result is es-
tablished under block dependence, one may extend this result to m-dependence and mix-
ing (see definitions and applications in e.g. Cryer (1986); Brock et al. (1992); Schwein-
berger and Handcock (2015); Wackernagel (2003); Billingsley (1995); Bradley (2005)).
This is achieved by the classical big-block-small-block technique: One represents the
data (Xi)i≤n as an alternating sequence of big blocks and small blocks of random vec-
tors, where the big blocks become approximately independent and the small blocks have
negligible contributions (Bernstein, 1927; Ibragimov, 1975; Davidson, 1992). In a recent
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joint work of Mallory, Huang, and Austern (2025), universality results are provided for
high-dimensional logistic regression models for block dependence, m-dependence and
specific mixing processes. We mention this work in Section 7.1, but shall focus only on
how an exact risk analysis may be performed under dependence after Gaussian univer-
sality is established.

Non-smoothness. In many practical cases, such as estimators arising from an opti-
misation problem, f may not be differentiable due to e.g. the presence of max and min.
These points of non-differentiability can be neglected, if the quantities f(X) and f(Z) of
interest do not take values on those points with high probability. This is used in the con-
sideration of a maximum of a high-dimensional average in Section 6.6.1 with an example
use case in Section 7.2.2.

Random components with negligible contributions. Suppose we may express
f(X) = f1(X) + f2(X) such that f1(X) is amenable to the Lindeberg method, whereas
f2(X) is not (e.g. lands on points of non-differentiability with high probability). WLOG
suppose that f1(X) and f2(X) both have zero means. If f2(X) has negligible contribu-
tions to the overall asymptotic distribution, one may expect to ignore f2(X) and obtain
a universality approximation of f(X) by only f1(Z). It turns out that a sufficient condi-
tion for “ignoring” f2(X) is that Var[f2(X)] � Var[f1(X)]. This is formalised under a
concept called “variance domination” in Section 4.3. We use this technique to extend a
universality result on degree-m polynomials (Theorem 4.1) to a result for approximately
polynomial functions, where the approximation is made in the L2 sense. As applications,
this idea is also exploited to obtain different limiting approximations for U-statistics and
a high-dimensional delta method (Chapters 3 and 5).
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Chapter 3

Distribution approximations of degree-two
U-statistics in large dimensions

In this section, we focus on a simple yet illustrative application of universality in high-
dimensional analysis. It will become clear that the main results here are special cases of
the general results in Chapter 4. Specifically, we consider the distributional approxima-
tion of a one-dimensional U-statistic of degree two, given by

Dn := u2(Y ) =
1

n(n− 1)

∑
i 6=j u(Yi, Yj) , (3.1)

where Y := (Yi)i≤n is a collection of i.i.d. random vectors in Rd, n ≥ 2 and u : Rd ×
Rd → R is a symmetric measurable function. Here, we use the notation Dn to emphasise
the role of the U-statistic as a measure of discrepancy in our applications in Section 3.4,
but also highlight that it is exactly a special case of the degree-m U-statistic um(Y ) to be
considered in Section 5.3. We also write the quantity to be estimated by Dn as

D := E[u2(Y )] = E[u(Y1, Y2)] . (3.2)

Numerous estimators can be formulated as a U-statistic: Modern applications include
gene-set testing (Chen and Qin, 2010), high-dimensional change-point detection (Wang
et al., 2022), convergence guarantees for random forests (Peng et al., 2022) and kernel-
based tests in machine learning (Gretton et al., 2012).

The asymptotic theory of Dn is well-established in the classical setting, where d is
fixed and small relative to n (e.g. Chapter 5 of Serfling (1980)). Yet, those results fail
to apply to the modern context of high-dimensional data, where d is of a comparable
size to n, and where such U-statistics are empirically observed to exhibit pathological
behaviours (Reddi et al., 2015; Ramdas et al., 2015). In the context of high-dimensional
testing, many theoretical works do study the limiting distributions of specific forms of
Dn (Chen and Qin, 2010; Wang et al., 2015; Yan and Zhang, 2022), but with efforts
mostly focused on obtaining Gaussian limits. A related line of work, building on the
seminal work of De Jong (1990), has investigated criteria for the Gaussianity of Dn

regardless of degeneracy (Döbler and Peccati, 2017, 2019); these results complement
ours via the fourth moment theorem of Nualart and Peccati (2005), as we shall discuss
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in Section 3.2.3. Recent works (Döbler et al., 2022; Bhattacharya et al., 2022) have also
obtained the asymptotics of Dn beyond the classical notion of degeneracy, with focus on
quadratic forms with varying weights and time-indexed sequences of U-processes. As our
primary application in this section is kernel-based testing in high-dimensions, we focus
on deriving bounds in Kolmogorov distance that are valid for any fixed n and d, which
allow us to understand how dimension d plays a role in the distributional approximation.

In this chapter, we show how universality results can be applied to obtain Gaussian
and non-Gaussian approximations of Dn, when dimension d is allowed to grow at an
arbitrary rate relative to n under a suitable assumption. As a byproduct, we show that
the effect of dimension d on the limit of Dn is captured completely by a variance ratio
ρd. This ratio is a high-dimensional analogue of the classical notion of degeneracy in U-
statistics: Depending on the ratio, the limiting distribution of U-statistics can take either
the non-degenerate Gaussian limit, the degenerate limit or an intermediate distribution.

The rest of the chapter is organised as follows: Section 3.1 sketches the intuition of
the main result for the linear kernel and how unexpected asymptotic limits can arise in
large dimensions. Section 3.2 presents the formal result with a finite-sample, dimension-
independent error bound, established via universality. Section 3.3 shows that this bound
is nearly tight by a pair of matching upper and lower bounds for a specific U-statistic.
Section 3.4 presents practical implications of these results in the context of high-dimensional
distributional tests with Maximum Mean Discrepancy (MMD) and Kernel Stein Discrep-
ancy (KSD). All proofs are included in Appendix A.

3.1 Intuition via the example of a linear kernel

Loosely speaking, our main result in the upcoming Section 3.2 says that as n, d → ∞,
the statistic Dn converges in distribution to a quadratic form of Gaussians:

Dn

d≈ W2 + Z2 +D , (3.3)

whereW2 is some infinite sum of weighted and centred chi-squares, Z2 is some Gaussian,
and the two variables are correlated. D is the population version of Dn defined in (3.2).
W2 +D is closely related to the classical degenerate limit, whereas Z2 +D gives exactly
the classical non-degenerate limit.

To understand how W2 and Z2 arise, it is instructive to consider a decomposition
of Dn for the simple case of the linear kernel u(y1, y2) := y>1 y2. Denoting the centred
random vectors Ȳi = Yi − E[Y1], we have

1

n(n− 1)

∑
i 6=j Y

>
i Yj =

1

n(n− 1)

∑
i 6=j(Ȳi + E[Y1])>(Ȳj + E[Y1])
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=
1

n(n− 1)

∑
i 6=j Ȳ

>
i Ȳj +

2

n

∑n

i=1
Ȳ >i E[Y1] + E[Y1]>E[Y1]

=
1

n− 1

(∥∥∥ 1√
n

∑
i≤n Ȳi

∥∥∥
2

− 1

n

∑n

i=1
Ȳ >1 Ȳ1

)

︸ ︷︷ ︸
(?)W

+
2

n

∑n

i=1
Ȳ >i E[Y1]

︸ ︷︷ ︸
(?)Z

+E[Y >1 Y2] . (3.4)

Here, Dn decomposes into a sum of three terms: (?)W corresponds to W2 and, under
the CLT for d fixed, behaves like a centred chi-squared variable at the scale 1

n−1
; (?)Z

corresponds to Z2 and, under the CLT for d fixed, behaves like a normal variable at the
scale 1√

n
; the third term is E[Dn]. Notably in the case of fixed dimension, the variance of

(?)W is always smaller than that of (?)Z unless (?)Z = 0 almost surely.

Suppose d is fixed. Classical limit theorems on U-statistics say that the asymptotic
distribution of Dn (upon appropriate rescaling) depends on the notion of degeneracy: Dn

is degenerate if σcond = 0, where

σcond :=
√

VarE[u(Y1, Y2)|Y1] . (3.5)

When d is fixed, upon rescaling, a non-degenerate Dn has a Gaussian limit, whereas
a degenerate Dn has a limit described by an infinite sum of weighted and centred chi-
squares. In the case of a linear kernel, σcond =

√
E[Y1]>Var[Y2]E[Y1] is exactly the

variance of the linear term (?)Z of (3.4). Therefore in the case of (3.4), one way to
interpret degeneracy is that if (?)Z does not vanish, Dn is asymptotically close to Z2, and
if (?)Z vanishes, Dn is asymptotically close to W2.

The two key arguments in the fixed d case are (i) applying CLT to approximate av-
erages by Gaussians and (ii) determining which of (?)W and (?)Z dominates based on
degeneracy. In the case of a growing d = d(n) → ∞, Gaussian universality effectively
substitutes (i) and allows us to replace Yi’s by Gaussians. The high-dimensional analogue
of (ii), on the other hand, is more subtle, as the variances of (?)W and (?)Z are affected by
both the growing n and d. More concretely, observe that in the general case, the variance
of Dn decomposes in a similar manner to (3.4) as

Var[Dn] = O
(E[(u(Y1, Y2)−D)(u(Y1, Y2)−D)]

n(n− 1)
+

E[(u(Y1, Y2)−D)(u(Y1, Y3)−D)]

n

)

= O
(

σ2
full

n(n− 1)
+
σ2

cond

n

)
,

where σ2
cond is defined as above and corresponds to the variance of

√
n(n− 1) (?)W , and

σfull :=
√

Var[u(X1, X2)] (3.6)

corresponds to the variance of
√
n (?)Z . When d is large, σfull and σcond can scale with d

at different rates, and how the variance of (?)W compares with (?)Z depends on the ratio

ρd :=
σfull

σcond
.
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Figure 3.1: Probability density plots of Dn under the linear kernel (3.1) with different dimension parame-
ters d. In both plots, n = 200 data are drawn with Yi

i.i.d.∼ N ( 1√
d
1d, Id), and one can compute σcond = 1.

As our result in Section 3.2 reveals, this comparison of variances is generally sufficient
to determine whether the asymptotic behaviour of Dn is driven by (?)W , (?)Z or both:

ρd . n1/2 ρd ∼ n1/2 ρd & n1/2

Non-degenerate limit Intermediate limit Degenerate limit

Gaussian Quadratic form of Gaussian
∞-sum of weighted

and centred chi-squares

Table 3.1: Possible asymptotics of a degree-two U-statistic

In other words, the condition ρd & n1/2 is the high-dimensional analogue of degeneracy.
This reveals the first unexpected asymptotic in the high-dimensional regime: Even for a
non-degenerate U-statistic Dn with σcond 6= 0, ρd can become asymptotically larger than
n1/2 as d grows, causing Dn to behave like a degenerate U-statistic. This is illustrated in
Figure 3.1 for the case of the linear kernel (3.4), where the same U-statistic transitions
from a non-degenerate limit to a degenerate limit as d increases from d = 1 to d = 2000.
This degenerate behaviour is further demonstrated in Figure 3.2 for non-degenerate U-
statistics that naturally arise in the setting of distribution tests.

An additional observation from Figure 3.1 is that, as d becomes large, the chi-squared
variable 1

n
χ2
d in the degenerate limit becomes asymptotically Gaussian, as demonstrated

by the symmetry of the density plot. This reveals another unexpected asymptotic limit in
the high-dimensional regime. While the degenerate limit is described by an infinite sum
of chi-squares, the infinite sum is additionally affected by a growing dimension d. As a
result, the degenerate limit can itself become asymptotically Gaussian, albeit at a different
variance and scale compared to that of the non-degenerate limit. Figure 3.2 demonstrates
two cases, one where the c.d.f. of the degenerate approximation is symmetric and one
where asymmetry arises. This effect is not a result of ρd, but instead of the fourth moment
theorem of Nualart and Peccati (2005): We shall discuss this briefly in Section 3.2.3 in
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Figure 3.2: Behaviour of P(X > t) forX = Dn, a particular non-degenerate degree-two high-dimensional
U-statistic, versus X as the non-degenerate Gaussian approximations and the degenerate approximations.
The two plots correspond to different setups detailed in Section 3.4. Both show the departure of Dn from
the classical non-degenerate limit, with the right plot additionally showing asymmetry.

the context of Dn and defer a formal statement to Section 4.4 in the context of more
general estimators.

3.2 Distributional approximations with dimension-free error bounds

To formalise and extend the observations in Section 3.1 beyond linear kernels, the main
technical hurdle is to establish the approximation (3.3) in the regime where n, d → ∞.
In this section, we establish the asymptotics in Table 3.1 through a finite-sample bound
for (3.3), which is dimension-independent under a mild condition. The main technique
is the application of Gaussian universality to a degree-two polynomial.

Lν moment terms. As with classical Berry-Esseen bounds for empirical averages, finite-
sample bounds typically require moment controls that are slightly more than the second
moment. For ν ∈ (2, 3], our bounds will involve the Lν-analogue of σcond and σfull from
(3.5) and (3.6) as

Mcond;ν :=
∥∥E[u(Y1, Y2)|Y2]− E[u(Y1, Y2)]

∥∥
Lν
, Mfull;ν :=

∥∥u(Y1, Y2)− E[u(Y1, Y2)]
∥∥
Lν
.

They are respectively related to the non-degenerate and degenerate approximations Z and
W in (3.3), and also scale as d grows.

3.2.1. Non-degenerate approximation when ρd = o(n1/2)

The Berry-Esseen bound for non-degenerate Gaussian approximation is well-known from
classical results (see e.g. Theorem 10.3 of Chen et al. (2011)). We restate it here for
completeness and for motivating our assumptions for the general case. If σcond > 0, then
for a normal random variable Z ∼ N (E[Dn], 4n−1σ2

cond) and ν ∈ (2, 3], we have

sup
t∈R

∣∣∣P
( √

n

σcond
Dn < t

)
− P

( √
n

σcond
Z < t

)∣∣∣ ≤
6.1Mν

cond;ν

n(ν−2)/2σνcond

+
(1 +

√
2)ρd

2(n− 1)1/2
. (3.7)
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This establishes the non-degenerate approximation in Table 3.1, which is only valid when
ρd = o(n1/2). The ratio Mcond;ν/σcond also appears in the bound (3.7); however, we do
not focus on how this ratio scales, since it appears in the Berry-Esseen bound even for
sample averages. Error bounds in our main theorem will depend on similar ratios, and
for our theorem to imply asymptotic convergence, the following assumption is required:

Assumption 3.1. There exists some ν ∈ (2, 3] and some absolute constant C <∞ such
that Mfull;ν

σfull
≤ C and Mcond;ν

σcond
≤ C .

Remark. (i) If Assumption 3.1 holds for ν > 3, it also holds for all ν ∈ (2, 3]. We
restrict our attention to ν ∈ (2, 3] for simplicity.
(ii) To see an example of when Assumption 3.1 can be violated, consider the linear kernel
u(Y1, Y2) = Y >1 Y2. Also denote µ = E[Y1] and Ȳi = Yi − µ. Then the first moment ratio
computes as

Mfull;ν

σfull

=
‖Ȳ >1 Ȳ2‖Lν
‖Ȳ >1 Ȳ2‖L2

=
‖∑l≤d(Ȳ1)l(Ȳ2)l‖Lν
‖∑l≤d(Ȳ1)l(Ȳ2)l‖L2

=
‖∑l≤d(Ȳ1)l(Ȳ2)l‖Lν√∑

l,l′≤d E[(Ȳ1)l(Ȳ1)l′ ]E[(Ȳ2)l(Ȳ2)l′ ]‖L2

.

Suppose that all coordinates of Ȳ1 have unit variance. If the different coordinates of Ȳ1 are
uncorrelated, the denominator computes as Θ(

√
d). Meanwhile, the numerator is on the

order O(d), and is not guaranteed to be Θ(
√
d) due to potential dependencies across the

coordinates that do not show up in the linear correlations. This will cause Assumption 3.1
to be violated. Note that a similar argument also applies to the other moment ratio

Mcond;ν

σcond
=
‖µ>Ȳ1‖Lν
‖µ>Ȳ1‖L2

=
‖∑l≤d µl(Ȳ1)l‖Lν√∑

l,l′≤d E[(Ȳ1)l(Ȳ1)l′ ]µlµl′‖L2

.

3.2.2. The general case

Our general approximation relies on a functional decomposition assumption. For a tri-
angular array of Rd → R functions {φ(K)

k }k≤K,K∈N and a triangular array of real values
{λ(K)

k }k≤K,K∈N, we define the Lν approximation error for ν ≥ 1 and a given K ∈ N as

εK;ν :=
∥∥∑K

k=1
λ

(K)
k φ

(K)
k (Y1)φ

(K)
k (Y2)− u(Y1, Y2)

∥∥
Lν
.

Assumption 3.2. There exists some ν ∈ (2, 3] such that, for any given n and d, there
exists some (n, d)-dependent choices of (φ

(K)
k ) and (λ

(K)
k ) such that, as K →∞, the Lν

approximation error εK;ν → 0.

Remark 3.1. Assumption 3.2 always holds for ν = 2 by the spectral decomposition
of the Hilbert-Schmidt operator f( • ) 7→ E[u( • , Y1)f(Y1)] on the space L2(Rd, µY1

),
where µY1

is the law of Y1. For degenerate U-statistics with d fixed, the corresponding
orthonormal eigenbasis of functions and eigenvalues are used to prove asymptotic re-
sults (see Section 5.5.2 of Serfling (1980)) and finite-sample bounds (Bentkus and Götze,
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1999; Götze and Tikhomirov, 2005; Yanushkevichiene, 2012). In fact, these finite-sample
bounds are dependent on the specific λ(K)

k ’s, making the results hard to apply. Instead,
we forgo orthonormality at the cost of a convergence slightly stronger than L2. This al-
lows for a much more flexible choice of (φ

(K)
k , λ

(K)
k ) and is particularly well-suited for a

kernel-based setting; see the discussion after Lemma 3.11 in Section 3.4.2. We also defer
to Assumption 5.1 in Section 5.3 for a similar assumption for a degree-m U-statistic and
a discussion on how it can be easily verified for any u well-approximated by a Taylor
expansion.

Assumption 3.2 allows us to approximate each u(Yi, Yj) by an inner product of two
independent, high-dimensional random vectors in RK . This reduces the study of Dn

to a degree-two polynomial of high-dimensional random vectors, which is essentially the
linear kernel case in (3.4). The distributional approximation thus depends on the structure
of the inner product, described by

ΛK := diag{λ(K)
1 , . . . , λ

(K)
K } ∈ RK×K , φK(x) := (φ

(K)
1 (x), . . . , φ

(K)
K (x))> ∈ RK .

Loosely speaking, they can be viewed as a diagonal matrix of the first K “eigenval-
ues” and a concatenation of the first K “eigenfunctions”, although we emphasise that
these values are not necessarily associated with a spectral decomposition in view of Re-
mark 3.1. We also denote the mean and variance of φK(X1) by

µK := E[φK(Y1)] and ΣK := Cov[φK(Y1)] .

We seek to apply Gaussian universality to replace the vectors φK(Yi). To this end,
let ηKi , with i,K ∈ N, be i.i.d. standard Gaussian vectors in RK . The approximation is
given by a quadratic form of Gaussians, defined as

UK
n :=

1

n(n− 1)

∑
1≤i 6=j≤n(ηKi )>(ΣK)1/2ΛK(ΣK)1/2ηKj

+
2

n

∑n

i=1
(µK)>ΛK(ΣK)1/2ηKi + E[Dn] . (3.8)

The three components respectively correspond to W2, Z2 and D in (3.3). We also denote
the dominating moment terms from W2 and Z2 by

σmax := max{σfull, (n− 1)1/2σcond} , Mmax;ν := max{Mfull;ν , (n− 1)1/2Mcond;ν} .

We are ready to state the main result.

Theorem 3.1. There exists an absolute constant C > 0 such that, if ν ∈ (2, 3] satisfies

Assumption 3.2, then the following holds:

sup
t∈R

∣∣∣P
(√

n(n− 1)

σmax
Dn > t

)
− lim

K→∞
P
(√

n(n− 1)

σmax
UK
n > t

)∣∣∣ ≤ Cn−
ν−2
4ν+2

(
Mmax;ν

σmax

) ν
2ν+1

.

Theorem 3.1 turns out to be a direct application of the general universality result
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(Theorem 4.1) in Section 4.2, proved via the Lindeberg method. We include the proof
of Theorem 3.1 in Appendix A.3, defer a discussion of the key ideas to Section 4.2, and
present a degree-m U-statistic generalisation in Section 5.3. A few observations on the
results in Theorem 3.1:

(i) The bounds are independent of specific choices of λ(K)
k and φ

(K)
k in Assump-

tion 3.2. It therefore suffices to verify Assumption 3.2 for any choice of (φ
(K)
k , λ

(K)
k ),

which is non-unique in general;

(ii) If ν = 3, the RHS is given by Cn−
1
14

(Mmax;3

σmax

)3/7. If Assumption 3.1 holds for

ν, the RHS can be replaced by C ′n−
ν−2
4ν+2 for some constant C ′ and is dimension-

independent;

(iii) One may be tempted to move limK→∞ inside P such that, instead of the cumber-
some expression of UK

n with finite K, one may deal with random quantities in
a Hilbert space. The reason to stick with UK

n is that in Assumption 3.2, conver-
gence of the infinite sum is required only in Lν and not almost surely. This makes
verification of the assumption substantially simpler in practice: In Appendix A.1,
we illustrate how this assumption holds via a simple Taylor-expansion argument
coupled with suitable tail behaviour of the data to control error terms. The same
argument is not applicable if we instead require an almost sure convergence.

Theorem 3.1 immediately implies a convergence theorem. In the next result and
subsequent results in the section, with a slight abuse of notation, we use n, d → ∞ to
denote the asymptotic regime as n → ∞ and d = d(n) is some positive integer variable
dependent on n.

Corollary 3.2. Suppose Assumptions 3.1 and 3.2 hold for some ν ∈ (2, 3] and the se-

quential weak limit Ū = limn→∞ limK→∞

√
n(n−1)

σmax
(UK

n −D) exists. Then
√
n(n− 1)

σmax
(Dn −D)

d−→ Ū as n, d→∞ .

Since Theorem 3.1 and Corollary 3.2 do not impose any restriction on ρd, they cover
all three cases in Table 3.1. Yet, analysing the quadratic form approximation UK

n can
appear challenging. Indeed, UK

n is a quadratic form of Gaussians, which does not admit
a closed-form c.d.f. in general and whose limiting behaviour depends heavily on λ(K)

k and
φ

(K)
k . Nevertheless, the presence of Gaussianity still allows us to obtain crude bounds on

the c.d.f. of UK
n . Together with Theorem 3.1, this allows us to provide direct controls on

the c.d.f. of the original U-statistic Dn, in a way that is independent of K and specific
choices of φk and λk.

Proposition 3.3. Suppose Assumption 3.2 holds for some ν ∈ (2, 3]. Then there exist
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constants C1, C2, C3 > 0 such that for all ε > 0,

P(|Dn −D| > ε) ≥ 1− C1

(√
n(n− 1)

σmax

)1/2

ε1/2 − C2 n
− ν−2

4ν+2

(
Mmax;ν

σmax

) ν
2ν+1

,

P(|Dn −D| > ε) ≤ C3ε
−2
(

σmax√
n(n− 1)

)2

.

Remark. (i) The second line is a concentration inequality directly available via Markov’s
inequality, whereas the first bound is an anti-concentration result. Anti-concentration re-
sults are generally available only for random variables from known distribution families,
and we obtain such a result by comparing Dn to UK

n via universality. (ii) In the anti-
concentration bound, the trailing error term involving Mmax;ν/σmax is inherited from
Theorem 3.1 and is negligible. (iii) The dependence on ε in the concentration inequality
is only ε−2, since the approximation of Assumption 3.2 holds in Lν for some ν ∈ (2, 3]. If
a stronger version of Assumption 3.2 is assumed, e.g. if the approximation holds almost
surely, the result is improvable to a sub-exponential concentration bound.

Proposition 3.3 implies that the deviation of Dn from its mean is on the order σmax

n
:

Corollary 3.4. Fix ε > 0. If Assumptions 3.1 and 3.2 hold for some ν ∈ (2, 3], then

P(|Dn −D| > ε) →





1 if σmax = ω(n)

0 if σmax = o(n)
as n, d→∞ .

Since σmax = max{σfull, (n− 1)1/2σcond}, the case σmax = ω(n) happens only in the
high-dimensional regime, in which case Dn fails to be a consistent estimator of D.

3.2.3. Degenerate approximation when ρd = ω(n1/2)

Recall that the stochasticity of UK
n in (3.8) comes from a linear term and a quadratic

term. It turns out that, unless we are at the boundary case where ρd = Θ(n1/2), we can
always approximate UK

n further by keeping only one of these two terms. We have seen in
Section 3.2.1 that keeping the linear term yields the non-degenerate limit, which is valid
when ρd = o(n1/2). Here, we show that keeping the quadratic term yields the degenerate
limit, which is valid when ρd = ω(n1/2). Note that in this case, σmax = σfull.

To state the result, let {ξk}∞k=1 be a sequence of i.i.d. standard Gaussians in 1d, and for
K ∈ N, let {τ (K)

k }Kk=1 be the eigenvalues of (ΣK)1/2ΛK(ΣK)1/2. The limiting distribution
we consider is given in terms of

WK
n :=

1√
n(n− 1)

∑K

k=1
τ

(K)
k (ξ2

k − 1) +D . (3.9)

The next result adapts Theorem 3.1 by replacing UK
n with WK

n :
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Proposition 3.5. Suppose Assumption 3.2 holds for some ν ∈ (2, 3]. There exists an

absolute constant C > 0 such that

sup
t∈R

∣∣∣P
(√

n(n− 1)

σfull
Dn > t

)
− lim

K→∞
P
(√

n(n− 1)

σfull
WK
n > t

)∣∣∣

≤ C
(

1

(n− 1)1/5
+
(√

n− 1σcond

σfull

)2/5

+ n−
ν−2
4ν+2

(
(Mfull;ν)ν

σνfull

+
((n− 1)1/2Mcond;ν)ν

σνfull

) 1
2ν+1
)
.

Remark 3.2. In the case ν = 3, the error term above becomes

C
(

1

(n− 1)1/5
+
(√

n− 1σcond

σfull

)2/5

+ n−
1
14

(
(Mfull;3)3

σ3
full

+

(
(n− 1)1/2Mcond;3

)3

σ3
full

) 1
7
)
.

In the case when Assumption 3.1 holds for ν, the error term is Θ
((

n−1
ρ2
d

)1/5
+ n−

ν−2
4ν+2

)
.

Proposition 3.5 agrees with the classical results for degenerate U-statistics. In those
results, (φ

(K)
k ) are chosen such that they are orthonormal in L2(Rd, R) and E[φ

(K)
k (Y1)] =

0. This corresponds to ΣK being a diagonal matrix and the expression for τ (K)
k can

be simplified. In the high-dimensional regime, Proposition 3.5 says that the degenerate
approximation holds so long as ρd = ω(n1/2).

Proposition 3.5 allows us to obtain a better understanding of the asymptotic behavior
of Dn in the case ρd = ω(n1/2). To see this, write W2 := limK→∞W

K
n as the distribu-

tional limit of WK
n as K → ∞ (for fixed n and d). Provided that W2 exists, Proposition

3.5 says that we may approximate Dn by W2 in the Kolmogorov metric. The next propo-
sition guarantees the existence of W2.

Proposition 3.6. Fix n, d. Suppose Assumption 3.2 holds for some ν ≥ 2 and that

|D|, σfull <∞. Then W2 exists.

It now suffices to analyse W2. In Section 3.1, we have seen that in the case of a lin-
ear kernel, the degenerate limit may become asymptotically Gaussian as d → ∞. This
is connected to the fourth moment theorem of Nualart and Peccati (2005): As a special
case, their result implies that a sequence of polynomials of Gaussians is asymptotically
Gaussian if and only if its limiting excess kurtosis is zero (see Section 4.4 for a formal
statement). Since WK

n is a degree-two polynomial of Gaussians parameterised by K, n
and d, their result applies to WK

n . Moreover, the limiting moments of WK
n can be com-

puted easily when Assumption 3.2 holds for ν ≥ 4, since they depend only on moments
of the original U-statistic Dn and not on specific values of the intractable weights τ (K)

k .
Lemma A.9 in the appendix shows that

(i) E[WK
n ] = D for every K ∈ N,

(ii) limK→∞Var[WK
n ] = 2

n(n−1)
σ2

full, and

(iii) limK→∞ E
[
(WK

n −D)4
]

=
12(4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)]+σ4

full)

n2(n−1)2 ,
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provided that Assumption 3.2 holds for ν ≥ 1, ν ≥ 2 and ν ≥ 4 respectively. Upon tak-
ing the additional asymptotic as n → ∞, if the excess kurtosis is indeed zero, Gaussian
is still the correct limiting distribution for Dn, but now with a larger variance (described
by σ2

full) than what one may have predicted by the Gaussian CLT limit for non-degenerate
U-statistics (described by (n− 1)1/2σcond in Section 3.2.1).

Meanwhile, when the limiting excess kurtosis is not zero, the limiting distribution is
an infinite sum of weighted chi-squares. A naive example is the following:

Lemma 3.7. Suppose λ(K)
k = λk is independent of K and there exists a finite K∗ such

that λk = 0 for all k > K∗. Then WK∗
2 converges weakly to a weighted sum of indepen-

dent chi-squares as K →∞.

A weighted sum of chi-squares does not admit a closed-form distribution function.
Fortunately in the case when τ (K)

k ≥ 0 for all k, many numerical approximation schemes
are available and used widely. These methods generally rely on matching the moments of
Wn, which can be computed easily due to Proposition 3.6. The simplest example is the
Welch-Satterthwaite method, which approximates the distribution of Wn by a gamma
distribution with the same mean and variance, and is employed in our Figure 3.2 to
demonstrate the degenerate limit. We refer readers to Bodenham and Adams (2016) and
Duchesne and De Micheaux (2010) for a review of other moment-matching methods.

3.3 Matching upper and lower bounds for specific U-statistics

Despite their general applicability, Theorem 3.1 and Proposition 3.5 both yield an er-
ror bound on the order n−1/14 (provided that a third moment exists), in contrast with
the O(n−1/2) error for non-degenerate approximation in Section 3.2.1. This calls into
question whether the n−1/14 bound is improvable. It turns out that the error bound for
quadratic form approximations of Dn is nuanced even in the classical case: Known
upper bounds depend on the number of non-zero eigenvalues of the Hilbert-Schmidt
operator associated with the kernel u of the U-statistic, ranging from O(n−1) for five
non-zero eigenvalues (Götze and Zaitsev, 2014), O(n−1/12) for one non-zero eigenvalue
(Yanushkevichiene, 2012) (and control of an 18/5th moment), to ourO(n−1/14) bound in
Theorem 3.1 with no eigenvalue assumptions. Yanushkevichiene (2012) also conjectures
that the n−1/12 rate is unimprovable for degree-two U-statistics in view of a construction
by Senatov (1998).

Our next result shows that, for every γ ∈ (0, 1
12

], there exists a degree-two U-statistic
un(X) = 1

n(n−1)

∑
i 6=j ku(Xi, Xj) on i.i.d. Rd(n)-valued vectors (Xi)i≤n, such that the

approximation error by a quadratic form of Gaussians is Θ(n−γ).
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Theorem 3.8. Fix ν ∈ (2, 3]. Let χ2
1 be a chi-squared random variable with 1 degree of

freedom, ξ ∼ N (0, 1) be independent of χ2
1 and χ2

1 = χ2
1 − 1. There exist some absolute

constants c, C > 0, N ∈ N and a sequence (σn)n∈N with σn → 0, as well as some

random vectors (Xi) and a symmetric function ku that depends on σn, such that for all

n > N and d(n) ∈ N,

cn−
ν−2
4ν ≤ supt∈R

∣∣∣P
(√

n(n− 1)un(X) ≤ t
)
− P

(
σnξ + χ2

1 ≤ t
)∣∣∣ ≤ Cn−

ν−2
4ν .

Remark. (i) In the construction, we choose σn to decay as Θ
(
n−

ν−2
2ν

)
. The approxima-

tion becomes a chi-squared approximation in the limit n → ∞, but at a very slow rate.
(ii) Since ξ can be obtained as the limiting distribution of a partial sum of weighted and
centred chi-squared variables, Theorem 3.8 can be read as a result on the approximation
of un(X) by infinite sums of weighted and shifted chi-squares.

In the case when a third moment exists (ν = 3), the approximation error is exactly
Θ(n−1/12), which answers the question from Yanushkevichiene (2012) in the affirmative.
An implication is that, without additional structural assumptions on the data distribu-
tion or the function u used in the U-statistic, the slow n−1/12 rate of quadratic-form-of-
Gaussian approximation for U-statistics is not improvable, and the n−1/14 rate of Theo-
rem 3.1 and Proposition 3.5 are not too far from being worst-case optimal.

We conclude with a few comments on the proofs, which are included in Appendix B.3.
The U-statistic used in Theorem 3.8 is a special case of a construction developed for more
generic polynomials in Section 4.5, inspired by a result of Senatov (1998). As such, we
defer the full construction and the proof technique for the lower bound to Section 4.5.1.
The upper bound of Theorem 3.8 improves upon the more general result of Theorem 3.1
by using an argument specific to the construction, instead of applying the Lindeberg
method. Due to the similarity of proof techniques, an analogous result as Theorem 3.8
holds for V-statistics; we include this as Theorem B.1 in the appendix.

3.4 Distribution tests with Maximum Mean Discrepancy and Kernel Stein Discrep-
ancy

In this section, we study the implications of the universality results (Section 3.2) and how
the different asymptotic limits manifest in high-dimensional distribution tests. Given two
probability measures P and Q on Rd, we consider the problem of testing H0 : P = Q

against H1 : P 6= Q through some measure of discrepancy between P and Q. We focus
on Maximum Mean Discrepancy (MMD) and (Langevin) Kernelized Stein Discrepancy

(KSD), two kernel-based methods that use a U-statistic Dn as the test statistic.
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For MMD and KSD, it is well-known that σcond = 0 under H0 and the limit of Dn is
an infinite sum of weighted and centred chi-squares (see Gretton et al. (2012) for MMD
and Liu et al. (2016) for KSD). As discussed in Sections 3.1 and 3.2.3, the infinite sum
itself may have a Gaussian limit depending on the limiting excess kurtosis of the infinite
sum, which in turn depends on the weights. Since the weights and hence the limiting
distribution is intractable in general, a common practice is to simulate Dn under H0 by
distribution-agnostic methods such as a permutation test or a wild bootstrap (Schrab et al.,
2023). As such, we do not focus on the distribution of Dn under H0 here.

Instead, we are interested in quantifying the power of Dn given as PH1
(Dn > t).

The test threshold t is often chosen adaptively in practice, but we assume t to be fixed
for simplicity of analysis. Classically for dimension d fixed, it has been shown that for
MMD and KSD, Dn has σcond > 0 under H1 and its limiting distribution is typically
taken as a Gaussian (Gretton et al., 2012; Liu et al., 2016), which is used to characterize
the asymptotic power. Those results cease to hold in the high-dimensional regime, and
our results in Section 3.2 offer two insights to this problem:

(i) Depending on the variance ratio ρd, Dn may not always have the non-degenerate
Gaussian distribution as its limit. In the non-Gaussian case, the confidence interval
and thereby the distribution curve can be wider than what a Berry-Esseen bound
predicts, and there may be potential asymmetry;

(ii) We can completely characterise the high-dimensional behaviour of the power in
terms of ρd, which in turn depends on the hyperparameters and the set of alterna-
tives considered.

In what follows, we introduce additional notation in Section 3.4.1 and show, in Sec-
tion 3.4.2, that our results naturally apply to MMD and KSD. We then investigate their
high-dimensional behaviours in an example of Gaussian mean-shift under simple kernels
in Section 3.4.3.

3.4.1. Notation

We follow the kernel definition from Steinwart and Scovel (2012) as below:

Definition 3.9. A function κ : Rd × Rd → R is called a kernel on Rd if there exists a
Hilbert space (H, 〈 • , • 〉H) and a map φ : Rd → H such that κ(x, x′) = 〈φ(x), φ(x′)〉H
for all x, x′ ∈ H.

We give the minimal definitions of MMD and KSD, and refer interested readers to
Gretton et al. (2012) and Gorham and Mackey (2017) for further reading. Throughout,
we let {Yj}nj=1 be i.i.d. samples from P and {Xi}ni=1 be i.i.d. samples from Q. We also
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write Zi := (Xi, Yi) and assume that κ is measurable. MMD with respect to κ is defined
by

DMMD(Q,P ) := EY,Y ′∼P [κ(Y, Y ′)]− 2EY∼P,X∼Q[κ(Y,X)] + EX,X′∼Q[κ(X,X ′)] .

A popular unbiased estimator for DMMD is exactly a U-statistic:

DMMD
n :=

1

n(n− 1)

∑
1≤i 6=j≤n u

MMD(Zi, Zj) ,

where the summand is given by uMMD
(
(x, y), (x′, y′)

)
:= κ(x, x′) +κ(y, y′)−κ(x, y′)−

κ(x′, y). To define KSD, we assume that κ is continuously differentiable with respect to
both arguments, and P admits a continuously differentiable, positive Lebesgue density p.
The following formulation of KSD is due to Theorem 2.1 of Chwialkowski et al. (2016):

DKSD(Q,P ) := EX,X′∼Q[uKSD
P (X,X ′)] ,

where we assume EX∼Q[uKSD
P (X,X)] < ∞ and the function uKSD

P : Rd × Rd → R is
given by

uKSD
P (x, x′) =

(
∇ log p(x)

)>(∇ log p(x′)
)
κ(x, x′) +

(
∇ log p(x)

)>∇2κ(x, x′)

+
(
∇ log p(x′)

)>∇1κ(x, x′) + Tr(∇1∇2κ(x, x′)) .

∇1 and∇2 are the differential operators with respect to the first and second arguments of
κ respectively. The estimator is again a U-statistic, given by

DKSD
n :=

1

n(n− 1)

∑
1≤i 6=j≤n u

KSD
P (Xi, Xj) .

3.4.2. Verification of Assumption 3.2 for MMD and KSD

It turns out that a kernel structure allows Assumption 3.2 to be fulfilled under some
natural conditions. Let V1, V2

i.i.d.∼ R for some probability measure R on Rb and κ∗

be a measurable kernel on Rb. A sequence of functions {φk}∞k=1 in L2(Rb, R) and a
sequence of non-negative values {λk}∞k=1 with limk→∞ λk = 0 is called a weak Mercer

representation if
∣∣∑K

k=1
λkφk(V1)φk(V2)− κ∗(V1, V2)

∣∣→ 0 almost surely as K →∞ .

Steinwart and Scovel (2012) show that such a representation exists if E[κ∗(V1, V1)] <∞,
whose result is summarised in Lemma A.13 in the appendix. To deduce from this the Lν
convergence of Assumption 3.2, we need the following assumptions on the kernel κ∗:

Assumption 3.3. Fix ν > 2. Assume E[κ∗(V1, V1)] < ∞ and let {λk}∞k=1 and {φk}∞k=1

be a weak Mercer representation of κ∗ under R. Also assume that for some ν∗ > ν,
‖κ∗(V1, V2)‖Lν∗ <∞ and supK≥1 ‖

∑K
k=1 λkφk(V1)φk(V2)‖Lν∗ <∞ .

For MMD, we can use the weak Mercer representation of uMMD to show that our
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results apply:

Lemma 3.10. uMMD defines a kernel on R2d. Moreover, if Assumption 3.3 holds for

κ∗ = uMMD under P ⊗Q for some ν > 2, then Assumption 3.2 holds for min{ν, 3} with

u = uMMD and R = P ⊗Q.

In the case of KSD, we use the representation of κ directly. We require some addi-
tional assumptions for the score function∇ log p(x) to be well-behaved and the differen-
tial operation on κ to behave well under the representation.

Assumption 3.4. Fix n, d and ν > 2. Assume that Assumption 3.3 holds with ν for κ
under Q, with {λk}∞k=1 and {φk}∞k=1 as the weak Mercer representation of κ under Q and
ν∗ being defined as in Assumption 3.3. Further assume that

(i) ‖‖∇ log p(X1)‖2‖L2ν∗∗
<∞ for ν∗∗ = ν(ν+ν∗)

ν∗−ν ;

(ii) supk∈N ‖φk(X1)‖L2ν
<∞;

(iii) φk’s are differentiable with supk∈N ‖‖∇φk(X1)‖2‖Lν <∞;

(iv) As K →∞, we have the convergence
∥∥∥∥∑K

k=1
λk(∇φk(X1))φk(X2)−∇1κ(X1, X2)

∥∥
2

∥∥
L2ν
→ 0 ,

∥∥∑K

k=1
λk(∇φk(X1))>(∇φk(X2))− Tr(∇1∇2κ(X1, X2))

∥∥
Lν
→ 0 .

We can now form a decomposition of uKSD
P . Given {λk}∞k=1 and {φk}∞k=1 from As-

sumption 3.4 and any fixed d ∈ N, define the sequences {αk}∞k=1 and {ψk}∞k=1 as, for
1 ≤ l ≤ d and k′ ∈ N,

α(k′−1)d+l := λk′ and ψ(k′−1)d+l(x) := (∂xl log p(x))φk′(x) + ∂xlφk′(x) . (3.10)

Lemma 3.11. If Assumption 3.4 holds for some ν > 2, then Assumption 3.2 holds for

min{ν, 3} with u = uKSD
P , R = Q, λ(K)

k = αk and φ(K)
k = ψk .

Remark. We do remark that Assumption 3.4, in particular (iv), can be difficult to ver-
ify for specific kernels. We present it here only to illustrate how our Assumption 3.2
can be related to the use of Mercer representation in KSD analysis; as we discuss in
Appendix A.1, it can be much more straightforward to verify Assumption 3.2 directly.

The benefits of formulating our results in terms of Assumption 3.2 are now clear: By
forgoing orthonormality, we can choose a functional decomposition e.g. in terms of the
Mercer representation of a kernel, which is already widely considered in this literature.
The non-negative eigenvalues from the Mercer representation (Lemma A.13) also allow
moment-matching methods discussed in Section 3.2.3 to be considered. In fact, a Mercer
representation is not even necessary, as there are generally many non-unique choices of
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(φ
(K)
k , λ

(K)
k ) in Assumption 3.2. In Appendix A.1.1 in the appendix, we show that for

the setup with RBF kernel in Section 3.4.3, we can verify Assumption 3.2 easily on a
decomposition obtained by Taylor expansions.

3.4.3. Gaussian mean-shift examples

We study KSD and MMD under Gaussian mean-shift, where P = N (0,Σ) and Q =

N (µ,Σ) with mean µ ∈ Rd and covariance Σ ∈ Rd×d to be specified. Two simple
kernels are considered in this section, namely the RBF kernel and the linear kernel. The
mathematical results in this section can be found in Section 4.3 in the joint work (Huang,
Liu, Duncan, and Gandy, 2023). As Propositions 3.12 and 3.13 are obtained mainly
via cumbersome moment computations in each of the special cases, we refer interested
readers to Huang, Liu, Duncan, and Gandy (2023) for their proofs.

RBF kernel. We consider the RBF kernel κ(x, x′) = exp(−‖x − x′‖2
2/(2γ)), where

γ = γ(d) is a bandwidth potentially depending on d. A common strategy to choose γ is
the median heuristic:

γmed := Median
{
‖V − V ′‖2

2 : V, V ′ ∈ V , V 6= V ′
}
,

where the samples V = {Xi}ni=1 for KSD and V = {Xi}ni=1 ∪ {Yi}ni=1 for MMD. In
Appendix A.1, we include a further discussion of this setup as well as the verification of
Assumption 3.2. We refer interested readers to Appendix A of Huang et al. (2023) for a
discussion and results on the verification of Assumption 3.1.

We focus on Σ = Id, where the dimension dependence of the moment ratio ρd can be
explicitly studied for both KSD and MMD. Importantly, we give bounds in terms of the
bandwidth γ and the scale of mean shift ‖µ‖2

2, which reveal their effects on ρd and thereby
on the behaviour of the test power. The assumptions on γ and ‖µ‖2

2 in both propositions
are for simplicity rather than necessity.

Proposition 3.12 (KSD-RBF moment ratio). Assume γ = ω(1) and ‖µ‖2
2 = Ω(1). Un-

der the Gaussian mean-shift setup with Σ = Id, the KSD U-statistic satisfies that

(i) If γ = o(d1/2), then ρd = exp
(

3d
4γ2 + o

(
d
γ2

))
Θ
(

d
γ‖µ‖22

+ d1/2

γ1/2‖µ‖2
+ 1
)

;

(ii) If γ = ω(d1/2), then ρd = Θ
(

d1/2(1+γ−1/2‖µ‖2)

‖µ‖2 (1+γ−1d1/2‖µ‖2)
+ 1
)

;

(iii) If γ = Θ(d1/2), then ρd = Θ
(
d1/2

‖µ‖22
+ d1/4

‖µ‖2
+ 1
)

.

Proposition 3.13 (MMD-RBF moment ratio). Consider the Gaussian mean-shift setup

with Σ = Id and assume γ = ω(1) and ‖µ‖2
2 = Ω(1). For the MMD U-statistic, if
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γ = o(‖µ‖2
2) and γ = o(d1/2), then ρd = Θ

(
exp

(
3d
4γ2 +o

(
d
γ2

)))
. If instead γ = ω(‖µ‖2

2),

then

(i) For γ = o(d1/2), we have ρd = Θ
(

γ
‖µ‖22

exp
(

3d
4γ2 + o

(
d
γ2

)))
;

(ii) For γ = ω(d1/2), we have ρd = Θ
(

‖µ‖2 + d1/2

‖µ‖2+γ−1d1/2‖µ‖22

)
;

(iii) For γ = Θ(d1/2), we have ρd = O
(

d1/2

‖µ‖22

)
.

The case ‖µ‖2 = Ω(‖Σ‖2) = Ω(d1/2) is not very interesting, as it means that the
signal-to-noise ratio (SNR) is high and can even increase with d. WLOG we focus on
a low SNR setting with ‖µ‖2 = Θ(1). In this case, it has been shown that the median-
heuristic bandwith scales as γmed = Θ(d) (Reddi et al., 2015; Ramdas et al., 2015; Wynne
and Duncan, 2022). While Propositions 3.12 and 3.13 do not directly address the case
γ = γmed due to its data dependence, they do show that ρd = Θ(d1/2) for both KSD and
MMD with a data-independent bandwidth γ = Θ(d)†. In this case, the asymptotic distri-
butions of DKSD

n and DMMD
n are (i) the non-degenerate Gaussian limit from Section 3.2.1

when d = o(n) and (ii) the degenerate limit from Proposition 3.5 when d = ω(n).

Intriguingly, in both results, different regimes arise based on how γ compares with
the noise scale ‖Σ‖2 = d1/2. In fact, a change from one asymptotic regime to the other
as γ drops from ω(d1/2) to o(d1/2) has been reported in Ramdas et al. (2015) but with

†In our experiments, the data-independent choice γ = d and the data-dependent γ = γmed yield almost
identical plots.
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no further comments‡§. Our results offer one explanation: Such transitions may happen
due to a change in the dependence of ρd on γ, ‖µ‖2 and d. Figure 3.5 shows a transition
across different limits as γ varies, where the transition occurs at around γ ∼ d1/2.

Linear kernel. Section 3.2.3 discussed that the limit of Dn can be non-Gaussian. This
is true for MMD with a linear kernel κ(x, x′) = x>x′ (which, notably, is different from
the U-statistic with the linear kernel in Section 3.1). In this case, Dn satisfies Lemma 3.7
with K∗ = d and the limit is a shifted-and-rescaled chi-square. Figure 3.2 verifies this
for some Σ 6= Id by showing an asymmetric distribution curve close to the chi-square
limit. We remark that a linear kernel, while not commonly used, is a valid choice here
since DMMD = 0 iff P = Q under our setup.

Simulations. We set µ = (2, 0, . . . , 0)> ∈ Rd, Σ = Id and γ = γmed for KSD with
RBF and MMD with RBF. The exact setup for MMD with linear kernel is described in
Appendix A.1.4. The limits for comparison are the non-degenerate Gaussian limit in
(3.7) (“Non-degen.”) and Gamma / shifted-and-rescaled chi-square (“Degen. Gamma” /
“Degen. Chi-square”) distributions that match the degenerate limit in Proposition 3.5 by
mean and variance. Figure 3.2 plots the distribution curves for KSD with RBF and MMD
with linear kernel. Figure 3.3 plots the same quantity for MMD with RBF. Figure 3.4
and Figure 3.5 examine the behaviour of KSD with RBF as d or γ varies (as a data-
independent function of d, similar to Ramdas et al. (2015)). Results involving Dn are
averaged over 30 random seeds, and shaded regions are 95% confidence intervals¶. See
Huang, Liu, Duncan, and Gandy (2023) for further experiment details and code.

‡Their bandwidth γRamdas is defined to equal our
√

2γ. The change in asymptotic regime occurs at
γRamdas = d1/4 in their Figure 1. While their figure is for MMD with threshold chosen by a permutation
test, ours is for KSD with a fixed threshold.

§This was investigated in Ramdas (2015, Section 10.4) in a special case when γ = ω(‖µ‖22 + d) (case
(ii) of Proposition 3.13) and n = o(d5/2), where the author derived the test power of the RBF-kernel MMD
for different SNRs.

¶The shaded regions are not visible for P(Dn > t) in Figure 3.2, 3.3 and 3.5 as the confidence intervals
are very narrow.
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Chapter 4

General results on universality

The main technical tool behind the degree-two U-statistics results in Chapter 3 is a
Gaussian universality result for degree-two polynomial of high-dimensional random vec-
tors, which already leads to several unexpected observations. This leads to the ques-
tion whether these results can be extended to degree-m polynomials, especially when
m = m(n) is also allowed to grow in n in addition to the dimension d = d(n).

In this chapter, we first establish universality results for the case where the function f
in (1.1) is a degree m-polynomial. A key implication of the results in this chapter is that
the degree m, instead of the dimension d, presents a fundamental barrier for Gaussian
universality results. This provides an answer raised in Chapter 1 on the exact charac-
terisation of a class of functions for which universality holds, and complements the rich
body of works discussed in Chapter 1 that establish universality results on a case-by-case
basis. Additionally, we provide results or discussions that

(i) extend universality to approximately polynomial functions, as well as strictly mono-
tonic functions of these approximate polynomials;

(ii) discuss implications of block dependence on universality;

(iii) show that, contrary to the intuition in the classical setting (Chapter 2), the rate
provided by the Lindeberg method is not improvable in a general setup.

The generality of the results in this section is an immediate consequence of (i): Infor-
mally, given an estimator f(X1, . . . , Xn), if one can find an appropriate strictly mono-
tonic function h such that f(X1, . . . , Xn) ≈ h(q(X1, . . . , Xn)) and that q can is well-
approximated by some low-degree Taylor expansion pm, then Gaussian universality ap-
plies, i.e. we can replace Xi’s by Gaussians. We make the notion of approximation
precise in Theorem 4.2. A special case of this heuristic, taking h to be the identity, is the
delta method; we defer to Section 5.2 to show that an application of our result gives a
generalisation of the delta method for high-dimensional data.

The rest of the chapter is organised as follows. Section 4.1 introduces the setup and
notation. Section 4.2 provides upper bounds for an exact polynomial (Theorem 4.1) and
an approximately polynomial function (Theorem 4.2). Section 4.3 introduces variance
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domination. This is a set of bounds that formalises the idea in Chapter 3 of “ignoring
some additive part of the random variable if its variance is sufficiently small”, and is used
in many of our proofs including that of Theorem 4.2. Section 4.5 provides the lower
bounds as well as the constructions used in their proofs.

4.1 Setup and additional notation

We first introduce our setup. Throughout this chapter and Chapter 5, we suppress depen-
dence on n, and use the abbreviations

d = d(n) m = m(n) Xi = Xni X := (X1, . . . , Xn) .

The variables X1, . . . , Xn are independent (but not necessarily identically distributed)
random elements of Rd, and pm is a polynomial Rnd → R of degree m. The Gaussian
surrogates are a collection Z of independent Gaussian vectors

Z := (Z1, . . . , Zn) where Zi ∼ N (E[Xi],Var[Xi]) .

Our results rely on the Lindeberg method. As discussed in Section 2.2, the Lindeberg
method is directly applicable if fn is multilinear, but not if it is a polynomial involving
higher powers of Xi. We reduce the polynomial to the multilinear case by augmenting
the original random vectors: For each i ≤ n, consider the centred tensor powers of Xi,

X̄i := Xi − EXi , X⊗2
i := X⊗2

i − E
[
X⊗2
i

]
, . . . , X⊗mi := X⊗mi − E

[
X⊗mi

]
,

where we defer the precise notation of the tensor power to (4.4). Define the concatenated
random tensor

Xi :=
(
X̄i , X

⊗2
i , . . . , X⊗mi

)
(4.1)

with dimension D = d+ d2 + . . .+ dm. For a suitable tensor Tm of polynomial coeffi-
cients, we then have

pm(X)− E[ pm(X)] = 〈Tm , (1,X1)> ⊗ . . .⊗ (1,Xn)>〉 =: qm(X1, . . . ,Xn) .

(4.2)

See the end of this section for details on tensor notation. The function qm is multilinear.
As surrogates for the “augmented” variables X = (X1, . . . ,Xn), we choose a collection
of Gaussian vectors

Ξ := (ξ1, . . . , ξn) where ξ1⊥⊥ . . .⊥⊥ ξn and ξi ∼ N (E[Xi],Var[Xi]) .

Choosing the function f in (1.1) as either pm or qm then yields the approximations

pm(X) ≈ pm(Z) or pm(X) ≈ E[pm(X)] + qm(Ξ) .
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Although qm multiplies n coefficients, the tensor Tm is such that no resulting power
exceeds m. The variable qm(Ξ) is thus a degree-m polynomial of Gaussians. The bound
is given in terms of the moment terms

σ :=
√

Var qm(X) and Mν;i := ‖∂iqm(Wi)
>Xi‖Lν , (4.3)

where Wi := (X1, . . . ,Xi−1,0, ξi+1, . . . , ξn) ∈ RnD and ‖ • ‖Lν = (E| • |ν)1/ν .

Tensor notation. By a tensor T of size d1 × . . .× dk, we mean an element of Rd1×...×dk .
The tensor product of k vectors xi ∈ Rdi is the tensor ⊗ixi with entries

⊗i≤k xi(j1, . . . , jk) = x1(j1) · · ·xk(jk) for j1 ≤ d1, . . . , jk ≤ dk , (4.4)

and we write x⊗r1 := ⊗i≤r x1 for short. The scalar product of two tensors of equal size is

〈S, T 〉 :=
∑

i1≤d1,...,ik≤dk
S(i1, . . . , ik)T (i1, . . . , ik) for S, T ∈ Rd1×...×dk ,

or equivalently the Euclidean scalar product in Rd1×...×dk . Any polynomial pm of degree
≤ m can be represented as

pm(x1, . . . , xn) = T0 +
∑

r1+...+rn≤m
〈Tr1,...,rn , x

⊗r1
1 ⊗ . . .⊗ x⊗rnn 〉 ,

where T0 is a scalar and each Tr1,...,rn is a tensor of size dr1 × . . .× drn . Having defined
the augmented random tensor Xi in (4.1), we can write pm as

pm(X) = E[ pm(X)] + 〈Tm , (1,X1)> ⊗ . . .⊗ (1,Xn)>〉 (4.5)

for a tensor Tm. Tm is determined completely by T0 and (Tr1,...,rn)r1,...,rn≤m. Since pm has
degree m, Tm is such that for m′ > m, all m′-fold products of X1, . . . ,Xn correspond to
zero coefficients in Tm.

Throughout the thesis, we also make use of the tensor vectorisation operator. For a
tensor T of size d1 × . . .× dk, we define the corresponding flattened vector as

vec(T ) :=
(
T (1, . . . , 1, 1) , T (1, . . . , 1, 2) , . . . , T (d1, . . . , dk−1, dk)

)> ∈ Rd1···dk .

4.2 Upper bounds

We present two results in this section. Theorem 4.1 gives an upper bound for the Gaussian
universality approximation of the multilinear polynomial qm, and Theorem 4.2 extends it
to functions that are well-approximated by qm. The approximation of pm(X) = qm(X)

directly by pm(Z), i.e. the universality result for the original, non-multilinear polynomial
pm, can be obtained as a special case of these results under mild conditions; we defer the
formal result to Section 5.1.
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Theorem 4.1 (Gaussian universality for polynomials). Fix ν ∈ (2, 3]. Then there exists

some absolute constant C > 0 such that
∣∣P(σ−1qm(X) ≤ t)− P(σ−1qm(Ξ) ≤ t)

∣∣ ≤ Cm
( ∑n

i=1M
ν
ν;i

(1 + t2)ν/2 σν

) 1
νm+1

.

for every n,m, d ∈ N, every t ∈ R, and every σ > 0. Moreover, we have E[qm(X)] =

E[qm(Ξ)] = 0 and Var[qm(X)] = Var[qm(Ξ)].

Since the degree-two U-statistic in Chapter 3 can be approximated as a bilinear form
of K-dimensional random vectors under Assumption 3.2, the universality result of The-
orem 3.1 is a special case of Theorem 4.1. A few remarks on Theorem 4.1:

(i) Proof technique. Theorem 4.1 is proved by the Lindeberg method in Chapter 2.
The main difference from the one-dimensional case is that we avoid applying the
Cauchy-Schwarz inequality to any l2 inner product of Rd vectors, in order to obtain
a tighter dimension control. As we shall see in Chapter 5, this allows the bound
to be well-controlled with martingale difference bounds that exploit the structure
of the polynomial, which notably allows us to get mild to no dependence on the
dimension d. We include the proof in Appendix C.2;

(ii) Dimension dependence. The upper bound depends on the dimension d only via
the moment terms defined in (4.3). For many statistics of high-dimensional data,
the moment ratio becomes independent of d (see Chapter 5). Intuitively, this is
because the only effect of the input dimension d(n) is to introduce dependence on
n in the distribution of Xi’s, which manifests in a Berry-Esseen type bound only
through the first few moments;

(iii) Asymptotic normality. Since qm(Ξ) is a polynomial of Gaussians, results of Nu-
alart and Peccati (2005) on the fourth moment phenomenon imply necessary and
sufficient conditions for qm(Ξ) to be asymptotically Gaussian. See Section 4.4;

(iv) Monotone transformations. Theorem 4.1 also applies to strictly monotone func-
tions of polynomials (since it controls a Kolmogorov distance, which is invariant
under strictly monotone transforms). For example, an exponential of qm(X) can be
approximated by an exponential of qm(Ξ). In other words, the result also applies
to simple functions such as x 7→ exp(x) that are not themselves approximatable
by any degree-m polynomial;

(v) Block dependence. Let (Yij)i≤n,j≤k be a block-dependent dataset of size N =

nk, consisting of n blocks of k Rd-valued data and where the data are indepen-
dent across the n blocks but dependent within each block. By grouping each
block of data into an Rkd-dimensional vector and identifying each block as Xi =

(Yi1, . . . , Yik), the upper bound of Theorem 4.1 still applies. However, to accom-
modate a growing block size k, one requires the dependency within each block to
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be such that the moment ratio in Theorem 4.1 remains bounded. For example, con-
sider an 1d empirical average qm(X) = 1√

nk

∑n
i=1

∑k
j=1 Yij , where the blocks are

i.i.d. and each block (Yi1, . . . , Yik) is exchangeable with zero mean. Theorem 4.1
can be viewed as a result on the approximation of qm(X) by qm(Z) = 1√

n

∑n
i=1 ξi,

where ξi := 1
k

∑
j≤k Zij ∼ N (0, 1

k
Var[Z11] + k−1

k
Cov[Z11, Z12]). For ν = 3, the

moment ratio is some fractional power of

1√
n

‖ 1√
k

∑
j≤k Y1j‖3L3

Var[ 1√
k

∑
j≤k Y1j ]3/2

≤ 1√
n

k3/2‖Y11‖3L3

(Var[Y11] + (k − 1) Cov[Y11, Y12])3/2
.

If Cov[Y11, Y12] = 0, e.g. because the dependence between Y11 and Y22 does not
manifest through linear correlation, a sufficient condition for the moment ratio to
be o(1) is k = o(n1/3).

We note that the dimension independence remark in (ii) (as well as in Chapter 3 and
the subsequent Chapter 5) does not contradict the dimension constraint observed in (v):
In all cases, dimensionality does not appear explicitly in the bound. While (v) illustrates a
pathological case of how arbitrary dependence can lead to a dimensionality constraint, for
the U-statistic considered in Chapter 3 with independent data, the moment ratio reduces
to a (3rd moment)/(2nd moment) ratio on the U-statistic itself. This ratio is regarded as
O(1) for many practical U-statistics (Assumption 3.1). A similar assumption is made
implicitly in order to interpret the bounds for the estimators in Chapter 5.

Let L2(X) = L2(X1, . . . , Xn) denote the space of square-integrable functions with
respect to the probability measure of X . The polynomials of degree ≤ m in L2(X) form
a linear subspace of L2(X), and Theorem 4.1 provides universality approximations for
functions in this subspace. A simple modification extends the result to functions that are
close to the subspace in the L2 norm:

Theorem 4.2 (Approximate polynomials). Fix ν ∈ (2, 3]. There exists some absolute

constant C > 0 such that, for every n,m, d ∈ N and σ > 0,

supt∈R
∣∣P
(
σ−1f(X) ≤ t

)
− P

(
σ−1qm(Ξ) ≤ t

)∣∣

≤ Cm
((‖f(X)− qm(X)‖L2

σ

) 2
2m+1

+
(∑n

i=1M
ν
ν;i

σν

) 1
νm+1

)

for every measurable function f : Rnd → R.

Since E[qm(X)] = 0 by Theorem 4.1, the additional approximation error above is
given in terms of a ratio of two L2 norms,

‖f(X)− qm(X)‖L2

σ
=
‖f(X)− qm(X)‖L2

‖qm(X)‖ . (4.6)

Theorem 4.2 plays a key role in determining which polynomial to use for approximating
a general estimator. As a special case, the problem of determining the asymptotic of

52



a degree-two U-statistic in Chapter 3 is reduced to determining whether a degree-one
Gaussian polynomial or a degree-two Gaussian polynomial dominates asymptotically.
The ratio of variances arises as a determining factor precisely due to the approximation
error (4.6). In Chapter 5, we will see how Theorem 4.2 can be applied to obtain a high-
dimensional delta method, generalise known results on high-dimensional and infinite-
order U-statistics, and extend results on fluctuations of subgraph counts.

4.3 Variance domination

One simple technique used extensively in our proofs and in particular, to prove Theo-
rem 4.2, is the idea of variance domination: When computing the limit of a sum of two
dependent, real-valued random variables X ′ + Y ′, it suffices to ignore Y ′ in the limit
provided that the variance of Y ′ is negligible compared to that of X ′. The next result
summarises the technique and is proved in Appendix B.4.

Proposition 4.3. Let X ′ and Y ′ be two R-valued, possibly dependent random variables

with E[Y ′] = 0. Then for every t ∈ R,
∣∣P(X ′ + Y ′ ≤ t)−P(X ′ ≤ t)

∣∣

≤ inf
ε>0

(
max

{
P(X ′ ∈ (t− ε, t]) , P(X ′ ∈ (t, t+ ε])

}
+

Var[Y ′]
ε2

)
.

If we further have σ2
X′ := Var[X ′] > 0, then

∣∣P
(
σ−1
X′ (X

′ + Y ′) ≤ t
)
− P

(
σ−1
X′X

′ ≤ t
)∣∣

≤ inf
ε>0

(
max

{
P(σ−1

X′X
′ ∈ (t− ε, t]) , P(σ−1

X′X
′ ∈ (t, t+ ε])

}
+

Var[Y ′]
Var[X ′] ε2

)
.

Remark 4.1. Several adaptations are useful: (i) To swap the roles of X ′ + Y ′ and X ′,
one may replace X ′ and Y ′ above by X ′ + Y ′ and −Y ′ respectively; (ii) To replace σX′
by another normalisation, e.g.

√
Var[X ′ + Y ′], one may rescale t and ε simultaneously.

Proposition 4.3 formalises the variance domination effect: If Var[Y ′]/Var[X ′] = o(1),
by choosing ε = (Var[Y ′]/Var[X ′])1/3, Proposition 4.3 implies that the c.d.f. difference∣∣P(σ−1

X′ (X
′+Y ′) ≤ t)−P(σ−1

X′X
′ ≤ t)

∣∣ = o(1), provided that P(σ−1
X′X

′ = t) = 0. Mean-
while, to get a finite-sample control, one needs an anti-concentration bound on σ−1

X′X .
By the triangle inequality, it also suffices if σ−1

X′X is well-approximated in distribution
by some random variable Z ′ with an anti-concentration bound. For polynomials of a ran-
dom vector following a log-concave probability measure, a celebrated anti-concentration
result is available due to Carbery and Wright (2001). This in particular applies to poly-
nomials of Gaussian random vectors.
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Fact 4.4 (Carbery-Wright inequality, Theorem 8 of Carbery and Wright (2001)). Let

qm(x) be a degree-m polynomial of x ∈ Rd taking values in R, and η be an Rd-valued

random vector following a log-concave probability measure. Then there exists a constant

C independent of qm, d, m or η such that, for every ε > 0,

P
(
|qm(η)| ≤ ε

)
≤ Cmε1/m(E[|qm(η)|2])−1/2m .

Remark. We emphasise that under the Gaussian universality result of Theorem 4.1, we
would only need to apply Fact 4.4 to Gaussian random vectors, which satisfies log-
concavity immediately. While the proof of Theorem 4.1 also uses Fact 4.4, the argument
is such that only anti-concentration bounds on a Gaussian polynomial is needed, which
circumvents the need of checking log-concavity of the data distribution.

This immediately implies the following corollary of Proposition 4.3:

Corollary 4.5. Let X ′, Y ′ and σX′ > 0 be defined as in Proposition 4.3, and qm(η) be

given as in Fact 4.4. Suppose Var[qm(η)] = Var
[
σ−1
X′X

′] = 1. Then there is an absolute

constant C > 0 such that for every t ∈ R,

supt∈R
∣∣P
(
X ′ + Y ′ ≤ t

)
− P

(
X ′ ≤ t

)∣∣

≤ Cm
(Var[Y ′]

Var[X ′]

) 1
2m+1

+ 2 supt∈R
∣∣P
(
σ−1
X′X

′ ≤ t
)
− P

(
qm(η) ≤ t

)∣∣ .

Proof of Corollary 4.5. The result follows from combining Proposition 4.3 and Fact 4.4,
noting that E[|qm(η)|2] ≥ Var[qm(η)] = 1, choosing ε = (Var[Y ′]/Var[X ′])m/(2m+1) and
taking a supremum over t ∈ R.

Remark 4.2. The generality of Proposition 4.3 comes at a cost: It does not provide
the tightest control on the c.d.f. difference in general, as the variance ratio term comes
from Markov’s inequality. When one has more information about the tail behaviour of
Y ′/
√

Var[X ′], the bound can usually be improved.

We conclude by remarking that, in the case E[f(X)] = 0, Theorem 4.2 is essentially
proved by identifying X ′ = σ−1qm(X) and Y ′ = σ−1(f(X) − qm(X)), and by apply-
ing the universality approximation bound of Theorem 4.1 to replace qm(X) by qm(Ξ).
When E[f(X)] 6= 0 and therefore Y ′ 6= 0, a minor adjustment is made to the bound in
Proposition 4.3 to replace Var[Y ′] by ‖Y ′‖L2

, which gives rise to the L2 moment ratio in
Theorem 4.2.
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4.4 A necessary and sufficient condition for Gaussianity

To understand whether pm(X) may be asymptotically Gaussian, Theorem 4.1 reduces the
problem to studying the asymptotic normality of qm(Ξ), a degree-m polynomial of nd
i.i.d. univariate standard normal variables. This polynomial lives in the span of products
of Hermite polynomials with total degree ≤ m, and is therefore an m-th order Wiener
chaos; see Nourdin (2013) for an introduction. If m is fixed, the fourth moment theorem
by Nualart and Peccati (2005) applies and shows that qm(Ξ) is asymptotically Gaussian
as n→∞ if and only if its excess kurtosis, defined as

Kurt[qm(Ξ)] := E[(qm(Ξ)− E[qm(Ξ)])4] /Var[qm(Ξ)]2 − 3 = σ−4 E[(qm(Ξ))4]− 3 ,

is asymptotically zero. Denote the total variation distance by dTV. By directly using
a finite-sample bound developed by Nourdin and Peccati (2015), the next result says
that this is sufficient even as m grows, and is necessary under a uniform integrability
condition.

Proposition 4.6 (Fourth moment phenomenon). Let η be a univariate standard normal

variable independent of all other quantities. For every n,m, d ∈ N and σ > 0 , we have

dTV(σ−1qm(Ξ) , η) ≤
(

4m− 4

3m

∣∣Kurt[qm(Ξ)]
∣∣
)1/2

.

Under the high-dimensional asymptotic regime, as n→∞,

(i) Kurt[qm(Ξ)]→ 0 is a sufficient condition for σ−1qm(Ξ)
d→ η;

(ii) if σ−4qm(Ξ)4 is uniformly integrable, then Kurt[qm(Ξ)]→ 0 is also necessary.

Proof of Proposition 4.6. The finite-sample bound is a restatement of Theorem 1.1 of
Nourdin and Peccati (2015) for qm(Ξ), and directly implies (i). (ii) is proved by noting
that, when σ−1qm(Ξ)

d→ η, by continuous mapping theorem, σ−4qm(Ξ)4 d→ η4. Uni-
form integrability then implies the desired moment convergence (see Theorem 25.12 of
Billingsley (1995)).

Remark 4.3. Since the bound from Nourdin and Peccati (2015) works for a general se-
quence of Wiener chaos, Proposition 4.6 also holds if the Gaussian polynomial σ−1qm(Ξ)

is replaced by Var[pm(Z)]−1/2(pm(Z)− E[pm(Z)]).

A consequence of Theorem 4.1 and Proposition 4.6 is that, even if pm(X) is not
asymptotically Gaussian when d and m are fixed, it can become Gaussian in the high-
dimensional regime. Similar phenomenon has already been observed for U-statistics
(Janson and Nowicki, 1991; Bhattacharya et al., 2022). See Section 3.1 and Section 3.2.3
for a discussion on degree-two U-statistics of high-dimensional vectors.
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4.5 Lower bound

A question not addressed by Theorem 4.1 is whether the bound is tight. Clearly, it may be
suboptimal if additional information about fn or the law of X is available. For example,
choose Xi’s as centred i.i.d. random elements of R with unit variance, pm(X) as the
empirical average

∑n
i=1Xi/n, and ν = 3. The Berry-Esseen theorem then applies and

guarantees a rate of O(n−1/2), whereas Theorem 4.1 yields
∣∣∣P
(

1√
n

∑n

i=1
Xi ≤ t

)
− P

(
1√
n

∑n

i=1
ξi ≤ t

)∣∣∣ ≤ C
( ‖X1‖L3√

n (1 + t2)3/2

) 1
4

= O(n−1/8) .

If the only structure we know of our estimator f(X) is that f is polynomial of degree
≤ m, however, the bound is essentially tight:

Theorem 4.7 (Lower bound). Fix ν ∈ (2, 3], and assume that m is even with m =

o(log n). Then there exist a sequence of probability measures µ(n)
ν,σ0

, a sequence of poly-

nomials p∗m = p∗m(n), and absolute constants c, C > 0 and N ∈ N, such that

cn−
ν−2
2νm ≤ supt∈R

∣∣P(p∗m(X) ≤ t)− P(p∗m(Z) ≤ t)
∣∣ ≤ Cmn−

ν−2
2νm+2 ,

cn−
ν−2
2νm ≤ supt∈R

∣∣P
(
q∗m(X) ≤ t

)
− P

(
q∗m(Ξ) ≤ t

)∣∣ ≤ Cmn−
ν−2

2νm+2

for i.i.d. variables X1, . . . , Xn ∼ µ
(n)
ν,σ0

and all n ≥ N .

Recall that for a generic function f : Rnd → R, Theorem 4.2 establishes a universality
result when f is well-approximated by its m-th order Taylor expansion. Theorem 4.7
shows that this Taylor approximation, which becomes more accurate as m grows, trades
off against the Gaussian universality approximation,which deteriorates with m. In other
words, when no additional information about f or the law of X is available, the error
bound obtained from Theorem 4.1 is near-optimal, and becomes tighter as m grows.

The main technical difficulty of Theorem 4.7 is the lower bound, which cannot be
established by the techniques on upper bounds from Chapter 2. We devote the rest of the
section to a discussion on the proof techniques and the exact constructions of µ(n)

ν,σ0
and

p∗m = p∗m(n), and include the full proofs in Appendix C.3.

The key ingredient of the proof of Theorem 3 is a suitable sequence of heavy-tailed
probability measures µ(n)

ν,σ0
and statistic p∗m. Before stating the exact constructions, we

first motivate them by discussing our proof technique.

Adapting an asymmetry argument from Senatov (1998). The overall idea is to con-
struct a mixture of an average of a heavy-tailed random variable, which is poorly ap-
proximated via Gaussian universality, and a degree-m V-statistic of Gaussians, which
has good approximation by the same V-statistic of an i.i.d. copy of Gaussians at small
m but poor approximation at large m. This will be made precise in (4.7). The technical
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steps to obtain a tight lower bound, however, are non-trivial. Our strategy is inspired by
Example 9.1.3 of Senatov (1998): They construct a sequence of probability measures
on Rd to demonstrate how a multivariate normal approximation bound on a chosen se-
quence of Euclidean balls may depend on eigenvalues of the covariance matrix. Two key
mathematical ingredients of their work are

(i) a heavy-tailed univariate variable, whose i.i.d. average is poorly approximated by
a Gaussian, and

(ii) an asymmetry argument by considering Euclidean balls not centred at the origin
while studying averages of mean-zero random vectors.

To adapt the construction in Senatov (1998) for our problem, we make one key observa-
tion: The probability of a mean-zero average lying in a radius-r Euclidean ball centred
at the origin is exactly the probability of a degree-2 V-statistic taking values in [0, r2). In
other words, (i) gives the heavy-tailed variable we need, and (ii) is almost our V-statistic
except that the Euclidean balls in Senatov (1998) are not centred at the origin. Unfortu-
nately, while the asymmetry in (ii) is key to the proof by Senatov (1998), it breaks the
connection to V-statistics, and a naive application of Senatov’s results gives very loose
bounds. Instead, we create a different asymmetry by asking p∗m(X) to be a mixture of an
odd-degree V-statistic and an even-degree V-statistic, which allows Senatov’s argument
to be adapted. An additional distinction of our proof from Senatov (1998) is that, to
accommodate a growing degree m, we need to derive finer moment controls.

We are ready to state the constructions. Form = m(n) even, consider the polynomial

p∗m(x1, . . . , xn) :=
1√
n

∑n

i=1
xi1 +

(
1√
n

∑n

i=1
xij2

)m
for xi = (xi1, xi2) ∈ R2 .

The distribution µ(n)
ν,σ0

is the law of a bivariate random vector with a heavy-tailed coordi-
nate and a Gaussian coordinate. We first construct the heavy-tailed variable.

A heavy-tailed univariate distribution µ̃ν,σ. For ν > 2 and σ ∈ (0, 1], we define

p = σ2ν/(ν−2) ∈ (0, 1] and x0 = σ/
√

6p = x =
1√
6
σ−

2
ν−2 ,

and let U1 be a discrete random variable taking values in {−x0, 0, 2x0} with

P(U1 = −x0) = 2p , P(U1 = 0) = 1− 3p and P(U1 = 2x0) = p .

Let Z1 ∼ N (0, σ2) and define a smoothed version of U as

V1 := 2−1/2U1 + 2−1/2Z1 .

Note that the only role Z1 plays in the proof is for V1 to have a continuous density func-
tion, which allows us to apply results relating distribution functions to characteristic func-
tions. Write µ̃ν,σ as the law of V1. When ν = 3, this is the heavy-tailed distribution
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constructed in Example 9.1.3 of Senatov (1998). Roughly speaking, the construction is
such that if we set σ = σn → 0 as n → ∞, then Var[V1] = σ2

n → 0, but the ν-th central
moment of V1 remains Θ(1).

Let V2, . . . , Vn
i.i.d.∼ µ̃ν,σ and draw an independent Z ′1 ∼ N (0, σ2). We now list three

results on µ̃ν,σ, which extend the results by Senatov (1998) to a general ν and admit
similar proofs. Since the original proofs are highly condensed, we include proofs for all
lemmas with more detailed steps and intuitions in Appendix C.8.2. Lemma 4.8 below
controls moments of V1. In particular, E|V1|ν = O(1) and the upper bound on E|V1|ω
diverges for ω > ν. This upper bound will allow us to handle moments of polynomials
of Vi’s of growing degrees.

Lemma 4.8. EV1 = 0 and VarV1 = σ2. Moreover, there exist absolute constants c1, c2 >

0 such that for all ω ≥ 1, E|V1|ω ≤ cω1σ
− 2(ω−ν)

ν−2 + cω2σ
ωωω/2.

Lemma 4.9 below provides a finer control on the normal approximation error of an
empirical average, by performing a higher-order Taylor expansion in the space of char-
acteristic functions. This higher-order Taylor term is then inverted back to the space of
distribution functions and captured by Fq below.

Lemma 4.9. Write A := 1
27/233/2π1/2 and Fq(x) := A

n1/2σν/(ν−2)

(
1− x2

σ2

)
e−x

2/(2σ2). Then

supx∈R

∣∣∣P
(

1√
n

∑n

i=1
Vi < x

)
− P(Z ′1 < x)− Fq(x)

∣∣∣ ≤ 2

nσ2ν/(ν−2)
.

Remark. Fq is related to the higher order edgeworth expansion of the distribution of
1√
n

∑
i≤n Vi, except that the result above involves an approximation of the cumulative

density function whereas edgeworth expansion typically concerns the probability density
function.

Lemma 4.10 below provides a finer upper bound on the normal approximation error
of an average by exploiting the distribution of Vi’s we constructed.

Lemma 4.10. Suppose there exists some constant M ≥ 10 such that σν/(ν−2) ≥Mn−1/2

and n ≥ 6M2. Then there is some constant CM > 0 that depends only on M such that,

for all x ∈ R, we have
∣∣∣P
(

1√
n

∑n

i=1
Vi < x

)
− P(Z ′1 < x)

∣∣∣ ≤ CM

(
max{1, σ3}
n1/2σν/(ν−2)

e−
x2

16σ2 +
1

n3/2x4σ(8−ν)/(ν−2)

)
.

The bivariate distribution µ(n)
ν,σ0

. Now for a fixed ν ∈ (2, 3] and some absolute constant
σ0 > 0, set a standard deviation parameter

σn := min
{
σ0 n

− ν−2
2ν , 1

}
∈ (0, 1] .
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With a slight abuse of notation, we consider

V1, . . . , Vn
i.i.d.∼ µ̃ν,σn and Y1, . . . , Yn

i.i.d.∼ N (0, 1) ,

and define µ(n)
ν,σ0

as the law of (V1, Y1).

In summary, the statistic we consider is a mixture of a heavy-tailed average and an
even-degree V-statistic of Gaussian random variables:

p∗m(X) :=
1√
n

∑n

i=1
Vi +

(
1√
n

∑n

i=1
Yi

)m
= v∗1(V ) + v∗m(Y ) , (4.7)

where we denoted V := (Vi)i≤n, Y := (Yi)i≤n and the rescaled degree-m′ V-statistic as

v∗m′(x
′
1, . . . , x

′
n) :=

(
1√
n

∑n

i=1
x′i

)m′
for x′1, . . . , x

′
n ∈ R .

4.5.1. Lower bound construction for degree-two U-statistics and V-statistics

Since p∗m in (4.7) is a rather specific polynomial, a natural question is its applicability
to more natural classes of statistics such as U-statistics and V-statistics. It turns out that
in the case m = 2, we can adapt p∗m and Theorem 4.7 to obtain similar lower bound
results for degree-two U-statistics and degree-two V-statistics. The U-statistics result has
been presented as Theorem 3.8 in Section 3.3 and the V-statistics result is included as
Theorem B.1 in the appendix.

To state the construction, notice that in the case m = 2, p∗m is a polynomial p∗2 :

(R2)n → R given by

p∗2(w1, . . . , wn) :=
1√
n

∑n

i=1
wi1 +

(
1√
n

∑n

i=1
wi2

)2

for wi = (wi1, wi2) ∈ R2 .

We also consider the collection of i.i.d. R2 random vectors W := (Wi)i≤n with Wi ∼
µ

(n)
ν,σ0

. To adapt p∗2(W ), we first note that p∗2(W ) can be rewritten as a V-statistic:

p∗2(w1, . . . , wn) =
1

n

∑n

i,j=1

(
wi1
2
√
n

+
wj1

2
√
n

+ wi2wj2

)
= n ṽn(w1, . . . , wn) ,

where we have defined, for w1, . . . , wn ∈ R2 and a1, a2, b1, b2 ∈ R,

ṽn(w1, . . . , wn) :=
1

n2

∑n

i,j=1
k̃v(wi, wj) ,

k̃v((a1, a2), (b1, b2)) :=
a1

2
√
n

+
b1

2
√
n

+ a2b2 .

Moreover, since we have no restrictions on how d(n) depends on n, there are non-unique
choices of a function φd(n) : Rd(n) → R and a probability measure µd(n) on Rd(n) such
that

X1 ∼ µd(n) ⇔ φd(n)(X1)
d
= W1;σn

.

Our construction of the V-statistic is thus given by taking Xi
i.i.d.∼ µd(n) and kv(x1, x2) :=
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k̃v(φd(n)(x1), φd(n)(x2)), which gives

vn(X) =
1

n2

∑
1≤i,j≤n kv(Xi, Xj)

d
= ṽn(W ) =

1

n
p∗2(W ) ,

where d
= denotes equality in distribution. This makes Theorem 4.7 immediately applica-

ble, which yields Theorem B.1. For the U-statistics construction, we observe that

p∗2(w1, . . . , wn)

=
1√

n(n− 1)

∑n

i 6=j

(
wi1

2
√
n− 1

+
wi2

2
√
n− 1

+

√
n− 1√
n

wi2wj2

)
+

1

n

∑n

i=1
w2
i2

=
√
n(n− 1) ũn(w1, . . . , wn) +Rn(w1, . . . , wn) ,

where we have defined, for w1, . . . , wn ∈ R2 and a1, a2, b1, b2 ∈ R,

ũn(w1, . . . , wn) :=
1

n(n− 1)

∑
i 6=j k̃u(wi, wj) , Rn(w1, . . . , wn) :=

1

n

∑n

i=1
w2
i2 ,

k̃u((a1, a2), (b1, b2)) :=
a1

2
√
n− 1

+
b1

2
√
n− 1

+

√
n− 1√
n

a2b2 .

Therefore for the U-statistic, we take ku(x1, x2) := k̃u(φd(n)(x1), φd(n)(x2)), which gives

un(X) =
1

n(n− 1)

∑
1≤i 6=j≤n ku(Xi, Xj)

d
= ũn(W ) = p∗2(W )−Rn(W ) .

To obtain Theorem 3.8 from Theorem 4.7, the only technical hurdle is to show that
Rn(W ) has a negligible effect other than centering the chi-squared distribution. This
is achieved by applying the variance domination results in Section 4.3 and exploiting the
anti-concentration of the chi-squared distribution.
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Chapter 5

Degree-m polynomials of high-dimensional data

This chapter focuses on generalising existing approximation results as applications of
our universality theorems in Chapter 4, and we assume the notation used in Chapter 4.
For simplicity, we mostly consider i.i.d. data and symmetric functions. As our general
results also hold in the non-i.i.d. and asymmetric case, the interesting phenomena we
observe can be readily extended, and Section 5.4 provides one such example. Notably,
since any degree-m, symmetric polynomial of n variables can be written as a weighted
sum of U-statistics and V-statistics with degree ≤ m, all our applications will be reduced
to studying the asymptotic distributions of U-statistics and V-statistics. The proofs for all
results in this section are included in Appendix C.

The rest of the chapter proves universality results for the following examples:

• Section 5.1 concerns a family of simple V-statistics. This example also illustrates
how universality holds for a non-multilinear polynomial pm;

• Section 5.2 concerns a high-dimensional delta method. The resulting limit distribu-
tions for functions of sample averages may be non-Gaussian and even non-consistent,
depending on which polynomial component of the estimator dominates. See Proposi-
tion 5.5 for the result and Appendix C.1.1 for a simple example where such transition
happens in high dimensions;

• Section 5.3 provides finite sample bounds that generalise a range of existing results
on high-dimensional and infinite-order U-statistics (van Es and Helmers, 1988; Chen
and Qin, 2010; Harchaoui et al., 2020; Wang et al., 2015; Yan and Zhang, 2022;
Gao and Shao, 2023; Bhattacharya et al., 2022). The degree of the U-statistic may
grow faster than log n, provided the degree M of the approximating polynomial of
Gaussians satisfies M logM = o(log n);

• Section 5.4 provides results on fluctuations of subgraph densities at different orders,
which extend those in Hladký et al. (2021); Bhattacharya et al. (2023); Kaur and
Röllin (2021) by characterising a full range of vertex-level and edge-level fluctuations
with finite-sample bounds.
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5.1 Simple V-statistics

In Sections 4.1 and 4.2, we have motivated the approximation of pm(X) − E[pm(X)]

by qm(Ξ), a polynomial of the augmented variables, by noting how qm adapts well to
the Lindeberg method. On the other hand, in the case of pm(X) = g( 1√

n

∑n
i=1 Xi), the

continuous mapping theorem suggests an approximation by pm(Z), a polynomial of the
original variables, at least when g and d are fixed in n. A natural question is whether
the two approximations, i.e. the two different notions of Gaussian universality, coincide.
Note that in the high-dimensional regime, it is non-trivial to show that one may replace
Xi’s by Zi’s in pm: Gaunt (2020); Gaunt and Sutcliffe (2023) have used Stein’s method
and a Lipschitz argument to control the approximation error by pm(Z) in smooth function
bounds, but those bounds are only well-controlled when dimension d grows sublinearly
in n and are not well-adapted to the high-dimensional setting.

In this section, we confirm that the two notions of universality do coincide in the high-
dimensional regime, under a mild moment condition and for simple V-statistics. We focus
on the case where X1, . . . , Xn are i.i.d. zero-mean and consider, for x1, . . . , xn ∈ Rd, the
statistic

vm(x1, . . . , xn) :=
1

nm

∑
i1,...,im∈[n]

〈S, xi1 ⊗ . . .⊗ xim〉 , (5.1)

where S ∈ Rdm is a deterministic, symmetric tensor. Note that this is exactly the dom-
inating quantity under an m-th order delta method, and when S is not required to be
symmetric, any pm(X) of the form (4.5) can be written as a weighted sum of such V-
statistics. We also note that the centering of Xi’s implies that vm(X) is a degenerate
V-statistic, which simplifies our presentation; for distributional approximations of simi-
lar sums of uncentred variables, we refer interested readers to Temčinas et al. (2024) and
the references therewithin.

The moment condition is cumbersome to state, but can be motivated as follows. We
first notice that for the distributions of pm(Z) and qm(Ξ) to agree, we require the contri-
bution of terms like Z⊗mi (found in pm(Z)) andN (E[X⊗mi ],Var[X⊗mi ]) (found in qm(Ξ))
to be negligible. To make the condition well-adapted to a setting where d and the law of
Xi’s may vary in n, we need careful controls for all possible m-fold products of Zi’s and
of Xi’s with at least one repeated element. We coin this moment condition δ-regularity:

Definition 5.1 (δ-regularity). vm is δ-regular with respect to X if, for some δ ∈ [0, 1),
there exists an absolute constant C > 0 such that for all j ∈ [m− 1],

max
q1+...+qj=m, ql∈N

max

{
Var
[〈

S ,

j⊗

l=1

X⊗qll

〉]
, Var

[〈
S ,

j⊗

l=1

Z⊗qll

〉]}
(5.2)

≤ Cnm+δm−j Var[vm(X)] ,
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max
q1+...+qj=m, ql∈N

max

{(
E
[〈

S ,

j⊗

l=1

X⊗qll

〉])2

,

(
E
[〈

S ,

j⊗

l=1

Z⊗qll

〉])2}
(5.3)

≤ C nm+δ Var[vm(X)] .

Remark 5.1. The nm factor on the RHS balances the variance of the un-normalised V-
statistic vm(X). The m−j factor accounts for both the

(
m−1
j−1

)
= O(mj−1) multiplicity of

the terms in Var[vm(X)], and the fact that the moment of a univariate standard Gaussian
η grows as E[ηm] = O(mm/2). In Lemma C.8 in the appendix, we provide a verification
of δ-regularity for a degree-m V-statistic of univariate Gaussians as part of the proof of
Theorem 4.7. Sufficient conditions for verifying δ-regularity are deferred to Remark 5.4.
There, we show that when m and d are fixed, up to a spectral condition, δ-regularity
always holds. It suggests that the requirement of δ-regularity is specific to our high-
dimensional setup, where both m and d may grow in n.

We are ready to state the main result of this subsection, which confirms that under
δ-regularity for the V-statistic vm in (5.1), the approximations by qm(Ξ) and pm(Z) −
E[pm(X)] do agree. It also immediately implies that the universality result of Theo-
rem 4.1 holds also for the non-multilinear polynomial pm ≡ vm. Here and below, we let
qvm be the multilinear representation of vm defined in (4.2).

Proposition 5.2. Fix ν ∈ (2, 3] and let (Xi)i≤n be i.i.d. zero-mean. If vm is δ-regular

with respect to X for some δ ∈ [0, 1), there exist some absolute constants C,C ′ > 0 such

that

supt∈R
∣∣P
(
σ−1(qvm(Ξ) + E[vm(X)]) ≤ t

)
− P

(
σ−1vm(Z) ≤ t

)∣∣ ≤ Cmn−
1−δ

2m+1 ,

supt∈R
∣∣P(σ−1vm(X) ≤ t)− P(σ−1vm(Z) ≤ t)

∣∣ ≤ Cmn−
1−δ

2m+1 + C ′m∆δ ,

supt∈R
∣∣P(σ−1(vm(X)− E[vm(X)]) ≤ t)− P(σ−1(vm(Z)− E[vm(Z)]) ≤ t)

∣∣

≤ Cmn−
1−δ

2m+1 + C ′m∆δ ,

where the error term is defined as

∆δ :=
(∑n

i=1M
ν
ν;i

σν

) 1
νm+1

.

Remark 5.2. (i) Proposition 5.2 is proved by an adaptation of variance domination in
Theorem 4.2 together with the variance ratio bounds in Lemma 5.3. (ii) While E[vm(X)]

does not necessarily equal E[vm(Z)], the third bound of Proposition 5.2 implies that
the difference is asymptotically negligible. (iii) An explicit bound on ∆δ is given in
Lemma 5.4.

The proof of Proposition 5.2 is included in Appendix C.6, and an illustration of Gaus-
sian universality for a toy V-statistic in Appendix C.1.1. The proof makes use of the next
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two lemmas, which are also useful for subsequent applications. Their proofs are included
in Appendix C.6. The first lemma shows that δ-regularity can be used to control two vari-
ance ratios, which are similar to the moment ratio obtained from variance domination
(Theorem 4.2):

Lemma 5.3. Suppose (Xi)i≤n are i.i.d. zero-mean. Assume that vm is δ-regular with

respect to X for some δ ∈ [0, 1). Also assume a coupling between ξi and Zi such that

ξi1 = Zi almost surely. Then there exists some absolute constants C,C∗ > 0 such that

‖qvm(Ξ) + E[vm(X)]− vm(Z)‖2L2

Var[qvm(Ξ)]
≤ Cm

n1−δ

and
(
1− (C∗)

mn−(1−δ)/2)2 ≤ Var[vm(Z)]
Var[vm(X)]

≤
(
1 + (C∗)

mn−(1−δ)/2)2.

The next lemma applies Theorem 4.1 to show Gaussian universality with respect to
the augmented variables X, and use the simple structure of vm to bound the moment ratio
explicitly. The error bounds are given in terms of both Mν;i defined in Theorem 4.1 for
qvm and

αν(S, k) :=

∥∥∥∥
∑

p1+...+pk=m
p1,...,pk≥1

〈
S , X⊗p1

1 ⊗ . . .⊗X⊗pkk

〉∥∥∥∥
Lν

for ν ∈ [2, 3] and k ∈ [m] .

We also provide upper and lower bounds on Var[vm(X)] in terms of α2(S, k).

Lemma 5.4. Fix ν ∈ (2, 3] and let (Xi)i≤n be i.i.d. zero-mean. Then there exists some

absolute constant C > 0 such that, for every n,m, d ∈ N, t ∈ R and σ = Var[vm(X)] >

0,

supt∈R
∣∣P(σ−1qvm(X) ≤ t)− P(σ−1qvm(Ξ) ≤ t)

∣∣ ≤ Cm
(∑n

i=1M
ν
ν;i

σν

) 1
νm+1

= Cm∆δ .

Meanwhile, if n ≥ 2m2, there exist absolute constants C ′, C1, C2 > 0 such that

∆δ ≤ C ′ n−
ν−2

2νm+2 β
ν

2νm+2
m,ν , βm,ν :=

∑m
k=1

(
n
k

)
(αν(S, k))2

∑m
k=1

(
n
k

)
(α2(S, k))2

,

and
(C1)m

n2m

∑m

k=1

(
n

k

)
(α2(S, k))2 ≤ Var[vm(X)] ≤ (C2)m

n2m

∑m

k=1

(
n

k

)
(α2(S, k))2 .

Remark 5.3. The moment bound in Lemma 5.4 involves a ratio of the ν-th moment
versus the second moment of the same quantity. In fact, the ratio is a strict generalisation
of the moment ratio from the classical Berry-Esseen bound for sample averages (m = 1),
and similar to the Berry-Esseen ratio, we expect it to be O(1) for distributions that are
not too heavy-tailed. A crude upper bound on this ratio is deferred to Remark 5.5.

Remark 5.4 (Sufficient condition for verifying δ-regularity). A sufficient condition for
δ-regularity can be obtained from a moment condition and a spectral condition. Recall
that vec(T ) is the vectorisation of a tensor T (Section 4.1), and let λmax(A) and λmin(A)

denote the maximum and minimum eigenvalues of a real symmetric matrix A. Suppose
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there exist ω(1)
max, ω

(2)
max > 0 such that for all j ≤ m − 1 and any q1, . . . , qj ∈ N that sum

up to m,

λmax

(
Var
[
vec
(
⊗jl=1 X

⊗ql
l

)])
≤ ω

(1)
max ,

λmax

(
E
[
vec
(
⊗jl=1 X

⊗ql
l

)
vec
(
⊗jl=1 X

⊗ql
l

)>])
≤ ω

(2)
max .

and suppose λmin(Σ2) > 0, where

Σ2 := Var[vec(QX)] , QX :=
∑

p1+...+pk=m
p1,...,pk≥1

X⊗p1
1 ⊗ . . .⊗X⊗pkk .

WLOG take ‖vec(S)‖ = 1. Then we have

(5.2) ≤ ω
(1)
max , (5.3) ≤ ω

(2)
max , Var[vm(X)] ≥ Cmn−mλmin(Σ2)

for some absolute constant C > 0 provided that n ≥ 2m2; the third bound is obtained
from Lemma 5.4. Since m = o(log(n)), Cm = O(nε) for any ε > 0, so to show δ-
regularity, it suffices to check that for some constant C > 0, some δ ∈ [0, 1) and some
ε > 0,

max{ω(1)
max , ω

(2)
max} ≤ C nδ−ε λmin(Σ2) .

Notice that λmin(Σ2) is the minimum eigenvalue of the covariance matrix of X1 when
m = 1. Moreover, when m and d are fixed, up to a positive minimum eigenvalue con-
dition, δ-regularity always holds. We emphasise that the above only gives crude bounds
on the quantities in Definition 5.1. Instead of taking the minimum eigenvalue of Σ2, it
can often be easier to compute Var[vm(X)] directly: One approach is to decompose a
V-statistic as a sum of U-statistics (see Lemma C.12 in the appendix) followed by using
known moment formulas for U-statistics (see Appendix C.5). Such an approach is used
in Lemma C.8 in the appendix as part of the proof of Theorem 4.7.

Remark 5.5 (Upper bound on the moment ratio in Lemma 5.4). We again use a spectral
condition. Consider Σ2 and QX defined in Remark 5.4, and the analogue of Σ2 but with
a fourth moment:

Σ4 := E
[

vec
(
Q⊗2
X

)
vec
(
Q⊗2
X

)> ]
.

Define λmax and λmin as in Remark 5.4 and suppose λmin(Σ2) > 0. Then by noting
ν < 4, an upper bound on the moment ratio in Lemma 5.4 is given as

βm,ν ≤
λmax(Σ4)1/2

λmin(Σ2)
.

65



5.2 A high-dimensional delta method

We consider the classical delta method (Rao et al., 1973; Bishop et al., 1974) and show
how a high-dimensional version may be derived from our universality result. Assume
that (Xi)i≤n are i.i.d. and, for some smooth function g : Rd → R, define

ĝ(X) := g
(

1

n

∑n

i=1
Xi

)
= g

(
1

n

∑n

i=1
X̄i + E[X1]

)
, where X̄i = Xi − E[X1] .

ĝ(X) is called a plug-in estimator of g(EX1). A guiding example is gtoy(x) := x>x,
which yields a simple V-statistic

ĝtoy(X) := gtoy

(
1

n

∑n

i=1
Xi

)
=

1

n2

∑n

i,j=1
X>i Xj .

To see how the distribution of the plug-in estimator behaves through variance domination,
consider a Taylor expansion

ĝtoy(X)− gtoy(E[X1]) =
2

n

∑n

i=1
X̄>i E[X1] +

1

n2

∑n

i,j=1
X̄>i X̄j .

The variances of the first and second-order expansions are respectively on the order

Θ
(E[X1]>Var[X1]E[X1]

n

)
and Θ

(Var[X̄>1 X̄2]

n2 +
Var[X̄>1 X̄1]

n3

)
. (5.4)

Classically when d is fixed, normality of the plug-in estimator follows from the first-
order delta method whenever ∂g(E[X1]) 6= 0. For ĝtoy(X), this condition is equivalent to
E[X1] 6= 0, and exactly corresponds to when the first-order Taylor expansion dominates
in variance. In the high-dimensional regime, however, the moment terms above can vary
with n through their dependence on d: Take Xi ∼ N (µ, Id) with ‖µ‖2 = 1, in which
case (5.4) becomes

Θ
(

1

n

)
and Θ

(
d

n2 +
d

n3

)
.

Even though µ = E[X1] and therefore ∂g(E[X1]) is non-zero, the first-order term is still
dominated in variance by the second-order term when d = ω(

√
n): The first-order delta

method fails to hold, and the plug-in estimator is no longer asymptotically normal. We
now formalise this in a result concerning an m-th order delta method.

Derivatives. A delta method relies on the derivatives of g, and some shorthands are
introduced next. For x, x1, . . . , xm ∈ Rd and m ∈ N ∪ {0}, we define

g
(x)
m (x1, . . . , xm) :=

1

m!

〈
∂m g(x) , (x1 − EX1)⊗ . . .⊗ (xm − EX1)

〉

ĝ
(EX1)
m (x1, . . . , xn) := n−m

∑
i1,...,im∈[n]

g
(EX1)
m

(
xi1 , . . . , xim

)
.

which is a degree-m polynomial function. If g is (m + 1)-times continuously differ-
entiable everywhere, we can perform an m-th order Taylor expansion with the integral
remainder. Let Sn := n−1

∑
i≤n X̄i and draw Θ ∼ Uniform[0, 1] independently of X .

66



Then almost surely

ĝ(X) = g(EX1) +
∑m

j=1
ĝ

(EX1)
j (X) + (m+ 1)E

[
(1−Θ)m+1 ĝ

(EX1+ΘSn)
m+1 (X)

∣∣X
]
.

Note that when ĝ
(EX1+ΘSn)
m+1 is independent of Θ, the (m + 1) factor is cancelled out

by E[(1 − Θ)m+1] = (m + 1)−1. The penultimate approximation will be identified by
comparing which term of the Taylor expansion dominates in variance.

For simplicity of notation, we will assume that ĝ(EX1)
m is δ-regular with respect to

(X̄i)i≤n (see Definition 5.1 and Remark 5.4 for a sufficient condition), so that we can
apply universality directly to X and not just the augmented variables. In the case of gtoy

with X̄i ∼ N (0, Id), this corresponds to requiring the variance term involving X̄>1 X̄1 to
be negligible, which always holds in view of (5.4).

Moments. The result involves several moment terms. For each m ∈ N ∪ {0}, define

µm := E ĝ(EX1)
m (X) .

Note that µ0 = g(EX1), which is the target of estimation under the plug-in principle. We
also define, for ν ∈ (2, 3] and k ∈ [m], the moment terms

εm :=
Var
[∑m−1

l=1 ĝ
(EX1)
l (X)

]

Var
[
ĝ

(EX1)
m (X)

] +
(m+ 1)2

∥∥∥E
[
(1−Θ)m+1 ĝ

(
EX1+Θn−1 ∑

i≤n X̄i

)
m+1 (X)

∣∣∣X
]∥∥∥

2

L2

Var
[
ĝ

(EX1)
m (X)

] ,

αm,ν(k) :=

∥∥∥∥
∑

p1+...+pk=m
p1,...,pk≥1

〈
∂mg(EX1)

m!
, (X1 − EX1)⊗p1 ⊗ . . .⊗ (Xk − EX1)⊗pk

〉∥∥∥∥
Lν

,

and βm,ν :=

∑m
k=1

(
n
k

)
(αm,ν(k))2

∑m
k=1

(
n
k

)
(αm,2(k))2

.

εm is a variance ratio that is small when the m-th order term dominates other terms of
Taylor expansion in variance (Theorem 4.2; see Remark 5.7 for a further upper bound).
βm,ν is a V-statistic analogue of the classical Berry-Esseen ratio from Lemma 5.4 (see
Remark 5.5 for a further upper bound). The next result gives a bound for approximating
ĝ(X) by ĝ(EX1)

m (Z).

Proposition 5.5. Assume that g is (m + 1)-times continuously differentiable and that

ĝ
(EX1)
m is δ-regular (Definition 5.1) with respect to (Xi − EX1)i≤n for some δ ∈ (0, 1).

Then, there is some absolute constant C > 0 such that for all n,m, d ∈ N with n ≥ 2m2

and any ν ∈ (2, 3], we have

supt∈R
∣∣P
(
ĝ(X)−

∑m

l=0
µl ≤ t

)
− P

(
ĝ

(EX1)
m (Z)− E

[
ĝ

(EX1)
m (Z)

]
≤ t
)∣∣ ≤ ∆ĝ,m ,

where ∆ĝ,m := Cm
(
ε

1
2m+1
m + n−

1−δ
2m+1 + n−

ν−2
2νm+2 β

ν
2νm+2
m,ν

)
.

Write Φ as the c.d.f. of N (0, 1) and suppose Var
[
ĝ

(EX1)
m (X)

]
,Var

[
ĝ

(EX1)
m (Z)

]
> 0. Then
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there are some absolute constants C ′, C ′′ > 0 such that

supt∈R

∣∣∣P
(

Var
[
ĝ

(EX1)
m (X)

]−1/2(
ĝ(X)−

∑m

l=0
µl
)
≤ t
)
− Φ(t)

∣∣∣

≤ ∆ĝ,m + C ′
(C ′′)m n−(1−δ)/2

2− (C ′′)m n−(1−δ)/2 +
(

4m− 4

3m

∣∣Kurt
[
ĝ

(EX1)
m (Z)

]∣∣
)1/2

.

Remark 5.6. Proposition 5.5 considers only the case when one of the derivatives dom-
inates, but can be readily extended to the case when several terms dominate at the same
time: This is done by applying variance domination (Theorem 4.2) to the appropriate
dominating quantity.

Remark 5.7 (Upper bound on εm). Using the triangle inequality and the Jensen’s in-
equality, we can obtain a further upper bound on the first term of εm as

(m− 1)
m−1∑

l=1

Var
[
ĝ

(EX1)
l (X)

]

Var
[
ĝ

(EX1)
m (X)

] .

Each summand involves variances of V-statistics, whose upper and lower bounds are
given in Lemma 5.4. As discussed in Remarks 5.4 and 5.5, these variance ratios can
either be controlled by a further spectral bound or an explicit computation. An analogous
bound applies to the second term, provided that the (m + 1)-th derivative satisfies some
stability condition: One example of such a condition is the existence of some ν > 2 such
that

∥∥∥ ĝ(EX1+ΘSn)
m+1 (X)− ĝ(EX1)

m+1 (X)
∥∥∥
Lν

= o(1) .

When g is infinitely differentiable, Proposition 5.5 implies that the asymptotic dis-
tribution of ĝ(X) is determined by its m-th order Taylor expansion for the smallest m
such that εm → 0, i.e. the m-th order term that dominates in variance. As such, Proposi-
tion 5.5 strictly generalises them-th order delta method by replacing the requirement that
all lower derivatives are zero with the condition that εm = o(1), whereas the finite-sample
bound introduces a second condition βm,ν = o(n(ν−2)/2ν) analogous to a Berry-Esseen
moment ratio. In particular, under these two conditions, the bound does not have any
additional dependence on d. In the high-dimensional regime, Proposition 5.5 generalises
the observations in gtoy to show two aspects of delta method that depart from classical
behaviours:

• Non-Gaussianity despite a non-zero first derivative. The approximation by a degree-
m polynomial of Gaussians can dominate the first-order Gaussian term, when the
first derivative is negligible compared to some m-th derivative. If the excess kurtosis
of this degree-m Gaussian polynomial does not vanish, Proposition 4.6 implies that
ĝ(X) is not asymptotically normal under a further uniform integrability condition. In
particular, this may hold despite a non-zero first derivative term.
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• Non-consistency (under the plug-in principle). By applying a further Markov’s
inequality on P

(
ĝ

(EX1)
m (Z) − E

[
ĝ

(EX1)
m (Z)

]
≤ t

)
, we see that if ∆ĝ,m = o(1) and

Var
[
ĝ

(EX1)
m (Z)

]
= o(1), then

ĝ(X)−
∑m

l=0
µl

P−→ 0 .

Recall that under the plug-in principle, ĝ(X) is intended as an estimator for g(EX1) =

µ0. Since, by linearity,

µ1 = E
[
〈∂g(EX1), X1 − EX1〉

]
= 0 ,

ĝ(X) is indeed consistent when Proposition 5.5 holds withm = 1 (e.g. in the classical
case with non-zero first derivative). When m > 1, however, ĝ(X) may be non-
consistent, and the bias is exactly given by the limit of

∑m
l=2 µl.

Remark 5.8 (Gaussianity under a zero first derivative). Proposition 4.6 also implies that
where m and d are allowed to grow, a degree-m polynomial of d-dimensional Gaus-
sians may itself be asymptotically Gaussian: This can be seen from ĝtoy(X) with Xi ∼
N (µ, Id), whose second-order term satisfies

1

n2

∑n

i,j=1
X̄>i X̄j

d
=

d

n
× 1

d

∑d

j=1
η2
j with ηj

i.i.d.∼ N (0, 1) .

This is an average of i.i.d. variables, and becomes asymptotically normal when d and n
both grow. A consequence is that in the high-dimensional regime, Gaussianity may also
occur even when the first derivative is zero. A phase transtion from the Gaussian limit to
the chi-squared limit can happen, if the second-order term dominates as d becomes large.

Remark 5.9. Theorem 4.1 and Theorem 4.2 in fact apply to a more general version of
delta method on gn(Tn), where we consider a sequence of random variables {Tn}∞n=1,
with each Tn determined by X1, . . . , Xn, and a sequence of well-behaved functions
{gn}∞n=1. The only requirement is a suitable Taylor approximation of the estimator, which
yields the polynomial structure. Degree-m U-statistics, discussed next, give such an ex-
ample.

5.3 Effect of large dimensions on degree-m U-statistics

Let Y1, . . . , Yn be i.i.d. random variables taking values in some general (not necessar-
ily Euclidean), possibly n-dependent measurable space E ≡ E(n). Given a symmetric
function u : Em → R, consider the degree-m U-statistic given by

um(Y ) :=
1

n(n− 1) . . . (n−m+ 1)

∑
i1,...,im∈[n] distinct

u(Yi1 , . . . , Yim) . (5.5)
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Classically, under a technique called the Hájek projection, the asymptotic distribution of
um(Y ) can be approximated by that of a degree-M polynomial of Gaussians, where

M := min{j ∈ [m] : σj > 0} , and σ2
j := VarE[u(Y1, . . . , Ym) |Y1, . . . , Yj] .

See Filippova (1962), Rubin and Vitale (1980) and Chapter 5.4 of Serfling (1980) for
references on the classical theory for U-statistics. In this section, we show how the high-
dimensional asymptotics of um(Y ), where E = Rd with m and d allowed to be large
relative to n, can again be obtained with our general results.

We will invoke a functional decomposition assumption analogous to Assumption 3.2,
which was used to obtain finite-sample bounds for degree-two U-statistics. For each
K ∈ N, we consider approximating u(y1, . . . , ym) by a polynomial of m vectors in RK ,

∑K

k1,...,km=1
λ

(K)
k1...km

φ
(K)
k1

(y1)× . . .× φ(K)
km

(ym) ,

where for each K, the coordinates of the m vectors are defined via a triangular array of
E → R functions {φ(K)

k }k≤K,K∈N evaluated at y1, . . . , ym, and the polynomial weights
are given by a triangular array of real values {λ(K)

k1...km
}k1,...,km≤K,K∈N. We also denote the

Lν approximation error as

εK;ν :=
∥∥∑K

k1,...,km=1
λ

(K)
k1...km

φ
(K)
k1

(Y1)× . . .× φ(K)
km

(Ym)− u(Y1, . . . , Ym)
∥∥
Lν
.

Assumption 5.1. There exists some ν ∈ (2, 3] such that, for every fixed n, m, d and E , as
K →∞, the error εK;ν → 0 for some choice of {φ(K)

k }k≤K,K∈N, {λ(K)
k1...km

}k1,...,km≤K,K∈N.

Remark 5.10. (i) As discussed in Assumption 3.2, Assumption 5.1 is very mild. In the
appendix, we show how it holds with ν = 2 under mild assumptions on the L2 space
equipped with the m-fold product measure of Y1 (Lemma C.1), and how it holds for
E = Rd and any u well-approximated by a Taylor expansion (Lemma C.2). (ii) Un-
like asymptotic U-statistics results that use the L2 decomposition from Hilbert-Schmidt
operator theory (see e.g. Chapter 5.4 of Serfling (1980)), Assumption 5.1 does not re-
quire orthogonality or boundedness conditions on φ(K)

k or λ(K)
k1...km

and also allow them
to vary with K or n. In particular, they are generally not unique and can be chosen at
convenience for verification of the assumption, e.g. by a suitable Taylor expansion.

Penultimate approximation. To identify the dominating component, we first recall that
by Hoeffding’s decomposition theorem (see e.g. Theorem 1.2.1 of Denker (1985)),

um(y1, . . . , yn) = E[u(Y1, . . . , Ym)] +
∑m

j=1

(
m

j

)
UH
j (y1, . . . , yn) , (5.6)

where each Hoeffding’s decomposition UH
j (Y ) is a degenerate degree-j U-statistic de-

fined by

UH
j (y1, . . . , yn) :=

1

n(n− 1) . . . (n− j + 1)

∑
i1,...,ij∈[n] distinct

uH
j (yi1 , . . . , yij) ,
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uH
j (y1, . . . , yj) :=

∑j

r=0
(−1)j−r

∑
1≤l1<...<lr≤j

E
[
u(yl1 , . . . , ylr , Y1, . . . , Ym−r)

]
.

Under Assumption 5.1, each Hoeffding’s decomposition can be approximated by a poly-
nomial of RK vectors, to which our universality results can be applied. Let Ξ(K) :=

{ξ(K)
1 , . . . , ξ

(K)
n } be a collection of i.i.d. zero-mean Gaussian random vectors in RmK

with the same variance as (φ
(K)
1 (Y1), . . . , φ

(K)
K (Y1))>. For j ∈ [m] and K ∈ N, the

penultimate approximation for UH
j (Y ) is therefore given as a polynomial of RK Gaus-

sians,

U
(K)
j (Ξ(K)) :=

1

n(n− 1) . . . (n− j + 1)

∑
i1,...,ij∈[n] distinct

ũ
(K)
j (ξ

(K)
i1

, . . . , ξ
(K)
ij

) , (5.7)

u
(K)
j (v1, . . . , vj) :=

∑K

k1,...,km=1
λ

(K)
k1...km

v1k1
· · · vjkj E

[
φ

(K)
kj+1

(Y1)
]
· · ·E

[
φ

(K)
km

(Y1)
]
.

Moments. By variance domination, the asymptotic distribution of um(Y ) is determined
by the relative size of the rescaled variances, given for M ∈ [m] as

ρm,n;M :=

∑
r∈[m]\{M} σ

2
m,n;r

σ2
m,n;M

,

where σ2
m,n;j :=

(
m

j

)2(n
j

)−1

VarE[u(Y1, . . . , Ym) |Y1, . . . , Yj] for j ∈ [m] .

σ2
m,n;j describes the contribution of UH

j to the overall variance of um(Y ) (Lemma C.11
in the appendix). The bound also depends on a Berry-Esseen moment ratio, given for
ν ∈ (2, 3] and M ∈ [m] as

β̃M,ν :=

∥∥uH
M

(
Y1, . . . , YM

)∥∥
Lν∥∥uH

M

(
Y1, . . . , YM

)∥∥
L2

.

Proposition 5.6. Suppose Assumption 5.1 holds for some ν ∈ (2, 3]. Then there is some

absolute constant C > 0 such that for every n,m, d ∈ N and M ∈ [m], we have

supt∈R

∣∣∣P
(
um(Y )− E[u(Y1, . . . , Ym)] ≤ t

)
− lim

K→∞
P
((

m

M

)
U

(K)
M (Ξ(K)) ≤ t

)∣∣∣

≤ Cm
(
n−

ν−2
2(νM+1) β̃

ν
νM+1

M,ν + ρ
1

2M+1

m,n;M

)
.

Moreover, writing Φ as the c.d.f. of N (0, 1), we have that

supt∈R

∣∣∣P
(
um(Y )− E[u(Y1, . . . , Ym)] ≤ t

)
− lim

K→∞
Φ
((

m

M

)−1

Var
[
U

(K)
M (Ξ(K))

]−1/2
t
)∣∣∣

≤ Cm
(
n−

ν−2
2(νM+1)β

ν
νM+1

M,ν + ρ
1

2M+1

m,n;M

)
+ lim

K→∞

(
4m− 4

3m

∣∣Kurt
[
U

(K)
M (Ξ(K))

]∣∣
)1/2

.

We emphasise that Proposition 5.6 allows the degree of the U-statistic m to be much
larger than log n: In the above bound, when β̃M,ν = O(1) and ρm,n;M = o(1), we
only require the degree of the polynomial of Gaussians to satisfy M logM = o(log n),
with no explicit requirement on m. As with Proposition 5.5, under these conditions, the
bound also does not have any explicit dependence on d. This allows Proposition 5.6 to
recover many known results on high-dimensional U-statistics. Similar to Proposition 5.5,
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there are two cases under which a normal approximation is allowed, but with different
variances:

• When M = 1, the distributional limit limK→∞ U
(K)
1 (Ξ(K)), when exists, is Gaus-

sian. In this case, Proposition 5.6 provides a finite-sample bound for the Gaussian
approximation of um(Y ), a potentially infinite-order U-statistic (IOUS). Notably if
β̃M,ν is bounded, the only dependence on m in the bound is through ρm,n;M ; when d
is fixed and VarE[u(Y1, . . . , Ym) |Y1, . . . , Yj] ∈ (0,∞) is fixed for all j ∈ [m], we
can compute

ρm,n;1 ≤
n

m2

∑m

r=2

(
m2e2

n

)r
= O

(
m2

n

)
if m2 <

n

2e2 .

Therefore when d is fixed and M = 1, Gaussianity holds if m = o(n−1/2). This
agrees with known optimal growth condition on m for Gaussianity of 1d IOUS (van
Es and Helmers, 1988). On the other hand, when d and the variances are allowed to
change, ρm,n;1 has more complex dependence on n; this can lead to a more stringent
or relaxed condition on the size of m.

• When M > 1, U (K)
M (Ξ(K)) is a degree-M polynomial of Gaussians. By the fourth

moment phenomenon (Proposition 4.6), the asymptotic limit can still be Gaussian in
high dimensions, for which Proposition 5.5 provides a finite-sample bound. This is
a behaviour specific to the high-dimensional regime, where the Gaussian polynomial
approximation is allowed to vary in n.

The above two cases recover many existing works on the normal approximation of a
high-dimensional degree-two U-statistic: Some of those results come without a fourth-
moment condition and require assumptions similar to those for (i) (Chen and Qin, 2010;
Harchaoui et al., 2020; Wang et al., 2015; Yan and Zhang, 2022), whereas others consider
a fourth moment condition and fall under (ii) (Gao and Shao, 2023; Bhattacharya et al.,
2022). A practical consequence of (ii) is that a degenerate U-statistic – often found in
hypothesis testing and which requires numerical approximation due to its classical non-
Gaussianity Leucht and Neumann (2013) – may be Gaussian in high dimensions. In
view of the necessity statement in Proposition 4.6, one may argue that the two cases
cover most, if not all of the situations of Gaussianity.

Meanwhile, as with Proposition 5.5, Proposition 5.6 highlights when um(Y ) may be
asymptotically non-Gaussian. Here, non-Gaussianity happens not according to the de-
generacy of the U-statistic, but depending on the relative sizes of the rescaled variances
σ2
m,n;j , each corresponding to the variance of the degree-j Hoeffding decomposition. If

the ratio of the variances change as d grows, the limiting distribution of um(Y ) can tran-
sition from one low-degree polynomial of Gaussians to a higher one, or vice versa. This
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change-of-asymptotic-limit effect generalises the observation in Chapter 3 for degree-
two U-statistics. In Section 3.4, we have also seen empirical evidences of the transition
for a U-statistic used in high-dimensional kernel-based distribution tests: There, the ratio
of variances reduces to a comparison between problem-specific hyperparameter choices,
which determine which asymptotic limit dominates.

Remark 5.11. The same argument in this section can be extended to a U-statistic of non-
identically distributed data, although a more elaborate decomposition than (5.6) is re-
quired to accommodate for the fact that E[u(y1, . . . , yr, Y1, . . . , Ym−r)] may not be equal
to E[u(y1, . . . , yr, Y2, . . . , Ym−r+1)]. Section 5.4 illustrates such an example.

5.4 Finite-sample bounds for subgraph count statistics

We apply our results to characterise the possible asymptotic distributions of subgraph
counts. We shall see that variance domination (Theorem 4.2) recovers and extends the
geometric conditions considered by Hladký et al. (2021) and Bhattacharya et al. (2023)
for obtaining different limits, and our results also apply to the edge-level fluctuations
considered by Kaur and Röllin (2021).

Graph model. Given a symmetric, measurable functionw : [0, 1]2 → [0, 1], we generate
a graph Gn with vertex set [n] by drawing independent (not necessarily identically dis-
tributed) random variables (Ui)i≤n and (Vij)1≤i<j≤n, and joining an edge i ∼ j according
to

Yij := I{Vij≤w(Ui,Uj)} .

When Ui, Vij
i.i.d.∼ Uniform[0, 1], this generates an exchangeable graph from w (Diaconis

and Janson, 2008).

Subgraph count statistics. Denote K(S) as the complete graph on the vertex set
S ⊆ [n], Kn := K({1, . . . , n}) and E(H ′) as the edge set of a graph H ′. Given a non-
empty simple graph H with m = m(n) vertices and k = k(n) edges, we are interested
in the number of subgraphs in Gn that are isomorphic to H , described by

κ(Y ) :=
∑

1≤i1<...<im≤n

∑
H′⊆GH({i1,...,im})

∏
(is,it)∈E(H′)

Yisit ,

where GH(S) denotes the collection of all subgraphs of K(S) that are isomorphic to H .

Consider the conditionally centred indicator variable Ȳij := Yij−w(Ui, Uj). To derive
the asymptotic limit of κ(Y ), we first split κ(Y ) into a sum over vertices and a sum over
edges:

κ(Y ) =
∑

1≤i1<...<im≤n

∑
H′⊆GH({i1,...,im})

∏
(is,it)∈E(H′)

w(Uis , Uit)
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+
∑
{(i1,j1),...,(ik,jk)}⊆E(Kn)

is a set of distinct edges
δH
(
{(is, js)}s∈[k]

) ∏k

s=1
Ȳisjs =: κ1(U) + κ2(Ȳ ) ,

where δH(I) is the indicator function on whether the graph formed by the edge set I is
isomorphic to H . κ1(U) represents vertex-level fluctuations, and κ2(Ȳ ) represents edge-
level fluctuations. We first study the two fluctuations separately, and show how they affect
the distribution on κ(Y ) by variance domination.

Vertex-level fluctuations. Let U := (Ui)i≤n be i.i.d. for notational simplicity. κ1(U) is
now the degree-m U-statistic considered in Proposition 5.6, with the kernel

u1(x1, . . . , xm) :=
(
n

m

) ∑
H′⊆GH({1,...,m})

∏
(is,it)∈E(H′)

w(xis , xit) .

Applying Proposition 5.6 directly gives the following corollary, which approximates
κ1(U) by its M -th Hoeffding decomposition. The notation U (K)

M (Ξ(K)), β̃M,ν , σ2
m,n;M

and ρm,n;M are defined in terms of the U-statistic κ1(U).

Corollary 5.7. Suppose Assumption 5.1 holds for the kernel function u1 with some ν ∈
(2, 3]. Then there is some absolute constant C > 0 s.t. for every n,m, d ∈ N and

M ∈ [m],

sup
t∈R

∣∣∣P
(
κ1(U)− E[κ1(U)] ≤ t

)
− lim

K→∞
P
((

m

M

)
U

(K)
M (Ξ(K)) ≤ t

)∣∣∣

≤ Cm
(
n−

ν−2
2(νM+1) β̃

ν
νM+1

M,ν + ρ
1

2M+1

m,n;M

)
.

The variance ratio ρm,n;M =
∑
r∈[m]\M σ2

m,n;r

σ2
m,n;M

can be computed in terms of

σ2
m,n;r =

(
m

r

)(
n

m

)(
n− r
m− r

)
VarE

[ ∑

H′⊆GH({1,...,m})

∏

(is,it)∈E(H′)

w(Uis , Uit)

∣∣∣∣∣U1, . . . , Ur

]
.

Remark 5.12. (i) A common tool for proving limit theorems for subgraph counts (Kaur
and Röllin, 2021; Bhattacharya et al., 2023) is the orthogonal decomposition of a gener-
alised U-statistic proposed by Janson and Nowicki (1991). Here, this assumption takes
the form of Assumption 5.1: the difference is that we focus only on vertices, and perform
a decomposition in an Lν space with ν > 2 (see Remark 5.10). (ii) For Gaussian approx-
imation and for ν = 3 (i.e. existence of the appropriate third moments), we obtain a rate
of n−1/8 in Kolmogorov distance plus an additional variance domination error of ρ1/3

m,n;1.
In comparison, Kaur and Röllin (2021) obtains a bound at the rate of n−1/(2(m+2)) in a
convex set distance; we expect that their approximation error to be related to our ρ1/3

m,n;1

and that their bound, obtained by Stein’s method, is sharper.

As before, the size of σ2
m,n;M – the variance of the M -th order Hoeffding decompo-

sition – determines whether κ1(U) can be approximated by a degree-M polynomial of
Gaussians, This is known in the literature as the nm−

M
2 -th order fluctuation (Kaur and
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Röllin, 2021), as evident from the
(
n
m

)(
n−M
m−M

)
= O(n2m−M) factor in σ2

m,n;M . A guiding
example is when H = K2, i.e. κ(Y ) is the edge count: In this case, the variances of the
Gaussian component and the quadratic-form-of-Gaussian component are respectively

σ2
m,n;1 = n(n− 1)2 VarE[w(U1, U2)|U1] and σ2

m,n;2 =
n(n− 1)

2
Var[w(U1, U2)] ,

which are the variances of the n3/2-th order fluctuation and the n-th order fluctuation.

The next result gives conditions under which variance domination by the Gaussian
component (M = 1, or nm−

1
2 -th order fluctuation) fails.

Lemma 5.8. Let w, H and m ≥ 2 be fixed. Then σ2
m,n;r = O(n2m−r) for all r ∈ [m].

Moreover, the following statements are equivalent:

(i) ρ2
m,n;1 = Ω(1);

(ii) σ2
m,n;1 = 0;

(iii)
∑

H′⊆GH({1,...,m}) E
[∏

(is,it)∈E(H′) w(Uis , Uit)
∣∣∣U1

]
is constant almost surely;

(iv) For almost every x ∈ [0, 1],

1

m

∑m

i=1
E
[∏

(is,it)∈E(H)
w(Uis , Uit)

∣∣∣Ui = x
]

= E
[∏

(is,it)∈E(H)
w(Uis , Uit)

]
.

Lemma 5.8(i) is the condition derived from variance domination, whereas Lemma 5.8(iv)
is the definition of H-regularity of w, introduced by Hladký et al. (2021) for a complete
subgraph H and extended to a general subgraph H by Bhattacharya et al. (2023). In-
deed, Theorem 1.2 of Hladký et al. (2021) and Theorem 2.9 of Bhattacharya et al. (2023)
establish that κ1(U) exhibit fluctuations of an order higher than nm−

1
2 if and only if H-

regularity holds – a geometric condition that is recovered by variance domination. Mean-
while, variance domination provides more: We can now characterise all fluctuations in
κ1(U) on the orders nm−

1
2 , nm−1, . . . , n

m
2 , all with finite-sample bounds. Corollary 5.7

may also be applied to a setup where w and H are allowed to vary in n.

Remark 5.13. In the case of H = K2, Lemma 5.8(iii) says that E[w(U1, U2) |U1] is
constant almost surely. In other words, the edge count statistic κ(Y ) exhibits n-th order
fluctuations if and only if the random graph is regular on average.

Edge-level fluctuations. In practice, one may want to analyse edge properties of the
random graph, which requires us to study κ2(Ȳ ). Kaur and Röllin (2021) provide error
bounds on the Gaussian approximation of κ2(Ȳ ) by using the orthogonal decomposition
of a generalised U-statistic of U and V proposed by Janson and Nowicki (1991). We con-
sider a variant of their setup. For convenience, we re-index (Ȳij)i,j∈E(Kn) as Ȳ1, . . . , Ȳn∗ ,
where n∗ = |E(Kn)| =

(
n
2

)
; recall that k is the number of edges of H . Conditioning on
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U = (Ui)i≤n, let Z = (Zi)i≤n∗ be conditionally normal variables defined by

Zi |U i.i.d.∼ N
(
E[Ȳi |U ] , Var[Ȳi |U ]

)
.

The penultimate approximation for κ2(Ȳ ) is the incomplete U-statistic

κ2(Z) =
∑

{e1,...,ek}⊆E(Kn)
is a set of distinct edges

δH
(
{es}s∈[k]

) ∏k

s=1
Zes .

Proposition 5.9. If Var[κ2(Z) |U ] > 0 almost surely, there exist some absolute constant

C > 0 such that for every n ≥ 2 and m, k ∈ N, almost surely,

supt∈R

∣∣∣P
(
κ2(Ȳ ) ≤ t

∣∣U
)
− P

(
κ2(Z) ≤ t

∣∣U
)∣∣∣ ≤ ∆Ȳ (U) ,

where ∆Ȳ (U) := C mn−
ν−2
νk+1 ρȲ (U)

1
νk+1 and

ρȲ (U) :=
maxi1,...,ik∈[n∗] distinct

∏k

l=1
E
[∣∣Ȳil

∣∣ν ∣∣U
]

mini1,...,ik′∈[n∗] distinct
∏k′

l=1
E
[∣∣Ȳil

∣∣2 ∣∣U
]ν/2 .

Moreover, writing Φ as the c.d.f. of N (0, 1), we have that almost surely

sup
t∈R

∣∣∣P
(
κ2(Y )− E[κ2(Y ) |U ] ≤ t

∣∣U
)
− Φ

(
Var[κ2(Z) |U ]−1/2 t

)∣∣∣

≤ ∆Ȳ (U) +
(

4m− 4

3m

∣∣Kurt[κ2(Z) |U ]
∣∣
)1/2

,

where we defined Kurt[κ2(Z)|U ] := E[(κ2(Z)− E[κ2(Z)|U ])4|U ] /Var[κ2(Z)|U ]2 − 3.

Remark 5.14. (i) Observe that κ(Y ) − E[κ(Y )|U ] = κ2(Ȳ ) almost surely, since κ1(U)

is fixed under the conditioning on U . (ii) κ2(Ȳ ) is an incomplete U-statistic, where
the asymmetry arises from δH , and (Ȳi)i≤n∗ conditioning on U are non-identically dis-
tributed. This is an example of how our main results can be applied to asymmetric esti-
mators and non-identically distributed data.

Remark 5.15. The max-min ratio ρȲ can be avoided by directly using the error bound
from Theorem 4.1: In exchange, the bound is given as a sum of non-identical moment
terms and the convergence rate cannot be read off directly. This tradeoff is common for
asymmetric estimators and non-identically distributed data, although simplifications may
be possible for specific statistics.

Overall fluctuations. We now consider the asymptotic distribution of κ(Y ) = κ1(U) +

κ2(Ȳ ). Specifically, we investigate whether the vertex-level fluctuations κ1(U) or the
edge-level fluctuations κ2(Ȳ ) dominates in variance in κ(Y ). The variances of the dif-
ferent Hoeffding’s decompositions of κ1(U) have been provided in Lemma 5.8, whereas
the next result provides the variance of κ2(Ȳ ).
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Lemma 5.10. There are some absolute constants c, C > 0 such that

Var[κ2(Ȳ )] ≤ Ck |GH([n])| E
[

maxi1,...,ik∈[n∗] distinct

∏k

l=1
Var[Ȳil |U ]

]
,

Var[κ2(Ȳ )] ≥ ck |GH([n])| E
[

mini1,...,ik∈[n∗] distinct

∏k

l=1
Var[Ȳil |U ]

]
.

Consider again the setup with w, H , m and k fixed. Let Aut(H) be the set of all
automorphisms of H . Provided that the expectation terms in Lemma 5.10 are Θ(1), we
have

Var[κ2(Ȳ )] = Θ(|GH([n])|) = Θ
((

n

m

)
m!

|Aut(H)|

)
= Θ(nm) .

Meanwhile, when the dominating term of κ1(U) is its M -th Hoeffding’s decomposition,
σ2
m,n;M is assumed to be non-zero, and Lemma 5.8 implies

σ2
m,n;M = Θ(n2m−M) .

As a result, κ1(U) always dominates κ2(Ȳ ) in variance when M < m. This agrees
with the observation in Kaur and Röllin (2021), who provide a detailed illustration for
simple subgraphs. Consequently, analysing the distribution of κ(Y ) usually means that
edge-level randomness is ignored except for the case with the highest level of degeneracy.

Some difficulties persist in the most general case: (i) Due to asymmetry and non-
identically distributed data, the bounds can be loose or not immediately interpretable, as
discussed in Remark 5.15. Under specific random graph models, bounds can simplify
considerably (Hladký et al., 2021). (ii) Even if a penultimate approximation is estab-
lished, the limiting distribution for an asymmetric polynomial of Gaussians is highly
dependent on the weights and may not be immediately obvious. Different choices of
such penultimate approximations can yield natural graph-based interpretations (Kaur and
Röllin, 2021; Bhattacharya et al., 2023). In a concurrent work, Chatterjee, Dan, and
Bhattacharya (2024) obtain limiting distributions for graphon models with higher-order
degeneracies and for joint subgraph counts, and additional geometric insights.
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Chapter 6

Effects of data augmentation via block depen-
dence

The universality results developed so far focus on independent data, with a brief discus-
sion of applicability to block dependence in remark (v) after Theorem 4.1. The main goal
of this chapter is to develop universality results for analysing the effects of data augmen-

tation — an ubiquitous technique in machine learning that exhibits both block depen-
dence and high-dimensionality. Notably, while the examples in the preceding Chapters 3
and 5 are well-described by polynomials, this is not the case for the estimators we ex-
amine here. The main technical hurdle is to find the appropriate transformation under
which the estimator behaves like a polynomial (see remark (iv) after Theorem 4.1), in
the presence of block dependence and a growing dimensionality parameter. We also note
that the results in this section consider functions with Rq output for q fixed (instead of
q = 1 in the preceding chapters), and are finite-sample with respect to a smooth metric
but asymptotic with respect to the Kolmogorov metric. To obtain a finite-sample bound
in the Kolmogorov metric, one may apply our general results in Chapter 4 across the q
coordinates; we do not focus on this here to avoid the need to consider anti-concentration
bounds.

We first informally motivate the role of data augmentation in machine learning. The
term data augmentation refers to a range of machine learning heuristics that synthetically
enlarge a training data set†: Random transformations are applied to each training data
point, and the transformed points are added to the training data (e.g. Taqi et al., 2018;
Shorten and Khoshgoftaar, 2019). It has quickly become one of the most widely used
heuristics in machine learning practice, and the scope of the term continues to evolve.
One objective may be to make a neural network less sensitive to rotations of input images,
by augmenting data with random rotations of training samples (e.g. Perez and Wang,
2017). In other cases, one may simply reason that “more data is always better”.

The question how data augmentation affects learning rates remains open. It has been
argued that augmentation reduces the variance of estimates (Zhang et al., 2021), that

†This meaning of the term data augmentation should not be confused with a separate meaning in
statistics, which refers to the use of latent variables e.g. in the EM algorithm.

78



it increases the effective sample size (Balestriero et al., 2022b), and that it acts as a
regulariser (Balestriero et al., 2022a), but none of these points have been rigorously es-
tablished in great generality. Existing analysis studies the bias of estimates (Balestriero
et al., 2022a), and shows a reduction of variance for certain parametric M-estimators un-
der additional invariance assumptions (Chen et al., 2020). In the following, we study the
limiting behaviour of augmentation methods. Two mathematical obstacles are (1) that
augmentation makes independently distributed data dependent, and (2) that data may be
high-dimensional. One may therefore expect the behaviour of augmented estimates to
be highly sensitive to the input distribution. We show that, on the contrary, augmented
statistics exhibit a form of universality under general stability conditions.

The key difference of the results in this chapter, as compared to the i.i.d. case, is
that data augmentation introduces strong dependence that persists asymptotically. By
approximating (appropriately transformed versions of) the data by Gaussians, the effect
of such strong dependence manifests only through the first two moments, and the analysis
reduces to understanding how the changes in the mean and variance affect properties of
the estimator. Our findings show that a number of properties commonly attributed to data
augmentation — variance reduction, increase in effective sample size, and regularisation
— each occur in certain cases, but fail in others.

The rest of the chapter is organised as follows. Section 6.1 provides a high-level, non-
technical overview of the results. Section 6.2 defines the setup and the concept of noise
stability. Theoretical results—the main theorem and a number of consequences—follow
in Section 6.3. The remaining sections apply these results to the variance analysis of
plug-in estimators and ridge regression (Section 6.4) and the regularisation effects on an
overparameterised model that exhibits double descent (Section 6.5). We also demonstrate
the applicability of our universality results to other non-smooth and high-dimensional
estimators in Section 6.6; in view of Theorem 4.1, these provide additional examples of
how to find the “appropriate transformation” of the estimator to perform a low-degree
polynomial approximation. All proofs are collected in Appendix D.

The examples we focus on in this chapter are on regression tasks, but the same uni-
versality approximation can be obtained for estimators in classification tasks. A follow-
up work on logistic regression is considered in the joint work of Mallory, Huang, and
Austern (2025), which is discussed in Chapter 7.

6.1 A non-technical overview

Here, we sketch the results informally to provide a high-level overview. Rigorous defini-
tions follow in Section 6.2. Our general setup is as follows: Consider a dataset, consisting
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Figure 6.1: Effect of augmentation on the variability of estimates. Left: On an empirical average. Right:
On a ridge regression estimator. Each point is an estimate computed from a single simulation experiment,
and the dashed lines are the 95% 2d quantiles of the empirical distribution over 1000 simulations. Aug-
mentation reduces the variability in the left plot, but increases the uncertainty of the estimate in the right
plot. See Remark 6.3 in Section 6.4.5 for details on the plotted experiments.
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Figure 6.2: Effect of an oracle choice of augmentation on the limiting risk of a high-dimensional ridgeless
regressor under the asymptotic d/n → γ. A regularisation effect is observed around γ = 1, whereas a
new double-descent peak shows up at γ = 5 = k, the number of augmentations. See Section 6.5.1 for the
detailed setup.

of observations that we assume to be d-dimensional i.i.d. random vectors in D ⊆ Rd. We
are interested in estimating a quantity θ ∈ Rq, for some q. This may be a model param-
eter, the value of a risk function or a statistic, and so forth. The data is augmented by
applying k randomly generated transformations to each data point. That yields an aug-
mented data set of size n · k. An estimator for θ is then a function f : Dnk → Rq, and we
estimate θ as

estimate of θ = f(augmented data) .

From a statistical perspective, this can be regarded as a form of sample randomisation.
As for other randomisation techniques, such as the bootstrap or cross-validation, quanti-
tative analysis of augmentation is complicated by the fact that randomised data points are
not independent. To study such augmented estimates, we rely on the Linderberg method
discussed in Chapter 2, and assume that our statistics f satisfy a “noise stability” condi-
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tion (see Section 6.2). Informally, noise stability means that f is not too sensitive to small
perturbations of any input coordinate. Examples of noise-stable statistics include sample
averages (such as empirical risks or plug-in estimators), but also overparameterised lin-
ear regression, ridge regression, bagged estimators, and general M-estimators (Mei and
Montanari, 2022; Soloff et al., 2024; Montanari and Saeed, 2022). Our Theorem 6.1
shows that the distribution of our augmented estimator is identical to the distribution of
an estimator trained on some surrogate random variables. More precisely, for all h in a
certain classH of smooth functions, we show that
∣∣E[h(f(augmented data))] − E[h(f(generic surrogate variables))]

∣∣ ≤ τ(n, k) .

The surrogates are variables completely determined by their mean and variance; depend-
ing on the problem, they may be Gaussian (e.g. for sample averages) or non-Gaussian
(e.g. for ridge regression). Under general conditions, τ → 0, hence the limiting dis-
tribution of f(augmented data) is that of f(surrogates). In other words, the effect of
augmentation on a noise-stable estimator is completely determined by two moments as
n grows large. The theorem specifies these moments explicitly. That allows us to study
the limiting estimator and its variance, and to read off the rate of convergence from τ .
For sufficiently linear estimators, we can also draw consistent confidence intervals and
evaluate their width.

Applications to specific models. The function τ is determined by terms that quantify the
noise stability of f . For a given estimator, we can evaluate these terms to verify how fast
τ converges to 0 as either n or k grows large. This establishes how fast the universality
property happens, and we use this to gain insights into the effect of data augmentation
for a few different models:

1) Underparameterised models. We analyse empirical averages (Section 6.4.2), plug-in
estimators, the risk of M-estimators (Section 6.4.3) and ridge regression (Section 6.4.5).
For empirical averages and risks, we characterise exactly when augmentation reduces
variance. These results hold more generally for a class of linear sample statistics. For
non-linear estimators, the behaviour can change significantly: Augmentation may in-
crease rather than decrease variance. That can occur even in simple models, such as the
ridge regression example (see the right plot of Figure 6.1).

2) Overparameterised models. As an example of an overparameterised model, we anal-
yse the limiting risk of a high-dimensional ridgeless regressor. Without augmentation,
this model is known to exhibit double descent (Hastie et al., 2022). We show that the
behaviour under augmentation depends on an interplay of scales: If d ≈ n, augmentation
acts as a regulariser. For higher dimension, namely d ≈ nk, it causes the risk to diverge
to infinity. It can also shift the double-descent peak—see Figure 6.2.
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Some key findings about the behaviour of data augmentation. To place our results
in context, we note three hypotheses generally made in the existing literature of data
augmentation and are either explicitly or implicitly required by proofs (e.g. Dao et al.,
2019; Chen et al., 2020; Balestriero et al., 2022b): (i) Linearity or approximate linearity
of the estimator, in the sense that f is linear in contributions of individual data points
(typically, a sample average). (ii) Invariance of the data source, i.e. the transformations
used to perform augmentation leave the data distribution invariant. (iii) The number of
transformations applied to each data point diverges, i.e. k →∞. In the context of (iii), it
is helpful to note that transformations can be applied once before fitting a model (offline

augmentation), or repeatedly during each step of a training algorithm (online augmenta-

tion). Online augmentation is feasible if each transformation is computationally cheap
(e.g. rotations in computer vision). Offline augmentation is particularly common in nat-
ural language processing, where more expensive transformations have emerged as useful
(Feng et al., 2021). The assumption k →∞ is justified by choosing an online setup and
arguing that the number of steps of the training algorithm is effectively infinite; offline
augmentation implies k <∞. Theorem 6.1 allows us to drop each of these assumptions,
and overall, our results show that doing so can change the behaviour of augmentation
decisively. In more detail, our results show the following:

1) Augmentation may or may not reduce variance. Augmentation is known to reduce
variance under assumptions (i)—(iii) above, but empirical observations by Lyle et al.
(2019) suggest this may not be true in practice. Theorem 6.1 allows us to make more
detailed statements: If f is linear, augmentation reduces variance if the transformations
do not increase the variance of the data distribution (Section 6.4.3). If f is non-linear,
variance may increase, even if distributional invariance holds (Sections 6.4.4 and 6.4.5).
More generally, the effects of augmentation depend not only on the data distribution, but
also on the estimator f .

2) Invariance is not essential for augmentation, regardless of whether f is linear or non-
linear. For linear f , the relevant criterion for variance reduction is that augmentation does
not increase the variance of data variables (Section 6.4.2). The invariance assumption (ii)
is one way to ensure this, but is not required: Invariance implies all moments are constant
under transformation. What matters is that the second moment does not grow.

3) Augmentation and regularisation. It has been argued that data augmentation can be
interpreted as a form of regularisation (e.g. Balestriero et al., 2022a). Our results show
that augmentation can indeed act as a regulariser, but whether it does depends on details
of the application—specifically, on how the sample size n, the dimension d, and the num-
ber k of augmentations per data point grow relative to each other (Section 6.5).

4) Whether augmentation is performed offline or online matters. If k <∞, data
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augmentation may not regularise (Section 6.5). This manifests for d ≈ nk in the double-
descent peak of the risk in Figure 6.2.

In summary, Theorem 6.1 can be used to derive statistical guarantees for a range
of augmented estimators. Several hypotheses on augmentation considered in machine
learning turn out not to be either true or false, but rather depend on the data distribution,
the properties of the estimator, and the interplay of sample size, number of augmenta-
tions, and dimension. The results may also be a step towards making data augmentation
a viable technique for statisticians who seek guarantees for the methods they employ.

6.2 Definitions

Data and augmentation. Throughout, we consider a data setX := (X1, . . . ,Xn), where
the Xi are i.i.d. random elements of some fixed convex subset D ⊆ Rd that contains 0.
The choice of 0 is for convenience and can be replaced by any other reference point. Let
T be a set of (measurable) maps D → D, and fix some k ∈ N. We generate nk i.i.d.
random elements φ11, . . . , φnk of T , and abbreviate

Φi := (φij|j ≤ k) Φ := (φij|i ≤ n, j ≤ k) ΦiXi := (φi1Xi, . . . , φikXi) .

The augmented data is then the ordered list

ΦX := (Φ1X1, . . . ,ΦnXn) = (φ11X1, . . . , φ1kX1, . . . , φn1Xn, . . . , φnkXn) .

Here and throughout, we do not distinguish between a vector and its transpose, and regard
the quantities above as vectors ΦiXi ∈ Dk and ΦX ∈ Dnk where convenient.

Estimates. An estimate computed from augmented data is the value

f(ΦX ) = f(φ11X1, . . . , φnkXn)

of a function f : Dnk → Rq, for some q ∈ N. An example is an empirical risk: If S is a
regression function Rd → R (such as a statistic or a feed-forward neural network), and
C(ŷ, y) is the cost of a prediction ŷ with respect to y, one might choose φij = (πij, τij) as
a pair of transformations acting respectively on v ∈ Rd and y ∈ R and Xi = (Vi,Yi), in
which case f(ΦX ) is the empirical risk 1

nk

∑
i≤n,j≤k C(S(πijVi), τijYi). However, we

do not require that f is a sum, and other examples are given in Section 6.4.5, 6.5 and 6.6.

Norms. Three types of norms appear in what follows: For vectors and tensors, we use
both a “flattened” Euclidean norm and its induced operator norm: If x ∈ Rd1×···×dm and
A ∈ Rd×d,

‖x‖ :=
(∑

i1≤d1,...,im≤dm
|xi1,...,im |2

)1/2 and ‖A‖op := sup
v∈Rd

‖Av‖
‖v‖ .
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Thus, ‖v‖ is the Euclidean norm of v for m = 1, the Frobenius norm for m = 2, etc. For
real-valued random variablesX , we also useLp-norms, denoted by ‖X‖Lp := E[|X|p]1/p.

Covariance structure. For random vectors Y and Y′ in Rm, we define the m×m
covariance matrices

Cov[Y,Y′] := (Cov[Yi, Y
′
j ])i,j≤m and Var[Y] := Cov[Y,Y] .

Augmentation introduces dependence: Applying independent random elements φ and ψ
of T to the same observation X results in dependent vectors φ(X) and ψ(X). In the
augmented data set, the entries of each vector ΦiXi are hence dependent, whereas ΦiXi

and ΦjXj are independent if i 6= j. That partitions the covariance matrix Var[ΦX ] into
n× n blocks of size kd× kd, and makes it block-diagonal. This block structure is visible
in all our results, and makes Kronecker notation convenient: For a matrix A ∈ Rm×n and
a matrix B of arbitrary size, define the Kronecker product

A⊗B :=
(
AijB

)
i≤m, j≤n

We write A⊗k := A⊗ · · · ⊗ A for the k-fold product of A with itself. If v and w are
vectors, v⊗w = vw> is the outer product. To represent block-diagonal or off-diagonal
matrices, let Ik be the k×k identity matrix, and 1k×m a k×mmatrix all of whose entries
are 1. Then

Ik ⊗B =

(
B 0 0 ···
0 B 0
0 0 B...

. . .

)
and (1k×k − Ik)⊗B =

(
0 B B ···
B 0 B
B B 0...

. . .

)
.

Measuring noise stability. Our results require a control over the noise stability of f and
smoothness of test function h, which we define next.

Write Fr(Da,Rb) for the class of r times differentiable functions Da → Rb. To con-
trol how stable a function f ∈ Fr(Dnk,Rq) is with respect to random perturbation of its
arguments, we regard it as a function of n arguments v1, . . . ,vn ∈ Dk. That reflects the
block structure above—noise can only be added separately to components that are inde-
pendent. We write L(A,B) as the set of bounded linear functionsA → B, and denote by
Dm
i the mth derivative with respect to the ith component,

Dm
i f(v1, . . . ,vn) :=

∂mf

∂vmi
(v1, . . . ,vn) ∈ L

(
(Dk)m,Rq

)
⊆ Rq×(dk)m .

For instance, if q = 1 and g is the function g( • ) := f(v1, . . . ,vi−1, • ,vi+1, . . . ,vn), then
D1
i f is the transposed gradient∇g>, and D2

i f is the Hessian matrix of g. To measure the
sensitivity of f with respect to each of its d× k dimensional arguments, we define

Wi( • ) := (Φ1X1, . . . ,Φi−1Xi−1, • ,Zi+1, . . . ,Zn) ,

where Zj are i.i.d. surrogate random vectors inDk with first two moments matching those
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of Φ1X1: Defining the d×dmatrices Σ11 := Var[φ11X1] and Σ12 := Cov[φ11X1, φ12X1],

EZi = 1k×1 ⊗ E[φ11X1] and VarZi = Ik ⊗ Σ11 + (1k×k − Ik)⊗ Σ12 . (6.1)

Write fs : Dnk → R as the s-th coordinate of f . Noise stability is measured by

αr :=
∑

s≤q

max
i≤n

max
{∥∥ sup

w∈[0,ΦiXi]

‖Dr
i fs(Wi(w))‖

∥∥
L6
,
∥∥ sup
w∈[0,Zi]

‖Dr
i fs(Wi(w))‖

∥∥
L6

}
,

(6.2)
where we have used [a,b] to represent the set {c a + (1 − c)b : c ∈ [0, 1]}. This is a
non-negative scalar, and large values indicate high sensitivity to changes of individual
arguments (low noise stability). Our results also use test functions h : Rq → R. For
these, we measure smoothness simply as differentiability, using the scalar quantities

γr(h) := sup {‖∂rh(v)‖ |v ∈ Rq} ,

where ∂r denotes the rth differential, i.e. ∂1h is the gradient, ∂2h the Hessian, etc. In the
result below, these terms appear in the form of the linear combination

λh(n, k) := γ3(h)α3
1 + 3γ2(h)α1α2 + γ1(h)α3 . (6.3)

λh(n, k) can then be computed explicitly for specific models. We note that the depen-
dence on n and k is via the definition of αr, and that derivatives appear up to 3rd order
and moments up to 6th order. Notably, these conditions require that the effect of chang-
ing one data point on the first derivative of f is o(n1/3).

Moment conditions. Our results also require the following 6th moments on data and the
surrogate variables: Write Z1 = (Z1jl)j≤k,l≤d where Zijl ∈ R, and define

cX :=
1

6

√
E‖φ11X1‖6 and cZ :=

1

6

√
E
[( |Z111|2 + . . .+ |Z1kd|2

k

)3]
. (6.4)

6.3 Universality under block dependence

We now state our main theoretical result and several immediate consequences. With the
definitions above, the error bound is a term that measures the noise stability of f and
smoothness of h.

Theorem 6.1. (Main result) Consider i.i.d. random elements X1, . . . ,Xn of D, and

two functions f ∈ F3(Dnk,Rq) and h ∈ F3(Rq,R). Let φ11, . . . , φnk be i.i.d. random

elements of T independent of X , λh(n, k) be defined as in (6.3), and moment terms

cX , cZ be defined as in (6.4). Then, for any i.i.d. variables Z1, . . . ,Zn in Dk satisfying

(6.1), ∣∣Eh(f(ΦX ))− Eh(f(Z1, . . . ,Zn))
∣∣ ≤ nk3/2λh(n, k)(cX + cZ) .
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Hence if nk3/2λh(n, k)(cX + cZ) → 0, this means that the value Eh(f(ΦX )) only
asymptotically depends on the mean and variance of the augmented samples. We will see
that this implies that the distribution of the augmented estimator is universal.

Let vl denote the l-th coordinate of a vector v ∈ Rq. Note that if we choose the test
function h : Rq → R to be the coordinate functions h(v) = vl for 1 ≤ l ≤ q as well as
the product coordinate functions h(v) = vlvl′ for 1 ≤ l, l′ ≤ q, we can use the triangle
inequality to establish:

Corollary 6.2 (Convergence of variance). Assume the conditions of Theorem 6.1. Then

n
∥∥Var[f(ΦX )]− Var[f(Z1, . . . ,Zn)]

∥∥ ≤ 6n2k3/2(α0α3 + α1α2)(cX + cZ) .

Note that similar derivation can be made for many statistics of f(ΦX ) such as the
expectation. To compare the distributions on Rq, we use all functions h in a suitable class
H of test functions. In the context of the noise stability definitions above, we choose

H := {h : Rq → R | h is thrice-differentiable with γ1(h), γ2(h), γ3(h) ≤ 1} .

The distributions of two random elements X and Y of Rq are then compared by defining

dH(X,Y) := suph∈H |Eh(X)− Eh(Y)| ,

that is, the integral probability metric determined by H. We note that it metrises weak
convergence.

Lemma 6.3 (dH metrises weak convergence). Let Y and Y1,Y2, . . . be random vari-

ables in Rq with q ∈ N fixed. Then dH(Yn,Y)→ 0 implies weak convergence Yn
d→ Y.

This metric is similar to the generalised Dudley distance of Grigorevskii and Shiganov
(1976), but unlike the latter, dH controls all three derivatives simultaneously. For a com-
parison of dH to other probability metrics, see Appendix D.3.1. Since H is a subset of
F3(Rq,R), replacing f with

√
nf in Theorem 6.1 yields:

Corollary 6.4 (Convergence in dH). Under the conditions of Theorem 6.1,

dH(
√
nf(ΦX ),

√
nf(Z1, . . . ,Zn)) ≤ n3/2k3/2(nα3

1 + 3n1/2α1α2 + α3)(cX + cZ) .

Thus, Theorem 6.1 exactly characterises the asymptotic variance and distribution of
the augmented estimate f(ΦX ) by showing universality of its distribution, as summarised
in the next corollary. That allows us, for example, to compute consistent quantiles for
f(ΦX ).

Corollary 6.5. Fix q. Assume the conditions of Theorem 6.1 hold, and that the bounds in

Corollary 6.2 and 6.4 converge to zero as n, k →∞. Then
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dH(
√
nf(ΦX ),

√
nf(Z1, . . . ,Zn)) → 0 ,

n
∥∥Var[f(ΦX )]− Var[f(Z1, . . . ,Zn)]

∥∥ → 0 .

The next lemma simplifies notation throughout—it shows that, if the scaling by
√
n be

dropped, one can still study convergence of both E[f(ΦX )] and of the centred estimate.
Results can hence be stated without explicitly centering terms.

Lemma 6.6. Let X and Y be random variables in Rq. Suppose dH(X,Y) ≤ ε for some

constant ε > 0. Then ‖EX− EY‖ ≤ q1/2ε and dH(X− EX,Y − EY) ≤ (1 + q1/2)ε.

Remark 6.1 (Comments on the main theorem). (i) Gaussian surrogates. In most of our
examples, the data domain D is the entire space Rd. If so, one may choose the Zi as
Gaussian vectors matching the first two moments of Φ1X1.

(ii) Generalisations. The proof techniques still apply if some conditions are relaxed.
Generalised results are given in Appendix A, and appear in some of the applications
we study below. For example, Zi may be matrix-valued (e.g. in ridge regression, in
Proposition 6.8). The range and domain of φij may not agree (Theorem 13), and the φij
do not have to be i.i.d. We may also permit q to grow with n and k.

(iii) Distributional invariance. A common assumption in machine learning is that the
data distribution is invariant under T . That means that, for all φ ∈ T ,

φX1
d
= X1 or equivalently E[f(X1)] = E[f(φX1)] for all f ∈ L1(X1) .

From a statistical learning perspective, this is one way to ensure that augmentation does
not alter the limiting estimator, although the speed of convergence to that limit may differ.
In light of Theorem 6.1, invariance implies that the variance in (6.1) can be replaced by

VarZi = Ik ⊗ E[Var[φ11X1|φ11]] + (1k×k − Ik)⊗ E[Cov[φ11X1, φ12X1|φ11, φ12]] .

Note the off-diagonal terms are now covariance matrices that are smaller than those in
(6.1) in the Loewner partial order.

(iv) Different number of augmentations per data point. At the cost of more cumbersome
notation, our universality approximation can be extended to the case where the number
of augmentations for the i-th data point, ki, differs across i ≤ n. To achieve this, we
may first identify k = maxi ki, which allows us to write each i-th augmented data block
as a size-Rkd vector by padding (k − ki)d many zeros. The problem is reduced to a
Gaussian universality approximation for functions of n independent Rkd random vectors.
This can be proved by Lindeberg’s technique as was done in Chapter 4 for polynomial
functions: the relaxation of i.i.d. assumption to independent assumption only results in a
more cumbersome moment bound analogous to that of Theorem 4.1.
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In conclusion, if the conditions of Theorem 6.1 hold and the bounds in Corollaries
6.2 and 6.4 converge to zero, then the asymptotic distribution of

√
nf(ΦX ) only depends

on the mean and covariance of the augmented samples ΦX . Hence, under general condi-
tions, the effect of data augmentation on the learning rate only depends on how it affects
the first few moments of the augmented variables, e.g. how strong the correlation between
the augmented samples is. This universality greatly simplifies the asymptotic analysis of
data augmentation.

6.4 Variance reduction and variance inflation

In this section, we consider estimators of the form

f(x11, . . . ,xnk) = g
( 1

nk

∑
i≤n,j≤k xij

)
(6.5)

for a smooth function g. The simplest is an empirical average, which we analyse first
and which exhibit the known variance reduction effect in the literature (e.g. Chen et al.
(2020)). The results we obtain for such averages still hold if f is approximately linear,
in the sense that it can be approximated well by a first-order Taylor expansion. The risk
of an M -estimator in fixed dimensions is an example. The behaviour changes, however,
when f is non-linear. We illustrate this by a toy example in Section 6.4.4 and concretely
in the example of ridge regression in moderate dimensions (Section 6.4.5).

6.4.1. Comparing limiting variances

A natural measure of the effect of data augmentation on the convergence rate is the
variance ratio comparing estimates obtained with and without augmentation. To de-
fine a valid baseline for estimates without augmentation, we must replicate each input
vector k times, since the number k of augmentations determines the number of argu-
ments of f , and also enters in the upper bound. We denote such k-fold replicates by
X̃i := (Xi, . . . ,Xi) ∈ Dk. No augmentation then corresponds to the case where T
contains only the identity map of Dnk. By setting each φij to identity in Theorem 6.1,
we can approximate the distribution of f(X̃1, . . . , X̃n) by that of f(Z̃1, . . . , Z̃n), where
Z̃1, . . . , Z̃n are any i.i.d. variables in Dk satisfying

EZi = 1k×1 ⊗ EX1 and VarZi = 1k×k ⊗ VarX1 , (6.6)

and substituting into Theorem 6.1 shows
∣∣Eh(f(X̃1, . . . , X̃n))− Eh(f(Z̃1, . . . , Z̃n))

∣∣ ≤ nk3/2λh(n, k)(cX̃ + cZ̃) . (6.7)
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The effect of augmentation versus no augmentation can now be compared by the ratio

ϑ(f) :=

√
‖Varf(Z̃1, . . . , Z̃n)‖ / ‖Varf(Z1, . . . ,Zn)‖ . (6.8)

If ϑ(f) > 1, augmentation is beneficial in the sense that it speeds up convergence of the
estimator (though it may or may not introduce a bias). If ϑ(f) < 1, it is detrimental,
which is possible even if invariance holds.

Notation. We write ΦX for augmented data, and Z := {Z1, . . . ,Zn} for i.i.d. surrogates
satisfying (6.1). X̃ = (X̃1, . . . , X̃n) denotes the unaugmented, replicated data defined
above, and Z̃ := {Z̃1, . . . , Z̃n} surrogates satisfying (6.6). We refer to Z and Z̃ as
Gaussian if Z1, . . . ,Zn and Z̃1, . . . , Z̃n are Gaussian vectors in Rd.

6.4.2. Empirical averages

The arguably most common choice of f is an empirical average—augmentation is often
used with empirical risk minimisation, and the empirical risk is such an average. By Re-
mark 6.1(ii) above, empirical estimates of gradients can also be represented as empirical
averages. An augmented empirical average is of the form

f(x11, . . . ,xnk) :=
1

nk

∑n
i=1

∑k
j=1xij , (6.9)

where D = Rd, and d and k are fixed. Specializing Theorem 6.1 yields:

Proposition 6.7 (Augmenting averages). Require that E‖X1‖6 and E‖φ11X1‖6 are finite.

Let Z and Z̃ be Gaussian. Then f as above satisfies

dH(
√
nf(ΦX ),

√
nf(Z))→ 0 and dH(

√
nf(X̃ ),

√
nf(Z̃))→ 0 as n→∞ .

The Gaussian surrogates can be translated into asymptotic quantiles as follows: The
ratio ϑ of standard deviations here takes the form

ϑ =

√(
1

n
Var[X1]

)/( 1

nk
Var[φ11X1] +

k − 1

nk
Cov[φ11X1, φ12X1]

)
.

To keep notation simple, assume d = 1. To obtain α/2-th asymptotic quantiles, for
α ∈ [0, 1], denote by zα/2 the (1− α/2)-percentile of a standard normal. Then the lower
and upper asymptotic quantiles of f(ΦX ) and f(X̃ ) are given respectively by

E[φ11X1] ± 1√
ϑ2n

zα/2
√

Var[X1] and E[X1] ± 1√
n
zα/2

√
Var[X1] .

For empirical averages, the quantiles can be inverted to obtain asymptotic (1− α)-confidence
intervals for E[φ11X1] and E[X1], given by

[
f(ΦX ) ± 1√

ϑ2n
zα/2

√
Var[X1]

]
and

[
f(X̃ ) ± 1√

n
zα/2

√
Var[X1]

]

Remark 6.2. We note some implications of Proposition 6.7:
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(i) In terms of confidence region width, computing the empirical average by augmenting
n observations is equivalent to averaging over an unaugmented data set of size ϑ2n.

(ii) Augmentation is hence beneficial for empirical averages if ‖Var[φ11X1]‖ ≤ ‖VarX1‖.
To see this, observe that augmentation is beneficial if ϑ ≥ 1, and that

‖Varf(Z)‖ = ‖1

k
Var[φ11X1] +

k − 1

k
Cov[φ11X1, φ12X1]‖ ≤ ‖Var[φ11X1]‖ . (6.10)

(iii) If the data distribution is invariant, in the sense that φ11X1
d
= X1, augmentation is

always beneficial, since VarX1 = Var[φ11X1] � Cov[φ11X1, φ12X1].

6.4.3. Parametric plug-in estimators

Most of the observations for empirical averages still hold for plug-in estimators if the
dimension is fixed, and more generally for any approximately linear function of averages,
such as the risk of an M-estimator. To see this, note that if we choose g in (6.5) as a
sufficiently smooth function, f can be approximated by a first-order Taylor expansion

fT (x11, . . . ,xnk) := g(E[φ11X1]) + ∂g(E[φ11X1])
( 1

nk

∑
i≤n,j≤k xij − E[φ11X1]

)
.

(6.11)
The key observation is that the only random contribution to fT behaves exactly like an
empirical average. Lemma 19 in the appendix shows that

dH(
√
nf(ΦX ),

√
nfT (Z))→ 0 and n

(
‖Var[f(ΦX )]‖ − ‖Var[fT (Z)]‖

)
→ 0 ,

(6.12)

provided that g is sufficiently well-behaved and noise stability holds. That is even true if
d grows (not too rapidly) with n.

The variance of fT now depends additionally on ∂g(E[φ11X1]). If the data distribu-
tion is not invariant under augmentation, it is possible that ‖∂g(E[φ11X1])‖ > ‖∂g(EX1)‖.
If so, the overall variance may increase even if augmentation decreases the variance of
the empirical average. If invariance holds, augmentation reduces variance, as observed
by Chen et al. (2020).

6.4.4. Non-linear estimators

We have seen above that, in the linear case, invariance guarantees that augmentation does
not increase estimator variance. If the estimator (6.5) is not well-approximated by the
linearisation (6.11), that need not be true, which can be seen as follows. Theorem 6.1
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Figure 6.3: Left: The standard deviation
√
V (s) :=

√
Var[ftoy(Z)] =

√
Var[gtoy(sξ + E[X1])] as a

function of s. Right: The difference D(s) between the 0.025-th and the 0.975-th quantiles for gtoy(sξ +
E[X1]) as a function of s. The functions are calculated analytically in Proposition 20. Since neither is
monotonic, the parameter space contains regions where data augmentation is beneficial (green example),
and where it is detrimental (red example). Notably, ϑ(f) < 1 is possible even if σ, standard deviation of
the augmented average, is smaller than σ̃, standard deviation of the unaugmented average.

shows that

Var[f(ΦX )] ≈ Var
[
g
(√Var[X1]√

ϑ2n
ξ + E[φ11X1]

)]
for ξ ∼ N (0, Id) .

The same holds, with ϑ = 1, for the unaugmented variance. Assume for simplicity that
d = 1 and invariance holds, which implies E[φ11X1] = E[X1] and ϑ ≥ 1. By a well-
known result characterizing the variance of a function of a Gaussian (Proposition 3.1 of
Cacoullos (1982)), we have

σ2E
[
∂g(σξ + E[X1])

]2 ≤ Var
[
g
(
σξ + E[X1]

)]
≤ σ2E

[
∂g(σξ + E[X1])2

]

for any σ > 0. When g is non-linear, ∂g is not constant, and Var
[
g
(
σξ + E[X1]

)]
is

not necessarily monotonic in σ. Thus, in the non-linear case, invariance of the data
distribution does not imply variance reduction. Figure 6.3 illustrates the variance and
quantiles for a highly non-linear toy statistic, defined as

ftoy(x11, . . . , xnk) := gtoy

(
1

nk

∑
ij
xij

)
= exp

(
−
(

1√
nk

∑
ij
xij

)2)
. (6.13)

In both plots of Figure 6.3, the behaviour of augmentation changes from one region of
parameter space to another. See Appendix D.2.1 for formal statements and simulation
results.

6.4.5. Ridge regression

This section studies the effect of augmentation on ridge regression in moderate dimen-
sions. In light of the discussion in the previous section, this is an example of an estimator
that is not approximately linear, which complicates the effect of augmentation on its vari-
ance.
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Figure 6.4: A simple ridge regression example, where variance of the risk is not monotonic in data variance
despite invariance. Variance of RZ in Lemma 6.9 is plotted as a function of the augmented covariance
ν := Cov[(π11V1)2, (π12V1)2] for λ = 0.1 and E[V2

1] = 0.1. As no closed-form formula is available, the
plot ie generated by a simulation over 10k random seeds.

In a regression problem, each data point Xi := (Vi,Yi) consists of a covariate Vi

with values in Rd, and a response Yi in Rb. We hence consider pairs of transforma-
tions (πij, τij) as augmentation, where πij acts on Vi and τij acts on Yi. A transformed
data point is then of the form φijxi := ((πijvi)(πijvi)

>, (πijvi)(τijyi)
>), and hence an

element of D := Md × Rd×b, where Md denotes the set of positive semi-definite d× d
matrices. For a fixed λ > 0, the ridge regression estimator on augmented data is there-
fore

B̂(φ11x1, . . . , φnkxn) :=
(

1

nk

∑
ij

(πijvi)(πijvi)
> + λId

)−1 1

nk

∑
ij

(πijvi)(τijyi)
> .

(6.14)
It takes values in Rd×b, and its risk is R(B̂) := E[‖Ynew − B̂>Vnew‖2

2 | B̂].

The next result shows universality of the asymptotic distribution of the risk of a ridge
estimator in a moderate-dimensional regime, for any choice of augmentation. In particu-
lar, one can study the effect of augmentation on the variance of the risk, which measures
the speed of convergence of the risk to its infinite-data limit.

Proposition 6.8. Suppose maxl≤d max{(π11V1)l, (τ11Y1)l} is almost surely bounded by

Cd−1/2 for some absolute constant C > 0 and that b = O(d). Then there exist i.i.d.

surrogate variables Z1, . . . ,Zn such that

dH(
√
nRΦX ,

√
nRZ) = O(n−1/2d9) and n(Var[RΦX ]− Var[RZ ]) = O(n−1d7) ,

where RΦX := R(B̂(ΦX )) is the risk of the estimator trained on augmented data, and

RZ := R(B̂(Z)) the risk with surrogate variables.

In this case, the surrogate variables Zi are random elements of (Md ×Rd×b)k, whose
first two moments match those of the augmented data. As part of the proof of the propo-
sition, we also obtain convergence rates for the estimator B̂(ΦX ) (in addition to the rate

92



for its risk above); see Lemma D.32 in the appendix.

A detailed analysis of a simple illustrative example. We consider a special case in
more detail, which illustrates that unexpected effects of augmentation can occur even in
very simple models: Assume that

Yi := Vi + εi where Vi
i.i.d.∼ N (µ1d,Σ) and εi

i.i.d.∼ N (0, c2Id) . (6.15)

This is the setup used in Figure 6.1, where d = 2. Detrimental effects of augmentation
can occur even in one dimension, though. To clarify that, we first show the following:

Lemma 6.9. Consider the one-dimensional case (d = 1), with c = 0 and τij = πij .

Assume that the augmentation leaves the covariate distribution invariant, πijVi
d
= Vi.

Write the covariance vπ = Cov[(π11V1)2, (π12V1)2], and generate surrogate variables

by drawing
Z111, . . . ,Zn11

i.i.d.∼ Γ
(E[V2

1]2

vπ
,
E[V2

1]

vπ

)

and setting Zijl := Zi11, for all j ≤ k and l = 1, 2. Then

dH(
√
nRΦX ,

√
nRZ)→ 0 and n(Var[RΦX ]− Var[RZ ])→ 0 as n, k →∞ .

Moreover, denoting the Gamma random variable Xn(v) ∼ Γ(
nE[V2

1]2

v
,
nE[V2

1]

v
), we have

Var[RZ ] = σ2
n(vπ) = E[V2

1]2λ2Var
[

1

(Xn(vπ) + λ)2

]
,

where σn is a real-valued function that does not depend on the number of augmentations

k, or on the law of the augmentations πij .

Note the surrogate distribution can be determined explicitly, and is non-Gaussian.
The main object of interest is the variance σ2

n of the risk of an augmented ridge regressor.
For any choice of augmentation, the augmented covariance νπ is always bounded from
above by the unaugmented variance Var[(V1)2]. This does not generally imply the the
augmented ridge regressor is a better estimator—the simulation in Figure 6.4 shows that
σn is non-monotonic, that is, even though augmentation reduces νπ, it may increase the
variance of the risk.

Remark 6.3 (Details on simulations). (i) The simulation in Figure 6.5 uses the model
(6.15) and two forms of augmentation are both adapted from image analysis:

(a) Random rotations. We represent the elements of the size-d cyclic group by matrices
C1, . . . , Cd, generate random transformations

φij = πij
i.i.d.∼ Uniform{C1, . . . , Cd} ,

and set φijxi := ((πijvi)(πijvi)
>, (πijvi)(τijyi)

>), i.e. we cycle through the d coordi-
nates of Yi and Vi simultaneously. The invariance (φ11V1, φ11Y1)

d
= (V1,Y1) holds.

(b) Random cropping for d = 2, where a uniformly chosen coordinate of both Yi and Vi
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Figure 6.5: Augmentation can decrease the variance of an estimator, but at the same time increase the
variance of its risk: Shown are simulations for ridge regression under (6.15) with µ = 0 and varying k.
The augmentations on each pair of Vij and Yij are set to be the same, i.e. πij = τij . For random cropping,
n = 200 and Σ = ( 1 0.5

0.5 1 ). For uniform rotations, n = 50 and Σ = Id, c = 2, λ = 9. Top Left. Standard
deviation of (B̂(ΦX ))11, first coordinate of ridge regression estimate under random cropping. Top Right.
Standard deviation of R(B̂(ΦX )) under random cropping. Bottom Left. Std (B̂(ΦX ))11 under uniform
rotations. Bottom Right. Std R(B̂(ΦX )) under uniform rotations.

is set to 0, i.e. we have

φij = πij
i.i.d.∼ Uniform{C1M, . . . , CdM} where M :=

(
0

1
. . .

1

)
.

(ii) We can now specify the setting used in Figure 6.1 in the introduction: It shows the
empirical average function and the ridge regression estimate computed on the random
cropping setup in Figure 6.5, for k = 50 and λ = c = 0.1.

6.5 Non-regularisation in high-dimensional linear regression

We next consider the effect of data augmentation on the limiting risk of a ridgeless re-
gressor in high dimensions. Without augmentation, such regressors are known to exhibit
a double-descent phenomenon (Hastie et al., 2022). We show that augmentations can
shift the double-descent peak of the risk curve, depending on the number of augmenta-
tions (see Figure 6.2 in the introduction). Such a shift has been observed empirically by
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Dhifallah and Lu (2021).

Specifically, we consider the linear model where the univariate response variable Yi
is related to the covariate Vi in Rd by

Yi = V>i β + εi for i = 1, . . . , n , (6.16)

where the variables Vi are i.i.d. mean-zero random (not necessarily Gaussian) vectors,
and the noise variables εi are i.i.d. mean-zero with Var[εi] = σ2

ε and a bounded fourth
moment. The dimension d grows linearly with n, and the signal β and noise variance are
assumed non-random with ‖β‖ = Θ(1) and σ2

ε = Θ(1). Following standard assumptions
in random matrix theory, we assume that Vi has independent coordinates (Vil)l≤d. For
simplicity, we assume that E[V 3

il ] = 0 and E[V 4
il ] = 3Var[Vil]2, i.e. the first four moments

of Vil matches those of its Gaussian surrogate; a similar assumption was used in Tao
and Vu (2011) for applying the Lindeberg method to obtain universality of eigenvalue
statistics of large matrices. We expect that the fourth moment condition can be replaced
by a sub-exponential tail in view of known results on universality of covariance matrices,
but this may require additional proof techniques involving the Dyson Brownian motion
(see e.g. Theorem 5.1 and the subsequent discussion of Pillai and Yin (2014)) and we do
not pursue it here.

6.5.1. Double descent shift under oracle augmentation

We first consider an oracle setup, where β is assumed known. This is a theoretical device,
but we will see that it is informative. The setup is motivated by the fact that, once we
have chosen transformations πij to augment the covariates Vi, we must also specify a
reasonable way to augment the responses Yi. Since the covariates and responses are
related via β, a known value of β allows us to “pass” transformations from the covariates
to the responses according to the model, by defining

τ
(ora)
ij Yi := Yi +

(
πijVi −Vi

)>
β = (πijVi)

>β + εi .

If invariance holds for the covariates, it extends to responses,

πijVi
d
= Vi ⇐⇒ (πijVi, τ

(ora)
ij Yi)

d
= (Vi,Yi) . (6.17)

The augmented estimator is then

β̂
(ora)
λ :=

(
1

nk

∑
ij

(πijVi)(πijVi)
> + λId

)† 1

nk

∑
ij

(πijVi) τ
(ora)
ij Yi . (6.18)

This is a ridge estimator for λ > 0, and ridgeless for λ = 0. Following Hastie et al.
(2022), we study the risk

L̂
(ora)
λ := E

[(
(β̂

(ora)
λ − β)>Vnew

)2 ∣∣X
]

for λ ≥ 0 . (6.19)
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in the asymptotic regime where

n, d→∞ , d/n→ γ ∈ [0,∞) , d/(kn)→ γ′ ∈ [0,∞) , k = o(n1/4) , (6.20)

and k is allowed to be fixed or grow with n. In the unaugmented case, β̂(ora)
λ and L̂(ora)

λ

are precisely the quantities studied by Hastie et al. (2022), who show that for λ = 0, the
risk reproduces the double-descent phenomenon also observed in neural networks.

To illustrate the effect of augmentations in a simple model, we focus on the augmen-
tation

πijVi := Vi + ξij , (6.21)

where (ξij)i,j is a set of i.i.d. mean-zero noise vectors, each having independent coordi-
nates (ξijl)l≤d with E[ξ3

ijl] = 0 and E[ξ4
ijl] = 3Var[ξijl]2. This form of randomization is

also known as noise injection in other contexts.

The main challenge in analyzing the risk is that the augmented risk depends on two
strongly correlated high-dimensional sample covariance matrices,

X̄1 :=
1

nk

∑

i≤n

∑

j≤k

(πijVi)(πijVi)
> , X̄2 :=

1

n

∑

i≤n

(
1

k

∑

j≤k

(πijVi)

)(
1

k

∑

j≤k

(πilVi)

)>
.

For comparison, X̄1 = X̄2 in the unaugmented case, and therefore existing analysis of
double descent only involves one such matrix (e.g. Hastie et al. (2022)). To address this,
we consider the Gaussian surrogate vectors Zi’s, where

E[Zi] = E[πijVi] and Var[Zi] = Var[πijVi] .

We denote the corresponding sample covariance matrices by

Z̄1 :=
1

nk

∑n

i=1

∑k

j=1
ZijZ

>
ij , Z̄2 :=

1

n

∑n

i=1

(
1

k

∑k

j=1
Zij

)(
1

k

∑k

l=1
Zij

)>
.

Applying Theorem 6.1 allows us to approximate X̄1 and X̄2 by Z̄1 and Z̄2, whose spec-
tral distributions are in the universality regime of compound Marchenko-Pastur laws
Marchenko and Pastur (1967). This can be used to investigate the limiting risk. The
universality result requires several regularity assumptions, which we state next.

Assumption 6.1. There exists some absolute constant c0 > 0 such that for all n, k, d ∈ N,
the following quantities are bounded from above by c0:

max
i≤n,j≤k,l≤d

‖Xijl‖L10
,
∥∥‖X̄2‖op

∥∥
L60

,
∥∥‖Z̄2‖op

∥∥
L60

.

Remark. Note that the use of L60 norm arises from a crude Cauchy-Schwarz bound, and
we expect this to be improvable.
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Assumption 6.2. The following quantities are Oγ′(1) with probability 1− oγ′(1):

‖X̄†1‖op , ‖Z̄†1‖op , ‖X̄2‖op , ‖Z̄2‖op ,
∑d

l=1
I{λl(X̄1)=0}

(
vl(X̄1)>X̄2 vl(X̄1)

)
,

∑d

l=1
I{λl(Z̄1)=0}

(
vl(Z̄1)>Z̄2 vl(Z̄1)

)
,

where (λl(A), vl(A)) denotes the l-th eigenvalue-eigenvector pair of a matrix A ∈ Rd×d,
and Oγ′( • ) and oγ′( • ) indicate that the bounding constants are allowed to depend on γ′.

Proposition 6.10. Fix λ > 0 and assume Assumption 6.1 holds. Then under the asymp-

totic regime (6.20), we have

dH
(
fλ(X̄1, X̄2) , fλ(Z̄1, Z̄2)

)
= O

(
k2 max{1, λ−7}

n1/2

)
.

If additionally Assumption 6.2 holds, then

dP
(
f0(X̄1, X̄2) , f0(Z̄1, Z̄2)

)
= o(1) .

While the assumptions are complicated, Lemma D.17 in the appendix verifies them
for the isotropic Gaussian case. For simplicity, we now focus on the isotropic setup: For
some fixed σA > 0, let

Var[X1] = Id and Var[ξij] = σ2
AId . (6.22)

We defer to Lemma D.16 in the appendix to show that, under (6.22), both Z̄1 and Z̄2

are simple functions of the same d × nk rectangular matrix with i.i.d. standard Gaus-
sian entries, whose limiting spectral density is the Marchenko-Pastur law. However, the
correlations introduced by augmentations mean that, even in the isotropic case (6.22),
the limiting spectra of Z̄1 and Z̄2 obey some compound Marchenko-Pastur laws — typ-
ically found in the anisotropic setup without augmentation — and the limiting risk is
cumbersome to state, as seen in Hastie et al. (2022). Nevertheless, the Gaussian matri-
ces allow us to derive meaningful surrogates for the risk in settings where the compound
Marchenko-Pastur laws do simplify to a simple Marchenko-Pastur law. To specify this
surrogate risk, we define, for β ∈ Rd and σ, λ, γ > 0,

R(β, σ, λ, γ) := ‖β‖2λ2 ∂mγ(−λ) + σ2γ
(
mγ(−λ)− λ∂mγ(−λ)

)
,

where mγ(z) :=
1−γ−z−

√
(1−γ−z)2−4γz

2γz
. For λ = 0 or γ = 0, we define the above as

the respective limit as λ → 0+ or γ → 0+. Hastie et al. (2022) shows that this is
the limiting risk of β̂(ora)

λ in the unaugmented case (k = 1 and σA = 0). The next
proposition shows that, under an additional asymptotic constraint, the limiting risk of the
augmented estimator can be expressed through R. This is possible because the additional
constraint allows the risk to be characterised only by Z̄2, the Wishart-distributed surrogate
of X̄2; see the proof in Appendix D.7.2 for details and for an explicit bound on the
approximation.
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Figure 6.6: Left. Risk of the oracle ridgeless estimator β̂(ora)
0 . Right. Risk of the oracle ridge estimator

β̂
(ora)
λ with λ = 0.1. In both simulations, the data are generated as (6.16) with n = 200, varying d, ‖β‖ = 1

and σε = 0.1. The augmentations are noise injections defined in (6.21) with k = 5 and σA = 0.1. The risk
used for simulation is defined in (6.25) while the theoretical risks are obtained from Proposition 6.11.

Proposition 6.11. Consider the isotropic setup (6.22) and let k ≥ 2 and σ2
A ≤ 1. Write

λk :=
(k−1)σ2

A

k
+ λ and σ2

k :=
k+σ2

A

k
. Consider the asymptotic regime (6.20) with σ2

A√
k

√
d√
n

=

o(1) and we allow λ ≥ 0. Then

fλ(X̄1, X̄2)
P−→ lim R

(
λ

λk
β,

σε
σk
,
λk
σ2
k

, γ
)
,

where lim denotes the limit under (6.20) with σ2
A√
k

√
d√
n

= o(1).

Proposition 6.11 is meaningful in two regimes: When σ2
A → 0+, i.e. little to no

augmentations, or when γ/k → 0+, i.e. infinitely many augmentations compared to the
dimension-to-sample-size ratio γ = lim d/n. When the risk surrogates from Proposi-
tion 6.11 are valid, two effects of augmentation are visible: An additional regularization
by (k−1)σ2

A/k, and a shrinkage of effective size of β. The latter can be seen as a debias-
ing effect, as β only plays a role in the bias term of the risk. This mainly arises from the
use of oracle augmentation, which introduces additional information on β. Section 6.5.2
shows that if we additionally need to estimate β in the augmentation, a bias term arises.

For the double-descent case λ = 0, the results can be interpreted as follows. As Hastie
et al. (2022) explains, whether the unaugmented risk diverges to infinity is determined by
the stability of the pseudoinverse. This stability is measured by the random quantity

∥∥X̄†1
∥∥
op

=
∥∥∥
(

1

nk

∑
ij

(Vi + ξij)(Vi + ξij)
>
)†∥∥∥

op
.

In the isotropic case, since both Gaussianity and the operator norm are invariant under or-
thogonal transformations, one may show (Lemma D.16 in the appendix) that the quantity
above is distributed as
∥∥∥
(

1

n

∑n

i=1
ηi1η

>
i1 +

σ2
A

nk

∑n

i=1

∑k

j=1
ηijη

>
ij

)†∥∥∥
op

=:
∥∥(W1 +

σ2
A

k
W2

)†∥∥
op
, (6.23)
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where ηij are i.i.d. standard Gaussians in Rd (see Lemma D.16 in the appendix for the
derivation). The two matrices in (6.23) are differently scaled sample covariance matrices,
one of n data and another of nk data. These matrices are correlated through {ηi1}ni=1. The
behaviour of the risk can then be broken down as follows:

(i) If γ = 1 (i.e. d ≈ n asymptotically), the pseudoinverse of W1 is unstable, whereas
since γ′ < 1 (i.e. d . kn), W2 is asymptotically full-ranked and close to EW2.
Since EW2 is a scaled identity matrix, it acts as a regularization of the pseudoin-
verse. The regularization effect is evident in Figure 6.6, where the risk curve of
an augmented ridgeless regressor exhibits a small local maximum around γ = 1—
similar to what is observed for a ridge regressor in Hastie et al. (2022)—instead of
the spike towards infinity observed for the unaugmented risk curve. The same regu-
larization effect can be seen from the surrogate risk formula from Proposition 6.11,
computed based on the limiting Marchenko-Pastur law of W1; in Figure 6.6, the
surrogate is a good approximation even when γ = 1 and k = 5, due to the small
noise scale σA used.

(ii) If γ exceeds k, γ′ exceeds 1, and d asymptotically exceeds kn. In this case, the
sample covariance matrix W2 also becomes unstable, and is no longer regularises
W1. That causes the risk to diverge, as illustrated in the left plot of Figure 6.6.
The surrogate risk fails to be a good approximation in this regime, as the true
risk is now characterised by a compound Marchenko-Pastur law arising from the
limiting spectra of W1 + W2.

(iii) As this stability issue does not occur for λ > 0, no risk spikes are observed for ridge
regression. When λ > 0, the pseudoinverse is also less sensitive to the minimum
eigenvalue of the matrices, allowing for the surrogate risk from Proposition 6.11 to
serve as a good approximation for larger range of values of γ. This is evident both
in the improved rate of the approximation in Proposition 6.11 and in the right plot
of Figure 6.6.

The analysis shows that the interpretation of augmentation as a regulariser suggested
in the machine learning literature (Dao et al., 2019; Chen et al., 2020; Shorten and Khosh-
goftaar, 2019; Balestriero et al., 2022b) depends on the interplay between the number of
augmentations k, the number of data points n and the dimension d. Online augmentation
(where the approximation k = ∞ can be justified) behaves like regulariser, as pointed
out in previous work. In offline augmentation (where k <∞), the risk still shows a spike
towards infinity that is not regularised, although this spike now appears around d ≈ nk

rather than d ≈ n.

Remark 6.4 (Related work). (i) The proofs of Hastie et al. (2022) use the fact that the
random matrices in the unaugmented risk are all rescaled and shifted versions of X̄1,
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whose eigenspace align. That is a consequence of independence between data points,
and no longer true if k > 1.

(ii) Noise injection is studied by Dhifallah and Lu (2021) for a small λ > 0, where
double-descent is observed in a classification problem with a random feature model
but not in regression. Although their work is phrased as a regularization approach, it
can be regarded as augmentation. They employ a remarkable proof technique based on
tools from convex analysis, and their results and ours are complementary: They assume
Gaussian data and noise, and obtain two separate limiting expressions of the risk for
an augmented estimator and an unaugmented estimator with a different regularization.
Our analysis, on the other hand, shows that the shift in double-descent peak is in fact
a combination of two effects: A regularization by noise injection around d ≈ n, and a
non-regularised instability around d ≈ nk. Additionally, our results apply in the non-
Gaussian case.

6.5.2. Double and triple descent for sample-splitting estimates

Augmenting the response variables requires knowledge of β. If we drop the oracle as-
sumption, we can use a two-stage estimation process with sample splitting, where an
initial estimate β̃(m) is computed on part of the data. On the remaining data, this value
is used to augment both covariates and responses, and a final estimate β̂(m) is computed.
Consider m i.i.d. fresh draws of the data {Ṽi, Ỹi}mi=1 obtained e.g. via data splitting, and
form an unaugmented estimator with parameter λ ≥ 0:

β̃
(m)
λ :=

(
1

m

∑m

i=1
ṼiṼ

>
i + λId

)† 1

m

∑m

i=1
ṼiỸi .

In the case m = 0, we write β̃(0)
λ = 0. The augmentations applied to Yi’s are given by

τ
(m)
ij Yi := Yi +

(
πijVi −Vi

)>
β̃

(m)
λ = τ

(ora)
ij Yi + (πijVi −Vi)

>(β̃
(m)
λ − β) .

In this case, invariance of the covariates does not imply invariance of the entire data as in
(6.17). The final augmented estimator is the two-stage estimator defined with τ (m)

ij as

β̂
(m)
λ := (X̄1 + λId)

† 1

nk

∑
ij

(πijVi) τ
(m)
ij Yi .

Thus, m = 0 corresponds to not augmenting the response variables. Observe that the
two-stage estimator is related to the oracle estimator by

β̂
(m)
λ = β̂

(ora)
λ + (X̄1 + λId)

† X̄∆ (β̃
(m)
λ − β) , (6.24)

where the difference arises from the estimation error of the first-stage estimator, β̃(m)
λ −β,

as well as the difference arising from augmentation,

X̄∆ :=
1

n

∑n

i=1

(
1

k

∑k

j=1
πijVi

)(
1

k

∑k

j=1
(πijVi −Vi)

)>
.
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Figure 6.7: Risks of the two-stage ridgeless estimator β̂(m)
0 . In all figures, nunaug = 200 data are used for

the unaugmented estimator and k = 5 augmentations are used for the augmented estimator. The number
of data used for the two stages of the augmented estimator differ: Top Left. m = naug = 100; Top Right.
m = 50 and naug = 150; Bottom Left. m = 150 and naug = 50; Bottom Right. m = 0 and naug = 200.
In each figure, risk of the first-stage unaugmented estimator β̃(m)

0 and risk of the oracle estimator β̂(ora)
0

trained on {Vi}
naug

i=1 are also plotted for comparison.

We consider the risk R defined in Section 6.4.5, which simplifies under the linear model
(6.16) as

R(β̂
(m)
λ ) = E[(Ynew − (β̂

(m)
λ )>Vnew)2 | β̂(m)

λ ] = ‖β̂(m)
λ − β‖2 + σ2

ε . (6.25)

We are again interested in the double-descent case λ = 0.

Proposition 6.12. Assume that ‖X̄†1‖op, ‖X̄2‖op, ‖X̄∆‖op and ‖β̃(m)
λ − β‖ are O(1) with

probability 1− o(1). Then

R(β̂
(m)
0 )−

(
σ2
ε + L̂

(ora)
0 +

∥∥X̄−1
1 X̄∆(β̃

(m)
λ − β)

∥∥2) P−→ 0 .

In other words, the limiting risk R(β̂
(m)
0 ) can be separated into the the risk L̂(ora)

0 of
the oracle estimator, a noise term σ2

ε that arises due to a different choice of the risk, and
the term

∥∥X̄−1
1 X̄∆(β̃

(m)
λ − β)

∥∥2. Adapting our universality result allows one to show
that (X̄1, X̄∆) behave like correlated matrices with Gaussian entries, and in the isotropic
case, we expect delocalization of the eigenvectors of X̄−1

1 X̄∆ in the sense that
∥∥X̄−1

1 X̄∆(β̃
(m)
λ − β)

∥∥2 ≈ 1

d
Tr
(
X̄∆X̄

−2
1 X̄∆

)
‖β̃(m)

λ − β‖2 . (6.26)
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A formal justification requires developing anisotropic local laws similar to Knowles and
Yin (2017) but for matrices of the form X̄†1X̄∆, which we leave to future work. Under
(6.26), the main difference between the two-stage risk R(β̂

(m)
0 ) and L̂(ora)

0 is a rescaled
risk of the first-stage estimator. We expect L̂(ora)

0 to diverge near γ′ = 1 (i.e. d ≈ kn) and
Rm to diverge near γ/ρ = 1 (i.e. d ≈ m), leading to two spikes in the risk curve of β̂(m)

0 .
One spike is due to augmentation as discussed in Section 6.5.1, and hence not observed if
k →∞. The other is due to the first-stage, unaugmented regressor on m data, and hence
not observed if m = 0. Figure 6.7 shows empirical results for fixed k and λ = 0. Both
double-descent (for m = 0) and triple-descent behaviours are clearly visible.

Remark 6.5. (i) The results above can be generalised from the ridgeless regressor con-
sidered here to two-layer linear networks. Indeed, Ba et al. (2019) and Chatterji et al.
(2022) characterise the risk of such a network after training in terms of the pseudoinverse
in (6.23). Our proof technique can be applied to this risk, at the price of more notation.

(ii) For simplicity, we have assumed the same value of λ is used in both stages, although
our approach can be extended to distinct values. Since both stages use λ = 0, we see two
peaks in the risk, and hence triple-descent. If a positive value is used in the first stage
instead and λ = 0 in the second, one of the peaks would vanish.

6.6 Universality for other non-smooth and high-dimensional estimators

So far, we have demonstrated universality for properties of the ridge regression and linear
regression. In this section, we present two additional results that show how the univer-
sality results also apply to a non-smooth statistic and a high-dimensional statistic. The
second example also illustrates how augmentation may increase effective sample size.

6.6.1. Maximum of exponentially many correlated random variables

As an example of non-smooth statistic, consider the function

f(x11, . . . ,xnk) := max1≤l≤dn
1

nk

∑
i≤n

∑
j≤k xijl for x11, . . . ,xnk ∈ Rdn ,

where the dimension dn grows exponentially in n as specified below. This function
occurs in the context of uniform confidence bands (Deng and Zhang, 2020) and high-
dimensional central limit theorems (Chernozhukov et al., 2013).

Proposition 6.13. Consider i.i.d. Gaussian variables {Zi}i≤n that satisfy (6.1). Suppose

E[φ11X1] = 0 and the moments ‖maxl≤dn |(φ11X1)l| ‖L6
and ‖maxl≤dn |(Z11)l| ‖L6

are
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finite for each dn ∈ N. Then

dH(
√
nf(ΦX ),

√
nf(Z))→ 0 and n

∥∥Var[f(ΦX )]− Var[f(Z)]
∥∥→ 0

whenever dn grows as log(dn) = o(n1/10).

Thus, the maximum coordinate of the high-dimensional augmented average can be
approximated by the maximum of a high-dimensional Gaussian. Similar results are
available in the literature on high-dimensional central limit theorems, and suggest that
the condition on dn can be improved.

6.6.2. Softmax ensemble of exponentially many estimators

Let β1, . . . , βmn be Rp-valued functions, for some mn ∈ N. We think of these as es-
timators or predictors previously calibrated on a separate sample. Fix a loss function
L : Rp × Rd → R and a scalar t, and define

f(x11, . . . ,xnk) :=
∑mn

r=1
βr

exp
(
− t log(mn)

nk

∑n
i=1

∑k
j=1 L(βr,xij)

)
∑m
s=1 exp

(
− t log(mn)

nk

∑n
i=1

∑k
j=1 L(βs,xij)

) for xij ∈ Rd .

For k = 1, this is a softmax version of the super learner built on the base estimators βr,
see e.g. Van der Laan et al. (2007). For large values of t, the function f approximates

f ≈ argmin{βr|1≤r≤m}
1

nk

∑n

i=1

∑k

j=1
L(βr,xij) .

The number mn of estimators is typically permitted to grow exponentially with n. The
result below shows that augmenting f can effectively increase sample size. To make
that precise, we define an “effective sample size” n∗ = cφn, for some cφ > 0, and write
µr := E[L(βr,X1)]. Consider

f ∗(x1, . . . ,xn) :=
∑mn

r=1
βr

exp
(
− t log(mn)

(
1
n∗

∑n
i=1(L(βr,xi)− µr) + µr

))
∑m
s=1 exp

(
− t log(mn)

(
1
n∗

∑n
i=1(L(βs,xi)− µs) + µs

)) .

If an augmented ensemble f(ΦX ) behaves like f ∗(X ) for some cφ > 1, then augmenta-
tion increases effective sample size.

Proposition 6.14 (ensemble of exponentially many estimators). Assume that the data

distribution is invariant, i.e. φ11X1
d
= X1, and that ‖maxr≤mn |L(βr, φ11X1)|‖L6

and

‖maxr≤mn |L(βr,X1)|‖L6
are bounded. If

∑p
l=1(supr≤mn |(βr)l|) = O(1) and logmn = o(n1/9)

then there exists cφ ≥ 1 such that

dH(
√
nf(ΦX ),

√
nf ∗(X ))→ 0 and n

∥∥Var[f(ΦX )]− Var[f ∗(X )]
∥∥→ 0 .

An explicit formula for cφ is given in Appendix D.6.6, and shows that there are cases
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where indeed cφ > 1. The scaling log(mn) is justified in Lemma D.39 in the appendix.
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Chapter 7

Implications of universality in optimisation anal-
ysis

In all applications considered so far, the estimator f in (1.1) admits an explicit closed-
form formula in terms of the data. There, we have seen how universality greatly sim-
plifies analyses, since one may extract various theoretical properties just by studying a
closed-form expression of Gaussians. In day-to-day machine learning, however, many
estimators do not admit a closed-form formula. A common example is some estimator
β̂(X) that depends implicitly on the data via some optimisation

β̂(X) ∈ argminβ∈Rd loss(β;X1, . . . , Xn) . (7.1)

When there are non-unique minimisers, the estimate β̂(X) additionally depends on the
specific choice of optimisation algorithm used for obtaining β̂(X).

Universality results have now been established for various 1-dimensional properties
f(X) of the estimators β̂(X) in (7.1), e.g. when f(X) is the training or test risk of β̂(X),
mostly by the Lindeberg method and its variants. A non-exhaustive list of examples
includes random feature models (Hu and Lu, 2022), regularised regression (Han and
Shen, 2023), block dependent linear models (Lahiry and Sur, 2024), generalised linear
models (Dandi et al., 2023), max-margin classifiers (Montanari et al., 2023) and general
classes of empirical risk minimisers (Montanari and Saeed, 2022). In a recent joint work
(Mallory, Huang, and Austern, 2025), we also establish universality for the risks of high-
dimensional logistic regression classifiers, where data are allowed to be dependent.

Once universality results are established, one can already empirically investigate the
behaviour of the estimators by substituting the data X with a set of Gaussians Z, which
are computationally fast to generate. However, the non-closed-form nature of f means
that f(Z) is still complicated to analyse, and obtaining a rigorous theoretical statement
can be much more difficult than the closed-form cases.

This chapter discuss several tools that, in setups where Gaussian universality does
hold, can aid the analysis of quantities that arise in optimisation:

• Section 7.1 examines the convex Gaussian min-max theorem (CGMT), a theoretical
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tool that is particularly well-suited for analysing optimisation problems on Gaussian
data. We shall develop an extension of known CGMT results to accommodate de-
pendence both across dimensions and across different data points, and briefly discuss
its usage in Mallory, Huang, and Austern (2025) for analysing the effects of data
augmentation on high-dimensional classifiers;

• Section 7.2 examines the stability analysis of stochastic optimisation algorithms used
for training β̂(X) in the context of two specific examples.

– The first is contrastive divergence (CD), an ML algorithm used for training energy-
based models. We briefly discuss how universality plays a role in obtaining the
necessary moment control for a multi-step stability analysis and obtaining the
consistency of β̂(X). The discussion is used in a particular setting as part of
the broader analysis of a joint work (Glaser, Huang, and Gretton, 2024), which
provides near-optimal error bounds for the convergence of CD in various settings.

– The second is variational Monte Carlo (VMC), an algorithm used in training
large-scale neural network solvers to the Schrödinger equation. We briefly exam-
ine how the maximum CLT (a tight version of Proposition 6.13) can be applied to
analyse the stability of a high-dimensional gradient update under data augmenta-
tion. This result is used as part of the broader analysis of a joint work (Huang,
Zhan, Ertekin, Orbanz, and Adams, 2025), which examines the effects of differ-
ent symmetrisations in neural network VMC solvers under a particularly intricate
case of symmetry in crystals.

7.1 Dependent convex Gaussian min-max theorem

Many modern tools have been developed for a system of equations or an optimisation
problem that involves only Gaussian random variables, such as the cavity method (Op-
per et al., 2001), approximate message passing method (Donoho et al., 2009), the replica
method (Mézard et al., 1987) and the convex Gaussian min-max theorem (CGMT) (Gor-
don, 1985; Thrampoulidis et al., 2014). Among them, the CGMT is a framework that
converts a complex optimisation problem on Gaussian data to a much more analytically
tractable auxiliary problem. The auxiliary optimisation is often further simplified into a
deterministic equation involving only a few scalars, and under the CGMT, its solution
completely characterises that of the original problem.

In this section, we first provide an informal overview of the standard CGMT recipe
for risk analysis in the case when X1, . . . , Xn are i.i.d. random vectors with i.i.d. coor-
dinates (Thrampoulidis et al., 2014; Thrampoulidis, 2016); we refer interested readers to
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Thrampoulidis (2016) for a detailed technical introduction. We proceed to present our
extension to the dependent setup, and briefly discuss its usage in Mallory, Huang, and
Austern (2025) for analysing the effects of data augmentation in logistic regression. A
diagrammatic illustration of the universality-CGMT receipe is included at the end of the
section in Figure 7.2.

7.1.1. An informal sketch of the universality-CGMT recipe

Let X1, . . . , Xn be mean-zero Rd-random vectors (not assumed to be i.i.d. or isotropic
for now). Suppose the corresponding labels y1, . . . , yn are generated as yi = y(X>i β∗)

for some link function y : R → R and some unknown vector β∗ ∈ Rd to be estimated.
Consider the optimisation problem

min
β∈Rd

1

n

∑
i≤n l

(
X>i β , y(X>i β∗)

)
,

where l : R× R→ R is some loss function. We first discuss the analysis of the training
risk, i.e. the global minimum of the above optimisation; it shall become clear in Sec-
tion 7.1.2 how this can be utilised to analyse the test risk or other 1d properties of the
minimiser.

The first step is to reformulate the optimisation problem, such that most of the techni-
cal difficulties are captured by a multilinear term involving a high-dimensional Gaussian
matrix. CGMT then allows one to, informally, replace this Gaussian matrix by Gaussian
vectors, which allows for easy downstream processing.

To this end, denote the concatenated Rd×n data matrix X := (X1, . . . , Xn) and y :

Rn → R as the coordinate-wise application of y, i.e.

y(X>β∗) = (y(X>1 β∗), . . . , y(X>n β∗))
> = (y1, . . . , yn)> .

Then for some appropriately chosen L : Rn × Rn → R, we can express the original
optimisation (OO) as

minβ∈Rd L
(
X>β,y(X>β∗)

)
. (OO)

When Gaussian universality holds, we can WLOG study (OO) via the Gaussian optimi-
sation

minβ∈Rd L
(
Z>β,y(Z>β∗)

)
, (GO)

where Z = (Z1, . . . , Zn) is the matrix of Gaussian surrogates with the same mean
and covariance structure as X. (GO) can be rewritten as a constrained optimisation
minβ∈Rd,ν∈Rn L(ν,y(Z>β∗)) subject to ν = Z>β. By introducing the Lagrange mul-

107



tiplier u ∈ Rn, we can further rewrite (GO) as

min
β∈Rd,ν∈Rn

max
u∈Rn

L(ν,y(Z>β∗)) + (β>Z− ν>)u .

So far, we have successfully extracted a multilinear term involving the Gaussian ma-
trix Z. However, a subtle technical difficulty persists due to the dependence of the Rn

random vector y(Z>β∗) on Z. In the case where the data are i.i.d. with i.i.d. coordi-
nates, zero mean and identity covariance, a standard trick (see e.g. Thrampoulidis (2016);
Salehi et al. (2019)) is to consider the projection P∗ := β∗β

>
∗ /‖β∗‖2 ∈ Rd×d: Since Z

has i.i.d. N (0, 1) entries, the projected matrix H := (I − P∗)Z is independent of P∗Z
and y(Z>β∗). This allows us to rewrite (GO) further as

min
β∈Rd,ν∈Rn

max
u∈Rn

β>Hu+ β>P∗Zu− ν>u+ L(ν,y(Z>β∗)) .

Assuming thatL is convex in the first argument, and writingψ(β, u) := minν∈Rn β
>P∗Zu−

ν>u+ L(ν,y(Z>β∗)), one can apply the min-max theorem of Rockafellar (1970) to ob-
tain

min
β∈Rd,ν∈Rn

max
u∈Rn

β>Hu+ ψ(β, u) . (PO)

Note that the only source of randomness in ψ(β, u) is from a high-dimensional Rn vector
Z>β∗, which by construction is independent of H. Optimisations of the above form are
called the primary optimisation (PO) in CGMT. A direct analysis of (PO) can be rather
cumbersome: One needs to consider how the limiting spectrum of the high-dimensional
random matrix H interacts with the function ψ over the high-dimensional spaces Rd and
Rn.

Suppose for simplicity that H is a matrix with i.i.d. N (0, 1) entries, and ignore
the stochasticity in ψ(β, u). The standard CGMT (Thrampoulidis et al., 2014; Thram-
poulidis, 2016) says that, under mild conditions on ψ and by restricting the domains
of optimisation appropriately, one may study the minimised value and properties of the
minimisers of (PO) via the auxiliary optimisation

min
β∈Rd,ν∈Rn

max
u∈Rn

‖β‖h>u+ β>g‖u‖+ ψ(β, u) , (AO)

where h and g are two independent standard Gaussian vectors, each taking values in
Rn and Rd. The formal result is proved by applying Gordon’s Gaussian comparison
inequality (Gordon, 1985) to two suitably constructed Gaussian processes, and we defer
the technical discussion to the proof of Theorem 7.1 in Appendix E. As a simple heuristic,
we note that the formulation (AO) is expected: As the matrix H has i.i.d.N (0, 1) entries
and are thereby invariant to left-multiplication of Rd×d rotations and right-multiplication
of Rn×n rotations, one may expect β and u to only contribute to the term β>Hu only
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through the Euclidean norms ‖β‖ and ‖u‖. (AO) essentially formalises this, since

‖β‖h>u , β>g‖u‖ i.i.d.∼ N (0, ‖β‖2‖u‖2) .

The main practical advantage of analysing (AO) in lieu of (PO) is that (AO) no longer
involves a high-dimensional matrix and only depends on high-dimensional vectors. In-
deed, even when one considers the stochasticity of ψ, (AO) only depends on the three
high-dimensional Gaussian vectors h, g and Z>β∗, all of which appear in the loss through
some 1d quantities. Without the maximum and the minimum over the high-dimensional
spaces Rd and Rn, one would be able to apply the law of large numbers directly to ob-
tain a deterministic formulation of the objective. In the CGMT literature, the min-max
operators are handled on a case-by-case basis depending on L. A common pattern is that
they typically involve introducing additional auxiliary variables e.g. r = ‖ν‖ to reduce
the min-max operators to be over a low-dimensional space, after which an appropriate
notion of law of large numbers is applied. The end result is typically a low-dimensional,
deterministic (but not necessarily convex) optimisation, which may be investigated nu-
merically or used to prove theoretical statements about (OO).

A diagrammatic illustration of the above recipe is included in (7.2). We do not fo-
cus on the direct analysis of (AO) in this thesis, but refer interested readers to the many
successful applications of CGMT to the risk analysis of high-dimensional models (Sto-
jnic, 2013a,b; Thrampoulidis et al., 2015; Thrampoulidis, 2016; Thrampoulidis et al.,
2018; Mignacco et al., 2020; Dhifallah and Lu, 2021; Aolaritei et al., 2022; Javanmard
and Soltanolkotabi, 2022; Akhtiamov et al., 2024a,b). Our focus will be to generalise
the standard CGMT, which only works for H with i.i.d. entries, to a setup that allows
for dependent rows and columns in the Gaussian matrix H. In particular, this enables
us to extend the above recipe to allow dependence both across data points and across
coordinates.

7.1.2. Dependent CGMT

We shall develop a more general CGMT framework that accommodates a “low-rank as-
sumption” on the dependence structure of H. More formally, we assume the following:

Assumption 7.1 (Low-rank dependence). Let H be an Rd×n Gaussian matrix. There
exist M ∈ N and symmetric positive semi-definite matrices (Σ(l), Σ̃(l))l≤M , with Σ(l) ∈
Rd×d and Σ̃(l) ∈ Rn×n, such that

Cov[Hji,Hj′i′ ] =
∑M

l=1
Σ

(l)
jj′Σ̃

(l)
ii′ for all i, i′ ≤ n and j, j′ ≤ d .

Remark 7.1. (i) When M = 1, we can re-express H = (Σ(1))1/2H′(Σ̃(1))1/2, where
H′ is an Rd×n matrix with i.i.d. N (0, 1) entries. In this case, by redefining β and u in
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(PO), the standard CGMT still applies. Assumption 7.1 can therefore be understood as
a generalisation of this argument in the case where the re-expression is not possible, but
the dependence structure of H is still fully specified by a sum ofM matrix products, each
involving an Rd×d matrix and an Rn×n matrix. (ii) We call Assumption 7.1 a low-rank
assumption due to the restriction on the size of M in Theorem 7.1.

The primary optimisation we study takes the form

ΨSd,Sn := min
w∈Sd

max
u∈Sn

LΨ(w, u) with LΨ(w, u) := w>Hu+ f(w, u) , (7.2)

where Sd ⊂ Rd and Sn ⊂ Rn are the domains of optimisation and f : Sd × Sn → R
is some function that plays the role of ψ in (PO). Denote ‖v‖Σ′ =

√
v>Σ′v. Under

Assumption 7.1, we shall compare ΨSd,Sn to the risk

ψSd,Sn := min
w∈Sd

max
u∈Sn

Lψ(w, u) , (7.3)

where Lψ(w, u) :=
∑M

l=1

(
‖w‖Σ(l)h>l

(
Σ̃(l)
)1/2

u+ w>
(
Σ(l)
)1/2

gl‖u‖Σ̃(l)

)
+ f(w, u).

Here, (hl,gl)l≤M are independent standard Gaussians respectively in Rn and Rd. No-
tice that (7.3) is analogous to (AO), except that the M pairs of covariance matrices are
retained in (AO).

Our next result formalises the equivalence of ΨSd,Sn and ψSd,Sn , and additionally
controls ŵΨ ∈ Sd, the minimiser of ΨSd,Sn .

Theorem 7.1 (Dependent CGMT). Suppose Assumption 7.1 holds, and that Sd and Sn
are compact and f is continuous on Sd × Sn. Then the following statements hold:

(i) For all c ∈ R,

P(ΨSd,Sn ≤ c) ≤ 2MP(ψSd,Sn ≤ c) .

(ii) If additionally Sd and Sn are convex and f is convex-concave on Sd×Sn, then for

all c ∈ R,

P(ΨSd,Sn ≥ c) ≤ 2MP(ψSd,Sn ≥ c) ,

and in particular, for all µ ∈ R and t > 0,

P(|ΨSd,Sn − µ| ≥ t) ≤ 2M P(|ψSd,Sn − µ| ≥ t) . (7.4)

(iii) Assume the conditions of (ii). Let Ad be an arbitrary open subset of Sd and Acd :=

Sd \ Ad. If there exists constants ψ̄Sd , ψ̄Acd and η, ε > 0 such that ψ̄Acd ≥ ψ̄Sd + 3η,

P(ψSd,Sn ≤ ψ̄Sd + η) ≥ 1− ε and P(ψAcd,Sn ≥ ψ̄Acd − η) ≥ 1− ε, then

P(ŵΨ ∈ Ad) ≥ 1− 4ε . (7.5)

110



Remark 7.2 (Compact and convex domains Sd and Sn). CGMT operates on compact and
convex sets Sd and Sn. To extend the result to the case with Sd = Rd and Sn = Rn, one
typically shows that for the particular problem of interest, the minimiser and maximiser
lie in some compact sets with high probability; see e.g. Montanari and Saeed (2022);
Lahiry and Sur (2024).

Remark 7.3 (Comparison to existing CGMT results). The standard CGMT in the i.i.d.
isotropic case is exactly the same as above with Σ(1) = Ip, Σ̃(1) = In and M = 1;
see Theorem 3.3.1 of Thrampoulidis (2016). Our result also recovers the multivariate
CGMT of Dhifallah and Lu (2021) by setting Σ(l) and Σ̃(l) as block diagonal matrices
withM equal-sized subblocks, such that the l-th subblock is identity and the other blocks
are zero. Akhtiamov et al. (2024a) generalises the block diagonal setup to allow non-
identity subblocks, which is a special case of our Assumption 7.1, but they also allow for
transforming w and u, which we do not address here.

Remark 7.4 (Comment on the 2M factor). Similar to the i.i.d. isotropic CGMT, our The-
orem 7.1 is proved by applying Gordon’s Gaussian comparison inequality to two suitably
chosen Gaussian processes, one of which corresponds to (7.3) whereas the other corre-
sponds to (7.2) with M additional univariate Gaussian terms. The factor 2M arises from
approximating the M univariate Gaussian terms away. See Theorem 3.3.1 of Thram-
poulidis (2016) for the proof in the i.i.d. isotropic case, and Appendix E for the proof in
the general case.

The interpretation of the results are similar to that of the standard CGMT. For readers
unfamiliar with the CGMT literature, we note that for most practical purposes, (7.4) and
(7.5) are the two key CGMT results, whereas the rest can be viewed as intermediate steps
to obtain these results. Roughly speaking, they can be interpreted as follows:

• (7.4) implies that if the risk of the auxiliary optimisation ψSd,Sn is close to some value
µ with high probability, then necessarily the risk of the primary optimisation ΨSd,Sn
is close to µ with high probability. This allows us to analyse the risk ψSd,Sn in lieu of
ΨSd,Sn;

• (7.5) concerns an “important set” Ad ⊆ Sd. It says that, if the inclusion or exclusion
ofAd results in a substantial change of the risk of the auxiliary optimisation (from ψ̄Sd
to ψ̄Acd), which automatically implies a substantial change of the risk of the primary

optimisation, then the minimiser ŵΨ of the primary optimisation must lie in the setAd
with high probability. This allows us to use the analysis of the auxiliary optimisation
to make a statement about the minimiser of the primary optimisation, and thereby the
original optimisation.
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Figure 7.1: Figure 1 of Mallory, Huang, and Austern (2025). Universality of risks of a logistic regressor,
trained with different number and amount of random permutations. See the paper for the detailed setup.

A more convenient version of (7.5) is the next asymptotic concentration statement. The
proofs for both Theorem 7.1 and Corollary 7.2 are included in Appendix E.

Corollary 7.2 (Asymptotic CGMT). Assume the conditions of Theorem 7.1(ii) and let

Ad,Acd be defined as in Theorem 7.1(iii). If there exist constants ψ̄ < ψ̄c s.t. ψSd,Sn
P−→ ψ̄

and ψAcd,Sn
P−→ ψ̄c, then

P(ŵΨ ∈ Ad) → 1 .

In practice, for both the standard CGMT and the dependent CGMT, one choose Ad
depending on the desired properties of ŵΨ to investigate. For instance, if ŵΨ corresponds
to some estimator β̂(X), one may let Ad be the set {β ∈ Rd | |E[l(X>newβ, Ynew)]− χ| ≤
ε} for some test loss function l : R2 → R, some conjectured value of the test risk
χ ∈ R, and an arbitrarily small ε > 0. (7.2) then allows us to make high probability
statements about the test risk of β̂(X) by analysing only the auxiliary optimisation, which
can often be replaced by low-dimensional, deterministic optimisation, as discussed in
Section 7.1.1. We also do not need to know the value of χ a priori, as this is typically
deduced directly from the auxiliary optimisation analysis.

This approach of choosing Ad was used in the test risk analysis in the joint work
of Mallory, Huang, and Austern (2025), which considers a high-dimensional logistic re-
gression problem with dependent data. This is also the work where Theorem 7.1 and
Corollary 7.2 were developed. In that work, Corollary 7.2 is used in conjunction with
a training risk universality result under dependence to prove test risk universality. We
also show that data augmentation (see e.g. Chapter 6 for the precise definition) corre-
sponds exactly to Assumption 7.1 with M = 2. This enables us to derive a set of low-
dimensional, deterministic fixed-point equations that completely characterise the effects
of DA on high-dimensional logistic regression, which also recover the fixed-point equa-
tions derived by Salehi et al. (2019) for the isotropic i.i.d. setup as a special case. As a
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practical application, we have applied this universality-CGMT recipe to investigate the
effectiveness of data augmentation, and observe that the benefits of data augmentation
can be highly reliant on the full knowledge of invariance. We refer interested readers to
the paper for more details.
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Figure 7.2: A diagrammatic illustration of the pipeline of high-dimensional risk analysis via Gaussian
universality and our dependent CGMT.
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Figure 7.3: Figure 4 of Mallory, Huang, and Austern (2025): Initial training loss curves for the random
permutation setup in Fig. 7.1 with ρperm = 0.8, k = 11 and learning rate LR = 0.1.

7.2 Stability analysis in stochastic optimisation

One intriguing observation of Mallory, Huang, and Austern (2025) is that in the same
experiment setup, universality is observed for the global minimum of the risk (Fig-
ure 7.1) but not for the training trajectories (Figure 7.3). Specifically, we observe a
discrepancy in training trajectories under the same set of hyperparameters (Figure 7.3),
and a different learning rate is required for the Student’s t and uniform setups to obtain
convergence to the global minima. Underneath this observation is the crucial distinc-
tion that the global minimiser of a loss and the training iterates to optimise the same
loss can be two different mathematical objects. The former takes the form β̂(X) ∈
argminβ∈Rd loss(β;X1, . . . , Xn); when the minimisers are unique, β̂(X) can be analysed
directly via the loss function. The latter typically takes the form

θT = fT,X,ξT ◦ fT−1,X,ξT−1
◦ . . . ◦ f1,X,ξ1

(θ0) , (7.6)

i.e. the composition of some Rd → Rd stochastic update functions ft,X,ξt . The update
functions are X-dependent, and (ξt)t≤T is some sequence of i.i.d random variables that
represent per-step randomisation such as the use of stochastic mini-batches. The limit
of θT as T → ∞ may not exist, and even if it exists, it may not necessarily converge to
β̂(X).

In this section, our choice of f(X) in (1.1) is θT itself or some coordinate of θT . Prov-
ing the universality of θT , in general, can be a much more difficult task. As with the pre-
ceding chapters, we are faced with the obstacles of dependence and high-dimensionality,
but now in the context of a composition of many stochastic functions:

• Dependence. Notice that, had the composition been formed by a sequence of deter-
ministic functions, the asymptotic behaviour of (7.6) would be a well-studied problem
in the dynamical systems literature (Collet and Eckmann, 2009). Alternatively, had
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it been a composition of i.i.d. random functions, results from iterated random func-
tions (Diaconis and Freedman, 1999) and Markov chains (Norris, 1998; Levin and
Peres, 2017) would have been applicable. The dependence across all ft;X;ξt

, due to
the presence of X , makes out-of-the-shelf applications of standard tools from those
literatures challenging;

• High-dimensionality. In a machine learning setup, the update functions typically op-
erate on a high-dimensional space Rd. Even if one ignoresX-dependence and studies
(7.6) as a Markov chain, the problem of high dimensionality is a known challenging
and ongoing area of research within e.g. the Markov Chain Monte Carlo community
(Katafygiotis and Zuev, 2008; Girolami and Calderhead, 2011; Betancourt, 2017).

In this section, instead of tackling these challenges in full generality, we shall focus
on two specific machine learning applications and briefly discuss how universality results
and heuristics played a role in those analyses. Specifically, we review two of the authors’
joint works, Glaser, Huang, and Gretton (2024) and Huang, Zhan, Ertekin, Orbanz, and
Adams (2025), and highlight parts of their analyses where either the result or the heuristic
of universality plays a role. In the former, universality is used to decouple the multi-
step dependence across ft,X,ξt’s with a small number of moment controls; in the latter,
universality is used for one-step stability analysis of a high-dimensional gradient. As the
nature of this section is a discussion, we will focus on sketching out the intuitions rather
than presenting the full setups in both papers.

We emphasise that universality is not the key message of either work. We include a
brief discussion of the key content of each work at the end of each subsection, and refer
interested readers to both works for further reading.

7.2.1. Multi-step dependence decoupling in the contrastive divergence algorithm

Consider the problem of fitting the unknown natural parameter θ∗ ∈ Rp given n i.i.d. data
X1, . . . , Xn, drawn from an exponential family distribution (Brown, 1986; Wainwright
et al., 2008)

pθ(dx) := eθ
>φ(x)−logZ(θ)c(dx) , Z(θ) :=

∫

X
eθ
>φ(x)c(dx) .

Here, X ⊆ Rd is the sample space, the function φ : Rd → Rd is the sufficient statistic,
and c is the base probability measure on X . We also take d to be fixed throughout this
subsection. A standard approach for estimating θ is by running the iterated update (7.6)
with the maximum likelihood gradient update

fML
t,X (θ) := θ − ηt

(
1

n

∑
i≤n φ(Xi)−∇ logZ(θ)

)
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= θ − ηt
(

1

n

∑
i≤n φ(Xi)− EX′∼pθ [φ(X ′)]

)
.

Here, ηt > 0 is the learning rate at step t. Note that this can be viewed as a finite-sample
estimation of the population update

fpop
t (θ) := θ − ηt

(
EX∼pθ∗ [φ(X)]− EX′∼pθ [φ(X ′)]

)
.

In many applications, however, the log-normaliser logZ(θ) is not assumed to be admit
a closed form. This allows for a flexible design of the model class, but prevents us from
using the update scheme fML

t,X .

The contrastive divergence (CD) algorithm (Hinton, 2002) is a popular method for
fitting unnormalised models. In its most vanilla form, at each gradient update, CD sim-
ulates n i.i.d. Markov chains that target pθ, initialised from X1, . . . , Xn and run for m
steps, to obtain the samples X̃m,θ

1 , . . . , X̃m,θ
n . Then, CD replaces the intractable gradient

update fML
t,X by computing

fCD
t,X (θ) := θ − ηt

(
1

n

∑
i≤n φ(Xi)−

1

n

∑
i≤n φ(X̃m,θ

i )
)
.

Let θCD
T be the final iterate of (7.6) under the CD updates by fCD

t,X . The goal is, informally,
to obtain a high-probability bound or moment bound on the difference from the true
parameter,

‖θCD
T − θ∗‖ . (7.7)

If both the number of steps m and the number of data points n are large, under suitable
conditions on the Markov chain sampling algorithms, CD yields a good approximation
of the update fpop

t . However in practice, since the Markov chains have to be run at every
gradient step, m is never chosen to be large. This introduces a potential source of bias,
which can affect the convergence rate of θCD

T to θ∗.

The prior work of Jiang et al. (2018) establishes an asymptotic O(n−1/3) high prob-
ability bound on (7.7) for unnormalised exponential families for a finite m. In the work
of Glaser, Huang, and Gretton (2024), one of our main goals was to obtain the paramet-
ric rate of O(n−1/2)-consistency (i.e. a high probability or moment bound on (7.7) with
O(n−1/2) error). Additionally, we aimed to obtain finite-sample moment bounds in (7.7)
with explicit dependence on m, which allow one to interpret the interaction of m with
other problem-dependent parameters e.g. the learning rate ηt and properties of pθ∗ .

One key technical challenge is the dependence of Xi’s across fCD
t,X for different t’s,

which manifest both explicitly through the data term 1
n

∑
i≤n φ(Xi) and implicitly through

the initialisations of the finite-length Markov chains. To address this, note that our goal is
to prove a consistency result, which amounts to showing that the iterates produced by fCD

t,X

are close to the “oracle” iterates fpop
t . As such, it suffices to decouple the dependence
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across the fCD
t,X ’s, i.e. to show that fCD

t,X ’s are approximately independent functions.

The decoupling step, which appears in Section 4 of Glaser, Huang, and Gretton
(2024) in the form of a tail condition, is achieved by universality. Notably, to show
the independence of two generic variables, it does not suffice to consider only finitely
many moments. In the case of the iterates of fCD

t,X , however, we are only concerned with
functions of empirical averages of conditionally i.i.d. quantities, which allows for a con-
ditional Gaussian approximation. In particular, we can achieve decoupling and thereby
consistency by only assuming a ν-th moment control for ν > 2 — analogous to the mo-
ment condition imposed in the earlier universality result of Theorem 4.1. Moreover, the
more moments we can control, the stronger the decoupling result is and the sharper the
rate we may obtain for CD. Section 4.1 of Glaser, Huang, and Gretton (2024) provides a
range of rates for different fixed values of ν, and shows that under the sub-Gaussian tail
condition assumed in Jiang et al. (2018), we can in fact achieve anO(

√
log n/

√
n) bound

on the L2 norm of (7.7).

We do emphasise that the key messages and the many other results of Glaser, Huang,
and Gretton (2024) are not tied to universality. For example, the regime discussed above,
where the data Xi’s are reused across iterates, is known as the offline CD. A substantial
amount of work in Section 3 of Glaser et al. (2024) is devoted to the study of online CD,
where data are not reused across iterates and where no decoupling is required. There,
we show that one does achieve O(n−1/2)-consistency, and a CD iterate with Polyak-
Ruppert averaging (Polyak and Juditsky, 1992) can even achieve an error bound that is
close to the Cramér-Rao lower bound. Additionally, we also prove results for stochastic
gradient descent versions of CD with and without replacement. The key tools behind
these results are combinations of both known and new tools for stochastic optimisation
analysis. Indeed even in the decoupling argument above, universality is not sufficient to
yield the joint dependence control over all time steps, and the structure of the optimisation
algorithm in CD plays a key role. We refer interested readers to the paper for the full
picture.

7.2.2. One-step high-d stability analysis for large-scale neural network solvers to
the many-body Schrödinger equation

Consider the problem of finding the ground state wavefunction ψ : R3n → C to the
n-electron Schrödinger equation. One essentially seeks the eigenfunction ψ with the
minimal eigenvalue E for the Hamiltonian operator H ,

Hψ(x) = Eψ(x), x := (x1, . . . , xn) ∈ R3n , (7.8)
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subject to some additional physical constraints that we do not specify here for simplicity.
The Hamiltonian H is given by Hψ(x) := −1

2
∆ψ(x) + V (x)ψ(x), ∆ is the Laplacian

operator representing the kinetic energy and V : R3n → R is the potential energy of the
physical system.

For many practical physical systems of interest, (7.8) is solved numerically by finding
the best solution within a parametrised class of functions {ψθ | θ ∈ Rq}, e.g. a class of
large neural networks (Hermann et al., 2020; Pfau et al., 2020; Li et al., 2022). A brute-
force search of ψθ is computationally difficult, since ψθ’s are functions living in a high-
dimensional space. To circumvent this, one typically takes advantage of a nice physical
property of the wavefunction that pψ(x) := |ψ(x)|2

〈ψ,ψ〉 gives the probability distribution of
the n electrons. Here, 〈f, g〉 :=

∫
f(x)∗g(x) dx denotes the complex inner product.

One class of methods that utilises pψ is Variational Monte Carlo (VMC), which seeks
to solve the minimum eigenvalue problem of (7.8) by the optimisation

argmin
θ∈Rq

〈ψθ, Hψθ〉
〈ψθ, ψθ〉

= argmin
θ∈Rq

EX∼pψθ
[Elocal;ψθ

(X)] , (7.9)

where Elocal;ψθ
(x) := Hψθ(X)/ψθ(X) is called the local energy. In the simplest case,

the optimisation may be performed by a first-order method, which can be represented by
a generic function Fx;ψθ

≡ F (ψθ(x),∆ψθ(x)) ∈ Rq as

θ 7→ ft(θ) = θ − EX∼pψθ
[FX;ψθ

] .

Here we again use ft from the notation of the composition (7.6) at the start of Section 7.2.
Notably, the expectation formulation above converts the expensive integral over the entire
space into an expectation, which can then be approximated by Monte Carlo averages
computed on finitely many samples from pψθ .

A key distinction of VMC from standard machine learning problems is that there are
no training data, and Monte Carlo samples are generated on-the-fly at every gradient step.
More precisely, let ψθ being the iterate from the last training step. The new training step
is performed by first running N MCMC chains for m steps, with pψθ as the target distri-
bution, and initialised at the samples from the last iterate. Denote p(m)

ψθ
as the distribution

of one of these m-th step MCMC chain (conditionally on initialisation and on ψθ). Then
the obtained samples as X1, . . . ,XN are i.i.d. drawn from p

(m)
ψθ

, and the original (OG)
gradient update rule is given by

θ 7→ f
(OG)
t (θ) = θ − δθ(OG) , δθ(OG) :=

1

N

∑
i≤N FXi;ψθ

. (7.10)

The main goal of the joint work of Huang, Zhan, Ertekin, Orbanz, and Adams (2025)
is to examine a large class of difficult symmetries that arise naturally in modelling ψθ in
infinite periodic crystalline solids, and to examine the strengths and limitations of vari-
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ous standard symmetrisation techniques in machine learning. Among those, one of the
approaches considered is in-training data augmentation. This is the same data augmen-
tation (DA) approach discussed in Chapter 6. Perhaps surprisingly, however, we observe
that DA can lead to variance inflation and instability in VMC even for empirical averages,
in contrast to the observations in Section 6.4.

The main difference arises from a unique computational-statistical tradeoff in VMC.
Specifically, the per-step training cost of VMC consists of two parts: (i) the sampling
cost of each m-step MCMC chain, csample, and (ii) the cost of evaluating the gradient of a
large neural network on each sample, cgrad. In particular, (i) typically involves computing
only ∂xψθ, whereas (ii) involves at least ∂θψθ and ∂2

xψθ (due to the presence of Laplacian
in the training objective). The computational cost of the original update rule (7.10) is
therefore N csample +N cgrad. To implement data augmentation, one may sample N ′ DA
samples X1, . . . ,XN ′ ∼ p

(m)
ψθ

and draw N ′k i.i.d. augmentations gi,j (as described in
Chapter 6), which gives the update rule

θ 7→ θ − δθ(DA) , δθ(DA) :=
1

N ′k

∑
i≤N ′

∑
j≤k Fgi,j(Xi);ψθ

. (7.11)

This leads to a per-step computational cost of N ′ csample + N ′k cgrad. Since the main
bottleneck in training is the computational cost (e.g. the number of GPUs to parallelise
sampling over), for a fair comparison, we need to choose N ′ and k such that

N csample +N cgrad ≈ N ′ csample +N ′k cgrad .

This, for example, necessitates N ′ < N as the number of augmentations is typically
k ≥ 2. In the neural network considered in Huang, Zhan, Ertekin, Orbanz, and Adams
(2025), we find that cgrad � csample in general, and restrict our attention to the case
N ′ = N/k, assuming the divisibility of N by k. In particular, the augmented batch size
is the same as the original batch size N , which is in stark contrast to the augmented batch
size Nk considered in Section 6.4. Note that this arises because in the standard ML
setup considered in Chapter 6, the main bottleneck is the sizeN of the finitely many real-
life data, and augmentations are assumed to be computationally cheap; here, the main
bottleneck is computational rather than number of samples, and each augmentation can
incur a similar computational cost to that of acquiring a new data point.

An immediate consequence of the choice N ′ = N/k is that each step of (7.11) now
involves an average of fewer i.i.d. summands. As expected, DA here leads to variance
inflation and instability of the gradient, even for an empirical average, as observed in
the normalised variance plot in Figure 7.4. Huang et al. (2025) then proceeds to validate
empirically that the performance of DA does not improve from that of the original update;
see the paper for the full experiment setup.

To derive a rigorous theoretical statement for this effect, one faces the additional tech-
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Figure 7.4: Figure 3 of Huang, Zhan, Ertekin, Orbanz, and Adams (2025): Normalised variance of differ-
ently symmetrized gradient updates against GPU hours.

nical challenge of analysing a high-dimensional empirical average, which is not expected
to behave like a high-dimensional Gaussian vector in general. Nevertheless, universality
results in the preceding chapters tell us that one may expect Gaussianity if the property
of interest is a suitably stable univariate function of the high-dimensional inputs. Here,
since we seek to analyse stability, given a random Rp-valued gradient update δθ, we may
focus on the object

max
l≤p
|(δθ)l − E[(δθ)l]| , (7.12)

i.e. the maximum deviation from the mean of the gradient update δθ over the p co-
ordinates. Since δθ(DA) takes the form of an i.i.d. augmented average, an analogous
result to Proposition 6.13 applies. In Appendix D of Huang, Zhan, Ertekin, Orbanz,
and Adams (2025), we directly used the finite-sample bound of the high-dimensional
CLT from Chernozhukov et al. (2017) to show that the limiting distribution of (7.12)
is completely captured by Var[δθ], provided that p = o(exp(N1/7)) for (7.10) and p =

o(exp((N ′)1/7)) for (7.11). Under an exact invariance condition, we further showed that
Var[δθ(DA)] & Var[δθ(OG)], where & is the Loewner order of non-negative matrices; under
an approximate invariance condition, we provided a corresponding error bound. These
results helped to provide theoretical support for the instability observed for DA in VMC.

We conclude by stressing that the main messages and results of Huang, Zhan, Ertekin,
Orbanz, and Adams (2025) are not tied to universality. A substantial amount of work in
Huang et al. (2025) is devoted to analysing the type of symmetries that arise in a many-
body wavefunction for crystalline solids, and the possible symmetrisation techniques one
may employ to a large-scale VMC neural network. Besides in-training data augmenta-
tion, we also examine a group averaging and a smooth canonicalisation approach both
during training and inference. A main discovery of Huang et al. (2025) is that post-hoc
group averaging can be a simple and effective method for substantially improving the
chemical accuracy of the learned wavefunction within the same amount of computational
resources: We validated this finding across graphene, lithium hydride (LiH) and metallic
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lithium systems, with a 10× computational speedup in the LiH system compared to state-
of-the-arts neural network solvers. As these results are obtained on large neural network
solvers parallelised over many GPUs, a significant amount of work in Huang et al. (2025)
is computational rather than theoretical in nature. We refer interested readers to the paper
for the full picture.

122



Chapter 8

Conclusion and future directions

Consider, for one last time, an empirical average of i.i.d. zero-mean 1d variables,

1√
n

∑n

i=1
Xi =

(
1√
n
, . . . ,

1√
n

)( X1

...
Xn

)
.

One way to interpret the CLT is that the behaviour of the Rd random vector X =

(X1, . . . , Xn)ᵀ, when viewed through the 1d projection ( 1√
n
, . . . , 1√

n
), is completely de-

scribed by the first two moments of X and therefore substitutable by a Gaussian vector.

In the same spirit, Gaussian universality can be viewed as a set of general Gaussian
approximation results on the input space of some function f : It says that the behaviour of
a sequence of random vectors (X1, . . . , Xn), when viewed through some possibly non-
linear and complicated function f , is also completely captured by the first two moments.
Various examples of such f ’s have been examined in this thesis in the context of high-
dimensionality and dependence, and universality has been used to provide theoretical
and practical intuitions in each of them. We have also developed a general set of uni-
versality results for the L2 space spanned by degree-m polynomials of high-dimensional
random vectors, and provide nearly optimal upper and lower bounds to show how the
approximation error deteriorates as m grows.

The applications considered in this thesis are merely a subset of the rapidly expand-
ing body of work on universality, where a constant quest is to push the boundary on the
types of high-dimensional estimators and dependence structures one may accommodate.
For instance, Section 5.4 and the references therewithin are part of a growing body of
works that use Gaussian approximations to characterise the limiting behaviours of sub-
graph count statistics by Wiener chaos. An interesting extension is to consider whether
Gaussian universality may be a useful perspective for unifying and extending results in
other network-related statistics and in dynamic graph models such as the preferential at-
tachment models (Barabási and Albert, 1999; Albert and Barabási, 2002; Berger et al.,
2014; Peköz et al., 2017; Bloem-Reddy and Orbanz, 2018). On the other hand, the prob-
lem (7.6) of analysing the iterates of random functions in a high-dimensional space, is
partially solved by a recent line of work on the limiting spectral behaviour of products of
many large random matrices (Hanin and Paouris, 2021; Hanin and Jiang, 2025), and such
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results have seen applications in the analysis of deep neural networks (Hanin and Nica,
2020; Li et al., 2021; Noci et al., 2023; Favaro et al., 2025).

An open question remains as to whether and when Gaussian universality can break
in practical machine learning applications. The simple maximum example (2.4) in Sec-
tion 2.1 and our lower bound construction in Section 4.5 provide theoretical examples,
but neither of them yields an immediate connection to a practical machine learning setup.
Meanwhile, several lines of works have emerged in the literature to examine negative
results on universality. For example, Pesce et al. (2023) show, both theoretically and
empirically, that the behaviour of a high-dimensional generalised linear model changes
when the input Gaussian mixture data are replaced by their Gaussian surrogates. We
do note that, in view of the discussion in Section 2.2, Gaussian universality does not
always replace the input data of the estimator directly by Gaussians, and the Gaussian
mixture case may still be viewed as a type of universality with appropriately transformed
data. On the other hand, universality with respect to heavy-tailed rather than Gaussian
distributions is also observed in neural network layer weights and training iterates un-
der stochastic gradient descent (Martin and Mahoney, 2020; Hodgkinson and Mahoney,
2021; Gurbuzbalaban et al., 2021).

For systems that do exhibit Gaussian universality, another vital question is whether
these systems can be too restrictive or harmful in practice. Broadly speaking, Gaus-
sian universality results apply to systems in which the stochasticity is approximately
Gaussian-generated. One particular example of such systems is the large family of deep
generative models built on transformations of Gaussian distributions, such as variational
autoencoders, generative adversarial networks and diffusion models. In this literature, an
emerging line of work (Salmona et al., 2022; Pandey et al., 2024; Tam and Dunson, 2025;
Ghane et al., 2025) has shown that the use of Gaussian distributions can in fact restrict
the representative power of these models, and cause them to struggle with modelling
multimodal and heavy-tailed data. Ghane et al. (2025) also empirically observe that, for
the same diffusion model with a restrictive representation power, a notion of Gaussian
universality is satisfied by the test risk.

Another interesting mathematical problem is whether explicit and sharp constants
may be obtained in the universality approximation bounds. Such constants, if known,
are useful in practice, as it allows for an explicit computation of the approximation er-
ror. For empirical averages, considerable efforts have been made to obtain and sharpen
these constants; see e.g. Shevtsova (2011) and references therewithin, and see Austern
and Mackey (2022) on how such explicit constants facilitate practically computable and
efficient concentration bounds. To obtain explicit constants for the results of this thesis,
one may use the explicit numeric constant in the proof of the anti-concentration inequal-
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ity from Carbery and Wright (2001) and combine it with our proofs. However, since the
constant obtained would apply to a large class of statistics, it is unlikely to be sharp for
specific applications. It remains an interesting question whether one may obtain sharp
and explicit constants if, for example, one can restrict our attention to particular classes
of U-statistics, or if suitable tail conditions or coordinate-wise dependence conditions are
imposed on the data distribution.

In view of these open questions, an interesting direction of future work is to build a
better understanding of the limitations and failure modes of Gaussian universality. One
may also ask if a more general universality framework is necessary, in order to obtain a
better theory for the behaviours of modern statistical and machine learning algorithms.
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Appendix A

Additional results and proofs for Sections 3.2, 3.4

This appendix provide additional results and proofs that concern the upper bounds and
the applications of degree-two U-statistics in Chapter 3. The appendix is organised as
follows. The first two sections provide additional content:

Appendix A.1 states additional results for the Gaussian mean-shift setup of Section 3.4.3,
including a demonstration of how Assumption 3.2 can be verified by a simple Taylor
expansion.

Appendix A.2 presents auxiliary tools used in subsequent proofs.

The remaining sections consist of proofs:

Appendix A.3 proves the main upper bound result, Theorem 3.1. Appendix A.3.1 states
a list of intermediate lemmas that provides a proof overview.

Appendix A.4 proves the remaining results in Section 3.2.

Appendix A.5 proves the results in Section 3.4.

Appendices A.6 and A.7 present proofs for the results in Appendices A.1 and A.2 re-
spectively.

To standardise notation in this appendix, unlike Section 3.2, we shall useDn ≡ u2(Y )

for both the general degree-two U-statistic defined in (3.1) and the specific U-statistic Dn

arising from MMD and KSD.
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A.1 Additional results for Gaussian mean-shift in Section 3.4.3

In this section, we consider the Gaussian mean-shift setup defined in Section 3.4.3, where
Q = N (µ,Σ) and P = N (0,Σ) with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d.
We derive analytical expressions of the moments of U-statistics for (i) KSD with RBF,
(ii) MMD with RBF and (iii) MMD with linear kernel. We also verify Assumption 3.2
for the three cases, which confirm that our error bounds apply. We refer interested readers
to Huang, Liu, Duncan, and Gandy (2023) for a discussion and results on the verification
of Assumption 3.1.

A.1.1. A decomposition of the RBF kernel

For both MMD and KSD, the key in verifying the assumptions for the RBF kernel is a
functional decomposition. The usual Mercer representation of the RBF kernel is avail-
able only with respect to a univariate zero-mean Gaussian measure and involves some
cumbersome Hermite polynomials. Since we do not actually require orthogonality of the
functions in Assumption 3.2, we opt for a simpler functional representation as given be-
low. We also assume WLOG that the bandwidth γ > 8, since we only consider the case
γ = ω(1) in our setup.

Lemma A.1. Assume that γ > 8. Consider two independent d-dimensional Gaussian

vectors U ∼ N (µ1, Id) and V ∼ N (µ2, Id) for some mean vectors µ1, µ2 ∈ Rd. Then,

for any ν ∈ (2, 4] and µ1, µ2 ∈ Rd, we have that

E
[∣∣∣ exp

(
− 1

2γ
‖U−V‖2

2

)
−
∏d

j=1

(∑K

k=0
λ∗kφ

∗
k(Uj)φ

∗
k(Vj)

)∣∣∣
ν] K→∞−−−→ 0 .

where φ∗k(x) := xke−x
2/(2γ) and λ∗k := 1

k! γk
for each k ∈ N ∪ {0}.

To see that Lemma A.1 indeed gives the functional decomposition we want in As-
sumption 3.2, we need to rewrite the product of sums into a sum. To this end, let gd
be the d-tuple generalisation of the Cantor pairing function from N to (N ∪ {0})d and
[gd(k)]l be the l-th element of gd(k). Given {λ∗l }∞l=0 and {φ∗l }∞l=0 from Lemma A.1, we
define, for every k ∈ N and x = (x1, . . . , xd) ∈ Rd,

αk :=
∏d

l=1
λ∗[gd(k)]l

and ψk(x) :=
∏d

l=1
φ∗[gd(k)]l

(xl) . (A.1)

With this construction, for each K ∈ N, we can now write
∏d

j=1

(∑K

k=0
λ∗kφ

∗
k(Uj)φ

∗
k(Vj)

)

=
∑K

k1,...,kd=0
(λ∗k1

. . . λ∗kd)(φ
∗
k1

(U1) . . . φ∗kd(Ud))(φ
∗
k1

(V1) . . . φkd(Vd))

=
∑K

k1,...,kd=0
αg−1

d (k1,...,kd) ψg−1
d (k1,...,kd)(U) ψg−1

d (k1,...,kd)(V) .

137



Since the Cantor pairing function is such that minl≤d[gd(K)]l →∞ as K →∞, Lemma
A.1 indeed gives a functional decomposition in terms of {αk}∞k=1 and {ψk}∞k=1 as

E
[∣∣∣ exp

(
− 1

2γ
‖U−V‖2

2

)
−
∑K

k=1
αkψk(U)ψk(V)

∣∣∣
ν] K→∞−−−→ 0 . (A.2)

We remark that both αk and ψk are independent of the mean vectors µ1 and µ2, which
makes this representation useful for a generic mean-shift setting.

A.1.2. KSD U-statistic with RBF kernel

Under the Gaussian mean-shift setup with an identity covariance matrix, gradient of the
log-density is given by ∇ log p(x) = −x for x ∈ Rd and the U-statistic for the RBF-
kernel KSD is

uKSD
P (x,x′) =

(
∇ log p(x)

)>(∇ log p(x′)
)
κ(x,x′) +

(
∇ log p(x)

)>∇2κ(x,x′)

+
(
∇ log p(x′)

)>∇1κ(x,x′) + Tr(∇1∇2κ(x,x′))

= exp
(
− ‖x− x′‖22

2γ

)(
x>x′ +

1

γ
x>(x′ − x) +

1

γ
(x′)>(x− x′) +

(
d

γ
− ‖x− x′‖22

γ2

))

= exp
(
− ‖x− x′‖22

2γ

)(
x>x′ − γ + 1

γ2 ‖x− x′‖2
2 +

d

γ

)
. (A.3)

We first verify that Assumption 3.2 holds by adapting {αk}∞k=1 and {ψk}∞k=1 from Ap-
pendix A.1.1.

Lemma A.2. Assume that γ > 24. For k′ ∈ N, consider

λ(k′−1)(d+3)+1 = −γ + 1

γ2 αk′ , φ(k′−1)(d+3)+1(x) = ψk′(x)(‖x‖2
2 + 1) ,

λ(k′−1)(d+3)+2 =
γ + 1

γ2 αk′ , φ(k′−1)(d+3)+2(x) = ψk′(x)‖x‖2
2 ,

λ(k′−1)(d+3)+3 =
(
d

γ
+
γ + 1

γ2

)
αk′ , φ(k′−1)(d+3)+3(x) = ψk′(x) ,

and for l = 1, . . . , d, define

λ(k′−1)(d+3)+3+l =
γ2 + 2γ + 2

γ2 αk′ , φ(k′−1)(d+3)+3+l(x) = ψk′(x)xl .

Then Assumption 3.2 holds with any ν ∈ (2, 3] for u = uKSD
P , {λk}∞k=1 and {φk}∞k=1

defined above.

A.1.3. MMD U-statistic with RBF kernel

Under the Gaussian mean-shift setup with an identity covariance matrix, the MMD U-
statistic with a RBF kernel has the form

uMMD(z, z′) = κ(x,x′) + κ(y,y′)− κ(x,y′)− κ(x′,y)
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= exp

(
−‖x− x′‖22

2γ

)
+ exp

(
−‖y − y′‖22

2γ

)
− exp

(
−‖x− y′‖22

2γ

)
− exp

(
−‖x

′ − y‖22
2γ

)
,

(A.4)

for z := (x,y), z′ := (x′,y′) ∈ R2d. We first verify that Assumption 3.2 holds again by
adapting {αk}∞k=1 and {ψk}∞k=1 from Appendix A.1.1.

Lemma A.3. Assume that γ > 8. Then Assumption 3.2 holds with any value ν ∈ (2, 3]

and the function u((x,y), (x′,y′)) = uMMD((x,y), (x′,y′)) for x,y,x′,y′ ∈ Rd, with

the sequences of values and functions given for each k ∈ N as γk = αk and φk(x,y) =

ψk(x)− ψk(y).

A.1.4. MMD U-statistic with linear kernel

In this section, we consider the mean-shift setup with a general covariance matrix Σ ∈
Rd×d, i.e., Q = N (µ,Σ) and P = N (0,Σ). The MMD with a linear kernel κ(x,x′) =

x>x′ has the form

uMMD(z, z′) = x>x′ + y>y′ − x>y′ − y>x′ ,

where z := (x,y), z′ := (x′,y′) ∈ R2d. In this case, Assumption 3.2 holds directly
because we can represent uMMD as

uMMD(z, z′) = (x− y)>(x′ − y′) =
∑d

l=1
(xl − yl)(x′l − y′l) =

∑d

l=1
γlψl(z)ψl(z

′) ,

(A.5)

where γl = 1, ψl(z) = xl − yl and ψl(z′) = x′l − y′l.

Details on the choice of linear kernel in simulations. In the last example in
Section 3.4.3, we chose µ = (0, 10, . . . , 0) ∈ Rd and a diagonal Σ with Σ11 = 0.5(d+1),
Σii = 0.5 for i > 1 and Σij = 0 otherwise. Note that by the invariance of Gaussian
distributions under orthogonal transformation, this is equivalent to choosing Σ as 0.5Id+

0.5Jd, where Id ∈ Rd×d is the identity matrix, Jd ∈ Rd×d is the all-one matrix and µ is
transformed by an appropriate orthogonal matrix of eigenvectors. Notably, this choice
ensures the limit of uMMD remains non-Gaussian. Indeed, when Q and P are Gaussian,
the statistic DMMD

n can be written as a sum of shifted-and-rescaled chi-squares, where
the scaling factors are 0.5(d + 1), 0.5, . . . , 0.5, the eigenvalues of Σ. As d grows, the
eigenvalue 0.5(d + 1) dominates, and the limiting distribution is then dominated by the
first summand, thereby yielding a chi-square limit up to shifting and rescaling. This
is numerically demonstrated in the right figure of Figure 3.2. As a remark, we do not
expect this exact setting to occur in practice; it should instead be treated as a toy setup to
demonstrate the possibility of non-Gaussianity and convey an intuition of when this may
occur.
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A.2 Auxiliary tools

A.2.1. Generic moment bounds

We first present two-sided bounds on the moments of a martingale, which are useful
in bounding ν-th moment terms of different statistics. The original result is due to
Burkholder (1966), and the constant Cν is provided by von Bahr and Esseen (1965) and
Dharmadhikari et al. (1968b). We also include Burkholder’s original upper bound in the
second line, which is used when a finer control is required in Chapter 4. The bounded-
ness of C ′ν over a bounded interval is because Burkholder (1966)’s constant arises from
Marcinkiewicz interpolation theorem and the Khintchine inequality.

Lemma A.4. Fix ν > 1. For a martingale difference sequence Y1, . . . , Yn taking values

in R,

cν n
min{0, ν/2−1}∑n

i=1
E[|Yi|ν ] ≤ E

[∣∣∑n

i=1
Yi
∣∣ν] ≤ Cν n

max{0, ν/2−1}∑n

i=1
E[|Yi|ν ] ,

for Cν := max
{

2, (8(ν − 1) max{1, 2ν−3})ν
}

and a constant cν > 0 depending only on

ν. Moreover, there exists some constant C ′ν > 0 depending only on ν such that

E
[∣∣∑n

i=1
Yi
∣∣ν] ≤ C ′ν E

[∣∣∑n

i=1
Y 2
i

∣∣ν/2
]
,

where supν∈I C
′
ν is bounded whenever I ⊂ (1,∞) is a fixed bounded interval.

The next moment computation for a quadratic form of Gaussians is used throughout
the proof:

Lemma A.5 (Lemma 2.3, Magnus (1978)). Given a standard Gaussian vector η in Rm

and a symmetric m×m matrix A, we have that E[η>Aη] = Tr(A) and

E[(η>Aη)2] = Tr(A)2 + 2Tr(A2) , E[(η>Aη)3] = Tr(A)3 + 6Tr(A)Tr(A2) + 8Tr(A3) .

A.2.2. Moment bounds for U-statistics

We first present a result that bounds the moments of a U-statistic Dn = u2(Y ) defined as
in (3.1).

Lemma A.6. Fix n ≥ 2 and ν ≥ 2. Then, there exist absolute constants cν , Cν > 0

depending only on ν such that

E[|Dn − EDn|ν ] ≤ Cν n
ν/2(n− 1)−νMν

cond;ν + Cν (n− 1)−νMν
full;ν ,

E[|Dn − EDn|ν ] ≥ cνn(n− 1)−νMν
cond;ν + cνn

−(ν−1)(n− 1)−(ν−1)Mν
full;ν .
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In other words,

E[|Dn − EDn|ν ] = O(n−ν/2Mν
cond;ν + n−νMν

full;ν) ,

E[|Dn − EDn|ν ] = Ω(n−(ν−1)Mν
cond;ν + n−2(ν−1)Mν

full;ν) .

The next two results summarise how the moments of variables under the functional
decomposition in Assumption 3.2 interact with the moments of the original statistic u
under R:

Lemma A.7. Let {φk}∞k=1, {λk}∞k=1 and εK;ν be defined as in Assumption 3.2. For

X1,X2
i.i.d.∼ R, write µk := E[φk(X1)] and let the moment terms D,Mcond;ν ,Mfull;ν

be defined as in Chapter 3 and Section 3.2. Then we have the following:

(i)
∣∣∑K

k=1 λkµ
2
k −D

∣∣ ≤ εK;1;

(ii) for any ν ∈ [1, 3], we have that

1

4
(Mcond;ν)

ν − ενK;ν ≤ E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)µk

∣∣∣
ν]
≤ 4((Mcond;ν)

ν + ενK;ν) ;

(iii) there exist some absolute constants c, C > 0 such that

E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)(φk(X2)− µk)

∣∣∣
ν]

≤ 4C(Mfull;ν)
ν − 1

2
(Mcond;ν)

ν + (4C + 2)ενK;ν ,

E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)(φk(X2)− µk)

∣∣∣
ν]

≥ c

4
(Mfull;ν)

ν − 8(Mcond;ν)
ν − (c+ 8)ενK;ν .

The next result assumes the notations of Lemma A.7, and additionally denotes

ΛK := diag{λ1, . . . , λK} ∈ RK×K , φK(x) := (φ1(x), . . . , φK(x))> ∈ RK .

Lemma A.8. For µK := E[φK(X1)] and ΣK := Cov[φK(X1)], we have

σ2
cond − 4σcondεK;2 − 4ε2

K;2 ≤ (µK)>ΛKΣKΛK(µK) ≤ (σcond + 2εK;2)2 .

(σfull − εK;2)2 ≤ Tr((ΛKΣK)2) ≤ (σfull + εK;2)2 .

In particular, for ν ∈ [1, 3] and two i.i.d. zero-mean Gaussian vector Z1 and Z2 in RK

with variance ΣK , there exists some absolute constant C > 0 such that

E[|(µK)>ΛKZ1|ν ] ≤ 7
(
σνcond + 8ενK;2

)
, E[|Z>1 ΛKZ2|ν ] ≤ 6

(
σνfull + ενK;2

)
,

E
[∣∣(φK(X1)− µK)>ΛKZ1

∣∣ν] ≤ 8C(Mfull;ν)
ν − (Mcond;ν)

ν + (8C + 4)ενK;ν .

The next lemma gives an equivalent expression for WK
n defined in (3.9) and also
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controls the moments of WK
n .

Lemma A.9. Let {ηKi }ni=1 be a sequence of i.i.d. standard Gaussian vectors in RK . Then

(i) the distribution of WK
n satisfies

WK
n

d
=

1

n3/2(n− 1)1/2

(∑n

i,j=1
(ηKi )>(ΣK)1/2ΛK(ΣK)1/2ηKj − nTr(ΣKΛK)

)
+D;

(ii) the mean satisfies E[WK
n ] = D for every K ∈ N;

(iii) the variance is controlled as

2

n(n− 1)
(σfull − εK;2)2 ≤ Var[WK

n ] ≤ 2

n(n− 1)
(σfull + εK;2)2 ;

(iv) the third central moment is controlled as

E
[
(WK

n −D)3
]
≤ 8

(
E[u(X1,X2)u(X2,X3)u(X3,X1)]−M3

full;3 + (Mfull;3 + εK;3)3
)

n3/2(n− 1)3/2
,

E
[
(WK

n −D)3
]
≥ 8

(
E[u(X1,X2)u(X2,X3)u(X3,X1)] +M3

full;3 − (Mfull;3 + εK;3)3
)

n3/2(n− 1)3/2
;

(v) the fourth central moment is controlled as

E
[
(WK

n −D)4
]
≤ 12

n2(n− 1)2

(
4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)]

− 4M4
full;4 + 4(Mfull;4 + εK;4)4 + (σfull + εK;2)4

)
,

E
[
(WK

n −D)4
]
≥ 12

n2(n− 1)2

(
4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)]

+ 4M4
full;4 − 4(Mfull;4 + εK;4)4 + (σfull − εK;2)4

)
;

(vi) we also have a generic moment bound: For m ∈ N, there exists some absolute

constant Cm > 0 depending only on m such that

E
[
(WK

n )2m
]
≤ Cm

nm(n− 1)m
(σfull + εK;2)2m + CmD

2m ;

(vii) if Assumption 3.2 holds for some ν ≥ 2 then limK→∞Var[WK
n ] = 2

n(n−1)
σ2

full. If

Assumption 3.2 holds for some ν ≥ 3, then

lim
K→∞

E
[
(WK

n −D)3
]

=
8E[u(X1,X2)u(X2,X3)u(X3,X1)]

n3/2(n− 1)3/2
,

and if Assumption 3.2 holds for some ν ≥ 4, then

lim
K→∞

E
[
(WK

n −D)4
]

=
12(4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)] + σ4

full)

n2(n− 1)2 .

A.2.3. Distribution bounds

The following is a standard approximation of an indicator function for bounding the
probability of a given event; see e.g. the proof of Theorem 3.3, Chen et al. (2011).
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Lemma A.10. Fix any m ∈ N ∪ {0}, τ ∈ R and δ > 0. Then there exists an m-times

differentiable R → R function hm;τ ;δ such that hm;τ+δ;δ(x) ≤ I{x>τ} ≤ hm;τ ;δ(x).

For 0 ≤ r ≤ m, the r-th derivative h(r)
m;τ ;δ is continuous and bounded above by δ−r.

Moreover, for every ε ∈ [0, 1], h(m) satisfies that

|h(m)
m;τ ;δ(x)− h(m)

m;τ ;δ(y)| ≤ Cm,ε δ
−(m+ε) |x− y|ε ,

with respect to the constant Cm,ε =
(

m
bm/2c

)
(m+ 1)m+ε.

The next bound is useful for approximating the distribution of a sum of two (possibly
correlated) random variables X and Y by the distribution of X alone, provided that the
influence of Y is small.

Lemma A.11. For two real-valued random variables X and Y , any a, b ∈ R and ε > 0,

we have

P(a ≤ X + Y ≤ b) ≤ P(a− ε ≤ X ≤ b+ ε) + P(|Y | ≥ ε) ,

P(a ≤ X + Y ≤ b) ≥ P(a+ ε ≤ X ≤ b− ε)− P(|Y | ≥ ε) .

Fact 4.4, i.e. Theorem 8 of Carbery and Wright (2001), gives an anti-concentration
result for a polynomial of random variables drawn from a log-concave density. The next
lemma restates the result in the case of a quadratic form of a K-dimensional standard
Gaussian vector η.

Lemma A.12. Let p(x) be a degree-two polynomial of x ∈ RK taking values in R. Then

there exists an absolute constant C independent of p and η such that, for every t ∈ R,

P
(
|p(η)| ≤ t

)
≤ Ct1/2(E[|p(η)|2])−1/4 ≤ Ct1/2(Var[p(η)])−1/4 .

A.2.4. Weak Mercer representation

In Section 3.4.2, we have used the weak Mercer representation from Steinwart and Scovel
(2012). We summarise their result below, which combines their Lemma 2.3, Lemma 2.12
and Corollary 3.2:

Lemma A.13. Consider a probability measureR on Rb, V1,V2
i.i.d.∼ R and a measurable

kernel κ∗ on Rb. If E[κ∗(V1,V1)] < ∞, there exists a sequence of functions {φk}∞k=1 in

L2(Rb, R) and a bounded sequence of non-negative values {λk}∞k=1 with limk→∞ λk =

0, such that as K grows,
∣∣∑K

k=1 λkφk(V1)φk(V2) − κ∗(V1,V2)
∣∣ → 0. The series

converges R⊗R almost surely.
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A.3 Proof of the main result, Theorem 3.1

In this section, we prove Theorem 3.1. The proof is necessarily tedious as we seek to
control “spectral” approximation errors (i.e. the error from a truncated functional decom-
position) and multiple stochastic approximation errors at the same time. The section is
organised as follows:

• In Appendix A.3.1, we list notations and key lemmas that formalise the steps for
proving Theorem 3.1;

• In Appendix A.3.2, we present the proof body of Theorem 3.1, which directly com-
bines results from the different lemmas;

• In Appendix A.3.3, A.3.4, A.3.5 and A.3.6, we present the proof of the key lemmas.
Each section starts with an informal sketch of proof ideas followed by the actual proof
of the result.

A.3.1. Auxiliary lemmas

Recall that our goal is to study the distribution of

Dn :=
1

n(n− 1)

∑
1≤i 6=j≤n u(Xi,Xj) .

The three results in this section form the key steps of the proof. We fix σ > 0 to be some
normalisation constant to be chosen later.

1. “Spectral” approximation. For K ∈ N, we define the truncated version of Dn by

DK
n :=

1

n(n− 1)

∑
1≤i 6=j≤n

∑K

k=1
λkφk(Xi)φk(Xj)

=
1

n(n− 1)

∑
1≤i 6=j≤n(φK(Xi))

>ΛKφK(Xj) .

We also denote the rescaled statistics for convenience as

D̃n :=

√
n(n− 1)

σ
Dn , D̃K

n :=

√
n(n− 1)

σ
DK
n .

The first lemma allows us to study the distribution of DK
n in lieu of that of Dn up to some

approximation error that vanishes as K grows.

Lemma A.14. Fix δ, σ > 0, K ∈ N and t ∈ R. Then

P(D̃K
n > t+ δ)− ε′K ≤ P(D̃n > t) ≤ P(D̃K

n > t− δ) + ε′K , ε′K :=
3n1/4(n− 1)1/4ε

1/2
K;1

σ1/2δ1/2
.

2. Gaussian approximation via the Lindeberg method. The distribution of DK
n is

easier to handle, as it is a double sum of a simple quadratic form of K-dimensional
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random vectors. Let Z1, . . . ,Zn be i.i.d. Gaussian random vectors in RK with mean and
variance matching those of φK(X1), and denote Zik as the k-th coordinate of Zi. The
goal is to replace DK

n by the random variable

DK
Z :=

1

n(n− 1)

∑
1≤i 6=j≤n Z

>
i ΛKZj =

1

n(n− 1)

∑
1≤i 6=j≤n

∑K

k=1
λkZikZjk .

Notice that DK
Z takes the same form as DK

n except that each φK(Xi) is replaced by Zi.
Analogous to D̃n and D̃K

n , we also define a rescaled version as

D̃K
Z :=

√
n(n− 1)DK

Z

σ
.

The second lemma replaces the distribution D̃K
n by that of D̃K

Z , up to some approximation
error that vanishes as n grows:

Lemma A.15. Fix δ, σ > 0, K ∈ N, t ∈ R and any ν ∈ (2, 3]. Then

P(D̃K
n > t− δ) ≤ P(D̃K

Z > t− 2δ) + Eδ;K ,

P(D̃K
n > t+ δ) ≥ P(D̃K

Z > t+ 2δ)− Eδ;K ,

where the approximation error is defined as, for some absolute constant C > 0,

Eδ;K :=
C

δνnν/2−1

( (Mfull;ν)ν + ενK;ν

σν
+

(Mcond;ν)ν + ενK;ν

(n− 1)−ν/2 σν

)
.

3. Replace DK
Z by UK

n . As in the statement of Theorem 3.1, let {ηKi }ni=1 be the
i.i.d. standard normal vectors in RK , and recall the notations µK := E[φK(X1)] and
ΣK := Cov[φK(X1)]. We can then express DK

Z as

DK
Z =

1

n(n− 1)

∑
1≤i 6=j≤n

(
(ΣK)1/2ηKi + µK

)>
ΛK
(
(ΣK)1/2ηKj + µK

)

=
1

n(n− 1)

∑
1≤i 6=j≤n(ηKi )>(ΣK)1/2ΛK(ΣK)1/2ηKj +

2

n

∑n

i=1
(µK)>ΛK(ΣK)1/2ηKi

+ (µK)>ΛKµK .

This is similar to the desired variable UK
n except for the third term:

UK
n =

1

n(n− 1)

∑
1≤i 6=j≤n(ηKi )>(ΣK)1/2ΛK(ΣK)1/2ηKj

+
2

n

∑n

i=1
(µK)>ΛK(ΣK)1/2ηKi +D .

As before, we denote ŨK
n :=

√
n(n−1)UKn

σ
. The next lemma shows that the distribution of

D̃K
Z can be approximated by that of ŨK

n , up to some approximation error that vanishes as
K →∞.

Lemma A.16. For any a, b ∈ R and ε > 0, we have that

P(a ≤ D̃K
Z ≤ b) ≤ P

(
a− ε ≤ ŨK

n ≤ b+ ε
)

+
εK;1

ε n−1/2(n− 1)−1/2σ
,
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P(a ≤ D̃K
Z ≤ b) ≥ P(a+ ε ≤ ŨK

n ≤ b− ε)− εK;1

ε n−1/2(n− 1)−1/2σ
.

4. Bound the distribution of ŨK
n over a short interval. If we are to use Lemma

A.14 and Lemma A.15 directly, we would end up comparing P(D̃n > t) against the
probabilities P(ŨK

n > t + 2δ) and P(ŨK
n > t − 2δ) for some small δ > 0. It turns out

these are not too different from P(ŨK
n > t): As ŨK

n is a quadratic form of Gaussians,
we can ensure it is “well spread-out” such that the probability mass of ŨK

n within a small
interval (t− 2δ, t+ 2δ) is not too large. This is ascertained by the following lemma:

Lemma A.17. For a ≤ b ∈ R, there exists some absolute constant C such that

P(a ≤ ŨK
n ≤ b) ≤ C(b− a)1/2

(
1

σ2 (σfull − εK;2)2

+
n− 1

σ2 (σ2
cond − 2σcondεK;2 − 4εK;2)

)−1/4

.

A.3.2. Proof body of Theorem 3.1

Fix δ, σ > 0,K ∈ N and t ∈ R. By Lemma A.14, we have that for ε′K =
3n1/4(n−1)1/4ε

1/2
K;1

σ1/2δ1/2 ,

P(D̃K
n > t+ δ)− ε′K ≤ P(D̃n > t) ≤ P(D̃K

n > t− δ) + ε′K .

By Lemma A.15, we have

P(D̃K
n > t− δ) ≤ P(D̃K

Z > t− 2δ) + Eδ;K ,

P(D̃K
n > t+ δ) ≥ P(D̃K

Z > t+ 2δ)− Eδ;K ,

where the error term is defined as, for some absolute constant C ′ > 0,

Eδ;K :=
C ′

δνnν/2−1

( (Mfull;ν)ν + ενK;ν

σν
+

(Mcond;ν)ν + ενK;ν

(n− 1)−ν/2 σν

)
.

To combine the two bounds, we consider the following decomposition:

P(D̃K
Z > t− 2δ) = P(D̃K

Z > t) + P(t− 2δ < D̃K
Z ≤ t) ,

P(D̃K
Z > t+ 2δ) = P(D̃K

Z > t)− P(t < D̃K
Z ≤ t+ 2δ) . (A.6)

This allows us to combine the earlier two bounds as
∣∣P(D̃n > t)− P(D̃K

Z > t)
∣∣ ≤ max{P(t− 2δ ≤ D̃K

Z < t) ,P(t < D̃K
Z ≤ t+ 2δ)}

+ Eδ;K + ε′K ,

which gives the error of approximating the c.d.f. of D̃n by that of D̃K
Z . Now fix some

ε > 0. By applying Lemma A.16 and taking appropriate limits of the endpoints to change
≤ to<,≥ to> and taking the right endpoint to positive infinity, we can now approximate
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the c.d.f. of D̃K
Z by that of ŨK

n :

P(t− 2δ ≤ D̃K
Z < t) ≤ P

(
t− 2δ − ε ≤ ŨK

n < t+ ε
)

+
εK;1

ε n−1/2(n− 1)−1/2σ
,

P(t ≤ D̃K
Z < t+ 2δ) ≤ P(t− ε ≤ ŨK

n < t+ 2δ + ε) +
εK;1

ε n−1/2(n− 1)−1/2σ
,

P(D̃K
Z > t) ≤ P

(
ŨK
n > t− ε

)
+

εK;1

ε n−1/2(n− 1)−1/2σ
,

P(D̃K
Z > t) ≥ P(ŨK

n > t+ ε)− εK;1

ε n−1/2(n− 1)−1/2σ
.

Substituting the bounds into the earlier bound and using a similar decomposition to (A.6),
we get that the error of approximating the c.d.f. of D̃n by that of ŨK

n is
∣∣P(D̃n > t)− P(ŨK

n > t)
∣∣ ≤ max{P(t− ε ≤ ŨK

n < t) ,P(t < ŨK
n ≤ t+ ε)}

+ max{P(t− 2δ − ε ≤ ŨK
n < t+ ε) ,

P(t− ε < ŨK
n ≤ t+ 2δ + ε)}

+ Eδ;K + ε′K +
4εK;1

ε n−1/2(n− 1)−1/2σ
.

To bound the maxima, we recall that by Lemma A.17, there exists some absolute constant
C ′′ such that for any a ≤ b ∈ R,

P(a ≤ ŨK
n ≤ b) ≤ C ′′(b− a)1/2

(
1

σ2 (σfull − εK;2)2

+
n− 1

σ2 (σ2
cond − 2σcondεK;2 − 4ε)

)−1/4

.

Substituting this into the above bound while noting (2δ + 2ε)1/2 ≤ 2δ1/2 + 2ε1/2, we get
that
∣∣P(D̃n > t)− P(ŨK

n > t)
∣∣

≤ C ′′
(
6ε1/2 + 4δ1/2

)( 1

σ2 (σfull − εK;2)2 +
n− 1

σ2 (σ2
cond − 2σcondεK;2 − 4εK;2)

)−1/4

+ Eδ;K + ε′K +
4εK;1

ε n−1/2(n− 1)−1/2σ
.

We now takeK →∞. By Assumption 3.2, εK;2 → 0 in the first term and the two trailing
error terms vanish. The second error term becomes

Eδ;K →
C ′

δνnν/2−1

(
(Mfull;ν)ν

σν
+

(Mcond;ν)ν

(n− 1)−ν/2 σν

)
.

By additionally taking ε → 0 in the first term and taking a supremum over t on both
sides, we then obtain

supt∈R

∣∣∣P(D̃n > t)− lim
K→∞

P(ŨK
n > t)

∣∣∣ ≤ 4C ′′δ1/2
(
σ2

full

σ2 +
σ2

cond

(n− 1)−1σ2

)−1/4

+
C ′

δνnν/2−1

(
(Mfull;ν)ν

σν
+

(Mcond;ν)ν

(n− 1)−ν/2 σν

)
.
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Finally, we choose

δ = n−
ν−2
2ν+1

(
(Mfull;ν)ν

σν
+

(Mcond;ν)ν

(n− 1)−ν/2 σν

) 2
2ν+1

and σ = σmax := max{σfull, (n − 1)1/2σcond}. Then
(σ2

full

σ2 +
σ2

cond

(n−1)−1σ2

)−1/4 ≤ 1, and by
redefining constants, we get that there exists some absolute constant C > 0 such that

supt∈R

∣∣∣P
(√

n(n− 1)

σmax
Dn > t

)
− lim

K→∞
P
(√

n(n− 1)

σmax
UK
n > t

)∣∣∣

≤ C n−
ν−2
4ν+2

(
(Mfull;ν)ν

σνmax
+

(Mcond;ν)ν

(n− 1)−ν/2 σνmax

) 1
2ν+1

(A.7)

≤ 2
1

2ν+1C n−
ν−2
4ν+2

(
Mmax;ν

σmax

) ν
2ν+1

,

where we have recalled that Mmax;ν := max{Mfull;ν , (n − 1)1/2Mcond;ν}. This finishes
the proof.

A.3.3. Proof of Lemma A.14

Proof overview. The proof idea is reminiscent of the standard technique for proving that
convergence in probability implies weak convergence. We first approximate each prob-
ability by the expectation of a δ−1 Lipschitz function h that is uniformly bounded by 1.
This introduces an approximation error of δ, while replaces the difference in probability
by the difference E[h(D̃n)− h(D̃K

n )]. The expectation can be further split by the events
{|D̃n − D̃K

n | < ε} and {|D̃n − D̃K
n | ≥ ε}. In the first case, the expectation can be

bounded by a Lipschitz argument; in the second case, we can use the boundedness of h
to bound the expectation by 2P(|D̃n − D̃K

n | ≥ ε), which is in turn bounded by a Markov
argument to give the “spectral” approximation error. Choosing ε appropriately gives the
above error term.

Proof of Lemma A.14. For any τ ∈ R and δ > 0, let hτ ;δ be the function defined in
Lemma A.10 with m = 0, which satisfies

hτ+δ;δ(x) ≤ I{x>τ} ≤ hτ ;δ(x) .

By applying the above bounds with τ set to t and t− δ, we get that

P(D̃n > t)− P
(
D̃K
n > t− δ

)
= E[I{D̃n>t} − I{D̃Kn >t−δ}] ≤ E[ht;δ(D̃n)− ht;δ(D̃K

n )] ,

and similarly

P
(
D̃K
n > t+ δ

)
− P(D̃n > t) ≤ E[ht+δ;δ(D̃

K
n )− ht+δ;δ(D̃n)] .
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Therefore, defining ξτ := |E[hτ ;δ(D̃n)− hτ ;δ(D̃
K
n )]|, we get that

P
(
D̃K
n > t+ δ

)
− ξt+δ ≤ P(D̃n > t) ≤ P

(
D̃K
n > t− δ

)
+ ξt .

To bound quantities of the form ξτ , fix any ε > 0 and write ξτ = ξτ,1 + ξτ,2 where

ξτ,1 :=
∣∣∣E
[(
hτ ;δ(D̃n)− hτ ;δ(D̃

K
n )
)
I{|D̃n−D̃Kn |≤ε}

]∣∣∣ ,

ξτ,2 :=
∣∣∣E
[(
hτ ;δ(D̃n)− hτ ;δ(D̃

K
n )
)
I{|D̃n−D̃Kn |>ε}

]∣∣∣ .

The first term can be bounded by recalling from Lemma A.10 that hτ ;δ is δ−1-Lipschitz:

ξτ,1 ≤ δ−1E
[∣∣D̃n − D̃K

n

∣∣I{|D̃n−D̃Kn |≤ε}
]
≤ δ−1εP

(
|D̃n − D̃K

n | ≤ ε
)
≤ δ−1ε .

The second term can be bounded by noting that hτ ;δ is uniformly bounded above by 1

and applying Markov’s inequality:

ξτ,2 ≤ 2E[I{|D̃n−D̃Kn |>ε}] = 2P(|D̃n − D̃K
n | > ε) ≤ 2ε−1E

[
|D̃n − D̃K

n |
]
.

By the definition of D̃n and D̃K
n , the triangle inequality and noting that X1, . . . ,Xn are

i.i.d. , the absolute moment term can be bounded as

E
[
|D̃n − D̃K

n |
]

=

√
n(n− 1)

σ
E
[
|Dn −DK

n |
]

=
1

σ
√
n(n− 1)

∥∥∥
∑

1≤i 6=j≤n

(
u(Xi,Xj)−

∑K

k=1
λkφk(Xi)φk(Xj)

)∥∥∥
L1

≤
√
n(n− 1)

σ

∥∥∥u(X1,X2)−
∑K

k=1
λkφk(X1)φk(X2)

∥∥∥
L1

= σ−1
√
n(n− 1) εK;1 .

Combining the bounds on ξτ,1, ξτ,2 and E[|D̃n − D̃K
n |] and choosing

ε =
(√

n(n− 1)σ−1δεK;1)1/2 ,

we get that

ξτ ≤ δ−1ε+ 2
√
n(n− 1) ε−1σ−1εK;1 =

3n1/4(n− 1)1/4ε
1/2
K;1

σ1/2δ1/2
=: ε′K ,

which yields the desired bound

P(D̃K
n > t+ δ)− ε′K ≤ P(D̃n > t) ≤ P(D̃K

n > t− δ) + ε′K .

A.3.4. Proof of Lemma A.15

For convenience, we denote Vi := φK(Xi) throughout this section.

Proof overview. The key idea in the proof rests on Lindeberg’s telescoping sum argu-
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ment for central limit theorem. We follow Chatterjee (2006)’s adaptaion of the Lindeberg
idea for statistics that are not asymptotically normal. As before, the difference in proba-
bility is first approximated by a difference in expectation E[h(D̃K

n )−h(D̃K
Z )] with respect

to some function h, which introduces a further approximation error δ. The next step is to
note that both D̃K

n and D̃K
Z can be expressed in terms of some common function f̃ , such

that

D̃K
n = f̃(V1, . . . ,Vn) , D̃K

Z = f̃(Z1, . . . ,Zn) .

Denoting g = h ◦ f̃ , we can then write the difference in expectation in terms of Linde-
berg’s telescoping sum as

E[h(D̃K
n )− h(D̃K

Z )] = E[g(V1, . . . ,V1)− g(Z1, . . . ,Zn)]

=
∑n

i=1

(
E[g(V1, . . . ,Vi−1,Vi,Zi+1, . . . ,Zn)

− g(V1, . . . ,Vi−1, Zi, Zi+1, . . . ,Zn)]
)
.

Since each summand differs only in the i-th argument, we can perform a second-order
Taylor expansion about the i-th argument provided that the function h such that h is
twice-differentiable. The second-order remainder term is further “Taylor-expanded” to
an additional ε-order for any ε ∈ [0, 1] by choosing h′′ to be ε-Hölder. Write Di as the
differential operator with respect to the i-th argument and denote

f̃i(x) := f̃(V1, . . . ,Vi−1,x,Zi+1, . . . ,Zn) .

Then informally speaking, the Taylor expansion argument amounts to bounding each
summand as
∣∣(summand)i

∣∣ ≤ E[Di(h ◦ f̃i)(0)(Vi − Zi)] +
1

2
E[D2

i (h ◦ f̃i)(0)(V2
i − Z2

i )]

+
1

6

(
Hölder constant of h′′

)
× E

[∣∣Dif̃i(0)Vi

∣∣2+ε
+
∣∣Dif̃i(0)Zi

∣∣2+ε]
,

where we have used the fact that f̃i is a linear function in expressing the last quantity.
The first two terms vanish because h ◦ f̃i is independent of

(
Vi,Zi

)
and the first two

moments of Vi and Zi match. The third term is bounded carefully by noting the moment
structure of Vi and Zi to give the error term 1

n
Eδ;K . Summing the errors over 1 ≤ i ≤ n

then gives the Gaussian approximation error bound in Lemma A.15.

Proof of Lemma A.15. For any τ ∈ R and δ > 0, let hτ ;δ be the twice-differentiable
function defined in Lemma A.10 (i.e.m = 2), which satisfies

hτ+δ;δ(x) ≤ I{x>τ} ≤ hτ ;δ(x) .
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By applying the above bounds with τ set to t− δ and t− 2δ, we get that

P(D̃K
n > t− δ)− P(D̃K

Z > t− 2δ) = E[I{D̃Kn >t−δ} − I{D̃KZ >t−2δ}]

≤ E[ht−δ;δ(D̃
K
n )− ht−δ;δ(D̃K

Z )] ,

and similarly

P(D̃K
Z > t+ 2δ)− P(D̃K

n > t+ δ) = E[I{D̃KZ >t+2δ} − I{D̃Kn >t+δ}]

≤ E[ht+2δ;δ(D̃
K
Z )− ht+2δ;δ(D̃

K
n )] .

Therefore, we obtain that

P(D̃K
n > t− δ) ≤ P(D̃K

Z > t− 2δ) + E ′δ;K ,

P(D̃K
n > t+ δ) ≥ P(D̃K

Z > t+ 2δ)− E ′δ;K , (A.8)

where E ′δ;K := supτ∈R |E[hτ ;δ(D̃
K
n ) − hτ ;δ(D̃

K
Z )]|. The next step is to bound E ′δ;K , to

which we apply the Lindeberg method for proving central limit theorem. We denote the
scaled mean as

µ̃ :=
E[V1]

σ1/2(n(n− 1))1/4
=

E[Z1]

σ1/2(n(n− 1))1/4
,

and define the centred and scaled versions of Vi and Zi respectively as

Ṽi :=
Vi

σ1/2(n(n− 1))1/4
− µ̃ , Z̃i :=

Zi
σ1/2(n(n− 1))1/4

− µ̃ .

We also define the function f : (RK)n → R by

f(v1, . . . ,vn) :=
∑

1≤i 6=j≤n(vi + µ̃)>ΛK(vj + µ̃)

where we recall ΛK := diag{λ1, . . . , λK}. This allows us to express the random quanti-
ties in (A.8) as

D̃K
n = f(Ṽ1, . . . , Ṽn) , D̃K

Z = f(Z̃1, . . . , Z̃n) .

By defining the random function

Fi(v) := f(Ṽ1, . . . , Ṽi−1,v, Z̃i+1, . . . , Z̃n) for v ∈ RK and 1 ≤ i ≤ n ,

we can write E ′δ;K into Lindeberg’s telescoping sum as

E ′δ;K = supτ∈R |E[hτ ;δ ◦ f(Ṽ1, . . . , Ṽn)− hτ ;δ ◦ f(Z̃1, . . . , Z̃n)]|
= supτ∈R

∣∣∣
∑n

i=1
E[hτ ;δ(Fi(Ṽi)− hτ ;δ(Fi(Z̃i))]

∣∣∣
≤ supτ∈R

∑n

i=1
|E[hτ ;δ ◦ Fi(Ṽi)− hτ ;δ ◦ Fi(Z̃i)]| .

Since hτ ;δ◦f is twice-differentiable, by a second-order Taylor expansion around 0 ∈ RK ,
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there exists random values θV , θZ ∈ (0, 1) almost surely such that

hτ ;δ ◦ Fi(Ṽi) =
∂hτ ;δ ◦ Fi(x)

∂x

∣∣∣
x=0

Ṽi +
1

2

∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θV Ṽi

Ṽ⊗2
i ,

hτ ;δ ◦ Fi(Z̃i) =
∂hτ ;δ ◦ Fi(x)

∂x

∣∣∣
x=0

Z̃i +
1

2

∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θZ Z̃i

Z̃⊗2
i .

Substituting this into the sum above gives

E ′δ;K ≤ sup
τ∈R

( n∑

i=1

∣∣∣E
[
∂hτ ;δ ◦ Fi(x)

∂x

∣∣∣
x=0

(
Ṽi − Z̃i)

]∣∣∣

+
1

2

n∑

i=1

∣∣∣E
[
∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θV Ṽi

Ṽ⊗2
i −

∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θZ Z̃i

Z̃⊗2
i

]∣∣∣
)
.

The first sum vanishes because the only randomness of the derivative comes from Fi,
who is independent of (Ṽi, Z̃i), and the mean of Ṽi and Z̃i match. To handle the second
sum, we make use of independence again and the fact that the second moment of Ṽi and
Z̃i also match: By subtracting and adding the term

E
[
∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=0

(Ṽi)
⊗2
]

= E
[
∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=0

(Z̃i)
⊗2
]
,

we can apply the triangle inequality to get that

E ′δ;K ≤
1

2
supτ∈R

(∑n

i=1

∣∣∣E
[(

∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θV Ṽi

− ∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=0

)
Ṽ⊗2
i

]∣∣∣

+
∑n

i=1

∣∣∣E
[(

∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θZ Z̃i

− ∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=0

)
Z̃⊗2
i

]∣∣∣
)
.

(A.9)

The final step is to bound the two sums by exploiting the derivative structure of hτ ;δ and
Fi. Note that Fi is a linear function: its first derivative is given by

∂Fi(x) = 2
∑

1≤j<i Λ
KṼj + 2

∑
i<j≤n ΛKZ̃j + 2(n− 1)ΛK µ̃ ∈ RK ,

which is independent of x, while its higher derivatives vanish. By a second-order chain
rule, this implies that almost surely

∣∣∣
(
∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θV Ṽi

− ∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=0

)
Ṽ⊗2
i

∣∣∣

=
∣∣∣
(
∂2hτ ;δ

(
Fi(θV Ṽi)

)
− ∂2hτ ;δ

(
Fi(0)

))
(∂Fi(0)>Ṽi)

2
∣∣∣

≤
∣∣∂2hτ ;δ

(
Fi(θV Ṽi)

)
− ∂2hτ ;δ

(
Fi(0)

)∣∣ ∣∣∂Fi(0)>Ṽi

∣∣2 .

For ν ∈ (2, 3], by the Hölder property of ∂2hτ ;δ from Lemma A.10, we get that almost
surely,

∣∣∂2hτ ;δ(Fi(θV Ṽi))− ∂2hτ ;δ(Fi(0))
∣∣ ≤ 18× 3ν−2δ−ν |Fi(θV Ṽi)− Fi(0)|ν−2

= 18× 3ν−2δ−ν |∂Fi(0)>(θV Ṽi)|ν−2

≤ 54δ−ν |∂Fi(0)>Ṽi|ν−2 .
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In the last inequality, we have used that θV takes value in [0, 1]. Combining the results,
we get that each summand in the first sum in (A.9) can be bounded as
∣∣∣E
[(

∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θV Ṽi

− ∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=0

)
Ṽ⊗2
i

]∣∣∣ ≤ 54δ−νE
[
|∂Fi(0)>Ṽi|ν

]
.

The exact same argument applies to the summands of the second sum to give
∣∣∣E
[(

∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=θZ Z̃i

− ∂2hτ ;δ ◦ Fi(x)

∂x2

∣∣∣
x=0

)
Z̃⊗2
i

]∣∣∣ ≤ 54δ−νE
[
|∂Fi(0)>Z̃i|ν

]
,

so a substitution back into (A.9) gives

E ′δ;K ≤ 27δ−ν
∑n

i=1

(
E
[
|∂Fi(0)>Ṽi|ν

]
+ E

[
|∂Fi(0)>Ṽi|ν

])
.

We defer to Lemma A.18 to show that there exists an absolute constant C ′ > 0 such that
the moment terms can be bounded as

E
[
|∂Fi(0)>Ṽi|ν

]
+ E

[
|∂Fi(0)>Z̃i|ν

]
≤ C ′

nν/2

( (Mfull;ν)ν + ενK;ν

σν
+

(Mcond;ν)ν + ενK;ν

(n− 1)−ν/2 σν

)
.

(A.10)

Combining with (A.8) and defining Eδ;K to be the upper bound for E ′δ;K , we get that

P(D̃K
n > t− δ) ≤ P(D̃K

Z > t− 2δ) + Eδ;K ,

P(D̃K
n > t+ δ) ≥ P(D̃K

Z > t+ 2δ)− Eδ;K ,

where we have made the K-dependence explicit and define, for C := 27C ′,

Eδ;K :=
C

δνnν/2−1

( (Mfull;ν)ν + ενK;ν

σν
+

(Mcond;ν)ν + ενK;ν

(n− 1)−ν/2 σν

)
.

Lemma A.18. (A.10) holds.

Proof of Lemma A.18. We seek to bound E[|∂Fi(0)>Ṽi|ν ] + E[|∂Fi(0)>Z̃i|ν ] for ν ∈
(2, 3] and

∂Fi(0) = 2
∑

1≤j<i Λ
KṼj + 2

∑
i<j≤n ΛKZ̃j + 2(n− 1)ΛK µ̃ ∈ RK .

We first focus on bounding the first expectation. By convexity of the function x 7→ |x|ν ,
we can apply Jensen’s inequality to bound

E
[
|∂Fi(0)>Ṽi|ν

]
= E

[∣∣∣2
∑

j<i
Ṽ>j ΛKṼi + 2

∑
j>i

Z̃>j ΛKṼi + 2(n− 1)µ̃>ΛKṼi

∣∣∣
ν]

≤ 1

3
E
[∣∣6

∑
j<i

Ṽ>j ΛKṼi

∣∣ν]+
1

3
E
[∣∣6

∑
j>i

Z̃>j ΛKṼi

∣∣ν]+
1

3
E
[∣∣6(n− 1)µ̃>ΛKṼ1

∣∣ν]

≤ 72
(
E
[∣∣∑

j<i
Ṽ>j ΛKṼi

∣∣ν]+ E
[∣∣∑

j>i
Z̃>j ΛKṼi

∣∣ν]+ E
[∣∣(n− 1)µ̃>ΛKṼ1

∣∣ν]) ,

where we have noted that ν ≤ 3. Since Ṽi’s are i.i.d., Z̃i’s are i.i.d. and all variables
involved are zero-mean, (Ṽ>j ΛKṼi)

i−1
j=1 forms a martingale difference sequence with re-

spect to the filtration σ(Ṽi, Ṽ1), . . . , σ(Ṽi, Ṽ1, . . . , Ṽi−1), and so is (Z̃>j ΛKṼi)
n
j=i+1
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with respect to the filtration σ(Ṽi, Z̃i+1), . . . , σ(Ṽi, Z̃i+1, . . . , Z̃n). This allows the above
two moments of sums to be bounded via the martigale moment inequality from Lemma
A.4: There exists an absolute constant C0 > 0 such that

E
[
|∂Fi(0)>Ṽi|ν

]

≤ C0

(
(i− 1)ν/2−1

∑i−1

j=1
E[|Ṽ>j ΛKṼi|ν ] + (n− i)ν/2−1

∑n

j=i+1
E[|Z̃>j ΛKṼi|ν ]

+ (n− 1)ν E[|µ̃>ΛKṼ1|ν ]
)

≤ C0(n− 1)ν/2
(
E[|Ṽ>1 ΛKṼ2|ν ] + E[|Z̃>1 ΛKṼ1|ν ] + (n− 1)ν/2E[|µ̃>ΛKṼ1|ν ]

)
.

By the exact same argument, the other expectation we want to bound can also be con-
trolled as

E
[
|∂Fi(0)>Z̃i|ν

]

≤ C0(n− 1)ν/2
(
E[|Z̃>1 ΛKZ̃2|ν ] + E[|Z̃>1 ΛKṼ1|ν ] + (n− 1)ν/2E[|µ̃>ΛKZ̃1|ν ]

)
.

Finally, we relate these moments terms to moments of u(X1,X2), up to error terms that
vanish as K →∞: Denoting µk := E[φk(X1)], we have that by Lemma A.7,

E[|µ̃>ΛKṼ1|ν ] =
1

σνnν/2(n− 1)ν/2
E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)µk

∣∣∣
ν]

≤ 4((Mcond;ν)ν + ενK;ν)

σν nν/2(n− 1)ν/2
,

and for some absolute constant C1 > 0,

E[|Ṽ>1 ΛKṼ2|ν ] =
1

σνnν/2(n− 1)ν/2
E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)(φk(X2)− µk)

∣∣∣
ν]

≤ 4C1(Mfull;ν)ν − 1
2 (Mcond;ν)ν + (4C1 + 2)ενK;ν

σνnν/2(n− 1)ν/2

≤ 4C1(Mfull;ν)ν + (4C1 + 2)ενK;ν

σνnν/2(n− 1)ν/2
.

For the moment terms involving the Gaussians Z̃1 and Z̃2, we apply Lemma A.8 to show
that

E[|µ̃>ΛKZ̃1|ν ] =
E[|(E[V1])>ΛKZ1|ν ]

σνnν/2(n− 1)ν/2
≤ 7(σνcond + 8ενK;2)

σνnν/2(n− 1)ν/2
≤ 7((Mcond;ν)ν + 8ενK;ν)

σνnν/2(n− 1)ν/2
,

E[|Z̃>1 ΛKZ̃2|ν ] =
E[|Z>1 ΛKZ2|ν ]

σνnν/2(n− 1)ν/2
≤ 6(σνfull + ενK;2)

σνnν/2(n− 1)ν/2
≤ 6((Mfull;ν)ν + ενK;ν)

σνnν/2(n− 1)ν/2
.

In the last inequalities for both bounds, we have noted that L2 norm is dominated by Lν
norm since ν > 2. Meanwhile by Lemma A.8 again, there exists some absolute constant
C2 > 0 such that

E[|Z̃>1 ΛKṼ1|ν ] =
E[|(V1 − E[V1])>ΛKZ1|ν ]

σνnν/2(n− 1)ν/2
≤ 8C2(Mfull;ν)ν + (8C2 + 4)ενK;ν

σνnν/2(n− 1)ν/2
.

Substituting the five moment bounds into the earlier bounds on E[|∂Fi(0)>Ṽi|ν ] and
E[|∂Fi(0)>Z̃i|ν ] and combining the constant terms, we get that there exists an absolute
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constant C > 0 such that

E
[
|∂Fi(0)>Ṽi|ν

]
+ E

[
|∂Fi(0)>Z̃i|ν

]
≤ C

nν/2

( (Mfull;ν)ν + ενK;ν

σν
+

(Mcond;ν)ν + ενK;ν

(n− 1)−ν/2 σν

)
.

A.3.5. Proof of Lemma A.16

Proof of Lemma A.16. For convenience, we write

U0 :=
1

n(n− 1)

∑

1≤i 6=j≤n

(ηKi )>(ΣK)1/2ΛK(ΣK)1/2ηKj +
2

n

∑n

i=1
(µK)>ΛK(ΣK)1/2ηKi ,

so that

D̃K
Z =

√
n(n− 1)

σ
U0 +

√
n(n− 1)

σ
(µK)>ΛKµK , ŨK

n =

√
n(n− 1)

σ
U0 +

√
n(n− 1)

σ
D .

To approximate the distribution of D̃K
Z by that of ŨK

n , the proof boils down to replacing
(µK)>ΛKµK by D. We use a Markov-type argument so that we obtain an error term that
is separate from the distribution terms.

Recall that Lemma A.11 allows us to approximate the distribution of a sum of two
random variables by a single one provided that the other is negligible. Writing

D̃K
Z = ŨK

n + (D̃K
Z − ŨK

n ) = ŨK
n +

√
n(n− 1)

σ

(
(µK)>ΛKµK −D

)
,

we can apply Lemma A.11 to obtain that for any a, b ∈ R and ε > 0,

P(a ≤ D̃K
Z ≤ b) ≤ P

(
a− ε ≤ ŨK

n ≤ b+ ε
)

+ P
(√

n(n− 1)

σ

∣∣(µK)>ΛKµK −D
∣∣ ≥ ε

)
,

P(a ≤ D̃K
Z ≤ b) ≥ P(a+ ε ≤ ŨK

n ≤ b− ε)− P
(√

n(n− 1)

σ

∣∣(µK)>ΛKµK −D
∣∣ ≥ ε

)
.

Note that |(µK)>ΛKµK − D| is deterministic. By a Markov inequality and the bound
from Lemma A.7, we get that

P
(√

n(n− 1)

σ

∣∣(µK)>ΛKµK −D
∣∣ ≥ ε

)
≤
√
n(n− 1)

εσ
E
[∣∣(µK)>ΛKµK −D

∣∣
]

=

∣∣∑K

k=1
λKµ

2
k −D

∣∣
ε n−1/2(n− 1)−1/2σ

≤ εK;1

ε n−1/2(n− 1)−1/2σ
.

Combining the two results gives the desired bounds.

A.3.6. Proof of Lemma A.17

Proof overview. The key ingredient of the proof is Theorem 8 of Carbery and Wright
(2001), which gives an anti-concentration bound for the distribution of a polynomial of
Gaussians in terms of its variance. In Lemma A.12, we have rewritten the result in the
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special case of a degree-two polynomial, which allows us to control the distribution of
ŨK
n in terms of its variance.

We introduce some matrix shorthands: For any m ∈ N, denote Om as the zero matrix
in Rm×m, Jm as the all-one matrix in Rm×m and Im as the identity matrix in Rm×m.
Define the nK × nK matrix M as

M :=




OK ΛK . . . ΛK

ΛK OK
. . . ...

... . . . . . . ΛK

ΛK . . . ΛK OK




= ΛK ⊗ (Jn − In) ,

as well as

µ :=
(
(µK)>, . . . , (µK)>

)> ∈ RnK , Σ := ΣK ⊗ In ∈ RnK×nK ,

Λ := ΛK ⊗ In ∈ RnK×nK .

We also consider the concatenated nK-dimensional standard Gaussian vector

η :=
(
(ηK1 )>, . . . , (ηKn )>

)>
.

Proof of Lemma A.17. The goal is to bound the distribution function between a ≤ b ∈ R
of

ŨK
n =

√
n(n− 1)

σ
UK
n =

1

σ
√
n(n− 1)

∑
1≤i 6=j≤n(ηKi )>(ΣK)1/2ΛK(ΣK)1/2ηKj

+
2
√
n− 1

σ
√
n

∑n

i=1
(µK)>ΛK(ΣK)1/2ηKi +

√
n(n− 1)

σ
D

=
1

σ
√
n(n− 1)

η>Σ1/2MΣ1/2η +
2
√
n− 1

σ
√
n
µ>ΛΣ1/2η +

√
n(n− 1)

σ
D .

For convenience, define

Q1 := η>Σ1/2MΣ1/2η , Q2 := µ>ΛΣ1/2η , Ũ0 :=
1

σ
√
n(n− 1)

Q1 +
2
√
n− 1

σ
√
n
Q2 .

Denote α := b−a
2

and β := a+b
2

. Rewriting the probability in terms of Ũ0, α and β, we get
that

P(a ≤ ŨK
n ≤ b) = P

(
(β − α) ≤ Ũ0 +

√
n(n− 1)

σ
D ≤ (β + α)

)

= P
(∣∣∣Ũ0 +

√
n(n− 1)

σ
D − β

∣∣∣ ≤ α
)
.

Since Ũ0 +

√
n(n−1)

σ
D − β is a degree-two polynomial of η, we can apply Lemma A.12
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to bound the above probability: For an absolute constant C ′, we have

P(a ≤ ŨK
n ≤ b) ≤ C ′α1/2

(
Var[Ũ0]

)−1/4
, (A.11)

where the variance term can be expanded as

Var
[
Ũ0

]
=

1

n(n− 1)σ2 Var[Q1] +
4(n− 1)

nσ2 Var[Q2] +
4

nσ2 Cov[Q1, Q2] .

We now provide bound the individual terms in the variance. By noting that each summand
inQ1 is zero-mean when i 6= j and that each summand inQ2 is zero-mean, the covariance
term can be computed as

Cov[Q1, Q2] =
∑

1≤i 6=j≤n

n∑

l=1

E
[
(ηKi )>(ΣK)1/2ΛK(ΣK)1/2ηKj × (µK)>ΛK(ΣK)1/2ηKl

]

=
1

2
E
[
(ηK1 )>(ΣK)1/2ΛK(ΣK)1/2ηK1 × (µK)>ΛK(ΣK)1/2ηK1

]
.

Denote ξk as the k-th coordinate of ηK1 . Then the above expectation is taken over a linear
combination of terms of the form ξk1

ξk2
ξk3

. If any of k1, k2, k3 is distinct from the other
two indices, the expectation is zero; if k1 = k2 = k3, the expectation is again zero by
property of a standard Gauassian. Therefore, we have

Cov[Q1, Q2] = 0 .

On the other hand, the first variance can be computed by using the moment formula for a
quadratic form of Gaussian from Lemma A.5 and the cyclic property of trace:

Var[Q1] = 2Tr
(
(Σ1/2MΣ1/2)2

)
= 2Tr

(
(ΣM)2

)

= 2Tr
(
(ΣKΛK)2 ⊗ (Jn − In)2

)

= 2Tr
(
(ΣKΛK)2 ⊗ J2

n

)
− 4Tr

(
(ΣKΛK)2 ⊗ Jn

)
+ 2Tr

(
(ΣKΛK)2 ⊗ In

)

=
(
2n2 − 4n+ 2n

)
Tr
(
(ΣKΛK)2

)

= 2n(n− 1)Tr
(
(ΛKΣK)2

)

≥ 2n(n− 1)(σfull − εK;2)2 .

In the last inequality, we have used the bound from Lemma A.8 on Tr
(
(ΛKΣK)2

)
. The

second variance is on a Gaussian random variable and can be bounded by Lemma A.8
again as

Var[Q2] = µ>ΛΣΛµ = n(µK)>ΛKΣKΛKµK ≥ n(σ2
cond − 2σcondεK;2 − 4εK;2) .

This implies that

Var
[
Ũ0

]
≥ 2

σ2 (σfull − εK;2)2 +
4(n− 1)

σ2 (σ2
cond − 2σcondεK;2 − 4εK;2) .

Substituting this into (A.11) and redefining the constants, we get that there exists an
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absolute constant C such that

P(a ≤ ŨK
n ≤ b) ≤ C(b− a)1/2

(
1

σ2 (σfull − εK;2)2

+
n− 1

σ2 (σ2
cond − 2σcondεK;2 − 4εK;2)

)−1/4

.

A.4 Proofs for the remaining results in Section 3.2

A.4.1. Proofs for variants and corollaries of the main result

The upper bound in Proposition 3.3 is a concentration inequality and is obtained by a
standard argument via Chebyshev’s inequality. The lower bound is a combination of the
anti-concentration bound for a Gaussian quadratic form from Lemma A.17 and Theo-
rem 3.1.

Proof of Proposition 3.3. Denote ŨK
n :=

√
n(n−1)UKn
σmax

. In Lemma A.17, we have shown
that for any a, b ∈ R with a ≤ b, there exists some absolute constant C ′ such that

P(a ≤ ŨK
n ≤ b) ≤ C ′(b− a)1/2

(
1

σ2
max

(σfull − εK;2)2

+
n− 1

σ2
max

(σ2
cond − 2σcondεK;2 − 4εK;2)

)−1/4

.

Take K → ∞ and using Assumption 3.2 for ν ≥ 2, we get that εK;2 → 0. For a fixed

ε > 0, set a =

√
n(n−1)

σmax
D − ε and b =

√
n(n−1)

σmax
D + ε, we get that

lim
K→∞

P
(√

n(n− 1)

σmax
|UK

n −D| ≤ ε
)
≤
√

2C ′ ε1/2
(
σ2

full

σ2
max

+
(n− 1)σ2

cond

σ2
max

)−1/4

≤
√

2C ′ ε1/2 .

Now by Theorem 3.1, there exists an absolute constant C ′′ such that

sup
t∈R

∣∣∣P
(√

n(n− 1)

σmax
Dn > t

)
− lim

K→∞
P
(√

n(n− 1)

σmax
UK
n > t

)∣∣∣ ≤ C ′′ n−
ν−2
4ν+2

(
Mmax;ν

σmax

) ν
2ν+1

.

By the triangle inequality, we get that

P
(√

n(n− 1)

σmax
|Dn −D| > ε

)
≥ P

(√
n(n− 1)

σmax
|UK

n −D| > ε
)

− 2C ′′ n−
ν−2
4ν+2

(
Mmax;ν

σmax

) ν
2ν+1

≥ 1−
√

2C ′ε1/2 − 2C ′′ n−
ν−2
4ν+2

(
Mmax;ν

σmax

) ν
2ν+1

.
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By replacing ε with
√
n(n−1)

σmax
ε and redefining constants, we get the desired lower bound

that there exists absolute constants C1, C2 > 0 such that

P(|Dn −D| > ε) ≥ 1− C1

(√
n(n− 1)

σmax

)1/2

ε1/2 − C2 n
− ν−2

4ν+2

(
Mmax;ν

σmax

) ν
2ν+1

.

For the upper bound, we apply a Chebyshev inequality directly to Dn and bound the
variance by Lemma A.6: There exists some absolute constant C ′3 > 0 such that

P(|Dn −D| > ε) ≤ ε−2Var[Dn] ≤ C ′3ε
−2
(

σ2
cond

n−1(n− 1)2 +
σ2

full

(n− 1)2

)

≤ C ′3ε
−2
(
σmax

n− 1

)2

≤ C3ε
−2
(

σmax√
n(n− 1)

)2

.

In the last inequality, we have noted that 1
n−1
≤ 2

n
for n ≥ 2 and defined C3 = 2C ′3. This

finishes the proof.

Theorem 3.1 provides an approximation of the distribution of Dn by that of a Gaus-
sian quadratic form. Proposition 3.5 combines Theorem 3.1 with a Markov argument,
which makes a further approximation of the Gaussian quadratic form by a weighted sum
of chi-squares UK

n . The approximation error introduced vanishes as n, d grow provided
that ρd = ω(n1/2), i.e. n−1/2σfull = ω(σcond).

Proof of Proposition 3.5. We first seek to compare WK
n to the distribution of

UK
n =

1

n(n− 1)

∑
1≤i 6=j≤n(ηKi )>(ΣK)1/2ΛK(ΣK)1/2ηKj

+
2

n

∑n

i=1
(µK)>ΛK(ΣK)1/2ηKi +D ,

where {ηKi }ni=1 are i.i.d. standard Gaussian vectors in RK . The first step is to write

UK
n =

√
n− 1√
n

W0 +D +
(

1−
√
n− 1√
n

)
W0 +W1 +W2 ,

where we have defined the zero-mean random variables

W0 :=
1

n(n− 1)

(∑n

i,j=1
(ηKi )>(ΣK)1/2ΛK(ΣK)1/2ηKj − nTr(ΣKΛK)

)
,

W1 :=
1

n(n− 1)

(∑n

i=1
(ηKi )>(ΣK)1/2ΛK(ΣK)1/2ηKi − nTr(ΣKΛK)

)
,

W2 :=
2

n

∑n

i=1
(µK)>ΛK(ΣK)1/2ηKi .

Fix ε0, ε1, ε2 > 0. We first use the bound from Lemma A.11: For any a, b ∈ R, we have

P
(
a ≤

√
n(n− 1)

σfull

(√
n− 1√
n

W0 +D
)
≤ b
)

≤ P
(
a− ε0 − ε1 − ε2 ≤

√
n(n− 1)

σfull
UK
n ≤ b+ ε0 + ε1 + ε2

)
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+ P
(√

n(n− 1)

σfull

(
1−

√
n− 1√
n

)
|W0| ≥ ε0

)
+ P

(√
n(n− 1)

σfull
|W1| ≥ ε1

)

+ P
(√

n(n− 1)

σfull
|W2| ≥ ε2

)

and

P
(
a ≤

√
n(n− 1)

σfull

(√
n− 1√
n

W0 +D
)
≤ b
)

≥ P
(
a+ ε0 + ε1 + ε2 ≤

√
n(n− 1)

σfull
UK
n ≤ b− ε0 − ε1 − ε2

)

− P
(√

n(n− 1)

σfull

(
1−

√
n− 1√
n

)
|W0| ≥ ε0

)
− P

(√
n(n− 1)

σfull
|W1| ≥ ε1

)

− P
(√

n(n− 1)

σfull
|W2| ≥ ε2

)
.

We now bound the error terms. By the Chebyshev’s inequality, the variance formula of a
quadratic form of Gaussians from Lemma A.5 and the bound from Lemma A.8, we get
that

P
(√

n(n− 1)

σfull
|W1| ≥ ε1

)
≤ ε−2

1 Var
[√

n(n− 1)

σfull
W1

]
=

2

ε21(n− 1)σ2
full

Tr
(
(ΛKΣK)2

)

≤ 2(σfull + εK;2)2

ε21(n− 1)σ2
full

.

Similarly, by the Chebyshev’s inequality, the variance formula of a Gaussian and the
bound from Lemma A.8, we get that

P
(√

n(n− 1)

σfull
|W2| ≥ ε

)
≤ ε−2

2 Var
[√

n(n− 1)

σfull
W2

]
=

4(n− 1)

ε22σ
2
full

E
[
(µK)>ΛKΣKΛKµK

]

≤ 4(n− 1)(σcond + 2εK;2)2

ε22σ
2
full

.

By Lemma A.9, we can replace W0 by using the following equality in distribution:
√
n− 1√
n

W0 =
1

n3/2(n− 1)1/2

(∑n

i,j=1
(ηKi )>(ΣK)1/2ΛK(ΣK)1/2ηKj − nTr(ΣKΛK)

)

d
= WK

n −D .

Finally, using a Chebyshev’s inequality together with the moment bound in Lemma A.9,
we get that

P
(√

n(n− 1)

σfull

(
1−

√
n− 1√
n

)
|W0| ≥ ε0

)
≤ n(n− 1)

ε20σ
2
full

(
1−

√
n− 1√
n

)2

Var
[
W0

]

=
n2

ε20σ
2
full

(
1−

√
n− 1√
n

)2

Var
[
WK
n

]

≤ 2n(σfull + εK;2)2

ε20(n− 1)σ2
full

(
1−

√
n− 1√
n

)2

≤ 2(σfull + εK;2)2

ε20(n− 1)σ2
full

.

In the last inequality, we have noted that
√
n −
√
n− 1 ≤ 1. Combining the above
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bounds, we get that

P
(
a ≤

√
n(n− 1)

σfull
WK
n ≤ b

)
≤ P

(
a− ε0 − ε1 − ε2 ≤

√
n(n− 1)

σfull
UK
n ≤ b+ ε0 + ε1 + ε2

)

+
2(σfull + εK;2)2

(n− 1)σ2
full

(
ε−2

0 + ε−2
1

)
+

4(n− 1)(σcond + 2εK;2)2

ε22σ
2
full

,

P
(
a ≤

√
n(n− 1)

σfull
WK
n ≤ b

)
≥ P

(
a+ ε0 + ε1 + ε2 ≤

√
n(n− 1)

σfull
UK
n ≤ b− ε0 − ε1 − ε2)

− 2(σfull + εK;2)2

(n− 1)σ2
full

(
ε−2

0 + ε−2
1

)
− 4(n− 1)(σcond + 2εK;2)2

ε22σ
2
full

.

Taking b→∞ and a→ t from the right, we get that
∣∣∣P
(√

n(n− 1)

σfull
WK
n > t

)
− P

(√
n(n− 1)

σfull
UK
n > t

)∣∣∣

≤ max
{
P
(
t− ε0 − ε1 − ε2 ≤

√
n(n− 1)

σfull
UK
n ≤ t

)
,

P
(
t ≤

√
n(n− 1)

σfull
UK
n ≤ ε0 + ε1 + ε2

)}

+
2(σfull + εK;2)2

(n− 1)σ2
full

(
ε−2

0 + ε−2
1

)
+

4(n− 1)(σcond + 2εK;2)2

ε22σ
2
full

.

This allows us to follow a similar argument to the proof of Theorem 3.1 to approximate
WK
n by UK

n . To bound the maxima, we apply Lemma A.17 with σ = σfull: There exists
some absolute constant C ′ such that for any a ≤ b ∈ R,

P
(
a ≤

√
n(n− 1)

σfull
UK
n ≤ b

)

≤ C ′(b− a)1/2
(

1

σ2
full

(σfull − εK;2)2 +
n− 1

σ2
full

(σ2
cond − 2σcondεK;2 − 4εK;2)

)−1/4

.

By additionally noting that (ε0 + ε1 + ε2)1/2 ≤ √ε0 +
√
ε1 +
√
ε2, we get that

∣∣∣P
(√

n(n− 1)

σfull
WK
n > t

)
− P

(√
n(n− 1)

σfull
UK
n > t

)∣∣∣

≤ C ′(
√
ε0 +
√
ε1 +
√
ε2)
(

1

σ2
full

(σfull − εK;2)2

+
n− 1

σ2
full

(σ2
cond − 2σcondεK;2 − 4εK;2)

)−1/4

+
2(σfull + εK;2)2

(n− 1)σ2
full

(
ε−2

0 + ε−2
1

)
+

4(n− 1)(σcond + 2εK;2)2

ε22σ
2
full

.

Taking K →∞ on both sides, the inequality becomes
∣∣∣ lim
K→∞

P
(√

n(n− 1)

σfull
WK
n > t

)
− lim

K→∞
P
(√

n(n− 1)

σfull
UK
n > t

)∣∣∣

≤ C ′(
√
ε0 +
√
ε1 +
√
ε2)
(

1 +
(n− 1)σ2

cond

σ2
full

)−1/4

+
2

n− 1

(
ε−2

0 + ε−2
1

)
+

4(n− 1)σ2
cond

ε22σ
2
full

≤ C ′(
√
ε0 +
√
ε1 +
√
ε2) +

2

n− 1

(
ε−2

0 + ε−2
1

)
+

4(n− 1)σ2
cond

ε22σ
2
full

.

Choosing ε0 = ε1 = (n − 1)−2/5 and ε2 =
(
(n − 1)σ2

cond/σ
2
full

)2/5, redefining constants
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and taking a supremum over t ∈ R, we get that there exists some absolute constant
C ′′ > 0 such that

supt∈R

∣∣∣ lim
K→∞

P
(√

n(n− 1)

σfull
WK
n > t

)
− lim

K→∞
P
(√

n(n− 1)

σfull
UK
n > t

)∣∣∣

≤ C ′′
(

1

(n− 1)1/5
+
(√

n− 1σcond

σfull

)2/5)
.

The final step is to relate this bound to Dn. Consider the last step (A.7) of the proof of
Theorem 3.1 in Appendix A.3.2. If we set σ = σfull instead of σmax, we get that there
exists some absolute constant C ′′′ > 0 such that

supt∈R

∣∣∣P
(√

n(n− 1)

σfull
Dn > t

)
− lim

K→∞
P
(√

n(n− 1)

σfull
UK
n > t

)∣∣∣

≤ C ′′′ n−
ν−2
4ν+2

(
(Mfull;ν)ν

σνfull

+
(Mcond;ν)ν

(n− 1)−ν/2 σνfull

) 1
2ν+1

.

Setting C = max{C ′′, C ′′′} and using the triangle inequality, we get the desired bound
that

sup
t∈R

∣∣∣P
(√

n(n− 1)

σfull
Dn > t

)
− lim

K→∞
P
(√

n(n− 1)

σfull
WK
n > t

)∣∣∣

≤ C
(

1

(n− 1)1/5
+
(√

n− 1σcond

σfull

)2/5

+ n−
ν−2
4ν+2

(
(Mfull;ν)ν

σνfull

+
(Mcond;ν)ν

(n− 1)−ν/2 σνfull

) 1
2ν+1
)
.

A.4.2. Proofs for results on Wn

Proof of Proposition 3.6. To prove the existence of distribution, we seek to apply Lévy’s
continuity theorem. We first verify that there exists a sufficiently large K∗ such that the
sequence (WK

n )K≥K∗ is tight. Since Assumption 3.2 holds for some ν ≥ 2, we get that
as K →∞,

εK;2 := E
[∣∣∑K

k=1
λkφk(X1)φk(X2)− u(X1,X2)

∣∣2]1/2 → 0 .

In particular, there exists some sufficiently large K∗ such that εK;2 ≤ 1 for all K ≥ K∗.
By Lemma A.9, we have that for all K ≥ K∗,

Var[WK
n ] ≤ 2

n(n− 1)
(σfull + εK;2)2 ≤ 2

n(n− 1)
(σfull + 1)2 .

Note that by assumption, we have |D|, σfull < ∞. This implies that the sequence
(WK

n )K≥K∗ is tight by a Markov inequality:

lim
x→∞

(
supK≥K∗ P

(∣∣WK
n

∣∣ > x
))
≤ lim

x→∞

(
x−2 supK≥K∗ E[(WK

n )2]
)

≤ lim
x→∞

2n−1(n− 1)−1(σfull + 1)2 +D2

x2 = 0 .
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We defer to Lemma A.19 to show that the characteristic function of (WK
n −D) converges

pointwise as K →∞. This allows us to apply Lévy’s continuity theorem and obtain that
Wn exists.

Proof of Lemma 3.7. The result holds by noting that for all k > K∗, WK
n = WK∗

n almost
surely, and the latter random variable does not depend on K.

Lemma A.19. The characteristic function of (WK
n −D) converges pointwise asK →∞.

Proof of Lemma A.19. Define ak := 1√
n(n−1)

τk;d and Tk := ak(ξ
2
k − 1), which allows us

to write

WK
n =

1√
n(n− 1)

∑K

k=1
τk;d(ξ

2
k − 1) +D =

∑K

k=1
Tk +D .

Denote i =
√
−1 as the imaginary unit and Y as a chi-squared random variable with

degree 1. Since each Tk is a scaled and shifted chi-squared random variable with degree
1, it has the characteristic function

ψTk(t) = E[exp(it Tk)] = E[exp(iakY t)] exp(−iakt) = (1− 2iakt)
−1/2 exp(−iakt) .

Since Tk’s are independent, by the convolution theorem, the characteristic function of
WK
n −D is given by

ψWK
n −D(t) = exp

(
− i

∑K

k=1
akt
)∏K

k=1
(1− 2iakt)

−1/2 .

We want to prove that for every t ∈ R, ψWK
n −D(t) converges to some function as limit

K → ∞. By taking the principal-valued complex logarithm (i.e. discontinuity along
negative real axis), we get that

logψWK
n −D(t) =

∑K

k=1

(
− iakt−

1

2
log(1− 2iakt)

)
+ 2imKπ =: SK + 2imKπ ,

(A.12)

for some mK ∈ N for each K that adjusts for values at discontinuity. Now consider the
real part of the logarithm:

Re
(

logψWK
n −D(t)

)
= Re(SK) = −1

2

∑K

k=1
log |1− 2iakt|

= − 1

2

∑K

k=1
log
√

1 + 4a2
kt

2 = −1

4

∑K

k=1
log(1 + 4a2

kt
2) .

Recall by Lemma A.8 that
∑K

k=1
a2
k =

1

n(n− 1)

∑K

k=1
τ 2
k;d = Tr((ΣKΛK)2)

K→∞−−−→ σ2
full . (A.13)
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Fix ε > 0. The above implies that there exists a sufficiently large K∗ such that for all
K1, K2 ≥ K∗,

∑K2

k=K1
a2
k < ε. Then for all K1, K2 ≥ K∗, we have

0 ≤
∑K2

k=K1
log(1 + 4a2

kt
2) ≤ 4t2

∑K2

k=K1
a2
k ≤ 4t2ε .

This implies that (Re(SK))K∈N is the Cauchy sequence and therefore converges. Now
we handle the imaginary part. First let m′K ∈ Z be such that

Im
(∑K

k=1
log(1− 2iakt)

)
=
∑K

k=1
arctan(−2akt) + 2m′Kπ .

Then we have

Im(SK) =
∑K

k=1

(
− akt+

1

2
arctan(2akt)

)
−m′Kπ =: IK −m′Kπ . (A.14)

To show that IK converges, we first note that by a third-order Taylor expansion, we have
that arctan(x) = x + 6(x∗)

2−2

6(x2
∗+1)3x

3 for some x∗ ∈ [0, x] (we use this to denote [0, x] for
x ≥ 0 as well as [x, 0] for x < 0, with an abuse of notation). This implies that for all
K1, K2 ≥ K∗, where K∗ is defined as before,

∣∣∣
∑K2

k=K1

(
− akt+

1

2
arctan(2akt)

)∣∣∣ =
∣∣∣
∑K2

k=K1

(
− akt+

1

2
arctan(2akt)

)∣∣∣

≤
∑K2

k=K1
supbk∈[0,ak]

∣∣∣1
2

24b2kt
2 − 2

6(4b2kt
2 + 1)3

8a3
kt

3
∣∣∣

= 4t3
∑K2

k=K1
|ak|3

(
supbk∈[0,ak]

∣∣∣24b2kt
2 + 6− 8

6(4b2kt
2 + 1)3

∣∣∣
)

= 4t3
∑K2

k=K1
|ak|3

(
supbk∈[0,ak]

∣∣∣ 1

(4b2kt
2 + 1)2

− 4

3(4b2kt
2 + 1)2

∣∣∣
)

≤ 20t3
∑K2

k=K1
|ak|3 ≤ 20t3

(∑K2

k=K1
(ak)

2
)3/2

≤ 20t3ε3/2 ,

where, in the last line, we have used the relative sizes of lp norms. This implies that IK
converges. To show that Equation (A.14) converges, we need to show that mK in Equa-
tion (A.14) is eventually constant. By using Equation (A.14) and the triangle inequality,
we have that

π|m′K+1 −m′K | ≤ |IK+1 − IK |+
∣∣∣Im(SK+1)− Im(SK)

∣∣∣

= |IK+1 − IK |+
∣∣aK+1t+

1

2
log(1− 2iaK+1t)

∣∣ .

The first term converges to zero, since we have shown that IK converges. Since aK → 0

by Equation (A.13) and the complex logarithm we use is continuous outside {z : Re(z) >

0}, the second term above also converges to zero. Therefore |m′K+1−m′K | → 0, and since
(m′K)K∈N is an integer sequence, (m′K)K∈N converges. By Equation (A.14), this implies
that Im(SK) converges, and since we have shown Re(SK) converges, we get that SK
converges. Finally, to show that ψWK

n −D(t) converges, since Re(SK) = Re
(
ψWK

n −D(t)
)
,

we only need to show that Im
(
ψWK

n −D(t)
)

converges. By Equation (A.12), this again
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reduces to showing that mK is eventually constant. As before, by the triangle inequality,

2π|mK+1 −mK | ≤ |Im(SK+1)− Im(SK)|
+
∣∣Im(logψWK+1

n −D(t))− Im(logψWK
n −D(t))

∣∣

= |Im(SK+1)− Im(SK)|+
∣∣aK+1t+

1

2
log(1− 2iaK+1t)

∣∣ K→∞−−−→ 0 ,

where the convergence of both terms has been shown earlier. This proves that the char-
acteristic function ψWK

n −D(t) converges for every t ∈ R.

A.5 Proofs for results in Section 3.4

A.5.1. Proofs for the general results

Proof of Lemma 3.10. To prove the first result, note that since κ is a kernel, there exists
a RKHSH and a map Φ : Rd → H such that we can write

uMMD
(
(x,y), (x′,y′)

)
= 〈Φ(x),Φ(y′)〉H + 〈Φ(y),Φ(y′)〉H − 〈Φ(x),Φ(y′)〉H
− 〈Φ(x′),Φ(y)〉H

= 〈Φ(x)− Φ(y),Φ(x′)− Φ(y′)〉H .

Defining Φ∗
(
(x,y)

)
:= Φ(x)− Φ(y) proves that uMMD is a kernel. To prove the second

result, note that by the definition of a weak Mercer representation, we have that almost
surely

∣∣∑K

k=1
λkφk(Z1)φk(Z2)− uMMD(Z1,Z2)

∣∣ K→∞−−−→ 0 ,

which in particular implies convergence in probability. The argument uses the Vitali
convergence theorem. By Assumption 3.3, there exists some ν∗ > ν such that

sup
K≥1

E
[∣∣∣
∑K

k=1
λkφk(Z1)φk(Z2)

∣∣∣
ν∗]

<∞ and E[|uMMD(Z1,Z2)|ν∗ ] <∞ .

By the triangle inequality and the Jensen’s inequality, we have

supK≥1 E
[∣∣∣
∑K

k=1
λkφk(Z1)φk(Z2)− uMMD(Z1,Z2)

∣∣∣
ν∗
]

≤ supK≥1 E
[∣∣∣
∣∣∑K

k=1
λkφk(Z1)φk(Z2)

∣∣+
∣∣uMMD(Z1,Z2)

∣∣
∣∣∣
ν∗
]

≤ 2ν
∗−1 supK≥1 E

[∣∣∑K

k=1
λkφk(Z1)φk(Z2)

∣∣ν∗
]

+ 2ν
∗−1E

[∣∣uMMD(Z1,Z2)
∣∣ν∗
]
< ∞ .

This implies for any ν ∈ (2, ν∗), the sequence

(( K∑

k=1

λkφk(Z1)φk(Z2)− uMMD(Z1,Z2)
)ν)

K∈N
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is uniformly integrable, and therefore converges to zero in L1(R2d, P ⊗Q) by the Vitali
convergence theorem. Since convergence in Lν implies convergence in Lmin{ν,3}, we get
that Assumption 3.2 holds for min{ν, 3}.

Before we prove the next result, recall that {λk}∞k=1 and {φk}∞k=1 are defined as the
weak Mercer representation for the kernel κ under Q, and we have assumed that φk’s are
differentiable. We have also defined the sequence of values {αk}∞k=1 and the sequence of
functions {ψk}∞k=1 in (3.10) as

α(k′−1)d+l := λk′ and ψ(k′−1)d+l(x) := (∂xl log p(x))φk′(x) + ∂xlφk′(x) ,

for 1 ≤ l ≤ d and k′ ∈ N. For convenience, we denote ψk′;l := ψ(k′−1)d+l in the proof
below.

Proof of Lemma 3.11. Recall that ψk′;l(x) := (∂xl log p(x))φk′(x) + ∂xlφk′(x). Write
ψ̃k′(x) := (ψk′;1(x), . . . , ψk′;n(x))>. We first consider the error term with dK ′ summands
for some K ′ ∈ N:

E
[∣∣∣
∑dK′

k=1
αkψk(X1)ψk(X2)− uKSD

P (X1,X2)
∣∣∣
ν]

= E
[∣∣∣
∑d

l=1

∑K′

k′=1
λk′ψk′;l(X1)ψk′;l(X2)− uKSD

P (X1,X2)
∣∣∣
ν]

= E
[∣∣∣
∑K′

k′=1
λk′
(
ψ̃k′(X1)

)>(
ψ̃k′(X2)

)
− uKSD

P (X1,X2)
∣∣∣
ν]

= E
[∣∣T1 + T2 + T3 + T4 − uKSD

P (X1,X2)
∣∣ν] ,

where the random quantities are defined in terms of X1,X2
i.i.d.∼ Q:

T1 :=
(
∇ log p(X1)

)>(∇ log p(X2)
)∑K′

k′=1
λk′φk′(X1)φk′(X2) ,

T2 :=
(
∇ log p(X1)

)>(∑K′

k′=1
λk′
(
∇φk′(X2)

)
φk′(X1)

)
,

T3 :=
(
∇ log p(X2)

)>(∑K′

k′=1
λk′
(
∇φk′(X1)

)
φk′(X2)

)
,

T4 :=
∑K′

k′=1
λk′
(
∇φk′(X1)

)>(∇φk′(X2)
)
.

Recall that by Assumption 3.3, there exists some ν∗ > ν such theta

sup
K≥1

E
[∣∣∣
∑K

k=1
λkφk(Z1)φk(Z2)

∣∣∣
ν∗]

<∞ and E[|uMMD(Z1,Z2)|ν∗ ] <∞ .

By using the proof of the second part of Lemma 3.10 above, for ν∆ := ν+ν∗

2
∈ (ν, ν∗),

we have

E
[∣∣∑K′

k′=1
λk′φk′(X1)φk′(X2)− u(X1,X2)

∣∣ν∆
]

K′→∞−−−−→ 0 .
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Meanwhile by Assumption 3.4,
∥∥‖∇ log p(X1)‖2

∥∥
L2ν∗∗

<∞, where

ν∗∗ =
ν(ν + ν∗)

ν∗ − ν =
(

1

ν
− 2

ν + ν∗

)−1

=
(

1

ν
− 1

ν∆

)−1

> ν .

By the Cauchy-Schwarz inequality and the Hölder’s inequality, we have that
∥∥(∇ log p(X1)

)>(∇ log p(X2)
)∥∥

Lν∗∗
≤
∥∥ ‖∇ log p(X1)‖2

∥∥
L2ν∗∗

<∞ .

Now by the Hölder’s inequality and noting that (ν∗∗)−1 + (ν∆)−1 = ν−1, we can now
bound the error of using T1 to approximate the first term of uKSD

P as

E[|E1|ν ] := E
[∣∣T1 −

(
∇ log p(X1)

)>(∇ log p(X2)
)
u(X1,X2)

∣∣ν]

=
∥∥T1 −

(
∇ log p(X1)

)>(∇ log p(X2)
)
u(X1,X2)

∥∥ν
Lν

≤
∥∥(∇ log p(X1)

)>(∇ log p(X2)
)∥∥ν

Lν∗∗

∥∥∥
K′∑

k′=1

λk′φk′(X1)φk′(X2)− u(X1,X2)
∥∥∥
ν

L
ν∆

K′→∞−−−−→ 0 .

For T2, we consider a similar approximation error quantity and apply the Cauchy-Schwarz
inequality:

E[ |E2|ν ] := E
[∣∣T2 −

(
∇ log p(X1)

)>∇2κ(X1,X2)
∣∣ν]

= E
[∣∣∣
(
∇ log p(X1)

)>(∑K′

k′=1
λk′
(
∇φk′(X2)

)
φk′(X1)−∇2κ(X1,X2)

)∣∣∣
ν]

≤ ‖‖∇ log p(X1)‖2 ‖νL2ν

∥∥∥
∥∥∥
∑K′

k′=1
λk′
(
∇φk′(X2)

)
φk′(X1)−∇2κ(X1,X2)

∥∥∥
2

∥∥∥
ν

L2ν

K′→∞−−−−→ 0 ,

where we have noted that the first term is bounded since 2ν < 2ν∗∗ and used Assump-
tion 3.4(iv). By symmetry of κ and the fact that X1 and X2 are exchangeable, we have
the same result for T3:

E[|E3|ν ] := E
[∣∣T3 −

(
∇ log p(X2)

)>∇1κ(X1,X2)
∣∣ν] K′→∞−−−−→ 0 .

Meanwhile, the second condition of Assumption 3.4(iv) directly says that

E[|E4|ν ] := E
[∣∣T4 − Tr

(
∇1∇2κ(X1,X2)

)∣∣ν] K′→∞−−−−→ 0 .

Combining the results and applying the Jensen’s inequality to the convex function x 7→
|x|ν , we have

E
[∣∣∣
∑dK′

k=1
αkψk(X1)ψk(X2)− uKSD

P (X1,X2)
∣∣∣
ν]

= E
[∣∣E1 + E2 + E3 + E4

∣∣ν]

≤ E
[∣∣1

4
(4E1) +

1

4
(4E2) +

1

4
(4E3) +

1

4
(4E4)

∣∣ν]

≤ 4ν−1
(
E[|E1|ν ] + E[|E2|ν ] + E[|E3|ν ] + E[|E4|ν ]

) K′→∞−−−−→ 0 .

Now consider K ∈ N that is not necessarily divisible by d, and let K ′ be the greatest
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integer such that K ≥ dK ′. Then by the triangle inequality and the Jensen’s inequality
similarly as above, we get

E
[∣∣∣
∑K

k=1
αkψk(X1)ψk(X2)− uKSD

P (X1,X2)
∣∣∣
ν]

≤ 2ν−1E
[∣∣∣
∑dK′

k=1
αkψk(X1)ψk(X2)− uKSD

P (X1,X2)
∣∣∣
ν]

+ 2ν−1E
[∣∣∣
∑K

k=dK′+1
αkψk(X1)ψk(X2)

∣∣∣
ν]
. (A.15)

The first term is o(1) as K →∞ by the previous argument, so we only need to focus on
the second term. The expectation can be bounded by noting that αk = λK′+1 ≥ 0 for all
dK ′ + 1 ≤ k ≤ K and using the triangle inequality followed by the Jensen’s inequality:

E
[∣∣∣
∑K

k=dK′+1
αkψk(X1)ψk(X2)

∣∣∣
ν]

≤ (λK′+1)νE
[(

1

K − dK ′
∑K

k=dK′+1
(K − dK ′)|ψk(X1)ψk(X2)|

)ν]

≤ (λK′+1)ν(K − dK ′)ν−1
∑K

k=dK′+1
E[|ψk(X1)ψk(X2)|ν ]

≤ (λK′+1)νdν supk∈{dK′+1,...,dK′+d} E[|ψk(X1)ψk(X2)|ν ]
= (λK′+1)νdν sup1≤l≤d E[|ψdK′+l(X1)|ν ]2 .

In the last equality, we have noted that X1 and X2 are identically distributed. Now by the
definition of ψk, the Jensen’s inequality on x 7→ |x|ν and the Cauchy-Schwarz inequality,
we have

E[|ψdK′+l(X1)|ν ] = E[|(∂xl log p(X1))φK′+1(X1) + ∂xlφK′+1(X1)|ν ]
≤ 2ν−1E[|(∂xl log p(X1))φK′+1(X1)|ν ] + 2ν−1E[|∂xlφK′+1(X1)|ν ]
≤ 2ν−1E[|∂xl log p(X1)|2ν ]1/2 E[|φK′+1(X1)|2ν ]1/2 + 2ν−1E[|∂xlφK′+1(X1)|ν ]
≤ 2ν−1E[‖∇ log p(X1)‖2ν

2 ]1/2 E[|φK′+1(X1)|2ν ]1/2 + 2ν−1E[‖∇φK′+1(X1)‖ν2]

= 2ν−1‖‖∇ log p(X1)‖2‖νL2ν
‖φK′+1(X1)‖νL2ν

+ 2ν−1‖‖∇φK′+1(X1)‖2‖νLν .

By Assumption 3.4(i), (ii) and (iii), all three norms are bounded, so E[|ψdK′+l(X1)|ν ] <
∞. By the definition of λk from the weak Mercer representation, as K → ∞ and there-
fore K ′ →∞, λK′+1 → 0, which implies

E
[∣∣∣
∑K

k=dK′+1
αkψk(X1)ψk(X2)

∣∣∣
ν]

= o(1) .

This means that both terms in (A.15) converge to 0 as K →∞. In other words,

E
[∣∣∣
∑K

k=1
αkψk(X1)ψk(X2)− uKSD

P (X1,X2)
∣∣∣
ν] K→∞−−−→ 0 .

Since Lν-convergence implies Lmin{ν,3}-convergence and we have assumed that ν > 2,
we get that Assumption 3.2 holds for min{ν, 3} with respect to the uKSD

P , αk and ψk.
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A.6 Proofs for Appendix A.1

A.6.1. Proofs for RBF decomposition and verifying Assumption 3.2

In this section, we prove Lemma A.1, Lemma A.2 and Lemma A.3.

Proof of Lemma A.1. We first focus on the one-dimensional RBF kernel, denoted as κ1,
which can be expressed for x, x′ ∈ R as

|κ1(x, x′)| =
∣∣ exp(−(x− x′)2/(2γ))

∣∣ =
∣∣∣ exp

(
xx′

γ

)
e−x

2/(2γ)e−(x′)2/(2γ)
∣∣∣ .

By applying a Taylor expansion around 0 to the infinitely differentiable function z 7→
exp( z

γ
) for z ∈ R, we obtain that for any K ∈ N and every x, x′ ∈ R.
∣∣∣κ1(x, x′)−

∑K

k=0

1

k!

(
xx′

γ

)k
e−x

2/(2γ)e−(x′)2/(2γ)
∣∣∣

≤ supz∈[0,xx′]

∣∣∣ 1

(K + 1)!

(
xx′

γ

)K+1

ez/γ
∣∣∣ e−x2/(2γ)e−(x′)2/(2γ) .

Fix ν ∈ (2, 4]. Consider two independent normal random variables U ∼ N (b1, 1) and
V ∼ N (b2, 1) for some b1, b2 ∈ R, and recall that φ∗k(x) := xke−x

2/(2γ) and λ∗k := 1
k! γk

.
The above then implies that

E
[∣∣∣κ1(U, V ) −

∑K

k=0
λ∗kφ

∗
k(U)φ∗k(V )

∣∣∣
ν]

≤ E
[

supz∈[0,UV ]

∣∣∣ 1

(K + 1)!

(
UV

γ

)K+1

ez/γ
∣∣∣
ν

e−νU
2/(2γ)e−νV

2/(2γ)
]

=
1

((K + 1)! γK+1)ν
E
[
|UV |ν(K+1)e−νU

2/(2γ)−νV 2/(2γ)+supz∈[0,UV ] νz/γ
]

≤ 1

((K + 1)! γK+1)ν
E
[
|UV |ν(K+1)e−ν(|U |−|V |)2/(2γ)

]

≤ 1

((K + 1)! γK+1)ν
E
[
|U |ν(K+1)

]
E
[
|V |ν(K+1)

]
.

In the last inequality, we have noted that U and V are independent and bounded the
exponential term from above by 1. By the formula of absolute moments of a Gaussian,
we get that

E
[
|U − b1|ν(K+1)

]
= E

[
|V − b2|ν(K+1)

]
=

2(νK)/2

√
π

Γ
(
νK + 1

2

)
.

By the Jensen’s inequality applied to the convex function x 7→ |x|ν(K+1), we get that

E
[
|U |ν(K+1)

]
= E

[
|b1 + (U − b1)|ν(K+1)

]
= E

[∣∣∣1
2
(2b1) +

1

2
(2(U − b1))

∣∣∣
ν(K+1)]

≤ 2ν(K+1)−1
(
bν(K+1) + E[|U − b1|ν(K+1)]

)
=

(2b1)ν(K+1)

2
+

2
3
2ν(K+1)

2
√
π

Γ
(
ν(K + 1) + 1

2

)
.

Similarly, we get that

E
[
|V |ν(K+1)

]
≤ (2b2)ν(K+1)

2
+

2
3
2ν(K+1)

2
√
π

Γ
(
ν(K + 1) + 1

2

)
. (A.16)
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Substituting these moment bounds and noting that (K + 1)! = Γ(K + 2), we get that

E
[∣∣∣∣κ1(U, V )−

∑K

k=0
λ∗kφ

∗
k(U)φ∗k(V )

∣∣∣∣
ν]

≤ 1

γν(K+1)
(
Γ(K + 2)

)ν
(

(2b1)ν(K+1)

2
+

2
3
2ν(K+1)

2
√
π

Γ
(
ν(K + 1) + 1

2

))

×
(

(2b2)ν(K+1)

2
+

2
3
2ν(K+1)

2
√
π

Γ
(
ν(K + 1) + 1

2

))

=: T (A1 +B)(A2 +B) .

As K grows, the dominating terms are the Gamma functions, so we only need to control
their ratios. By Stirling’s formula for the gamma function, we have

Γ(x) =
√

2π xx−1/2e−x
(
1 +O(x−1)

)

for x > 0. This immediately implies that

TA1A2 = Θ
(

(4b1b2/γ)ν(K+1)

(K + 2)ν(K+3/2)e−ν(K+2)

)
= o(1)

as K →∞. Meanwhile,

Γ
(ν(K+1)+1

2

)
(
Γ(K + 2)

)ν = Θ
(
KνK/2

KνK

)
= Θ

(
K−νK/2

)
,

which implies that

TA1B = Θ
(

(4
√

2b1/γ)νKK−νK/2
)

= o(1) ,

since the dominating term is K−νK/2. Similarly, TA2B = o(1). On the other hand,
another application of Stirling’s formula gives that

(
Γ
(ν(K+1)+1

2

)2
(
Γ(K + 2)

)ν = (2π)−(ν−2)/2

(ν(K+1)+1
2

)ν(K+1)

(K + 2)ν(K+3/2)
e−ν(K+1)−1+ν(K+2)

(
1 +O(K−1)

)2
(
1 +O(K−1)

)ν

= Θ
(

(ν/2)νKKνK

Kν(K+3/2)

)
= Θ

(
(ν/2)νKK−3ν/2

)
.

This implies that

TB2 = Θ
(
(8/γ)νK(ν/2)νKK−3ν/2

)
= Θ

(
(2ν/γ)νKK−3ν/2

)
= o(1) ,

where we have recalled that ν ≤ 4 and used the assumption that γ > 8. In summary, we
have proved that for ν ∈ (2, 4] and any fixed b1, b2 ∈ R,

E
[∣∣∣κ1(U, V )−

∑K

k=0
λ∗kφ

∗
k(U)φ∗k(V )

∣∣∣
ν]
≤ T (A1 +B)(A2 +B)

K→∞−−−→ 0 .

To extend this to multiple dimensions, we note that for the vectors x = (x1, . . . , xd) ∈ Rd

and x′ = (x1, . . . , xd) ∈ Rd, the multi-dimensional RBF kernel can then be expressed as

κ(x,x′) = exp
(
− ‖x− x′‖2

2/(2γ)
)

=
∏d

l=1
exp

(
− (xl − x′l)2/(2γ)

)

=
∏d

l=1
κ1(xl, x

′
l) .
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Recall that we have defined the independent normal vectors U ∼ N (0, Id) and V ∼
N (µ, Id). Let U1, . . . , Ud be the coordinates of U and V1, . . . , Vd be those of V, which
are all independent since the covariance matrices are Id. For 0 ≤ l ≤ d and K ∈ N,
define the random quantities

Sj;K :=
∑K

k=0
λ∗kφ

∗
k(Uj)φ

∗
k(Vj) and Wl;K :=

(∏l

j=1
κ1(Uj, Vj)

)(∏d

j=l+1
Sj;K

)
.

In particular κ(U,V) = Wd;K . Now by expanding a telescoping sum and applying the
triangle inequality followed by the Jensen’s inequality, we have

E
[
|κ(U,V)−W0;K |ν

]
= E

[∣∣∣
∑d

l=1
(Wl;K −Wl−1;K)

∣∣∣
ν]

≤ E
[(∑d

l=1
|Wl;K −Wl−1;K |

)ν]

≤ dν−1
∑d

l=1
E[|Wl;K −Wl−1;K |ν ]

= dν−1
∑d

l=1

(∏l−1

j=1
E[|κ1(Uj, Vj)|ν ]

)
E[|κ1(Ul, Vl)− Sl;K |ν ]

(∏d

j=l+1
E[|Sj;K |ν ]

)
.

In the last equality, we have used the independence of Uj’s and Vj’s. To bound the
summands, we first note that κ1 is uniformly bounded in norm by 1, which implies that
E[|κ1(Uj, Vj)|ν ] ≤ 1. By the previous result, E[|κ1(Ul, Vl)− Sl;K |ν ] = o(1) as K →∞.
By the triangle inequality and the Jensen’s inequality, we have that

E[|Sj;K |ν ] ≤ E
[∣∣|κ1(Uj, Vj)|+ |Sj;K − κ1(Uj, Vj)|

∣∣ν]

≤ 2ν−1E
[
|κ1(Uj, Vj)|ν

]
+ 2ν−1E

[
|Sj;K − κ1(Uj, Vj)|ν

]
≤ 2ν−1 + o(1) .

This implies that each summand satisfies
(∏l−1

j=1
E[|κ1(Uj, Vj)|ν ]

)
E[|κ1(Ul, Vl)− Sl;K |ν ]

(∏d

j=l+1
E[|Sj;K |ν ]

)
= o(1)

as K →∞. Since d is not affected by K, we have shown the desired result

E
[∣∣∣κ(U,V)−

∏d

j=1

(∑K

k=0
λ∗kφ

∗
k(Uj)φ

∗
k(Vj)

)∣∣∣
ν]

= E
[
|κ(U,V)−W0;K |ν

]

K→∞−−−→ 0 .

Proof of Lemma A.2. We first rewrite uKSD
P as

uKSD
P (x,x′) = e−‖x−x

′‖22/(2γ)
(
x>x′ − γ + 1

γ2 ‖x− x′‖2
2 +

d

γ

)

= e−‖x−x
′‖22/(2γ)

(
− γ + 1

γ2 (‖x‖2
2 + ‖x′‖2

2) +
γ2 + 2γ + 2

γ2 x>x′ +
d

γ

)

= e−‖x−x
′‖22/(2γ)

(
− γ + 1

γ2 (‖x‖2
2 + 1)(‖x′‖2

2 + 1) +
γ + 1

γ2 ‖x‖2
2‖x′‖2

2

+
γ2 + 2γ + 2

γ2

∑d

l=1
xlx
′
l +
(
d

γ
+
γ + 1

γ2

))
.
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For K ′ ∈ N, write SK′ :=
∑K′

k′=1 αk′ψk′(X1)ψk′(X2), and define the following random
variables comparing each set of eigenvalue and eigenfunction to the corresponding term
in uKSD

P :

TK′;1 =
∑K′

k′=1
λ(k′−1)(d+3)+1 φ(k′−1)(d+3)+1(X1)φ(k′−1)(d+3)+1(X1)

− e−‖X1−X2‖22/(2γ)
(
− γ + 1

γ2 (‖X1‖2
2 + 1)(‖X2‖2

2 + 1)
)

= − γ + 1

γ2 (‖X1‖2
2 + 1)(‖X2‖2

2 + 1)SK′ ,

TK′;2 =
∑K′

k′=1
λ(k′−1)(d+3)+2 φ(k′−1)(d+3)+2(X1)φ(k′−1)(d+3)+2(X1)

− e−‖X1−X2‖22/(2γ)
(
γ + 1

γ2 ‖X1‖2
2‖X2‖2

2

)

=
γ + 1

γ2 ‖X1‖2
2‖X2‖2

2 SK′ ,

TK′;3 =
∑K′

k′=1
λ(k′−1)(d+3)+3 φ(k′−1)(d+3)+3(X1)φ(k′−1)(d+3)+3(X1)

− e−‖X1−X2‖22/(2γ)
(
d

γ
+
γ + 1

γ2

)

=
(
d

γ
+
γ + 1

γ2

)
SK′ ,

TK′;3+l =
∑K′

k′=1
λ(k′−1)(d+3)+3+l φ(k′−1)(d+3)+3+l(X1)φ(k′−1)(d+3)+3+l(X1)

− e−‖X1−X2‖22/(2γ)
(
γ2 + 2γ + 2

γ2 (X1)l(X2)l
)

=
(
γ2 + 2γ + 2

γ2 (X1)l(X2)l

)
SK′

for l = 1, . . . , d, where we have denoted the l-th coordinates of X1 and X2 by (X1)l and
(X2)l respectively. We now bound the approximation error with (d + 3)K ′ summands
for K ′ ∈ N and ν ∈ (2, 3]. Fix some ν1 ∈ (ν, 4] and let ν2 = 1/(ν−1 − ν−1

1 ). By using
the quantites defined above, the Jensen’s inequality to the convex function x 7→ |x|ν and
the Hölder’s inequality to each E[|TK′;l|ν ], we have

E
[ ∣∣∑(d+3)K′

k=1
λkφk(X1)φk(X2)− uKSD

P (X1,X2)
∣∣ν]

= E
[∣∣∑d+3

l=1
TK′;l

∣∣ν]

≤ (d+ 3)ν−1
∑d+3

l=1
E[|TK′;l|ν ]

≤ (d+ 3)ν−1E[|SK′ |ν1 ]ν/ν1

( (
γ + 1

γ2

)ν
E[(‖X1‖2

2 + 1)ν2 ]ν/ν2 E[(‖X2‖2
2 + 1)ν2 ]ν/ν2

+
(
γ + 1

γ2

)ν
E
[
‖X1‖2ν2

2

]ν/ν2E
[
‖X2‖2ν2

2

]ν/ν2 +
(
d

γ
+
γ + 1

γ2

)ν

+
∑d

l=1

(
γ2 + 2γ + 2

γ2

)ν
E
[
|(X1)l|ν2

]ν/ν2E
[
|(X2)l|ν2

]ν/ν2

)
.

The onlyK ′-dependence above comes from E[|SK′ |ν1 ]ν/ν1 = ‖SK′‖νLν1 , which converges
to 0 as K ′ grows by Lemma A.1. Therefore

E
[∣∣∑(d+3)K′

k=1
λkφk(X1)φk(X2)− uKSD

P (X1,X2)
∣∣ν] K′→∞−−−−→ 0 .
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Now for K ∈ N not necessarily divisible by d + 3, we let K ′ be the largest integer such
that dK ′ ≤ K. By the triangle inequality and the Jensen’s inequality, we have

E
[∣∣∑K

k=1
λkφk(X1)φk(X2)− uKSD

P (X1,X2)
∣∣ν]

≤ E
[(∣∣∑(d+3)K′

k=1
λkφk(X1)φk(X2)− uKSD

P (X1,X2)
∣∣

+
∣∣∑K

k=(d+3)K′+1
λkφk(X1)φk(X2)

∣∣
)ν]

≤ 2ν−1E
[∣∣∑(d+3)K′

k=1
λkφk(X1)φk(X2)− uKSD

P (X1,X2)
∣∣ν]

+ 2ν−1E
[∣∣∑K

k=(d+3)K′+1
λkφk(X1)φk(X2)

∣∣ν] .

The goal is to show that the bound converges to 0 as K grows. We have already shown
that the first term is o(1), so we focus on the second term. The expectation in the second
term can be bounded using the Jensen’s inequality as

E
[∣∣∑K

k=(d+3)K′+1
λkφk(X1)φk(X2)

∣∣ν] ≤ E
[(∑K

k=(d+3)K′+1
|λkφk(X1)φk(X2)|

)ν]

≤ (K − (d+ 3)K ′)ν−1
∑K

k=(d+3)K′+1
E
[(
λkφk(X1)φk(X2)

)ν]

≤ dν supk∈{(d+3)K′+1,...,(d+3)K′+(d+3)} E
[(
λkφk(X1)φk(X2)

)ν]

= dν sup1≤l≤d+3 E
[(
λ(d+3)K′+lφ(d+3)K′+l(X1)φ(d+3)K′+l(X2)

)ν]
.

By observing the formula for λk and φk, we see that there exists some K-independent
constant Cd,γ such that for 1 ≤ l ≤ d+ 3,

|λ(d+3)K′+l| ≤ Cd,γαK′+1 and |φ(d+3)K′+l| ≤ Cd,γψK′+1(x)(‖x‖2
2 + ‖x‖2 + 1) .

This allows us to obtain the bound

E
[∣∣∑K

k=(d+3)K′+1
λkφk(X1)φk(X2)

∣∣ν]

≤ dνC2
d,γα

ν
K′+1

× E[(ψK′+1(X1)ψK′+1(X2))ν (‖X1‖2
2 + ‖X1‖2 + 1)ν(‖X2‖2

2 + ‖X2‖2 + 1)ν ]

(a)
= dνC ′d,γ

(∏d

l=1
λ∗[gd(K′+1)]l

)ν
E
[(∏d

l=1
φ∗[gd(K′+1)]l

(
(X1)l

)
φ∗[gd(K′+1)]l

(
(X2)l)

)ν

× (‖X1‖2
2 + ‖X1‖2 + 1)ν(‖X2‖2

2 + ‖X2‖2 + 1)ν
]

(b)

≤ dνC ′d,γE
[
(‖X1‖2

2 + ‖X1‖2 + 1)2ν(‖X2‖2
2 + ‖X2‖2 + 1)2ν

]1/2

×
(∏d

l=1
λ∗[gd(K′+1)]l

)ν
E
[(∏d

l=1
φ∗[gd(K′+1)]l

(
(X1)l

)
φ∗[gd(K′+1)]l

(
(X2)l)

))2ν]1/2

(c)
= dνC ′d,γE

[
(‖X1‖2

2 + ‖X1‖2 + 1)2ν(‖X2‖2
2 + ‖X2‖2 + 1)2ν

]1/2

×
∏d

l=1

(
λ∗[gd(K′+1)]l

)ν
(∏d

l=1
E
[(
φ∗[gd(K′+1)]l

(
(X1)l

) )2ν]E
[(
φ∗[gd(K′+1)]l

(
(X2)l

) )2ν])1/2

(d)
= dνC ′d,γE

[
(‖X1‖2

2 + ‖X1‖2 + 1)2ν(‖X2‖2
2 + ‖X2‖2 + 1)2ν

]1/2
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×
∏d

l=1

((
λ∗[gd(K′+1)]l

)ν E
[(
φ∗[gd(K′+1)]l

(
(X1)l

) )2ν])
,

where we have used the definitions of αk and ψk from (A.1) in (a), the Cauchy-Schwarz
inequality in (b), the independence of (X1)l and (X2)l for 1 ≤ l ≤ d due to the identity
covariance matrix in (c) and finally the fact that X1 and X2 are identically distributed in
(d). The only quantity that depends on K ′ now is

(
λ∗[gd(K′+1)]l

)ν E
[(
φ∗[gd(K′+1)]l

(
(X1)l

) )2ν]

for 1 ≤ l ≤ d. We now seek to bound this quantity. Recall from Lemma A.1 that
λ∗k :=

1

k! γk
, and for V ∼ N (b, 1), we have

E[(φ∗k(U))2ν ] = E
[
|U |2νke−νU2/γ

]
≤ E

[
|U |2νk

]
≤ (2b)2νk

2
+

23νk

2
√
π

Γ
(

2νk + 1

2

)
.

where we have used a bound similar to (A.16) in the proof of Lemma A.1. By Stirling’s
formula for the gamma function, we have Γ(x) =

√
2π xx−1/2e−x

(
1+O(x−1)

)
for x > 0,

which implies

(λ∗k)
ν E[(φ∗k(U))2ν ] ≤ 1

(k!)ν γνk

(
(2b)2νk

2
+

23νk

2
√
π

Γ
(

2νk + 1

2

))

= O
((

8

γ

)νk (νk)νke−νk

(k + 1)ν(k+1/2)e−ν(k+1)

)

= O
((

8ν

γ

)νk)
= O

((
24

γ

)νk)
= o(1)

as k → ∞, where we have used the assumption that γ > 24. By construction of gd in
(A.1), as K ′ →∞, min1≤l≤d[gd(K

′ + 1)]l →∞, which implies that
(
λ∗[gd(K′+1)]l

)ν E
[(
φ∗[gd(K′+1)]l

(
(X1)l

) )2ν] K′→∞−−−−→ 0 .

Therefore

E
[∣∣∑K

k=(d+3)K′+1
λkφk(X1)φk(X2)

∣∣ν] K→∞−−−→ 0 ,

which finishes the proof that

E
[∣∣∑K

k=1
λkφk(X1)φk(X2)− uKSD

P (X1,X2)
∣∣ν] K→∞−−−→ 0 .

In other words, Assumption 3.2 holds.

Proof of Lemma A.3. Fix ν ∈ (2, 3]. Consider the independent Gaussian vectors X1,X2
i.i.d.∼

P ≡ N (0, Id) and Y1,Y2
i.i.d.∼ Q ≡ N (µ, Id). Write Z1 = (X1,Y1), Z2 = (X2,Y2)

and

TK(x,x′) := e−‖x−x
′‖22/(2γ) −

∑K

k=1
αkψk(x)ψk(x

′)
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for K ∈ N, and recall that

uMMD(Z1,Z2)

= e−‖X1−X2‖22/(2γ) − e−‖X1−Y2‖22/(2γ) − e−‖X2−Y1‖22/(2γ) + e−‖Y1−Y2‖22/(2γ) .

Then by the triangle inequality and Jensen’s inequality, we get that

E
[∣∣∣uMMD(Z1,Z2)−

∑K

k=1
λkφk(Z1)φk(Z2)

∣∣∣
ν]

= E
[∣∣∣uMMD(Z1,Z2)−

∑K

k=1
αk
(
ψk(X1)− ψk(Y1)

)(
ψk(X2)− ψk(Y2)

)∣∣∣
ν]

= E
[∣∣TK(X1,X2)− TK(X1,Y2)− TK(X2,Y1) + TK(X2,Y2)

∣∣ν]

≤ 4ν−1
(
E[|TK(X1,X2)|ν ] + E[|TK(X1,Y2)|ν ]

+ E[|TK(X2,Y1)|ν ] + E[|TK(Y1,Y2)|ν ]
)
.

Since each expectation is taken with respect to a product of two Gaussian distributions
with identity covariance matrices, by Lemma A.1 and (A.2), they all decay to 0 as K →
∞. This proves that

E
[∣∣∣uMMD(Z1,Z2)−

∑K

k=1
λkφk(Z1)φk(Z2)

∣∣∣
ν] K→∞−−−→ 0 ,

and therefore Assumption 3.2 holds.

A.7 Proofs for Appendix A.2

A.7.1. Proofs for Appendix A.2.1

The proof of Lemma A.4 combines the following two results:

Lemma A.20 (Theorem 2, von Bahr and Esseen (1965)). Fix ν ∈ [1, 2]. For a martingale

difference sequence Y1, . . . , Yn taking values in R,

E
[∣∣∑n

i=1
Yi
∣∣ν] ≤ 2

∑n

i=1
E[|Yi|ν ] .

Lemma A.21 (Dharmadhikari et al. (1968b)). Fix ν ≥ 2. For a martingale difference

sequence Y1, . . . , Yn taking values in R,

E
[∣∣∑n

i=1
Yi
∣∣ν] ≤ Cνn

ν/2−1
∑n

i=1
E[|Yi|ν ] ,

where Cν = (8(ν − 1) max{1, 2ν−3})ν .

Proof of Lemma A.4. Since the second line directly follows from Burkholder (1966)’s
original result, it suffices to prove the first line. We first consider the upper bound. For
ν ∈ [1, 2], the result follows directly from the Von Bahn-Esseen inequality as stated
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below in Lemma A.20, and for ν > 1, the result follows directly from Lemma A.21.
As for the lower bound, by Theorem 9 of Burkholder (1966), there exists an absolute
constant cν > 0 depending only on ν such that

E
[∣∣∑n

i=1
Yi
∣∣ν] ≥ cν E

[(∑n

i=1
Y 2
i

)ν/2]
.

For ν ∈ [1, 2], by applying Jensen’s inequality on the concave function x 7→ xν/2, we get
that

E
[∣∣∑n

i=1
Yi
∣∣ν] ≥ cν E

[( 1

n

∑n

i=1
nY 2

i

)ν/2] ≥ cν n
ν/2−1

∑n

i=1
E[|Yi|ν ] .

For ν > 2, by noting that (a+ b)ν/2 ≥ aν/2 + bν/2 for a, b ≥ 0, we get that

E
[∣∣∑n

i=1
Yi
∣∣ν] ≥ cν E

[∑n

i=1

(
Y 2
i

)ν/2] ≥ cν
∑n

i=1
E[|Yi|ν ] .

Combining the two results above give the desired bound.

A.7.2. Proofs for Appendix A.2.2

Proof of Lemma A.6. Consider the sequence of sigma algebras with F0 being the trivial
sigma algebra and Fi := σ(X1, . . . , Xi) for i = 1, . . . , n. This allows us to define a
martingale difference sequence: For i = 1, . . . , n, let

Yi := E[Dn|Fi]− E[Dn|Fi−1] .

This implies that E[|Dn − EDn|ν ] = E
[∣∣∑n

i=1 Yi
∣∣ν]. By Lemma A.4, we get that for

some universal constants c′ν , C ′ν ,

c′ν
∑n

i=1
E[|Yi|ν ] ≤ E[|Dn − EDn|ν ] ≤ C ′ν n

ν/2−1
∑n

i=1
E[|Yi|ν ] . (A.17)

To compute the ν-th moment of Yi, recall that Dn = 1
n(n−1)

∑
j,l∈[n],j 6=l u(Xj,Xl), which

implies

E[|Yi|ν ] = E
[∣∣E[Dn|Fi]− E[Dn|Fi−1]

∣∣ν]

=
1

nν(n− 1)ν
E
[∣∣∑

j,l∈[n],j 6=l

(
E[u(Xj,Xl)|Fi]− E[u(Xj,Xl)|Fi−1]

)∣∣ν
]

(a)
=

2

nν(n− 1)ν
E
[∣∣∑

j∈[n],j 6=i

(
E[u(Xi,Xj)|Fi]− E[u(Xi,Xj)|Fi−1]

)∣∣ν
]

=:
2

nν(n− 1)ν
E[|Si|ν ] .

In (a), we have used that each summand is zero if both j and l do not equal i, and that u
is symmetric. In the case j < i, we can compute each summand of Si as

E[u(Xi,Xj)|Fi]− E[u(Xi,Xj)|Fi−1] = u(Xi,Xj)− E[u(X1,Xj)|Xj]

= Aij −Bj +Bi ,
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where Aij := u(Xi,Xj)− E[u(Xi,X1)|Xi] and

Bi := E[u(Xi,X1)|Xi]− E[u(X1,X2)] = E[u(X1,Xi)|Xi]− E[u(X1,X2)]

by symmetry of u. In the case j > i, we can compute each summand as

E[u(Xi,Xj)|Fi]− E[u(Xi,Xj)|Fi−1] = E[u(X1,Xi)|Xi]− E[u(X1,X2)] = Bi .

Therefore

Si =
∑

j<i
(Aij −Bj) + nBi .

Consider R1 := nBi and R2 :=
∑

j<i(Aij − Bj), which forms a two-element martin-
gale difference sequence with respect to the filtration σ(Xi) ⊆ σ(Xi,X1 . . . ,Xi−1). By
Lemma A.4 again, there exist constants c∗ν and C∗ν depending only on ν such that

E[|Si|ν ] = E
[∣∣∑2

l=1
Rl

∣∣ν] ≤ C∗ν

(
E[|nBi|ν ] + E

[∣∣∑
j<i

(Aij −Bj)
∣∣ν]
)

= C∗ν
(
nνMν

cond;ν + E
[∣∣∑

j<i
(Aij −Bj)

∣∣ν]) ,

E[|Si|ν ] = E
[∣∣∑2

l=1
Rl

∣∣ν] ≥ c∗ν

(
E[|nBi|ν ] + E

[∣∣∑
j<i

(Aij −Bj)
∣∣ν]
)

= c∗ν
(
nνMν

cond;ν + E
[∣∣∑

j<i
(Aij −Bj)

∣∣ν]) .

Now consider Tj := Aij − Bj for j = 1, . . . , i − 1, which again forms a martingale dif-
ference sequence with respect to σ(Xi,X1), . . . , σ(Xi,X1 . . . ,Xi−1). Then by Lemma
A.4 again, there exist constants c∆

ν and C∆
ν depending only on ν such that

E
[∣∣∑

j<i
(Aij −Bj)

∣∣ν] ≤ C∆
ν (i− 1)ν/2−1

∑i−1

j=1
E[|Aij −Bj|ν ]

= C∆
ν (i− 1)ν/2Mν

full;ν ,

E
[∣∣∑

j<i
(Aij −Bj)

∣∣ν] ≥ c∆
ν

∑i−1

j=1
E[|Aij −Bj|ν ] = c∆

ν (i− 1)Mν
full;ν .

Therefore

E[|Si|ν ] ≤ C∗νn
νMν

cond;ν + C∗νC
∆
ν (i− 1)ν/2Mν

full;ν ,

E[|Si|ν ] ≥ c∗νn
νMν

cond;ν + c∗νc
∆
ν (i− 1)Mν

full;ν ,

which yield the following bounds on the ν-th moment of Yi:

E[|Yi|ν ] ≤ 2C∗ν
(
(n− 1)−νMν

cond;ν + C∆
ν n
−ν(n− 1)−ν (i− 1)ν/2Mν

full;ν

)
,

E[|Yi|ν ] ≥ 2c∗ν
(
(n− 1)−νMν

cond;ν + c∆
ν n
−ν(n− 1)−ν (i− 1)Mν

full;ν

)
,

To sum these terms over i = 1, . . . , n, we note that since ν/2 > 0,
∑n

i=1
(i− 1)ν/2 ≤

∫ n

0
xν/2dx =

n1+ν/2

1 + ν/2
,

∑n

i=1
(i− 1) =

n(n− 1)

2
.
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Define Cν := 2C′νC
∗
ν max{1,C∆

ν }
1+ν/2

and cν := c′νc
∗
ν min{1, c∆

ν }. By summing the bounds on
E[|Yi|ν ] and substituting into (A.17), we get the desired bounds

E[|Dn − EDn|ν ] ≤ Cν n
ν/2−1

(
n(n− 1)−νMν

cond;ν + n−ν(n− 1)−νn1+ν/2Mν
full;ν

)

= Cν n
ν/2(n− 1)−νMν

cond;ν + Cν (n− 1)−νMν
full;ν ,

E[|Dn − EDn|ν ] ≥ cνn(n− 1)−νMν
cond;ν + cνn

−(ν−1)(n− 1)−(ν−1)Mν
full;ν .

Proof of Lemma A.7. The first result is directly obtained from linearity of expectation
and Jensen’s inequality:

∣∣∣D −
∑K

k=1
λkµ

2
k

∣∣∣ =
∣∣∣E[u(X1,X2)]−

∑K

k=1
λkE[φk(X1)]E[φk(X2)]

∣∣∣

=
∣∣∣E
[
u(X1,X2)−

∑K

k=1
λkφk(X1)φk(X2)

]∣∣∣

≤ E
∣∣∣u(X1,X2)−

∑K

k=1
λkφk(X1)φk(X2)

∣∣∣ = εK;1 .

To prove the next few bounds, we first derive a useful inequality: For a, b ∈ R and
ν ≥ 1, by Jensen’s inequality, we have

|a+ b|ν =
∣∣1
2
(2a) +

1

2
(2b)

∣∣ν ≤ 1

2
|2a|ν +

1

2
|2b|ν = 2ν−1(|a|ν + |b|ν) .

By the triangle inequality followed by applying the above inequality again with a re-
placed by |a| − |b| and b replaced by |b|, we have

|a+ b|ν ≥ ||a| − |b||ν ≥ 2−(ν−1)|a|ν − |b|ν .

Since ν ∈ [1, 3], we have 2ν−1 ∈ [1, 4]. Therefore
1

4
|a|ν − |b|ν ≤ |a+ b|ν ≤ 4(|a|ν + |b|ν) . (A.18)

Now to prove the conditional bound, we make use of the fact that X1,X2 are i.i.d. to see
that

E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)µk

∣∣∣
ν]

= E
[∣∣∣
∑K

k=1
λk
(
E[φk(X1)φk(X2)|X1]− E[φk(X1)φk(X2)]

)∣∣∣
ν]

= E
[∣∣∣E[u(X1,X2)|X1]− E[u(X1,X2)] + ∆K;1 −∆K;2

∣∣∣
ν]
, (A.19)

where

∆K;1 :=
∑K

k=1
λkE[φk(X1)φk(X2)|X1]− E[u(X1,X2)|X1] ,

∆K;2 :=
∑K

k=1
λkE[φk(X1)φk(X2)]− E[u(X1,X2)] .
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Moments of the two error terms can be bounded by Jensen’s inequality applied to x 7→
|x|ν with respect to the conditional expectation E[ • |X2] and the expectation E[ • ]:

E[|∆K;1|ν ],E[|∆K;2|ν ] ≤ E
[∣∣∣u(X1,X2)−

∑K

k=1
λkφk(X1)φk(X2)

∣∣∣
ν]

=
∥∥∥u(X1,X2)−

∑K

k=1
λkφk(X1)φk(X2)

∥∥∥
ν

Lν

= ενK;ν .

On the other hand,

(Mcond;ν)
ν = E

[∣∣E[u(X1,X2)|X1]− E[u(X1,X2)]
∣∣ν] .

Therefore applying (A.18) gives
1

4
(Mcond;ν)

ν − ενK;ν ≤ E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)µk

∣∣∣
ν]
≤ 4((Mcond;ν)

ν + ενK;ν)

For the last bound, we start by considering the following quantity, which can be
thought of as the truncated version of Mν

full;ν :

mK := E
[∣∣∣
∑K

k=1
λk(φk(X1)φk(X2)− µ2

k)
∣∣∣
ν]

= E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)φk(X2) +

∑K

k=1
λkµk(φk(X2)− µk)

∣∣∣
ν]

=: E[|T2 + T1|ν ] .

Since {T1, T2} forms a two-element martingale difference sequence with respect to σ(X2) ⊆
σ(X1,X2), by Lemma A.4, there exists absolute constants c′ν , C ′ν > 0 depending only on
ν such that

c′ν
(
E[|T1|ν ] + E[|T2|ν ]

)
≤ mK ≤ C ′ν

(
E[|T1|ν ] + E[|T2|ν ]

)
.

Similarly, by writing

E[|T2|ν ] = E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)φk(X2)

∣∣∣
ν]

= E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)(φk(X2)− µk) +

∑K

k=1
λk(φk(X1)− µk)µk

∣∣∣
ν]

= E[|R2 +R1|ν ] ,

and noting that {R1, R2} forms a two-element martingale difference sequence with re-
spect to σ(X1) ⊆ σ(X1,X2), by Lemma A.4, there exists absolute constants c′′ν , C ′′ν > 0

depending only on ν such that

c′′ν
(
E[|R1|ν ] + E[|R2|ν ]

)
≤ E[|T2|ν ] ≤ C ′′ν

(
E[|R1|ν ] + E[|R2|ν ]

)
.

Combining the results and setting

A = supν∈[1,3]C
′
ν max{C ′′ν , 1} and a = infν∈[1,3] c

′
ν min{c′′ν , 1} ,

we have shown that

a
(
E[|T1|ν ] + E[|R1|ν ] + E[|R2|ν ]

)
≤ mK ≤ A

(
E[|T1|ν ] + E[|R1|ν ] + E[|R2|ν ]

)
.
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Notice that the quantity we would like to control is exactly

E[|R2|ν ] = E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)(φk(X2)− µk)

∣∣∣
ν]
,

and that E[|T1|ν ] = E[|R1|ν ]. By setting c = A−1 and C = a−1, this allows us to obtain
a bound about E[|R2|ν ] as

cmK − 2E[|T1|ν ] ≤ E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)(φk(X2)− µk)

∣∣∣
ν]
≤ CmK − 2E[|T1|ν ] .

Now notice that

E[|T1|ν ] = E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)µk

∣∣∣
ν]
,

which has already been controlled by the second result of the lemma as
1

4
(Mcond;ν)

ν − ενK;ν ≤ E[|T1|ν ] ≤ 4((Mcond;ν)
ν + ενK;ν) .

On the other hand, we can use an exactly analogous argument by using (A.18) and ap-
plying Jensen’s inequality to control the errors to show that

1

4
(Mfull;ν)

ν − ενK;ν ≤ mK ≤ 4((Mfull;ν)
ν + ενK;ν) .

Applying these two results to the previous bound gives the desired bounds:

E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)(φk(X2)− µk)

∣∣∣
ν]

≤ 4C(Mfull;ν)
ν − 1

2
(Mcond;ν)

ν + (4C + 2)ενK;ν ,

E
[∣∣∣
∑K

k=1
λk(φk(X1)− µk)(φk(X2)− µk)

∣∣∣
ν]

≥ c

4
(Mfull;ν)

ν − 8(Mcond;ν)
ν − (c+ 8)ενK;ν .

Proof of Lemma A.8. To compute the first bound, we rewrite the expression of interest as
a quantity that we have already considered in the proof of Lemma A.7:

(µK)>ΛKΣKΛK(µK) = (µK)>ΛKE
[(
φK(X1)− µK

)(
φK(X1)− µK

)>]
ΛK(µK)

= E
[((

φK(X1)− µK
)>

ΛKµK
)2]

= E
[(∑K

k=1
λk(φk(X1)− µk)µk

)2]

= E
[(

E[u(X1,X2)|X2]− E[u(X1,X2)] + ∆K;1 −∆K;2

)2]
,

where we have used the calculation in (A.19) with ν = 2 and defined the same error
terms

∆K;1 :=
∑K

k=1
λkE[φk(X1)φk(X2)|X2]− E[u(X1,X2)|X2] ,
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∆K;2 :=
∑K

k=1
λkE[φk(X1)φk(X2)]− E[u(X1,X2)] .

Since we are dealing with the second moment, we can provide a finer bound by expanding
the square explicitly:

(µK)>ΛKΣKΛK(µK) = VarE[u(X1,X2)|X2] + E[(∆K;1 −∆K;2)2]

+ 2E
[(
E[u(X1,X2)|X2]− E[u(X1,X2)]

)
(∆K;1 −∆K;2)2

]
.

Then by the Cauchy-Schwartz inequality, we get that
∣∣∣(µK)>ΛKΣKΛK(µK)− VarE[u(X1,X2)|X2]

∣∣∣

= 2
∣∣E
[(
E[u(X1,X2)|X2]− E[u(X1,X2)]

)
(∆K;1 −∆K;2)2

]∣∣+ E[(∆K;1 −∆K;2)2]

≤ 2
√

VarE[u(X1,X2)|X2]
√
E[(∆K;1 −∆K;2)2] + E[(∆K;1 −∆K;2)2] .

The variance term is exactly σ2
cond. Since the individual error terms have already been

bounded in the proof of Lemma A.7 as E[∆2
K;1],E[∆2

K;2] ≤ ε2
K;2, by the triangle inequal-

ity and the Cauchy-Schwarz inequality, we have

|E[(∆K;1 −∆K;2)2]| = |E[∆2
K;1]− 2E[∆K;1∆K;2] + E[∆2

K;2]|

≤ |E[∆2
K;1]|+ 2

√
|E[∆2

K;1]||E[∆2
K;2]|+ |E[∆2

K;2]| ≤ 4ε2
K;2 .

Combining the bounds gives
∣∣(µK)>ΛKΣKΛK(µK)− (σcond)2

∣∣ ≤ 4ε2
K;2 + 4σcondεK;2 ,

which rearranges to give

σ2
cond − 4σcondεK;2 − 4ε2

K;2 ≤ (µK)>ΛKΣKΛK(µK) ≤ σ2
cond + 4σcondεK;2 + 4ε2

K;2

≤ (σcond + 2εK;2)2 .

The second bound is obtained similarly by giving a finer control than the bound in
Lemma A.7. We first rewrite the expression of interest by using linearity of expectation
and the cyclic property of trace:

Tr((ΛKΣK)2) = Tr
(
ΛKE

[
φK(X1)φK(X1)>

]
ΛKE

[
φK(X2)φK(X2)>

])

= E
[(
φK(X1)>ΛKφK(X2)

)2
]

= E
[(∑K

k=1
λkφk(X1)φk(X2)

)2]
.

Again by expanding the square explicitly, we get that

Tr((ΛKΣK)2) = E
[(∑K

k=1
λkφk(X1)φk(X2)− ū(X1,X2) + ū(X1,X2)

)2]

= E
[(∑K

k=1
λkφk(X1)φk(X2)− ū(X1,X2)

)2]
+ E

[
ū(X1,X2)2

]

+ 2∆K;3

= ε2
K;2 + σ2

full + 2∆K;3 ,
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where we have defined the additional error term as

∆K;3 := E
[(∑K

k=1
λkφk(X1)φk(X2)− ū(X1,X2)

)
ū(X1,X2)

]
.

By the Cauchy-Schwarz inequality, we get that
∣∣Tr((ΛKΣK)2)− σ2

full − ε2
K;2

∣∣ = 2|∆K;3|

≤ 2

√
E
[(∑K

k=1
λkφk(X1)φk(X2)− ū(X1,X2)

)2]√E
[
ū(X1,X2)2

]
= 2εK;2σfull .

Combining the above two bounds yields the desired inequality that

(σfull − εK;2)2 ≤ Tr((ΛKΣK)2) ≤ (σfull + εK;2)2 .

To prove the third bound, note that (µK)>ΛKZ1 is a zero-mean normal random vari-
able with variance given by (µK)>ΛKΣKµK , which is already bounded above. By ap-
plying the formula of the ν-th absolute moment of a normal distribution and noting that
ν ≤ 3, we obtain

E[|(µK)>ΛKZ1|ν ] =
2ν/2√
π

Γ
(
ν + 1

2

)(
(µK)>ΛKΣKΛKµK

)ν/2

≤ 2ν/2√
π

(σfull + 2εK;2)ν
(a)

≤ 2ν/2√
π

max{1, 2ν−1}
(
σνcond + 2νενK;2

) (b)

≤ 7(σνcond + 8ενK;2) .

In (a), we have noted that given a, b > 0, for ν/2 ∈ (0, 1], (a + b)ν/2 ≤ aν/2 + bν/2

and for ν/2 > 1, the bound follows from Jensen’s inequality. In (b), we have noted that
ν ≤ 3. This finishes the proof for the third bound.

To prove the fourth bound, we can first condition on Z2:

E[|Z>1 ΛKZ2|ν ] = E
[
E[|Z>1 ΛKZ2|ν |Z2]

]
.

The inner expectation is again the ν-th absolute moment of a conditionally Gaussian ran-
dom variable with variance Z>2 ΛKΣKΛKZ2, so again by the formula of the ν-th absolute
moment of a normal distribution, we get that

E[|Z>1 ΛKZ2|ν ] ≤
2ν/2√
π
E
[(
Z>2 ΛKΣKΛKZ2

)ν/2] ≤ 2ν/2√
π
E
[(
Z>2 ΛKΣKΛKZ2

)2
]ν/4

.

We have noted that ν ≤ 3 and used the Hölder’s inequality. The remaining expectation is
taken over a quadratic form of normal variables. Writing Σ∗ = (ΣK)1/2ΛK(ΣK)1/2 for
short, the second moment can be computed by the formula from Lemma A.5 as

E
[(
Z>2 ΛKΣKΛKZ2

)2
]

= Tr(Σ2
∗)

2 + 2Tr
(
Σ4
∗
) (a)

≤ 3Tr(Σ2
∗)

2 = 3Tr
(
(ΛKΣK)2

)2
.

Note that in (a), we have used the fact that the square of a symmetric matrix, Σ2
∗, has non-

negative eigenvalues, and therefore Tr(Σ4
∗) ≤ Tr(Σ2

∗)
2. Since we have already bounded
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Tr((ΛKΣK)2) earlier, substituting the above result into the previous bound, we get that

E[|Z>1 ΛKZ2|ν ] ≤
2ν/2√
π
E
[(
Z>2 ΛKΣKΛKZ2

)2
]ν/4
≤ 2ν/23ν/4√

π
Tr
(
(ΛKΣK)2

)ν/2

≤ 2ν/23ν/4√
π

(σ2
full + ε2

K;2)ν/2

≤ 2ν/23ν/4√
π

max{1, 2ν/2−1}
(
σνfull + ενK;2

)
≤ 6

(
σνfull + ενK;2

)
.

In the last two inequalities, we have used the same argument as in the proof for the third
bound to expand the term with ν-th power. This gives the desired bound.

To prove the final bound, we first condition on X1:

E
[∣∣(φK(X1)− µK)>ΛKZ1

∣∣ν] = E
[
E
[∣∣(φK(X1)− µK)>ΛKZ1

∣∣ν∣∣X1

]]
.

The inner expectation is the ν-th absolute moment of a conditionally Gaussian random
variable with variance (φK(X1)− µK)>ΛKΣKΛK(φK(X1)− µK), so by the formula of
the ν-th absolute moment of a normal distribution with ν ≤ 3, we get that

E[ |(φK(X1)− µK)>ΛKZ2|ν ]

≤ 2ν/2√
π
E
[(

(φK(X1)− µK)>ΛKΣKΛK(φK(X1)− µK)
)ν/2]

=
2ν/2√
π
E
[(

(φK(X1)− µK)>ΛKE
[
(φK(X2)− µK)(φK(X2)− µK)>

]

ΛK(φK(X1)− µK)
)ν/2]

(a)

≤ 2ν/2√
π
E
[∣∣(φK(X1)− µK)>ΛK(φK(X2)− µK)

∣∣ν
]

=
2ν/2√
π
E
[∣∣∑K

k=1
λkφk(X1)φk(X2)

∣∣ν
]

(b)

≤ 8C(Mfull;ν)
ν − (Mcond;ν)

ν + (8C + 4)ενK;ν .

In (a), we have applied Jensen’s inequality to the convex function x 7→ |x|ν/2 to move
the inner expectation outside the norm. In (b), we have applied the bound in Lemma A.7
and noted that 2ν/2√

π
< 2 for ν ∈ [1, 3]. This gives the desired result.

Proof of Lemma A.9. For the first equality in distribution, we recall that {τk;d}Kk=1 are the
eigenvalues of (ΣK)1/2ΛK(ΣK)1/2 and {ξk}Kk=1 are a sequence of i.i.d. standard Gaus-
sian variables. Let {ηik}i∈[n],k∈[K] be a set of i.i.d. standard Gaussian variables. Since
Gaussianity is preserved under orthogonal transformation, we have

1

n3/2(n− 1)1/2

(∑n

i,j=1
(ηKi )>(ΣK)1/2ΛK(ΣK)1/2ηKj − nTr(ΣKΛK)

)

d
=

1

n3/2(n− 1)1/2

(∑K

k=1

∑n

i,j=1
τk;dηikηjk − nTr((ΣK)1/2ΛK(ΣK)1/2)

)
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=
1

n3/2(n− 1)1/2

∑K

k=1
τk;d

((∑n

i=1
ηik
)(∑n

j=1
ηjk
)
− n

)

d
=

1

n1/2(n− 1)1/2

∑K

k=1
τk;d(ξ

2
k − 1) = WK

n −D ,

which proves the desired statement.

We now use the expression above for moment computation. The expectation is given
by E[WK

n ] = D for everyK ∈ N. The variance can be computed by noting that the quan-
tity is a quadratic form in Gaussian, applying Lemma A.5 and using the cyclic property
of trace:

Var[WK
n ] =

1

n(n− 1)
Var
[
(ηK1 )>(ΣK)1/2ΛK(ΣK)1/2ηK1

]

=
2

n(n− 1)
Tr
(
(ΛKΣK)2

)
.

By Lemma A.8, we get the desired bound that
2

n(n− 1)
(σfull − εK;2)2 ≤ Var[WK

n ] ≤ 2

n(n− 1)
(σfull + εK;2)2 .

The third central moment can be expanded using a binomial expansion and noting
that each summand is zero-mean:

E
[
(WK

n −D)3
]

=
1

n3/2(n− 1)3/2
E
[(∑K

k=1
τk;d(ξ

2
k − 1)

)3]

=
1

n3/2(n− 1)3/2
E
[∑K

k=1
τ 3
k;d(ξ

2
k − 1)3

]

=
8

n3/2(n− 1)3/2

∑K

k=1
τ 3
k;d .

Meanwhile, the sum can be further expressed as
∑K

k=1
τ 3
k;d

= Tr
((

(ΣK)1/2ΛK(ΣK)1/2
)3
)

= Tr
((

ΣKΛK
)3
)

= Tr
((

E
[
φK(X1)(φK(X1))>

]
ΛK
)3
)

= E
[
(φK(X1))>ΛKφK(X2) (φK(X2))>ΛKφK(X3) (φK(X3))>ΛKφK(X1)

]

= E
[(∑K

k=1
λkφk(X1)φk(X2)

)(∑K

k=1
λkφk(X2)φk(X3)

)(∑K

k=1
λkφk(X3)φk(X1)

)]

=: E[S12S23S31] .

We now approximate each Sij term by u(Xi,Xj). For convenience, denote Uij =

u(Xi,Xj) and ∆ij = Sij − Uij . Then
∑K

k=1
τ 3
k;d = E

[
(U12 + ∆12)(U23 + ∆23)(U31 + ∆31)

]

= E[U12U23U31] + E[U12U23∆31] + E[U12∆23U31] + E[U12∆23∆31]

+ E[∆12U23U31] + E[∆12U23∆31] + E[∆12∆23U31] + E[∆12∆23∆31] .
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Recall that εK;3 = E[|∆ij|3]1/3 for i 6= j by definition. Then by the triangle inequality
followed by the Hölder’s inequality, we get that

∣∣∣
∑K

k=1
τ 3
k;d − E[u(X1,X2)u(X2,X3)u(X3,X1)]

∣∣∣
≤
∣∣E[U12U23∆31]

∣∣+
∣∣E[U12∆23U31]

∣∣+
∣∣E[U12∆23∆31]

∣∣

+
∣∣E[∆12U23U31]

∣∣+
∣∣E[∆12U23∆31]

∣∣+
∣∣E[∆12∆23U31]

∣∣+
∣∣E[∆12∆23∆31]

∣∣

≤ 3E[|u(X1,X2)|3]2/3εK;3 + 3E[|u(X1,X2)|3]1/3ε2
K;3 + ε3

K;3

= 3M2
full;3εK;3 + 3Mfull;3ε

2
K;3 + ε3

K;3 .

This implies that
∑K

k=1
τ 3
k;d ≤ E[u(X1,X2)u(X2,X3)u(X3,X1)]−M3

full;3 + (Mfull;3 + εK;3)3 ,
∑K

k=1
τ 3
k;d ≥ E[u(X1,X2)u(X2,X3)u(X3,X1)] +M3

full;3 − (Mfull;3 + εK;3)3 ,

which gives the desired bounds:

E
[
(WK

n −D)3
]
≤ 8

(
E[u(X1,X2)u(X2,X3)u(X3,X1)]−M3

full;3 + (Mfull;3 + εK;3)3
)

n3/2(n− 1)3/2
,

E
[
(WK

n −D)3
]
≥ 8

(
E[u(X1,X2)u(X2,X3)u(X3,X1)] +M3

full;3 − (Mfull;3 + εK;3)3
)

n3/2(n− 1)3/2
.

The fourth central moment can again be expanded using a binomial expansion and
noting that each summand is zero-mean:

E
[
(WK

n −D)4
]

=
1

n2(n− 1)2E
[(∑K

k=1
τk;d(ξ

2
k − 1)

)4]

=
1

n2(n− 1)2

(
E
[∑K

k=1
τ 4
k;d(ξ

2
k − 1)4

]
+ 3E

[∑
1≤k 6=k′≤K τ

2
k;d(ξ

2
k − 1)2τ 2

k′;d(ξ
2
k′ − 1)2

])

=
1

n2(n− 1)2

(
60
∑K

k=1
τ 4
k;d + 12

∑
1≤k 6=k′≤K τ

2
k;dτ

2
k′;d

)

=
1

n2(n− 1)2

(
48
∑K

k=1
τ 4
k;d + 12

∑
1≤k,k′≤K τ

2
k;dτ

2
k′;d

)

=
12

n2(n− 1)2

(
4
∑K

k=1
τ 4
k;d +

(∑K

k=1
τ 2
k;d

)2
)
. (A.20)

Since we have already controlled
∑K

k=1 τ
2
k;d = Tr

(
(ΣKΛK)2

)
, we focus on bounding the

first sum. Using notations from the third moment, we can express the sum as
∑K

k=1
τ 4
k;d = E

[(∑K

k=1
λkφk(X1)φk(X2)

)(∑K

k=1
λkφk(X2)φk(X3)

)

(∑K

k=1
λkφk(X3)φk(X4)

)(∑K

k=1
λkφk(X4)φk(X1)

)]

= E[S12S23S34S41]

= E
[
(U12 + ∆12)(U23 + ∆23)(U34 + ∆34)(U41 + ∆41)

]
.
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A similar argument as before shows that
∣∣∣
∑K

k=1
τ 4
k;d − E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)]

∣∣∣
≤ 4M3

full;4εK;4 + 6M2
full;4ε

2
K;4 + 4Mfull;4ε

3
K;4 + ε4

K;4 .

This implies that
∑K

k=1
τ 4
k;d ≤ E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)]−M4

full;4 + (Mfull;4 + εK;4)4 ,
∑K

k=1
τ 4
k;d ≥ E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)] +M4

full;4 − (Mfull;4 + εK;4)4 .

On the other hand, by Lemma A.8, we have

(σfull − εK;2)2 ≤
∑K

k=1
τ 2
k;d = Tr((ΛKΣK)2) ≤ (σfull + εK;2)2 .

Plugging these calculations into (A.20) give the desired bounds:

E
[
(WK

n −D)4
]
≤ 12

n2(n− 1)2

(
4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)]

− 4M4
full;4 + 4(Mfull;4 + εK;4)4 + (σfull + εK;2)4

)
,

E
[
(WK

n −D)4
]
≥ 12

n2(n− 1)2

(
4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)]

+ 4M4
full;4 − 4(Mfull;4 + εK;4)4 + (σfull − εK;2)4

)
.

For the generic moment bound, we first use the Jensen’s inequality to get that

E
[
(WK

n )2m
]

= E
[(

1

n1/2(n− 1)1/2

∑K

k=1
τk;d(ξ

2
k − 1) +D

)2m]

≤ 22m−1

nm(n− 1)m
E
[(∑K

k=1
τk;d(ξ

2
k − 1)

)2m]
+ 22m−1D2m .

Denote the set of all possible orderings of a length-2m sequence consisting of elements
from [K] by P(K, 2m) and denote its elements by p. Consider the subset

P ′(K, 2m) := {p ∈ P(K, 2m) : every element in p appears at least twice } .

By noting that ξk − 1 is zero-mean and {ξk}Kk=1 are independent, we can re-express the
sum first as a sum over P(K, 2m) and then as a sum over P ′(K, 2m):

E
[(∑K

k=1
τk;d (ξ2

k − 1)
)2m]

=
∑

p∈P(K,2m)

(∏
k∈p τk;d

)
E
[∏

k∈p(ξ
2
k − 1)

]

=
∑

p∈P ′(K,2m)

(∏
k∈p τk;d

)
E
[∏

k∈p(ξ
2
k − 1)

]

+
∑

p∈
(
P(K,2m)\P ′(K,2m)

) (∏
k∈p τk;d

)
E
[∏

k∈p(ξ
2
k − 1)

]

=
∑

p∈P ′(K,2m)

(∏
k∈p τk;d

)
E
[∏

k∈p(ξ
2
k − 1)

]
.

Write C ′m as the 2m-th central moment of a chi-squared random variable with degree 1,
which depends only on m and not on K or τk;d. By the Hölder’s inequality and the bound
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from Lemma A.8, we get that

E
[(∑K

k=1
τk;d (ξ2

k − 1)
)2m]

≤ C ′m
∑

p∈P ′(K,2m)

(∏
k∈p τk;d

)

≤ C ′m

(
2m

m

)(∑K

k=1
τ 2
k;d

)m

= C ′m

(
2m

m

)
Tr
(
(ΛKΣK)2

)m ≤ C ′m

(
2m

m

)
(σfull + εK;2)2m .

Writing Cm := 22m−1 max{1, C ′m
(

2m
m

)
}, we get the desired bound that

E
[
(WK

n )2m
]
≤ Cm

nm(n− 1)m
(σfull + εK;2)2m + CmD

2m .

Finally, if Assumption 3.2 is true for some ν ≥ 2, we have εK;2 → 0 as K grows.
Taking K →∞ in the bound for second moment gives

lim
K→∞

Var[WK
n ] =

2

n(n− 1)
σ2

full .

If Assumption 3.2 holds for ν ≥ 3, similarly we have

lim
K→∞

E
[
(WK

n −D)3
]

=
8E[u(X1,X2)u(X2,X3)u(X3,X1)]

n3/2(n− 1)3/2
.

If Assumption 3.2 holds for ν ≥ 4, we have

lim
K→∞

E
[
(WK

n −D)4
]

=
12(4E[u(X1,X2)u(X2,X3)u(X3,X4)u(X4,X1)] + σ4

full)

n2(n− 1)2 .

A.7.3. Proofs for Appendix A.2.3

Proof of Lemma A.10. Write δ′ := δ/(m + 1) for convenience. Define the m-times dif-
ferentiable function

hm;τ ;δ(x) := (δ′)−(m+1)
∫ x+δ′

x

∫ y1+δ′

y1

. . .
∫ ym−1+δ′

ym−1

∫ ym+δ′

ym

I{y>τ} dy dym . . . dy1 .

In the case m = 0, the function is h0;τ ;δ(x) := δ−1
∫ x+δ

x
I{y>τ} dy. By construction,

hm;τ ;δ(x) = 0 for x ≤ τ − δ, hm;τ ;δ(x) ∈ [0, 1] for x ∈ (τ − δ, τ ] and hm;τ ;δ(x) = 1 for
x > τ . This implies I{x>τ} ≤ hm;τ ;δ(x) ≤ I{x>τ−δ} and therefore the desired inequality

hm;τ+δ;δ(x) ≤ I{x>τ} ≤ hm;τ ;δ(x) .

Next, we prove the properties of the derivatives of hm;τ ;δ. Denote recursively

Jm+1(x) :=
∫ x+δ′

x
I{y>τ}dy , Jr(x) :=

∫ x+δ′

x
Jr+1(y) dy for 0 ≤ r ≤ m .

187



Since hm;τ ;δ(x) = (δ′)−(m+1)J0(x) and ∂
∂x
Ji(x) = Ji+1(x+ δ′)−Ji+1(x) for 0 ≤ i ≤ m,

by induction, we have that for 0 ≤ r ≤ m,

h
(r)
m;τ ;δ(x) = (δ′)−(m+1) ∂

r

∂xr
J0(x) = (δ′)−(m+1)

∑r

i=0

(
r

i

)
(−1)i Jr+1

(
x+ (r − i)δ′

)
.

(A.21)

Note that Jm+1 is continuous, uniformly bounded above by δ′, and satisfies that Jm+1(x) =

0 for x outside [τ − δ′, τ ]. By induction, we get that for 0 ≤ r ≤ m, Jr+1 is continuous,
bounded above by (δ′)m+1−r and satisfies that Jr+1(x) = 0 for x outside [τ − (m + 1−
r)δ′, τ ]. This shows that h(r)

m;τ ;δ is continuous and h(r)
m;τ ;δ(x) = 0 for x outside [τ − δ, τ ],

and the uniform bound
∣∣h(r)
m;τ ;δ(x)

∣∣ ≤ (δ′)−r
∑r

i=0

(
r

i

)
=
( 2

m+ 1

)r
δ−r ≤ δ−r .

Finally to prove the Hölder property of h(m)
m;τ ;δ(x), we first note that Jm+1 is constant

outside x ∈ [τ − δ′, τ ] and linear within the interval with Lipschitz constant 1. The
formula in (A.21) suggests that h(m)

m;τ ;δ(x) is piecewise linear and the Lipschitz constant
in the interval [τ − (m− i+ 1)δ′, τ − (m− i)δ′] is given by the Lipschitz constant of the
i-th summand. Therefore, h(m)

m;τ ;δ is also Lipschitz with Lipschitz constant

Lm := (δ′)−(m+1) max0≤i≤m

(
m

i

)
= (δ′)−(m+1)

(
m

bm/2c

)
.

For x, y ∈ [τ − δ, τ ], we then have

|h(m)
m;τ ;δ(x)− h(m)

m;τ ;δ(y)| ≤ Lm|x− y| = Lmδ
∣∣x− y

δ

∣∣

≤ Lmδ
∣∣x− y

δ

∣∣ε = Lmδ
1−ε|x− y|ε , (A.22)

where we have noted that
∣∣x−y
δ

∣∣ ≤ 1 and ε ∈ [0, 1]. (A.22) is trivially true for x, y both
outside [τ−δ, τ ] since h(m)

m;τ ;δ evaluates to zero. Now consider x ∈ [τ−δ, τ ] and y < τ−δ.
We have that

|h(m)
m;τ ;δ(x)− h(m)

m;τ ;δ(y)| = |h(m)
m;τ ;δ(x)− h(m)

m;τ ;δ(τ − δ)|
(A.22)
≤ Lmδ

1−ε(x− τ + δ)ε

≤ Lmδ
1−ε|x− y|ε .

Similarly for x ∈ [τ − δ, τ ] and y > τ , we have that

|h(m)
m;τ ;δ(x)− h(m)

m;τ ;δ(y)| = |h(m)
m;τ ;δ(x)− h(m)

m;τ ;δ(τ)|
(A.22)
≤ Lmδ

1−ε(τ − x)ε

≤ Lmδ
1−ε|x− y|ε .

Therefore (A.22) holds for all x, y. The proof for the derivative bound is complete by
computing the constant explicitly as

Lmδ
1−ε = (δ′)−(m+ε)

(
m

bm/2c

)
= δ−(m+ε)

(
m

bm/2c

)
(m+ 1)m+ε ,
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and therefore

|h(m)
m;τ ;δ(x)− h(m)

m;τ ;δ(y)| ≤ Cm,ε δ
−(m+ε) |x− y|ε , (A.23)

with respect to the constant Cm,ε =
(

m
bm/2c

)
(m+ 1)m+ε.

Proof of Lemma A.11. By conditioning on the size of Y , we have that for any a, b ∈ R
and ε > 0,

P(a ≤ X + Y ≤ b) = P(a ≤ X + Y ≤ b , |Y | ≤ ε) + P(a ≤ X ≤ b , |Y | ≥ ε)

≤ P(a− ε ≤ X ≤ b+ ε) + P(|Y | ≥ ε) ,

and by using the order of inclusion of events, we have the lower bound

P(a ≤ X + Y ≤ b) ≥ P(a+ ε ≤ X ≤ b− ε , |Y | ≤ ε)

= P(a+ ε ≤ X ≤ b− ε)− P(|Y | ≥ ε) .

A.7.4. Proof for Appendix A.2.4

Proof of Lemma A.13. By Lemma 2.3 of Steinwart and Scovel (2012), the assumption
that κ∗ is measurable and E[κ∗(V1,V1)] < ∞ implies the RKHS H associated with κ∗

is compactly embedded into L2(Rd, R). By Lemma 2.12 and Corollary 3.2 of Steinwart
and Scovel (2012), for some index set I ⊆ N, there exists a sequence of non-negative,
bounded values {λk}k∈I that converges to 0 and a sequence of functions {φk}k∈I that
form an orthonormal basis of L2(Rd, R) such that

∑
k∈I λkψk(V1)ψk(V2) = κ∗(V1,V2) ,

where the equality holds almost surely when I is finite and the convergence holds almost
surely when I is infinite. We can extend I to N by adding zero values of λk and φk
whenever necessary and drop the requirement that {φk}∞k=1 forms a basis, which gives
the desired statement.
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Appendix B

Proofs for Section 3.3 and Section 4.3

This appendix concerns the proof of the tight upper and lower bounds for degree-two U-
and V-statistics. Key ingredients of the proof are the degree-m polynomial construction
used for proving the lower bound in Section 4.5 and the variance domination result of
Section 4.3, which is also proved in Appendix B.4.

B.1 Matching upper and lower bounds for degree-two V-statistics

The next result states that the slow rate of approximation in Theorem 3.8 also holds for
some V-statistic vn(X) = 1

n(n−1)

∑
i 6=j kv(Xi, Xj).

Theorem B.1. Under the same setup as Theorem 3.8, there exists some kv : Rd×Rd → R
that depends on σn such that

cn−
ν−2
4ν ≤ supt∈R

∣∣∣P
(
n vn(X) ≤ t

)
− P

(
σnξ + χ2

1 ≤ t
)∣∣∣ ≤ Cn−

ν−2
4ν .

B.2 Construction of ku, kv and X

We first recall the lower bound construction from Section 4.5 in the case m = 2. The
construction involves a polynomial p∗n : (R2)n → R given by

p∗n(y1, . . . , yn) :=
1√
n

∑n

i=1
yi1 +

(
1√
n

∑n

i=1
yi2

)2

for yi = (yi1, yi2) ∈ R2 .

The collection of R2 random vectors Y = (Y1, . . . , Yn) are generated as follows. For a
fixed σ0 > 0 and ν ∈ (2, 3], write σn = min{σ0 n

−(ν−2)/2ν , 1}. Note that this is the
sequence σn → 0 in Theorem 3.8. Let Uσn be the discrete random variable supported at
three points with

Uσn =





−6−1/2σ
−2/(ν−2)
n with probability 2σ

2ν/(ν−2)
n ,

0 with probability 1− 3σ
2ν/(ν−2)
n ,

2× 6−1/2σ
−2/(ν−2)
n with probability σ2ν/(ν−2)

n .
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Uσn is constructed such that it becomes increasingly heavy-tailed as σn → 0. Now
let U1;σn

, . . . , Un;σn
be i.i.d. copies of Uσn . The i.i.d. random vectors Y = (Yi)i≤n are

generated by

Yi;σn :=
(

1√
2
Ui;σn +

σn√
2
ξi1 , ξi2

)
where ξ11, ξ12, . . . , ξn1, ξn2

i.i.d.∼ N (0, 1) .

To adapt p∗n(Y ) to our setup, we first observe that p∗n can be rewritten as a V-statistic:

p∗n(y1, . . . , yn) =
1

n

∑n

i,j=1

(
yi1

2
√
n

+
yj1

2
√
n

+ yi2 yj2

)
= n ṽn(y1, . . . , yn) ,

where we have defined, for y1, . . . , yn ∈ R2 and a1, a2, b1, b2 ∈ R,

ṽn(y1, . . . , yn) :=
1

n2

∑n

i,j=1
k̃v(yi, yj) , k̃v((a1, a2), (b1, b2)) :=

a1

2
√
n

+
b1

2
√
n

+ a2b2 .

Moreover, since we have no restrictions on how d(n) depends on n, there are non-unique
choices of a function φd(n) : Rd(n) → R and a probability measure µd(n) on Rd(n) such
that

X1 ∼ µd(n) ⇔ φd(n)(X1)
d
= Y1;σn

.

Our construction of the V-statistic is thus given by taking Xi
i.i.d.∼ µd(n) and kv(x1, x2) :=

k̃v(φd(n)(x1), φd(n)(x2)), which gives

vn(X) =
1

n2

∑
1≤i,j≤n kv(Xi, Xj)

d
= ṽn(Y ) =

1

n
p∗n(Y ) ,

where d
= denotes equality in distribution. This makes the lower bound from Theorem 4.7

immediately applicable. For the U-statistics construction, we observe that

p∗n(y1, . . . , yn) =
1√

n(n− 1)

∑n

i 6=j

(
yi1

2
√
n− 1

+
yi2

2
√
n− 1

+

√
n− 1√
n

yi2yj2

)
+

1

n

∑n

i=1
y2
i2

=
√
n(n− 1) ũn(y1, . . . , yn) +Rn(y1, . . . , yn) ,

where we have defined, for y1, . . . , yn ∈ R2 and a1, a2, b1, b2 ∈ R,

ũn(y1, . . . , yn) :=
1

n(n− 1)

∑
i 6=j k̃u(yi, yj) , Rn(y1, . . . , yn) :=

1

n

∑n

i=1
y2
i2 ,

k̃u((a1, a2), (b1, b2)) :=
a1

2
√
n− 1

+
b1

2
√
n− 1

+

√
n− 1√
n

a2b2 .

Thus, our construction of the U-statistic is to take ku(x1, x2) := k̃u(φd(n)(x1), φd(n)(x2)),
which gives

un(X) =
1

n(n− 1)

∑
1≤i 6=j≤n ku(Xi, Xj)

d
= ũn(Y ) = p∗n(Y )−Rn(Y ) .

The main technical task is thus to show that p∗n(Y ) approximates a chi-squared distribu-
tion and that Rn(Y ) has negligible effect other than centering the chi-squared distribu-
tion.
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B.3 Proofs for Theorems 3.8 and B.1

Throughout this section, we denote the collection of Gaussian vectors

Z = (Z1, . . . , Zn) where Zi
i.i.d.∼ N (E[Y1;σn

],Var[Y1;σn
]) = N

(
( 0

0 ),
(
σ2
n 0
0 1

))
.

We state three intermediate results used in the proof of Theorems 3.8 and B.1. The first
two results concerns the Gaussian universality approximations of ṽn(Y ) and ũn(Y ). We
improve the upper bound of Theorem 4.7, n−

ν−2
4ν+2 , by using an argument specific to the

construction instead of the generic the Lindeberg method. Note that the σ0-dependence
below arises because Y and Z are implicitly parameterised by σ0.

Lemma B.2. Fix ν ∈ (2, 3]. Then there exist some absolute constants c, C, σ0 > 0 and

N ∈ N, such that for all n ≥ N ,

cn−
ν−2
4ν ≤ supt∈R

∣∣P(n ṽn(Y ) ≤ t)− P(n ṽn(Z) ≤ t)
∣∣ ≤ Cn−

ν−2
4ν .

Lemma B.3. Fix ν ∈ (2, 3] and let σ0 be given as in Lemma B.2. Then there exist some

absolute constants c′, C ′ > 0 and N ′ ∈ N, such that for all n ≥ N ′,

c′n−
ν−2
4ν ≤ sup

t∈R

∣∣∣P
(√

n(n− 1) ũn(Y ) ≤ t
)
− P

(√
n(n− 1) ũn(Z) ≤ t

)∣∣∣ ≤ C ′n−
ν−2
4ν .

Now observe that the universality approximations can be expressed as

n ṽn(Z) =
1√
n

∑n

i=1
Zi1 +

1

n

∑n

i,j=1
Zi2Zj2

d
= σnξ + χ2

1 ,

√
n(n− 1) ũn(Z) =

1√
n

∑n

i=1
Zi1 +

1

n

∑
i 6=j Zi2Zj2

d
= σnξ +

1

n

∑
i 6=j Zi2Zj2 .

The next result allows the quadratic part of
√
n(n− 1) ũn(Z) to be approximated by the

centred chi-squared variable χ2
1 plus a small Gaussian component σnξ.

Lemma B.4. There exists some absolute constant C ′′ > 0 such that for all n ∈ N,

supt∈R

∣∣∣P
(√

n(n− 1) ũn(Z) ≤ t
)
− P

(
σnξ + χ2

1 ≤ t
)∣∣∣ ≤ C ′′n−1/5 .

These results allow us to state the proofs for Theorems 3.8 and B.1.

Proof of Theorem B.1. Recall that by construction, un(X)
d
= ũn(Y ), vn(X)

d
= ṽn(Y )

and nṽn(Z)
d
= σnξ + χ2

1. The V-statistic bound then follows directly from Lemma B.2:
There exist some constants σ0, c1, C1 > 0 and N1 ∈ N such that for all n ≥ N1,

c1n
− ν−2

4ν ≤ supt∈R

∣∣∣P
(
n vn(X) ≤ t

)
− P

(
σnξ + χ2

1 ≤ t
)∣∣∣ ≤ C1n

− ν−2
4ν .

Proof of Theorem 3.8. By using the triangle inequality to combine the U-statistic bounds
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from Lemma B.3 and Lemma B.4, there is another absolute constant C2 > 0 such that

sup
t∈R

∣∣∣P
(√

n(n− 1)un(X) ≤ t
)
− P

(
σnξ + χ2

1 ≤ t
)∣∣∣ ≤ C1n

− ν−2
4ν + C2n

− 1
5 ,

sup
t∈R

∣∣∣P
(√

n(n− 1)un(X) ≤ t
)
− P

(
σnξ + χ2

1 ≤ t
)∣∣∣ ≥ c1n

− ν−2
4ν − C2n

− 1
5 .

Since ν−2
4ν
≤ 1

8
< 1

5
for ν ∈ (2, 3], the n−1/5 term can be ignored when n is large. In

particular, there exist c ∈ (0, c1], C > C1 and an integerN ≥ N1 such that for all n ≥ N ,

cn−
ν−2
4ν ≤ supt∈R

∣∣∣P
(
n vn(X) ≤ t

)
− P

(
σnξ + χ2

1 ≤ t
)∣∣∣ ≤ Cn−

ν−2
4ν .

The rest of the section proves the intermediate results, i.e. Lemmas B.2 to B.4.

B.3.1. Proof of Lemma B.2

The lower bound follows directly from Theorem 2 of Huang et al. (2024) by noting that
nṽn = p∗n, so it suffices to prove the upper bound. Denote

Sn :=
1√
n

∑n

i=1

(
1√
2
Ui;σn +

σn√
2
ξi1

)

such that, for ξ ∼ N (0, 1) independent of all other variables,

nṽn(Y )
d
= Sn + χ2

1 and nṽn(Z)
d
= σnξ + χ2

1 .

By Lemmas 19 and 20 of Huang et al. (2024), under the choice of σ0 and Ñ in Theorem
2 of Huang et al. (2024), we have that for all n ≥ Ñ ,

sup
x∈R

∣∣∣P(Sn < x)− P(σnξ < x)− A

n1/2σ
ν/(ν−2)
n

(
1− x2

σ2
n

)
e−x

2/(2σ2
n)
∣∣∣ ≤ 2

nσ2ν/(ν−2)
,

∣∣P(Sn < x)− P(σnξ < x)
∣∣ ≤ B

(
1

n1/2σ
ν/(ν−2)
n

e−x
2/16σ2

n +
1

n3/2x4σ
(8−ν)/(ν−2)
n

)

for some absolute constants A,B > 0. By splitting an integral and using these bounds,
∣∣P(n ṽn(Y ) < t)− P(n ṽn(Z) < t)

∣∣

=
∣∣∣
∫ ∞

−∞

(
P(Sn < t− y2)− P(σnξ < t− y2)

) e−y2/2

√
2π

dy
∣∣∣

≤
∫

|t−y2|<σn

∣∣P(Sn < t− y2)− P(σnξ < t− y2)
∣∣ e−y

2/2

√
2π

dy

+
∫

|t−y2|≥σn

∣∣P(Sn < t− y2)− P(σnξ < t− y2)
∣∣ e−y

2/2

√
2π

dy

≤ A
√

2π n1/2σ
ν/(ν−2)
n

∫

|t−y2|<σn

∣∣∣1− (t− y2)2

σ2
n

∣∣∣ e−
(t−y2)2

2σ2
n
− y

2

2 dy +
4
√
σn

nσ
2ν/(ν−2)
n

+
B

√
2π n1/2σ

ν/(ν−2)
n

∫

|t−y2|≥σn
e
− (t−y2)2

16σ2
n
− y

2

2 dy
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+
B

√
2π n3/2σ

(8−ν)/(ν−2)
n

∫

|t−y2|≥σn

1

(t− y2)4 e
− y

2

2 dy

≤ 2A
√
σn√

2π n1/2σ
ν/(ν−2)
n

+
4
√
σn

nσ
2ν/(ν−2)
n

+
B
√
σn√

2π n1/2σ
ν/(ν−2)
n

∫

|σ−1
n t−y2|≥1

e−
(σ−1
n t−y2)2

16 dy

+
B
√
σn√

2π n3/2σ
(8−ν)/(ν−2)
n σ4

n

∫

|σ−1
n t−y2|≥1

1

(σ−1
n t− y2)4

dy .

In the last line, we have used a change-of-variable y 7→ √σny and noted that e−y2/2 ≤ 1.
Now fix N ≥ Ñ such that σn = σ0n

−(ν−2)/(2ν) for all n ≥ N , which only depends on the
absolute constant σ0 > 0; in this case,

√
σn

n1/2σ
ν/(ν−2)
n

= σ
1
2
− ν
ν−2

0 n−
ν−2
4ν ,

√
σn

n3/2σ
(8−ν)/(ν−2)
n σ4

n

= σ
1
2
− 3ν
ν−2

0 n−
ν−2
4ν .

Then there exists some constant A′ that depends only on σ0 such that, for all n > N ,
∣∣P(n ṽn(Y ) < t)− P(n ṽn(Z) < t)

∣∣

≤ A′n−
ν−2
4ν

(
1 +

∫

|σ−1
n t−y2|≥1

e−
(σ−1
n t−y2)2

16 dy +
∫

|σ−1
n t−y2|≥1

1

(σ−1
n t− y2)4

dy
)

=: A′n−
ν−2
4ν (1 + I1(σ−1

n t) + I2(σ−1
n t)) ,

where we write I1(τ) :=
∫
|τ−y2|≥1

e−(τ−y2)2/16dy and I2(τ) :=
∫
|τ−y2|≥1

(τ − y2)−4dy. To
handle I1(τ), we split the integral further and use a change-of-variable with z = y2 to
obtain

I1(τ) ≤
∫
e−(τ−y2)2/16dy =

∫

y2<1
e−(τ−y2)2/16dy + 2

∫

y2≥1,y≥0
e−(τ−y2)2/16dy

≤ 2 + 2
∫

z≥1
e−(τ−z)2/16 1

2
√
z
dz

≤ 2 +
∫

z≥1
e−(τ−z)2/16 dz ≤ 2 +

√
2π × 8

∫
e−(τ−z)2/16

√
2π × 8

dz = 2 + 4
√
π .

A similar strategy applied to I2(τ) gives

I2(τ) =
∫

|τ−y2|≥1,y2<1

1

(τ − y2)4 dy + 2
∫

|τ−y2|≥1,y2≥1,y≥0

1

(τ − y2)4 dy

≤ 2 + 2
∫

|τ−z|≥1,z≥1

1

(τ − z)4

1

2
√
z
dz

≤ 2 +
∫

|τ−z|≥1

1

(τ − z)4 dz = 2 +
∫

|z′|≥1

1

(z′)4 d(z′) =
8

3
.

Substituting these two bounds back and noting that the resulted bounds do not depend
on t, we get that there exist some constants C > 0 and N ∈ N that depend only on the
absolute constant σ0 > 0 such that for all n ≥ N ,

supt∈R
∣∣P(n ṽn(Y ) < t)− P(n ṽn(Z) < t)

∣∣ ≤ Cn−
ν−2
4ν .
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B.3.2. Proof of Lemma B.3

Notice that
√
n(n− 1)ũn = p∗n −Rn = nṽn −Rn ,

and we already have the universality approximation bound for nṽn from Lemma B.2.
It suffices to apply variance domination to approximate

√
n(n− 1)ũn by nṽn, which

requires us to compute the relevant variances. Write Zi = (Zi1, Zi2), where Zi1 is the
Gaussian component that match the first two moments of Ui;σn+2−1/2σnξi1 and Zi2 is the
Gaussian component that matches ξi2 ∼ N (0, 1) in distribution. Then by independence,

σ2
∗ := Var[p∗n(Y )] = Var[p∗n(Z)] = Var

[
1√
n

∑n

i=1
Zi1

]
+ Var

[(
1√
n

∑n

i=1
Zi2

)2]

≥ Var
[(

1√
n

∑n

i=1
Zi2

)2]
= Var[Z2

12] = 2 .

By independence again,

Var[Rn(Y )] = Var[Rn(Z)] = Var
[

1

n

∑n

i=1
Z2
i2

]
=

Var[Z2
i2]

n
=

2

n
,

and also note that

E[Rn(Y )] = E[Rn(Z)] = 1 .

We now prove the upper bound by combining the variance domination result in Corol-
lary 4.5 and the upper bound of Lemma B.2. Let σ0 be given as in Lemma B.2. Since

√
n(n− 1) ũn(Y ) = (p∗n(Y )− 1)− (Rn − E[Rn(Y )]) ,

there are some absolute constants C̃ ′ > 0 and N ∈ N such that for all n ≥ N and every
t ∈ R,
∣∣P
(√

n(n− 1) ũn(Y ) ≤ t
)
− P

(
p∗n(Y )− 1 ≤ t

)∣∣

≤ C̃ ′
(Var[Rn(Y )]

Var[p∗n(Y )]

) 1
5

+ 2 supτ∈R
∣∣P
(
σ−1
∗ (p∗n(Y )− 1) ≤ τ

)
− P

(
σ−1
∗ (p∗n(Z)− 1) ≤ τ

)∣∣

≤ C̃ ′n−
1
5 + 2Cn−

ν−2
4ν ≤ C̃ ′∗n

− ν−2
4ν

for some absolute constants C, C̃ ′∗ > 0; in the last line, we have used that ν−2
4ν
≤ 1

8
< 1

5

for ν ∈ (2, 3]. Similarly we have
∣∣P
(√

n(n− 1) ũn(Z) ≤ t
)
− P

(
(p∗n(Z)− 1) ≤ t

)∣∣ ≤ C̃ ′∗n
− ν−2

4ν .

Combining both bounds with the upper bound of Lemma B.2 by the triangle inequality,
we get the desired upper bound that for some absolute constant C ′ > 0 and all n ≥ N ,

supt∈R

∣∣∣P
(√

n(n− 1) ũn(Y ) ≤ t
)
− P

(√
n(n− 1) ũn(Z) ≤ t

)∣∣∣ ≤ C ′n−
ν−2
4ν .
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For the lower bound, we apply Lemma 21 of Huang et al. (2024): There exist some
constants c∗ > 0 and Ñ ∈ N depending only on the fixed constant σ0—which is chosen
to be the one used in Theorem 2 of Huang et al. (2024) and also Lemma B.2—such that
for any n ≥ Ñ ,

P
(
p∗n(Z) < −2σn

)
− P

(
p∗n(Y ) < −2σn

)
≥ c∗ n

− ν−2
4ν .

To exploit this lower bound, we shall apply Lemma A.11 directly: For any ε > 0,

P
(√

n(n− 1) ũn(Z) < −2σn − σ∗ε− 1
)
− P

(√
n(n− 1) ũn(Y ) < −2σn − σ∗ε− 1

)

= P
(√

n(n− 1) ũn(Z) < −2σn − σ∗ε− 1
)
− P

(
p∗n(Z)− 1 < −2σn − 2σ∗ε− 1

)

− P
(
− 2σn − 2σ∗ε ≤ p∗n(Z) < −2σn

)

+ P
(
p∗n(Z) < −2σn

)
− P

(
p∗n(Y ) < −2σn

)

+ P
(
p∗n(Y )− 1 < −2σn − 1

)
− P

(√
n(n− 1) ũn(Y ) < −2σn − σ∗ε− 1

)

≥ − 2P
(∣∣Rn(Y )− 1

∣∣ ≥ σ∗ε
)
− P

(
|p∗n(Z) + 2σn + σ∗ε| ≤ σ∗ε

)
+ c∗ n

− ν−2
4ν

(a)

≥ − 2Var[Rn(Y )]

σ2
∗ε2

− c̃′∗(σ∗ε)
1/2

(E[|p∗n(Z) + 2σn + σ∗ε|2])1/4
+ c∗ n

− ν−2
4ν

(b)

≥ − 2

ε2n
− c̃′∗ε1/2 + c∗ n

− ν−2
4ν

for some absolute constant c̃′∗ > 0. In (a), we have used the Markov’s inequality and
the Carbery-Wright inequality (Fact 4.4); in (b), we have plugged in the bounds on
Var[Rn(Y )] and σ∗, and noted that E[|p∗n(Z) + 2σn + σ∗ε|2] ≥ Var[p∗n(Z)] = σ2

∗ . Taking
ε = n−2/5 gives

sup
t∈R

∣∣∣P
(√

n(n− 1) ũn(Y ) ≤ t
)
− P

(√
n(n− 1) ũn(Z) ≤ t

)∣∣∣ ≥ c∗ n
− ν−2

4ν −
(

4

5
+ c̃′∗

)
n−

1
5 ,

Since ν−2
4ν
≤ 1

8
< 1

5
, there are some absolute constants c′ > 0 and N ′ ≥ Ñ such that the

desired lower bound holds for all n ≥ N ′.

B.3.3. Proof of Lemma B.4

Recall from the proof of Lemma B.3 that E[Rn(Z)] = 1, Var[Rn(Z)] = 2
n

and that
Var[nṽn(Z)] = Var[p∗n(Z)] ≥ 2. Since
√
n(n− 1) ũn(Z) = nṽn(Z)− 1

n

∑n

i=1
Z2
i2 =

(
nṽn(Z)− 1

)
−
(

1

n

∑n

i=1
Z2
i2 − 1

)
,

we can again apply variance domination (Corollary 4.5) to obtain that

sup
t∈R

∣∣∣P
(√

n(n− 1) ũn(Z) ≤ t
)
− P

(
nṽn(Z)− 1 ≤ t

)∣∣∣ ≤ C

(
Var[Rn(Z)]

Var[nṽn(Z)− 1]

) 1
5

= Cn−
1
5

196



for some absolute constant C > 0. Noting that nṽn(Z) − 1
d
= σnξ + χ2

1 finishes the
proof.

B.4 Proof of Proposition 4.3

By Lemma A.11 followed by the Markov’s inequality, we get that for every t ∈ R and
ε > 0,

P(X ′ + Y ′ ≤ t) ≤ P(X ′ ≤ t+ ε) + P(|Y ′| ≥ ε) ≤ P(X ′ ≤ t+ ε) +
Var[Y ′]
ε2

,

P(X ′ + Y ′ ≤ t) ≥ P(X ′ ≤ t− ε)− Var[Y ′]
ε2

.

Subtracting P(X ′ ≤ t) from both sides, we get that
∣∣P(X ′ + Y ′ ≤ t)− P(X ′ ≤ t)

∣∣

≤ max
{
P(X ′ ∈ (t− ε, t]) , P(X ′ ∈ (t, t+ ε])

}
+

Var[Y ′]
ε2

,

and taking an infimum over ε > 0 gives the first bound. The second bound follows by
rescaling t and ε at the same time by σ′X > 0.
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Appendix C

Discussions and proofs for Chapters 4 and 5

This appendix provides additional results and proofs concerning both the general univer-
sality results in Chapter 4 and the applications considered in Chapter 5. The appendix is
organised as follows:

• Appendix C.1 includes additional discussions. Appendix C.1.1 illustrates the intuition
behind variance domination and changes in asymptotic regimes through a toy degree-
three V-statistic. Appendix C.1.2 discuss when one expects Assumption 5.1 to hold;

• Appendix C.2 proves the upper bound result in Theorem 4.1;
• Appendix C.3 proves the pair of upper and lower bounds in Theorem 4.7;
• Appendix C.4 proves the variance domination result of Theorem 4.2;
• Appendix C.5 includes several results from Denker (1985), useful for computing the

moments of higher-order U-statistics;
• Appendix C.6 proves the results in Section 5.1, which concern the universality of a

simple V-statistic under δ-regularity;
• Appendix C.7 proves the results for the remaining applications in Chapter 5. Ap-

pendix C.7.1 proves Proposition 5.5 for delta method, Appendix C.7.2 proves Propo-
sition 5.6 for U-statistics, and Appendix C.7.3 proves the results concerning subgraph
count statistics in Section 5.3.

• Appendix C.8 proves the properties of several univariate distributions discussed in
Section 4.5.
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C.1 Additional results

C.1.1. A toy degree-three V-statistic

Given a feature map φ : Rd → R and i.i.d. Rd-valued random vectors Yi’s, consider a
V-statistic

v(Y ) :=
1

n3

∑
i,j,k≤n φ(Yi)φ(Yj)φ(Yk) .

Write µr := E[Xr
1 ]. Since v(Y ) is a degree-three polynomial in the random variables

Xi := φ(Yi), Theorem 4.1 approximates p(X) := v(Y ) by replacing the R3 block tensors

Xi =
(
X̄i , X

2
i , X

3
i

)
=
(
Xi − µ1 , X

2
i − µ2 , X

3
i − µ3

)

by Gaussian surrogates ξi with the same mean and variance as Xi. To understand the
structure of the multilinear representation q(X) defined in (4.2), we consider the decom-
position

v(Y )− E v(Y ) = p(X)− E p(X)

=
1

n3

∑
i,j,k≤nXiXjXk −

(n− 1)(n− 2)

n2 µ3
1 −

3(n− 1)

n2 µ1µ2 −
1

n2µ3

=
(

1

n3

∑
i,j,k distinct

XiXjXk −
(n− 1)(n− 2)

n2 µ3
1

)
+
(

3

n3

∑
i 6=j X

2
iXj −

3(n− 1)

n2 µ1µ2

)

+
(

1

n3

∑n

i=1
X3
i −

1

n2µ3

)

=
3(n− 1)

n2

∑
i≤n µ

2
1X̄j +

3

n2

∑
i,j distinct

µ1X̄iX̄j +
1

n3

∑
i,j,k distinct

X̄iX̄jX̄k

+
3

n2

∑n

i=1
X2
i µ1 +

3

n2

∑n

i=1
µ2X̄i +

3

n3

∑
i 6=j X

2
i X̄j +

1

n3

∑n

i=1
X3
i

=: q1(X) + q2(X) + q3(X) + q4(X) + q5(X) + q6(X) + q7(X) =: q(X) .

Note that q1(X), q2(X) and q3(X) correspond to the Hoeffding’s decomposition of the
U-statistic associated with p(X) = v(Y ) (see (5.6) in Section 5.3).

Theorem 4.1 gives the error of approximating q(X) by q(Ξ), where we recall that
Ξ denotes the collection of the Gaussian surrogates (ξ1, . . . , ξn). Variance domination
(Theorem 4.2) says when we can make a further approximation by some ql(Ξ), depending
on how the variances of q1(X), . . . , q7(X) compare: They can be computed respectively
as

3n−3(n− 1)2µ4
1 Var[X1] =: n−1σ2

1 , 3n−3(n− 1)µ2
1 Var[X1]2 =: n−2σ2

2 ,

n−5(n− 1)(n− 2) Var[X1]3 =: n−3σ2
3 3n−3µ2

1 Var[X2
1 ] =: n−3σ2

4 ,

3n−3µ2
2 Var[X1] =: n−3σ2

5 , 3n−5(n− 1) Var[X2
1 ]Var[X1] =: n−4σ2

6 ,

n−5Var[X3
1 ] =: n−5σ2

7 .

Theorem 4.2 then provides the error of approximation by each ql(Ξ): For example, we
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have

sup
t∈R

∣∣∣P
(
n1/2

σ1

(
v(Y )− E[v(Y )]

)
≤ t
)
− P

(
n1/2

σ1
q1(Ξ) ≤ t

)∣∣∣

≤ C
((

n3/2σ2 + n(σ3 + σ4 + σ5) + n1/2σ6 + σ7

n2σ1

) 2
3

+ n−
ν−2
2ν+2

(‖X̄1‖Lν
‖X̄1‖L2

) ν
ν+1
)
,

sup
t∈R

∣∣∣P
(
n

σ2

(
v(Y )− E[v(Y )]

)
≤ t
)
− P

(
n

σ2
q2(Ξ) ≤ t

)∣∣∣

≤ C
((

n2σ1 + n(σ3 + σ4 + σ5) + n1/2σ6 + σ7

n3/2σ2

) 2
5

+ n−
ν−2
4ν+2

(‖X̄1‖Lν
‖X̄1‖L2

) 2ν
2ν+1
)
.

We may also characterise the different limits. q1(Ξ) is a Gaussian. Writing ξ̄1 = 1
n

∑n
i=1 ξi1,

where ξi1 is the first coordinate of ξi (corresponding to X̄i), we have

q2(Ξ) =
(
ξ̄1

)2 − 1

n

(
1

n

∑
i≤n ξ

2
i1

)
≈
(
ξ̄1

)2 − 1

n
E
[(
ξ̄1

)2]
, (C.1)

i.e. q2(Ξ) asymptotically behaves like a centred and rescaled chi-square. An analogous
argument shows that q3(Ξ) behaves like a centred and rescaled cubic power of a Gaussian,
q6(Ξ) behaves like a centred and rescaled chi-square, and q4(Ξ), q5(Ξ) and q7(Ξ) are
Gaussian.

Classically with d fixed and all σ2
l bounded, the limit of v(Y ) can be read off from

variance domination: q1(Ξ) always dominates when σ1 6= 0, q2(Ξ) dominates when
σ1 = 0 and σ2 6= 0, and so on. Meanwhile, provided that X1 is not constant almost
surely, the only way to set some σl to zero is by requiring µ1 to be zero. The only
possible limits are therefore

(i) the Gaussian limit given by q1(Ξ) when µ1 6= 0;

(ii) a mixture limit corresponding to q3(Ξ) + q5(Ξ) when µ1 = 0 and µ2 6= 0.

Notably since d is fixed, δ-regularity holds directly for the V-statistics associated with
each ql(X), and Lemma 5.3 allows these two limits to be expressed equivalently by re-
placing each ξi by (Zi − EXi, Z

2
i − EX2

i , Z
3
i − EZ3

i ). This agrees with classical results
on asymptotics of non-degenerate (µ1 6= 0) and degenerate (µ1 = 0) V-statistics. We also
remark that the presence of q5(Ξ) in (ii) shows that the limit of a degenerate V-statistic
differs from that of its associated degenerate U-statistic.

In the high-dimensional setting, however, σ2
l are large relative to n through their

dependence on d ≡ dn. Since d is only an implicit parameter affecting the variances, d is
allowed to be much larger than n (e.g. with exponential growth). In particular, we may
have the mixture limit from q3(Ξ) + q5(Ξ) even if µ1 6= 0: It suffices to ask µ1 to be
asymptotically negligible, and the threshold for comparison is exactly given by variance
domination (Theorem 4.2).

Meanwhile, if q7(X) dominates, the implied limit from q7(Ξ) (Gaussian universality
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with the augmented variables) is different from the limit given by replacing Xi’s with
Zi’s (Gaussian universality the original variables):

n5/2q7(Ξ) =
1√
n

∑n

i=1
ξi3 ∼ N (0,Var[X3

1 ]) ,

but

Var
[

1√
n

∑n

i=1
(Z3

i − EX3
i )
]

= Var[Z3
i ] = E[X1]3 + 3E[X1]Var[X1] .

This is a case where δ-regularity is violated, and the limits obtained from the two notions
of Gaussian universality disagree. In view of the continuous mapping theorem applied
to v(Y ) =

(
1
n

∑n
i=1Xi

)3, we believe that q7(X) never dominates in v(Y ) for reasonable
distributions of X1. Notably if X1 is sufficiently light-tailed such that 1√

n

∑n
i=1 Xi is

asymptotically normal, Var[v(Y )] is either Θ(n−1) or Θ(n−3), i.e. larger than Var[q7(X)] =

Θ(n−5).

C.1.2. Assumption 5.1 in L2

Denote L2(E , µ) as the L2 space of E → R functions under µ. We first show that As-
sumption 5.1 in Section 5.3, used for U-statistics, is very mild and holds under mild
conditions when ν = 2.

Lemma C.1. Fix n,m, d ∈ N, ν ≥ 1 and (E , µ) a separable measure space. Assume

that ‖u(Y1, . . . , Ym)‖L2
< ∞. Then there exists a sequence of orthonormal L2(E , µ)

functions, {φk}∞k=1, and an array of real values {λk1...km
}∞k1,...,km=1, such that

εK;2 =
∥∥∥
∑K

k1,...,km=1
λk1...km

φk1
(Y1) . . . φkm(Ym)− u(Y1, . . . , Ym)

∥∥∥
L2

K→∞−−−→ 0 .

Proof. Separability of (E , µ) implies thatL2(E , µ) is a separable Hilbert space (see e.g. Ex-
ercise 10(b), Chapter 1, Stein and Shakarchi (2011)), which implies the existence of
a countable orthonormal basis {φk}∞k=1. Consider the m-fold product space (Em, µm).
Then the collection of pointwise products {φk1

× . . .×φkm}∞k1,...,km=1 forms an orthonor-
mal basis in L2(Em, µm). The stated assumption implies u ∈ L2(Em, µm), which implies
the desired result.

Remark C.1. We emphasise that the moment boundedness assumption is only required
for every fixed n, m and d. Therefore, this does not contradict our overall analysis, which
considers how the moments can be large relative to n (through e.g. dependence on d and
m).

In the next lemma, we give another choice of approximating functions provided that
u is well-approximated by its Taylor expansion in Lν . For each k ∈ K, let Mk ∈ N be
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the largest number such that
∑Mk−1

M=1
dM < k ≤

∑Mk

M=1
dM .

For y ∈ Rd, let (y⊗M)t be the t-th coordinate of the tensor y⊗M according to a fixed total
order on Nm, and define

φ̃k(y) :=
(
y⊗Mk

)
k−

∑Mk−1

M=1 dM
.

For example, φ̃1(y), . . . , φ̃d(y) are the d coordinates of y, φ̃d+1(y), . . . , φ̃d+d2(y) are the
d2 coordinates of y⊗2 and so on.

Lemma C.2. Fix ν ∈ (2, 3]. Assume that u is infinitely differentiable and
∥∥u(Y1, . . . , Ym)−

∑L

l=0
∂lu(0)(Y1, . . . , Ym)⊗l

∥∥
Lν

L→∞−−−→ 0 .

Then Assumption 5.1 holds with {φ̃k}k∈N defined above and some {λ̃k1...km
}k1,...,km∈N.

Proof of Lemma C.2. Each coordinate of (Y1, . . . , Ym)⊗l can be written as a product of
φ̃k1

(Y1), . . . , φ̃km(Ym) for some k1, . . . , km ≤
∑l

M=1 d
M . By identifying λ̃k1...km

’s as the
corresponding coordinate in ∂lu(0), we see that the Taylor approximation error above is
exactly εK;ν , which converges to zero by assumption.

C.2 Proof of Theorem 4.1

The proof idea is standard: We first compare the distributions on a class of smooth func-
tions via the Lindeberg method (e.g. Chapter 9 of Van Handel (2014)). The smooth func-
tion bound is then combined with the Carbery-Wright inequality (Carbery and Wright,
2001), an anti-concentration bound for a polynomial of Gaussians, to obtain the bound in
the Kolmogorov metric. In this section, we also include several lemmas that will simplify
subsequent proofs.

The next result allows us to control the difference in expectation of the above ap-
proximation functions evaluated at independent random quantities. We will be using the
smooth approximation of an indicator function from Lemma A.10.

Lemma C.3. Fix t ∈ R, δ > 0 and define ht;δ ≡ h2;t;δ as in Lemma A.10. Let V,Z,W be

some random vectors in Rb and Y be a random variable in R, with dependence allowed.

Then there exists an absolute constant C such that for any ν ∈ (2, 3] and δ > 0, we have

|E[ht;δ(W
>V + Y )− ht;δ(W>Z + Y )]| ≤ Q1 +Q2 +Q3 ,
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where

Q1 :=
∣∣E
[
h′t;δ(Y )W>(V − Z)

]∣∣ , Q2 :=
1

2

∣∣E
[
h′′t;δ(Y )

(
W> (VV> − ZZ>

)
W
)]∣∣ ,

Q3 := 54δ−ν(‖W>V‖νLν + ‖W>Z‖νLν ) .

Assume additionally that (V,Z) is independent of (W, Y ). If E[V] = E[Z], thenQ1 = 0.

If Var[V] = Var[Z], then Q2 = 0.

Proof of Lemma C.3. Since ht;δ is twice continuously differentiable, by a second-order
Taylor expansion with the integral remainder, we get that for any w, r ∈ R,

ht;δ(u) = ht;δ(r) + h′t;δ(r) (u− r) +
∫ u

r
h′′t;δ(t) (u− t) dt

= ht;δ(r) + h′t;δ(r) (u− r) +
∫ 1

0
h′′t;δ
(
(u− r)θ + r

)
(u− r)2(1− θ) dθ

= ht;δ(r) + h′t;δ(r) (u− r) + E
[
h′′t;δ
(
(u− r)Θ + r

)
(u− r)2(1−Θ)

]
, (C.2)

where Θ ∼ Uniform[0, 1]. By applying this expansion once with u = W>V + Y, r = Y

and once with u = W>Z + Y, r = Y , we get that
∣∣E
[
ht;δ(W

>V + Y )− ht;δ(W>Z + Y )
]∣∣

=
∣∣∣E
[
h′t;δ(Y ) (W>V)− h′t;δ(Y ) (W>Z) + h′′t;δ

(
ΘW>V + Y

)
(W>V)2(1−Θ)

− h′′t;δ
(
ΘW>Z + Y

)
(W>Z)2(1−Θ)

]∣∣∣ .

By adding and subtracting two second derivative terms evaluated at t, we can further
obtain

∣∣E
[
ht;δ(W

>V + Y )− ht;δ(W>Z + Y )
]∣∣

=
∣∣∣E
[
h′t;δ(Y )W>(V − Z)

]
+ E

[
h′′t;δ(Y )

(
(W>V)2 − (W>Z)2

)
(1−Θ)

]

+ E
[(
h′′t;δ
(
ΘW>V + Y

)
− h′′t;δ(Y )

)
(W>V)2(1−Θ)

]

− E
[(
h′′t;δ
(
ΘW>Z + Y

)
− h′′t;δ(Y )

)
(W>Z)2(1−Θ)

]∣∣∣

=: |Q1 +Q2 +QV −QZ | ≤ |Q1|+ |Q2|+ |QV |+ |QZ | . (C.3)

We handle the four terms individually. Q1 is already in the desired form. Q2 can be
simplified by noting that Θ is independent of all other variables:

Q2 =
1

2
E
[
h′′t;δ(Y )

(
W> (VV> − ZZ>

)
W
)]
.

Now to handle QV and QZ , we use the Jensen’s inequality to move the absolute sign
inside the expectation and note that 1−Θ is bounded in norm by 1:

|QV | =
∣∣E
[(
h′′t;δ
(
ΘW>V + Y

)
− h′′t;δ(Y )

)
(W>V)2(1−Θ)

]∣∣

≤ E
[∣∣h′′t;δ

(
ΘW>V + Y

)
− h′′t;δ(Y )

∣∣×
(
W>V

)2]
.
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Recall the Hölder property of h′′t;δ from Lemma A.10: For any ε ∈ [0, 1] and x, y ∈ R,
we have

∣∣h′′t;δ(x)− h′′t;δ(y)
∣∣ ≤ 54δ−2−ε |x− y|ε ,

Applying this to the bound above with ε = ν − 2 ∈ (0, 1], x = ΘW>V + Y and y = Y ,
while noting that |Θ| is bounded above by 1 almost surely, we get that

|QV | ≤ 54 δ−νE
[
|ΘW>V|ν−2 (W>V)2

]
≤ 54 δ−ν

∥∥W>V
∥∥ν
Lν
.

To deal with QZ , the argument is the same except V is replaced by Z:

|QZ | ≤ 54 δ−ν
∥∥W>Z

∥∥ν
Lν
.

Applying the bounds to (C.3) then gives the first desired bound:
∣∣E
[
ht;δ(W

>V + Y )− ht;δ(W>Z + Y )
]∣∣

≤ |Q1|+ |Q2|+ 54 δ−ν
(∥∥W>V

∥∥ν
Lν

+
∥∥W>Z

∥∥ν
Lν

)
.

In the case where E[V] = E[Z] and (V,Z) is independent of (W, Y ), we get that

Q1 = E
[
h′t;δ(Y )W>(V − Z)

]
= E

[
h′t;δ(Y )W>E[V − Z]

]
= 0 .

Similarly in the case where Var[V] = Var[Z] and (V,Z) is independent of (W, Y ), we
have

Q2 =
1

2
E
[
h′′t;δ(Y )

(
W> E[VV> − ZZ>]W

)]
= 0 .

The next lemma is convenient for simplifying moment terms involving Gaussians:

Lemma C.4. Consider a zero-mean Rb-valued Gaussian vector η. Suppose Var[η] =

Var[V ] for some Rb zero-mean random vector V and let W be a random vector in Rb

independent of η and V . Then for any real number ν ≥ 2, we have

E
[∣∣W>η

∣∣ν] ≤ 2ν/2 Γ
(
ν+1

2

)
√
π

E
[
|W>V |ν

]
,

where Γ represents the Gamma function. In the case ν = 2, we have Var[W>η] =

Var[W>V ].

Proof of Lemma C.4. Note that W is independent of η and V . Conditioning on W , W>η

is a zero-mean normal random variable with variance given by

W>Var[η]W = W>Var[V ]W = E
[
W>V V >W

∣∣W
]

= E
[
(W>V )2

∣∣W
]
.

Applying the formula of the ν-th moment of a Gaussian random variable followed by the
Jensen’s inequality with ν ≥ 2, we get that

E
[∣∣W>η

∣∣ν] = E
[
E
[∣∣W>η

∣∣ν∣∣W
]]

=
2ν/2 Γ

(
ν+1

2

)
√
π

E
[
E
[
(W>V )2

∣∣W
]ν/2]
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≤ 2ν/2 Γ
(
ν+1

2

)
√
π

E
[
|W>V |ν

]
.

For ν = 2, the above becomes an equality and we get Var[W>η] = Var[W>V ].

Proof of Theorem 4.1. We first note that since qm is affine in each argument, E[qm(Ξ)] =

E[qm(X)] = 0. Meanwhile, by applying Lemma C.4 repeatedly, Var[qm(X)] = Var[qm(Ξ)].
This proves the second part of Theorem 4.1.

To prove the first part, we denote q̃m := σ−1qm for simplicity. We first approximate
the probability terms. For τ ∈ R and δ > 0, let hτ ;δ ≡ h2;τ ;δ be the twice continuously
differentiable function defined in Lemma A.10, which satisfies that hτ+δ;δ(x) ≤ I{x>τ} ≤
hτ ;δ(x) for any τ ∈ R. This allows us to bound

P(q̃m(X) > t)− P(q̃m(Ξ) > t− δ) = E
[
I{q̃m(X)>t} − I{q̃m(Ξ)>t−δ}

]

≤ E
[
ht;δ
(
q̃m(X)

)
− ht;δ

(
q̃m(Ξ)

)]
,

and similarly

P(q̃m(Ξ) > t+ δ)− P(q̃m(X) > t) ≤ E
[
ht+δ;δ

(
q̃m(Ξ)

)
− ht+δ;δ

(
q̃m(X)

)]
.

By expressing P(q̃m(Ξ) > t − δ) = P(q̃m(Ξ) > t) + P(t − δ < q̃m(Ξ) ≤ t) and
performing a similar decomposition for P(q̃m(Ξ) > t+ δ), we obtain that
∣∣P(σ−1qm(X) ≤t)− P(σ−1qm(Ξ) ≤ t)

∣∣ = |P(q̃m(X) > t)− P(q̃m(Ξ) > t)|
≤ max{P(t− δ < q̃m(Ξ) ≤ t) , P(t ≤ q̃m(Ξ) < t+ δ)}+ max{Et, Et+δ}
≤ P(t− δ < q̃m(Ξ) < t+ δ) + Et + Et+δ , (C.4)

where we have defined Eτ := |E[hτ ;δ(q̃m(X)) − hτ ;δ(q̃m(Ξ))]| for τ ∈ R. The next
step is to control quantities of the form Eτ by the Lindeberg method. We recall Wi =

(X1, . . . ,Xi−1,0, ξi+1, . . . , ξn) ∈ RnD and define W∗
i = (X1, . . . ,Xi−1,Xi, ξi+1, . . . , ξn).

Then by expanding the difference into a telescoping sum and applying the triangle in-
equality,

Eτ = |E[hτ ;δ(q̃m(X))− hτ ;δ(q̃m(Ξ))]|
≤
∑n

i=1
|E[hτ ;δ(q̃m(W∗

i ))− hτ ;δ(q̃m(W∗
i−1))]|

(a)
=
∑n

i=1
|E[hτ ;δ(q̃m(W∗

i ))− hτ ;δ(q̃m(W∗
i−1))]| =:

∑n

i=1
Eτ ;i .

We focus on bounding each Eτ ;i. Since qm is affine in the i-th argument, we get

q̃m(W∗
i ) = ∂iq̃m(Wi)

>Xi + q̃m(Wi) and q̃m(W∗
i−1) = ∂iq̃m(Wi)

>ξi + q̃m(Wi) .

Note that Xi and ξi are zero-mean with the same variance, and are independent of Wi.
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This allows us to apply Lemma C.3: For any ν ∈ (2, 3] and δ > 0, we have

Eτ ;i =
∣∣E
[
hτ ;δ

(
∂iq̃m(Wi)

>Xi + q̃m(Wi)
)
− hτ ;δ

(
∂iq̃m(Wi)

>ξi + q̃m(Wi)
)]∣∣ (C.5)

≤ 54 δ−ν
(∥∥∂iq̃m(Wi)

>Xi

∥∥ν
Lν

+
∥∥∂iq̃m(Wi)

>ξi
∥∥ν
Lν

)
.

Since ξi is a Gaussian with the same mean and variance as Xi and both are independent
of ∂if(Wi), by Lemma C.4 and noting that ν ≤ 3, there is an absolute constant C ′ > 0

such that

E
[
|∂iq̃m(Wi)

>ξi|ν
]
≤ C ′

∥∥∂iq̃m(Wi)
>Xi

∥∥ν
Lν
.

By additionally noting that Mν;i = σ‖∂iq̃m(Wi)
>Xi‖Lν by definition, we get that

Eτ ;i ≤ 54(C ′ + 1) δ−νσ−νMν
ν;i .

Summing over i = 1, . . . , n then gives

Eτ ≤
∑n

i=1
Eτ ;ir ≤ 54(C ′ + 1)

∑n
i=1M

ν
ν;i

δνσν
. (C.6)

On the other hand, by Lemma 4.4, there exists an absolute constant C∗ > 0 such that

P(t− δ < q̃m(Ξ) <t+ δ) ≤ C∗mδ1/m(E[|q̃m(Ξ)− t|2])−1/2m

(a)
= C∗mδ1/m(σ−2Var[qm(Ξ)] + t2)−1/2m (b)

= C∗mδ1/m(1 + t2)−1/2m .

(C.7)

In (a) and (b), we have used that E[f(Ξ)] = 0 and Var[f(Ξ)] = Var[f(X)] = σ2.
Substituting (C.6) and (C.7) into (C.4), we get that there exists some absolute constant
C > 0 such that

∣∣P(σ−1qm(X) ≤ t)− P(σ−1qm(Ξ) ≤ t)
∣∣ ≤ Cm

2

(
δ1/m

(1 + t2)1/2m
+

∑n
i=1M

ν
ν;i

δνσν

)
.

Finally by choosing δ = (1 + t2)
1

2+2νm

(
σ−ν

∑n
i=1 M

ν
ν;i

) m
νm+1 , we get the desired bound

∣∣P(σ−1f(X) ≤ t)− P(σ−1f(Ξ) ≤ t)
∣∣ ≤ Cm

( ∑n
i=1M

ν
ν;i

(1 + t2)ν/2σν

) 1
νm+1

.

C.3 Proofs for Theorem 4.7

Recall that q∗m is the multilinear representation of p∗m with respect to X . The proof con-
sists of three main steps:

(i) By carefully exploiting the heavy tail of Vi’s and the asymmetry of v∗m′ , we can ob-
tain the first lower bound for the approximation of p∗m(X) by p∗m(Z) (Lemma C.5);

(ii) By applying Theorem 4.1 to approximate p∗m(X) = q∗m(X)+E[p∗m(X)] by q∗m(Ξ)+

E[p∗m(X)], the upper bound involving q∗m in Theorem 4.7 reduces to a moment
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control (Lemma C.7);

(iii) By verifying δ-regularity and modifying the argument of Proposition 5.2, we can
approximate q∗m(Ξ) + E[p∗m(X)] further by p∗m(Z) (Lemma C.8).

We introduce some more notation. Note that we can express Xi = (Vi, Yi) and Xi =

(Vi,Yi), where Yi = (Yi, . . . , Y
m
i − E[Y m

i ]). Correspondingly, we express

Zi = (ZV ;i, ZY ;i) where ZV ;i ∼ N (0,VarVi) and ZY ;i ∼ N (0,VarYi) ,

ξi = (ξV ;i, ξY;i) where ξV ;i ∼ N (0,VarVi) and ξY;i ∼ N (0,VarYi) .

Denote the collections ZV := (ZV ;i)i≤n, ZY := (ZY ;i)i≤n and ΞY := (ξY;i)i≤n. It is also
convenient to denote q∗v;m as the multilinear representation of v∗m with respect to Y , since

q∗m(X) = v∗1(V ) + q∗v;m(Y) and q∗m(Ξ)
d
= v∗1(ZV ) + q∗v;m(ΞY) .

Lemma C.5. Fix ν > 2. Assume that m is even with m = o(log n). Then there exist

some absolute constants c, σ0 > 0 and N ∈ N such that, for any n ≥ N ,

P
(
p∗m(Z) < −2σn

)
− P

(
p∗m(X) < −2σn

)
≥ cn−

ν−2
2νm .

Proof of Lemma C.5. Since the second coordinate of Xi is already Gaussian, the main
hurdle is to approximate the heavy-tailed average by a Gaussian. Let FV be the c.d.f. of

1√
n

∑n
i=1 Vi – an empirical average of the heavy-tailed coordinates – and FZ be the

c.d.f. of 1√
n

∑n
i=1 Zi, where Zi’s are i.i.d. zero-mean random variables with the same

variance as V1. Write ϕ be the p.d.f. of 1√
n

∑n
i=1 Yi ∼ N (0, 1). Recalling that m is even

and denoting

I(x) := FZ(−2σn − xm)− FV (−2σn − xm) ,

we can bound the quantity of interest as

P
(
p∗m(Z) < −2σn

)
− P

(
p∗m(X) < −2σn

)
=

∫

0≤xm<∞
I(x)ϕ(x)dx

≥
∫

0≤xm≤κmσn
I(x)ϕ(x)dx−

∣∣∣
∫

|x|>κσ1/m
n

I(x)ϕ(x)dx
∣∣∣

=: J1 − J2 ,

for some κ ≥ 1 to be chosen later.

Bounding J1. Recall that for y ∈ R, Lemma 4.9 provides an error bound for
approximating the difference FZ(y)− Fn(y) by

−Fq(y) =
A

n1/2σ
ν/(ν−2)
n

(
y2

σ2
n
− 1
)
e−y

2/(2σ2
n)

for some absolute constant A > 0. Therefore

J1 ≥
∫

xm≤κmσn
−Fq(−2σn − xm)ϕ(x)dx− 2

nσ
2ν/(ν−2)
n

∫

xm≤κmσn
ϕ(x)dx
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(a)

≥ A

n1/2σ
ν/(ν−2)
n

∫

xm≤σn

(
(2σn + xm)2

σ2
n

− 1
)
e−(2σn+xm)2/(2σ2

n)ϕ(x)dx

− 2

nσ
2ν/(ν−2)
n

∫

xm≤κmσn
ϕ(x)dx

(b)

≥ 3e−9/2A

n1/2σ
ν/(ν−2)
n

∫

xm≤σn
ϕ(x)dx− 2

nσ
2ν/(ν−2)
n

∫

xm≤κmσn
ϕ(x)dx .

In (a), we have restricted the first integral to a smaller ball by noting that κ ≥ 1; in
(b), we have noted in the first integral that 4σ2

n ≤ (2σn + xm)2 ≤ 9σ2
n in the domain of

integration. Since both integrals involve c.d.f. of a standard normal, we obtain

J1 ≥
3e−9/2A

n1/2σ
ν/(ν−2)
n

2σ
1/m
n√
2π

exp
(
− σ

2/m
n

2

)
− 4κσ

1/m
n

nσ
2ν/(ν−2)
n

≥ σ
1/m
n

n1/2σ
ν/(ν−2)
n

(
A1e

− 1
2
σ

2/m
n − A2κ

n1/2σ
ν/(ν−2)
n

)

for some absolute constants A1, A2 > 0.

Bounding J2. Recall that σn = min
{
σ0n

− ν−2
2ν , 1

}
, which implies

σ
ν
ν−2
n ≥ min

{
σ

ν
ν−2

0 n−1/2 , 1
}
≥ σ

ν
ν−2

0 n−1/2 .

Suppose we choose σ0 such that σ
ν
ν−2

0 > 6−1/2. Since 6(6−1/2)2 = 1 ≤ n, by applying
Lemma 4.10 with M = 6−1/2, there exists some absolute constant C > 0 such that

J2 =
∣∣∣
∫

xm>κmσn

(
FZ(−2σn − xm)− Fn(−2σn − xm)

)
ϕ(x)dx

∣∣∣

≤ C

n1/2σ
ν/(ν−2)
n

∫

xm>κmσn

e
− (2σn+xm)2

16σ2
n ϕ(x)dx

+
C

n3/2σ
(8−ν)/(ν−2)
n

∫

xm>κmσn

1

(2σn + xm)4ϕ(x)dx

=: J21 + J22 .

By applying a change-of-variable, we get that

J21 ≤
C

n1/2σ
ν/(ν−2)
n

∫

xm>κmσn

e
− x2m

16σ2
nϕ(x)dx

=
Cσ

1/m
n

n1/2σ
ν/(ν−2)
n

∫

xm>κm
e−

x2m

16 ϕ
(
σ

1/m
n x

)
dx

(a)

≤ 2Cσ
1/m
n

n1/2σ
ν/(ν−2)
n

∫

x>κ
e−

x2m

16 dx

≤ 2Cσ
1/m
n

n1/2σ
ν/(ν−2)
n

∫

x>κ
(2m)

(
x

κ

)2m−1

e−
x2m

16 dx

≤ A3 σ
1/m
n

n1/2σ
ν/(ν−2)
n κ2m−1

for some absolute constantA3 > 0. In (a), we have noted that ϕ(x) ≤ 1 and the integrand
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is symmetric in x. Similarly, we can bound

J22 ≤
C

n3/2σ
(8−ν)/(ν−2)
n

∫

xm>κmσn

1

x4mϕ(x)dx

≤ C

n3/2σ
(8−ν)/(ν−2)
n

∫

xm>κmσn

1

x4mdx

=
(4m− 1)C

n3/2σ
(8−ν)/(ν−2)
n σ

4−1/m
n κ4m−1

=
A4 σ

1/m
n (4m− 1)

n3/2σ
3ν/(ν−2)
n κ4m−1

for some absolute constant A4 > 0.

Combining the bounds. Combining the bounds, we get that if σ
ν
ν−2

0 > 6−1/2, then

P
(
p∗m(Z) < −2σn

)
− P

(
p∗m(X) < −2σn

)
≥ J1 − J2

≥ σ
1/m
n

n1/2σ
ν/(ν−2)
n

(
A1e

− 1
2
σ

2/m
n − A2κ

n1/2σ
ν/(ν−2)
n

− A3

κ2m−1 −
A4(4m− 1)

nσ
2ν/(ν−2)
n κ4m−1

)
.

Recall that σn = min
{
σ0n

− ν−2
2ν , 1

}
and m = o(log n). Take the absolute constant

N2 ∈ N sufficiently large such that σN2
= σ0N

− ν−2
2ν

2 < 1 and therefore

N
1/2
2 σ

ν/(ν−2)
N2

= σ
ν/(ν−2)
0 .

Also take the absolute constants κ > 2 sufficiently large such that A3

κ2m−1 <
1
9
A1, σ0 > 0

sufficiently large such that A2κ

σ
ν/(ν−2)
0

< 1
9
A1 and A4

σ
2ν/(ν−2)
0

4m−1
κ4m−1 <

1
9
A1, and finally N1 ≥

N2 sufficiently large such that A1e
− 1

2
σ

2/m
N1 = A1e

− 1
2
σ

2/m
0 N

− ν−2
mν

1 ≥ 1
2
A1. Then we get the

desired bound that, for some absolute constant c > 0 and all n ≥ N := N1,

P
(
p∗m(Z) < −2σn

)
− P

(
p∗m(X) < −2σn

)
≥ A1

6

σ
1/m
n

n1/2σ
ν/(ν−2)
n

≥ cn−
ν−2
2νm .

To obtain the desired moment controls, we will need to use tight bounds on the mo-
ments of a univariate Gaussian. The proof of the following result is included in Ap-
pendix C.8.1.

Lemma C.6. Let Z ∼ N (0, 1). Then there exist some absolute constants C, c > 0 such

that

(i) for any ν ≥ 1, E|Z|ν ≤ Cνν/2;

(ii) for any m1,m2 ∈ N with different parities, Cov[Zm1 , Zm2 ] = 0;

(iii) form1,m2 ∈ N with the same parity, Cov[Zm1 , Zm2 ] > cm1+m2(m1+m2)(m1+m2)/2.

The next result controls the moment ratio arising from Theorem 4.1.
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Lemma C.7. Fix ν ∈ (2, 3] and let n ≥ 2m2. Then for some absolute constant C > 0,
∑n
i=1

∥∥∂i q∗m(Wi)
>Xi

∥∥ν
Lν(

Var[p∗m(X)]
)ν/2 ≤ Cmn−

ν−2
2 , where Wi :=

(
X1, . . . ,Xi−1, 0, ξi+1, . . . , ξn

)
.

Proof of Lemma C.7. First note that by independence,

σ =
√

Var[q∗m(X)] =
√

Var[v∗1(V )] + Var[q∗v;m(ΞY)] ≥
√

Var[q∗v;m(ΞY)] .

Next to bound the ν-th moment, denote WV ;i := (V1, . . . , Vi−1, 0, ZV ;i+1, . . . , ZV ;n) and
WY;i := (Y1, . . . ,Yi−1, 0, ξY;i+1, . . . , ξY;n). By the triangle inequality, we get that

∥∥∂i q∗m(Wi)
>Xi

∥∥
Lν

=
∥∥∂i v∗1(WV ;i)Vi + ∂i q

∗
v;m(WY ;i)

>Yi

∥∥
Lν

≤ n−1/2‖Vi‖Lν +
∥∥∂i q∗v;m(WY ;i)

>Yi

∥∥
Lν
.

Since ν ∈ (2, 3], the quantity to control can be bounded for some absolute constant
C1 > 0 as

∑n
i=1

∥∥∂i q∗m(Wi)
>Xi

∥∥ν
Lν(

Var[p∗m(X)]
)ν/2

(a)

≤
4n−

ν−2
2 ‖V1‖Lν + 4

∑n

i=1

∥∥∂i q∗v;m(WY ;i)
>Yi

∥∥ν
Lν

(Var[q∗v;m(ΞY)])ν/2

(b)

≤ C1n
− ν−2

2

(Var[v∗m(Y )])ν/2
+

4
∑n

i=1

∥∥∂i q∗v;m(WY ;i)
>Yi

∥∥ν
Lν

(Var[v∗m(Y )])ν/2
. (C.8)

In (a), we have used the Jensen’s inequality to note that (a + b)ν ≤ 2ν−1(aν + bν) ≤
4(aν + bν) and noted that Vi’s are i.i.d.; in (b), we have used the moment bound on
V1 from Lemma 4.8 and noted that Var[q∗v;m(ΞY)] = Var[q∗v;m(Y)] = Var[v∗m(Y )] by a
repeated application of Lemma C.4 and property of the multilinear representation. The
first term can be controlled by using the lower bound from Lemma C.6:

Var[v∗m(Y )] = Var
[(

1√
n

∑n

i=1
Yi

)m]
= Var[Y m

1 ] ≥ (c′2)m(2m)m ≥ c2 (C.9)

for some absolute constants c′2, c2 > 0. The second term can be controlled by applying
Lemma 5.4: Since n ≥ 2m2, there exists some absolute constant C3 > 0 such that

∑n

i=1

∥∥∂i q∗v;m(WY ;i)
>Yi

∥∥ν
Lν

(Var[q∗v;m(ΞY)])ν/2
≤ (C3)m n−

ν−2
2

(∑m
k=1

(
n
k

)
(α∗ν(k))2

∑m
k=1

(
n
k

)
(α∗2(k))2

) ν
2

, (C.10)

where

α∗ν(k) :=

∥∥∥∥
∑

p1+...+pk=m
p1,...,pk≥1

∏k

l=1

(
Y pl
l − EY pl

l

)∥∥∥∥
Lν

.

We are left with bounding α∗2(k) and α∗ν(k). Since Yi’s are i.i.d. standard normals, the
proof is down to using the moment bounds for standard normals from Lemma C.6. For
convenience, we denote Y pl

l := Y pl
l − EY pl

l from now on. We can then express

(α∗2(k))2 =
∑

p1+...+pk=m
p1,...,pk≥1

∑
q1+...+qk=m
q1,...,qk≥1

Cov
[∏k

l=1
Y pl
l ,

∏k

l=1
Y pl
l

]
.
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We now show by induction that for some absolute constant c > 0,

Cov
[∏k

l=1
Y pl
l ,

∏k

l=1
Y pl
l

]
≥

∏k

l=1
I{pl≡ql (mod 2)} c

pl+ql (pl + ql)
(pl+ql)/2 .

For k = 1, this directly holds for all pl, ql ∈ [m] by the lower bound of Lemma C.6.
Suppose this holds for k − 1. By the total law of covariance and noting that all variables
are centred and independent,

Cov
[∏k

l=1
Y pl
l ,

∏k

l=1
Y pl
l

]
= ECov

[∏k

l=1
Y pl
l ,

∏k

l=1
Y pl
l

∣∣∣∣Y1, . . . , Yk−1

]

= E
[
Y pk
k × Y

qk
k

]
Cov

[∏k−1

l=1
Y pl
l ,

∏k−1

l=1
Y pl
l

]

≥ Cov[Y pk
k , Y qk

k ]
∏k−1

l=1
I{pl≡ql (mod 2)} c

pl+ql (pl + ql)
(pl+ql)/2

≥
∏k

l=1
I{pl≡ql (mod 2)} c

pl+ql (pl + ql)
(pl+ql)/2 .

This finishes the induction, and in particular implies

(α∗2(k))2 ≥ c2m
∑

p1+...+pk=m
p1,...,pk≥1

∑
q1+...+qk=m
q1,...,qk≥1

∏k

l=1
I{pl≡ql (mod 2)} (pl + ql)

(pl+ql)/2

(a)

≥ c2m
∑

p1+...+pk=m
p1,...,pk≥1

∑
q1+...+qk=m
q1,...,qk≥1

×
∏k

l=1
I{pl≡ql (mod 2)}

(pl + ql)
(pl+ql)/2 + (c′)pl+ql(pl + ql + 1)(pl+ql+1)/2

2

≥ (c′′)2m
∑

p1+...+pk=m
p1,...,pk≥1

∑
q1+...+qk=m
q1,...,qk≥1

(pl + ql)
(pl+ql)/2

for some absolute constant c′′ > 0. In (a), we have noted that

(pl + ql)
(pl+ql)/2 = (pl + ql)

−1/2(pl + ql)
(pl+ql+1)/2

≥
(
(pl + ql)

−1/22−(pl+ql+1)/2
)
(pl + ql + 1)(pl+ql+1)/2

≥ (c′)pl+ql(pl + ql + 1)(pl+ql+1)/2

for some absolute constant c′ > 0. On the other hand, by the triangle inequality and
noting that Yi’s are i.i.d., we have

(
α∗ν(k)

)2
=

∥∥∥∥
∑

p1+...+pk=m
p1,...,pk≥1

∏k

l=1
Y pl
l

∥∥∥∥
2

Lν

≤
∑

p1+...+pk=m
p1,...,pk≥1

∑
q1+...+qk=m
q1,...,qk≥1

∥∥∥
∏k

l=1
Y pl
l

∥∥∥
Lν

∥∥∥
∏k

l=1
Y ql
l

∥∥∥
Lν

=
∑

p1+...+pk=m
p1,...,pk≥1

∑
q1+...+qk=m
q1,...,qk≥1

∏k

l=1

∥∥∥Y pl
1

∥∥∥
Lν

∥∥∥Y ql
1

∥∥∥
Lν

.

By noting that ν ≤ 3 and using the moment bound in Lemma C.6, we get that for some
absolute constants C ′, C ′′ > 0,
∥∥∥Y p

1

∥∥∥
ν

Lν

∥∥∥Y q
1

∥∥∥
ν

Lν

= E
[∣∣Y p

1 − E[Y p
1 ]
∣∣ν]E

[∣∣Y q
1 − E[Y q

1 ]
∣∣ν]

≤ C ′E[|Y1|pν ]E[|Y1|qν ] ≤ C ′′ppν/2qqν/2 ≤ C ′′(p+ q)(p+q)ν/2 .
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This implies that
(
α∗ν(k)

)2 ≤
∑

p1+...+pk=m
p1,...,pk≥1

∑

q1+...+qk=m
q1,...,qk≥1

∏k

l=1
(C ′′)1/ν(pl + ql)

(pl+ql)/2 ≤ (c̃)2m
(
α∗2(k)

)2

for some absolute constant c̃ > 0. (C.10) then becomes
∑n

i=1

∥∥∂i q∗v;m(WY ;i)
>Yi

∥∥ν
Lν

(Var[q∗v;m(ΞY)])ν/2
≤ (C3)m n−

ν−2
2

(∑m
k=1

(
n
k

)
(α∗ν(k))2

∑m
k=1

(
n
k

)
(α∗2(k))2

) ν
2

≤ (c̃νC3)νm n−
ν−2

2 .

Plugging in this bound and (C.9) into (C.8), we get that
∑n
i=1

∥∥∂i q∗m(Wi)
>Xi

∥∥ν
Lν(

Var[p∗m(X)]
)ν/2 ≤ C1n

− ν−2
2

c
ν/2
2

+ 4(c̃νC3)νm n−
ν−2

2 ≤ Cmn−
ν−2

2

for some absolute constant C > 0. This finishes the proof.

The next result allows q∗m(Ξ) + E[p∗m(X)] to be approximated by p∗m(Z).

Lemma C.8. Let C and c be the absolute constants in the upper and lower bounds in

Lemma C.6, and assume that m ≤ δ(log n)(2 + max{log c, 0} + max{logC, 0})−1 for

some δ ∈ [0, 1). Also assume that ZY and ΞY are coupled such that ZY ;i = ξY ;i1 almost

surely. Then there exists some absolute constant C ′ > 0 such that

‖q∗m(Ξ) + E[p∗m(X)]− p∗m(Z)‖2L2

Var[q∗m(Ξ)]
≤ (C ′)m

n1−δ .

Proof of Lemma C.8. We first compute the quantities from (7) and (8) in the definition of
δ-regularity in Section 5.1, which can be bounded together as

max
q1+...+qj=m, ql∈N

max

{(
E
[
nm/2

∏j

l=1
Y ql
l

])2

, Var
[
nm/2

∏j

l=1
Y ql
l

]}

≤ nm max
q1+...+qj=m, ql∈N

∥∥∥
∏j

l=1
Y ql
l

∥∥∥
2

L2

= nm max
q1+...+qj=m, ql∈N

∏j

l=1
‖Y ql

1 ‖2
L2

≤ nm max
q1+...+qj=m, ql∈N

∏j

l=1

(
C(2ql)

ql
)
≤ nm (2C)m max

q1+...+qj=m, ql∈N

∏j

l=1
qqll

for some absolute constant C > 0. Note that we have used independence followed by
Lemma C.6 again, and that we only need to bound the above for j ∈ [m − 1]. We shall
now perform an induction to show that

Q(j,m) := max
q1+...+qj=m, ql∈N

∏j

l=1
qqll = (m− j + 1)m−j+1 .

This holds trivially for j = 1 < m. To prove this for j ≥ 2 and m > j, suppose the
statement holds for all j′ < j and all m′ > j′. By applying the pigeonhole principle, q1

can only take values in [m− j + 1], and

Q(j,m) = max
q1∈[m−j+1]

qq11 Q(j − 1,m− q1)
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= max
q1∈[m−j+1]

qq11 (m− q1 − j + 2)m−q1−j+2 = max
q1∈[m−j+1]

ψm−j+2(q1) ,

where we have denoted ψm′(x) = xx(m′−x)m
′−x, defined for x ∈ [0,m′]. Since ψm′(x)

is strictly convex with a minimum at x = m′/2, its maximum is obtained at the boundary,
so

Q(j,m) = ψm−j+2(1) = (m− 1− j + 2)m−1−j+2 = (m− j + 1)m−j+1 .

This finishes the induction. By additionally recalling that, by using the lower bound from
Lemma C.6 (as proved in Equation (C.9)), we have

Var[v∗m(Y )] = Var
[(

1√
n

∑n

i=1
Yi

)m]
= Var[Y m

1 ] ≥ (1/c)mmm

for some absolute constant c > 0. This implies that

max
q1+...+qj=m, ql∈N

max

{(
E
[
nm/2

∏j

l=1
Y ql
l

])2

, Var
[
nm/2

∏j

l=1
Y ql
l

]}

≤ nm (2C)mmm−j+1

≤ nm (2 max{C, 1})mmm−j+1cmm−mVar[v∗m(Y )]

≤ (4 max{c, 1}max{C, 1})mnmm−jVar[v∗m(Y )]

= em(log 4+max{log c,0}+max{logC,0})nmm−jVar[v∗m(Y )]

< em(2+max{log c,0}+max{logC,0})nmm−jVar[v∗m(Y )]

≤ nm+δm−jVar[v∗m(Y )] ,

where we have used the assumption on m in the last line. This implies that v∗m in (6) of
Section 5.1 is δ-regular with respect to Y . By Lemma 5.3 in Section 5.1, there is some
absolute constant C ′ > 0 such that

‖q∗v;m(ΞY) + E[v∗m(Y )]− v∗m(ZY )‖2L2

Var[q∗v;m(ΞY)]
≤ (C ′)m

n1−δ .

Recall that v∗m(ZY )−E[v∗m(Y )] = p∗m(Z)−E[p∗m(X)]−v∗1(ZV ) and, by the coupling as-
sumption, q∗v;m(ΞY) = q∗m(Ξ)−v∗1(ZV ) . Also, since v∗m(Y ) =

(
n−1/2

∑n
i=1 Yi

)m d
= Y m

1 ,
by Lemma C.6, Var[q∗v;m(ΞY)] = Var[v∗m(Y )] > cm (2m)m for some absolute constant
c > 0. These imply the desired bound that

‖q∗v;m(Ξ)− (p∗m(Z)− E[p∗m(X)])‖2L2

Var[f∗(Ξ)]
=
‖q∗v;m(ΞY) + E[v∗m(Y )]− v∗m(ZY )‖2L2

Var[v∗1(ZV )] + Var[q∗v;m(ΞY)]
≤ (C ′)m

n1−δ .

We will also make use of the result in Lemma A.11, which effectively plays the role
of Proposition 4.3 for ignoring random variables with negligible variances. Combining
the results in this section allows us to prove Theorem 4.7.

Proof of Theorem 4.7 . By a direct application of Theorem 4.1 to q∗m(X) = p∗m(X) −
E[p∗m(X)] followed by the moment bound computed in Lemma C.7, we get that if n ≥
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2m2, there is an absolute constant C ′ > 0 such that

supt∈R
∣∣P(q∗m(X) ≤ t)− P(q∗m(Ξ) ≤ t)

∣∣ ≤ C ′mn−
ν−2

2νm+2 . (C.11)

Since m = o(log n), there is some absolute constant N ′ ∈ N such that the above holds
for all n ≥ N ′. Meanwhile since m is even, by Lemma C.5, there are absolute constants
c′, σ0 > 0 and N ′′ ∈ N such that, for any n ≥ N ′′,

supt∈R
∣∣P(p∗m(X) ≤ t)− P(p∗m(Z) ≤ t)

∣∣ ≥ c′n−
ν−2
2νm . (C.12)

We are left with applying δ-regularity. WLOG assume thatZY ;i = ξY ;i1 almost surely. By
Lemma C.8, there are absolute constants c∗, C∗, C∗∗ > 0 such that, if m ≤ δ(log n)(2 +

max{log c∗, 0}+ max{logC∗, 0})−1 for any δ ∈ [0, 1), we have

‖q∗m(Ξ) + E[p∗m(X)]− p∗m(Z)‖2L2

Var[q∗m(Ξ)]
≤ (C∗∗)

m

n1−δ . (C.13)

Since m = log(n), there is some absolute constant N ′′′ ∈ N such that the above holds for
all n ≥ N ′′′ and any fixed δ ∈ [0, 1) to be specified. Now by Lemma A.11, for any ε > 0

and t ∈ R,

P
(
p∗m(Z) ≤ t

)
≤ P

(
q∗m(Ξ) + E[p∗m(X)] ≤ t+ ε

)
+ P

(
|q∗m(Ξ) + E[p∗m(X)]− p∗m(Z)| ≥ ε) ,

P
(
p∗m(Z) ≤ t

)
≥ P

(
q∗m(Ξ) + E[p∗m(X)] ≤ t− ε

)
− P

(
|q∗m(Ξ) + E[p∗m(X)]− p∗m(Z)| ≥ ε) .

This implies that
∣∣P
(
q∗m(Ξ) + E[p∗m(X)] ≤ t

)
− P

(
p∗m(Z) ≤ t

)∣∣

≤ P
(
t− ε ≤ q∗m(Ξ) + E[p∗m(X)] ≤ t+ ε

)
+ P

(
|q∗m(Ξ) + E[p∗m(X)]− p∗m(Z)| ≥ ε)

(a)

≤ C1m
(

ε√
Var[q∗m(Ξ)]

)1/m

+
‖q∗m(Ξ) + E[p∗m(X)]− p∗m(Z)‖2L2

ε2

(b)

≤ C1m
(

ε√
Var[q∗m(Ξ)]

)1/m

+
(C∗∗)

m

n1−δ

(√Var[q∗m(Ξ)]

ε

)2

for some absolute constant C1 > 0. In (a), we used the Carbery-Wright argument in
(C.7) in the proof of Theorem 4.1 for the first term, and Markov’s inequality for the
second term. In (b), we have applied (C.13). Choosing

ε = (C∗∗)
m2/(2m+1)n−m(1−δ)/(2m+1)

√
Var[q∗m(Ξ)] ,

we get that for some absolute constant C∗∗∗ > 0,
∣∣P
(
q∗m(Ξ) + E[p∗m(X)] ≤ t

)
− P

(
p∗m(Z) ≤ t

)∣∣ ≤ (C1m+ 1)(C∗∗)
m

2m+1n−
1−δ

2m+1

≤ C∗∗∗mn
− 1−δ

2m+1 . (C.14)

Combining this with (C.11) via the triangle inequality, we get that for all n ≥ max{N ′, N ′′′},

supt∈R
∣∣P(p∗m(X) ≤ t)− P(p∗m(Z) ≤ t)

∣∣ ≤ C ′′′mn−
ν−2

2νm+2 + C∗∗∗mn
− 1−δ

2m+1 ,
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whereas combining the bound with (C.12) via a reverse triangle inequality, we get that
for all n ≥ max{N ′, N ′′},

supt∈R
∣∣P
(
q∗m(X) ≤ t

)
− P

(
q∗m(Ξ) ≤ t

)∣∣ ≥ c′′n−
ν−2
2νm − C∗∗∗mn−

1−δ
2m+1 .

Now choose δ = 1
2
. Since ν ∈ (2, 3] and m is even, this implies

1− δ
2m+ 1

=
1

4m+ 2
>

1

6m
≥ ν − 2

2νm
≥ ν − 2

2νm+ 2
,

and that the mn−
1−δ

2m+1 = o
(
(log n)n−

1−δ
2m+1

)
term can be ignored. This finishes the proof.

C.4 Proof of Theorem 4.2

By Lemma A.11, for any ε > 0 and t ∈ R, we have

P
(
σ−1f(X) > t

)
≤ P

(
σ−1qm(X) > t− ε

)
+ P

(
σ−1|f(X)− qm(X)| ≥ ε) ,

P
(
σ−1f(X) > t

)
≥ P

(
σ−1qm(X) > t+ ε

)
− P

(
σ−1|f(X)− qm(X)| ≥ ε) .

By additionally expressing

P
(
σ−1qm(Ξ) > t

)
= P

(
σ−1qm(Ξ) > t+ ε

)
+ P

(
t ≤ σ−1qm(Ξ) < t+ ε

)

= P
(
σ−1qm(Ξ) > t− ε

)
− P

(
t− ε < σ−1qm(Ξ) ≤ t

)
,

we can bound
∣∣P
(
σ−1f(X) ≤ t

)
−P
(
σ−1qm(Ξ) ≤ t

)∣∣ =
∣∣P
(
σ−1f(X) > t

)
− P

(
σ−1qm(Ξ) > t

)∣∣

≤ P
(
σ−1|f(X)− qm(X)| ≥ ε) + P

(
|σ−1qm(Ξ)− t| < ε

)

+ max
s∈{+1,−1}

∣∣P
(
σ−1qm(X) > t+ sε

)
− P

(
σ−1qm(Ξ) > t+ sε

)∣∣

=: T1 + T2 + T3 .

By Markov’s inequality, we have

T1 ≤
‖f(X)− qm(X)‖2L2

σ2ε2
.

By the Carbery-Wright inequality from Lemma 4.4 and noting that Eqm(X) = 0 and
Var qm(X) = Var qm(Ξ) by Theorem 4.1, we have that for some absolute constant C ′ >
0,

T2 ≤ C ′mε1/m(E[(σ−1qm(Ξ)− t)2])−1/2m ≤ C ′m
ε1/m

(1 + t2)1/2m
.

By Theorem 4.1, there exists some absolute constant C ′′ > 0 such that

T3 ≤ C ′′m max
s∈{+1,−1}

( ∑n
i=1M

ν
ν;i

(1 + (t+ sε)2)ν/2 σν

) 1
νm+1

.
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Combining the bounds and choosing ε = εt = (
‖f(X)−qm(X)‖L2

σ
)2m/(2m+1)(1+t2)1/2(2m+1),

we obtain the non-uniform bound: There exists some absolute constant C > 0 such that
∣∣P
(
σ−1f(X) ≤ t

)
− P

(
σ−1qm(Ξ) ≤ t

)∣∣

≤ Cm
((‖f(X)− qm(X)‖L2

σ(1 + t2)1/2

) 2
2m+1

+ max
s∈{+1,−1}

( ∑n
i=1M

ν
ν;i

(1 + (t+ sεt)2)ν/2 σν

) 1
νm+1

)
.

Taking a supremum over t gives the desired bound.

C.5 Moment computation for U-statistics

The proofs for Sections 5.1 to 5.4 rely extensively on moment formula for U-statistics,
which are collected next. We follow the notation of Section 5.3: Y = (Yi)i≤n are
i.i.d. variables in a general measurable space E , and UH

j (Y ) and uH
j (y1, . . . , yj) are de-

fined as in Hoeffding’s decomposition (11) of um in (10). The next result states that
Hoeffding decompositions of different orders are orthogonal in L2.

Lemma C.9 (Lemma 1.2.3 of Denker (1985)). Fix some j 6= j′ ∈ [m]. Suppose

‖UH
j (Y )‖L2

and ‖UH
j′ (Y )‖L2

are bounded. Then E[UH
j (Y )UH

j′ (Y )] = 0.

Denote σ2
r := VarE[u(Y1, . . . , Ym) |Y1, . . . , Yr], where u is the kernel of um in (10).

The next two results compute the variances associated with uH
j , UH

j and um.

Lemma C.10 (Lemma 1.2.4 of Denker (1985)). For each j ∈ [m], we have

Var
[
uH
j (Y1, . . . , Yj)

]
=
∑j

r=1

(
j

j − r

)
(−1)j−rσ2

r .

Lemma C.11 (Theorem 4.1.2.2 of Denker (1985)). We have that

Var
[
UH
j (Y )

]
=
(
n

j

)−1

σ2
j and Var[um(Y )] =

(
n

m

)−1∑m

r=1

(
m

r

)(
n−m
m− r

)
σ2
r .

C.6 Proofs for Section 5.1

The proofs for δ-regularity are mathematically straightforward but tedious, as it involves
expanding out a degree-m V-statistic and comparing moment terms of different orders.
Throughout, we express ξi = (ξi1, . . . , ξim), where each ξij matches X⊗ji = X⊗ji −
E[X⊗ji ] in mean and variance. We require two auxiliary results. The first is the martingale
moment bound of Lemma A.4 used in Appendix A.2, and the second expresses a V-
statistic as a sum of U-statistics:
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Lemma C.12 (Theorem 4.1, p.183, Lee (1990)). Given a function u : (Rd)m → R, we

have

1

nm

∑
i1,...,im∈[n]

u(yi1 , . . . , yim) = n−m
∑m

j=1

(
n

j

)
ũj;m(y1, . . . , yn) ,

where ũj;m is a degree-j U-statistic defined by

ũj;m(y1, . . . , yn) :=
1

n(n− 1) . . . (n− j + 1)

∑
i1,...,ij∈[n] distinct

uj;m(yi1 , . . . , yij)

uj;m(y1, . . . , yj) :=
∑

(p1,...,pm)∈[j]m

with exactly j distinct elements
u(yp1

, . . . , ypm) .

C.6.1. Proof of Lemma 5.3

By Lemma C.12, we have

vm(x1, . . . , xn) = n−m
∑m

j=1

(
n

j

)
ũj;m(x1, . . . , xn) ,

where

ũj;m(x1, . . . , xn) :=
1

n(n− 1) . . . (n− j + 1)

∑
i1,...,ij∈[n] distinct

uj;m(xi1 , . . . , xij)

uj;m(x1, . . . , xj) :=
∑

(p1,...,pm)∈[j]m

with exactly j distinct elements
〈S, xp1

⊗ . . .⊗ xpm〉 .

By the symmetry of S, we can express

uj;m(x1, . . . , xj) =
∑

q1+...+qj=m, ql∈N
〈S, x⊗q11 ⊗ . . .⊗ x⊗qjj 〉

=
∑

q1+...+qj=m
ql∈N

〈S,
(
x⊗q11 − E[X⊗q11 ] + E[X⊗q11 ]

)
⊗ . . .⊗

(
x
⊗qj
j − E[X

⊗qj
1 ] + E[X

⊗qj
1 ]

)
〉 .

Analogously, we can express, for yi = (yi1, . . . , yim) with yij ∈ Rdj ,

qvm(y1, . . . , yn) + E[vm(X)] = n−m
∑m

j=1

(
n

j

)
ũqj;m(y1, . . . , yn) ,

where

ũqj;m(y1, . . . , yn) :=
1

n(n− 1) . . . (n− j + 1)

∑
i1,...,ij∈[n] distinct

uqj;m(yi1 , . . . , yij)

uqj;m(y1, . . . , yj) :=
∑

q1+...+qj=m
ql∈N

〈
S,
(
y1q1

+ E[X⊗q11 ]
)
⊗ . . .⊗

(
yjqj + E[X

⊗qj
1 ]

)〉
.

This allows us to express the difference of interest as a sum of centred U-statistics:

‖qvm(Ξ) + E[vm(X)]− vm(Z)‖2
L2

=
∥∥∥n−m

∑m

j=1

(
n

j

)
ũ∆
j;m(Ξ)

∥∥∥
2

L2

≤
(
n−m

∑m

j=1

(
n

j

)∥∥ũ∆
j;m(Ξ)

∥∥
L2

)2

≤ mn−2m
∑m

j=1

(
n

j

)2 ∥∥ũ∆
j;m(Ξ)

∥∥2

L2
,
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where we have noted the coupling ξi1 = Zi−EZi a.s. and defined the degree-j U-statistic

ũ∆
j;m(y1, . . . , yn) :=

1

n(n− 1) . . . (n− j + 1)

∑
i1,...,ij∈[n] distinct

u∆
j;m(yi1 , . . . , yij) ,

u∆
j;m(y1, . . . , yj) :=

∑
q1+...+qj=m

ql∈N

(〈
S,
(
y1q1

+ E[X⊗q11 ]
)
⊗ . . .⊗

(
yjqj + E[X

⊗qj
1 ]

)〉

−
〈
S, y⊗q111 ⊗ . . .⊗ y

⊗qj
j1

〉)
.

The task now is to control ‖ũ∆
j;m(Ξ)‖L2

. By the variance formula in Lemma C.11, we
have that

‖ ũ∆
j;m(Ξ)‖2

L2
=
(
E
[
ũ∆
j;m(Ξ)

])2
+ Var

[
ũ∆
j;m(Ξ)

]

=
(
E
[
u∆
j;m(Ξ)

])2
+
(
n

j

)−1∑j

r=1

(
j

r

)(
n− j
j − r

)
VarE

[
u∆
j;m(ξ1, . . . , ξj)

∣∣ ξ1, . . . , ξr
]
.

To compute the moments of u∆
j;m, first note that we can express

E
[
u∆
j;m(ξ1, . . . , ξj)

∣∣ ξ1, . . . , ξr
]

(C.15)

=
∑

q1+...+qj=m
ql∈N

(〈
S ,

r⊗

l=1

(
ξlql + E[X⊗ql1 ]

)
⊗

j⊗

l′=r+1

E[X
⊗ql′
1 ]

〉

−
〈
S ,

r⊗

l=1

ξ⊗qll1 ⊗
j⊗

l′=r+1

E
[
ξ
⊗ql′
11

]〉)
.

Meanwhile, recall that ξi1 = Z1 almost surely,

E[ξi1] = E[X1] = 0 ,

and, since E[X⊗2
i ] = E[Z⊗2

i ] = E[ξ⊗2
i1 ] and E[ξi2] = 0, we have

E
[
ξi2 + E

[
X⊗2

1

]]
− E

[(
ξi1 + E[X1]

)⊗2
]

= E
[
E
[
X⊗2

1

]
− (Z1 − E[Z1])⊗2 − E[X1]⊗2

]

= 0 .

This implies that the summand in (C.15) vanishes if

(i) ql′ = 1 for any l = r + 1, . . . , j, or

(ii) ql = 1 for all l = 1, . . . , r and ql′ = 2 for all l = r + 1, . . . , j.

For (C.15) to be non-zero, (i) and (ii) imply that r + 2(j − r) < m by the pigeonhole
principle. In other words, r ≥ 2j −m+ 1, which allows us to rewrite

Var
[
ũ∆
j;m(Ξ)

]
=
(
n

j

)−1∑j

r=2j−m+1

(
j

r

)(
n− j
j − r

)
VarE

[
u∆
j;m(ξ1, . . . , ξj)

∣∣ ξ1, . . . , ξr
]
,

E
[
u∆
j;m(Ξ)

]
= E

[
u∆
j;m(Ξ)

]
I{j≤bm−1

2
c} .

Therefore by the Jensen’s inequality combined with the above bound, we get that

‖qvm(Ξ) + E[vm(X)]− vm(Z)‖2
L2
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≤ m

n2m

∑bm−1
2
c

j=1

(
n

j

)2 (
E
[
u∆
j;m(Ξ)

])2

+
m

n2m

∑m

j=1

(
n

j

)∑j

r=2j−m+1

(
j

r

)(
n− j
j − r

)
VarE

[
u∆
j;m(ξ1, . . . , ξj)

∣∣ ξ1, . . . , ξr
]

≤ m

n2m

∑bm−1
2
c

j=1

e2jn2j

j2j

(
E
[
u∆
j;m(Ξ)

])2

+
m

n2m

∑m−1

j=1

ejnj

jj

∑j

r=2j−m+1

(
j

r

)
nm−1−j Var

[
u∆
j;m(ξ1, . . . , ξj)

]

≤ m

n2m

∑bm−1
2
c

j=1

e2jn2j

j2j

(
E
[
u∆
j;m(Ξ)

])2

+
m

nm+1

∑m−1

j=1

(2e)j

jj
Var
[
u∆
j;m(ξ1, . . . , ξj)

]
. (C.16)

To get a further control on the moment terms, note that

Var
[
u∆
j;m(ξ1, . . . , ξj)

]
= Var

[
uqj;m(ξ1, . . . , ξj)− uj;m(ξ11, . . . , ξj1)

]

≤ 2 Var
[
uqj;m(ξ1, . . . , ξj)

]
+ 2 Var

[
uj;m(ξ11, . . . , ξj1)

]
,

and similarly
(
E
[
u∆
j;m(Ξ)

])2 ≤ 2
(
E
[
uqj;m(Ξ)

])2
+ 2
(
E
[
uj;m(Ξ)

])2
.

Meanwhile, note that for any j ∈ [m− 1],

Var
[
uqj;m(ξ11, . . . , ξj1)

]
= Var

[∑
q1+...+qj=m

ql∈N

〈
S ,

j⊗

l=1

(
ξ1ql

+ E
[
X⊗ql1

])〉]

≤
(
m− 1

j − 1

)2

max
q1+...+qj=m, ql∈N

Var
[〈

S ,

j⊗

l=1

(
ξlql + E

[
X⊗ql1

])〉]

≤ m2j max
q1+...+qj=m, ql∈N

Var
[〈

S ,

j⊗

l=1

(
ξlql + E

[
X⊗ql1

])〉]

(a)
= m2j max

q1+...+qj=m, ql∈N
Var
[〈

S ,

j⊗

l=1

X⊗qll

〉]

(b)

≤ m2j
(
C ′ nm+δm−j Var[vm(X)]

)
= C ′mj nm+δ Var[qvm(Ξ)]

for some absolute constant C ′ > 0, where we have used Lemma C.4 in (a) and δ-
regularity in (b). Similarly by δ-regularity again,

Var
[
uj;m(ξ11, . . . , ξj1)

]
≤ m2j max

q1+...+qj=m, ql∈N
Var
[〈

S ,

j⊗

l=1

Z⊗qll

〉]

≤ C ′mj nm+δ Var[qvm(Ξ)] ,

whereas

max
{(

E
[
uqj;m(Ξ)

])2
,
(
E
[
uj;m(Ξ)

])2}
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≤ m2j max
q1+...+qj=m

ql∈N

max

{(
E
[〈

S ,

j⊗

l=1

(
ξlql + E

[
X⊗ql1

])〉])2

,

(
E
[〈

S ,

j⊗

l=1

Z⊗qll

〉])2}

= m2j max
q1+...+qj=m, ql∈N

max

{(
E
[〈

S ,

j⊗

l=1

X⊗ql1

〉])2

,

(
E
[〈

S ,

j⊗

l=1

Z⊗qll

〉])2}

≤ C ′m2j nm+δ Var[qvm(Ξ)] .

Substituting these bounds into (C.16), we get that

‖qvm(Ξ)+E[vm(X)]− vm(Z)‖2
L2

≤ 4C ′mn−2m
∑bm−1

2
c

j=1

e2jn2j+m+δm2j

j2j Var[qvm(Ξ)]

+ 4C ′mn−m−1
∑m−1

j=1

(2e)jmjnm+δ

jj
Var[qvm(Ξ)]

≤ 4C ′mn−(1−δ) Var[qvm(Ξ)]
(∑bm−1

2
c

j=1

e2jm2j

j2j +
∑m−1

j=1

(2e)jmj

jj

)

≤ 4C ′mn−(1−δ) Var[qvm(Ξ)]
(∑m

j=0
e2j
(
m

j

)2

+
∑m

j=0
(2e)j

(
m

j

))

≤ 4C ′mn−(1−δ) Var[qvm(Ξ)]
((∑m

j=0
ej
(
m

j

))2

+
∑m

j=0
(2e)j

(
m

j

))

≤ Cm n−(1−δ) Var[qvm(Ξ)]

for some absolute constant C > 0. This proves the first bound. To show the second
bound, we use the triangle inequality to get that

Var[vm(Z)] = ‖qvm(Ξ) + E[vm(X)]− vm(Z) + E[vm(Z)]− qvm(Ξ)− E[vm(X)]‖2
L2

≤
(
‖qvm(Ξ) + E[vm(X)]− vm(Z)‖L2

+ ‖qvm(Ξ)‖L2
+ |E[vm(Z)]− E[vm(X)]|

)2

=
(
‖qvm(Ξ) + E[vm(X)]− vm(Z)‖L2

+
√

Var[qvm(Ξ)]

+
∣∣E
[
vm(Z)− qvm(Ξ)− E[vm(X)]

]∣∣
)2

≤
(

2‖qvm(Ξ) + E[vm(X)]− vm(Z)‖L2
+
√

Var[qvm(Ξ)]
)2

≤ Var[qvm(Ξ)]
(
1 + (C∗)

mn−(1−δ)/2)2
= Var[vm(X)]

(
1 + (C∗)

mn−(1−δ)/2)2
,

where we have written (C∗)
m = 2Cm/2. Similarly by a reverse triangle inequality,

Var[vm(Z)] ≥
(√

Var[qvm(Ξ)]− 2
∥∥qvm(Ξ) + E[vm(X)]− vm(Z)

∥∥
L2

)2

≥ Var[vm(X)]
(
1− (C∗)

mn−(1−δ)/2)2
.
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C.6.2. Proof of Lemma 5.4

The first result holds directly by Theorem 4.1: There exists an absolute constant C > 0

such that

supt∈R
∣∣P(σ−1qvm(X) ≤ t)− P(σ−1qvm(Ξ) ≤ t)

∣∣ ≤ Cm
(∑n

i=1M
ν
ν;i

σν

) 1
νm+1

. (C.17)

We now show that, if n ≥ 2m2, there exists some absolute constant C ′ > 0 such that

(∑n
i=1M

ν
ν;i

σν

) 1
νm+1 ≤ C ′ n−

ν−2
2νm+2

(∑m
k=1

(
n
k

)
(αν(S, k))2

∑m
k=1

(
n
k

)
(α2(S, k))2

) ν
2νm+2

. (C.18)

We proceed by induction. For i ≤ n and I0, I1 ⊆ [n] with |I1| ≤ m and I0 ∩ I1 = ∅,
define

T (i, I0,I1) :=
∑

p1+...+pn=m
0≤pl≤m ∀ l∈[n]
pl′≥1 ∀ l′∈I1
pl′=0 ∀ l′∈I0

(
m

p1 . . . pn

)〈
S , X⊗p1

1 ⊗ . . .⊗X⊗pii ⊗ ξ(i+1)pi+1
⊗ . . .⊗ ξnpn

〉
,

where
(

m
p1 ... pn

)
:= m!

p1!...pn!
is the multinomial coefficient. The quantities of interest be-

come

σ =
√

Var[vm(X)] =

∥∥T (n, ∅, ∅)
∥∥
L2

nm
, Mν;i =

∥∥∂iqvm(Wi)
>Xi

∥∥
Lν

=

∥∥T (i, {i}, ∅)
∥∥
Lν

nm
.

Write αν(k) = αν(S, k) for short. We first show by induction on |I1| that for ν ∈ [2, 3]

∥∥T (i, I0, I1)
∥∥2

Lν
≤ (C∗)

m
∑m−|I1|

k=0

(C ′′)k+1

k!
(n− |I0| − |I1|+ 1)k(αν(|I1|+ k))2 ,

(C.19)
∥∥T (i, I0, I1)

∥∥2

L2
≥
∑m−|I1|

k=0

(
(c′′)k+1

k!
(α2(|I1|+ k))2 (C.20)

×max
{

(n− |I0| − |I1|+ 1)k

− k2(n− |I0| − |I1|+ 1)k−1, 0
})

.

C∗ ≥ 1 is the supremum of the constant in the upper bound of Lemma C.4 over ν ∈ [2, 3],
C ′′ is the supremum of the constant in the first upper bound of Lemma A.4 over ν ∈ [2, 3],
and c′′ is the constant in the lower bound of Lemma A.4 when ν = 2.

For the base case, if |I1| = n − |I0|, i.e. I0 = [n] \ I1, by using the independence
of X1, . . . , Xn and applying Lemma C.4 to replace each ξi by

(
X⊗1
i , . . . , X⊗mi

)
, we get

that

‖T (i, I0, I1)‖2
L2

=

∥∥∥∥
∑∑

l∈I1
pl=m

pl≥1 ∀ l∈I1

m!∏
l∈I1

(pl!)

〈
S ,
⊗

l∈I1

X⊗pll

〉∥∥∥∥
2

L2

≥
(
α2(|I1|)

)2
.
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By applying Lemma C.4 again with ν ∈ [2, 3], we get that

‖T (i, I0, I1)‖2
Lν
≤ (C∗)

|I1|
∥∥∥∥

∑
∑
l∈I1

pl=m

pl≥1 ∀ l∈I1

m!∏
l∈I1

(pl!)

〈
S ,
⊗

l∈I1

X⊗pll

〉∥∥∥∥
2

Lν

≤ (C∗)
m
(
αν(|I1|)

)2
.

Meanwhile, if |I1| = m, we automatically have |I1| = n− |I0|, so the above also holds.

For the inductive step, fix I1 ⊆ [n] with |I1| < min{n − |I0|,m}. Suppose (C.19)
and (C.20) hold for all disjoint I ′0, I ′1 ⊆ [n] with |I ′1| > |I1|. For convenience, write
V

(i)
j := Xj for j ≤ i and V

(i)
j := ξj for j > i. We also denote V (i)

jpj
= X

⊗pj
j for j ≤ i and

V
(i)
jpj

= ξjpj for j > i.

Notice that by definition, T (i, I0, I1) does not depend on V
(i)
j for j ∈ I0. We enu-

merate the elements of [n] \ (I0 ∪ I1) as i1 < . . . < iN for N := n − |I0| − |I1|. Also
denote V

(i)
I :=

{
V

(i)
j

∣∣ j ∈ I
}

. Since E[T (i, I0, I1)] = 0, we can define a martingale
difference sequence by

D0(i, I0, I1) := E
[
T (i, I0, I1)

∣∣∣V(i)
I1

]

and, for 1 ≤ j ≤ N ,

Dj(i, I0, I1) := E
[
T (i, I0, I1)

∣∣∣V(i)
I1 ,V

(i)
i1
, . . . ,V

(i)
ij

]

− E
[
T (i, I0, I1)

∣∣∣V(i)
I1 ,V

(i)
i1
, . . . ,V

(i)
ij−1

]
.

Then almost surely,

T̄ (i, I0, I1) =
∑N

j=0
D̄j(i, I0, I1) .

By applying Lemma A.4 with ν ∈ [2, 3] followed by the triangle inequality, we get that
∥∥T (i, I0, I1)

∥∥2

Lν
≤ C ′′∗

∥∥∥
∑N

j=0
Dj(i, I0, I1)2

∥∥∥
Lν/2

≤ C ′′
∑N

j=0
‖Dj(i, I0, I1)‖2

Lν
,

(C.21)
∥∥T (i, I0, I1)

∥∥2

L2
≥ c′′

∑N

j=0
‖Dj(i, I0, I1)‖2

L2
. (C.22)

To control the martingale difference terms, recall that E
[
V

(i)
jpj

]
= 0 for all i, j ∈ [n].

Therefore

D0(i, I0, I1) =
∑

p1+...+pn=m
0≤pl≤m ∀ l∈[n]
pl′≥1 ∀ l′∈I1
pl′=0 ∀ l′∈I0

E
[〈
S , V

(i)
1p1
⊗ . . .⊗ V (i)

npn

〉 ∣∣∣V(i)
I1

]

= T (i, [n] \ I1, I1) ,
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i.e. there is no dependence on V
(i)
j for any j 6∈ I1. Similarly for 1 ≤ j ≤ N ,

Dj(i, I0, I1) =
∑

p1+...+pn=m
0≤pl≤m ∀ l∈[n]
pl′≥1 ∀ l′∈I1
pl′=0 ∀ l′∈I0

(
E
[〈
S , V

(i)
1p1
⊗ . . .⊗ V (i)

npn

〉 ∣∣∣V(i)
I1 ,V

(i)
i1
, . . . ,V

(i)
ij

]

− E
[〈
S , V

(i)
1p1
⊗ . . .⊗ V (i)

npn

〉 ∣∣∣V(i)
I1 ,V

(i)
i1
, . . . ,V

(i)
ij−1

])

= T (i, I0 ∪ {ij+1, . . . , iN}, I1 ∪ {ij}) .

By noting that N = n− |I0| − |I1| and applying the inductive statement , we get that
∑N

j=0
‖Dj(i, I0, I1)‖2

Lν

=
∥∥T (i, [n] \ I1, I1)

∥∥2

Lν
+
∑N

j=1

∥∥T (i, I0 ∪ {ij+1, . . . , iN}, I1 ∪ {ij})
∥∥2

Lν

≤ (C∗)
m(αν(|I1|))2 + (C∗)

m
∑N

j=1

∑m−(|I1|+1)

k=0

(
(C ′′)k+1

k!
×

(n− (|I0|+N − j)− (|I1|+ 1) + 1)k(αν(|I1|+ 1 + k))2
)

= (C∗)
m(αν(|I1|))2 + (C∗)

m
∑N

j=1

∑m−|I1|
k=1

(C ′′)k

(k − 1)!
jk−1(αν(|I1|+ k))2

= (C∗)
m(αν(|I1|))2 + (C∗)

m
∑m−|I1|

k=1

(C ′′)k

(k − 1)!

(∑N

j=1
jk−1

)
(αν(|I1|+ k))2 .

Since k − 1 ≥ 0, we have
∑N

j=1
jk−1 ≤

∑N

j=1

∫ j+1

j
xk−1dx =

∑N

j=1

(j + 1)k − jk
k

<
(N + 1)k

k
.

Substituting these into (C.21), we get that
∥∥T (i, I0, I1)

∥∥2

Lν
≤ C ′′

∑N

j=0
‖Dj(i, I0, I1)‖2

Lν

≤ C ′′(C∗)
m
∑m−|I1|

k=0

(C ′′)k

k!
(N + 1)k(αν(|I1|+ k))2

= (C∗)
m
∑m−|I1|

k=0

(C ′′)k+1

k!
(n− |I0| − |I1|+ 1)k(αν(|I1|+ k))2 ,

which finishes the induction for (C.19). Similarly for (C.20), using the inductive state-
ment gives
∑N

j=0
‖Dj(i, I0, I1)‖2

L2

=
∥∥T (i, [n] \ I1, I1)

∥∥2

L2
+
∑N

j=1

∥∥T (i, I0 ∪ {ij+1, . . . , iN}, I1 ∪ {ij})
∥∥2

L2

≥ (α2(|I1|))2 +
N∑

j=1

m−(|I1|+1)∑

k=0

(
(c′′)k+1

k!
(α2(|I1|+ 1 + k))2 max{jk − k2jk−1 , 0}

)

= (α2(|I1|))2 +

m−|I1|∑

k=1

(c′′)k

(k − 1)!

(
N∑

j=1

max
{
jk−1 − (k − 1)2jk−2 , 0

}
)

(α2(|I1|+ k))2 .
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Since k − 1 ≥ 0, we have
∑N

j=1
max

{
jk−1 − (k − 1)2jk−2 , 0

}

≥ max
{∑N

j=1

(
jk−1 − (k − 1)2jk−2

)
, 0
}

= max
{∑N+1

j=1
jk−1 − (N + 1)k−1 −

∑N

j=1
(k − 1)2jk−2 , 0

}

≥ max
{∑N+1

j=1

∫ j

j−1
xk−1dx− (N + 1)k−1 −

∑N

j=1
(k − 1)2

∫ j+1

j
xk−2dx , 0

}

= max

{N+1∑

j=1

jk − (j − 1)k

k
− (N + 1)k−1 −

N∑

j=1

(k − 1)((j + 1)k−1 − jk−1) , 0

}

> max
{

(N + 1)k

k
− (N + 1)k−1 − (k − 1)(N + 1)k−1 , 0

}

=
1

k
max

{
(N + 1)k − k2(N + 1)k−1 , 0

}
,

Substituting these into (C.22), we get that
∥∥T (i, I0, I1)

∥∥2

L2
≥ c′′

∑N

j=0
‖Dj(i, I0, I1)‖2

L2

≥ c′′
∑m−|I1|

k=0

(c′′)k

k!
max{(N + 1)k − k2(N + 1)k−1, 0}(α2(|I1|+ k))2

=
∑m−|I1|

k=0

(
(c′′)k+1

k!
(α2(|I1|+ k))2

×max
{

(n− |I0| − |I1|+ 1)k − k2(n− |I0| − |I1|+ 1)k−1, 0
})

.

This finishes the induction for (C.20). In particular, we can now obtain
∑n
i=1M

ν
ν;i

σν
=

∑n
i=1 ‖T (i, {i}, ∅)‖νLν
‖T (n, ∅, ∅)‖νL2

≤
n
(

(C∗)
m
∑m−1
k=0

(C′′)k+1(αν(k+1))2

k! nk
) ν

2

(∑m
k=0

(c′′)k+1(α2(k))2

k! max
{

(n+ 1)k − k2(n+ 1)k−1, 0
}) ν2 .

Since n ≥ 2m2 by assumption, we have

(n+ 1)k − k2(n+ 1)k−1 ≥ (n+ 1)k−1(n+ 1−m2) ≥ 1

2
(n+ 1)k .

By further noting that α2(0) = 0, we can simplify the ratio as

∑n
i=1M

ν
ν;i

σν
≤

2ν(C∗)
mν
2 n
(∑m−1

k=0

(C′′)k+1

k!
nk(αν(k + 1))2

)ν/2

(∑m

k=0

(c′′)k+1

k!
(n+ 1)k(α2(k))2

)ν/2

=
2ν(C∗)

mν
2 n
(∑m

k=1

(C′′)k

(k − 1)!
nk−1(αν(k))2

)ν/2

(∑m

k=1

(c′′)k+1

k!
(n+ 1)k(α2(k))2

)ν/2

=
2ν(C∗)

mν
2

n
ν−2

2

( ∑m
k=1

(C′′)k

(k−1)!n
k(αν(k))2

∑m
k=1

(c′′)k+1

k! (n+ 1)k(α2(k))2

) ν
2

.
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Meanwhile by Stirling’s approximation, nk

(k−1)!
≤ Am

(
n
k

)
and (n+1)k

k!
≥ nk

k!
≥ Bm

(
n
k

)
for

some absolute constants A,B > 0. Since ν < 3, we get that for some absolute constant
C ′ > 0,

(∑n
i=1M

ν
ν;i

σν

) 1
νm+1 ≤ C ′ n−

ν−2
2νm+2

(∑m
k=1

(
n
k

)
(αν(S, k))2

∑m
k=1

(
n
k

)
(α2(S, k))2

) ν
2νm+2

= C ′ n−
ν−2

2νm+2 β
ν

2νm+2
m,ν .

By applying (C.19) and (C.20) to σ2 = Var[vm(X)] and using the same argument as
above, we also get that if n ≥ 2m2, there exist some absolute constants C1, C2 > 0 such
that

(C1)m

n2m

∑m

k=1

(
n

k

)
(α2(S, k))2 ≤ Var[vm(X)] ≤ (C2)m

n2m

∑m

k=1

(
n

k

)
(α2(S, k))2 .

C.6.3. Proof of Proposition 5.2

Recall that qvm is the multilinear representation of vm, and WLOG assume the coupling
between ξi and Zi considered in Lemma 5.3. By the exact same argument as the proof of
Theorem 4.7 leading up to (C.14) (δ-regularity, Lemma A.11, a Markov’s inequality and
choosing ε appropriately), we get that for some absolute constant C1 > 0,
∣∣P
(
σ−1(qvm(Ξ) + E[vm(X)]) ≤ t

)
− P

(
σ−1vm(Z) ≤ t

)∣∣ ≤ C1mn
− 1−δ

2m+1 . (C.23)

By applying Lemma 5.4 to replace qvm(Ξ) by qvm(X), noting that vm(X) = qvm(X) +

E[vm(X)] and using the triangle inequality to combine the bounds, we get that for some
absolute constant C ′ > 0,

supt∈R
∣∣P(σ−1vm(X) ≤ t)− P(σ−1vm(Z) ≤ t)

∣∣ ≤ C1mn
− 1−δ

2m+1 + C ′m∆δ .

To prove the final bound, we first note that by Lemma 5.4, (C.23) and the triangle in-
equality,

supt∈R
∣∣P(σ−1(vm(X)− E[vm(X)]) ≤ t)− P(σ−1(vm(Z)− E[vm(Z)]) ≤ t)

∣∣

≤ C ′m∆δ + supt∈R
∣∣P(σ−1qvm(Ξ) ≤ t)− P(σ−1(vm(Z)− E[vm(Z)]) ≤ t)

∣∣

≤ C ′m∆δ + C1mn
− 1−δ

2m+1

+ supt∈R
∣∣P(σ−1qvm(Ξ) ≤ t)− P(σ−1(qvm(Ξ) + E[vm(X)]− E[vm(Z)]) ≤ t)

∣∣ .

By the same Carbery-Wright inequality argument used in the proof of Theorem 4.1 in
(C.7), the last term can be bounded by

supt∈R P
(
|σ−1qvm(Ξ)− t| ≤ σ−1|E[vm(X)− vm(Z)]|

)

≤ C2m
|σ−1E[vm(X)]− σ−1E[vm(Z)]|1/m

E[(σ−1qvm(Ξ)− t)2]1/2m
= C2mσ

−1/m
∣∣E[vm(X)]− E[vm(Z)]

∣∣1/m

= C2mσ
−1/m

∣∣E
[
qvm(Ξ) + E[vm(X)]− vm(Z)

]∣∣1/m
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≤ C2m

(∥∥qvm(Ξ) + E[vm(X)]− vm(Z)
∥∥2

L2

Var[qvm(Ξ)]

)1/(2m)

≤ C3mn
− 1−δ

2m ≤ C3mn
− 1−δ

2m+1

for some absolute constantsC2, C3 > 0; in the last line, we noted that σ2 = Var[vm(X)] =

Var[qvm(Ξ)] and applied Lemma 5.3 again. By taking C = C1 + C3 > 0, we get that

supt∈R
∣∣P(σ−1(vm(X)− E[vm(X)]) ≤ t)− P(σ−1(vm(Z)−E[vm(Z)]) ≤ t)

∣∣

≤ Cmn−
1−δ

2m+1 + C ′m∆δ .

C.7 Proofs for Sections 5.2, 5.3 and 5.4

C.7.1. Proof of Proposition 5.5

Since g is (m+ 1)-times continuously differentiable, by an m-th order Taylor expansion
around EX1, we have that almost surely
∣∣ĝ(X)−

∑m

l=0
µl −

(
ĝ

(EX1)
m (X)− µm

)∣∣

=
∣∣∣µ0 +

∑m

j=1
ĝ

(EX1)
j (X) + (m+ 1)E

[
(1−Θ)m+1 ĝ

(
EX1+Θn−1

∑
i≤n X̄i

)
m+1 (X)

∣∣∣X
]

−
∑m

l=0
µl −

(
ĝ

(EX1)
m (X)− µm

)∣∣∣

=
∣∣∣
∑m−1

l=1

(
ĝ

(EX1)
l (X)− µl

)
+ (m+ 1)E

[
(1−Θ)m+1 ĝ

(
EX1+Θn−1

∑
i≤n X̄i

)
m+1 (X)

∣∣∣X
]∣∣∣

=: R .

Now let Xi = (X̄i, . . . , X
⊗m
i ) and ξi be defined as in Theorem 4.2, f1 be the multilinear

representation of ĝ(EX1)
m and denote σm := Var

[
ĝ

(EX1)
m (X)

]
= Var

[
f1(X)

]
. Then by

Theorem 4.2, there is some absolute constant C ′ > 0,

supt∈R
∣∣P
(
ĝ(X)−

∑m

l=0
µl ≤ t

)
− P(f1(Ξ) ≤ t)

∣∣

≤ C ′m

((‖R‖2L2

σ2
m

) 1
2m+1

+

(∑n
i=1

∥∥∂if1(X1, . . . ,Xi−1,E[X1], ξi+1, . . . , ξn)(Xi − E[X1])
∥∥ν
Lν

σνm

) 1
νm+1

)
.

The first term can be controlled by applying the triangle inequality twice, using the
Jensen’s inequality and noting the definition of εm:

‖R‖2L2

σ2
m

≤

(∥∥∥
∑m−1
l=1

(
ĝ

(EX1)
l (X)− µl

)∥∥∥
L2

+ (m+ 1)
∥∥∥E
[
(1−Θ)m+1 ĝ

(
EX1+Θn−1 ∑

i≤n X̄i

)
m+1 (X)

∣∣∣X
]∥∥∥
L2

)2

σ2
m
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≤
2Var

[∑m−1
l=1 ĝ

(EX1)
l (X)

]

σ2
m

+
2(m+ 1)2

∥∥∥E
[
(1−Θ)m+1 ĝ

(
EX1+Θn−1 ∑

i≤n X̄i

)
m+1 (X)

∣∣∣X
]∥∥∥

2

L2

σ2
m

= 2εm .

By noting that Lemma 5.4 applies to ĝ(EX1)
m (X), the second term can be bounded by

C ′′ n−
ν−2

2νm+2

(∑m
k=1

(
n
k

)
(αm,ν(S))2

∑m
k=1

(
n
k

)
(αm,2(k))2

) ν
2νm+2

= C ′′n−
ν−2

2νm+2β
ν

2νm+2
m,ν

for some absolute constant C ′′ > 0. Moreover by the δ-regularity assumption, the first
bound of Proposition 5.2 implies that for some absolute constant C ′′′ > 0,

supt∈R
∣∣P(f1(Ξ) ≤ t)− P

(
ĝ

(EX1)
m (Z)− E[ĝ

(EX1)
m (Z)] ≤ t

) ∣∣ ≤ C ′′′mn−
1−δ

2m+1 .

Combining all three bounds gives that, for some absolute constant C > 0,

supt∈R
∣∣P
(
ĝ(X)−

∑m

l=0
µl ≤ t

)
− P

(
ĝ

(EX1)
m (Z)− E[ĝ

(EX1)
m (Z)] ≤ t

)∣∣

≤ Cm
(
ε

1
2m+1
m + n−

1−δ
2m+1 + n−

ν−2
2νm+2 β

ν
2νm+2
m,ν

)
.

To prove the fourth moment bound, applying Proposition 4.6 and Remark 4.3 imply
that

sup
t∈R

∣∣∣P
(
ĝ

(EX1)
m (Z)− E[ĝ

(EX1)
m (Z)] ≤ t

)
− Φ(σ−1

Z t)
∣∣∣ ≤

(
4m− 4

3m

∣∣Kurt
[
ĝ

(EX1)
m (Z)

]∣∣
)1/2

,

where σ2
Z := Var

[
ĝ

(EX1)
m (Z)

]
. Write σ2

X := Var
[
ĝ

(EX1)
m (X)

]
. Note that if t = 0,

∣∣Φ(σ−1
Z t)− Φ(σ−1

X t)
∣∣ = 0 .

Suppose t 6= 0 and write η ∼ N (0, 1). By Fact 4.4, we have that

∣∣Φ(σ−1
Z t)− Φ(σ−1

X t)
∣∣ ≤ C ′

∣∣σ−1
Z t− σ−1

X t
∣∣ /2

(
E
[(
η − (σ−1

Z t+ σ−1
X t)/2

)2] )1/2 ≤ C ′
∣∣σ−1
Z t− σ−1

X t
∣∣

∣∣σ−1
Z t+ σ−1

X t
∣∣

for some absolute constant C ′ > 0. Rearranging and applying the second bound of
Lemma 5.3,

∣∣Φ(σ−1
Z t)− Φ(σ−1

X t)
∣∣ ≤ C ′

∣∣1− σ−1
X σZ

∣∣
1 + σ−1

X σZ
≤ C ′

(C ′′)m n−(1−δ)/2

2− (C ′′)m n−(1−δ)/2

for some absolute constant C ′′ > 0. Applying the triangle inequality and replacing t with
σXt, we obtain the final bound that

supt∈R

∣∣∣P
(
σ−1
X

(
ĝ(X)−

∑m

l=0
µl
)
≤ t
)
− Φ(t)

∣∣∣

≤ ∆ĝ,m + C ′
(C ′′)m n−(1−δ)/2

2− (C ′′)m n−(1−δ)/2 +
(

4m− 4

3m

∣∣Kurt
[
ĝ

(EX1)
m (Z)

]∣∣
)1/2

.
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C.7.2. Proof of Proposition 5.6

Fix K ∈ N. Denote

µk := E[φ
(K)
k (Y1)] ∈ R , ū := E[u(Y1, . . . , Ym)] and V K := {V K

1 , . . . , V K
n } ,

where V K
i := (φ

(K)
1 (Yi)− µ1, . . . , φ

(K)
K (Yi)− µK) .

By Hoeffding’s decomposition (5.6) and writing j 6= M in short for j ∈ [m] \ {M}, we
have

um(Y )− ū =
(
m

M

)
U

(K)
M (V K) +

∑
j 6=M

(
m

j

)
UH
j (Y ) +

(
m

M

)(
UH
M(Y )− U (K)

M (V K)
)
.

By Theorem 4.2, we get that for some absolute constant C ′ > 0 and for every t ∈ R,
∣∣∣P
(
um(Y )− ū ≤ t

)
− P

((
m

M

)
U

(K)
M (Ξ(K)) ≤ t

)∣∣∣

≤ C ′m

(∑n
i=1

∥∥∂iU (K)
M

(
V K1 , . . . , V Ki−1,0, ξ

(K)
i+1 , . . . , ξ

(K)
n

)
V Ki
∥∥ν
Lν∥∥∥U (K)

M (V K)
∥∥∥
ν

L2

) 1
νM+1

+ C ′m

(∥∥∥∑j 6=M

(
m

j

)
UH
j (Y ) +

(
m

M

)(
UH
M (Y )− U (K)

M (V K)
)∥∥∥

2

L2∥∥∥
(
m

M

)
U

(K)
M (V K)

∥∥∥
2

L2

) 1
2M+1

=: C ′m(R1 +R2) .

Before proceeding, first note that U (K)
M (V K) is a U-statistic with the kernel

u
(K)
M (v1, . . . , vj) =

∑K

k1,...,km=1
λ

(K)
k1...km

v1k1
. . . vMkM

= 〈TM , v1 ⊗ . . .⊗ vM〉

for some deterministic tensor TM ∈ RKM , and where V K
i ’s are zero-mean. By Lemma C.11,

‖U (K)
M (V K)‖2

L2
≥ 1

nM

∥∥u(K)
m (V K

1 , . . . , V K
M )
∥∥2

L2
.

We defer to Lemma C.13 to show that for some absolute constant C∗ > 0,
∥∥∥∂iU (K)

M

(
V K

1 , . . . , V K
i−1,0, ξ

(K)
i+1 , . . . , ξ

(K)
n

)
V K
i

∥∥∥
ν

Lν

≤
Cm∗
∥∥u(K)

m (V K1 , . . . , V KM )
∥∥ν
Lν

n(M+1)ν/2
.

(C.24)

Let Y ′1 , . . . , Y ′m be i.i.d. copies of Y1. Now by the definition of V K
i , the binomial theorem,

the triangle inequality and Jensen’s inequality, the truncation error satisfies
∥∥∥UH

M(Y )− U (K)
M (V K)

∥∥∥
Lν

≤
∥∥∥uH

M(Y1, . . . , YM)− u(K)
M (V K

1 , . . . , V K
M )
∥∥∥
Lν

=
∥∥∥
∑M

r=0
(−1)M−r

∑
1≤l1<...<lr≤M

E
[
u(Yl1 , . . . , Ylr , Y

′
1 , . . . , Y

′
m−r)

∣∣Y1, . . . , YM
]

−
∑K

k1,...,km=1
λ

(K)
k1...km

(φ
(K)
k1

(Yi)− µk1
) . . . (φ

(K)
kM

(YM)− µkM )µkM+1
. . . µkm

∥∥∥
Lν

=
∥∥∥
∑M

r=0
(−1)M−r

∑
1≤l1<...<lr≤M

E
[
u(Yl1 , . . . , Ylr , Y

′
1 , . . . , Y

′
m−r)

∣∣Y1, . . . , YM
]

−
∑M

r=0
(−1)M−r

∑
1≤l1<...<lr≤M
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(∑K

k1,...,km=1
λ

(K)
k1...km

φkl1
(Yl1) . . . φklr

(Ylr)
∏

k′∈[M ]
k′ 6=ls ∀s

µk′
)∥∥∥

Lν

≤
∑M

r=0

(
M

r

)∥∥∥u(Yl1 , . . . , Ylr , Y
′

1 , . . . , Y
′
m−r)

−
∑K

k1,...,km=1

(
λ

(K)
k1...km

φkl1
(Yl1) . . . φklr

(Ylr)
∏

k′∈[M ]
k′ 6=ls ∀s

φk′(Y
′
k′)
)∥∥∥

Lν

(a)
= 2MεK;ν .

In (a) above, we have noted that for any permutation π on {1, . . . ,m}, the Lν approxi-
mation error satisfies

εK;ν =
∥∥∑K

k1,...,km=1
λ

(K)
k1...km

φ
(K)
k1

(Y1)× . . .× φ(K)
km

(Ym)− u(Y1, . . . , Ym)
∥∥
Lν

(b)
=
∥∥∑K

k1,...,km=1
λ

(K)
k1...km

φ
(K)
k1

(Yπ(1))× . . .× φ(K)
km

(Yπ(m))− u(Yπ(1), . . . , Yπ(m))
∥∥
Lν

(c)
=
∥∥∑K

k1,...,km=1
λ

(K)
k1...km

φ
(K)
kπ−1(1)

(Y1)× . . .× φ(K)
kπ−1(m)

(Ym)− u(Yπ(1), . . . , Yπ(m))
∥∥
Lν

(d)
=
∥∥∑K

k1,...,km=1
λ

(K)
k1...km

φ
(K)
kπ−1(1)

(Y1)× . . .× φ(K)
kπ−1(m)

(Ym)− u(Y1, . . . , Ym)
∥∥
Lν
,

where we have used that Y1, . . . , Ym are i.i.d. in (b), the commutativity of scalar product
in (c) and that u is symmetric in (d). Combining the bounds above, we get that there is
some absolute constant C ′′ > 0 such that

R1 ≤ C ′′n−
ν−2

2(νM+1)

(∥∥∥u(K)
M

(
V K1 , . . . , V KM

)∥∥∥
Lν∥∥∥u(K)

M

(
V K1 , . . . , V KM

)∥∥∥
L2

) ν
νM+1

≤ C ′′n−
ν−2

2(νM+1)

(∥∥∥uH
M

(
Y1, . . . , YM

)∥∥∥
Lν

+ (2M ) εK;ν

∥∥∥uH
M

(
Y1, . . . , YM

)∥∥∥
L2

− (2M ) εK;ν

) ν
νM+1

.

Denote σ2
j := VarE[u(Y1, . . . , Ym) |Y1, . . . , Yj]. By the truncation error bound again, we

have

R2 ≤
(

2
∥∥∥
∑
j 6=M

(
m

j

)
UH
j (Y )

∥∥∥
2

L2

+
(
m

M

)2

2M+1ε2K;ν

∥∥∥
(
m

M

)
UH
M (Y )

∥∥∥
2

L2

−
(
m

M

)2

2M+1ε2K;ν

) 1
2M+1

(a)
=

(
2
∑
j 6=M

(
m

j

)2∥∥UH
j (Y )

∥∥2

L2
+
(
m

M

)2

2M+1ε2K;ν

(
m

M

)2∥∥UH
M (Y )

∥∥2

L2
−
(
m

M

)2

2M+1ε2K;ν

) 1
2M+1

(b)
=

(
2
∑
j 6=M

(
m

j

)2(n
j

)−1

σ2
j +

(
m

M

)2

2M+1ε2K;ν

(
m

M

)2( n

M

)−1

σ2
M −

(
m

M

)2

2M+1ε2K;ν

) 1
2M+1

(c)
=

(
2
∑
j 6=M σ2

m,n;j +
(
m

M

)2

2M+1ε2K;ν

σ2
m,n;M −

(
m

M

)2

2M+1ε2K;ν

) 1
2M+1

.

In (a), we have used the orthogonality of the degenerate U-statistics of different degrees
by Lemma C.9; in (b), we have used the variance formula of UH

j (Y ) in Lemma C.11;

229



in (c), we have plugged in the definition of σ2
m,n;j . Combining the bounds and taking

K →∞, we get
∣∣∣P
(
um(Y )−ū ≤ t

)
− lim

K→∞
P
((

m

M

)
Ũ

(K)
M (Ξ(K)) ≤ t

)∣∣∣

≤ Cmn−
ν−2

2(νM+1)

(∥∥∥uH
M

(
Y1, . . . , YM

)∥∥∥
Lν∥∥∥uH

M

(
Y1, . . . , YM

)∥∥∥
L2

) ν
νM+1

+ Cm

(∑
j 6=M σ2

m,n;j

σ2
m,n;M

) 1
2M+1

= Cm
(
n−

ν−2
2(νM+1) β̃

ν
νM+1

M,ν + ρ
1

2M+1

m,n;M

)

for some absolute constant C > 0. This proves the first bound. The Gaussian approxi-
mation bound is obtained by combining the above with Proposition 4.6.

Lemma C.13. (C.24) holds.

Proof. Write Wj = V K
j for j < i, Wi = 0 and Wj = ξ

(K)
j for j > i. Then we can

express
∥∥∂i U (K)

M (V K
1 , . . . , V K

i−1,0, ξ
(K)
i+1 , . . . , ξ

(K)
n )Xi

∥∥ν
Lν

=
∥∥∂i U (K)

M (W1, . . . ,Wn)V K
i

∥∥ν
Lν

=
(

(n−m)!

n!

)ν
m

∥∥∥∥
∑

j1,...,jm−1

distinct and in [n]\{i}
〈Tm, V K

i ⊗Wj1
⊗ . . .⊗ . . .⊗Wjm−1

〉
∥∥∥∥
ν

Lν

,

where we used the symmetry of Tm in the last equality. Now by the independence ofWj’s
and V K

i and noting that EWi = 0 and ν ∈ (2, 3], we can use Lemma C.4 repeatedly to
get
∥∥∂i U (K)

M (V K
1 , . . . , V K

i−1,0, ξ
(K)
i+1 , . . . , ξ

(K)
n )Xi

∥∥ν
Lν

≤ (C ′)m
(

(n−m)!

n!

)ν
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∥∥∥∥
∑
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distinct and in [n]\{i}
〈Tm, V K

i ⊗ V K
j1
⊗ . . .⊗ V K

jm−1
〉
∥∥∥∥
ν

Lν

for some absolute constant C ′ > 0. Denote ‖ • ‖Lν |i := E[ • |V K
i ], V (−i)

j := V K
j for j < i,

V
(−i)
j := V K

j+1 for j ≥ i and V (−i) = (V
(−i)
j )j≤n−1. We can further express the above as

(C ′)m
m

nν
E
[∥∥∥ (n−m)!

(n− 1)!

∑
j1,...,jm−1

distinct and in [n]\{i}
〈Tm, V K

i ⊗ V K
j1
⊗ . . .⊗ V K
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〉
∥∥∥
ν

Lν |i

]

=: (C ′)m
m

nν
E
[∥∥∥u(i)

m−1

(
V (−i))∥∥∥

ν

Lν |i

]
.

Conditioning on V K
i , u(i)

m−1(V (−i)) is now a degree m − 1 degenerate U-statistic of n −
1 i.i.d. zero-mean random vectors, V (−i)

1 , . . . , V
(−i)
n−1 . By a standard moment bound on

degenerate U-statistics (Theorem 4.1.1 of Ferger (1996)), there is some absolute constant
C ′′ > 0 such that
∥∥∥u(i)

m−1

(
V (−i))∥∥∥

Lν |i
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≤ (C ′′)m−1
(

n

m− 1
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n
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2
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l=1

2

(l − 1)ν + 2

)

×
∥∥〈Tm, V K

i ⊗ V (−i)
1 ⊗ . . .⊗ V (−i)

m−1

〉∥∥
Lν |i

≤ (C ′′)m−1 n
m−1

2
(m− 1)m−1

nm−1

(∏m−1

l=1

ν

(l − 1)ν + ν

)

×
∥∥〈Tm, V K

i ⊗ V (−i)
1 ⊗ . . .⊗ V (−i)

m−1

〉∥∥
Lν |i

= (C ′′)m−1 n−
m−1

2
(m− 1)m−1

(m− 1)!

∥∥〈Tm, V K
i ⊗ V (−i)

1 ⊗ . . .⊗ V (−i)
m−1

〉∥∥
Lν |i

≤ (C ′′)m−1 n−
m−1

2 em−1
∥∥〈Tm, V K

i ⊗ V (−i)
1 ⊗ . . .⊗ V (−i)

m−1

〉∥∥
Lν |i

almost surely ,

where we have used Stirling’s approximation of the factorial in the last line. Combining
the two bounds finishes the proof.

C.7.3. Proofs for Section 5.4

The results on vertex-level fluctuations concern a U-statistic of i.i.d. variables, which has
already been studied in Proposition 5.6.

Proof of Corollary 5.7. The first bound follows directly from the proof of Proposition 5.6
in Appendix C.7.2 by replacing um(Y ) by κ1(Y ). The variance computation follows
from substituting u1 into the definition of σ2

m,n;j in Proposition 5.6, and computing
(
m

r

)2( n
m

)2(n
r

)−1

=
(
m

r

)(
n

m

)
(m!)(n!)(r!)(n− r)!

(r!)((m− r)!)(m!)((n−m)!)(n!)
=
(
m

r

)(
n

m

)(
n− r
m− r

)
.

Proof of Lemma 5.8 . By the variance formula in Corollary 5.7 and the fact that w is
bounded, σ2

m,n;r = O(n2m−r) for all r ∈ [m], which implies (i) ⇔ (ii). We also have
(ii) ⇔ (iii) in view of the formula in Corollary 5.7. To prove (iii) ⇔ (iv), recall that
|Aut(H)| is the number of automorphisms of H , and let Pm be the set of permutations
of {1, . . . ,m}. Also denote P i→1

m ⊆ Pm as the set of permutations that sends {i} to {1}.
Then we can write

∑
H′⊆GH({1,...,m}) E

[∏
(is,it)∈E(H′)

w(Uis , Uit)
∣∣∣U1 = x

]

=
1

|Aut(H)|
∑

σ∈Pm
E
[∏

(is,it)∈E(H)
w
(
Uσ(is)

, Uσ(it)

) ∣∣∣U1 = x
]

=
1

|Aut(H)|
∑

σ∈Pm
E
[∏

(is,it)∈E(H)
w
(
Uis , Uit

) ∣∣∣Uσ−1(1) = x
]

=
1

|Aut(H)|
∑m

i=1

∑
σ∈P i→1

m
E
[∏

(is,it)∈E(H)
w
(
Uis , Uit

) ∣∣∣Ui = x
]

=
(m− 1)!

|Aut(H)|
∑m

i=1
E
[∏

(is,it)∈E(H)
w
(
Uis , Uit

) ∣∣∣Ui = x
]
.
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(iii) says the above is constant for almost every x ∈ [0, 1], whereas (iv) is equivalent to
requiring that

1

m

∑m

i=1
E
[∏

(is,it)∈E(H)
w(Uis , Uit)

∣∣∣Ui = x
]

is constant for almost every x ∈ [0, 1]. This proves that (iii)⇔ (iv).

To prove the results on the edge-level fluctuations, we first present a stronger lemma,
which will imply Lemma 5.10 and greatly simplify the proof of Proposition 5.9. For
i ∈ [n∗], write W (i)

j := Ȳj for j ≤ i and W (i)
j := Zj for j > i. Denote ej as the edge

in Kn indexed by j ∈ [n∗]. Let I and E be edge sets. Recall that δH(I) is the indicator
of whether the graph formed by I is isomorphic to H . Also define nH(k, I, E) as the
number of subgraphs of Kn that are isomorphic to H and can be formed with k edges
from I and all edges from E.

Given i ∈ [n∗], 0 ≤ k′ ≤ k, the edge subsets I ⊆ [n∗] with |I| ≥ k′ and Ek−k′ ⊆
E(Kn∗

) with |Ek−k′ | = k − k′, as well as some random variable W that are either zero-
mean or constant almost surely and are independent of {W (i)

j | j ∈ I}, we define

S(i)(k′, I, Ek−k′ ,W ) :=
∑

j1,...,jk′ ∈ I
j1<...< jk′

δH({ejl}l∈[k′] ∪ Ek−k′)W
∏

l∈[k′]
W

(i)
jl

for k′ ≥ 1,

S(i)(0, I, Ek,W ) := δH(Ek)W .

Notice that κ2(Ȳ ) = S(n∗)(k, [n∗], ∅, 1). The next lemma controls the conditional mo-
ments of these quantities given U , by exploiting that Ȳj’s and Zj’s are conditionally
independent and zero-mean given U :

Lemma C.14. There are some absolute constants c, C > 0 and ν ∈ (2, 3] such that

almost surely

E
[∣∣S(i)(k′, I, Ek−k′ ,W )

∣∣ν ∣∣U
]
≤ Ck′

(
nH(k′, I, Ek−k′)

)ν/2 E[|W |ν |U ]

×maxi1,...,ik′∈I
all distinct

∏k′

l=1
E
[
|Xil
|ν
∣∣U
]
,

E
[∣∣S(n∗)(k′, I, Ek−k′ ,W )

∣∣2 ∣∣U
]
≥ ck

′
nH(k′, I, Ek−k′) E[|W |2 |U ]

×maxi1,...,ik′∈I
all distinct

∏k′

l=1
E
[
|Xil
|2
∣∣U
]
.

Proof of Lemma C.14. The proof proceeds by induction on k ≥ 0. We claim that the
constant in the upper bound is specified by C = C1C2, where C1 is the maximum of the
absolute constant C ′ν in the second upper bound of Lemma A.4 over ν ∈ [2, 3], and C2

is the absolute constant in Lemma C.4. The constant c in the lower bound is the absolute
constant in the lower bound of Lemma A.4 with ν = 2.

The base case k′ = 0 is straightforward by noting that δH(Ek) = nH(0, I, Ek) for all
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I ⊆ [n∗]. Suppose that the inductive statement holds for k′−1. To prove the statement for
k′, we enumerate the elements of I as i1 < . . . < in′ and consider a martingale difference
sequence (Sl′)

n′

l′=1 conditioning on U : For l′ ∈ [n′], define

S
(i)
l′ := E

[
S(i)(k′, I, Ek−k′ ,W )

∣∣U,W,W (i)
i1
, . . . ,W

(i)
il′

]

− E
[
S(i)(k′, I, Ek−k′ ,W )

∣∣U,W,W (i)
i1
, . . . ,W

(i)
il′−1

]
.

Since (W
(i)
ij

)j≤l′ are zero-mean and (W
(i)
ij

)j≤l′ ∪ {W} are independent conditioning on
U , for k′ ≥ 1, we have

E
[
S(i)(k′, I, Ek−k′ ,W )

∣∣U,W
]

= 0 almost surely .

This allows us to express, almost surely,

S(i)(k′, I, Ek−k′ ,W ) =
∑n′

l′=1
S

(i)
l′ .

Now notice that for l′ < k′, S(i)
l′ = 0 almost surely. Since the non-zero terms in each

difference S(i)
l′ must involve W (i)

il′
, for l′ ≥ k′ > 1, we have that almost surely

S
(i)
l′ =

∑

j1,...,jk′−1 ∈{i1,...,il′−1}
j1<...< jk′−1

δH({ejl}l∈[k′−1] ∪ Ek−k′ ∪ {eil′})W W
(i)
il′

∏
l∈[k′−1]

W
(i)
jl
,

and for l′ ≥ k′ = 1, we have that almost surely

S
(i)
l′ = δH(Ek−k′ ∪ {eil′})W W

(i)
il′
.

This in particular implies that for l′ ≥ k′, almost surely

S
(i)
l′ = S(i)

(
k′ − 1 , {i1, . . . , il′−1} , Ek−k′ ∪ {eil′} , W W

(i)
il′

)
, (C.25)

Now by the martingale moment bound in Lemma A.4 with ν ∈ [2, 3], we get the almost
sure bound

c
∑n′

l′=k′
E[|S(i)

l′ |ν |U ] ≤ E
[∣∣S(i)(k′, I, Ek−k′ ,W )

∣∣ν ∣∣U
]

≤ C1 E
[(∑n′

l′=k′
|S(i)
l′ |2
)ν/2 ∣∣∣U

]
, (C.26)

and since W × W
(i)
il′

is independent of W (i)
i1
, . . . ,W

(i)
il′−1

, we may apply the inductive

statement to control the individual S(i)
l′ term. Now notice that the moment bound on each

S
(i)
l′ will introduce a constant wl′ := nH(k′ − 1, {i1, . . . , il′−1}, Ek−k′ ∪ {ei′l}). Denote

their sum as wH :=
∑n′

l′=k′ wl′ , which satisfies

wH = nH(k′, I, Ek−k′) . (C.27)

By reweighting the sum in the upper bound in (C.26) and the Jensen’s inequality, almost
surely

E
[∣∣S(i)(k′, I, Ek−k′ ,W )

∣∣ν ∣∣U
]
≤ C1 (wH)ν/2 E

[(∑n′

l′=k′

wl′

wH

1

wl′
|S(i)
l′ |2
)ν/2 ∣∣∣U

]
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≤ C1 (wH)ν/2
∑n′

l′=k′

wl′

wH
E
[(

1

wl′
|S(i)
l′ |2
)ν/2 ∣∣∣U

]

= C1 (wH)ν/2
∑n′

l′=k′

wl′

wH

E
[∣∣S(i)

l′

∣∣ν ∣∣U
]

w
ν/2
l′

.

By applying the upper bound in the inductive statement to (C.25), we have that almost
surely

E
[∣∣S(i)

l′

∣∣ν ∣∣U
]

≤ Ck′−1w
ν/2
l′ E

[∣∣W ×W (i)
il′

∣∣ν ∣∣U
]

×maxj1,...,jk′−1∈{i1,...,il′−1} distinct

∏k′−1

l=1
E
[
|Xjl
|ν
∣∣U
]

(a)

≤ C2C
k′−1w

ν/2
l′ E[|W |ν |U ] E[|Xil′

|ν |U ]

× max
j1,...,jk′−1∈{i1,...,il′−1} distinct

∏k′−1

l=1
E
[
|Xjl
|ν
∣∣U
]

≤ C2C
k′−1w

ν/2
l′ E[|W |ν |U ] maxi1,...,ik′∈I distinct

∏k′

l=1
E
[
|Xil
|ν |U

]
,

where we have noted thatW is independent ofW (i)
il′

and used Lemma C.4 in (a) to replace
W

(i)
il′

by Xil′
. By noting that C∗ = C1C2 and using (C.27), we get that almost surely

E
[∣∣S(i)(k′, I,Ek−k′ ,W )

∣∣ν ∣∣U
]

≤ Ck′ (wH)ν/2
∑n′

l′=k′

wl′

wH
E[|W |ν |U ] max

i1,...,ik′∈I distinct

∏k′

l=1
E[|Xil

|ν |U ]

= Ck′ (nH(k′, I, Ek−k′))
ν/2 E[|W |ν |U ] maxi1,...,ik′∈I distinct

∏k′

l=1
E[|Xil

|ν ] ,

which proves the upper bound. Similarly by the lower bound in the inductive statement
and noting that we do not need to use Lemma C.4, we get that

E[|S(n∗)(k′, I,Ek−k′ ,W )|2 |U ]

≥ ck
′
nH(k′, I, Ek−k′)E[|W |2 |U ] mini1,...,ik′∈I distinct

∏k′

l=1
E[|Xil

|2 |U ] .

which proves the lower bound.

Proof of Lemma 5.10. Since E[κ2(Ȳ )|U ] = 0 almost surely, by the law of total variance,

Var[κ2(Ȳ )] = EVar[κ2(Ȳ )|U ] = E
∥∥∥
∑

j1,...,jk∈[n∗]
j1<...< jk

δH
(
{ejl}l∈[k]

) ∏
l∈[k]

Ȳl

∥∥∥
2

L2|U
,

where we have denoted ‖ • ‖2
L2|U

:= E[| • |2|U ]. Since (Ȳij)(i,j)∈E(Kn) is a collection
of n∗ random variables that are conditionally independent and zero-mean given U , the
quantity inside the conditional norm can be identified with S(n∗)(k, [n∗], ∅, 1). Applying
Lemma C.14 conditionally on U , we get that for some absolute constants c, C > 0,
almost surely,

Var[κ2(Ȳ )|U ] ≤ Ck nH(k, [n∗], ∅) maxi1,...,ik∈[n∗] distinct

∏k

l=1
Var[Ȳil |U ] ,

234



Var[κ2(Ȳ )|U ] ≥ ck nH(k, [n∗], ∅) mini1,...,ik∈[n∗] distinct

∏k

l=1
Var[Ȳil |U ] .

Noting that n(k, [n∗], ∅) = |GH([n])| and taking an expectation yield the desired bounds.

Proof of Proposition 5.9. Observe that κ2(Ȳ ) is multilinear in (Ȳi)i∈[n∗]
and a degree-k

polynomial. Moreover, as Ȳij’s are conditionally centred given U , E[κ2(Ȳ ) |U ] = 0.
Since Var[κ2(Z)|U ] > 0 almost surely by assumption, by applying Theorem 4.1 and
noting that the bounding constant is absolute, we get that for some absolute constant
C ′ > 0, almost surely

supt∈R

∣∣∣P
(
κ2(Ȳ ) ≤ t

∣∣U
)
− P

(
κ2(Z) ≤ t

∣∣U
)∣∣∣

≤ C ′m

(∑n∗
i=1 E

[
∂iκ2(Ȳ1, . . . , Ȳi−1, 0, Zi+1, . . . , Zn∗) Ȳi

∣∣ν ∣∣U
]

Var[κ2(Ȳ ) |U ]ν/2

) 1
νk+1

.

(C.28)

Lemma C.14 implies that, for some absolute constants C∗, c∗ > 0, we have that almost
surely

E
[
∂iκ2(Ȳ1, . . . , Ȳi−1, 0, Zi+1, . . . , Zn∗) Ȳi

∣∣ν ∣∣U
]

= E
[∣∣∣
∑

j1,...,jk−1∈[n∗]\{i}
j1<...< jk−1

δH
(
{ejl}l∈[k−1] ∪ {ei}

)
W

(i)
i

∏
l∈[k−1]

W
(i)
jl

∣∣∣
ν ∣∣∣U

]

= E[ |S(i)(k − 1, [n∗] \ {i}, {ei}, Ȳi)|ν |U ]

≤ (C∗)
k−1
(
nH(k − 1, [n∗] \ {i}, {ei})

)ν/2 E
[ ∣∣Ȳi

∣∣ν ∣∣U
]

×maxi1,...,ik−1∈[n∗]\{i} distinct

∏k−1

l=1
E
[∣∣Ȳil

∣∣ν ∣∣U
]

= (C∗)
k−1
(
nH(k − 1, [n∗] \ {i}, {ei})

)ν/2
maxi1,...,ik∈[n∗] distinct

∏k

l=1
E
[∣∣Ȳil

∣∣ν ∣∣U
]
,

and

Var[κ2(Ȳ ) |U ] = E
[∣∣∣
∑

j1,...,jk∈[n∗]
j1<...< jk

δH
(
{ejl}l∈[k]

) ∏
l∈[k]

W
(n∗)
jl

∣∣∣
2 ∣∣∣U

]

= E
[∣∣S(n∗)(k, [n∗], ∅, 1)

∣∣2∣∣U
]

≥ (c∗)
k nH(k, [n∗], ∅) mini1,...,ik′∈[n∗] distinct

∏k′

l=1
E[|Ȳil |2 |U ] .

Now recall that [n∗] indexes all edges of an complete graph Kn, whereas nH(k−1, [n∗]\
{i}, {ei}) counts the number of subgraphs in Kn that contains ei and is isomorphic to H .
By symmetry, nH(k − 1, [n∗] \ {i}, {ei}) is the same for all i ∈ [n∗], and

∑n∗

i=1
nH(k − 1, [n∗] \ {i}, {ei}) = k |GH([n])| = k

(
nH(k, [n∗], ∅)

)
,

since each subgraph of Kn that is isomorphic to H has been counted exactly k = |H|
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times. Thus
∑n∗

i=1

(
nH(k − 1, [n∗] \ {i}, {ei})

)ν/2
=
∑n∗

i=1

(
nH(k − 1, [n∗] \ {1}, {e1})

)ν/2

= n∗
( k
n∗
|GH([n])|)ν/2 .

Combining the above, we get that for some absolute constants C ′′, C > 0, almost surely

supt∈R

∣∣∣P
(
κ2(Ȳ ) ≤ t

)
− P

(
κ2(Z) ≤ t

∣∣U
)∣∣∣

≤ C ′′m

(∑n∗
i=1

(
nH(k − 1, [n∗] \ {i}, {ei})

)ν/2

|GH([n])|ν/2
maxi1,...,ik∈[n∗] distinct

∏k

l=1
E[|Ȳil |ν |U ]

mini1,...,ik′∈[n∗] distinct
∏k′

l=1
E[|Ȳil |2 |U ]

) 1
νk+1

≤ C ′′m

((∑n∗
i=1 nH(k − 1, [n∗] \ {i}, {ei})

)ν/2

|GH([n])|ν/2

) 1
νk+1

ρȲ (U)
1

νk+1

= C ′′mk
ν

2νk+2 n
− ν−2

2νk+2
∗ ρȲ (U)

1
νk+1 ≤ Cmn−

ν−2
νk+1 ρȲ (U)

1
νk+1 .

In the last line, we have noted that n∗ =
(
n
2

)
≤ n2. This proves the first bound. The

second bound follows by applying Proposition 4.6 while conditioning on U .

C.8 Properties of univariate distributions in Theorem 4.7

C.8.1. Proof of Gaussian moment bound in Lemma C.6

Since E|Z|ν = π−1/22ν/2Γ(ν+1
2

), the proof boils down to approximating the Gamma
function: Alzer (2003) proves that for all x ≥ 0,

√
π
(
x

e

)x(
8x3 + 4x2 + x+

1

100

)1/6

< Γ(x+ 1) <
√
π
(
x

e

)x(
8x3 + 4x2 + x+

1

30

)1/6

.

Since ν ≥ 1, ν+1
2
≥ 1. As 8x3 + 4x2 + x+ 1

30
≤ 14(1 + x)3 for x ≥ 0, we have

Γ
(
ν + 1

2

)
≤ 141/6

√
π
(
ν − 1

2e

)(ν−1)/2(ν + 1

2

)1/2

≤ 141/6
√
π
(
ν − 1

2

) ν
2
−1(ν2 − 1

4

)1/2

≤ 141/6
√
π
(
ν

2

) ν
2
,

which implies the desired bound that, for some absolute constant C > 0,

E|Z|ν ≤ Cνν/2 .

For the second bound, we note that if m1 and m2 have different parities,

Cov[Zm1 , Zm2 ] = E[Zm1+m2 ]− E[Zm1 ]E[Zm2 ] = 0

since odd moments of Z vanish. Now focus on the case when m1 and m2 have the same
parity, and recall that m1 ≥ m2 by assumption. For x ≥ 0 and α ∈ [0, 1], we define the
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function R(x;α) := 2x+ 1
2

(
x

e

)x
(8x3 + 4x2 + x+ α)1/6, which implies that

R
(
ν − 1

2
;

1

100

)
< E|Z|ν < R

(
ν − 1

2
;

1

30

)
.

Then we can bound

Cov[Zm1 , Zm2 ] ≥ E[Zm1+m2 ]− E[|Z|m1 ]E[|Z|m2 ]

≥ R
(
m1 +m2 − 1

2
;

1

100

)
−R

(
m1 − 1

2
;

1

30

)
R
(
m2 − 1

2
;

1

30

)
.

First suppose m2 ≥ 2, and denote α = 1/100 and β = 1/30. Note that for x ≥ y ≥ 3/4,
R(x+ y;α)

R(x− 1/4;β)R(y − 1/4;β)

= e−1/2 (x+ y)x+y

(x− 1/4)x−1/4(y − 1/4)y−1/4

×
(
8(x+ y)3 + 4(x+ y)2 + (x+ y) + α

)1/6
(
8(x− 1/4)3 + 4(x− 1/4)2 + (x− 1/4) + β

)1/6(
8(y − 1/4)3 + 4(y − 1/4)2 + (y − 1/4) + β

) 1
6

≥ e−1/2
(
x+ y

y − 1/4

)y−1/4

×
(

8(x+ y)6 + 4(x+ y)5 + (x+ y)4 + α(x+ y)3

(
8(x− 1/4)3 + 4(x− 1/4)2 + (x− 1/4) + β

)(
8(y − 1/4)3 + 4(y − 1/4)2 + (y − 1/4) + β

)
) 1

6

=: a(x, y)
(
b(x, y)

c(x, y)

)1/6

.

Note that since x ≥ y ≥ 3/4, we have

a(x, y) = e−1/2
(
x+ y

y − 1/4

)y−1/4

≥ e−1/22y−1/4 ≥ e−1/222 > 2 .

On the other hand, a lengthy computation gives

c(x, y) < 64x3y3 + 32x3y2 + 8x3y + 8βx3 + 32x2y3 + 16x2y2 + 4x2y + 4βx2

+ 8xy3 + 4xy2 + xy + βx+ 8βy3 + 4βy2 + βy + β2

≤ b(x, y)−
(
96x3y3 − 4x3y − (8β − α)x3 − 10x2y2 − x2y − 4βx2 − 4xy3 − 4xy2

− xy − βx− 8βy3 − 4βy2 − βy − β2
)

≤ b(x, y)− 46x3y3 < b(x, y) ,

where we have used that x, y ≥ 3/4, α = 1/100 and β = 1/30 in the last line. Therefore
b(x, y)/c(x, y) > 1 and, for x ≥ y ≥ 3/4,

R(x+ y;α)

R(x− 1/4;β)R(y − 1/4;β)
> 2 .

By identifying x = m1

2
− 1

4
and y = m2

2
− 1

4
, we get that for m1 ≥ m2 ≥ 2 such that m1

and m2 have the same parity,

Cov[Zm1 , Zm2 ] ≥ R
(
m1 +m2 − 1

2
;

1

100

)
−R

(
m1 − 1

2
;

1

30

)
R
(
m2 − 1

2
;

1

30

)

>
1

2
R
(
m1 +m2 − 1

2
;

1

100

)
.
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Meanwhile for m2 = 1 and m1 odd, since E[Z] = 0, we obtain directly that

Cov[Zm1 , Zm2 ] = E[Zm1+m2−1] ≥ R
(
m1 +m2 − 1

2
;

1

100

)
>

1

2
R
(
m1 +m2 − 1

2
;

1

100

)
.

Therefore for any m1 and m2 with the same parity, we get the desired bound that

Cov[Zm1 , Zm2 ] > 2
m1+m2

2

(
m1 +m2 − 1

2e

)m1+m2−1

2
= 2

1
2

(
m1 +m2 − 1

e

)m1+m2−1

2

≥ cm1+m2
1 (m1 +m2 − 1)

m1+m2
2 ≥ cm1+m2

1

(
m1 +m2 − 1

m1 +m2

)m1+m2
2

(m1 +m2)
m1+m2

2

≥ cm1+m2(m1 +m2)
m1+m2

2

for some sufficiently small absolute constants c1, c > 0.

C.8.2. Proofs for properties of the heavy-tailed distribution in Section 4.5

Proof of Lemma 4.8. The first two moments of V1 can be obtained directly from con-
struction. To control the ω-th absolute moment for ω ≥ 1, first note that

E|U1|ω = 2p|x0|ω + p|2x0|ω = (2 + 2ω)pxω0 =
(2 + 2ω)σω

6ω/2pω/2−1
=

(2 + 2ω)

6ω/2σ2(ω−ν)/(ν−2)
.

(C.29)

Moreover, by Jensen’s inequality, we have |a + b|ω ≤ 2ω−1(|a|ω + |b|ω) for a, b ∈ R.
Combining this with the upper bound on E|σ−1Z1|ω from Lemma C.6, we get that

E|V1|ω ≤
2−ω/2 2ω−1(2 + 2ω)

6ω/2σ2(ω−ν)/(ν−2)
+ 2−ω/22ω−1σωE|σ−1Z|ω ≤ cω1σ

− 2(ω−ν)
ν−2 + cω2σ

ωωω/2

for some absolute constants c1, c2 > 0 as desired.

Lemma 4.9 approximates an empirical average of Vi’s by a Gaussian Z ′1, and gives a
finer control by considering an additional remainder term. The key idea is to perform a
fourth-order Taylor expansion in the characteristic functions of both n−1/2

∑n
i=1 Vi and

Z ′1, before turning back to the distribution functions. Note that the smoothing by Z1 in the
construction of V1 makes the distribution of V1 continuous, which enables this approach.

Proof of Lemma 4.9. Write Sn = n−1/2
∑n

i=1 Vi, Fn(x) = P(Sn < x) and FZ(x) =

P(Z ′1 < x). By the inversion formula for continuous random variables (Theorem 4.2.3.1.,
Cuppens (1975)),

Fn(x) =
1

2π

∫ ∞

−∞

−e−itx
it

χn(t) dt and FZ(x) =
1

2π

∫ ∞

−∞

−e−itx
it

χZ(t) dt (C.30)

where χn and χZ are the characteristic functions of Sn and Z. We first compare the
characteristic functions. Denoting θ := 2−1/2 for simplicity, the characteristic function
of V satisfies

χV (t) = E[eit(θU+θσZ)] = e−θ
2σ2t2/2

(
2pe−iθx0t + (1− 3p) + pe2iθx0t

)
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= e−θ
2σ2t2/2

(
1− 3p+ 2p cos(θx0t) + p cos(2θx0t) + i(−2p sin(θx0t) + p sin(2θx0t))

)

(a)
= e−

θ2σ2t2

2

(
1− 3p+ 2p

(
1− θ2x2

0t
2

2
+
θ4x4

0t
4 cos(tθx′1)

24

)

+ p
(
1− 2t2θ2x2

0 +
2θ4x4

0t
4 cos(2tθx′1)

3

)

− i(2p)
(
θx0t−

θ3x3
0t

3

6
+
θ4x4

0t
4 sin(tθx′2)

24

)

+ ip
(
2θx0t−

4θ3x3
0t

3

3
+

2θ4x4
0t

4 sin(2tθx′2)

3

))

= e−θ
2σ2t2/2

(
1− 3pθ2x2

0t
2 − ipθ3x3

0t
3 +

pθ4x4
0t

4

12
cos(tθx′1) +

2pθ4x4
0t

4

3
cos(2tθx′1)

− ipθ4x4
0t

4

12
sin(tθx′2) +

2ipθ4x4
0t

4

3
sin(2tθx′2)

)
.

In (a), we have performed Taylor expansions on the real and imaginary parts with some
x′1, x

′
2 ∈ [0, x0]. Since x0 = σ/

√
6p and p = σ2ν/(ν−2), we have that

px2
0 =

σ2

6
, px3

0 =
1

63/2σ(6−2ν)/(ν−2)
, px4

0 =
1

62σ(8−2ν)/(ν−2)
.

Then the characteristic function of Sn can be expressed as

χn(t) = (χV (n−1/2 t))n

= e−θ
2σ2t2/2

(
1− 3pθ2x2

0t
2

n
− ipθ3x3

0t
3

n3/2
+
pθ4x4

0t
4

12n2 cos(tθx′1) +
2pθ4x4

0t
4

3n2 cos(2tθx′1)

− ipθ4x4
0t

4

12n2 sin(tθx′2) +
2ipθ4x4

0t
4

3n2 sin(2tθx′2)
)n

= e−θ
2σ2t2/2

(
1− θ2σ2t2

2n
− iθ3t3

63/2n3/2σ(6−2ν)/(ν−2)
+

θ4t4 cos(tθx′1)

432n2σ(8−2ν)/(ν−2)

+
θ4t4 cos(2tθx′1)

54n2σ(8−2ν)/(ν−2)
− iθ4t4 sin(tθx′2)

432n2σ(8−2ν)/(ν−2)
+

iθ4t4 sin(2tθx′2)

54n2σ(8−2ν)/(ν−2)

)n

= exp
(
− θ2σ2t2

2
+ n log

(
1− θ2σ2t2

2n
− iQn(t)

n
+R1(t) + iR2(t)

))
,

where we have defined

Qn(t) :=
θ3t3

63/2n1/2σ(6−2ν)/(ν−2)
,

R1(t) :=
θ4t4 cos(tθx′1)

432n2σ(8−2ν)/(ν−2)
+

θ4t4 cos(2tθx′1)

54n2σ(8−2ν)/(ν−2)
,

R2(t) := − θ4t4 sin(tθx′2)

432n2σ(8−2ν)/(ν−2)
+

θ4t4 sin(2tθx′2)

54n2σ(8−2ν)/(ν−2)
.

Now define

Rn(t) := n log
(

1− θ2σ2t2

2n
− iQn(t)

n
+R1(t) + iR2(t)

)
+
θ2σ2t2

2
+ iQn(t) .

By multiplying and dividing e−σ2t2/4 and recalling that θ = 2−1/2, we get that

χn(t) = e−
σ2t2

2
−iQn(t)eRn(t) = χZ(t) e−iQn(t)eRn(t) .

Now define q(t) := −iQn(t)χZ(t). Then

|χn(t)− χZ(t)− q(t)| =
∣∣∣χZ(t)

(
e−iQn(t)eRn(t) − 1 + iQn(t)

)∣∣∣
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≤ |χZ(t)e−iQn(t)(eRn(t) − 1)|+ |χZ(t)(e−iQn(t) − 1 + iQn(t))|
≤ e−σ

2t2/2
(
|eRn(t) − 1|+ |e−iQn(t) − 1 + iQn(t)|

)

≤ e−σ
2t2/2

(
|eRn(t) − 1|+ |Qn(t)|2

)
. (C.31)

We seek to control Rn(t) by a Taylor expansion of the complex logarithm around 1,
which is only permitted outside the branch cut R− ∪ {0}. Set Tn := n1/2σ(4−ν)/(2ν−4).
For |t| ≤ Tn,

∣∣∣− θ2σ2t2

2n
− iQn(t)

n
+R1(t) + iR2(t)

∣∣∣

≤ θ2σ2t2

2n
+

θ3t3

63/2n3/2σ(6−2ν)/(ν−2)
+

θ4t4

24n2σ(8−2ν)/(ν−2)

≤ 1

2
+

1

63/2
+

1

24
≤ 1 .

In this case, the quantity in the complex logarithm in Rn(t) is outside the branch cut, so
by a Taylor expansion,

Rn(t) = nR1(t) + inR2(t) + nR3(t)

where R3(t) is a remainder term that satisfies, for |t| ≤ Tn,

|R3(t)| ≤
∣∣∣− θ2σ2t2

2n
− iQn(t)

n
+R1(t) + iR2(t)

∣∣∣
2

(a)

≤ 3
(
t4θ4σ4

4n2 +
t6θ6

63n3σ(12−4ν)/(ν−2)
+

t8θ8

242n4σ(16−4ν)/(ν−2)

)

(b)

≤ 3θ4t4
(
σ4

4n2 +
1

63n2σ(8−3ν)/(ν−2)
+

1

242n2σ(8−2ν)/(ν−2)

)

(c)

≤ t4

5n2σ(8−2ν)/(ν−2)
,

In (a), we have noted that (A + B + C)2 ≤ 3(A2 + B2 + C2); in (b), we have used
|t| ≤ Tn and θ ≤ 1; in (c), we have compared the powers of σ ∈ (0, 1] by noting that
2ν−8
ν−2
≤ 3ν−8

ν−2
and 2ν−8

ν−2
≤ 4, and combined the constants while noting that θ4 = 1/4. By

a further Taylor expansion of the complex exponential, we obtain that for |t| ≤ Tn,
∣∣eRn(t) − 1

∣∣ ≤ |Rn(t)| ≤ n|R1(t)|+ n|R2(t)|+ n|R3(t)|

≤ θ4t4

24nσ(8−2ν)/(ν−2)
+

t4

5nσ(8−2ν)/(ν−2)
≤ 0.22t4

nσ(8−2ν)/(ν−2)
.

By plugging this and Qn(t) = θ3t3

63/2n1/2σ(6−2ν)/(ν−2) into (C.31), we get that for |t| ≤ Tn,

|χn(t)− χZ(t)− q(t)| ≤ 1

n
e−σ

2t2/2
(

0.22t4

σ(8−2ν)/(ν−2)
+

0.03t6

σ(12−4ν)/(ν−2)

)
. (C.32)

Now note that Fq is a function analogous to (C.30) for q:

1

2π

∫ ∞

−∞

−e−itx
it

q(t) dt =
1

2π

∫ ∞

−∞

e−itx

t
Qn(t)χZ(t) dt

=
1

2π

∫ ∞

−∞

e−itx

t

θ3t3

63/2n1/2σ(6−2ν)/(ν−2)
e−σ

2t2/2 dt
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=
θ3

(25/233/2π)n1/2σ(6−2ν)/(ν−2)

∫ ∞

−∞
t2e−σ

2t2/2−itxdt

=
θ3

(2233/2π1/2)n1/2σν/(ν−2)

(
1− x2

σ2

)
e−x

2/(2σ2) = Fq(x) ,

where we have recalled that the constant A in the definition of Fq satisfies A = θ3

2233/2π1/2

since θ = 2−1/2. Therefore by (C.30), a bound on the distribution functions can be given
as

|Fn(x)− FZ(x)− Fq(x)| ≤ 1

2π

∫ ∞

−∞

|χn(t)− χZ(t)− q(t)|
|t| dt

=
1

2π

∫

|t|≤Tn

|χn(t)− χZ(t)− q(t)|
|t| dt+

1

2π

∫

|t|>Tn

|χn(t)− χZ(t)− q(t)|
|t| dt =: I1 + I2 .

(C.32) allows the first integral to be controlled as

I1 ≤
1

2πn

∫

|t|≤Tn
e−σ

2t2/2
(

0.22|t|3
σ(8−2ν)/(ν−2)

+
0.03|t|5

σ(12−4ν)/(ν−2)

)
dt

=
1

2πn

(
0.44

(
2− (σ2T 2

n + 2)e−σ
2T 2
n/2
)

σ2ν/(ν−2)
+

0.06
(
8− (σ4T 4

n + 4σ2T 2
n + 8)e−σ

2T 2
n/2
)

σ2ν/(ν−2)

)

≤ 0.22

nσ2ν/(ν−2)
.

To deal with the case |t| > Tn, we first let {(Ui, Vi)}ni=1 be i.i.d. copies of (U, V ) while
applying independence and Jensen’s inequality to obtain

|χn(t)| =
∣∣E
[
eiθ

2tn−1/2
∑n
i=1 Ui

]
E
[
eiθ

2tn−1/2
∑n
i=1 Vi

]∣∣

≤
∣∣E
[
eiθ

2tn−1/2
∑n
i=1 Vi

]∣∣ = e−
θ2σ2t2

2 .

By noting χZ(t) = e−σ
2t2/2 and |q(t)| = |Qn(t)|e−σ2t2/2 ≤ θ3t3

63/2n1/2σ(6−2ν)/(ν−2) e
−σ2t2/2,

we can bound I2 via the triangle inequality:

I2 ≤
1

2π

∫

|t|>Tn

|χn(t)|
|t| +

|χZ(t)|
|t| +

|q(t)|
|t| dt

≤ 1

2π

∫

|t|>Tn

e−θ
2σ2t2/2

|t| +
e−σ

2t2/2

|t| +
θ3t2e−σ

2t2/2

63/2n1/2σ(6−2ν)/(ν−2)
dt

≤ 1

π T 2
n

( ∫
t>Tn

te−θ
2σ2t2/2dt

)
+

1

π T 2
n

( ∫
t>Tn

te−σ
2t2/2dt

)

+
2

π(12)3/2n1/2σ(6−2ν)/(ν−2)Tn

( ∫ ∞
0
t3e−σ

2t2/2dt
)

=
2e−σ

2T 2
n/4

π T 2
nσ2 +

e−σ
2T 2
n/2

π T 2
nσ2 +

4

π(12)3/2n1/2σ(6−2ν)/(ν−2)+4 Tn

≤
(

3

π
+

4

π (12)3/2

)
max

{
1

nσν/(ν−2)
,

1

nσ3ν/(2ν−4)

}
≤ 1

nσ2ν/(ν−2)
.

In the last line, we have recalled that Tn = n1/2σ(4−ν)/(2ν−4) and noted that σ ∈ (0, 1].
Combining the bounds for I1 and I2, we get that

∣∣∣P
(

1√
n

∑n

i=1
Vi < x

)
− P(Z < x)− Fq(x)

∣∣∣ = |Fn(x)− FZ(x)− Fq(x)|

≤ 2

nσ2ν/(ν−2)
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as desired.

Lemma 4.10 provides a normal approximation error with tighter x-dependence than
a typical non-uniform Berry-Esseen bound. The proof is tedious, but the key ideas are
the following:

(i) In the interval |x| ≤ 2σ√
3M

, i.e. x is within some multiples of the standard deviation
of the Gaussian from the mean, Berry-Esseen bound is sufficiently tight so we can
apply it directly. The interesting case is when x > 2σ√

3M
(x < 2σ√

3M
can be handled

by symmetry).

(ii) To give a tighter control in the region x > 2σ√
3M

, the first part of the proof expands
a telescoping sum of n−1/2

∑n
i=1 Vi and successively replacing the non-Gaussian

part of each data point, i.e. Ui in Vi = 2−1/2Ui + 2−1/2Zi, by a Gaussian.

(iii) Since the support of Ui has size Θ(σ−
2

ν−2 ), which is made to grow slower than
n1/2 by assumption of the lemma, the support of n−1/2Ui shrinks. Therefore on
most part of the real line, the Gaussian approximation error is determined solely
by the mass of the Gaussian counterpart of n−1/2Ui. By carefully choosing a region
moderately far from the origin, we can make use of the exponential tail of n−1/2Ui.
This is the argument leading up to (C.33), and gives rise to the first exponential
term in Lemma 4.10.

(iv) At places where we cannot exploit the tail of n−1/2Ui, we make use of the approx-
imate Gaussianity of the remaining sum n−1/2

∑n
i′=1 Vi′ − n−1/2Ui, which is the

proof starting from (C.34). The idea is that when n−1/2Ui is close to the origin,
the remaining sum n−1/2

∑n
i′=1 Vi′ − n−1/2Ui is allowed to be far from the ori-

gin, and we can obtain a sharper tail. This is achieved by symmetrising the sum
n−1/2

∑n
i′=1 Vi′ − n−1/2Ui in (C.35) and then exploiting the improved n−3/2 rate

of normal approximation of a symmetric sum via the Lindeberg method in (C.36).
This yields the second n−3/2x−4 term in Lemma 4.10; as suggested by the x−4

term, this error is only well-controlled at regions far from the origin.

The proof below is an elaborate version of the arguments in Example 9.1.3 of Senatov
(1998) and with their final step replaced by the Lindeberg method.

Proof of Lemma 4.10. Recall that V := 2−1/2U+2−1/2Z. Let {Ui, Zi}ni=1 be i.i.d. copies
of (U,Z) and let {Z ′i}ni=1 be an independent copy of {Zi}ni=1. Write

Wi :=
1√
2n

(∑n

j=1
Zj +

∑i−1

j=1
Ui +

∑n

j=i+1
Z ′i
)

and denote its probability measure by µWi
. By expressing the quantity to be bounded as a

telescoping sum and noting the independence of (Wi, Ui, Vi) across different i’s, we have

|Fn(x)− FZ(x)| =
∣∣P
(
Wn + (2n)−1/2Un < x

)
− P

(
W1 + (2n)−1/2Z1 < x

)∣∣
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≤
∑n

i=1

∣∣P
(
Wi + (2n)−1/2Ui < x

)
− P

(
Wi + (2n)−1/2Zi < x

)∣∣

≤
∑n

i=1

∫ ∞

−∞

∣∣P
(
(2n)−1/2Ui < x− w

)
− P

(
(2n)−1/2Zi < x− w

)∣∣dµWi
(w)

=
∑n

i=1

∫ ∞

−∞

∣∣P
(
(2n)−1/2Ui < x− w

)
− P

(
(2n)−1/2Zi < x− w

)∣∣ dµWi
(w)

:=
∑n

i=1

∫ ∞

−∞
Ji(w) dµWi

(w) =
∑n

i=1

( ∫ x/2

−∞
Ji(w) dµWi

(w) +
∫ ∞

x/2
Ji(w) dµWi

(w)
)
.

We first focus on the case x > 2σ√
3M

, where M is the constant in the assump-
tion σν/(ν−2) ≥ Mn−1/2. Since (2n)−1/2Ui is bounded in norm by (2n)−1/2(2x0) =

σ√
3nσν/(ν−2) ≤ σ√

3M
< x

2
almost surely, the probability P

(
n−1/2Ui ≥ x−w

)
for w < x/2

is zero. Therefore
∫ x/2

−∞
Ji(w)dµWi

(w)

=
∫ x/2

−∞

∣∣P
(
(2n)−1/2Ui ≥ x− w

)
− P

(
(2n)−1/2Zi ≥ x− w

)∣∣dµWi
(w)

=
∫ x/2

−∞
P
(
(2n)−1/2Zi ≥ x− w

)
dµWi

(w) ≤ P
(

(2n)−1/2Zi ≥
x

2

)

(a)

≤ σ√
πnx

e−
nx2

4σ2

(b)

≤ σ√
πnx

8σ2

nx2 e
−nx

2

8σ2

(c)

≤ 33/2M3

√
π n3/2

e−
nx2

8σ2 ≤ 3M3

n3/2
e−

nx2

8σ2 .

(C.33)

In (a), we used a standard bound for the complementary error function. In (b), we have
noted that y := nx2

8σ2 > n
6M2 ≥ 1 since n ≥ 6M2 and applied the bound e−y ≤ 1

y
for

y ≥ 1. In (c), we have used x > 2σ√
3M

again. Now for the other integral, by the standard
Berry-Esseen bound,

∫ ∞

x/2
Ji(w)dµWi

(w) ≤ E|Ui|3
n3/2σ3

∫ ∞

x/2
dµWi

(w) =
10

63/2n3/2σν/(ν−2)
P(Wi ≥ x/2) ,

(C.34)

where we have used the moment formula from (C.29) to get that

E|Ui|3 =
10

63/2σ(6−2ν)/(ν−2)
.

To handle the probability term, we first consider rewriting the sum Wi = ξi +Si with
a Gaussian component ξi and an independent non-Gaussian component Si given by

ξi :=
1√
2n

(∑n

j=1
Zi +

∑n

j=i+1
Z ′i
)
∼ N

(
0,

(2n− i)
2n

σ2
)

and Si :=
1√
2n

∑i−1

j=1
Ui .

We also write W ′
i = ξ′i + S ′i, where ξ′i and S ′i are i.i.d. copies of ξi and Si, and denote the

symmetrisation W̄i = Wi −W ′
i . Let µWi

be the measure associated with Wi. Then

P(W̄i ≥x/2) =
∫ ∞

−∞
P(−W ′

i ≥ x/2− t) dµWi
(t) ≥

∫ ∞

x/2
P(−W ′

i ≥ x/2− t) dµWi
(t)

≥
(

inft∈[x
2
,∞) P(−W ′

i ≥ x/2− t)
)
P(Wi ≥ x/2) = P(−W ′

i ≥ 0)P(Wi ≥ x/2) .
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This rearranges to give

P(Wi ≥ x/2) ≤ P(−W ′
i ≥ 0)−1 P(W̄i ≥ x/2) , (C.35)

The first probability can be lower bounded by

P(−W ′
i ≥ 0) = P(ξi + Si ≤ 0) ≥ P(ξi ≤ 0)P(Si ≤ 0) .

Note that P(ξi ≤ 0) = 1/2 since ξi is symmetric and P(S1 ≤ 0) = 1. For i > 1, by a
Berry-Esseen bound and the assumption that σν/(ν−2) ≥Mn−1/2 and M ≥ 10,

P(Si ≤ 0) ≥ 1

2
− 23/2E|Ui|3

n1/2σ3
=

1

2
− 10

33/2n1/2σν/(ν−2)
≥ 1

2
− 10

33/2M
≥ 1

4
.

This implies that P(−W ′
i ≥ 0) ≥ 1

8
and therefore

P(Wi ≥ x/2) ≤ 8P(W̄i ≥ x/2) .

In other words, we have shown that P(Wi ≥ x/2) in the bound (C.34) can now be
controlled in terms of the symmetric variable W̄i.

The final step is to compare W̄i to Z̄ ∼ N (0, θ
2(2n−1)
n

σ2). We apply the standard
Lindeberg’s argument with a smooth test function h. By Lemma A.10 with δ = x/4

and m = 3, there is a three-times differentiable function h such that for some absolute
constant C ′′ > 0,

I{t≥x/2} ≤ h(t) ≤ I{t≥x/4} and |h′′′(t)− h′′′(s)| ≤ C ′′x−4|t− s| .

Consider the symmetric variable Ūi = θ√
n
(Ui − U ′i), where {U ′i}ni=1 is an independent

copy of {Ui}ni=1. Write Yk =
∑k−1

j=1 Ūi+ ξ̄i, where ξ̄i ∼ N
(
0, θ

2(4n−2k)
n

σ2
)

is independent
of Ūi. Also denote ζi ∼ N

(
0, 2θ2

n
σ2
)
. Then

P
(
W̄i ≥ x/2

)
≤ P(Z̄ ≥ x/4) + |E[h(W̄i)− h(Z̄)]| (C.36)

≤ P(Z̄ ≥ x/4) +
∑i

k=1
|E[h(Yk + Ūk)− h(Yk + ζk)]| =: P(Z̄ ≥ x/4) +

∑i

k=1
Ai.

Since Z̄ ∼ N (0, θ
2(2n−1)
n

σ2), by noting θ2(2n−1)
n

σ2 ≤ σ2 and x > 2σ√
3M

, we have

P(Z̄ ≥ x/4) ≤ σ√
2π (x/4)

e−
x2

2σ2 ≤
√

6M√
π
e−

x2

2σ2 ≤ 2Me−
x2

2σ2 .

By performing two third-order Taylor expansions around Yk, each Ai satisfies

Ai =
∣∣E
[
h′(Yk)(Ūk − ζk) +

1

2
h′′(Yk)(Ū

2
k − ζ2

k) +
1

6
h′′′(Yk + Ũk)Ū

3
k −

1

6
h′′′(Yk + ζ̃k)ζ

3
k

]∣∣

for some Ũk ∈ [0, Uk] and ζ̃k ∈ [0, ζk] that exist almost surely. The first two terms vanish
by independence of Yk and (Ūk, ζk) as well as the fact that Ūk and ζk match in mean and
variance. Since Ūk and ζk are both symmetric, they both have zero third moments. By
adding and subtracting a third moment term and applying the Lipschitz property of h′′′,
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we obtain

Ai =
1

6

∣∣E
[(
h′′′(Yk + Ũk)− h′′′(Yk)

)
Ū3
k −

(
h′′′(Yk + ζ̃k)− h′′′(ζk)

)
ζ3
k

]

≤ C ′′

6x4

(
E Ū4

k + E ζ4
k

) (a)

≤ C ′

2n2x4

(
1

σ(8−2ν)/ν−2
+ σ4

)
≤ C ′

n2x4σ(8−2ν)/(ν−2)
,

where C ′ is an absolute constant; in (a), we have noted that |Ui−U ′i |4 ≤ (|Ui|+ |U ′i |)4 ≤
8(|Ui|4 + |U ′i |4) and applied the moment bound from (C.29) in the proof of Lemma 4.8.
Combining the bounds gives

P(Wi ≥ x/2) ≤ 8P
(
W̄i ≥ x/2

)
≤ 2Me−

x2

2σ2 +
C ′

nx4σ(8−2ν)/(ν−2)
,

and therefore
∫ ∞

x/2
Ji(w)dµWi

(w) ≤ 10P(Wi ≥ x/2)

63/2n3/2σν/(ν−2)
≤ 20Me−

x2

2σ2

63/2n3/2σν/(ν−2)
+

10C ′

63/2n5/2x4σ(8−ν)/(ν−2)
.

Combining this with the bound for
∫ x/2
−∞ Ji(w)dµWi

(w) in (C.33), we get that for x >
2σ√
3M

,

|Fn(x)− FZ(x)| ≤
∑n

i=1

( ∫ x/2

−∞
Ji(w)dµWi

(w) +
∫ ∞

x/2
Ji(w)dµWi

(w)
)

≤ 3M3e−
nx2

8σ2

n1/2
+

20Me−
x2

2σ2

63/2n1/2σν/(ν−2)
+

10C ′

63/2n3/2x4σ(8−ν)/(ν−2)

≤ C ′M

(
1

n1/2σν/(ν−2)
e−

x2

8σ2 +
1

n3/2x4σ(8−ν)/(ν−2)

)
,

where C ′M > 0 is a constant that depends only on M . Now for |x| ≤ 2σ√
3M

, we can use
the standard Berry-Esseen bound directly and the moment bound from Lemma 4.8 to get
that

|Fn(x)− FZ(x)| ≤ E|X|3
n1/2σ3

≤ a

n1/2σ3

(
σ−

6−2ν
ν−2 + 1

)
≤ amax{1, σ3}

n1/2
σ−

ν
ν−2

for some absolute constant a > 0. Since in this case, e−x2/(8σ2) ≥ e−1/6M , we again
obtain the desired bound that for some constant C ′′M > 0 depending only on M ,

|Fn(x)− FZ(x)| ≤ C ′M max{1, σ3}e− x2

8σ2

n1/2σν/(ν−2)
≤ C ′′M

(
max{1, σ3}e− x2

8σ2

n1/2σν/(ν−2)
+

1

n3/2x4σ(8−ν)/(ν−2)

)
.

The proof for x < − 2σ√
3M

is exactly analogous to the proof for x > 2σ√
3M

.
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Appendix D

Proofs for Chapter 6

This appendix concerns additional results and proofs that concern data augmentation in
Chapter 6. The appendix is organised as follows:

Appendix D.1 states several generalisations and additional corollaries of the main result.

Appendix D.2 states additional results for the toy statistic in Section 6.4.3 and the ridge-
less regressor in Section 6.5.

Appendix D.3 states and proves auxiliary tools used in subsequent proofs.

Appendix D.4 proves our main theorem. A proof overview is given in Appendix D.4.1.

Appendix D.5 presents the proofs of the results in Appendix D.1.

Appendix D.6 proves all results in Section 6.4 and Appendix D.2.1, all of which concern
the asymptotic distribution and variance of the estimator.

Appendix D.7 proves all results in Section 6.5 and Appendix D.2.2, which concern the
limiting risk of an estimator.

Notation. Throughout the appendix, we shorten αr;m(f) to αr;m whenever f is clear
from the context, and write Zδ := {Zδ1, . . . ,Zδn} ∈ Dnk .

D.1 Variants and corollaries of the main result

This section provides some additional results. Theorem D.1 below generalises Theorem
6.1 such that (i) transformed data φ(x) and x are allowed to live in different domains,
and (ii) an additional parameter δ trades off between a tighter bound and lower variance.
Corresponding generalisations of the corollaries in Section 6.3 follow. We also provide
a formal statement for the convergence of estimates of the form g(empirical average)

discussed in Section 6.4.3 (see Lemma D.7), and a variant of Theorem 6.1for non-smooth
statistics in high dimensions.

Throughout this section, the big-O and small-o notations are stated under the asymp-
totic that n→∞, and dimensions d and q are treated as variables that may depend on n,
which manifest through νr;m terms. The leading constants are always absolute constants
and independent of n.
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D.1.1. Generalisations of results in Section 6.3

We first allow the domain and range of elements of T , i.e. augmentations to differ: Let
T ′ be a family of measurable transformations D′ → D, and the data X1, . . . ,Xn be
i.i.d. random elements of D′ ⊆ Rd′ . An example where this formulation is useful is the
empirical risk, where we study the empirical average of the following quantities

l(τ11X1), . . . , l(τnkXn) , for some loss function l : D′ → R .

Note that Theorem D.1 remains applicable by setting φij(X1) := l(τijX1), with the
augmentations used on data are determined through τij . This is used in the softmax
ensemble example in Proposition 6.14.

Next, we introduce a deterministic parameter δ ∈ [0, 1], and redefine the moment and
mixed smoothness conditions. Recall Σ11 := Var[φ11X1] and Σ12 := Cov[φ11X1, φ12X1],
the d × d matrices defined in (6.4) in the main text. Consider the following alternative
requirements on moments of surrogates {Zδi}i≤n:

EZδi = 1k×1 ⊗ E[φ11X1], VarZδi = Ik ⊗
(
(1− δ)Σ11 + δΣ12

)
+ (1k×k − Ik)⊗ Σ12.

(D.1)

Note that when δ = 0, this recovers (6.1). Write Zδ1 = (Zδ1j)j≤k where Zδij ∈ D. In lieu
of the moment terms defined in (6.4) , we consider the moment terms defined by

c1 :=
1

2

∥∥EVar[φ11X1|X1]
∥∥ , cX :=

1

6

√
E‖φ11X1‖6 , cZδ :=

1

6

√
E
[
‖Zδ11‖6

]
.

Again when δ = 0, the last two moment terms are exactly those defined in (6.4). Finally,
we also use a tighter moment control on noise stability. Denote Wδ

i as the analogue of
Wi with {Zi′}i′>i replaced by {Zδi′}i′>i, and define

αr;m(f) :=
∑

s≤q

max
i≤n

max

{∥∥∥∥ sup
w∈[0,ΦiXi]

‖Dr
i fs(W

δ
i (w))‖

∥∥∥∥
Lm

,

∥∥∥∥ sup
w∈[0,Zδi ]

‖Dr
i fs(W

δ
i (w))‖

∥∥∥∥
Lm

}
.

αr;m(f) is related to αr(f) defined in (6.2) by αr(f) = αr;6(f) in the case δ = 0. The
mixed smoothness terms of interest are in turn defined by

λ1(n, k) := γ2(h)α1;2(f)2 + γ1(h)α2;1(f) ,

and λ2(n, k) := γ3(h)α1;6(f)3 + 3γ2(h)α1;4(f)α2;4(f) + γ1(h)α3;2(f) . (D.2)

The choice of L6 norm in Theorem 6.1 is out of simplicity rather than necessity.

Theorem D.1. (Main result, generalised) Consider i.i.d. random elements X1, . . . ,Xn

of D′, and two functions f ∈ F3(Dnk,Rq) and h ∈ F3(Rq,R). Let φ11, . . . , φnk be i.i.d.
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random elements of T ′, independent of X . Then for any i.i.d. variables Zδ1, . . . ,Zδn in Dk
satisfying (D.1),
∣∣Eh(f(ΦX ))− Eh(f(Zδ1, . . . ,Z

δ
n))
∣∣ ≤ δnk1/2λ1(n, k)c1 + nk3/2λ2(n, k)(cX + cZδ) .

The proof of Theorem D.1 is delayed to Appendix D.4. By observing the bound in
Theorem D.1 and the moment condition (6.4),we see that δ is a parameter that trades off
between a tighter bound at the price of higher variances Var[Zi] (for δ = 0), versus an
additional term in the bound and smaller variance (δ = 1). In particular, setting δ = 0

recovers Theorem 6.1:

Proof of Theorem 6.1. In Theorem D.1, setting D′ = D recovers T from T ′, and setting
δ = 0 recovers {Zi}i≤n, cZ from {Zδi}i≤n, cZδ . Moreover, only the second term remains
in the RHS bound. Since for m ≤ 12 and δ = 0, each αr;m(f) is bounded by αr(f),
we have that λ2(n, k) is bounded from above by λh(n, k), which recovers the result of
Theorem 6.1.

Next, we present generalisations of the corollaries in Section 6.3. Corollary 6.2 con-
cerns convergence of variance, which can be proved by taking h to be the identity func-
tion on R, replacing f with coordinates of f , fr( • ) and fr( • )fs( • ) for r, s ≤ q, and
multiplying across by the scale n. We again present a more general result in terms of Zδ
and noise stability terms αr;m defined in Theorem D.1, of which Corollary 6.2 is then an
immediate consequence:

Lemma D.2 (Variance result, generalised). Assume the conditions of Theorem D.1, then

n
∥∥Var[f(ΦX )]− Var[f(Zδ)]

∥∥ ≤ 4δn2k1/2(α0;4α2;4 + α2
1;4)c1

+ 6n2k3/2(α0;4α3;4 + α1;4α2;4)(cX + cZδ) .

Proof of Corollary 6.2. Since αr;m(f) ≤ αr(f) for m ≤ 12 and δ = 0, the second term
in the bound in Lemma D.2 can be further bounded from above by the desired quantity

6n2k3/2(α0α3 + α1α2)(cX + cZ) .

Setting δ = 0 recovers {Zi}ni=1 from Zδ and causes the first term to vanish, which recov-
ers Corollary 6.2.

Corollary 6.4 concerns convergence in dH . We present a tighter bound below:

Lemma D.3 (dH result, generalised). Assume the conditions of Theorem 6.1, then

dH(
√
nf(ΦX ),

√
nf(Zδ))

≤ δn3/2k1/2c1

(
n1/2α2

1;2 + α2;1

)
+ (nk)3/2(nα3

1;6 + 3n1/2α1;4α2;4 + α3;2)(cX + cZδ) .
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Proof of Corollary 6.4. We again note that setting δ = 0 recovers {Zi}ni=1 from Zδ and
cZ from cZδ . The required bound is obtained by setting δ = 0 and bounding each αr;m
term by αr in the result in Lemma D.3:

(nk)3/2(n(α1;6)3 + 3n1/2α1;4α2;4 + α3;2) ≤ (nk)3/2(nα3
1 + 3n1/2α1α2 + α3)(cX + cZ) .

As discussed in the main text, the result for no augmentations in (6.7) is immediate
from setting the augmentations φij to identity almost surely in Theorem 6.1. Equivalent
versions of Lemma D.2 and Lemma D.3 for no augmentation can be obtained similarly,
and the statements are omitted here. This means that to compare the case with augmen-
tation versus the case without, we only need to check the conditions of Lemma D.2 and
Lemma D.3 once.

D.1.2. Results corresponding to Remark 6.1

As mentioned in Remark 6.1(ii), one may allow q to grow with n and k. While Corollary
6.2 still applies if q grows sufficiently slowly, Lemma 6.3 does not apply unless q is fixed.
The following lemma is a substitute. As is typical in high-dimensional settings, we focus
on studying the convergence of fs, a fixed s-th coordinate of f for s ≤ q. The lemma
gives a sufficient condition on f for convergence of variance for f and convergence in
dH for fs to hold when q grows with n and k.

Lemma D.4. Assume the conditions of Theorem 6.1 and fix s ≤ q. Assume that coordi-

nates of φ11X1 and Z1 are O(1) a.s., α1 = o(n−5/6(kd)−1/2), α3 = o((nkd)−3/2) and

α0α3, α1α2 = o(n−2(kd)−3/2), either as n, d, q grow with k fixed or as n, d, q, k all grow.

Then under the same limit,

dH(
√
nfs(ΦX ),

√
nfs(Z1, . . . ,Zn))

d−→ 0 , n‖Var[f(ΦX )]− Var[f(Z1, . . . ,Zn)]‖ → 0 .

The proof is a straightforward result from Corollary 6.2, Corollary 6.4 and Lemma
6.3. In practice, one may want to use Lemma D.2 and Lemma D.3 directly for tighter
controls on moments and noise stability, which is the method we choose for the derivation
of examples in Appendix D.6.

Remark 6.1(iii) discusses the setting where data is distributionally invariant to aug-
mentations. In this case, Theorem D.1 becomes:

Corollary D.5 (T -invariant data source). Assume the conditions of Theorem D.1 and

φX
d
= X for every φ ∈ T . Then

∣∣Eh(f(ΦX ))− Eh(f(Zδ1, . . . ,Z
δ
n))
∣∣ ≤ δnk1/2λ1(n, k)c1 + nk3/2λ2(n, k)(cX + cZδ) ,
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where Zδ1, . . . ,Z
δ
n are i.i.d. variables satisfying

EZδi = 1k×1 ⊗ E[φ11X1], VarZδi = Ik ⊗
(
(1− δ)Σ̃11 + δΣ12

)
+ (1k×k − Ik)⊗ Σ12,

where we have denoted

Σ̃11 := EVar[φ11X1|φ11] ,

Σ12 := Cov[φ11X1, φ12X1] = ECov[φ11X1, φ12X1|φ11, φ12] .

This result is connected to results on central limit theorem under group invariance
(Austern and Orbanz, 2022), by observing that when T is a group, the distribution of
Z is described exactly by group averages. We also note that since Σ̃11 � Σ11, the in-
variance assumption leads to a reduction in data variance, although this does not im-
ply reduction in variance in the estimate f . Finally, the invariance assumption implies
E[φ11X1] = E[X1], in which case the augmented estimate f(ΦX ) is a consistent estimate
of the unaugmented estimate f(X̃1, . . . , X̃n).

Remark 6.1(iii) says that a stricter condition on f that typically requires k to grow
recovers a variance structure resembling that observed in Chen et al. (2020): variance
of an conditional average taken over the distribution of augmentations. This is ob-
tained directly by setting δ = 1 in Theorem D.1 and noting that, by Lemma D.19,
Cov[φ11X1, φ12X1] = VarE[φ11X1|X1] :

Corollary D.6 (Smaller data variance). Assume the conditions of Theorem D.1 with δ =

1. Then
∣∣Eh(f(ΦX ))− Eh(f(Z1, . . . ,Zn))

∣∣ ≤ nk1/2λ1(n, k)c1 + nk3/2λ2(n, k)(cX + cZ) ,

where Z1, . . . ,Zn are i.i.d. variables satisfying

EZi = 1k×1 ⊗ E[φ11X1], VarZi = 1k×k ⊗ VarE[φ11X1|X1] .

Note that the data variance is smaller than that in Theorem D.1 in the following sense:
By Lemma D.19, Var[φ11X1] � Cov[φ11X1, φ12X1] = VarE[φ11X1|X1] and therefore
we have Ik ⊗ (Var[φ11X1] − Cov[φ11X1, φ12X1]) � 0. This implies VarZi in Corollary
D.6 can be compared to that in Theorem D.1 by

1k×k ⊗ VarE[φ11X1|X1] = 1k×k ⊗ Cov[φ11X1, φ12X1]

� Ik ⊗ Var[φ11X1] + (1k×k − Ik)⊗ Cov[φ11X1, φ12X1] .

The stricter condition on f comes from the fact that, for the bound to decay to zero, on
top of requiring λ2(n, k) to be o(n−1k−3/2), we also require λ1(n, k) to be o(nk−1/2).
In the case of empirical average in Proposition 6.7, one may compute that λ1(n, k) =

γ2(h)n−1k−1, so a smaller data variance is only obtained when we require k →∞.
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D.1.3. Plug-in estimates g(empirical average)

We present convergence results that compare f(ΦX ) := g(empirical average) to two
other statistics. One of them is f(Zδ), which is already discussed in Theorem D.1, and
the other one is the limit discussed in (6.12), which is the following truncated first-order
Taylor expansion:

fT (x11, . . . , xnk) := g(E[φ11X1]) + ∂g(E[φ11X1])
( 1

nk

∑n

i=1

∑k

j=1
xij − E[φ11X1]

)
.

Since we need to study the convergence towards a first-order Taylor expansion of g, we
need to define variants of noise stability terms in terms of g. Given {φijXi}i≤n,j≤k and
{Zδi}i≤n := {Zδij}i≤n,j≤k, denote the mean and centred sums

µ := E[φ11X1] , X̄ :=
1

nk

∑
i,j
φijXi − µ , Z̄δ :=

1

nk

∑
i,j
Zδij − µ .

For a function g : D → Rq and s ≤ q, we denote the sth coordinate of g( • ) as gs( • ) as
before, and define a new noise stability term controlling the noise from first-order Taylor
expansion around µ:

κr;m(g) :=
∑

s≤q

∥∥supw∈[0,X̄]

∥∥∂rgs
(
µ+ w

)∥∥∥∥
Lm

.

The first-order Taylor expansion also introduces additional moment terms, which is con-
trolled by Rosenthal’s inequality from Corollary D.22 and bounded in terms of:

c̄m :=
(∑d

s=1
max

{
n

2
m
−1
∥∥1

k

∑k

j=1
(φ1jX1 − µ)s

∥∥2

Lm
,
∥∥1

k

∑k

j=1
(φ1jX1 − µ)s

∥∥2

L2

})1/2

.

Finally, since we will compare f(ΦX ) to f(Zδ), we consider noise stability terms that
resemble αr;m from Theorem D.1 but expressed in terms of g:

νr;m(g) :=
∑

s≤q

max
i≤n

max

{∥∥∥ sup
w∈[0,ΦiXi]

‖∂rgs(W
δ
i (w))‖

∥∥∥
Lm

,

∥∥∥ sup
w∈[0,Zδi ]

‖∂rgs(W
δ
i (w))‖

∥∥∥
Lm

}

=
∑

s≤q maxi≤n ζi;m
(∥∥∂rgs

(
W

δ
i ( • )

)∥∥) ≥ maxi≤n ζi;m
(∥∥∂rg

(
W

δ
i ( • )

)∥∥) ,
(D.3)

where

W
δ
i (w) :=

1

nk

(∑i−1

i′=1

∑k

j=1
φi′jXi′ +

∑k

j=1
wj +

∑n

i′=i+1

∑k

j=1
Zδi′j
)
.

We omit g-dependence in κr;m and νr;m whenever the choice of g is obvious.

Lemma D.7. (Plug-in estimates) Assume the conditions of Theorem D.1. For g ∈
F3(D,Rq), define the plug-in estimate f(x11:nk) = g

(
1
nk

∑
i≤n,j≤k xij

)
and its Taylor

expansion fT (x11:nk) as in (6.11). Then, for any Zδ satisfying the conditions of Theorem

D.1,
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(i) the following bounds hold concerning the approximation by fT (Zδ):

dH
(√

nf(ΦX ),
√
n fT (Zδ)

)

= O
(
n−1/2κ2;3 c̄

2
3 + δk−1/2κ2

1;1c1 + n−1/2κ3
1;1(cX + cZδ)

)
,

n
∥∥Var[f(ΦX )]− Var

[
fT (Zδ)

]∥∥

= O
(
δk−1‖∂g(µ)‖2

2 c
2
1 + n−1/2κ1;1κ2;4c̄

3
4 + n−1κ2

2;6c̄
4
6

)
.

(ii) the following bounds hold concerning the approximation by f(Zδ):

dH(
√
nf(ΦX ),

√
nf(Zδ)) = O

(
δ
(
k−1/2ν2

1;2 + n−1/2k−1/2ν2;1

)
c1

+
(
n−1/2ν3

1;6 + 3n−1ν1;4ν2;4 + n−3/2ν3;2

)

× (cX + cZδ)
)
,

n‖Var[f(ΦX )]− Var[f(Zδ)]‖ = O
(
δk−1/2(ν0;4ν2;4 + ν2

1;4)c1

+ n−1(ν0;4ν3;4 + ν1;4ν2;4)(cX + cZδ)
)
.

Remark D.1. The statement in (6.12) in the main text is obtained from Lemma D.7(i)
by fixing q, setting δ = 0 and requiring the bounds to go to 0, which is a noise stability
assumption on g and a constraint on how fast d is allowed to grow. Weak convergence
can again be obtained from convergence in dH by Lemma 6.3.

D.1.4. Non-smooth statistics in high dimensions

Our results can be extended to non-smooth statistics that are well approximated by a se-
quence of smooth ones. To deal with high dimensions, instead of using moment terms
that involve a vector-2 norm of a high-dimensional vector, we use moment terms involv-
ing a vector-∞ norm. This gives the following variant of Theorem D.1:

Theorem D.8. (Main result adapted for non-smooth statistics in high dimensions) For a

function f : Dnk → Rq, suppose exists a sequence of functions f (t) ∈ F3(Dnk,Rq) that

satisfy

ε(t) := max
{
‖ ‖f(ΦX )− f (t)(ΦX )‖ ‖L1

, ‖ ‖f(Z)− f (t)(Z)‖ ‖L1

} t→∞−−−→ 0 .

Let ΦX and Z be defined as in Theorem D.1 with δ = 0, and let ‖ • ‖1 be the vector-1

norm. Then,
∣∣Eh(f(ΦX ))− Eh(f(Z))

∣∣ ≤ nk3/2(c̃X + c̃Z)

×
(
γ3(h)(α̃

(t)
1 )3 + 3γ2(h)α̃

(t)
1 α̃

(t)
2 + γ1(h)α̃

(t)
3

)

+ 2γ1(h)ε(t) .
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Here, we have defined the new noise stability terms in terms of vector-1 norm ‖ • ‖1 as

α̃
(t)
r :=

∑q

s=1
max
i≤n

max

{∥∥∥∥ sup
w∈[0,ΦiXi]

( k∑

j1,...,jr=1

∥∥ ∂r

∂xij1 . . . ∂xijr
f

(t)
s (Wi(w))

∥∥2

1

)1/2 ∥∥∥∥
L6

,

∥∥∥∥ sup
w∈[0,Zi]

( k∑

j1,...,jr=1

∥∥ ∂r

∂xij1 . . . ∂xijr
f

(t)
s (Wi(w))

∥∥2

1

)1/2 ∥∥∥∥
L6

}
,

where f (t)
s is the sth coordinate of f (t), and the new moment terms as

c̃X :=
1

6

√
E
[

maxl≤d |(φ11Xi)l|6
]
, c̃Z :=

1

6

√
E
[

1

k

∑k

j=1
maxl≤d |(Z1j)l|6

]
.

A similar argument to Lemma D.7(ii) then yields an analogue of the result for plugin-
estimates, which is useful for the derivation of maximum of exponentially many averages
in Appendix D.6.5:

Corollary D.9. For a function g : D → Rq, suppose there exists a sequence of functions

g(t) ∈ F3(Dnk,Rq) that satisfy ε(t) t→∞−−−→ 0 for

ε(t) := max
{∥∥∥∥g

( 1

nk

∑
i,j
φijXi

)
− g(t)

( 1

nk

∑
i,j
φijXi

)∥∥ ∥∥
L2
,

∥∥∥∥g
( 1

nk

∑
i,j
Zij
)
− g(t)

( 1

nk

∑
i,j
Zij
)∥∥ ∥∥

L2

}
.

Define the plug-in estimate f(x11:nk) = g
(

1
nk

∑
i≤n,j≤k xij

)
. Then, the following conver-

gences hold:

dH(
√
nf(ΦX ),

√
nf(Z)) = O

(
(n−1/2(ν̃

(t)
1 )3 + 3n−1ν̃

(t)
1 ν̃

(t)
2 + n−3/2ν̃

(t)
3 )(c̃X + c̃Z)

+
√
nε(t)

)
,

n‖Var[f(ΦX )]− Var[f(Z)]‖ = O
(
n−1(ν̃

(t)
0 ν̃

(t)
3 + ν̃

(t)
1 ν̃

(t)
2 )(c̃X + c̃Z)

+ n(‖ ‖f(ΦX )‖ ‖L2
+ ‖ ‖f(Z)‖ ‖L2

)ε(t) + nε(t)2
)
.

Here, we have used the moment terms c̃X and c̃Z from Theorem D.8 and the modified

noise stability terms as

ν̃
(t)
r :=

q∑

s=1

max
i≤n

max

{∥∥∥ sup
w∈[0,ΦiXi]

‖∂rg(t)
s (Wi(w))‖1

∥∥∥
L6

,

∥∥∥ sup
w∈[0,Zi]

‖∂rg(t)
s (Wi(w))‖1

∥∥∥
L6

}
,

where g(t)
s is the sth coordinate of g(t).

For smooth statistics, a similar argument to Lemma D.7(i) also yields an analogue
of the result for plugin-estimates compared to first-order Taylor expansion in high di-
mensions. The following result is useful for the derivation of softmax ensemble in Ap-
pendix D.6.6:
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Corollary D.10. For a function g ∈ F3(D,Rq), define f(x11:nk) = g
(

1
nk

∑
i≤n,j≤k xij

)

as the plug-in estimate. Let ΦX and Z be defined as in Theorem D.1 with δ = 0, and

the first-order Taylor expansion fT be defined by (6.11). Let c̃X and c̃Z be defined as in

Theorem D.8. Then if log d = o(nα) for some α ≥ 0, the following bounds hold:

dH(
√
nf(ΦX ),

√
nfT (Z)) = o

(
n−1/2+ακ̃2 max{1, (c̃X)4/3}

)

+O
(
n−1/2κ̃3

1(c̃X + c̃Z)
)
,

n
∥∥Var[f(ΦX )]− Var

[
fT (Z)

]∥∥ = o
(
(n−1/2+3α/2κ̃1κ̃2 + n−1+2ακ̃2

2) max{1, (c̃X)8/3}
)
,

We have defined the modified noise stability terms in terms of the expectation µ =

E[φ11X1] and the centred average X̄ := 1
nk

∑
i,j φijXi − µ as

κ̃r :=
∑

s≤q

∥∥supw∈[0,X̄]

∥∥∂rgs
(
µ+ w

)∥∥
1

∥∥
L6
.

D.1.5. Repeated augmentation

In Theorem 6.1, each transformation is used once and then discarded. A different strategy
is to generate only k transformations i.i.d., and apply each to all n observations. That
introduces additional dependence: In the notation of Section 6.2, ΦiXi and ΦjXj are no
longer independent if i 6= j. The next result adapts Theorem 6.1 to this case. We require
that f satisfies

f(x11, . . . ,x1k, . . . ,xn1, . . . ,xnk) = f(x1π1(1), . . . ,x1π1(k), . . . ,xnπn(1), . . . ,xnπn(k))

(D.4)
for any permutations π1, . . . , πn of k elements. That holds for most statistics of practical
interest, including empirical averages and M -estimators.

Theorem D.11. (Repeated Augmentation) Assume the conditions in Theorem 6.1 with

D = Rd and that f satisfies (D.4). Define Φ̃ := (φij|i ≤ n, j ≤ k), where φ1j =

. . . = φnj =: φj and φ1, . . . , φk are i.i.d. random elements of T . Then there are random

variables Y1, . . . ,Yn in Rkd such that
∣∣Eh(f(Φ̃X ))− Eh(f(Y1, . . . ,Yn))

∣∣

≤ nγ1(h)α1m1 + nω2(n, k)(γ2(h)α2
1 + γ1(h)α2) + nk3/2λh(n, k)(cX + cY ) .

Here, λ, cX and αr are defined as in Theorem 6.1, and cY is defined in a way analogous

to cZ:

cY :=
1

6

√
E
[( |Y111|2 + . . .+ |Y1kd|2

k

)3]
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The additional constant moment terms are defined by m1 :=
√

2TrVarE[φ1X1|φ1], and

m2 :=

√∑

r,s≤d

VarE
[
(φ1X1)r(φ1X1)s

∣∣φ1

]

2
, m3 :=

√∑

r,s≤d

12VarE
[
(φ1X1)r(φ2X1)s

∣∣φ1, φ2

]
.

The variables Yi are conditionally i.i.d. Gaussian vectors with mean E[ΨX1|Ψ1] and

covariance matrix Var[ΨX1|Ψ1], conditioning on Ψ := {ψ1, . . . , ψk} i.i.d. distributed as

{φ1, . . . , φk}.

The result shows that the additional dependence introduced by using transformations
repeatedly does not vanish as n and k grow. Unlike the Gaussian limit in Theorem 6.1
(whenD is taken as Rd), the limit here is characterized by variables Yi that are only con-

ditionally Gaussian, given an i.i.d. copy of the augmentations. That further complicates
the effects of augmentation. Indeed, there exist statistics f for which i.i.d. augmentation
as in Theorem 6.1 does not affect the variance, but repeated augmentation either increases
or decreases it. Lemma D.12 gives such an example: Even when distributional invariance
holds, augmentation may increase variance for one statistic and decrease variance for the
other.

Lemma D.12. Consider i.i.d. random vectors X1,X2 in Rd with mean µ and φ1, φ2 ∈
Rd×d be i.i.d. random matrices such that φ1X1

d
= X1. Then for f1(x1,x2) := x1 + x2

and f2(x1,x2) := x1 − x2,

(i) Varf1(X1,X2) = Varf1(φ1X1, φ2X2) � Varf1(φ1X1, φ1X2), and

(ii) Varf2(X1,X2) = Varf2(φ1X1, φ2X2) � Varf2(φ1X1, φ1X2).

D.2 Additional results for the examples

D.2.1. Results for the toy statistic

In this section, we present results concerning the toy statistic defined in (6.13). For
convenience, we write f ≡ ftoy. To express variances concisely, we define the function
V (s) := (1 + 4s2)−1/2 − (1 + 2s2)−1, and write

σ̃ :=
√

Var[X1] and σ :=
(

1

k
Var[φ11X1] +

k − 1

k
Cov[φ11X1, φ12X1]

)1/2

.

The next result applies Theorem 6.1 to derive closed-form formula for the quantities
plotted in Figure 6.3:

Proposition D.13. Require that E[X1] = E[φ11X1] = 0, and that E[|X1|12] and E[|φ11X1|12]
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Figure D.1: Simulation for f2 with n = 100 and varying k. Left: The standard deviation Std f2(ΦX ). The
dotted lines indicate the theoretical value of Std f2(Z) computed in Lemma D.14, in which we also verify
the convergence of f2(ΦX ) to f2(Z) in dH. Right: Difference between 0.025-th and 0.975-th quantiles
for f2(ΦX ). In all figures, shaded regions denote 95% confidence intervals for simulated quantities.

are finite. Let Z,Z ′ be Gaussian. Then f ≡ ftoy defined in (6.13) satisfies

dH(f(ΦX ), f(Z))→ 0 and Var[f(ΦX )]− Var[f(Z)]→ 0 as n→∞

and the same holds in the unaugmented case where ΦX and Z are replaced by X̃ and

Z̃ . The asymptotic variances are

Varf(Z) = V (σ) and Varf(Z̃) = V (σ̃) and hence ϑ(f) =
√
V (σ̃)/V (σ) .

For any α ∈ [0, 1], the lower and upper α/2-th quantiles for f(Z) and f(Z̃) are given

by
(

exp
(
− σ2πu

)
, exp

(
− σ2πl

))
and

(
exp(−σ̃2πu), exp(−σ̃2πl)

)
,

where πu and πl are the upper and lower α/2-th quantiles of a χ2
1 random variable.

As discussed in the main text, the behavior of f under augmentation is more compli-
cated than that of averages as both V (s) and D(s) := exp(−s2πl)− exp(−s2πu) are not
monotonic. This phenomenon persists if we extends f to two dimensions, by defining

f2(x11, . . . ,xnk) := f(x111, . . . , xnk1) + f(x112, . . . , xnk2) . (D.5)

Figure D.1 shows results for

Xi
i.i.d.∼ N (0, σ2

(
1 ρ
ρ 1

)
) ,−1 < ρ < 1 , and φij

i.i.d.∼ Uniform{( 1 0
0 1 ), ( 0 1

1 0 )} (D.6)

under ρ = 0.5. In this case, the data distribution is invariant under both possible transfor-
mations. Thus, invariance does not guarantee augmentation to be well-behaved.

For completeness, we also include Lemma D.14, a result that confirms the applicabil-
ity of Theorem 6.1 to f2. We also compute an explicit formula for the variances of f(Z)

and f(Z̃) under (D.6) for a general ρ.
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Lemma D.14. Under the setting (D.6), the statistic f2 defined in (D.5) satisfies

(i) as n → ∞, f2(ΦX ) − f2(Z)
d−→ 0 and ‖Var[f2(ΦX )] − Var[f2(Z)]‖ → 0, and

the same holds with (ΦX ,Z) replaced by the unaugmented data and surrogates

(X̃ , Z̃);

(ii) Zi has zero mean and covariance matrix

σ2Ik ⊗
(

1 ρ
ρ 1

)
+

(1 + ρ)σ2

2
(1k×k − Ik)⊗ 12×2 ,

while Z̃i has zero mean and covariance matrix σ21k×k ⊗
(

1 ρ
ρ 1

)
;

(iii) write σ2
− := (1−ρ)σ2

2
and σ2

+ := (1+ρ)σ2

2
, then variance of the augmented data is

given by

Var[f2(Z)] = 2
(

1 +
4σ2
−
k

+ 4σ2
+

)−1/2

+ 2
(

1 +
4σ2
−
k

)−1/2

(1 + 4σ2
+)−1/2

− 4(1 +
2σ2
−
k

+ 2σ2
+)−1 .

In particular, at ρ = 0.5, limk→∞Var[f2(Z)] = 4(1 + 3σ2)−1/2 − 4
(
1 + 3

2
σ2
)−1.

Remark D.2. Note that (i) above only verifies the convergence under n → ∞ with
k fixed. Nevertheless, one may easily check that f2 satisfies the stronger Corollary

D.6 corresponding to a smaller variance of Zi given by
(1 + ρ)σ2

2
12k×2k as n, k → ∞.

In that case, the asymptotic variance of the statistic is given exactly by the formula
limk→∞Var[f2(Z)] in (iii) above.

D.2.2. Additional results for ridgeless regressor

This section complements Section 6.5 and provides tools for simplifying the risk of ridge-
less regressors.

Notation. For A,B ∈ Rd×d symmetric and λ ≥ 0, we denote

f
(1)
λ (A) :=




λ2β>

(
A+ λId

)−2
β for λ > 0

∥∥(A†A− Id
)
β
∥∥2 for λ = 0

,

f
(2)
λ (A,B) :=

σ2
ε

n
Tr
((
A+ λId

)−2
B
)
, fλ(A,B) := f

(1)
λ (A) + f

(2)
λ (A,B) ,

where ( • )−2 is a shorthand for the square of the pseudoinverse ( • )†. Observe that by a
standard bias-variance decomposition as in Hastie et al. (2022), the risk under the oracle
augmentations can be expressed as, for both the case λ > 0 and the case λ = 0,

L̂
(ora)
λ =

∥∥E
[
β̂

(ora)
λ (X )

∣∣X
]
− β

∥∥2
+ Tr

[
Cov

[
β̂

(ora)
λ (X )

∣∣X
]]

=
∥∥((X̄1 + λId

)†
X̄1 − Id

)
β
∥∥2

+
σ2
ε

n
Tr
((
X̄1 + λId

)†
X̄2

(
X̄1 + λId

)†)
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= f
(1)
λ (X̄1) + f

(2)
λ (X̄1, X̄2) = fλ(X̄1, X̄2) .

Throughout, we write el as the l-th standard basis vector of Rd and denote Xijl as the l-th
coordinate of πijVi.

The general case. The next lemma approximates fλ(X̄1, X̄2) by f0(X̄1, X̄2) in the
Lévy–Prokhorov metric dP defined in (D.8). The proof exploits the assumption below on
the distribution of the extreme eigenvalues of X̄1, X̄2, Z̄1 and Z̄2, as well as the alignment
of their zero eigenspace.

Lemma D.15. Under Assumption 6.2, if d = O(n) and λ > 0, then

dP
(
f

(1)
λ (X̄1, X̄2) , f

(1)
0 (X̄1, X̄2)

)
= Oγ′(λ

2) ,

dP
(
f

(2)
λ (X̄1, X̄2) , f

(2)
0 (X̄1, X̄2)

)
= Oγ′

(
λ+

1

nλ2

)
,

dP

(
fλ(X̄1, X̄2) , f0(X̄1, X̄2)

)
= Oγ′

(
λ2 + λ+

1

nλ2

)
,

dP

(
fλ(Z̄1, Z̄1 + E12) , f0(Z̄1, Z̄1 + E12)

)
= Oγ′

(
λ2 + λ+

1

nλ2

)
,

where Oγ′ indicates that the bounding constant is allowed to depend on γ.

The isotropic case. In the isotropic case, one may exploit the property of Gaussians
to express Z̄1 and Z̄2 explicitly in terms of the same rectangular Gaussian matrix. This
allows the risk to be completely characterized by moments and Stieltjes transforms of
the Marchenko-Pastur law under appropriate transformations, and simplifies how the two
strongly correlated matrices affects the risk. The risk formula then extends to the non-
Gaussian case by our universality results. The alternative expression for Z̄1 below also
formally justifies (6.23) in the discussion in the main text.

Lemma D.16. Assume (6.22). Fix any mutually orthogonal unit vectors v1, . . . ,vk−1 ∈
Rk such that the sum of coordinates of each vi equals zero. Consider the orthogonal

matrix Qk ∈ Rk×k and the diagonal matrix Dk ∈ Rk×k, defined as

Qk :=




k−1/2 ... k−1/2

← v>1 →
...

← v>k−1 →


 and Dk :=




(k+σ2
A)/k

σ2
A/k

. . .
σ2
A/k


 .

Also define the Rnk×n matrix

K :=
1√
k
In ⊗ 1k =

1√
k

(
1 ... 1

1 ... 1
. . .

1 ... 1

)>
.

Then almost surely,

Z̄1 =
1

n
H
(
In ⊗Dk

)
H> and Z̄2 =

1

n
H
(
In ⊗D1/2

k Qk

)
KK>

(
In ⊗Q>kD1/2

k

)
H> ,
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for some H that is an Rd×nk matrix with i.i.d. standard Gaussian entries. As a conse-

quence, we have

Z̄1 =
1

n

∑n

i=1

(
ηi1η

>
i1 +

σ2
A

k

∑k

j=1
ηijη

>
ij

)
= Z̄2 +

σ2
A

nk

∑n

i=1

∑k

j=2
ηijη

>
ij

almost surely for some i.i.d. standard Gaussian vectors ηij in Rd.

The next result verifies Assumptions 6.1 and 6.2 for isotropic Gaussian data.

Lemma D.17. Suppose Xi ∼ N (0, Id) and ξij ∼ N (0, σ2
AId), and consider the asymp-

totic (6.20) with γ′ = lim d/(kn) 6= 1. Then Assumptions 6.1 and 6.2 hold.

D.3 Auxiliary results

In this section, we include a collection of results useful for various parts of our proof.

D.3.1. Convergence in dH

The weak convergence lemma Lemma 6.3 shows that convergence in dH implies weak
convergence. The gist of the proof is as follows. Assuming dimension to be one, in Step
1, we construct a thrice-differentiable function in H to approximate indicator functions
in R. This allows us to bound the difference in probabilities of two random variables
X and Y lying in nearby regions by their distance in dH. In Step 2, we consider a
sequence of random variables Yn converging to Y in dH, and use Step 1 to bound the
probability of Yn lying in a given region by the probability of Y lying in a nearby region
plus dH(Yn, Y ), which converges to zero. This allows us to show convergence of the
distribution function of Yn to that of Y . Finally, we make use of Cramer-Wold and
Slutsky’s Lemma to generalise our result to q ≥ 1 dimensions.

Proof of Lemma 6.3. Step 1. Assume q = 1. Let A ⊂ R be a Borel set, and ε ∈ (0, 1) a
constant. We will first show that

P(Y ∈ A8ε) ≥ P(X ∈ A)− dH(X, Y )/ε4 . (D.7)

where Aε := {x ∈ R | ∃y ∈ A s.t. |x− y| ≤ ε}. To this end, define a smoothed approx-
imation of the indicator function of A as

hε(x) :=
1

ε4

∫ x

x−ε

∫ s

s−ε

∫ t

t−ε

∫ y

y−ε
I{z ∈ A4ε} dz dy dt ds .
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Then hε is three times differentiable everywhere on R, and its first three derivatives are
bounded in absolute value by 1/ε4. It follows that ε4hε ∈ H, and hence that

|Ehε(X)− Ehε(Y )| ≤ dH(X, Y )/ε4 .

Since hε = 0 outsideA8ε and hε = 1 onA, we have P(Z ∈ A) ≤ E[hε(Z)] ≤ P(Z ∈ A8ε)

for any random variable Z. It follows that

Ehε(X)− Ehε(Y ) ≥ P(X ∈ A)− P(Y ∈ A8ε) ,

which implies (D.7).

Step 2. To establish weak convergence for q = 1, denote by F the c.d.f of Y . To show
Yn

d−→Y , it suffices to show that P(Yn ≤ b)→ F (b) at every point b ∈ R at which F is
continuous. For any ε ∈ (0, 1), we have

P(Y ≤ b+ 8ε) ≥ P(Yn ≤ b)− dH(Yn, Y )/ε4 ≥ lim sup
n

P(Yn ≤ b) ,

where the first inequality uses (D.7) and the second dH(Yn, Y )→ 0. Set a = b− 8ε.
Then

P(Yn ≤ b) = P(Yn ≤ a+ 8ε)

≥ P(Y ≤ a)− dH(Yn, Y )/ε4 = P(Y ≤ b− 8ε)− dH(Yn, Y )/ε4 ,

and hence lim infn P(Yn ≤ b) ≥ P(Y ≤ b− 8ε). To summarize, we have

P(Y ≤ b− 8ε) ≤ lim inf
n

P(Yn ≤ b) ≤ lim sup
n

P(Yn ≤ b) ≤ P(Y ≤ b+ 8ε)

for any ε ∈ (0, 1). Since F is continuous at b, we can choose ε arbitrary small, which
shows limP(Yn ≤ b) = P(Y ≤ b). Thus, weak convergence holds in R.

Step 3. Finally, consider any q ∈ N. In this case, it is helpful to write H(q) for the class
H of functions with domain Rq. Recall the Cramer-Wold theorem (Kallenberg, 2001,
Corollary 5.5): Weak convergence Yn

d−→Y in Rq holds if, for every vector v ∈ Rq, the
scalar products v>Yn converge weakly to v>Y . By Slutsky’s lemma, it is sufficient to
consider only vectors v with ‖v‖ = 1. Now observe that, if h ∈ H(1) and ‖v‖ = 1,
the function y 7→ h(v>y) is in H(q), for every v ∈ Rq. It follows that dH(q)(Yn, Y )→ 0

implies dH(1)(v
>Yn, v

>Y )→ 0 for every vector v, which by Step 2 implies v>Yn
d−→v>Y ,

and weak convergence in Rq holds by Cramer-Wold.

Comparison of dH with known probability metrics In this section, let X, Y be ran-
dom variables taking values in R, and defineAε as in the proof of Lemma 6.3. We present
a result that helps to build intuitions of dH by bounding it with known metrics. Specif-
ically, we consider the Lévy–Prokhorov metric dP and Kantorovich metric dK , defined
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respectively as

dP (X, Y ) = infε>0{ε | P(X ∈ A) ≤ P(Y ∈ Aε) + ε,

P(Y ∈ A) ≤ P(X ∈ Aε) + ε for all Borel set A ⊆ R} ,
(D.8)

dK(X, Y ) = sup{E[h(X)]− E[h(Y )] | h : R→ R has Lipschitz constant ≤ 1} .

The Kantorovich metric is equivalent to the Wasserstein-1 metric when the distributions
of X and Y have bounded support. We can compare dH to dP and dK as follows:

Lemma D.18. dP (X, Y ) ≤ 84/5dH(X, Y )1/5 and dH(X, Y ) ≤ dK(X, Y ).

Proof. For the first inequality, recall from (D.7) in the proof of Lemma 6.3 that for δ > 0

and any Borel set A ⊂ R, P(Y ∈ A8δ) ≥ P(X ∈ A) − dH(X, Y )/δ4. Setting δ =(
dH(X,Y)/8

)1/5 gives

P(X ∈ A) ≤ P
(
Y ∈ A84/5dH(X,Y )1/5

)
+ 84/5dH(X, Y )1/5 .

By the definition of dP , this implies that dP (X, Y ) ≤ 84/5dH(X, Y )1/5. The second
inequality dH(X, Y ) ≤ dK(X, Y ) directly follows from the fact that every h ∈ H has its
first derivative uniformly bounded above by 1.

Remark D.3. The proof for dP (X, Y ) ≤ 84/5dH(X, Y )1/5 in Lemma D.19 can be gen-
eralised to Rq so long as q is fixed. Since the inequality says convergence in dH implies
convergence in dP and dP metrizes weak convergence, this gives an alternative proof for
Lemma 6.3.

Convergence in dH implies convergence of mean Lemma 6.6 is useful for translating
the convergence in dH of uncentred quantities to centred versions, and we present the
proof below.

Proof of Lemma 6.6. The first bound can be proved by noting that each coordinate func-
tion that maps an Rd vector to one of its coordinate in R belongs toH:

‖EX− EY‖ =
(∑q

l=1
|E[Xl]− E[Yl]|2

)1/2 ≤
(
q dH(X,Y)2

)1/2 ≤ q1/2ε .

To prove the second bound, notice that the class of functions H is invariant under a
constant shift in the argument of the function, which implies dH(X−EX,Y−EX) ≤ ε.
By the triangle inequality, we have

dH(X− EX,Y − EY) ≤ ε+ dH(Y − EX,Y − EY)

≤ ε+ suph∈H
∣∣E
[
h(Y − EX)− h(Y − EY)

]∣∣
(a)

≤ ε+ ‖EX− EY‖ ≤ (1 + q1/2)ε .
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In (a), we have applied the mean value theorem to h on the interval [Y − EX,Y − EY]

and used ‖∂h‖ ≤ 1. This finishes the proof.

D.3.2. Additional tools

The following lemma establishes identities for comparing different variances obtained in
Theorem 6.1 (main result with augmentation), (6.7) (no augmentation) and other variants
of the main theorem in Appendix D.1.2.

Lemma D.19. Consider independent random elements φ, ψ of T and X of D ⊆ Rd,

where φ d
= ψ. Then

(i) Cov[φX, ψX] = ECov[φX, ψX|φ, ψ] = VarE[φX|X],

(ii) Var[φX] � EVar[φX|φ] � Cov[φX, ψX], where � denotes Löwner’s partial or-

der.

Proof. (i) By independence of φ and ψ, Cov
[
E[φX|φ],E[ψX|ψ]

]
= 0. By combining

this with the law of total covariance, we obtain that

Cov[φX, ψX] = E[Cov[φX, ψX|φ, ψ]]+Cov
[
E[φX|φ],E[ψX|ψ]

]
= E[Cov[φX, ψX|φ, ψ]].

Moreover, independence of φ and ψ also gives Cov[φX, ψX|X] = 0 almost surely.
Therefore by law of total covariance with conditioning performed on X, we get

Cov[φX, ψX] = Cov
[
E[φX|X],E[ψX|X]

] (a)
= VarE[φX|X] ,

where to obtain (a) we used the fact that as φ d
= ψ we have E[φX|X]

a.s
= E[ψX|X].

(ii) By the law of total variance we have:

Var[φX] = E[Var[φX|φ]] + Var[E[φX|φ]]. (D.9)

We know that Var[E[φX|φ]] � 0 almost surely, which implies that Var[φX] � E[Var[φX|φ]].
For the second inequality, note that for all deterministic vector v ∈ Rd we have

v>
(
EVar[φX|φ]−ECov[φX, ψX|φ, ψ]

)
v

(b)
= E

[
Var[v>(φX)|φ]−Cov[v>(φX),v>(ψX)|φ, ψ]

]

where (b) is obtained by bilinearity of covariance. By Cauchy-Schwarz, almost surely,

Cov[v>(φX),v>(ψX)|φ, ψ] ≤
√

Var[v>(φX)|φ]
√

Var[v>(ψX)|ψ].

This implies that

v>
(
EVar[φX|φ]− ECov[φX, ψX|φ, ψ]

)
v ≥ 0 .

Therefore we conclude that

EVar[φX|φ] � ECov[φX, ψX|φ, ψ] = Cov[φX, ψX],
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where the last inequality is given by (i). This gives the second inequality as desired.

The function ζi;m defined in the following lemma enters the bound in Theorem 6.1
and its variants through the noise stability terms αr defined in (6.2) and αr;m defined in
Theorem D.1, and will recur throughout the proofs for different examples. We collect
useful properties of ζi;m into Lemma D.20 for convenience.

Lemma D.20. For 1 ≤ i ≤ n, let Φ1Xi, Zi be random quantities in D. For a random

function T : Dk → R+
0 , where R+

0 is the set of non-negative reals, and for m ∈ N, define

ζi;m(T) := max
{∥∥ supw∈[0,Φ1Xi]

T(w)
∥∥
Lm
,
∥∥ supw∈[0,Zi]

T(w)
∥∥
Lm

}
.

Then for any deterministic α ∈ R+
0 , random functions Tj : Dk → R+

0 , and s ∈ N,

(i) (triangle inequality) ζi;m(T1 + T2) ≤ ζi;m(T1) + ζi;m(T2),

(ii) (positive homogeneity) ζi;m(αT1) = αζi;m(T1),

(iii) (order preservation) if for all w ∈ Rdk, T1(w) ≤ T2(w) almost surely, then

ζi;m(T1) ≤ ζi;m(T2),

(iv) (Hölder’s inequality) ζi;m(
∏s

j=1 Tj) ≤
∏s

j=1 ζi;ms(Tj), and

(v) (coordinate decomposition) if g : Dk → Rq is a r-times differentiable func-

tion and gs : Dk → R denotes the s-th coordinate of g, then ζi;m(‖∂rg( • )‖) ≤∑
s≤q ζi;m(‖∂rgs( • )‖).

Proof. (i), (ii) and (iii) are straightforward by properties of sup and max and the triangle
inequality. To prove (iv), we note that

∥∥∥ sup
w∈[0,Φ1Xi]

∏s

j=1
T(w)

∥∥∥
Lm

≤
∥∥∥
∏s

j=1
sup

w∈[0,Φ1Xi]

Tj(w)
∥∥∥
Lm

.

By the generalised Hölder’s inequality we also have
∥∥∥
∏s

j=1
sup

w∈[0,Φ1Xi]

Tj(w)
∥∥∥
Lm

≤
∏s

j=1

∥∥∥ sup
w∈[0,Φ1Xi]

Tj(w)
∥∥∥
Lms

≤
∏s

j=1
ζi;ms(Tj).

Similarly we can prove that
∥∥ supw∈[0,Zi]

∏s

j=1
Tj(w)

∥∥
Lm
≤
∏s

j=1
ζi;ms(Tj). This di-

rectly implies that ζi;m(
∏s

j=1 Tj) ≤
∏s

j=1 ζi;ms(Tj). Finally to show (v), note that

‖∂rg(v)‖ =
√∑

s≤q ‖∂rgs(v)‖2 ≤
∑

s≤q ‖∂
rgs(v)‖

for every v ∈ Dk. By (iii), this implies ζi;m(‖∂rg( • )‖) ≤ ∑
s≤q ζi;m(‖∂rgs( • )‖) as

required.

The following result from Rosenthal (1970) is useful for controlling moment terms,
and is used throughout the proofs for different examples. We also prove a corollary that
extends the result to vectors since we deal with data in D ⊆ Rd.
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Lemma D.21 (Theorem 3 of Rosenthal (1970)). Let 2 ≤ m < ∞, and X1, . . . ,Xn be

independent centred random variables in R admitting a finite m-th moment. Then there

exists a constant Km depending only on m such that
∥∥∑n

i=1
Xi

∥∥
Lm
≤ Km max

{(∑n

i=1
‖Xi‖mLm

)1/m
,
(∑n

i=1
‖Xi‖2

L2

)1/2}
.

Corollary D.22. Let 2 ≤ m < ∞, and X1, . . . ,Xn be independent centred random

vectors in Rd such that for all i, ‖Xi‖ admits a finite m-th moment. Denote the s-th

coordinate of Xi by Xis. Then, there exists a constant Km depending only on m such

that
∥∥∥
∥∥∑n

i=1
Xi

∥∥
∥∥∥
Lm

≤ Km

(∑d

s=1
max

{(∑n

i=1
‖Xis‖mLm

)2/m
,
∑n

i=1
‖Xis‖2

L2

})1/2

.

Proof. By the triangle inequality followed by Lemma D.21 applied to ‖∑n
i=1Xis‖Lm ,

there exists a constant Km depending only on m such that
∥∥∥
∥∥∑n

i=1
Xi

∥∥
∥∥∥
Lm

=
(∥∥∥
∑d

s=1

(∑n

i=1
Xis

)2
∥∥∥
Lm/2

)1/2

(D.10)

≤
(∑d

s=1

∥∥(∑n

i=1
Xis

)2∥∥
Lm/2

)1/2

=
(∑d

s=1

∥∥∑n

i=1
Xis

∥∥2

Lm

)1/2

≤ Km

(∑d

s=1
max

{(∑n

i=1
‖Xis‖mLm

)2/m
,
∑n

i=1
‖Xis‖2

L2

})1/2

.

The following lemma bounds the moments of vector norms of a Gaussian random
vector in terms of its first two moments, which is useful throughout the proofs.

Lemma D.23. Consider a random vector X in Rd with bounded mean and variance. Let

ξ be a Gaussian vector in Rd with its mean and variance matching those X, and write

‖ • ‖∞ as the vector-infinity norm. Then for every integer m ∈ N,

‖ ‖ξ‖∞ ‖Lm ≤ Cm‖ ‖X‖∞ ‖L2

√
1 + log d .

Proof. Denote Σ := Var[X], and write ξ = E[X]+Σ1/2Z where Z is a standard Gaussian
vector in Rd. First note that by triangle inequality and Jensen’s inequality,

‖ ‖ξ‖∞ ‖Lm ≤ ‖E[X]‖∞ + ‖ ‖Σ1/2Z‖∞ ‖Lm ≤ ‖‖X‖∞ ‖L1
+ ‖ ‖Σ1/2Z‖∞ ‖Lm .

Write σl :=
√

Σl,l, the square root of the (l, l)-th coordinate of Σ. If σl = 0 for some
l ≤ d, then the l-th coordinate of Σ1/2Z is zero almost surely and does not play a role
in |Σ1/2Z‖∞. We can then remove the l-th row and column of Σ and consider a lower-
dimensional Gaussian vector such that its covariance matrix has strictly positive diagonal
entries. If all σl’s are zero, we get the following bound

‖ ‖ξ‖∞ ‖Lm ≤ ‖‖X‖∞ ‖L1
,
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which implies that ‖ ‖ξ‖∞ ‖Lm satisfies the statement in the lemma. Therefore WLOG
we consider the case where σl > 0 for every l ≤ d. By splitting the integral and applying
a union bound, we have that for any c > 0,

‖ ‖Σ1/2Z‖∞ ‖mLm = E[maxl≤d |(Σ1/2Z)l|m] =
∫ ∞

0
P
(

maxl≤d |(Σ1/2Z)l| > x1/m
)
dx

≤ c+ d
∫ ∞

c
P
(
|(Σ1/2Z)l| > x1/m

)
dx = c+ d

∫ ∞

c
P
( 1

σl
|(Σ1/2Z)l| >

1

σl
x1/m

)
dx

(a)

≤ c+ d
∫ ∞

c

1√
2π 1

σl
x1/m

exp
(
− x2/m

2σ2
l

)
dx

≤ c+
dσl√

2πc1/m

∫ ∞

c
exp

(
− x2/m

2σ2
l

)
dx . (D.11)

In (a) we have noted that 1
σl

(Σ1/2Z)l ∼ N (0, 1), and used the standard lower bound for
the c.d.f. of a standard normal random variable Z to obtain

P(|Z| > u) = 2P(Z > u) ≥ 1√
2π x

exp
(
− x2

2

)
.

Choose c = (2σ2
l (1 + log d))

m
2 . Then by a change of variable, the integral in (D.11)

becomes
∫ ∞

c
exp

(
− x2/m

2σ2
l

)
dx = (2σl)

m/2
∫ ∞

1+log d
e−y y

m
2
−1dy

≤ (2σl)
m/2

∫ ∞

1+log d
yb

m
2
ce−y dy =: (2σl)

m/2Ibm
2
c .

We have denoted Ik :=
∫∞

1+log d
yke−ydy. By integration by parts, we get the following

recurrence for k ≥ 1,

Ik =(1 + log d)ke−1−log d + k Ik−1 = (1 + log d)k(ed)−1 + k Ik−1 ,

and also I0 = (ed)−1. This implies that there exists some constant Am depending only
on m such that

∫ ∞

c
exp

(
− x2/m

2σ2
l

)
dx ≤ (2σ2

l )
m/2Ibm

2
c

≤ (2σ2
l )
m/2(ed)−1bm

2
c ! + (2σ2

l )
m/2

∑bm
2
c

k=1
(ed)−(bm

2
c+1−k) bm2 c!

k !
(1 + log d)k

≤ Amd
−1σml (1 + log d)b

m
2
c .

Substituting this and our choice of c into (D.11), while noting that σl =
√

Σl,l ≤ ‖Σ‖1/2
∞ ,

we get that

‖ ‖Σ1/2Z‖∞ ‖mLm ≤ (2σ2
l (1 + log d))

m
2 +

dσl√
2π(2σ2

l (1 + log d))
1
2

Amd
−1σml (1 + log d)b

m
2
c

≤ Bm(‖Σ‖∞(1 + log d))m/2 ,

for some constant Bm depending only on m. Finally, by the property of a covariance
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matrix and Jensen’s inequality, we get that

‖Σ‖1/2
∞ ≤ maxl≤d Var[Xl]

1/2 ≤ maxl≤d E[X2
l ]1/2 ≤ ‖E[XX>]‖1/2

∞ ≤ ‖‖X‖∞ ‖L2
.

These two bounds on ‖ ‖Σ1/2Z‖∞ ‖mLm and ‖Σ‖1/2
∞ imply that, for Cm := Bm + 1,

‖ ‖ξ‖∞ ‖Lm ≤ ‖‖X‖∞ ‖L1
+ ‖ ‖Σ1/2Z‖∞ ‖Lm

≤ ‖‖X‖∞ ‖L1
+Bm‖ ‖X‖∞ ‖L2

(1 + log d)1/2

≤ Cm‖ ‖X‖∞ ‖L2
(1 + log d)1/2 .

The next result controls the norm of the largest eigenvalue of a sum of i.i.d. zero-mean
(not necessarily symmetric) matrices.

Lemma D.24. Let (Ai)i≤n be i.i.d. zero-mean random matrices in Rd×d and m ≥ 1.

There exists some absolute constant C > 0 such that
∥∥∥
∥∥∥ 1

n

∑n

i=1
Ai

∥∥∥
op

∥∥∥
Lm

≤ C
√
m+ log d√

n

(∥∥∥
∥∥∥ 1

n

∑n

i=1
AiA

>
i

∥∥∥
1/2

op

∥∥∥
Lm

+
∥∥∥
∥∥∥ 1

n

∑n

i=1
A>i Ai

∥∥∥
1/2

op

∥∥∥
Lm

)

Proof of Lemma D.24. As Ai’s are not symmetric, we consider the symmetric matrices

Hi :=

(
0 Ai

A>i 0

)
∈ R2d×2d ,

which satisfies the identities

H2
i =

(
AiA

>
i 0

0 A>i Ai

)
and ‖Hi‖op = ‖Ai‖op .

This allows us to express the quantity of interest in terms of a sum of symmetric matrices
∥∥∥ 1

n

∑n

i=1
Ai

∥∥∥
op

=
∥∥∥ 1

n

∑n

i=1
Hi

∥∥∥
op
.

Let ε1, . . . , εn be i.i.d. Rademacher variables. By the symmetrization lemma for random
vectors (see e.g. Exercise 6.4.5 of Vershynin (2018)), we have that for m ≥ 1,

∥∥∥
∥∥∥ 1

n

∑n

i=1
Hi

∥∥∥
op

∥∥∥
Lm

≤ 2
∥∥∥
∥∥∥ 1

n

∑n

i=1
εiHi

∥∥∥
op

∥∥∥
Lm

= 2

(
E
[
E
[ ∥∥∥ 1

n

∑n

i=1
εiHi

∥∥∥
m

op

∣∣∣ (Hi)i≤n

] ])1/m

,

and by the matrix Khintchine’s inequality (see e.g. Exercise 5.4.13(b) of Vershynin (2018)),
there exists some absolute constant C > 0 such that almost surely

E
[ ∥∥∥ 1

n

∑n

i=1
εiHi

∥∥∥
m

op

∣∣∣ (Hi)i≤n

]
≤
(
C

2

√
m+ log d

∥∥∥ 1

n2

∑n

i=1
H2
i

∥∥∥
1/2

op

)m
.
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Combining the bounds yields
∥∥∥∥
∥∥∥ 1

n

∑n

i=1
Ai

∥∥∥
op

∥∥∥∥
Lm

≤ C
√
m+ log d

∥∥∥∥
∥∥∥ 1

n2

∑n

i=1
H2
i

∥∥∥
1/2

op

∥∥∥∥
Lm

= C
√
m+ log d

∥∥∥∥
∥∥∥ 1

n2

∑n

i=1

(
AiA

>
i 0

0 A>i Ai

)∥∥∥
1/2

op

∥∥∥∥
Lm

≤ C
√
m+ log d√

n

(∥∥∥
∥∥∥ 1

n

∑n

i=1
AiA

>
i

∥∥∥
1/2

op

∥∥∥
Lm

+
∥∥∥
∥∥∥ 1

n

∑n

i=1
A>i Ai

∥∥∥
1/2

op

∥∥∥
Lm

)
.

D.4 Proof of the main result

In this section, we prove Theorem D.1. Theorem 6.1 then follows as a special case. We
begin with an outline of the proof technique.

D.4.1. Proof overview

We quickly recall the Lindeberg method from Chapter 2, and point out the adaptations
in the block dependent case. The original Lindeberg method is as follows: The goal is
to bound the difference |E[g(ξ1, . . . , ξn)]−E[g(ζ1, . . . , ζn)]|, for independent collections
ξ1, . . . , ξn and ζ1, . . . , ζn of i.i.d. variables and a function g. To this end, abbreviate
Vi( • ) = (ξ1, . . . , ξi−1, • , ζi+1, . . . , ζn), and expand into a telescopic sum:

E[g(ξ1, . . . , ξn)]− E[g(ζ1, . . . , ζn)] =
∑

i≤n E[g(Vi(ξi))− g(Vi(ζi))]

=
∑

i≤n

(
E[g(Vi(ξi))− g(Vi(0))]− E[g(Vi(ζi))− g(Vi(0))]

)
.

By Taylor-expanding the function gi( • ) := g(Vi( • )) to third order around 0, each sum-
mand can be represented as

E[∂gi(0)(ξi − ζi)] + E[∂2gi(0)(ξi − ζi)2] + E[∂3gi(ξ̃i)ξ
3
i + ∂3gi(ζ̃i)ζ

3
i ] ,

for some ξ̃i ∈ [0, ξi] and ζ̃i ∈ [0, ζi]. Since each (ξi, ζi) is independent of all other pairs
{(ξj, ζj)}j 6=i, expectations factorize, and the expression above becomes

E[∂gi(0)]E[ξi − ζi] + E[∂2gi(0)]E[(ξi − ζi)2] + E[∂3gi(ξ̃i)ξ
3
i + ∂3gi(ζ̃i)ζ

3
i ] . (D.12)

The first two terms can then be controlled by matching expectations and variances of ξi
and ζi. To control the third term, one imposes boundedness assumptions on ∂3gi and the
moments of ξ3

i and ζ3
i .

Proving our result requires some modifications: Since augmentation induces depen-
dence, the i.i.d. assumption above does not hold. On the other hand, the function g in our
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problems is of a more specific form. In broad strokes, our proof proceeds as follows:

• We choose g := h ◦ f , where h belongs to the class of thrice-differentiable functions
with the first three derivatives bounded above by 1. Since the statistic f has (by
assumption) three derivatives, so does g.

• We group the augmented data into n independent blocks ΦiXi := {φi1Xi, . . . , φikXi},
for i ≤ n. We can then sidestep dependence by applying the technique above to each
block.

• To do so, we to take derivates of g = h ◦ f with respect to blocks of variables. The
relevant block-wise version of the chain rule is a version of the Faà di Bruno formula.
It yields a sum of terms of the form in (D.12).

• The first two terms in (D.12) contribute a term of order k to the bound: The first
expectation vanishes by construction. The second also vanishes under the conditions
of Theorem 6.1, and more generally if δ = 0. If δ > 0, the matrices Var[Zδi ] and
Var[ΦiXi] may differ in their k diagonal entries.

• The third term in (D.12) contributes a term of order k3: Here, we use noise stability,
which lets us control terms involving ∂3gi on the line segments [0,ΦiXi] and [0,Zi],
and moments of (ΦiXi)

⊗3 and (Zi)
⊗3. The moments have dimension of order k3.

• Summing over n quantities of the form (D.12) then leads to the bound of the form

nk × (second derivative terms) + nk3 × (third derivative terms) .

in Theorem D.1. In Theorem 6.1, the first term vanishes.

Whether the bound converges depends on the scaling behavior of f . A helpful ex-
ample is a scaled average

√
n
(

1
nk

∑
i,j φijXi

)
. Here, the second and third derivatives are

respectively of order 1
nk2 and 1

n3/2k3 (see Appendix D.6.1 for the exact calculation). The
bound then scales as 1

k
+ 1

n1/2 for δ > 0, and as 1
n1/2 for δ = 0.

D.4.2. Proof of Theorem D.1

We abbreviate g := h◦f , and note that g is a smooth function fromDnk to R. Recall that
we have denoted

Wδ
i ( • ) := (Φ1X1, . . . ,Φi−1Xi−1, • ,Z

δ
i+1, . . . ,Z

δ
n) .

By a telescoping sum argument and the triangle inequality,
∣∣Eh(f(ΦX ))− Eh(f(Zδ1, . . . ,Z

δ
n))
∣∣ =

∣∣E
∑n

i=1

[
g(Wδ

i (ΦiXi))− g(Wδ
i (Z

δ
i ))
]∣∣
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≤
∑n

i=1

∣∣E
[
g(Wδ

i (ΦiXi))− g(Wδ
i (Z

δ
i ))
]∣∣ .
(D.13)

Each summand can be written as a sum of two terms,
(
g(Wδ

i (ΦiXi))− g(Wδ
i (0))

)
−
(
g(Wδ

i (Z
δ
i ))− g(Wδ

i (0))
)
.

Since Dk is convex and contains 0 ∈ Rkd, we can expand the first term in a Taylor series
in the ith argument of g around 0 to third order. Then,

∣∣g(Wδ
i (ΦiXi))− g(Wδ

i (0))−
(
Dig(Wδ

i (0))
)
(ΦiXi)

− 1

2

(
D2
i g(Wδ

i (0))
)(

(ΦiXi)(ΦiXi)
>)∣∣

≤ 1

6
supw∈[0,ΦiXi]

∣∣D3
i g
(
Wi(w)

)
(ΦiXi)

⊗3
∣∣

holds almost surely. For the second term, we analogously obtain
∣∣g(Wδ

i (Z
δ
i ))− g(Wδ

i (0))−
(
Dig(Wδ

i (0))
)
Zδi −

1

2

(
D2
i g(Wδ

i (0))
)(

(Zδi )(Z
δ
i )
>)∣∣

≤ 1

6
supw∈[0,Zδi ]

∣∣D3
i g
(
Wδ

i (w)
)
(Zδi )

⊗3
∣∣

almost surely. Each summand in (D.13) is hence bounded above as
∣∣E
[
g(Wδ

i (ΦiXi))− g(Wδ
i (Z

δ
i ))
]∣∣ ≤ |κ1,i|+

1

2
|κ2,i|+

1

6
|κ3,i| , (D.14)

where

κ1,i := E
[(
Dig(Wδ

i (0))
)(

ΦiXi − Zδi
)]

κ2,i := E
[(
D2
i g(Wδ

i (0))
)(

(ΦiXi)(ΦiXi)
> − (Zδi )(Z

δ
i )
>)]

κ3,i := E
[

sup
w∈[0,ΦiXi]

∣∣D3
i g
(
Wδ

i (w)
)
(ΦiXi)

⊗3
∣∣+ sup

w∈[0,Zδi ]

∣∣D3
i g
(
Wδ

i (w)
)
(Zδi )

⊗3
∣∣] .

Substituting into (D.13) and applying the triangle inequality shows
∣∣Eh(f(ΦX ))− Eh(f(Zδ1, . . . ,Z

δ
n))
∣∣ ≤

∑n

i=1

(
|κ1,i|+

1

2
|κ2,i|+

1

6
|κ3,i|

)
.

The next step is to obtain more specific upper bounds for the κr,i. To this end, first
consider κ1,i. Since (ΦiXi,Z

δ
i ) is independent of (ΦjXj,Z

δ
j)j 6=i, we can factorize the

expectation, and obtain

κ1,i = E
[
Dig(Wi(0))

](
E[ΦiXi]− E[Zδi ]

)
= 0 ,

where the second identity holds since EZδi = 1k×1 ⊗ E[φ11X1] = E[ΦiXi]. Factorizing
the expectation in κ2,i shows

κ2,i = E
[
D2
i g(Wi(0))

](
E
[
(ΦiXi)(ΦiXi)

>]− E
[
(Zδi )(Z

δ
i )
>])
)

≤
∥∥E
[
D2
i g(Wi(0))

]∥∥∥∥E
[
(ΦiXi)(ΦiXi)

>]− E
[
(Zδi )(Z

δ
i )
>]∥∥

(a)
=
∥∥E
[
D2
i g(Wi(0))

]∥∥∥∥Var[ΦiXi]− Var[Zδi ]
∥∥.
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where to obtain (a) we exploited once again the fact that EZδi = E[ΦiXi]. Consider the
final norm. Since the covariance matrix of ΦiXi is

Var[ΦiXi] = Ik ⊗ Var[φ11X1] + (1k×k − Ik)⊗ Cov[φ11X1, φ12X1] ,

the argument of the norm is

Var[ΦiXi]− Var[Zδi ] = δIk ⊗
(
Var[φ11X1]− Cov[φ11X1, φ12X1]

)
.

Lemma D.19 shows Cov[φ11X1, φ12X1] = VarE[φ11X1|X1]. It follows that
∥∥Var[ΦiXi]− Var[Zδi ]

∥∥ = δ
∥∥Ik ⊗ EVar[φ11X1|X1]

∥∥ = 2δk1/2c1 ,

and hence
1

2
|κ2,i| ≤

∥∥E
[
D2
i g(Wδ

i (0))
]∥∥δk1/2c1. By applying Cauchy-Scwharz in-

equality and Hölder’s inequality, the term κ3,i is upper-bounded by

κ3,i ≤
∥∥‖ΦiXi‖3

∥∥
L2

∥∥supw∈[0,ΦiXi]
‖D3

i g(Wδ
i (w))‖

∥∥
L2

+
∥∥‖Zδi‖3

∥∥
L2

∥∥supw∈[0,Zδi ]
‖D3

i g(Wδ
i (w))‖

∥∥
L2
.

Since the function x 7→ x3 is convex on R+, we can apply Jensen’s inequality to obtain
∥∥‖ΦiXi‖3

∥∥
L2

=
√

E[‖ΦiXi‖6]

=

√
E
[(∑k

j=1
‖φijXi‖2

)3
]

= k3/2

√
E
[(1

k

∑k

j=1
‖φijXi‖2

)3
]

≤ k3/2

√
E
[

1

k

∑k

j=1
‖φijXi‖6

]
(a)
= k3/2

√
E‖φ11X1‖6 = 6k3/2cX ,

where (a) is by noting that for all i ≤ n, j ≤ k, φijXi is identically distributed as φ11X1.
On the other hand, by noting that Zδi is identically distributed as Zδ1,

∥∥‖Zδi‖3
∥∥
L2

=
√

E[‖Zδ1‖6] = k3/2

√
E
[( |Zδ111|2 + . . .+ |Zδ1kd|2

k

)3]
= 6k3/2cZδ .

We can now abbreviate

Mi := max {
∥∥supw∈[0,ΦiXi]

‖D3
i g
(
Wδ

i (w)
)
‖
∥∥
L2
,
∥∥supw∈[0,Zi]

‖D3
i g
(
Wδ

i (w)
)
‖
∥∥
L2
} ,

and obtain
1

6
|κ3,i| ≤ k3/2(cX + cZδ)Mi. In summary, the right-hand side of (D.13) is

hence upper-bounded by

(D.13) ≤ δk1/2c1

(∑n

i=1

∥∥E
[
D2
i g(Wδ

i (0))
]∥∥
)

+ k3/2(cX + cZ)
(∑n

i=1
Mi

)

≤ δnk1/2c1 maxi≤n
∥∥E
[
D2
i g(Wδ

i (0))
]∥∥ + nk3/2(cX + cZ) maxi≤nMi .

Lemma D.27 below shows that the two maxima are in turn bounded by

maxi≤n
∥∥E
[
D2
i g(Wδ

i (0))
]∥∥ ≤ γ2(h)α1;2(f)2 + γ1(h)α2;1(f) = λ1(n, k), (D.15)

maxi≤n Mi ≤ γ3(h)α1;6(f)3 + 3γ2(h)α1;4(f)α2;4(f) + γ1(h)α3;2(f) = λ2(n, k).

(D.16)
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That yields the desired upper bound on (D.13),
∣∣Eh(f(ΦX ))− Eh(f(Zδ1, . . . ,Z

δ
n))
∣∣ ≤ δnk1/2λ1(n, k)c1 + nk3/2λ2(n, k)(cX + cZ) ,

which finishes the proof.

Remark D.4. We remark that both Theorem 6.1 and Theorem D.1 can be generalised
directly to independent but not identically distributed vectors X1, . . . ,Xn. , and that
the suprema in the derivative terms can be removed by using a Taylor expansion with
integral remainders instead. The resultant bound is the following: For some absolute
constant C > 0, we have
∣∣Eh(f(ΦX ))− Eh(f(Zδ1, . . . ,Z

δ
n))
∣∣

≤
n∑

i=1

δk1/2χ̃1(n, k)
‖EVar[φi1X1|X1]‖

2
+

n∑

i=1

Ck3/2χ̃2(n, k)

√
E‖φi1Xi‖6 +

√
E‖Zi‖6

6
,

where

χ̃1(n, k) := γ2(h)θ̃1;2(f)2 + γ1(h)θ̃2;1(f) ,

χ̃2(n, k) := γ3(h)θ̃1;6(f)3 + 3γ2(h)θ̃1;4(f)α̃2;4(f) + γ1(h)θ̃3;2(f) ,

θr;m(f) :=
∑

s≤q

max
i≤n

max

{∥∥∥∥‖Dr
i fs(W

δ
i (ΘΦiXi))‖

∥∥∥∥
Lm

,

∥∥∥∥‖Dr
i fs(W

δ
i (ΘZδi ))‖

∥∥∥∥
Lm

}
,

where Θ ∼ Uniform[0, 1] is independent of all other random variables and plays the role
of the variable to be integrated against in the integral remainders.

D.4.3. The remaining bounds

It remains to establish the bounds in (D.15) and (D.16). To this end, we use a vector-
valued version of the generalised chain rule, also known as the Faà di Bruno formula.
Here is a form that is convenient for our purposes:

Lemma D.25. [Adapted from Theorem 2.1 of Constantine and Savits (1996)] Consider

functions f ∈ F3(Dnk,Rq) and h ∈ F3(Rq,R), and write g := h ◦ f . Then

D2
i g(u) = ∂2h

(
f(u)

)(
Dif(u)

)⊗2
+ ∂h

(
f(u)

)
D2
i f(u),

D3
i g(u) = ∂3h

(
f(u)

)(
Dif(u)

)⊗3
+ 3∂2h

(
f(u)

)(
Dif(u)⊗D2

i f(u)
)

+ ∂h
(
f(u)

)
D3
i f(u)

for any u ∈ Dnk.

We also need the following result for bounding quantities that involve ζi;m in terms
of noise stability terms αr;m defined in Theorem D.1.

Lemma D.26. maxi≤n ζi;m(‖Dr
i f(Wδ

i ( • ))‖) ≤ αr;m(f) .
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Proof. Note that almost surely

‖Dr
i f(Wδ

i ( • ))‖ =
√∑

s≤q ‖D
r
i f(Wδ

i ( • ))‖2 ≤
∑

s≤q ‖D
r
i fs(W

δ
i ( • ))‖ .

Therefore, by triangle inequality of ζi;m from Lemma D.20,

αr;m(f) :=
∑

s≤q

max
i≤n

max

{∥∥∥∥ sup
w∈[0,ΦiXi]

‖Dr
i fs(W

δ
i (w))‖

∥∥∥∥
Lm

,

∥∥∥∥ sup
w∈[0,Zδi ]

‖Dr
i fs(W

δ
i (w))‖

∥∥∥∥
Lm

}

=
∑

s≤q max
i≤n

ζi;m(‖Dr
i fs(W

δ
i ( • ))‖)

≥max
i≤n

ζi;m(‖Dr
i f(Wδ

i ( • ))‖) ,

which gives the desired bound.

We are now ready to complete the proof for Theorem 6.1 by proving (D.15) and
(D.16).

Lemma D.27. The bounds (D.15) and (D.16) hold.

Proof. For a random function T : Dk → R, define ζi;m(T) as in Lemma D.20 with
respect to Φ1Xi and Zδi from Theorem D.1,

ζi;m(T) := max
{∥∥ supw∈[0,Φ1Xi]

T(w)
∥∥
Lm
,
∥∥ supw∈[0,Zδi ]

T(w)
∥∥
Lm

}
.

We first consider (D.15). By Lemma D.25, almost surely,

D2
i g(Wδ

i (0)) = ∂2h
(
f(Wδ

i (0))
)(
Dif(Wδ

i (0))
)⊗2

+ ∂h
(
f(Wδ

i (0))
)
D2
i f(Wδ

i (0)) .

By Jensen’s inequality to move ‖ • ‖ inside the expectation and Cauchy-Schwarz,
∥∥E
[
D2
i g(Wδ

i (0))
]∥∥ ≤ ζi;1

(∥∥D2
i g(Wδ

i ( • ))
∥∥)

≤ ζi;1
(∥∥∂2h

(
f(Wδ

i ( • ))
)∥∥∥∥Dif(Wδ

i ( • ))
∥∥2

+
∥∥∂h

(
f(Wδ

i ( • ))
)∥∥∥∥D2

i f(Wδ
i ( • ))

∥∥)

≤ ζi;1
(
γ2(h)‖Dif(Wδ

i ( • ))‖2 + γ1(h)‖D2
i f(Wδ

i ( • ))‖
)

(a)

≤ γ2(h) ζ2(‖Dif(Wδ
i ( • ))‖)2 + γ1(h) ζi;1(‖D2

i f(Wδ
i ( • ))‖)

(b)

≤ γ2(h)α1;2(f)2 + γ1(h)α2;1(f) = λ1(n, k) ,

where (a) is by Hölder’s inequality in Lemma D.20 and (b) is by Lemma D.26. Since
λ1(n, k) is independent of i, we obtain (D.15) as desired:

max1≤i≤n
∥∥E
[
D2
i g(Wδ

i (0))
]∥∥ ≤ λ1(n, k) .

We now want to establish that (D.16) holds. Using Lemma D.25 and the triangle
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inequality, we obtain that ‖D3
i g(Wδ

i (w))‖ ≤ T1,i(w) + T2,i(w) + T3,i(w), where

T1,i(w) = ‖∂3h
(
f(Wδ

i (w))
)
‖‖Dif(Wδ

i (w))‖3 ≤ γ3(h)‖Dif(Wδ
i (w))‖3 ,

T2,i(w) ≤ 3γ2(h)‖Dif(Wδ
i (w))‖‖D2

i f(Wδ
i (w))‖ ,

T3,i(w) ≤ γ1(h)‖D3
i f(Wδ

i (w))‖ .

Then, by triangle inequality of ζi;2 from Lemma D.20 (i),

Mi = ζi;2
(∥∥D3

i g
(
Wδ

i ( • )
)∥∥) ≤ ζi;2(T1,i) + ζi;2(T2,i) + ζi;2(T3,i) .

Hölder’s inequality of ζm from Lemma D.20 allows each term to be further bounded as
below:

ζi;2(T1,i) ≤ γ3(h)ζi;2
(
‖Dif(Wδ

i ( • ))‖3
)
≤ γ3(h)ζi;6

(
‖Dif(Wδ

i ( • ))‖
)3

≤ γ3(h)α1;6(f)3 ,

ζi;2(T2,i) ≤ 3γ2(h) ζi;2
(
‖Dif(Wδ

i ( • ))‖‖D2
i f(Wδ

i ( • ))‖
)

≤ 3γ2(h) ζi;4
(
‖Dif(Wδ

i ( • ))‖
)
ζi;4
(
‖D2

i f(Wδ
i ( • ))‖

)

≤ 3γ2(h)α1;4(f)α2;4(f) ,

ζi;2(T3,i) ≤ γ1(h) ζi;2
(
‖D3

i f(Wδ
i ( • ))‖

)
≤ γ1(h)α3;2(f) .

We have again applied Lemma D.26 in each of the final inequalities above. Note that all
bounds are again independent of i. Summing the bounds and taking a maximum recovers
(D.16):

maxi≤nMi ≤ γ3(h)α1;6(f)3 + 3γ2(h)α1;4(f)α2;4(f) + γ1(h)α3;2(f) = λ2(n, k) .

D.5 Proofs for Appendix D.1

D.5.1. Proofs for Appendix D.1.1

The proof for Theorem D.1 has been discussed in Appendix D.4. In this section we
present the proof for Lemma D.2 and Lemma D.3, which shows how Theorem D.1 can
be used to obtain bounds on convergence of variance and convergence in dH. They are
generalisations of Corollary 6.2 and Corollary 6.4 in the main text.

The main idea in proving Lemma D.2 is to apply the bound on functions of the form
h ◦ f from Theorem D.1 with h set to identity and f set to an individual coordinate of f
and a product of two individual coordinates of f , both scaled up by

√
n.
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Proof of Lemma D.2. Choose h(y) := y for y ∈ R and define

frs(x11:nk) := fr(x11:nk)fs(x11:nk) , x11:nk ∈ Dnk .

Let [ • ]r,s denote the (r, s)-th coordinate of a matrix. The difference between f(ΦX ) and
f(Zδ) at each coordinate of their covariance matrices can be written in terms of quantities
involving h ◦ frs and h ◦ fr:

(Var[f(ΦX )])r,s − (Var[f(Zδ)])r,s
= Cov[fr(ΦX ), fs(ΦX )]− Cov[fr(Zδ), fs(Zδ)]
= E[h(frs(ΦX ))− h(frs(Zδ))] (D.17)

−
(
E[h(fr(ΦX ))]E[h(fs(ΦX ))]− E[h(fr(Zδ))]E[h(fs(Zδ))]

)

(a)

≤
∣∣E[h(frs(ΦX ))− h(frs(Zδ))]

∣∣+
∣∣E[h(fr(ΦX ))− h(fr(Zδ))]

∣∣∣∣E[h(fs(ΦX ))]
∣∣

+
∣∣E[h(fr(Zδ))]

∣∣∣∣E[h(fs(ΦX ))− h(fs(Zδ))]
∣∣

(b)

≤ T (frs) + T (fr)α0;1(fs) + T (fs)α0;1(fr) , (D.18)

In (a), we have added and subtracted E[h(fr(Z))]E[h(fs(ΦX ))] from the second differ-
ence before applying Cauchy-Schwarz inequality. In (b), we have used the noise stability
term αr;m defined in Theorem D.1 and defined the quantity T (f ∗) := E[h(f ∗(ΦX )) −
h(f ∗(Z))].

We now proceed to bound T (f) using Theorem D.1. First note that γ1(h) = |∂h(0)| =
1 and γ2(h) = γ3(h) = 0. To bound T (f ∗) for a given f ∗ : R → R, making the depen-
dence on f ∗ explicit, the mixed smoothness terms in Theorem D.1 is given by

λ1(n, k; f ∗) = α2;1(f ∗) , λ2(n, k; f ∗) = α3;4(f ∗) ,

and therefore Theorem D.1 implies

T (f ∗) ≤ δnk1/2α2;1(f ∗)c1 + nk3/2α3;2(f ∗)(cX + cZδ) . (D.19)

Applying (D.19) to fr and fs allows the last two terms in (D.18) to be bounded as:

T (fr)α0;1(fs) + T (fs)α0;1(fr)

≤ δnk1/2
(
α2;1(fr)α0;1(fs) + α2;1(fs)α0;1(fr)

)
c1

+ nk3/2
(
α3;2(fr)α0;1(fs) + α3;2(fs)α0;1(fr)

)
(cX + cZδ) .

(D.20)

To apply (D.19) to T (frs), we need to compute bounds on the partial derivatives of frs:

‖Difrs(x11:nk)‖ ≤ |fr(x11:nk)| ‖∂fs(x11:nk)‖+ ‖∂fr(x11:nk)‖ |fs(x11:nk)| ,
‖D2

i frs(x11:nk)‖ ≤ |fr(x11:nk)| ‖∂2fs(x11:nk)‖+ 2‖∂fr(x11:nk)‖ ‖∂fs(x11:nk)‖
+ ‖∂2fr(x11:nk)‖ |fs(x11:nk)| ,
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‖D3
i frs(x11:nk)‖ ≤ |fr(x11:nk)| ‖∂3fs(x11:nk)‖+ 3‖∂fr(x11:nk)‖ ‖∂2fs(x11:nk)‖

+ 3‖∂2fr(x11:nk)‖ ‖∂fs(x11:nk)‖+ ‖∂3fr(x11:nk)‖ |fs(x11:nk)| .

Since frs and fr both output variables in 1 dimension, recall from Lemma D.26 that noise
stability terms can be rewritten in terms of ζi;m in Lemma D.20:

αR;m(frs) = max
i≤n

ζi;m(‖DR
i frs(Wi( • ))‖) , αR;m(fr) = max

i≤n
ζi;m(‖DR

i fr(Wi( • ))‖) .

By triangle inequality, positive homogeneity and Hölder’s inequality of ζm from Lemma
D.20, we get

α2;1(frs) = maxi≤n ζi;2(‖D2
i frs(Wi( • ))‖)

≤ maxi≤n

(
ζi;4(|fr(Wi( • ))|) ζi;4(‖∂2fs(Wi( • ))‖)
+ 2ζi;4(‖∂fr(Wi( • ))‖) ζi;4(‖∂fs(Wi( • ))‖)
+ ζi;4(‖∂2fr(Wi( • ))‖) ζi;4(|fs(Wi( • ))|)

)

≤ α0;4(fr)α2;4(fs) + 2α1;4(fr)α1;4(fs) + α2;4(fr)α0;4(fs) , (D.21)

α3;2(frs) = maxi≤n ζi;2(‖D3
i frs(Wi( • ))‖)

≤ maxi≤n

(
ζi;4(|fr(Wi( • ))|) ζi;4(‖∂3fs(Wi( • ))‖)
+ 3ζi;4(‖∂fr(Wi( • ))‖) ζi;4(‖∂2fs(Wi( • ))‖)
+ 3ζi;4(‖∂2fr(Wi( • ))‖) ζi;4(‖∂fs(Wi( • ))‖)
+ ζi;4(‖∂3fr(Wi( • ))‖) ζi;4(|fs(Wi( • ))|)

)

≤ α0;4(fr)α3;4(fs) + 3α1;4(fr)α2;4(fs) + 3α2;4(fr)α1;4(fs) + α3;4(fr)α0;4(fs) .

(D.22)

Therefore by (D.19), we get

T (frs) ≤ δnk1/2 × (D.21)× c1 + nk3/2 × (D.22)× (cX + cZδ) .

Substitute this and the bound obtained in (D.20) for T (fr) and T (fs) into (D.18), we get

(Var[f(ΦX )])r,s − (Var[f(Z)])r,s

≤ δnk1/2c1 ×
(
α2;1(fr)α0;1(fs) + α2;1(fs)α0;1(fr) + α0;4(fr)α2;4(fs)

+ 2α1;4(fr)α1;4(fs) + α2;4(fr)α0;4(fs)
)

+ nk3/2(cX + cZδ)×
(
α3;2(fr)α0;1(fs) + α3;2(fs)α0;1(fr) + α0;4(fr)α3;4(fs)

+ 3α1;4(fr)α2;4(fs) + 3α2;4(fr)α1;4(fs) + α3;4(fr)α0;4(fs)
)
.

Note that summation of each term above over 1 ≤ r, s ≤ q can be computed as
(∑q

r=1
αR1;m1

(fr)
)(∑q

s=1
αR2;m2

(fs)
) (a)

= αR1;m1
(f)αR2;m2

(f) .

Therefore,

‖Var[f(ΦX )]− Var[f(Z)]‖ ≤
∑q

r,s=1

∣∣[Var[f(ΦX )]]r,s − [Var[f(Z)]]r,s
∣∣
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≤ δnk1/2c1(2α2;1(f)α0;1(f) + 2α0;4(f)α2;4(f) + 2α1;4(f)α1;4(f))

+ nk3/2(cX + cZδ)(2α3;2(f)α0;1(f) + 2α0;4(f)α3;4(f) + 6α1;4(f)α2;4(f))

(b)

≤ 4δnk1/2(α0;4α2;4 + α2
1;4)c1 + 6nk3/2(α0;4α3;4 + α1;4α2;4)(cX + cZδ) .

In (a), we have used Lemma D.26. In (b), we have omitted f -dependence and used that
α2;1α0;1 ≤ α0;4α2;4 and α3;2α0;1 ≤ α3;4α0;4. Multiplying across by n gives the desired
result.

To prove Lemma D.3, we only need to apply the bound on h ◦ f from Theorem D.1
with f replaced by

√
nf .

Proof of Lemma D.3. Recall that for any h ∈ H, γ1(h), γ2(h), γ3(h) ≤ 1. Moreover, for
ζi;m defined in Lemma D.20,

αr;m(
√
nf) = maxi≤n ζi;m(‖√nDr

i f(Wi( • ))‖)
=
√
nmaxi≤n ζi;m(‖Dr

i f(Wi( • ))‖) =
√
nαr;m(f) .

Therefore, Theorem D.1 implies that for every h ∈ H,
∣∣Eh(
√
nf(ΦX ))− Eh(

√
nf(Zδ))

∣∣

≤ δnk1/2c1

(
nα1;2(f)2 + n1/2α2;1(f)

)

+ nk3/2
(
n3/2α1;6(f)3 + 3nα1;4(f)α2;4(f) + n1/2α3;2(f)

)
(cX + cZδ) .

Taking a supremum over all h ∈ H and omitting f -dependence imply that

dH(
√
nf(ΦX ),

√
nf(Zδ)) = suph∈H

∣∣Eh(
√
nf(ΦX ))− Eh(

√
nf(Zδ))

∣∣

≤ δn3/2k1/2c1

(
n1/2α2

1;2 + α2;1

)
+ (nk)3/2(nα3

1;6 + 3n1/2α1;4α2;4 + α3;2)(cX + cZδ) ,

which is the desired bound.

D.5.2. Proofs for Appendix D.1.2

We give the proofs for Lemma D.4, which concerns convergence when dimension of
the statistic q is allowed to grow, and for Corollary D.5, which formulates our main
result with the assumption of invariance. Both proofs are direct applications of Theorem
D.1. The proof of Corollary D.6 is not stated as it is just obtained by setting δ = 1 in
Theorem D.1.

Proof of Lemma D.4. By assumption, the noise stability terms satisfy

α1 = o(n−5/6k−1/2d−1/2), α3 = o(n−3/2k−3/2d−3/2), α0α3, α1α2 = o(n−2k−3/2d−3/2).
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Since each coordinate of φ11X1 and Z1 is O(1), the moment terms satisfy

cX =
1

6

(
E[‖φ11X1‖4]

)3/4
=

1

6

(
E
[(∑d

s=1
(e>s φ11X1)2

)2])3/4
= O(d3/2) ,

cZ =
1

6

(
E
[(1

k

∑
j≤k,s≤d |Z1jd|2

)2])3/4
= O(d3/2) .

The condition on αr’s imply that the bound in Corollary 6.2, with δ set to 0, becomes

n
∥∥Var[f(ΦX )]− Var[f(Z1, . . . ,Zn)]

∥∥ ≤ 6n2k3/2(cX + cZ)(α0α3 + α1α2) = o(1) .

Since αr(fs) ≤ αr(f) by definition of αr, the above bounds hold for αr(fs). Applying
Corollary 6.4 to fs gives

dH(
√
nfs(ΦX ),

√
nfs(Z1, . . . ,Zn))

≤ n3/2k3/2(nα1(fs)
3 + 3n1/2α1(fs)α2(fs) + α3(fs))(cX + cZ) = o(1) .

By Lemma 6.3, convergence in dH implies weak convergence, which gives the desired
result.

Proof of Corollary D.5. By law of total variance,

Σ11 := Var[φ11X1] = Σ̃11 + VarE[φ11X1|φ11] ,

and by distributional invariance assumption, almost surely,

E[φ11X1|φ11] = E[φ12X1|φ12] = E[X1] .

This implies VarE[φ11X1|φ11] vanishes and therefore Σ11 = Σ̃11. The equality in Σ12 is
directly from Lemma D.19.

D.5.3. Proofs for Appendix D.1.3

We present the proofs for the two results of Lemma D.7 for plug-in estimates. The
following lemma is analogous to Lemma D.26 but for κr;m, and will be useful in the
proof.

Lemma D.28.
∥∥supw∈[0,X̄]‖∂rg(µ+ w)‖

∥∥
Lm
≤ κr;m(g) .

Proof. By the definition of κr;m and the triangle inequality,

κr;m(g) :=
∑

s≤q

∥∥supw∈[0,X̄]

∥∥∂rgs
(
µ+ w

)∥∥∥∥
Lm
≥
∥∥supw∈[0,X̄]

∥∥∂rg
(
µ+ w

)∥∥∥∥
Lm

,

which is the desired bound.

For the proof of Lemma D.7(i), we first compare g to its first-order Taylor expansion.
The Taylor expansion only involves an empirical average, whose weak convergence and
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equality in variance are given by Lemma D.2 and Lemma D.3 in a similar manner as
the proof for Proposition 6.7. We recall that D is assumed to be a convex subset in Rd

containing 0, which is important for the Taylor expansion argument.

Proof of Lemma D.7(i). We first prove the bound in dH. Using the triangle inequality to
separate the bound into two parts, we get

dH(
√
nf(ΦX ),

√
nfT (Zδ)) = suph∈H |E[h(

√
nf(ΦX ))− E[h(

√
nfT (Zδ))]|

≤ dH(
√
nf(ΦX ),

√
nfT (ΦX )) + dH(

√
nfT (ΦX ),

√
nfT (Zδ)) .

(D.23)

Consider bounding the first term of (D.23). Since f(ΦX ) = g
(
X̄ + µ

)
and fT (ΦX ) =

g(µ) + ∂g(µ)X̄, a Taylor expansion argument on g
(
X̄ + µ

)
gives

∥∥f(ΦX )− fT (ΦX )
∥∥ ≤ supw∈[0,X̄]

∥∥∂2g(µ+ w)
∥∥ ∥∥X̄

∥∥2
.

Recall that γ1(h) = supw∈Rq{‖∂h(w)‖}. By mean value theorem, the above bound and
Hölder’s inequality, we get

|Eh(
√
nf(ΦX ))− Eh(

√
nfT (ΦX ))| ≤ √n γ1(h)E‖f(ΦX )− fT (ΦX )‖

≤ √n γ1(h)E
[

supw∈[0,X̄] ‖∂2g(µ+ w)‖
∥∥X̄
∥∥2]

≤ √n γ1(h)
∥∥ supw∈[0,X̄] ‖∂2g(µ+ w)‖

∥∥
L3

∥∥ ‖X̄‖
∥∥2

L3

≤ √n γ1(h)κ2;3(g)
∥∥ ‖X̄‖

∥∥2

L3
.

In the last inequality we have used Lemma D.28. To control the moment term, we use
Rosenthal’s inequality for vectors from Corollary D.22. Since φijXi have bounded 6th
moments, for each 2 ≤ m ≤ 6, there exists a constant Km depending only on m such
that
∥∥∥∥X̄

∥∥∥∥
Lm

=
∥∥∥
∥∥∥ 1

nk

∑n

i=1

∑k

j=1
φijXi − µ

∥∥∥
∥∥∥
Lm

≤ Km

n

( d∑

s=1

max

{( n∑

i=1

∥∥∥∥
1

k

k∑

j=1

(φijXi − µ)s

∥∥∥∥
m

Lm

)2/m

,

n∑

i=1

∥∥∥∥
1

k

k∑

j=1

(φijXi − µ)s
∥∥2

L2

})1/2

=
Km√
n

( d∑

s=1

max
{
n

2
m
−1
∥∥1

k

∑k

j=1
(φ1jX1 − µ0s

∥∥2

Lm
,
∥∥1

k

∑k

j=1
(φ1jX1 − µ)s

∥∥2

L2

})1/2

= O(n−1/2c̄m) . (D.24)

Substituting this into the bound above, we get
∣∣Eh(
√
nf(ΦX ))− Eh

(√
nfT (ΦX ))

)∣∣ = O
(
n−1/2γ1(h)κ2;3(g) c̄2

3

)
.
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Since for all h ∈ H, γ1(h) ≤ 1, taking supremum of the above over h ∈ H gives the
bound for the first term of (D.23):

dH
(√

nf(ΦX ),
√
nfT (ΦX )

)
= O

(
n−1/2 κ2;3(g) c̄2

3

)
. (D.25)

The second term of (D.23) can be bounded in the usual way by applying Lemma D.3 to
fT (x11:nk) = g(µ) + ∂g(µ)

(
1
nk

∑
i,j xij − µ

)
. Let fTs denote the sth coordinate of fT .

The partial derivatives are given by:
∥∥∥∂f

T
s (x11:nk)

∂xij

∥∥∥ =
1

nk
‖∂gs(µ)‖,

∥∥∥∂
2fTs (x11:nk)

∂xij1∂xij2

∥∥∥ =
∥∥∥ ∂3fTs (x11:nk)

∂xij1∂xij2∂xij3

∥∥∥ = 0.

This implies that for s ≤ q,

‖Dif
T
s (x11:nk)‖ =

1

nk1/2
‖∂gs(µ)‖ , ‖D2

i f
T
s (x11:nk)‖ = ‖D3

i f
T
s (x11:nk)‖ = 0 .

Thus we have α1;m

(
fT
)

=
∑q

s=1 n
−1k−1/2‖∂gs(µ)‖ ≤ n−1k−1/2κ1;1(g) by Lemma D.28,

and α2;m

(
fT
)

= α3;m

(
fT
)

= 0. The bound in Lemma D.3 then becomes

δn3/2k1/2c1

(
n1/2(α1;2)2 + α2;1

)
+ (nk)3/2(n(α1;6)3 + 3n1/2α1;4α2;4 + α3;2)(cX + cZδ)

= O
(
δk−1/2κ1;1(g)2c1 + n−1/2κ1;1(g)3(cX + cZδ)

)
,

which implies

dH(
√
nfT (ΦX ),

√
nfT (Zδ)) = O

(
δk−1/2κ1;1(g)2c1 + n−1/2κ1;1(g)3(cX + cZδ)

)
.

Substituting this into (D.23) together with the bound in (D.25) gives the required bound

dH
(√

nf(ΦX ),
√
nfT (Zδ)

)
= O

(
n−1/2κ2;3 c̄

2
3 + δk−1/2κ2

1;1c1 + n−1/2κ3
1;1(cX + cZδ)

)
,

where we have omitted g-dependence.

Recall that Σ11 = Var[φ11X1] and Σ12 = Cov[φ11X1, φ12X1]. For the bound on
variance, we first note that by the variance condition on Zδi from (D.1), we get

Var[X̄]− Var[Z̄δ] =
1

n

(
1

k
Σ11 +

k − 1

k
Σ12

)
− 1

n

(
1

k
((1− δ)Σ11 + δΣ12) +

k − 1

k
Σ12

)

=
δ

nk
(Σ11 − Σ12) .

This implies

n‖Var[fT (ΦX )]− Var[fT (Z)]‖ = n‖Var[g(µ) + ∂g(µ)X̄]− Var[g(µ) + ∂g(µ)Z̄δ]‖
= n

∥∥∂g(µ)Var[X̄]∂g(µ)> − ∂g(µ)Var[Z̄δ]∂g(µ)>
∥∥

= n
∥∥ δ

nk
∂g(µ)(Σ11 − Σ12)∂g(µ)>

∥∥

≤ 4δ

k
‖∂g(µ)‖2

2 c
2
1 , (D.26)

where in the inequality we have recalled that 2c1 := ‖EVar[φ11X1|X1]‖ = ‖Σ11 − Σ12‖
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by Lemma D.19. Next, we bound the quantity

n‖Var[f(ΦX )]− Var[fT (ΦX )]‖ ,

for which we use a second-order Taylor expansion on each coordinate of the covariance
matrix. For every s ≤ q, let fs(x11:nk) and gs(x11:nk) be the sth coordinate of f(x11:nk)

and g(x11:nk) respectively, i.e. fs, gs are both functions D → R. Then there exists
X̃(s) ∈

[
0, X̄

]
such that

fs(ΦX ) = gs(µ) + (∂gs(µ))>X̄ + Tr
(
(∂2gs(µ+ X̃(s)))> X̄X̄>

)
. (D.27)

Denote for convenience

R1
s = (∂gs(µ))>X̄ , R2

s = Tr
(
(∂2gs(µ+ X̃(s)))> X̄X̄>

)
,

The Taylor expansion above allows us to control the difference in variance at (r, s)-th
coordinate:

n
(
Var[f(ΦX )]−Var

[
fT (ΦX )

])
r,s

= n
(
(Var[f(ΦX )])r,s −

(
Var
[
g(µ) + ∂g(µ)X̄

])
r,s

)

= n
(
Cov[fr(ΦX ), fs(ΦX )]− Cov

[
gr(µ) + R1

r, gs(µ) + R1
s

])

(a)
= n

(
Cov

[
R1
r + R2

r, R
1
s + R2

s

]
− Cov

[
R1
r, R

1
s

])

= n
(
Cov[R1

r,R
2
s] + Cov[R2

r,R
1
s] + Cov[R2

r,R
2
s]
)
. (D.28)

In (a), we have used (D.27) and the fact that gr(µ) and gs(µ) are deterministic. To
control the first covariance term, by noting that E[X̄] = 0, Cauchy-Schwarz and Hölder’s
inequality, we get

Cov[R1
r,R

2
s] = E[R1

rR
2
s] = E

[
(∂gr(µ))>X̄ Tr

(
(∂2gs(µ+ X̃(s)))> X̄X̄>

)]

≤ ‖∂gr(µ)‖E
[
‖∂2gs(µ+ X̃(s))‖‖X̄‖3

]

≤ ‖∂gr(µ)‖
∥∥‖∂2gs(µ+ X̃(s))‖

∥∥
L4

∥∥‖X̄‖
∥∥3

L4

(b)
= O

(
n−3/2κ1;1(gr)κ2;4(gs) c̄

3
4

)
.

In (b), we have used the definition of κrm and the bound on moments of X̄ computed in
(D.24). An analogous argument gives

Cov[R1
r,R

2
s] = O

(
n−3/2κ1;1(gs)κ2;4(gr) c̄

3
4

)
,

and also

Cov[R2
r,R

2
s]

≤
∣∣E
[
Tr
(
(∂2gr(µ+ X̃(r)))> X̄X̄>

)
Tr
(
(∂2gs(µ+ X̃(s)))> X̄X̄>

)]∣∣

+
∣∣E
[
Tr
(
(∂2gr(µ+ X̃(r)))> X̄X̄>

)]∣∣ ∣∣E
[
Tr
(
(∂2gs(µ+ X̃(s)))> X̄X̄>

)]∣∣

≤ 2
∥∥‖∂2gr(µ+ X̃(r))‖

∥∥
L6

∥∥‖∂2gs(µ+ X̃(s))‖
∥∥
L6

∥∥‖X̄‖
∥∥4

L6
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= O
(
n−2κ2;6(gr)κ2;6(gs) c̄

4
6

)
.

Substituting the bounds on each covariance term back into (D.28), we get that

n
(
(Var[f(ΦX )])r,s −

(
Var
[
fT (ΦX )

])
r,s

)

= O
(
n−1/2(κ1;1(gr)κ2;4(gs) + κ1;1(gs)κ2;4(gr))c̄

3
4 + n−1κ2;6(gr)κ2;6(gs) c̄

4
6

)
.

Note that by the definition of κR;m in Lemma D.7,
∑q

r,s=1
κR1;m1

(gr)κR2;m2
(gs) = κR1;m1

(g)κR2;m2
(g) ,

so summing the bound above over r, s ≤ q gives the bound,

n
∥∥Var[f(ΦX )]− Var

[
fT (ΦX )

]∥∥ = O
(
n−1/2κ1;1(g)κ2;4(g)c̄3

4 + n−1κ2;6(g)2c̄4
6

)
.

Combine this with the bound from (D.26) and omitting g-dependence gives

n
∥∥Var[f(ΦX )]− Var

[
fT (Zδ)

]∥∥ = O
(
δk−1‖∂g(µ)‖2

2 c
2
1 + n−1/2κ1;1κ2;4c̄

3
4 + n−1κ2

2;6c̄
4
6

)
.

For Lemma D.7(ii), we only need to rewrite the noise stability terms αr;m(f) in
Lemma D.2 and D.3 in terms of νr;m(g).

Proof of Lemma D.7(ii). We just need to compute the bounds in Lemma D.2 (concern-
ing variance) and Lemma D.3 (concerning dH) in terms of νr;m(g), which boils down to
rewriting αr;m(f) in terms of νr;m(g). As usual, we start with computing partial deriva-
tives of fs(x11:nk) = g

(
1
nk

∑
i≤n,j≤k xij

)
:

∂

∂xij
fs(x11:nk) =

1

nk
∂gs
( 1

nk

∑n

i=1

∑k

j=1
xij
)
,

∂2

∂xij1∂xij2
f̃s(x11:nk) =

1

n2k2∂
2gs
( 1

nk

∑n

i=1

∑k

j=1
xij
)
,

∂3

∂xij1∂xij2∂xij3
f̃s(x11:nk) =

1

n3k3∂
3gs
( 1

nk

∑n

i=1

∑k

j=1
xij
)
.

Norm of the first partial derivative is given by

‖Difs(x11:nk)‖ =

√
∑k

j=1

∥∥∥ ∂

∂xij
fs(x11:nk)

∥∥∥
2

=
1

nk1/2

∥∥∥∂gs
(

1

nk

∑n

i=1

∑k

j=1
xij

)∥∥∥ ,

and therefore, by the definitions of αr;m from Theorem D.1 and νr;m from (D.3),

α1;m(f) :=
∑

s≤q maxi≤n ζi;m
(
|Difs(Wi( • ))|

)

=
1

nk1/2

∑
s≤q maxi≤n ζi;m

(
|Digs(Wi( • )|

)
=

1

nk1/2
ν1;m(g) .

Similarly we get α2;m(f) =
1

n2k
ν2;m(g), α3;m(f) =

1

n3k3/2
ν3;m(g) and α0;m(f) =
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ν0;m(g).The bound in Lemma D.3 can then be computed as

δn3/2k1/2c1

(
n1/2α2

1;2 + α2;1

)
+ (nk)3/2(nα3

1;6 + 3n1/2α1;4α2;4 + α3;2)(cX + cZδ) .

= δ
(
k−1/2ν2

1;2 + n−1/2k−1/2ν2;1

)
c1 +

(
n−1/2ν3

1;6 + 3n−1ν1;4ν2;4 + n−3/2ν3;2

)
(cX + cZδ) ,

while the bound in Lemma D.2 can be computed as

4δn2k1/2(α0;4α2;4 + α2
1;4)c1 + 6n2k3/2(α0;4α3;4 + α1;4α2;4)(cX + cZδ)

= O
(
δk−1/2(ν0;4ν2;4 + ν2

1;4)c1 + n−1(ν0;4ν3;4 + ν1;4ν2;4)(cX + cZδ)
)
.

These give the desired bounds on the differences dH(
√
nf(ΦX ),

√
nf(Zδ)) and n‖Var[f(ΦX )]−

Var[f(Zδ)]‖.

D.5.4. Proofs for Appendix D.1.4

We present the proof for Theorem D.8, which concerns non-smooth statistics in high-
dimensions. We also prove Corollary D.9 and D.10, which are respectively variants
of Lemma D.7(ii) for non-smooth statistics and Lemma D.7(i) for high-dimensions.
Throughout this section, we use xijl to denote the lth coordinate of a d-dimensional vector
xij .

The general idea for proving Theorem D.8 is to apply an intermediate result of the
proof of Theorem D.1 to f (t), some smooth approximation of f . By taking Hölder’s
inequality differently, we obtain vector-∞ norm for the moments as desired. The final
bound is then obtained by combining a bound analogous to that of Theorem D.1 and an
approximation error term using ε(t) and moment terms of f (t).

Proof of Theorem D.8. Recall from an intermediate equation (D.14) in the proof of The-
orem D.1 (for which Theorem 4.1 is a special case), with g replaced by h ◦ f (t) and δ set
to 0, that

∣∣Eh
(
f (t)(ΦX )

)
− Eh

(
f (t)(Z)

)∣∣ ≤
∑

i≤n

(
|κ1,i|+

1

2
|κ2,i|+

1

6
|κ3,i|

)
, (D.29)

where we have shown κ1,i = 0 and κ2,i = 0 for δ = 0 in the proof of Theorem D.1, and
written

κ3,i := E
[

supw∈[0,ΦiXi]

∣∣D3
i (h ◦ f (t))

(
Wi(w)

)
(ΦiXi)

⊗3
∣∣

+ supw∈[0,Zi]

∣∣D3
i (h ◦ f (t))

(
Wi(w)

)
(Zi)

⊗3
∣∣] .

We now seek to bound κ3,i. We apply the same argument as the original proof, except
that in step (a) below we provide a bound with a vector-1 norm and a vector-∞ norm
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instead of the Cauchy-Schwarz inequality:
∣∣D3

i (h ◦ f (t))
(
Wi(w)

)
(ΦiXi)

⊗3
∣∣

=
k∑

j1,j2,j3=1

d∑

l1,l2,l3=1

( ∂3

∂xij1l1∂xij2l2∂xij3l3
(h ◦ f (t))

(
Wi(w)

))
(φij1Xi)l1(φij2Xi)l2(φij3Xi)l3

(a)

≤
k∑

j1,j2,j3=1

( d∑

l1,l2,l3=1

∣∣ ∂3

∂xij1l1∂xij2l2∂xij3l3
(h ◦ f (t))

(
Wi(w)

)∣∣
) ∏3

r=1
maxl≤d |(φijrXi)l|

≤
( k∑

j1,j2,j3=1

( d∑

l1,l2,l3=1

∣∣∣∂
3(h ◦ f (t))

(
Wi(w)

)

∂xij1l1∂xij2l2∂xij3l3

∣∣∣
)2)1/2( k∑

j=1

max
l≤d
|(φijXi)l|2

)3/2

=: Ui(w)
(∑k

j=1
maxl≤d |(φijXi)l|2

)3/2

.

This together with the Cauchy-Schwarz inequality implies

E
[

supw∈[0,ΦiXi]

∣∣D3
i (h ◦ f (t))

(
Wi(w)

)
(ΦiXi)

⊗3
∣∣]

≤ E
[
Ui(w)

(∑k

j=1
maxl≤d |(φijXi)l|2

)3/2]

≤ ζi;2(Ui( • ))
∥∥∥
(∑k

j=1
maxl≤d |(φijXi)l|2

)3/2∥∥∥
L2

.

Moreover, by the Jensen’s inequality on the convex function x → x3 defined on R+ and
noting that φijXi is identically distributed as φi1Xi, we have

∥∥∥
(∑k

j=1
maxl≤d |(φijXi)l|2

)3/2∥∥∥
L2

= k3/2

√
E
[(

1

k

∑k

j=1
maxl≤d |(φijXi)l|2

)3]

≤ k3/2

√
E
[(

1

k

∑k

j=1
maxl≤d |(φijXi)l|6

)]

= k3/2
√

E
[

maxl≤d |(φijXi)l|6
]

= 6k3/2c̃X ,

which implies that the term in κ3,i involving ΦiXi can be bounded as

E
[

supw∈[0,ΦiXi]

∣∣D3
i (h ◦ f (t))

(
Wi(w)

)
(ΦiXi)

⊗3
∣∣] ≤ 6k3/2ζi;2(Ui( • )) c̃X .

On the other hand, the same argument applies to the term in κ3,i involving Zi to give

E
[

supw∈[0,Zi]

∣∣D3
i (h ◦ f (t))

(
Wi(w)

)
(ΦiXi)

⊗3
∣∣]

≤ ζi;2(Ui( • ))
∥∥∥
(∑k

j=1
maxl≤d |(Zij)l|2

)3/2∥∥∥
L2

.

The moment term can similarly be bounded by the Jensen’s inequality as
∥∥∥
(∑k

j=1
maxl≤d |(Zij)l|2

)3/2∥∥∥
L2

= 6k3/2

√
E
[(

1

k

∑k

j=1
maxl≤d |(Zij)l|2

)3]

≤ 6k3/2

√
E
[

1

k

∑k

j=1
maxl≤d |(Zij)l|6

]
= 6k3/2c̃Z .
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Therefore, we get the following bound on the κ3,i term in each summand of (D.29),
1

6
|κ3;i| ≤ k3/2ζi;2(Ui( • )) (c̃X + c̃Z) .

Now to bound ζi;2(Ui( • )), which involves a third derivative term, recall the chain rule
from Lemma D.25,

D3
i (h ◦ f (t))(u) = ∂3h

(
f (t)(u)

)(
Dif

(t)(u)
)⊗3

+ 3∂2h
(
f (t)(u)

)(
Dif

(t)(u)⊗D2
i f(u)

)

+ ∂h
(
f (t)(u)

)
D3
i f

(t)(u) .

Note that for r = 1, 2, 3,
∥∥∂rh

(
f (t)(u)

)∥∥ ≤ γr(h). By Cauchy-Schwarz and triangle
inequality, this implies that almost surely

Ui(w) ≤
( k∑

j1,j2,j3=1

( d∑

l1,l2,l3=1

(
γ3(h)

∥∥∥∂f
(t)(Wi(w))

∂xij1l1

∥∥∥
∥∥∥∂f

(t)(Wi(w))

∂xij2l2

∥∥∥
∥∥∥∂f

(t)(Wi(w))

∂xij3l3

∥∥∥

+ 3γ2(h)
∥∥∥∂f

(t)(Wi(w))

∂xij1l1

∥∥∥
∥∥∥∂

2f (t)(Wi(w))

∂xij2l2∂xij3l3

∥∥∥

+ γ1(h)
∥∥∥ ∂3f (t)(Wi(w))

∂xij3l3∂xij2l2∂xij3l3

∥∥∥
))2)1/2

≤ γ3(h)
(∑k

j1,j2,j3=1

(∑d

l1=1

∥∥∥∂f
(t)(Wi(w))

∂xij1l1

∥∥∥
)2(∑d

l2=1

∥∥∥∂f
(t)(Wi(w))

∂xij2l2

∥∥∥
)2

(∑d

l3=1

∥∥∥∂f
(t)(Wi(w))

∂xij3l3

∥∥∥
)2 )1/2

+ 3γ2(h)
( k∑

j1,j2,j3=1

( d∑

l1=1

∥∥∥∂f
(t)(Wi(w))

∂xij1l1

∥∥∥
)2( d∑

l2,l3=1

∥∥∥∂
2f (t)(Wi(w))

∂xij2l2∂xij3l3

∥∥∥
)2)1/2

+ γ1(h)
(∑k

j1,j2,j3=1

(∑d

l1,l2,l3=1

∥∥∥ ∂3f (t)(Wi(w))

∂xij3l3∂xij2l2∂xij3l3

∥∥∥
)2)1/2

= γ3(h)T1;i(w)3 + 3γ2(h)T1;i(w)T2;i(w) + γ1(h)T3;i(w) ,

where for r = 1, 2, 3,

Tr;i(w) :=
(∑k

j1,...,jr=1

(∑d

l1,...,lr=1

∥∥∥ ∂rf (t)(Wi(w))

∂xij1l1 . . . ∂xijrlr

∥∥∥
)2)1/2

≤
∑q

s=1

(∑k

j1,...,jr=1

(∑d

l1,...,lr=1

∣∣∣ ∂
rf

(t)
s (Wi(w))

∂xij1l1 . . . ∂xijrlr

∣∣∣
)2)1/2

=
∑q

s=1

(∑k

j1,...,jr=1

∥∥∥∂
rf

(t)
s (Wi(w))

∂xij1 . . . ∂xijr

∥∥∥
)2)1/2

.

Therefore, by properties of ζi;m and the definition of α̃(t)
r , we get

1

6
|κ3,i| ≤ k3/2

(
γ3(h)(α̃

(t)
1 )3 + 3γ2(h)α̃

(t)
1 α̃

(t)
2 + γ1(h)α̃

(t)
3

)
(c̃X + c̃Z) ,

which then yields the bound
∣∣Eh
(
f (t)(ΦX )

)
− Eh

(
f (t)(Z)

)∣∣

≤ nk3/2
(
γ3(h)(α̃

(t)
1 )3 + 3γ2(h)α̃

(t)
1 α̃

(t)
2 + γ1(h)α̃

(t)
3

)
(c̃X + c̃Z) .
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To bound the approximation error introduced by replacing f with f (t), we apply mean
value theorem and Cauchy-Schwarz inequality to obtain

∣∣Eh
(
f(ΦX )

)
− Eh

(
f (t)(ΦX )

)∣∣

≤
∣∣∣E
[

sup
w∈[f(ΦX ),f (t)(ΦX )]

‖∂h(w)‖‖f(ΦX )− f (t)(ΦX )‖
]∣∣∣

≤ γ1(h) ε(t).

An analogous argument shows that
∣∣Eh
(
f(Z)

)
− Eh

(
f (t)(Z)

)∣∣ ≤ γ1(h) ε(t), and the
desired bound is obtained by triangle inequality.

We now prove Corollary D.9, which is a variant of Lemma D.7(ii) and concerns
convergence for a non-smooth plug-in estimate in high dimensions.

Proof of Corollary D.9. Write f (t)(x11:nk) := g(t)
(

1
nk

∑
i≤n,j≤k xij

)
. An argument anal-

ogous to the proof of Lemma D.7(ii) shows that α̃(t)
r defined in Theorem D.8 satisfies

α̃
(t)
0 = ν̃

(t)
0 , α̃

(t)
1 =

1

nk1/2
ν̃

(t)
1 , α̃

(t)
2 =

1

n2k
ν̃

(t)
2 , α̃

(t)
3 =

1

n3k3/2
ν̃

(t)
3 .

Notice that the above substitutions of α̃(t)
r by ν̃(t)

r are of the exact same form of those from
the proof of Lemma D.7(ii), and the following bound from the proof of Theorem D.8 is
of the exact same form as Theorem 4.1 except that αr is replaced by α̃(t)

r and cX + cZ is
replaced by c̃X + c̃Z):

∣∣Eh
(
f (t)(ΦX )

)
− Eh

(
f (t)(Z)

)∣∣

≤ nk3/2
(
γ3(h)(α̃

(t)
1 )3 + 3γ2(h)α̃

(t)
1 α̃

(t)
2 + γ1(h)α̃

(t)
3

)
(c̃X + c̃Z) .

Therefore, a repetition of the proof of Lemma D.7(ii) with δ = 0 yields the analogous
bounds

dH(
√
nf (t)(ΦX ),

√
nf (t)(Z)) = O

(
(n−1/2(ν̃

(t)
1 )3 + 3n−1ν̃

(t)
1 ν̃

(t)
2 + n−3/2ν̃

(t)
3 )(c̃X + c̃Z)

)
,

n‖Var[f (t)(ΦX )]− Var[f (t)(Z)]‖ = O
(
n−1(ν̃

(t)
0 ν̃

(t)
3 + ν̃

(t)
1 ν̃

(t)
2 )(c̃X + c̃Z)

)
.

Now by an argument analogous to the proof of Theorem D.8, we can bound the difference
between ft and f in dH as

dH(
√
nf(ΦX ),

√
nf (t)(ΦX )) = suph∈H

∣∣Eh
(√

nf(ΦX )
)
− Eh

(√
nf (t)(ΦX )

)∣∣

≤ suph∈H

∣∣∣E
[

supw∈[
√
nf(ΦX ),

√
nf (t)(ΦX )] ‖∂h(w)‖√n‖f(ΦX )− ft(ΦX )‖

]∣∣∣

≤ √n suph∈H γ1(h)ε(t) ≤ √nε(t) .

Moreover, by the triangle inequality of ‖ • ‖, the Jensen’s inequality to move ‖ • ‖ inside
the expectation and the Cauchy-Schwarz inequality,

n‖Var[f(ΦX )]− Var[f (t)(ΦX )]‖
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=
n

2

∥∥E
[
(f(ΦX ) + f (t)(ΦX ))(f(ΦX )− f (t)(ΦX ))>

]

+ E
[
(f(ΦX )− f (t)(ΦX ))(f(ΦX ) + f (t)(ΦX ))>

]

− E[f(ΦX ) + f (t)(ΦX )]E[f(ΦX )− f (t)(ΦX )]>

− E[f(ΦX )− f (t)(ΦX )]E[f(ΦX ) + f (t)(ΦX )]>
∥∥

≤ n
∥∥ ‖f(ΦX ) + f (t)(ΦX )‖

∥∥
L2

∥∥ ‖f(ΦX )− f (t)(ΦX )‖
∥∥
L2

+ n
∥∥ ‖f(ΦX ) + f (t)(ΦX )‖

∥∥
L1

∥∥ ‖f(ΦX )− f (t)(ΦX )‖
∥∥
L1

≤ 2n
∥∥ ‖2f(ΦX ) + f (t)(ΦX )− f(ΦX )‖

∥∥
L2

∥∥ ‖f(ΦX )− f (t)(ΦX )‖
∥∥
L2

≤ 2n
(
2‖ ‖f(ΦX )‖ ‖L2

+ ε(t)
)
ε(t) = 4n‖ ‖f(ΦX )‖ ‖L2

ε(t) + 2nε(t)2 .

The same argument applies to f(Z), and the desired bound is obtained by applying tri-
angle inequalities.

We now prove Corollary D.10, which is a variant of Lemma D.7(i) and concerns
convergence for a plug-in estimate in high dimensions to the first-order Taylor expansion
defined in (6.11):

fT (x11, . . . ,xnk) := g(E[φ11X1]) + ∂g(E[φ11X1])
( 1

nk

∑n

i=1

∑k

j=1
xij − E[φ11X1]

)
.

Proof of Corollary D.10. Similar to the proof of Lemma D.7(i), a Taylor expansion argu-
ment followed by Hölder’s inequality and noting the definition of κ̃r and that γ1(h) = 1

gives

|Eh(
√
nf(ΦX ))−Eh(

√
nfT (ΦX ))| ≤ √n γ1(h)E‖f(ΦX )− fT (ΦX )‖

≤ √n γ1(h)E
[

supw∈[0,X̄] ‖∂2g(µ+ w)‖1 (maxl≤d |(X̄)l|)2
]

≤ √n γ1(h)
∥∥ supw∈[0,X̄] ‖∂2g(µ+ w)‖1

∥∥
L3

∥∥ maxl≤d |(X̄)l|
∥∥2

L3

≤ √n κ̃2

∥∥ maxl≤d |(X̄)l|
∥∥2

L3
. (D.30)

Note that by properties of a maximum and the triangle inequality,
∥∥ maxl≤d |(X̄)l|

∥∥
L3

=
∥∥ max{maxl≤d(X̄)l , maxl≤d(−X̄)l}

∥∥
L3

≤
∥∥ max{|maxl≤d(X̄)l| , |maxl≤d(−X̄)l|}

∥∥
L3

≤
∥∥ |maxl≤d(X̄)l|+ |maxl≤d(−X̄)l|

∥∥
L3

≤
∥∥maxl≤d(X̄)l

∥∥
L3

+
∥∥maxl≤d(−X̄)l

∥∥
L3
.

X̄ is an average of n i.i.d. zero-mean terms 1
k

∑
j φijXi − µ, and −X̄ is an average of

n i.i.d. zero-mean terms − 1
k

∑
j φijXi + µ. Therefore, Lemma D.38 applies and we get

that there exists a universal constant Cm such that
∥∥∥max

l≤d
(X̄)l

∥∥∥
Lm

,
∥∥∥max

l≤d
(−X̄)l

∥∥∥
Lm

≤ infν∈R
[
2n−(1−ν) + log(d)n−ν M2

2 + n−1/2CMm

]
,
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where for m ≤ 6,

Mm :=
∥∥maxl≤d |(φijXi − E[φijXi])l|

∥∥
Lm
≤ 2
∥∥maxl≤d |(φijXi)l|

∥∥
Lm
≤ 2(6c̃X)1/3 .

The bound on Mm together with the assumption log d = o(nα) for some α ≥ 0 implies,
for m ≤ 6,
∥∥ maxl≤d |(X̄)l|

∥∥
Lm
≤ infν∈R

[
4n−(1−ν) + 48 log(d)n−ν (c̃X)2/3 + 24n−1/2C(c̃X)1/3

]

≤ o
(

infν∈R
[
4n−(1−ν) + 48nα−ν (c̃X)2/3 + 24n−1/2C(c̃X)1/3

])

≤ o
(

max{1, (c̃X)2/3}
(
4n−(1−α)/2 + 48n−(1−α)/2 + 24n−1/2C

))

= o(n−(1−α)/2 max{1, (c̃X)2/3}) , (D.31)

so by substituting into (D.30) and noting that the bounds are independent ofH,

dH(
√
nfT (Z),

√
nfT (ΦX )) = suph∈H |Eh(

√
nfT (Z))− Eh(

√
nfT (ΦX ))|

= o(n−1/2+α κ̃2 max{1, (c̃X)4/3}) .

Now to bound dH(
√
nf(ΦX ),

√
nfT (ΦX )), we seek to apply Theorem D.8. First define

f (t) := fT which is thrice-differentiable with approximation quality ε(t) = 0. Note that
for α̃(t)

r defined in terms of f (t),

α̃
(t)
1 = n−1k−1/2‖∂g(µ)‖1 ≤ n−1k−1/2κ1 , α̃

(t)
2 = α̃

(t)
3 = 0 .

Notice that the above substitutions of α̃(t)
r by κ̃r are of the exact same form of those from

the proof of Lemma D.7(i). Then the following bound from the proof of Theorem D.8
applies, which is of the exact same form as Theorem 4.1 except that αr is replaced by
α̃

(t)
r and cX + cZ is replaced by c̃X + c̃Z):
∣∣Eh
(
f (t)(ΦX )

)
− Eh

(
f (t)(Z)

)∣∣

≤ nk3/2
(
γ3(h)(α̃

(t)
1 )3 + 3γ2(h)α̃

(t)
1 α̃

(t)
2 + γ1(h)α̃

(t)
3

)
(c̃X + c̃Z) .

Therefore, a repetition of the proof of Lemma D.7(i) with δ = 0 yields the analogous
bound

dH(
√
nfT (ΦX ),

√
nfT (Z)) = dH(

√
nf (t)(ΦX ),

√
nf (t)(Z)) = O

(
n−1/2κ̃3

1(c̃X + c̃Z)
)
.

By the triangle inequality we get the desired bound

dH(
√
nf(ΦX ),

√
nfT (Z)) = o

(
n−1/2+ακ̃2 max{1, (c̃X)4/3}

)
+O

(
n−1/2κ̃3

1(c̃X + c̃Z)
)
.

For the variance bound, by the proof of Lemma D.7(i) with δ = 0, we get

Var[fT (ΦX )] = Var[fT (Z)] .

Moreover by an analogous argument to the proof of Lemma D.7(i), almost surely there
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exists some X̃(s) ∈ [0, X̄] that depends on fs(ΦX )s and fTs (ΦX ), such that for

R1
s := (∂gs(µ))>X̄ , R2

s := Tr
(
(∂2gs(µ+ X̃(s)))> X̄X̄>

)
,

we have

n
(
Var[f(ΦX )]− Var

[
fT (ΦX )

])
r,s

= n
(
Cov[R1

r,R
2
s] + Cov[R2

r,R
1
s] + Cov[R2

r,R
2
s]
)
.

The only part that differs from the proof of Lemma D.7(i) is how we bound the covariance
terms, which is similar to how the bound on (D.30) is obtained:

Cov[R1
r,R

2
s] = E[R1

rR
2
s] = E

[
(∂gr(µ))>X̄ Tr

(
(∂2gs(µ+ X̃(s)))> X̄X̄>

)]

≤ ‖∂gr(µ)‖1E
[
‖∂2gs(µ+ X̃(s))‖1‖maxl≤d |(X̄)l|‖3

]

≤ ‖∂gr(µ)‖1

∥∥‖∂2gs(µ+ X̃(s))‖1

∥∥
L4

∥∥maxl≤d |(X̄)l|
∥∥3

L4

= o
(
n−3/2+3α/2κ̃1(gr)κ̃2(gs) max{1, (c̃X)2}

)
.

In the last bound, we have specified κ̃1(gr) to be the quantity κ̃1 defined in terms of gr, and
used (D.31) to bound ‖maxl≤d |(X̄)l|‖L4

= o(n−(1−α)/2 max{1, (c̃X)2/3}). Analogously

Cov[R2
r,R

1
s] = o

(
n−3/2+3α/2κ̃1(gr)κ̃2(gs) max{1, (c̃X)2}

)
,

and also

Cov[R2
r,R

2
s] ≤

∣∣E
[
Tr
(
(∂2gr(µ+ X̃(r)))> X̄X̄>

)
Tr
(
(∂2gs(µ+ X̃(s)))> X̄X̄>

)]∣∣

+
∣∣E
[
Tr
(
(∂2gr(µ+ X̃(r)))> X̄X̄>

)]∣∣ ∣∣E
[
Tr
(
(∂2gs(µ+ X̃(s)))> X̄X̄>

)]∣∣

≤ 2
∥∥‖∂2gr(µ+ X̃(r))‖1

∥∥
L6

∥∥‖∂2gs(µ+ X̃(s))‖1

∥∥
L6

∥∥maxl≤d |(X̄)l|
∥∥4

L6

= o
(
n−2+2ακ̃2(gr)κ̃2(gs) max{1, (c̃X)8/3}

)
.

Therefore

n
(
Var[f(ΦX )]− Var

[
fT (Z)

])
r,s

= o
((
n−1/2+3α/2κ̃1(gr)κ̃2(gs) + n−1+2ακ̃2(gr)κ̃2(gs)

)
max{1, (c̃X)8/3}

)
.

Since
∑q

r,s=1 κ̃R1
(gr)κ̃R2

(gs) = κ̃R1
κ̃R2

where κ̃R is defined in terms of g, we get

n
∥∥Var[f(ΦX )]− Var

[
fT (Z)

]∥∥ = o
(
(n−1/2+3α/2κ̃1κ̃2 + n−1+2ακ̃2

2) max{1, (c̃X)8/3}
)
,

as required. This completes the proof.

D.5.5. Proofs for Appendix D.1.5

In this section, we first prove Lemma D.12, a toy example showing how repeated aug-
mentation adds additional complexity, and then prove D.11, the main result concerning
repeated augmentation.
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Proof of Lemma D.12. By the invariance φ1X1
d
= X1 and the fact that X1, X2, φ1 and

φ2 are independent, we get that

Varf1(X1,X2) = Varf1(φ1X1, φ2X2) , Varf2(X1,X2) = Varf2(φ1X1, φ2X2) .

For repeated augmentation, notice that for any v ∈ Rd,

v>Varf1(φ1X1, φ1X2)v = v>Var[φ1X1 + φ1X2]v

= v>Var[φ1X1]v + v>Var[φ1X2]v + 2v>Cov[φ1X1, φ1X2]v

= 2v>Var[X1]v + 2v>Cov[φ1X1, φ1X2]v

= v>Var[φ1X1 + φ2X2]v + 2v>Cov[φ1X1, φ1X2]v

= v>Varf1(φ1X1, φ2X2)v + 2v>Cov[φ1X1, φ1X2]v ,

and similarly

v>Varf2(φ1X1, φ1X2)v = v>Varf2(φ1X1, φ2X2)v − 2v>Cov[φ1X1, φ1X2]v .

Now note that for all v ∈ Rd,

v>Cov[φ1X1, φ1X2]v = E
[
(X>1 φ

>
1 v)>(X>2 φ

>
1 v)
]
− E

[
X>1 φ

>
1 v
]>E

[
X>2 φ

>
1 v
]

= E
[
(µ>φ>1 v)>(µ>φ>1 v)

]
− E

[
µ>φ>1 v

]>E
[
µ>φ>1 v

]

= Var[v>φ1µ] ≥ 0 ,

and therefore for all v ∈ Rd,

v>Varf1(φX1, φ1X2)v ≥ v>Varf1(φ1X1, φ2X2)v ,

v>Varf2(φX1, φ1X2)v ≤ v>Varf2(φ1X1, φ2X2)v ,

which completes the proof.

The broad stroke idea in proving Theorem D.11 for repeated augmentation is similar
to that of our main result, Theorem 4.1, and we refer readers to Appendix D.4 for a proof
overview. The only difference is that in proving Theorem 4.1, we can group data into
independent blocks due to i.i.d. augmentations being used for different data points. In
the proof of Theorem D.11, the strategy must be modified: The additional dependence
introduced by reusing transformations means moments can no longer be factored off from
derivatives, so stronger assumptions on the derivatives are required to control terms. This
is achieved by using the symmetry assumption on f from (D.4).

Proof of Theorem D.11. Similar to the proof for Theorem D.1 (a generalised version of
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Theorem 4.1), we abbreviate g = h ◦ f and denote

Vi( • ) := (Φ̃1X1, . . . , Φ̃i−1Xi−1, • ,Yi+1, . . . ,Yn) .

The same telescoping sum and Taylor expansion argument follows, yielding
∣∣Eh(f(Φ̃X ))− Eh(f(Y1, . . . ,Yn))

∣∣ =
∣∣E
∑n

i=1

[
g(Vi(Φ̃iXi))− g(Vi(Yi))

]∣∣

≤
∑n

i=1

∣∣E
[
g(Vi(Φ̃iXi))− g(Vi(Yi))

]∣∣,
(D.32)

and each summand is bounded above as
∣∣E
[
g(Vi(Φ̃iXi))− g(Vi(Yi))

]∣∣ ≤ |τ1,i|+
1

2
|τ2,i|+

1

6
|τ3,i| ,

where

τ1,i := E
[(
Dig(Vi(0))

)(
Φ̃iXi −Yi

)]

τ2,i := E
[(
D2
i g(Vi(0))

)(
(Φ̃iXi)(Φ̃iXi)

> −YiY
>
i

)]

τ3,i := E
[
‖Φ̃iXi‖3 sup

w∈[0,Φ̃iXi]

∥∥D3
i g
(
Vi(w)

)∥∥+ ‖Yi‖3 sup
w∈[0,Yi]

∥∥D3
i g
(
Vi(w)

)∥∥] .

With a slight abuse of notation, we view Dig(Vi(0)) as a function Rdk → R and
D2
i g(Vi(0)) as a function Rdk×dk → R. Substituting into (D.32), and applying the trian-

gle inequality, shows
∣∣Eh(f(Φ̃X ))− Eh(f(Y1, . . . ,Yn))

∣∣ ≤
∑n

i=1

(
|τ1,i|+

1

2
|τ2,i|+

1

6
|τ3,i|

)
.

The next step is to bound the terms τ1,i, τ2,i and τ3,i. τ3,i is analogous to κ3,i in the proof
of Theorem 4.1. Define

Mi := max {
∥∥supw∈[0,Φ̃iXi]

‖D3
i g
(
Vi(w)

)
‖
∥∥
L2
,
∥∥supw∈[0,Yi]

‖D3
i g
(
Vi(w)

)
‖
∥∥
L2
} ,

we can handle τ3,i in the exact same way as in Theorem 4.1 to obtain
1

6
|τ3,i| ≤ k3/2(cX + cY )Mi.

However, bounding τ1,i and τ2,i works differently, since (Φ̃iXi,Yi) is no longer inde-
pendent of (Φ̃jXj,Yj)j 6=i and therefore not independent of Vi(0). To this end, we
invoke the permutation invariance assumption (D.4) on f , which implies the function
g(Vi( • )) = h(f(Vi( • ))) that takes input in Rkd satisfies (D.50) in Lemma D.31. Then
Lemma D.31 shows that, for each i ≤ n and for xi1, . . . ,xik ∈ Rd,

∂

∂xi1
g(Vi(0)) = . . . =

∂

∂xik
g(Vi(0)), (D.33)

∂2

∂x2
i1

g(Vi(0)) = . . . =
∂2

∂x2
ik

g(Vi(0)), (D.34)

∂2

∂xir∂xis
g(Vi(0)) is the same for all r 6= s, 1 ≤ r, s ≤ k. (D.35)
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Consider bounding τ1,i. Rewrite τ1,i as a sum of k terms and denote Yij ∈ Rd as Yij1:ijd,

the subvector of Yi analogous to φjXi in Φ̃iXi. Since that (D.33) allows
∂

∂xi1
g(Vi(0))

to be taken outside the summation in (a) below, we get

|τ1,i| = E
[∑k

j=1

∂

∂xij
g(Vi(0))

(
φjXi −Yij

)]

(a)
= E

[ ∂

∂xi1
g(Vi(0))

∑k

j=1

(
φjXi −Yij

)]

(b)
= E

[
E
[ ∂

∂xi1
g(Vi(0))

∣∣Φ̃,Ψ
]
E
[∑k

j=1

(
φjXi −Yij

)∣∣Φ̃,Ψ
]]

≤ E
[∥∥E

[ ∂

∂xi1
g(Vi(0))

∣∣Φ̃,Ψ
]∥∥ ∥∥E

[∑k

j=1

(
φjXi −Yij

)∣∣Φ̃,Ψ
]∥∥]

≤
∥∥∥
∥∥∥E
[ ∂

∂xi1
g(Vi(0))

∣∣Φ̃,Ψ
]∥∥∥
∥∥∥
L2

∥∥∥
∥∥∥E
[∑k

j=1

(
φjXi −Yij

)∣∣Φ̃,Ψ
]∥∥∥
∥∥∥
L2

=: (t1i) (t2i) .

where to get (b), we apply conditional independence conditioning on Φ and Ψ, the aug-
mentations forX and Y1, . . . ,Yn respectively, and to obtain the final bound we exploited
Cauchy-Schwarz inequality. We will first upper bound (t2i) by the trace of the variance
of the augmented (Xi). Moving the summation outside the expectation,

(t2i) =
∥∥∥
∥∥∥E
[∑k

j=1

(
φjXi −Yij

)∣∣Φ̃,Ψ
]∥∥∥
∥∥∥
L2

=

√
E
[
E
[∑k

j1=1

(
φj1Xi −Yij1

)∣∣∣Φ̃,Ψ
]>

E
[∑k

j2=1

(
φj2Xi −Yij2

)∣∣∣Φ̃,Ψ
]]

=

√
∑k

j1,j2=1
E
[
E
[
φj1Xi −Yij1

∣∣φj1 , ψj1
]>E

[
φj2Xi −Yij2

∣∣φj2 , ψj2
]]
.

(D.36)

In each summand, the expectation is taken over a product of two quantities, which are
respectively functions of {φj1 , ψj1} and {φj2 , ψj2}. For j1 6= j2, the two quantities are
independent, and are also zero-mean since

E
[
E
[
φjXi − (Yi)j

∣∣φj, ψj
]]

= E
[
E[φjXi|φj]

]
− E

[
E[Yij|ψj

]]

= E
[
E[φjXi|φj]

]
− E

[
E[ψjX1|ψj

]]
= 0.

Therefore, summands with j1 6= j2 vanish, and (D.36) becomes

(t2i) =
∥∥∥
∥∥∥E
[∑k

j=1

(
φjXi −Yij

)∣∣Φ̃,Ψ
]∥∥∥
∥∥∥
L2

=

√
∑k

j=1
E
[
E
[
φjXi −Yij

∣∣φj, ψj
]>E

[
φjXi −Yij

∣∣φj, ψj
]]

(c)
=
√
k

√
E
[
E
[
φ1Xi −Yi1

∣∣φ1, ψ1

]>E
[
φ1Xi −Yi1

∣∣φ1, ψ1

]]

=
√
k
√

TrVar
[
E[φ1Xi|φ1]− E[Yi1|ψ1]

]

(d)
=
√
k
√

TrVar
[
E[φ1X1|φ1]− E[ψ1X1|ψ1]

]
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(e)
=
√

2k
√

TrVar
[
E[φ1X1|φ1]

]
=
√
km1.

where we have used that (φ1, ψ1), . . . , (φk, ψk) are i.i.d. in (c) and that E[φ1X1|φ1] and
E[ψ1X1|ψ1] are i.i.d. in (d) and (e). Define

Ci :=
∥∥∥
∥∥∥E
[ ∂

∂xi11:i1d
g(Vi(0))

∣∣Φ̃,Ψ
]∥∥∥
∥∥∥
L2

,

we note that (t1i) ≤ Ci. Therefore we obtain

|τ1,i| ≤
√
km1Ci .

τ2,i can be bounded similarly by rewriting as a sum of k2 terms and making use of condi-
tional independence. We defer the detailed computation to Lemma D.29. Define

Ei :=
∥∥∥
∥∥E
[ ∂2

∂x2
i1

g(Vi(0))
∣∣Φ̃,Ψ

]∥∥
∥∥∥
L2

, Fi :=
∥∥∥
∥∥E
[ ∂2

∂xi1∂xi2
g(Vi(0))

∣∣Φ̃,Ψ
]∥∥
∥∥∥
L2

.

(D.37)

Lemma D.29 below shows that
1

2
|τ2,i| ≤ k1/2m2Ei + k3/2m3Fi. (D.38)

In summary, the right hand side of (D.32) is hence bounded by

(D.32) ≤
∑n

i=1
|τ1,i|+

1

2
|τ2,i|+

1

6
|τ1,i|

≤ nk−1/2m1 max
i≤n

Ci + k1/2m2 max
i≤n

Ei + k3/2m3 max
i≤n

Fi + nk3/2(c2 + c3) max
i≤n

Mi.

Lemma D.30 below shows that the the maximums maxi≤nEi,maxi≤nCi,maxi≤nDi

maxi≤nMi are in turn bounded by

maxi≤n Ci ≤ k−1/2γ1(h)α1, (D.39)

maxi≤n Ei ≤ k−1/2(γ2(h)α2
1 + γ1(h)α2), (D.40)

maxi≤n Fi ≤ k−3/2(γ2(h)α2
1 + γ1(h)α2), (D.41)

maxi≤n Mi ≤ λh(n, k). (D.42)

That yields the desired upper bound on (D.32),
∣∣Eh(f( Φ̃X ))− Eh(f(Y1, . . . ,Yn))

∣∣

≤ nγ1(h)α1m1 + nω2(n, k)(γ2(h)α2
1 + γ1(h)α2) + nk3/2λh(n, k)(cX + cY ) .

which finishes the proof.

We complete the computation of bounds in Lemma D.29 and Lemma D.30.

Lemma D.29. The bound on |τ2,i| in (D.38) holds.
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Proof. Rewrite τ2,i as a sum of k2 terms,

|τ2,i| = E
[∑k

j1,j2=1

∂2

∂xij1∂xij2
g(Vi(0))

(
(φj1Xi)(φj2Xi)

> − (Yij1
)(Yij2

)>
)]
. (D.43)

Consider the terms with j1 = j2. (D.34) says that the derivatives are the same for j1 =

1, . . . , k and allows
∂2

∂x2
ij1:ijd

g(Vi(0)) to be taken out of the following sum,

E
[∑k

j=1

∂2

∂x2
ij

g(Vi(0))
(
(φjXi)(φjXi)

> − (Yij)(Yij)
>)]

= E
[
∂2

∂x2
i1

g(Vi(0))
∑k

j=1

(
(φjXi)(φjXi)

> − (Yij)(Yij)
>)]

(a)
= E

[
E
[ ∂2

∂x2
i1

g(Vi(0))
∣∣Φ̃,Ψ

]
E
[∑k

j=1

(
(φjXi)(φjXi)

> − (Yij)(Yij)
>)∣∣Φ̃,Ψ

]]

≤
∥∥∥
∥∥E
[ ∂2

∂x2
i1

g(Vi(0))
∣∣Φ̃,Ψ

]∥∥
∥∥∥
L2

∥∥∑k

j=1
‖Tjj‖

∥∥
L2

= Ei
∥∥∑k

j=1
‖Tjj‖

∥∥
L2
, (D.44)

where we have used conditional independence conditioning on Φ̃ and Ψ in (a), defined
Ei as in (D.37) and denoted

Tj1j2
:= E

[
(φj1Xi)(φj2Xi)

> − (Yij1
)(Yij2

)>
∣∣Φ̃,Ψ

]

= E
[
(φj1Xi)(φj2Xi)

>|φj1 , φj2
]
− E

[
(Yij1

)(Yij2
)>
∣∣ψj1 , ψj2

]

= E
[
(φj1X1)(φj2X1)>|φj1 , φj2

]
− E

[
(ψj1X1)(ψj2X1)>

∣∣ψj1 , ψj2
]
.

Consider the terms in (D.43) with j1 6= j2. (D.35) says that the derivatives are the same
for 1 ≤ j1, j2 ≤ k with j1 6= j2, so by a similar argument,

E
[∑

j1 6=j2

∂2

∂xij1∂xij2
g(Vi(0))

(
(φj1Xi)(φj2Xi)

> − (Yij1
)(Yij2

)>
)]

= E
[

∂2

∂xi1∂xi2
g(Vi(0))

∑
j1 6=j2

(
(φj1Xi)(φj2Xi)

> − (Yij1
)(Yij2

)>
)]

= E
[
E
[ ∂2

∂xi1∂xi2
g(Vi(0))

∣∣Φ̃,Ψ
]
E
[∑

j1 6=j2

(
(φj1Xi)(φj2Xi)

>−(Yij1
)(Yij2

)>
)∣∣Φ̃,Ψ

]]

≤
∥∥∥
∥∥E
[ ∂2

∂xi11:i1d∂xi21:i2d
g(Vi(0))

∣∣Φ̃,Ψ
]∥∥
∥∥∥
L2

∥∥∑
j1 6=j2

‖Tj1j2
‖
∥∥
L2

= Fi
∥∥∑

j1 6=j2
‖Tj1j2

‖
∥∥
L2
, (D.45)

where we have used Fi defined in (D.37). To obtain a bound for (D.44)and (D.45), we
need to bound

∥∥∑k
j=1 ‖Tjj‖

∥∥
L2

and
∥∥∑

j1 6=j2 ‖Tj1j2
‖
∥∥
L2

. To this end, we denote

Aφ := vec
(
E
[
(φ1X1)(φ1X1)>|φ1

])
, Aψ := vec

(
E
[
(ψ1X1)(ψ1X1)>

∣∣ψ1

])
,

Bφ := vec
(
E
[
(φ1X1)(φ2X1)>|φ1, φ2

])
, Bψ := vec

(
E
[
(ψ1X1)(ψ2X1)>

∣∣ψ1, ψ2

])
,

where vec({Mrs}i,j≤d) = (M11,M12, . . . ,Mdd) ∈ Rd2 converts a matrix to its vector
representation. Then WLOG we can write T11 = Aφ−Aψ, T12 = Bφ−Bψ. Before we
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proceed, we compute several useful quantities in terms of T’s. Recall that

m2 :=

√
∑

r,s≤d

VarE
[
(φ1X1)r(φ1X1)s

∣∣φ1

]

2
,

m3 :=
√∑

r,s≤d 12VarE
[
(φ1X1)r(φ2X1)s

∣∣φ1, φ2

]
.

Since Aφ and Aψ are i.i.d.,

E
[∥∥Tjj

∥∥2]
= E

[∥∥T11

∥∥2]
= E

[
Tr(T11T

>
11)
]

= TrE
[
T11T

>
11

]

= Tr(E[AφA
>
φ ]− E[AφA

>
ψ ]− E[AψA

>
φ ] + E[AψA

>
ψ ])

= 2Tr
(
E[AφA

>
φ ]− E[Aφ]E[Aφ]>)

= 2
∑d

r,s=1

(
E[(Aφ)2

rs]− E[(Aφ)rs]
2
)

= 2
∑d

r,s=1
VarE

[
(φ1X1)r(φ1X1)s

∣∣φ1

]
= 4(m2)2. (D.46)

Similarly by noting that Bφ and Bψ are i.i.d., for j1 6= j2,

E
[∥∥Tj1j2

∥∥2]
= E

[∥∥T12

∥∥2]
= TrE

[
T12T

>
12

]

= Tr(E[BφB
>
φ ]− E[BφB

>
ψ ]− E[BψB

>
φ ] + E[BψB

>
ψ ])

= 2
∑d

r,s=1

(
E[(Bφ)2

rs]− E[(Bφ)rs]
2
)

= 2
∑d

r,s=1
VarE

[
(φ1X1)r(φ2X1)s

∣∣φ1

]
=

1

6
(m3)2. (D.47)

On the other hand, by Cauchy-Schwarz with respect to the Frobenius inner product, for
j1 6= j2 and l1 6= l2,

∣∣E[Tr(Tj1j2
T>l1l2)])

∣∣ ≤
∣∣∣E
[√

Tr(Tj1j2
T>j1j2)

√
Tr(Tl1l2

T>l1l2)
]∣∣∣

≤
√
ETr(Tj1j2

T>j1j2)
√

ETr(Tl1l2
T>l1l2)

=

√
E
[∥∥Tj1j2

∥∥2]√E
[∥∥Tl1l2

∥∥2] ≤ 1

6
(m3)2 , (D.48)

which can be computed using the above relations for each j1, j2, l1, l2 ≤ k. Moreover we
note that, since E[Aφ] = E[Aψ] and E[Bφ] = E[Bψ] this directly implies that E[T11] =

E[T12] = 0. We are now ready to bound
∥∥∑k

j=1 ‖Tjj‖
∥∥
L2

and
∥∥∑k

j1,j2=1 ‖Tj1j2
‖
∥∥
L2

:

∥∥∥
∥∥∑k

j=1
Tjj

∥∥
∥∥∥
L2

:=

√
E
[
Tr
((∑k

j1=1
Tj1j1

)(∑k

j2=1
Tj2j2

)>)]

=

√
∑k

j1,j2=1
TrE[Tj1j1

T>j2j2 ]
(a)
=

√
∑k

j=1
TrE[Tj1j1

T>j1j1 ]
(b)
= 2
√
km2,

where (a) uses the independence of Tj1,j1
and Tj2,j2

, and (b) uses (D.46). On the other
hand,

∥∥∥
∥∥∑

j1 6=j2
Tj1j2

∥∥
∥∥∥
L2

:=
√∑

j1 6=j2,l1 6=l2
TrE[Tj1j2

T>l1l2 ]. (D.49)

Consider each summand in (D.49). If j1, j2, l1, l2 are all distinct, the summand vanishes
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since Tj1j2
and Tl1l2

are independent and zero-mean. Otherwise, we can use (D.48)
and (D.47) to upper bound each summand by 1

6
(m3)2. The number of non-zero terms is

k4 − k(k − 1)(k − 2)(k − 3) = 6k3 − 11k2 + 6k ≤ 6k3 + 6k ≤ 12k3, so (D.49) can be
upper bounded by 2k3/2m3. In summary,
1

2
|τ2,i| ≤

1

2
Ei
∥∥∑k

j=1
‖Tjj‖

∥∥
L2

+
1

2
Fi
∥∥∑

j1 6=j2
‖Tj1j2

‖
∥∥
L2
≤ k1/2m2Ei + k3/2m3Fi ,

which finishes the proof.

Lemma D.30. The bounds (D.39), (D.40), (D.41) and (D.42) hold.

Proof. The argument is mostly the same as Lemma D.27, except that we use the permu-
tation invariance assumption (D.4) and Lemma D.31 to handle Ci, Ei and Fi. To obtain
(D.39), note that the vector norm ‖ • ‖ is a convex function, so by Jensen’s inequality,

Ci =
∥∥∥
∥∥∥E
[ ∂

∂xi1
g(Vi(0))

∣∣Φ̃,Ψ
]∥∥∥
∥∥∥
L2

≤
∥∥∥ E
[∥∥∥ ∂

∂xi1
g(Vi(0))

∥∥∥
∣∣∣Φ̃,Ψ

] ∥∥∥
L2

=
∥∥∥
∥∥∥ ∂

∂xi1
g(Vi(0))

∥∥∥
∥∥∥
L2

(a)
= k−1/2

∥∥∥
∥∥∥Dig(Vi(0))

∥∥∥
∥∥∥
L2

.

In the last equality (a), we have invoked the permutation invariance assumption on f and
Lemma D.31, which implies that
√

E
∥∥∥ ∂

∂xi1
g(Vi(0))

∥∥∥
2

=

√
E
(

1

k

∑k

j=1

∥∥∥ ∂

∂xij
g(Vi(0))

∥∥∥
2)

= k−1/2
√
E‖Dig(Vi(0))‖.

This allows us to apply a similar argument to that in Lemma D.27. By chain rule, almost
surely, Dig(Vi(0)) = ∂h

(
f(Vi(0))

)
(Dif(Vi(0))). For a random function T : Rdk →

R+
0 and m ∈ N, define

ζ ′i;m(T) := max
{∥∥ supw∈[0,Φ̃1Xi]

T(w)
∥∥
Lm
,
∥∥ supw∈[0,Zi]

T(w)
∥∥
Lm

}
,

which is analogous to the definition of ζi;m in Lemma D.20 and satisfies all the properties
in Lemma D.20. Then

‖ ‖Dig(Vi(0))‖ ‖L2

(a)

≤ ζ ′i;2
(∥∥Dig(Vi( • ))

∥∥)

≤ ζ ′i;2
(∥∥∂h

(
f(Vi( • )

)∥∥∥∥Dif(Vi( • ))
∥∥) ≤ ζ ′i;2

(
γ1(h)

∥∥Dif(Vi( • ))
∥∥)

(b)

≤ γ1(h)ζ ′i;2(‖Dif(Vi( • ))‖) ≤ γ1(h)α1 .

where we have used Lemma D.20 for (a) and (b). Therefore we obtain the bound (D.39)
as

maxi≤nCi ≤ maxi≤n k
−1/2 ‖ ‖Dig(Vi(0))‖ ‖L2

≤ k−1/2γ1(h)α1.

To obtain (D.40) for the second partial derivatives, we use Jensen’s inequality and Lemma
D.31 again to get

Ei =
∥∥∥
∥∥∥E
[ ∂2

∂x2
i1

g(Vi(0))
∣∣Φ̃,Ψ

]∥∥∥
∥∥∥
L2
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≤
∥∥∥
∥∥∥ ∂2

∂x2
i1

g(Vi(0))
∥∥∥
∥∥∥
L2

=

√
1

k

∑k

j=1

∥∥∥ ∂2

∂x2
ij

g(Vi(0))
∥∥∥

2

≤ 1√
k

√√√√
k∑

j1,j2=1

∥∥∥ ∂2

∂xij1∂xij2
g(Vi(0))

∥∥∥
2

=
1√
k
‖ ‖D2

i g(Vi(0))‖ ‖L2
.

By the same argument for the mixed the derivatives, in (D.41),

Fi =
∥∥∥
∥∥E
[ ∂2

∂xi1∂xi2
g(Vi(0))

∣∣Φ̃,Ψ
]∥∥
∥∥∥
L2

≤
∥∥∥
∥∥ ∂2

∂xi1∂xi2
g(Vi(0))

∥∥
∥∥∥
L2

≤ 1√
k(k − 1)

∥∥∥ ‖D2
i g(Vi(0))‖ ‖L2

.

∥∥ ∥∥D2
i g(Vi(0))

∥∥ ∥∥
L2

is bounded similarly in Lemma D.27 except that we are bounding
an L2 norm instead of an L1 norm.

∥∥‖D2
i g(Vi(0))‖

∥∥
L2

∥∥

≤ ζ ′2
(∥∥D2

i g(Vi( • ))
∥∥)

(a)

≤ ζ ′2
(∥∥∂2h

(
f(Vi( • ))

)∥∥∥∥Dif(Vi( • ))
∥∥2

+
∥∥∂h

(
f(Vi( • ))

)∥∥∥∥D2
i f(Vi( • ))

∥∥)

≤ ζ ′2

(
γ2(h)‖Dif(Vi( • ))‖2 + γ1(h)‖D2

i f(Vi( • ))‖
)

(b)

≤ γ2(h) ζ ′4(‖Dif(Wi( • ))‖)2 + γ1(h) ζ ′2(‖D2
i f(Wi( • ))‖)

≤ γ2(h)α2
1 + γ1(h)α2 ,

where we used Lemma D.25 to obtain (a) and Lemma D.20 to get (b). Therefore, the
bounds (D.40) and (D.41) are obtained as

maxi≤nEi ≤ k−1/2(γ2(h)α2
1 + γ1(h)α2) , maxi≤n Fi ≤ k−3/2(γ2(h)α2

1 + γ1(h)α2) .

Finally for (D.42), recall that

Mi := max {
∥∥supw∈[0,Φ̃iXi]

‖D3
i g
(
Vi(w)

)
‖
∥∥
L2
,
∥∥supw∈[0,Yi]

‖D3
i g
(
Vi(w)

)
‖
∥∥
L2
} ,

and notice that it is the same quantity asMi from Lemma D.27 except that Wi is replaced
by Vi, ΦiXi is replaced by Φ̃iXi and Zi is replaced by Yi. The same argument applies
to give

maxi≤nMi ≤ λh(n, k) ,

which completes the proof.

Finally we present the following lemma that describes properties of derivatives of a
function satisfying permutation invariance condition:

Lemma D.31. Suppose f ∈ F(Rkd,Rq) is a function that satisfies the permutation in-

variance assumption

f(x1, . . . ,xk) = f(xπ(1), . . . ,xπ(k)) (D.50)
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for any permutation π of k elements. Then at 0 ∈ Rkd, the derivatives of f satisfy, for

x1, . . . ,xd ∈ Rd,

(i) ∂
∂x1

f(0) = . . . = ∂
∂xd

f(0),

(ii) ∂2

∂x2
1
f(0) = . . . = ∂2

∂x2
k
f(0),

(iii) ∂2

∂xr∂xs
f(0) is the same for r 6= s, 1 ≤ r, s ≤ k.

Proof. For j ≤ k, l ≤ d, denote ejl as the
(
(j − 1)d+ l

)th basis vector in Rkd and xjl as
the lth coordinate of xd. Without loss of generality we can set q = 1, because it suffices
to prove the results coordinate-wise over the q coordinates.. Consider ∂

∂xj
f(0), which

exists by assumption and can be written as

∂

∂xj
f(0) =

(
∂

∂xj1
f(0), . . . ,

∂

∂xjd
f(0)

)>
.

For each l ≤ d, the one-dimensional derivative is defined as
∂

∂xjl
f(0) := limε→0

f(εejl)− f(0)

ε

(a)
= limε→0

f(εe1l)− f(0)

ε
=

∂

∂x1l
f(0).

In (a) above, we have used the permutation invariance assumption (D.4) across j ≤ k.
This implies ∂

∂x1
f(0) = . . . = ∂

∂xk
f(0) as required. The second derivative ∂2

∂x2
j
f(0) is a

Rd×d matrix with the (l1, l2)th coordinate given by ∂2

∂xjl1
∂xjl2

f(0), which is in turn defined
by

∂2

∂xjl1∂xjl2
f(0) := limδ→0

∂
∂xjl1

f(δejl2)− ∂
∂xjl1

f(0)

δ

(b)
= limδ→0limε→0

(f(δejl2 + εejl1)− f(δejl2))− (f(εejl1)− f(0))

εδ
(c)
= limδ→0limε→0

(f(δe1l2
+ εe1l1

)− f(δe1l2
))− (f(εe1l1

)− f(0))

εδ

=
∂2

∂x1l2
∂x1l1

f(0).

We have used the definition for the first derivatives in (b) and assumption (D.4) in (c).
This implies, as before, ∂2

∂x2
1
f(0) = . . . = ∂2

∂x2
k
f(0). For the mixed derivatives, notice that

assumption (D.4) implies, for r 6= s, 1 ≤ r, s,≤ k and 1 ≤ l1, l2 ≤ d,

f(δerl2 + εesl1) = f(δe1l2
+ εe2l1

),

by considering a permutation that brings (r, s) to (1, 2). Therefore, by an analogous
argument,

∂2

∂xrl1∂xsl2
f(0) := limδ→0

∂
∂xrl1

f(δesl2)− ∂
∂xrl1

f(0)

δ

= limδ→0limε→0

(f(δesl2 + εerl1)− f(δesl2))− (f(εerl1)− f(0))

εδ

= limδ→0limε→0

(f(δe1l2
+ εe2l1

)− f(δe1l2
))− (f(εe2l1

)− f(0))

εδ
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=
∂2

∂x1l2
∂x1l1

f(0).

This implies ∂2

∂xr∂xs
f(0) is the same for r 6= s, 1 ≤ r, s ≤ k.

D.6 Derivation of examples

Different versions of Gaussian surrogates are used throughout the computation in this
section. For clarity, we denote x11:nk := {x11, . . . ,xnk} and define

W( • ) := (Φ1X1, . . . ,Φi−1Xi−1, • ,Zi+1, . . . ,Zn),

W̃( • ) := (X̃1, . . . , X̃1, • , Z̃i+1, . . . , Z̃n),

where:

• Φ1X1, . . . ,ΦnXn ∈ Dk are the augmented data vectors and Z1, . . . ,Zn ∈ Dk are the
i.i.d. surrogate vectors, both defined in Theorem 6.1 (corresponding to Zδi defined
with δ = 0 in Theorem D.1);

• X̃1, . . . , X̃n ∈ Dk are the unaugmented data vectors (k-replicate of original data)
whereas the surrogate vectors are denoted Z̃1, . . . , Z̃n ∈ Dk, both defined in (6.7).

As before, we write ΦX = {Φ1X1, . . . ,ΦnXn}, Z = {Z1, . . . ,Zn}, X̃ = {X̃1, . . . , X̃n}
and Z̃ = {Z̃1, . . . , Z̃n}. In the case Z and Z̃ are Gaussian, existence of Z and Z̃ is auto-
matic when Zi and Z̃i are allowed to take values in Rd and the only constraints are their
respective mean and variance conditions (6.1) and (6.6). Therefore, we omit existence
proof for all examples except for the special case of ridge regression in Appendix D.6.3.
Finally, for functions f : Dnk → Rq and g : D → Rq, and for any s ≤ q, we use
fs : Dnk → R and gs : D → R to denote the s-th coordinate of f and g respectively.

D.6.1. Empirical averages

In this section, we first prove Proposition 6.7 by verifying that for the empirical average,
the bounds in Lemma D.2 and D.3 decay, and by computing the relevant variances and
confidence intervals.

Proof of Proposition 6.7. We first apply Lemma D.3 to compare the distance in dH of
f(ΦX ) to f(Z). To do so, we need to compute the noise stability terms for f(x11:nk) =
1
nk

∑n
i=1

∑k
j=1 xij . We first compute the derivatives: for any v ∈ Rdk, almost surely,

Dif(Wi(v)) =
1

nk
(Id, . . . , Id)

> ∈ Rdk×d , and D2
i f(Wi(v)) = 0 .
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Then, for all m ∈ N we have

α1;m :=
∑

s≤d

max
i≤n

max
{∥∥∥ sup

w∈[0,ΦiXi]

‖Difs(Wi(w))‖
∥∥∥
Lm

,
∥∥∥ sup
w∈[0,Zi]

‖Difs(Wi(w))‖
∥∥∥
Lm

}

=
∑

s≤d
1

nk

∥∥(Id, . . . , Id)
>es
∥∥ =

d

nk1/2
,

and the noise stability terms associated with higher derivatives are α2;m = α3;m = 0.
Since d is fixed and φ11X1 and Z1 have bounded 4th moments, we get

cX =
1

6

√
E‖φ11X1‖6 = O(1) , cZ =

1

6

√
E
[(

1

k

∑
j≤k,s≤d |Z1js|2

)3]
= O(1) .

Therefore, the bounds in Lemma D.3 (concerning weak convergence) with δ set to 0

become, respectively,

(nk)3/2(n(α1;6)3 + 3n1/2α1;4α2;4 + α3;2)(cX + cZ) = O(n−1/2) . (D.51)

Note that while the above calculation uses ΦiXi,Zi,Wi in the case of augmentation, the
same calculation holds for X̃i, Z̃i,W̃i in the case of no augmentation. Therefore, (D.51)
and Lemma D.3 lead to the required convergence in (i) that as n→∞,

dH(
√
nf(ΦX ),

√
nf(Z))

d−→ 0 , dH(
√
nf(X̃ ),

√
nf(Z̃))

d−→ 0 .

To prove the statements on variances and confidence intervals, we first note that the
equality in variance can be directly obtained by noting that moments of Zi match mo-
ments of ΦiXi, which implies

Varf(ΦX ) =
1

n
Var
[

1

k

∑k

j=1
φ1jX1

]
=

1

n
Var
[

1

k

∑k

j=1
Z1j

]
= Varf(Z) .

The same argument implies Varf(X̃ ) = Varf(Z̃). The next step is to obtain the formula
for variances and asymptotic confidence intervals. Since Zi is Gaussian in Rdk with mean
1k×1 ⊗ µ and variance Ik ⊗ Var[φ11X1] + (1k×k − Ik)⊗ Cov[φ11X1, φ12X1], we have

1

k

∑k

j=1
Zij =

1

k
(Id . . . Id)︸ ︷︷ ︸
k copies of Id

Zi ∼ N
(
E[φ11X1], V

)
.

where
V :=

1

k
Var[φ11X1] +

k − 1

k
Cov[φ11X1, φ12X1].

We also remark that as the Gaussian vectors (Z1, . . . ,Zn) are independent, the empirical
averages 1

k

∑k
j=1 Z1j, . . . ,

1
k

∑k
j=1 Znj are also independent. This directly implies that

f(Z) =
1

nk

∑n

i=1

∑k

j=1
Zij ∼ N

(
E[φ11X1],

1

n
V
)
. (D.52)

This gives the desired variance for f(Z). On the other hand, since each Z̃i is a Gaussian
in Rdk with mean 1k×1 ⊗ E[X1] and variance 1k×k ⊗ Var[X1], it can be viewed as a k-
replicate of a Gaussian vector Ṽi in Rd with mean E[X1] and Var[X1]. By independence
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of Z̃i’s, Vi’s are also independent and therefore

f(Z̃) =
1

nk

∑n

i=1

∑k

j=1
Z̃i1

d
=

1

n

∑n

i=1
Vi ∼ N

(
E[X1],

1

n
Var[X1]

)
, (D.53)

giving the variance expression for f(Z̃). Finally, for d = 1, the normal distributions
given in (D.52) and (D.53) imply that the lower and upper α/2-th quantiles for f(Z) and
f(Z̃) are given respectively as

E[φ11X1] ± 1√
n
zα/2
√
V = E[φ11X1] ± 1√

ϑ(f)2n
zα/2

√
Var[X1] ,

E[φ11X1] ± 1√
n
zα/2

√
Var[X1] .

These quantiles are asymptotically valid for f(ΦX ) and f(X̃ ) respectively since con-
vergence in dH implies convergence in distribution by Lemma 6.3, which finishes the
proof.

D.6.2. Exponential of negative chi-squared statistic

In this section, we prove Proposition D.13 for the one-dimensional statistic defined in
(6.13):

f(x11, . . . , xnk) := exp
(
−
( 1√

nk

∑
i≤n

∑
j≤k xij

)2)
.

We also state a 2d generalisation of this statistic used in our simulation and prove an
analogous lemma that justifies convergences and analytical formula for its confidence
regions.

Proof of Proposition D.13. For convergence in dH and variance, define

g(x) :=
1√
n

exp(−nx2) and f̃(x11:nk) := g
( 1

nk

∑
i≤n,j≤k xij

)
.

Then, the required statistic in (6.13) satisfies f(x11:nk) =
√
nf̃(x11:nk), and applying

Lemma D.7(ii) with δ set to 0 to f̃ and g will recover the convergences

dH(
√
nf̃(ΦX ),

√
nf̃(Z)) = dH(f(ΦX ), f(Z)) ,

n(Var[f̃(ΦX )]− Var[f̃(Z)]) = Var[f(ΦX )]− Var[f(Z)] .

It now suffices to compute the noise stability terms νr;m(g) used in Lemma D.7(ii) defined
for g. The derivatives for g can be bounded by

∂g(x) = −2n1/2x exp(−nx2) , ∂2g(x) = −2n1/2 exp(−nx2) + 4n3/2x2 exp(−nx2),

∂3g(x) = 12n3/2x exp(−nx2)− 8n5/2x3 exp(−nx2) .

Note that exp(−nx2) ∈ [0, 1] for all x ∈ R, so only x, x2 and x3 play a role in the bound
for ν1;m. The noise stability terms can now be bounded by

ν1;m = max
i≤n

max

{∥∥∥supw∈[0,ΦiXi]
|∂g(Wi(w))|

∥∥∥
Lm

,
∥∥∥supw∈[0,Zi]

|∂g(Wi(w))|
∥∥∥
Lm

}
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≤ 2n1/2 max
i≤n

max

{∥∥∥supw∈[0,ΦiXi]
|Wi(w)|

∥∥∥
Lm

,
∥∥∥supw∈[0,Zi]

|Wi(w)|
∥∥∥
Lm

}

≤ 2n1/2 max
i≤n

∥∥supw∈[0,ΦiXi]∪[0,Zi]
|Wi(w)|

∥∥
Lm

. (D.54)

We need to bound the absolute value of Wi(w). Define Ai′ :=
∑k

j=1 φi′jXi′ and Bi′ :=∑k
j=1 Zi′j , and write I := [0,ΦiXi] ∪ [0,Zi]. Then by triangle inequality,

∥∥∥ sup
w∈I

∣∣Wi(w)
∣∣
∥∥∥
Lm

(D.55)

=
1

nk

∥∥∥ sup
w∈I

∣∣∣
∑i−1

i′=1

∑k

j=1
φi′jXi′ +

∑k

j=1
wj +

∑n

i′=i+1

∑k

j=1
Zi′j

∣∣∣
∥∥∥
Lm

=
1

nk

∥∥∥ supw∈I

∣∣∣
∑i−1

i′=1
Ai′ +

∑k

j=1
wj +

∑n

i′=i+1
Bi′

∣∣∣
∥∥∥
Lm

≤ 1

nk

∥∥∥
∣∣∑i−1

i′=1
Ai′

∣∣+ max{|Ai|, |Bi|}+
∣∣∑n

i′=i+1
Bi′

∣∣
∥∥∥
Lm

. (D.56)

Note that A1, . . . ,Ai−1 are i.i.d. random variables with zero mean and finite 12th mo-
ments by assumption. Also, for m ≤ 12, by triangle inequality,

‖Ai′‖Lm ≤
∑

j≤k ‖φi′jXi‖Lm = O(k) .

Rosenthal’s inequality from Lemma D.21 implies, for m ≤ 12, there exists a constant
Km depending only on m such that

∥∥∑
i′<i

Ai′

∥∥
Lm
≤ Km max

{
i1/m

∥∥A1

∥∥
Lm
, i1/2

∥∥A1

∥∥
L2

}
= O(n1/2k) .

The exact same argument applies to Bi+1, . . . ,Bn, implying that

‖Bi‖Lm = O(k) ,
∥∥∑

i′>i
Bi′

∥∥
Lm

= O(n1/2k) .

Substituting these results into (D.56) gives the following control on Wi(w):
∥∥ supw∈I

∣∣Wi(w)
∣∣∥∥
Lm

= O(n−1/2) ,

and finally substituting the bound into (D.54) gives, for m ≤ 12,

ν1;m = O(1) .

The arguments for ν2;m and ν3;m are similar, except that ν2;m involves x2 and ν3;m involves
x3. ν2;m then requires bounding terms of the form
∥∥ sup

w∈I

∣∣Wi(w)
∣∣2∥∥

Lm
≤ 1

n2k2

∥∥∥
(∣∣∑i−1

i′=1
Ai′

∣∣+ max{|Ai|, |Bi|}+
∣∣∑n

i′=i+1
Bi′

∣∣)2
∥∥∥
Lm

=
1

n2k2

∥∥∥
∣∣∑i−1

i′=1
Ai′

∣∣+ max{|Ai|, |Bi|}+
∣∣∑n

i′=i+1
Bi′

∣∣
∥∥∥

2

L2m

= O(n−1) ,

where the argument proceeds as before but now hold only for m ≤ 6. ν3;m similarly
requires controlling
∥∥ supw∈I

∣∣Wi(w)
∣∣3∥∥

Lm
≤ 1

n3k3

∥∥∥
∣∣∑i−1

i′=1
Ai′

∣∣+ max{|Ai|, |Bi|}+
∣∣∑n

i′=i+1
Bi′

∣∣
∥∥∥

3

L3m
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=O(n−3/2) ,

which holds now for m ≤ 4. Therefore,

ν2;m = O(n1/2 + n3/2 × n−1) = O(n1/2) for m ≤ 6 ,

ν3;m = O(n3/2 × n−1/2 + n5/2 × n−3/2) = O(n) for m ≤ 4 .

Note also that the moment terms cX = O(1) by assumption and cZ = O(1) since the
4th moment of a Gaussian random variable with finite mean and variance is bounded.
Moreover, g(x) = 1√

n
exp(−nx2) ∈ [0, n−1/2] and therefore ν0;m = O(n−1/2) for all

m ∈ N. The two bounds in Lemma D.7(ii) then become:
(
n−1/2ν3

1;6 + n−1ν1;4ν2;4 + n−3/2ν3;2

)
(cX + cZ) = O(n−1/2) ,

n−1(ν0;4(g)ν3;4(g) + ν1;4(g)ν2;4(g))(cX + cZ) = O(n−1/2) ,

both of which go to zero as n→∞. Applying Lemma D.7(ii) to f̃ then gives the desired
convergences that

f(ΦX )− f(Z) =
√
n(f̃(ΦX )− f̃(Z))

d−→ 0 ,

Var[f(ΦX )]− Var[f(Z)] = n(Var[f̃(ΦX )]− Var[f̃(Z)])
d−→ 0 .

The exact same argument works for X̃ and Z̃ by setting φij to identity almost surely and
by invoking boundedness of 8th moments of Xi and E[Xi] = 0. Therefore, the same
convergences hold with (ΦX ,Z) above replaced by (X̃ , Z̃).

Next, we prove the formulas for variance and quantiles. Recall the function V (s) :=

(1 + 4s2)−1/2 − (1 + 2s2)−1 and the standard deviation terms

σ̃ :=
√

Var[X1] , σ :=

√
1

k
Var[φ11X1] +

k − 1

k
Cov[φ11X1, φ12X1] .

Recall from (D.52) and (D.53) in the proof of Proposition 6.7 (empirical averages) that
1

nk

∑n

i=1

∑k

j=1
Zij ∼ N

(
E[φ11X1],

1

n
σ2
)
≡ N

(
0,

1

n
σ2
)
,

1

nk

∑n

i=1

∑k

j=1
Z̃ij ∼ N

(
E[X1],

1

n
σ̃2
)
≡ N

(
0,

1

n
σ̃2
)
.

Thus, the following quantities are both chi-squared distributed with 1 degree of freedom:

− 1

σ2 log f(Z) =
1

σ2

( 1√
nk

∑n

i=1

∑k

j=1
Zij
)2
,

− 1

σ̃2 log f(Z̃) =
1

σ̃2

( 1√
nk

∑n

i=1

∑k

j=1
Z̃ij
)2
. (D.57)

Let U be a chi-squared distributed random variable with 1 degree of freedom. We can
now use the formula of moment generating functions of χ2

1 to get

Var[f(Z)] = Var[exp(−σ2U)] = E[exp(−2σ2U)]− E[exp(−σ2U)]2

= (1 + 4σ2)−1/2 − (1 + 2σ2)−1 = V (σ) ,
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as desired. The same argument gives the desired variance for the unaugmented case:

Var[f(Z̃)] = V (σ̃) ,

and the ratio ϑ(f) defined in (6.8) can be computed by:

ϑ(f) =

√
Var[f(Z̃)]/Var[f(Z)] =

√
V (σ̃)/V (σ) .

Finally, notice that (πl, πu) are the lower and upper α/2-th quantiles for the quantities in
(D.57). The corresponding quantiles for f(Z) and f(Z̃) then follow by monotonicity of
the transforms x 7→ exp(−σ2x) and x 7→ exp(−σ̃2x): They are given by

(
exp

(
− σ2πu

)
, exp

(
− σ2πl

))
and

(
exp(−σ̃2πu), exp(−σ̃2πl)

)
,

as required, and are asymptotically valid for f(ΦX ) and f(X̃ ) respectively since conver-
gence in dH implies convergence in distribution by Lemma 6.3.

We next prove Lemma D.14 concerning the 2d generalisation of the toy statistic
(6.13):

f2(x11:nk) :=
∑2

s=1
exp

(
−
( 1√

nk

∑n

i=1

∑k

j=1
xijs
)2)

.

Proof of Lemma D.14. The proof for (i) is similar to the 1d case. Recall that in the proof
of Proposition D.13, we have defined g(x) :=

1√
n

exp(−nx2). Define g2 : R2 → R and

f̃2 : R2nk → R as

g2(x) :=
∑2

s=1
g(xs) , and f̃2(x11:nk) := g2

( 1

nk

∑
i≤n,j≤k xij

)
.

Then as before, f̃2(x11:nk) =
√
nf2(x11:nk), and applying Lemma D.7(ii) to f̃2 and g2

will recover convergences for

dH(
√
nf̃2(ΦX ),

√
nf̃2(Z)) = dH(f2(ΦX ), f2(Z)) , (D.58)

n(Var[f̃2(ΦX )]− Var[f̃2(Z)]) = Var[f2(ΦX )]− Var[f2(Z)] . (D.59)

To compute the noise stability terms for g2, recall from the definition in (D.3) that

Wi(w) :=
1

nk

(∑i−1

i′=1

∑k

j=1
φi′jXi′ +

∑k

j=1
wj +

∑n

i′=i+1

∑k

j=1
Zi′j
)
∈ R2 .

Denote its two coordinates by Wi1(w) and Wi2(w). Then by linearity of differentiation
followed by triangle inequality of ζi;m from Lemma D.20,

νr;m(g2) = maxi≤n ζi;m
(∥∥∂rg2

(
Wi( • )

)∥∥)

= maxi≤n ζi;m
(∥∥∂rg

(
Wi1( • )

)
+ ∂rg

(
Wi2( • )

)∥∥)

≤ maxi≤n ζi;m
(∥∥∂rg

(
Wi1( • )

)∥∥)+ maxi≤n ζi;m
(∥∥∂rg

(
Wi2( • )

)∥∥)

=: ν
(1)
r;m(g) + ν

(2)
r;m(g) .
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Note that ν(1)
r;m(g) is νr;m(g) defined with respect to the sets of 2d data ΦX and Z but

restricted to their first coordinates, and ν(2)
r;m(g) with respect to the data restricted to their

second. The model (D.6) ensures existence of all moments, so the same bounds computed
for νr;m(g) in the 1d case in the proof of Proposition D.13 directly apply to ν

(1)
r;m(g),

ν
(2)
r;m(g) and consequently νr;m(g2). Since we also have cx, cZ = O(1), the bounds on

(D.58) and (D.59) are O(n−1/2), exactly the same as the 1d case. Applying Lemma
D.7(ii) proves the required convergences in (i) as n→∞ as before.

For (ii), by Lemma D.19 and linearity of φ11, φ12,

Cov[φ11X1, φ12X2] = ECov[φ11X1, φ12X2|φ11, φ12]

= E[φ11]Var[X11]E[φ12] =
(1 + ρ)σ2

2
12×2 .

Meanwhile, note that φijXi
d
= Xi, which implies that Var[φ11X1] = Var[X1] = σ2

(
1 ρ
ρ 1

)

and E[φ11X1] = E[X1] = 0. Substituting these into the formula for moments of Zi from
(6.1) gives the mean and variance required:

EZi = 0 , VarZi = σ2Ik ⊗
(

1 ρ
ρ 1

)
+

(1 + ρ)σ2

2
(1k×k − Ik)⊗ 12×2 .

Similarly, substituting the calculations into the formula for moments of Z̃i from (6.6)
gives E[Z̃i] = 0 and Var[Z̃i] = σ21k×k ⊗

(
1 ρ
ρ 1

)
.

To compute (iii), first re-express the variance of Zi above as

VarZi = σ2Ik ⊗
(

1−ρ
2

ρ−1
2

ρ−1
2

1−ρ
2

)
+

(1 + ρ)σ2

2
12k×2k

=
(1− ρ)σ2

2
Ik ⊗

(
1 −1
−1 1

)
+

(1 + ρ)σ2

2
12k×2k = σ2

−Ik ⊗
(

1 −1
−1 1

)
+ σ2

+12k×2k ,

Notice that the structure in mean and variance of Zi allows us to rewrite it as a com-
bination of simple 1d Gaussian random variables. Consider Uij

i.i.d.∼ N (0, σ2
−) for

i ≤ n, j ≤ k and Vi
i.i.d.∼ N (0, σ2

+) independent of Uij’s. Define the random vector
in R2k as

ξi := (Ui;1 + Vi,−Ui;1 + Vi,Ui;2 + Vi,−Ui;2 + Vi, . . . ,Ui;k + Vi,−Ui;k + Vi)
> .

Since EZi = Eξi and VarZi = Varξi, we have ξi
d
= Zi, which implies

f2(Z)
d
= f2(ξ1, . . . , ξn)

= exp
(
−
(

1√
nk

∑
i,j

(Uij + Vi)
)2)

+ exp
(
−
(

1√
nk

∑
i,j

(−Uij + Vi)
)2)

=: exp(−S+) + exp(−S−) ,
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and therefore

Var[f2(Z)] = Var[exp(−S+)] + Var[exp(−S−)] + 2Cov[exp(−S+), exp(−S−)] .

(D.60)

Notice that S+ := 1√
nk

∑
i,j(Uij+Vi) and S− := 1√

nk

∑
i,j(−Uij+Vi) are both normally

distributed with mean 0 and variance σ2
S :=

σ2
−
k

+ σ2
+. This means S+

σ2
S

and S−
σ2
S

are both
chi-squared distributed with 1 degree of freedom, and the formula for moment generating
function of chi-squared distribution again allows us to compute

E[exp(−S+)] = E[exp(−S−)] = (1 + 2σ2
S)−1/2 ,

Var[exp(−S+)] = Var[exp(−S−)] = (1 + 4σ2
S)−1/2 − (1 + 2σ2

S)−1 .

Moreover, write Ū :=
1√
nk

∑
i,j
Uij ∼ N

(
0,

σ2
−
k

)
and V̄ :=

1√
n

∑
i≤nVi ∼ N (0, σ2

+).
We have

E[exp(−S+ − S−)] = E[exp(−(Ū + V̄)2 − (−Ū + V̄)2]

= E[exp(−2Ū2 − 2V̄2)] = E[exp(−2Ū2)]E[exp(−2V̄2)]

=
(

1 +
4σ2
−
k

)−1/2

(1 + 4σ2
+)−1/2 ,

which implies

Cov[exp(−S+), exp(−S−)] = E[exp(−S+ − S−)]− E[exp(−S+)]E[exp(−S−)]

=
(

1 +
4σ2
−
k

)−1/2

(1 + 4σ2
+)−1/2 − (1 + 2σ2

S)−1 .

Substituting the calculations for variances and covariance into (D.60), we obtain

Var[f2(Z)]

= 2
(
(1 + 4σ2

S)−1/2 − (1 + 2σ2
S)−1

)
+ 2
((

1 +
4σ2
−
k

)−1/2

(1 + 4σ2
+)−1/2 − (1 + 2σ2

S)−1
)

= 2(1 + 4σ2
S)−1/2 + 2

(
1 +

4σ2
−
k

)−1/2

(1 + 4σ2
+)−1/2 − 4(1 + 2σ2

S)−1

= 2
(

1 +
4σ2
−
k

+ 4σ2
+

)−1/2

+ 2
(

1 +
4σ2
−
k

)−1/2

(1 + 4σ2
+)−1/2 − 4(1 +

2σ2
−
k

+ 2σ2
+)−1 ,

which is the required formula.

D.6.3. Ridge regression

In this section, it is useful to define the function gB : Md × Rd×b → Rd×b:

gB(Σ, A) := Σ̃−1A , (D.61)

which allows the ridge estimator to be written as

B̂ΦX := B̂(ΦX ) = gB

(
1

nk

∑
i,j

(πijVi)(πijVi)
>,

1

nk

∑
i,j

(πijVi)(τijYi)
>
)
.
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Similarly, we can use gB to rewrite the estimator with surrogate variables considered in
Theorem 6.1 and the truncated first-order Taylor version in Lemma D.7:

B̂Z := gB
( 1

nk

∑
i,j
Zij
)

and B̂T := gB(µ) + ∂gB(µ)
( 1

nk

∑
i,j
Zij − µ

)
,

where µ := (µ1, µ2) :=
(
E[(π11V1)(π11V1)>],E[(π11V1)(τ11V1)>]

)
. Similarly, con-

sider the function gR : Md × Rd×b → R defined by

gR(Σ, A) := E[‖Ynew − (Σ̃−1A)>Vnew‖2
2] . (D.62)

This allows us to write the risk as

RΦX = gR

(
1

nk

∑
i,j

(πijVi)(πijVi)
>,

1

nk

∑
i,j

(πijVi)(τijYi)
>
)
,

while the estimator considered in Theorem 6.1 and the first-order Taylor version in
Lemma D.7 become

RZ := gR
( 1

nk

∑
i,j
Zij
)
, and RT := gR(µ) + ∂gR(µ)

( 1

nk

∑
i,j
Zij − µ

)
,

In this section, we first prove

(i) the convergence of B̂ΦX to B̂Z and B̂T , and the convergence of RΦX to RZ and
RT , with each convergence rate specified, and

(ii) existence of surrogate variables satisfying those convergences.

The proof for (i) follows an argument analogous to previous examples: we compute
derivatives of the estimator of interest, and apply variants of Theorem 6.1 to obtain con-
vergences. The results are collected in Lemma D.32 in Appendix D.6.3. The comment
on different convergence rates in Remark 6.3 is also clear from Lemma D.32.

(ii) is of concern in this setup because the surrogate variables can no longer be Gaus-
sian. Appendix D.6.3 states one possible choice from an approximate maximum entropy
principle. Combining (i) and (ii) gives the statement in Proposition 6.8.

Finally, Appendix D.6.3 focuses on the toy model in (6.15). We prove Lemma 6.9,
which discusses the non-monotonicity of variance of risk as a function of data variance.
We also prove Lemma D.35, a formal statement of Remark 6.3 that Var[RΦX ] does not
converge to Var[RT ] for sufficiently high dimensions under a toy model.

Proof for convergence of variance and weak convergence

Lemma D.32. Assume that maxl≤d max{(π11V1)l, (τ11Y1)l} is a.s. bounded by Cτ for

some τ to be specified and some absolute constant C > 0, and that b = O(d). Then, for

any i.i.d. surrogate variables {Zi}i≤n taking values in (Md × Rd×b)k matching the first

moments of Φ1X1 with all coordinates uniformly bounded by C ′τ 2 a.s. for some absolute

constant C ′ > 0, we have:
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(i) assuming τ = O(1) and fixing r ≤ d, s ≤ b, then the (r, s)-the coordinate of B̂ΦX

satisfies

dH
(√

n
(
B̂ΦX )

r,s
,
√
n
(
B̂T
)
r,s

)
= O(n−1/2d9) ,

dH
(√

n
(
B̂ΦX )

r,s
,
√
n
(
B̂Z
)
r,s

)
= O(n−1/2d9) ;

(ii) assuming τ = O(d−1/2), then B̂ΦX satisfies

n‖Var[B̂ΦX ]− Var[B̂T ]‖ = O
(
n−1/2d7 + n−1d8

)
,

n‖Var[B̂ΦX ]− Var[B̂Z ]‖ = O
(
n−1d7

)
;

(iii) assuming τ = O(d−1/2), then RΦX satisfies

dH(
√
nRΦX ,

√
nRT ) = O(n−1/2d9) , dH(

√
nRΦX ,

√
nRZ) = O(n−1/2d9) ,

n(Var[RΦX ]− Var[RT ]) = O(n−1/2d7 + n−1d8) ,

n(Var[RΦX ]− Var[RZ ]) = O(n−1d7) .

Remark D.5. In the statement of weak convergence of the estimator B̂ΦX , we only con-
sider convergence of one coordinate of B̂ΦX since we allow dimensions d, b to grow with
n; this setting was discussed in more details in Lemma D.4. The assumption τ = O(1)

for (i) is such that the coordinates we are studying do not go to zero as n grows, while the
assumption τ = O(d−1/2) for (ii) and (iii) is such that ‖π11V1‖ and ‖τ11Y1‖ are O(1) as
n grows, which keeps ‖B̂ΦX‖ and RΦX bounded.

Remark D.6. The difference between the convergence rate of Var[RΦX ] towards Var[RZ ]

and that towards Var[RT ] is clear in the additional factor (n1/2 + d) in Lemma D.32(iii).
If we take d to be Θ(nα) for 1

14
< α < 1

7
, we are guaranteed convergence of Var[RΦX ] to

Var[RZ ] but not necessarily convergence of Var[RΦX ] to Var[RT ]. Note that the bounds
here are not necessarily tight in terms of dimensions, and we discuss this difference in
convergence rate in more details in Appendix D.6.4.

Proof of Lemma D.32(i). We first prove the weak convergence statements for (B̂ΦX )r,s.
Let er be the r-th basis vector of Rd and os be the s-th basis vector of Rb. We define the
function gB;rs : Md × Rd×b → R as

gB;rs(Σ, A) := e>r gB(Σ, A)os = e>r Σ̃−1Aos ,

i.e. the (r, s)-th coordinate of gB. The (r, s)-th coordinate of B̂ΦX , B̂Z and B̂T can then
be expressed in terms of gB;rs similar to before:
(
B̂ΦX )

r,s
= gB;rs

(
1

nk

∑
i,j

(πijVi)(πijVi)
>,

1

nk

∑
i,j

(πijVi)(τijYi)
>
)
,

(
B̂Z
)
r,s

= gB;rs

( 1

nk

∑
i,j
Zij
)
,
(
B̂T
)
r,s

= gB;rs(µ) + ∂gB;rs(µ)
( 1

nk

∑
i,j
Zij − µ

)
.
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To obtain weak convergence of (B̂ΦX )r,s to (B̂Z)r,s and (B̂T )r,s, it suffices to apply the
result for the plug-in estimates from Lemma D.7 with δ = 0 to the function gB;rs with
respect to the transformed data φijX∗i :=

(
(πijVi)(πijVi)

>, (πijVi)(τ11Yi)
>).

As before, we start with computing the partial derivatives of gB;rs(Σ, A), which can
be expressed using Σ̃ := Σ + λId and A as:

gB;rs(Σ, A) = e>r Σ̃−1Aos,

∂gB;rs(Σ, A)

∂Σr1s1
= −e>r Σ̃−1er1e

>
s1

Σ̃−1Aos,
∂gB;rs(Σ, A)

∂Ar1s1
= e>r Σ̃−1er1I{s=s1},

∂2gB;rs(Σ, A)

∂Σr1s1∂Σr2s2
=
∑

l1,l2∈{1,2}; l1 6=l2
erΣ̃

−1erl1
e>sl1

Σ̃−1erl2
e>sl2

Σ̃−1Aos,

∂2gB;rs(Σ, A)

∂Σr1s1∂Ar2s2
= −e>r Σ̃−1 er1e

>
s1

Σ̃−1 er2I{s=s2},
∂2gB;rs(Σ, A)

∂Ar1s1∂Ar2s2
= 0,

∂3gB;rs(Σ, A)

∂Σr1s1∂Σr2s2∂Σr3s3
= −

∑
l1,l2,l3∈{1,2,3}
l1,l2,l3 distinct

e>r Σ̃−1erl1
e>sl1

Σ̃−1erl2
e>sl2

Σ̃−1erl3
e>sl3

Σ̃−1Aos,

∂3gB;rs(Σ, A)

∂Σr1s1∂Σr2s2∂Ar3s3
=
∑

l1,l2∈{1,2}; l1 6=l2
e>r Σ̃−1erl1

e>sl1
Σ̃−1erl2

e>sl2
Σ̃−1er3I{s=s3}.

(D.63)

To bound the norm of the derivatives, it is useful to have controls over the norms of Σ̃−1

and A. Suppose the coordinates of A are uniformly bounded by Cτ 2 for some absolute
constant C > 0, which is the case when we compute the derivatives in νr;m. Then since
b = O(d), we have

‖A‖op ≤ ‖A‖ = O(dτ 2), ‖Aos‖ = O(d1/2τ 2),

‖Σ̃‖op = ‖Σ + λId‖op =
1

σ1 + λ
= O(1) ,

where σ1 ≥ 0 is the smallest eigenvalue of the positive semi-definite matrix A. We also
note that for any matrix M ∈ Rn1×n2 and vectors u ∈ Rn2 ,v ∈ Rn3 ,

‖Mu‖ ≤ ‖M‖op‖u‖ , ‖uv>‖op ≤ ‖u‖‖v‖ .

Making use of these bounds, we can bound the norms of partial derivatives of g as fol-
lows:

∥∥∥∂gB;rs(Σ, A)

∂Σr1s1

∥∥∥ ≤ ‖Σ̃−1er1‖‖e>s1Σ̃−1A‖ ≤ ‖Σ−1‖2
op‖A‖op = O(dτ 2) .

We can perform a similar argument for the remaining derivatives. It suffices to count the
number of A in each expression and use the bound ‖A‖op ≤ ‖A‖ = O(dτ 2):

∥∥∥∂
2gB;rs(Σ, A)

∂Ar1s1∂Ar2s2

∥∥∥,
∥∥∥ ∂3gB;rs(Σ, A)

∂Σr1s1∂Ar2s2∂Mr3s3

∥∥∥,
∥∥∥ ∂3gB;rs(Σ, A)

∂Ar1s1∂Ar2s2∂Ar3s3

∥∥∥ = 0,

∥∥∥∂gB;rs(Σ, A)

∂Ars

∥∥∥,
∥∥∥∂

2gB;rs(Σ, A)

∂Σr1s1∂Ar2s2

∥∥∥,
∥∥∥ ∂3gB;rs(Σ, A)

∂Σr1s1∂Σr2s2∂Ar3s3

∥∥∥ = O(1),
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‖gB;rs(Σ, A)‖,
∥∥∥∂gB;rs(Σ, A)

∂Σrs

∥∥∥,
∥∥∥∂

2gB;rs(Σ, A)

∂Σr1s1∂Σr2s2

∥∥∥,
∥∥∥ ∂3gB;rs(Σ, A)

∂Σr1s1∂Σr2s2∂Σr3s3

∥∥∥ = O(dτ 2) .

This implies

∥∥∂gB;rs(Σ, A)
∥∥ =

√
∑d

r1,s1=1

∥∥∥∂gB;rs(Σ, A)

∂Σr1s1

∥∥∥
2

+
∑d

r1=1

∑b

s1=1

∥∥∥∂gB;rs(Σ, A)

∂Ar1s1

∥∥∥
2

= O(d2τ 2 + d) ,

∥∥∂2gB;rs(Σ, A)
∥∥ =

√√√√√
d∑

r1,r2,
s1,s2=1

∥∥∥∂
2gB;rs(Σ, A)

∂Σr1s1∂Σr2s2

∥∥∥
2

+
d∑

r1,s1,r2=1

b∑

s2=1

∥∥∥∂
2gB;rs(Σ, A)

∂Σr1s1∂Ar2s2

∥∥∥
2

= O(d3τ 2 + d2),

∥∥∂3gB;rs(Σ, A)
∥∥ =

√√√√√
d∑

r1,r2,r3,
s1,s2,s3=1

∥∥∥ ∂3g(Σ, A)

∂Σr1s1∂Σr2s2∂Σr3s3

∥∥∥
2

+
d∑

r1,r2,r3,
s1,s2=1

b∑

s3=1

∥∥∥ ∂3g(Σ, A)

∂Σr1s1∂Σr2s2∂Ar3s3

∥∥∥
2

= O(d4τ 2 + d3) .

Recall that the noise stability terms in Lemma D.7 are defined by, for δ = 0,

κt;m(g) =
∑

l≤q

∥∥ sup
w∈[0,X̄]

∥∥∂tgl
(
µ+ w

)∥∥∥∥
Lm
, νt;m(g) =

∑

l≤q

max
i≤n

ζi;m
(∥∥∂tgl

(
Wi( • )

)∥∥),

where q = 1 in the case of gB;rs, and the moment terms are defined by

c̄m =
(∑d2+db

l=1
max

{
n

2
m
−1
∥∥1

k

∑k

j=1
[φ1jX

∗
1 − µ]l

∥∥2

Lm
,
∥∥1

k

∑k

j=1
[φ1jX

∗
1 − µ]l

∥∥2

L2

})1/2

,

cX =
1

6

√
E[‖φ11X

∗
1‖6 , cZ =

1

6

√
E
[( |Z111|2 + . . .+ |Z1k(d2+db)|2

k

)3]
.

By the bounds on the derivatives of gB;rs from above, we get

κ0;m(gB;rs), ν0;m(gB;rs) = O(dτ 2) , κ1;m(gB;rs), ν1;m(gB;rs) = O(d2τ 2 + d) ,

κ2;m(gB;rs), ν2;m(gB;rs) = O(d3τ 2 + d2) , κ3;m(gB;rs), ν3;m(gB;rs) = O(d4τ 2 + d3) ,

and since the coordinates of φ11X1 and Z1 are uniformly bounded by C ′′τ 2 for C ′′ =

max{C,C ′} almost surely, we get that

c̄m = O(dτ 2) , cX , cZ = O(d3τ 6) .

Applying Lemma D.7(i) to gB;rs with δ = 0 and the assumption τ = O(1) then gives

dH
(√

n
(
B̂ΦX )

r,s
,
√
n
(
B̂T
)
r,s

)
= O

(
n−1/2κ2;3(gB;rs) c̄

2
3 + n−1/2κ1;1(gB;rs)

3(cX + cZ))
)

= O(n−1/2d5 + n−1/2d6d3) = O(n−1/2d9),

and applying Lemma D.7(ii) with δ set to 0 gives

dH
(√

n
(
B̂ΦX )

r,s
,
√
n
(
B̂Z
)
r,s

)

= O
((
n−1/2ν1;6(gB;rs)

3 + n−1ν1;4(gB;rs)ν2;4(gB;rs) + n−3/2ν3;2(gB;rs)
)
(cX + cZ)

)
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= O
((
n−1/2d6 + n−1d5 + n−3/2d4

)
d3
)

= O(n−1/2d9) .

These are the desired bounds concerning weak convergence of
(
B̂ΦX )

r,s
. dH indeed

metrizes weak convergence here, since
(
B̂ΦX )

r,s
∈ R and Lemma 6.3 applies.

Proof of Lemma D.32(ii). For convergence of variance of B̂ΦX , we need to apply Lemma
D.7 to gB instead of gB;rs. Notice that the noise stability terms of gB can be computed in
terms of those for gB;rs already computed in the proof of (i):

κt;m(gB) =
∑d

r=1

∑b

s=1
κt;m(gB;rs) , νt;m(gB) =

∑d

r=1

∑b

s=1
νt;m(gB;rs) .

This suggests that

κ0;m(gB), ν0;m(gB) = O(d3τ 2) , κ1;m(gB), ν1;m(gB) = O(d4τ 2 + d3) ,

κ2;m(gB), ν2;m(gB) = O(d5τ 2 + d4) , κ3;m(gB), ν3;m(gB) = O(d6τ 2 + d5) ,

The moment terms are bounded as before: c̄m = O(dτ 2) and cX , cZ = O(d3τ 6). Apply-
ing Lemma D.7 with δ = 0 and the assumption τ = O(d−1/2) gives

n‖Var[B̂ΦX ]− Var[B̂T ]‖ = O
(
n−1/2κ1;1(gB)κ2;4(gB)c̄3

4 + n−1κ2;6(gB)κ2;6(gB) c̄4
6

)

= O
(
n−1/2d7 + n−1d8

)
,

n‖Var[B̂ΦX ]− Var[B̂Z ]‖ = O
(
n−1(ν0;4(gB)ν3;4(gB) + ν1;4(gB)ν2;4(gB))(cX + cZ)

)

= O
(
n−1d7

)
,

which are the desired bounds for convergence of variance of B̂ΦX .

Proof of Lemma D.32(iii). We seek to apply Lemma D.7 to gR. Define

cY := E[‖Ynew‖2
2] , CV Y

rs :=
(
E[VnewY

>
new]

)
rs
, CV

rs :=
(
E[VnewV

>
new]

)
rs
,

This allows us to rewrite gR as

gR(Σ, A) = E[‖Ynew − gB(Σ, A)>Vnew‖2
2]

= E[‖Ynew‖2
2]− 2Tr

(
E[VnewY

>
new]gB(Σ, A)>

)

+ Tr
(
E[VnewV

>
new]gB(Σ, A)gB(Σ, A)>

)

= cY − 2
∑d

r=1

∑b

s=1
CV Y
rs gB;rs(Σ, A) +

∑d

rs,t=1
CV
rsgB;rt(Σ, A)gB;ts(Σ, A) .

As before, we first consider expressing derivatives of gR in terms of those of gB;rs. Omit-
ting the (Σ, A)-dependence temporarily, we get

∂gR = − 2
∑d

r=1

∑b

s=1
CV Y
rs ∂gB;rs +

∑d

rs,t=1
CV
rs

(
∂gB;rtgB;ts + gB;rt∂gB;ts

)
,

∂2gR = − 2
∑d

r=1

∑b

s=1
CV Y
rs ∂2gB;rs

+
∑d

rs,t=1
CV
rs

(
∂2gB;rtgB;ts + 2∂gB;rt∂gB;ts + gB;rt∂

2gB;ts

)
,

∂3gR = − 2
∑d

r=1

∑b

s=1
CV Y
rs ∂3gB;rs
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+
∑d

rs,t=1
CV
rs

(
∂3gB;rtgB;ts + 3∂2gB;rt∂gB;ts + 3∂gB;rt∂

2gB;ts + gB;rt∂
3gB;ts

)
.

Since the noise stability terms of gR are given by

κt;m(gR) =
∥∥ sup
w∈[0,X̄]

∥∥∂tgR
(
µ+ w

)∥∥∥∥
Lm
, νt;m(gR) = maxi≤n ζi;m

(∥∥∂tgR
(
Wi( • )

)∥∥),

they can be bounded in terms of those of gB;rs computed in the proof of (i). With the
assumption τ = O(d−1/2), the noise stability terms of gB;rs become

κ0;m(gB;rs), ν0;m(gB;rs) = O(1) , κ1;m(gB;rs), ν1;m(gB;rs) = O(d) ,

κ2;m(gB;rs), ν2;m(gB;rs) = O(d2) , κ3;m(gB;rs), ν3;m(gB;rs) = O(d3) .

Also note that cY = O(dτ) = O(1) and CV Y
r,s , C

V
r,s = O(τ) = O(d−1) by assumption.

Then, by the triangle inequality followed by Hölder’s inequality,

κ0;m(gR) ≤ cY + 2
∑d

r=1

∑b

s=1
CV Y
r,s κ0;m(gB;rs) +

∑d

r,s,t=1
CV
r,sκ0;m(gB;rtgB;ts)

≤ cY + 2
∑d

r=1

∑b

s=1
CV Y
r,s κ0;m(gB;rs) +

∑d

r,s,t=1
CV
r,sκ0;2m(gB;rt)κ0;2m(gB;ts)

= O(1 + d+ d2) = O(d2) .

Similarly, by triangle inequality and Hölder’s inequality of ζi;m in Lemma D.20,

ν0;m(gR) ≤ cY + 2
∑d

r=1

∑b

s=1
CV Y
r,s ν0;m(gB;rs) +

∑d

r,s,t=1
CV
r,sν0;2m(gB;rt)ν0;2m(gB;ts)

= O(1 + d+ d2) = O(d2) .

The same reasoning allows us to read out other noise stability terms of gR directly in
terms of those of gR;rs and bounds on CV Y

r,s and CV
r,s:

κ1;m(gR), ν1;m(gR) = O(d2 + d3) = O(d3) ,

κ2;m(gR), ν2;m(gR) = O(d4) , κ3;m(gR), ν3;m(gR) = O(d5) .

The moment terms are bounded as before: c̄m = O(dτ) = O(1) and cX , cZ = O(d3τ 3) =

O(1). By Lemma D.7 with δ set to 0, we have

dH(
√
nRΦX ,

√
nRT ) = O

(
n−1/2κ2;3(gR) c̄2

3 + n−1/2κ1;1(gR)3(cX + cZ))
)
,

= O(n−1/2d4 + n−1/2d9) = O(n−1/2d9) ,

dH(
√
nRΦX ,

√
nRZ) = O

((
n−1/2ν1;6(gR)3 + 3n−1ν1;4(gR)ν2;4(gR) + n−3/2ν3;2(gR)

)

× (cX + cZ)
)

= O(n−1/2d9 + n−1d7 + n−3/2d5) = O(n−1/2d9) ,

which are the desired bounds in dH , and by Lemma D.7 with δ = 0 again, we have

n(Var[RΦX ]− Var[RT ]) = O
(
n−1/2κ1;1(gR)κ2;4(gR)c̄3

4 + n−1κ2;6(gR)κ2;6(gR) c̄4
6

)

= O
(
n−1/2d7 + n−1d8

)
,

n(Var[RΦX ]− Var[RZ ]) = O
(
n−1(ν0;4ν3;4 + ν1;4ν2;4)(cX + cZ)

)
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= O
(
n−1d7

)
,

which are again the desired bounds for variance.

Existence of surrogate variables from a maximum entropy principle As discussed
after Proposition 6.8, the surrogate variables Zi := {Zij}j≤k = {(Zij1,Zij2)}j≤k cannot
be Gaussian since they take values in (Md × Rd×b)k. Recall that the only restriction we
have on Zi is from (6.1): Zi should match the first two moments of ΦiX

∗
i . A trivial choice

is ΦiX
∗
i itself, but is not meaningful because the key of the theorem is that only the first

two moments of ΦiX
∗
i matter in the limit.

The main difficulty is finding a distribution pM on Md, the set of d× d positive semi-
definite matrices, such that for Zij1 ∼ pM,

E[Zij1] = E
[
(π11V1)(π11V1)>

]
and Var[Zij1] = Var

[
(π11V1)(π11V1)>

]
.

(D.64)

When d = 1, the problem reduces to finding a distribution on non-negative reals given the
first two moments, and one can choose the gamma distribution. When d > 1, a natural
guess of a distribution on non-negative matrices is the non-central Wishart distribution.
Unfortunately, one cannot form a non-central Wishart distribution given any mean and
variance on Md, as illustrated in Lemma D.33.

Lemma D.33. Let d = 1. There exists random variable V with EV 2 = 1 and VarV 2 = 4,

but there is no non-central Wishart random variable W with EW = 1 and VarW = 5.

Proof. Recall that V ∼ Γ(α, ν) has EV 2 = α(α+1)
ν2 and EV 4 = α(α+1)(α+2)(α+3)

ν4 . Choose

α =
√

6
2

and ν =
√

3+
√

6
2

gives

EV 2 =

√
6(
√

6 + 2)/4

(3 +
√

6)/2
= 1 , EV 4 =

(
√

6 + 4)(
√

6 + 6)/4

(3 +
√

6)/2
= 5 ,

which gives the desired mean and variance for V 2. On the other hand, when d =

1, the non-central Wishart distribution is exactly non-central chi-squared distribution
parametrised by the degree of freedom m and mean µ and variance σ2 of the individ-
ual Gaussians. We can form the non-central Wishart random variable W by drawing
Z1, . . . , Zm

i.i.d.∼ N (0, 1) and defining

W :=
∑m

l=1
(µ+ σZl)

2 .

Suppose E[W ] = 1 and Var[W ] = 4. This implies

m(µ2 + σ2) = 1 , m(4µ2σ2 + 2σ4) = 4 .
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Write x = σ2 and µ2 = 1
m
− x, we get m

(
4
(

1
m
− x
)
x+ 2x2

)
= 4, which rearranges to

x2 − 2

m
x+

2

m
= 0 . (D.65)

LHS equals (x − 1
m

)2 + 2m−1
m2 , which is strictly positive since m is a positive integer.

Therefore there is no solution to (D.65) and hence no non-central Wishart random vari-
able W with EW = 1 and VarW = 5. This finishes the proof.

The choice d = 1 for the proof above is for simplicity and not necessity. Wishart dis-
tribution fails because of specific structure in its first two moments arisen from the outer
product of Gaussian vectors, which may not satisfy the mean and variance required by
(D.64). A different approach is to show existence of solution to the problem of moments
via maximum entropy principle. In the case D = Rd, Gaussian distribution is a max
entropy distribution that solves the problem of moments given mean and variance. In
the case D is a closed subset of Rd, the following result adapted from Ambrozie (2013)
studies the problem of moments from an approximate maximum entropy principle:

Lemma D.34. [Adapted from Corollary 6(a-b) of Ambrozie (2013)] Fix ε > 0. Let

T ⊆ Rd be a closed subset and define the multi-index set I := {i ∈ Zd+ | i1+. . .+id ≤ 2}.
Let (gi)i∈I be a set of reals with g0 = 1. Assume that there exist a probability measure pU
with Lebesgue density function fU supported on T such that, for every (i1, . . . , id) ∈ I ,

EU∼pU [|U i1
1 . . . U id

d |] < ∞ and EU∼pU [U i1
1 . . . U id

d ] = gi . (D.66)

Then, there exists a particular solution p∗U of (D.66) with Lebesgue density f ∗U that max-

imizes the ε-entropy over all measures p with Lebesgue density f ,

Hε(p, f) = −EU∼p[log(f)]− εEU∼p
[
‖U‖3

]
.

We can now use Lemma D.34 to construct the surrogate variables Zi in Proposition
6.8 if the distribution of φ11X

∗
1 admits a Lebesgue density function.

Proof for Proposition 6.8. Assume first that the distribution of φ11X
∗
1 admits a Lebesgue

density function. Fix d, b. Note that Dk is closed since D = Md × Rd×b is a product of
two closed sets and therefore closed in Rd×d×Rd×b. The distribution pX;d,b of Φ1X

∗
1 and

its Lebesgue density fX;d,b then satisfy the assumption of Lemma D.34 with T = Dk and
the condition (D.66) becoming a bounded moment condition together with

EU∼p[U] = E[Φ1X
∗
1] and EU∼p[U

⊗2] = E[(Φ1X
∗
1)⊗2] . (D.67)

Then by Lemma D.34, there exists a distribution pZ;d,b with Lebesgue density function
fZ;d,b which maximizes the ε-entropy in Lemma D.34 while satisfying (D.67). For each
fixed (d, b), taking Zi;d,b ∼ pZ;d,b then gives a choice of the surrogate variables. If the
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coordinates of Zi;d,b are uniformly bounded as O(d−1) almost surely as d grows with b =

O(d), we can apply Lemma D.32(iii) to yield the desired convergences, which finishes
the proof. If either φ11X

∗
1 does not admit a Lebesgue density function or if there is no

uniform bound over the coordinates of Zi;d,b as O(d−1), we take Zi to be an i.i.d. copy of
ΦiX

∗
i which again gives the desired convergences but in a trivial manner.

Simulation and proof for toy example In this section we focus on the toy model stated
in Lemma 6.9, where d = 1 and

Yi := Vi where Vi
i.i.d.∼ N (µ, σ2), and πij = τij a.s. . (D.68)

Recall that we have taken the surrogate variables to be Gamma random variables. We
now prove the convergence of variance and dependence of variance of estimate on the
variance of data for the toy example in Lemma 6.9.

Proof of Lemma 6.9. To prove the first convergence statement, note that in 1d, M1 is the
set of non-negative reals, and Zi = {Zij1,Zij2}j≤k takes values in (M1×R)k = Dk which
agrees with the domain of data. Moreover, denoting µV 2 := E[(V1)2], the moments of
Zi satisfy

E[Zi] = 1k×1 ⊗
( µV 2
µV 2

)
, = 1k×1 ⊗

(
E[(π11V1)2]

E[(τ11Y1)2]

)
,

Var[Zi] = 1k×k ⊗ ( vπ vπ
vπ vπ ) = 1k×k ⊗

(
Cov[(π11V1)2,(π12V1)2] Cov[(π11V1)2,(τ12Y1)2]

Cov[(τ11Y1)2,(π12V1)2] Cov[(τ11Y1)2,(τ12Y1)2]

)
.

This corresponds to the mean and variance of Zδi in Lemma D.7 with δ set to 1. While
the earlier result on ridge regression in Lemma D.32 does not apply directly, an analo-
gous argument works by computing some additional mixed smoothness terms in Lemma
D.7(ii). Recall from the proof of Lemma D.32 that for d = 1, νr;m = O(1) for 0 ≤ r ≤ 3.
Therefore by Lemma D.7(ii) with δ = 1, the following convergences hold as n, k →∞:

dH(
√
nf(ΦX ),

√
nf(Z1, . . . ,Zn))

= O
(
(k−1/2 + n−1/2k−1/2)c1 + (n−1/2 + 3n−1 + n−3/2)(cX + cZ)

)
→ 0 ,

n‖Var[f(ΦX )]− Var[f(Z1, . . . ,Zn)]‖ = O(k−1/2c1 + n−1(cX + cZ)) → 0 .

For the second statement, we first note that

SZ :=
1

nk

∑n

i=1

∑k

j=1
Zij1 =

1

nk

∑n

i=1

∑k

j=1
Zij2

=
1

n

∑n

i=1
Zi11 ∼ Γ

(n(µV 2)2

vπ
,
nµV 2

vπ

)
.

Then we can write the variance of RZ in terms of SZ :

Var[RZ ] = Var[E[(Vnew − B̂ZVnew)2|B̂Z ]]

= Var[−2E[V2
new]B̂Z + E[V2

new](B̂Z)2]
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= (µV 2)2Var[−2B̂Z + (B̂Z)2]

= (µV 2)2Var
[
− 2

SZ
SZ + λ

+
(SZ)2

(SZ + λ)2

]

= (µV 2)2Var
[−S2

Z − 2λSZ
(SZ + λ)2

]

= (µV 2)2Var
[
1− S2

Z + 2λSZ
(SZ + λ)2

]

= (µV 2)2λ2Var
[

1

(SZ + λ)2

]

= E[V2
1]2λ2Var

[
1

(Xn(v) + λ)2

]
= σ2

n(v) .

In the last line, we have denoted the random variable Xn(v) ∼ Γ(
n(µV 2 )2

v
,
nµV 2

v
) and

recalled the definition of σn(ν), which is independent of k and the distribution of πij .
This completes the proof.

D.6.4. Departure from Taylor limit at higher dimensions

In Lemma D.32, we have shown convergences of the form

n(Var[RΦX ]− Var[RT ]) = O
(
n−1/2d7 + n−1d8

)
,

n(Var[RΦX ]− Var[RZ ]) = O
(
n−1d7

)
.

While the bounds are not necessarily tight in terms of dimensions, they hint at different
rates of convergences to the two limits. Var[RT ] has a simple behavior under augmen-
tations as discussed for plugin estimators in Section 6.4.3, and in particular is reduced
when data is invariant under augmentations. On the other hand, Var[RZ ] has a complex
behavior under augmentations as discussed in Section 6.4.5. In the main text, the sepa-
ration of convergence rates is illustrated by a simulation that shows complex dependence
of variance of risk under augmentation at a moderately high dimension.

In this section we aim to find evidence for a non-trivial separation of the convergence
rates by focusing on the following model: For positive constants σ, λ̃ independent of n
and d, consider

Yi := Vi where Vi
i.i.d.∼ N (0, σ21d×d), πij = τij = id a.s., and λ = dλ̃ , (D.69)

where id is the identity map Rd → Rd and ψ is an increasing function describing the rate
of growth as a function of d. The parameter λ is chosen to be O(d) instead of O(1) for
this model so that the penalty does not vanish and the inverse in ridge regression stays
well-defined as d grows to infinity. Focusing on a specific model allows us to have a
tight bound in terms of dimensions. The following lemma characterizes the convergence
behavior of Var[RΦX ] to Var[RT ] and Var[RZ ] in terms of a function depending on n.
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Lemma D.35. Assume (D.69). Let {Zi}i≤n be i.i.d. non-negative random variables with

mean 1, variance 2 and finite 6th moments, and define Zi := {σ2Zi1d×1, σ
2Zi1d×1}j≤k.

Then

(i) for RT defined on {Zi}i≤n,

n|Var[RΦX ]− Var[RT ]| = n
∣∣∣d2σ4λ̃4Var

[
1

(λ̃+ σ2χ2
n/n)2

]
− 8d2σ8λ̃4

n(λ̃+ σ2)6

∣∣∣ ,

where χ2
n is a chi-squared distributed random variable with n degrees of freedom;

(ii) there exist a constant C1 > 0 not depending on n and d and a quantity C2 = Θ(1)

as n, d grow such that

n|Var[RΦX ]− Var[RT ]| ≥ nd2E(n)C1 − n−1d2C2 ,

where E(n) :=
∣∣E
[ (χ2

n−n)3

n3(λ̃+σ2χ2
∆/n)4

]∣∣ and χ2
∆ is a random variable between χ2

n and

n;

(iii) for RZ defined on {Zi}i≤n,

n|Var[RΦX ]− Var[RZ ]| = O(n−1d2) .

In Lemma D.35, whileE(n) is a complicated function, if we compare it to E[n−3(χ2
n−

n)3], we expect the term to be on the order n−3/2 as n grows. A natural guess of the or-
der of the first term in Lemma D.35 is Θ(n−1/2d2). This suggests that if d = nα for
some 1

4
< α < 1

2
, we may have n|Var[RΦX ] − Var[RT ]| not converging to 0 while the

convergence of n|Var[RΦX ]−Var[RZ ]| still holds due to Lemma D.35(iii). A simulation
in Figure D.2 shows that this can indeed be the case in an example parameter regime:
if {Zi}i≤n in Lemma D.35 are Gamma random variables, Var[RZ ] = Var[RΦX ] exactly,
whereas no matter how the distribution of {Zi}i≤n are chosen, the gap between Var[RΦX ]

and Var[RT ] may not decay to zero as shown in Figure D.2. This suggests that for a
moderately high dimension, it is most suitable to understand Var[RΦX ] through Var[RZ ]

instead of Var[RT ]. This completes the discussion from Remark 6.3. It may be of interest
to note that in Figure 6.5, the regime at which augmentation exhibits complex behavior
despite invariance is when d = 7 and n = 50, i.e. when d is close to n1/2.

The proof of Lemma D.35(i) is by a standard Taylor expansion argument followed
by a careful lower bound. The essence of the proof of Lemma D.35(ii) is by applying
Theorem 6.1 while considering the particular structure (D.69); we spell out the proof in
full for clarity.

Proof of Lemma D.35(i). Denote g1(Σ) := gR(Σ,Σ) where gR is as defined in (D.62)
and µS := E[(πijVi)(πijVi)

>] = σ21d×d. We first seek to simplify the expressions of
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Figure D.2: Plot of difference in variances computed in Lemma D.35(i) against n for λ̃ = σ = 1.

the variances:

Var[RT ] := Var
[
gR(µS, µS) + ∂gR(µS, µS)

(
1

nk

∑
i,j
Zij − (µS, µS)

)]

= Var
[
∂gR(µS, µS)

(
1

nk

∑
i,j
Zij − (µS, µS)

)]
.

Since Zi matches the two moments of ΦiXi = {(πijVi)(πijVi)
>, (πijVi)(πijVi)

>}j≤k
and {Zi}i≤n are i.i.d., we get that

Var[RT ] = Var
[
∂gR(µS, µS)

(
1

nk

∑
i,j

(πijVi)(πijVi)
>, (πijVi)(πijVi)

>)− (µS, µS)
)]

= Var
[
∂g1(µS)

(
1

nk

∑
i,j

(πijVi)(πijVi)
> − µS)

)]
.

Under (D.69), we can replace each πijVi by σξi1d where {ξi}i≤n are i.i.d. standard nor-
mal variables. Denote χ2

n :=
∑n

i=1
ξ2
i . Then

Var[RT ] = Var
[
∂g1(µS)

(
σ2χ2

n

n
1d×d

)]
. (D.70)

On the other hand,

RΦX = g1

( 1

nk

∑
i,j

(πijVi)(πijVi)
>) = g1

(σ2χ2
n

n
1d×d

)
.

Given Σ = x1d×d for some x > 0, the explicit form of g1(Σ) and its derivative are given
by Lemma D.36 as

g1(Σ) =
dσ2λ2

(λ+ dx)2 , ∂g1(Σ)1d×d = − 2d2σ2λ2

(λ+ dx)3 ,

This implies

Var[RT ] = Var
[
− 2d2σ2λ2

(λ+ dσ2)3

σ2χ2
n

n

]
=

4d4σ8λ4

n2(λ+ dσ2)6 Var[χ2
n] =

8d2σ8λ̃4

n(λ̃+ σ2)6
,
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where we have used Var[χ2
n] = 2n and λ = dλ̃. Moreover

Var[RΦX ] = Var
[

dσ2λ2

(λ+ dσ2χ2
n/n)2

]
= Var

[
dσ2λ̃2

(λ̃+ σ2χ2
n/n)2

]

= d2σ4λ̃4Var
[

1

(λ̃+ σ2χ2
n/n)2

]
.

Taking a difference and multiplying by n gives the desired result:

n|Var[RΦX ]− Var[RT ]| = n
∣∣∣d2σ4λ̃4Var

[
1

(λ̃+ σ2χ2
n/n)2

]
− 8d2σ8λ̃4

n(λ̃+ σ2)6

∣∣∣ .

Proof of Lemma D.35(ii). Note that a second-order Taylor expansion implies that almost
surely there exists χ2

∆ ∈ [n, χ2
n] such that

RΦX = g1

( 1

nk

∑
i,j

(πijVi)(πijVi)
>) = g1

(σ2χ2
n

n
1d×d

)

= g1(σ21d×d) + ∂g1(σ21d×d)
σ2(χ2

n − n)

n
1d×d

+
1

2
∂2g1

(σ2χ2
∆

n
1d×d

)(σ4(χ2
n − n)2

n2

)
(1d×d)

⊗2 .

This implies

Var[RΦX ] = Var
[
∂g1(µS)

σ2χ2
n

n
1d×d + ∂2g1

(σ2χ2
∆

n
1d×d

)(σ4(χ2
n − n)2

2n2

)
(1d×d)

⊗2
]

= Var
[
∂g1(µS)

σ2χ2
n

n
1d×d

]
+ Var

[
∂2g1

(σ2χ2
∆

n
1d×d

)(σ4(χ2
n − n)2

2n2

)
(1d×d)

⊗2
]

+ 2Cov
[
∂g1(µS)

σ2(χ2
n − n)

n
1d×d, ∂

2g1

(σ2χ2
∆

n
1d×d

)(σ4(χ2
n − n)2

2n2

)
(1d×d)

⊗2
]

where the first term equals Var[RT ] by (D.70). Therefore by the triangle inequality, the
difference in the variances of RΦX and RT can be written as

n|Var[RΦX ]− Var[RT ]|

≥ 2n
∣∣∣Cov

[
∂g1(σ21d×d)

σ2(χ2
n − n)

n
1d×d, ∂

2g1

(σ2χ2
∆

n
1d×d

)(σ4(χ2
n − n)2

2n2

)
(1d×d)

⊗2
]∣∣∣

(D.71)

− n
∣∣∣Var

[
∂2g1

(σ2χ2
∆

n
1d×d

)(σ4(χ2
n − n)2

2n2

)
(1d×d)

⊗2
]∣∣∣ . (D.72)

Given Σ = x1d×d for some x > 0, the explicit form of derivatives of g1(Σ) are given by
Lemma D.36 as

∂g1(Σ)1d×d = − 2d2σ2λ2

(λ+ dx)3 , ∂2g1(Σ)(1d×d)
⊗2 =

6d3σ2λ2

(λ+ dx)4 .

Note that E[χ2
n − n] = 0 and λ = dλ̃. The covariance term can be computed as

(D.71) = 2n
∣∣∣Cov

[
− 2d2σ2λ2

(λ+ dσ2)3

σ2(χ2
n − n)

n
,

6d3σ2λ2

(λ+ dσ2χ2
∆/n)4

σ4(χ2
n − n)2

2n2

]∣∣∣

=
12nd5σ10λ4

(λ+ dσ2)3

∣∣∣Cov
[

(χ2
n − n)

n
,

(χ2
n − n)2

n2(λ+ dσ2χ2
∆/n)4

]∣∣∣
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=
12nd5σ10λ4

(λ+ dσ2)3

∣∣∣E
[

(χ2
n − n)3

n3(λ+ dσ2χ2
∆/n)4

]∣∣∣ =
12nd2σ10λ̃4

(λ̃+ σ2)3

∣∣∣E
[

(χ2
n − n)3

n3(λ̃+ σ2χ2
∆/n)4

]∣∣∣

=
12nd2σ10λ̃4

(λ̃+ σ2)3
E(n) = nd2C1E(n) ,

where C1 :=
12σ10λ̃4

(λ̃+ σ2)3
is a constant not depending on n and d as required. The minus-

variance term can be bounded as

(D.72) = − n
∣∣∣Var

[
6d3σ2λ2

(λ+ d
σ2χ2

∆

n )4

(σ4(χ2
n − n)2

2n2

)]∣∣∣ = −n
∣∣∣Var

[
3dσ2λ̃2

(λ̃+
σ2χ2

∆

n )4

(σ4(χ2
n − n)2

n2

)]∣∣∣

(a)

≥ − E
[

9nd2σ4λ̃4

(λ̃+
σ2χ2

∆

n )8

(σ8(χ2
n − n)4

n4

)]

(b)

≥ − 9nd2σ12

λ̃4
E
[

(χ2
n − n)4

n4

]

(c)

≥ − n−1d2 9σ12

λ̃4

(
K4 max

{
n−1/4

(
‖ξ2

1 − 1‖4
L4

)1/4
,
(
‖ξ2

1 − 1‖2
L2

)1/2})4

=: − n−1d2C2 .

where in (a) we have upper bounded variance with a second moment, in (b) we have note
that χ2

∆ ≥ 0 and in (c) we have used Rosenthal’s inequality from Lemma D.21 to show
that there exists a universal constant K4 such that

E
[

(χ2
n − n)4

n4

]
=

1

n4

∥∥∑n

i=1
(ξ2
i − 1)

∥∥4

L4

≤ 1

n4

(
K4 max

{(∑n

i=1
‖ξ2

i − 1‖4
L4

)1/4
,
(∑n

i=1
‖ξ2

i − 1‖2
L2

)1/2})4

.

=
1

n2

(
K4 max

{
n−1/4

(
‖ξ2

1 − 1‖4
L4

)1/4
,
(
‖ξ2

1 − 1‖2
L2

)1/2})4

= Θ(n−2) .

Therefore C2 is Θ(1) as required, and we obtain the statement in (i) from the bounds on
(D.71) and (D.72):

n|Var[RΦX ]− Var[RT ]| ≥ nd2C1E(n)− n−1d2C2 .

Proof of Lemma D.35(iii). Write ω2
n :=

∑n
i=1 Zi. Note that

|Var[RΦX ]− Var[RZ ]| =
∣∣Var

[
g1

(σ2χ2
n

n
1d×d

)]
− Var

[
g1

(σ2ω2
n

n
1d×d

)]∣∣∣

≤
∣∣∣E
[
g1

(σ2χ2
n

n
1d×d

)]
− E

[
g1

(σ2ω2
n

n
1d×d

)]∣∣∣
∣∣∣E
[
g1

(σ2χ2
n

n
1d×d

)]
+ E

[
g1

(σ2ω2
n

n
1d×d

)]∣∣∣

+
∣∣E
[
g1

(σ2χ2
n

n
1d×d

)2 − g1

(σ2ω2
n

n
1d×d

)2]∣∣ . (D.73)

We aim to bound (D.73) by mimicking the proof of Theorem 6.1 but use tighter control
on dimensions since we know the specific form of the estimator. Write

W̄i(w) :=
1

n

(∑i−1

i′=1
ξ2
i′ + w +

∑n

i′=i+1
Zi′
)
,
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and denote Dr
i g1;i(w) := ∂rg1

(
σ2

n
W̄i(w)1d×d

)
for r = 0, 1, 2, 3. Then analogous to the

proof of Theorem 6.1, by a third-order Taylor expansion around 0 and noting that the first
two moments of ξ2

i and Zij1 match, we obtain that
∣∣∣E
[
g1

(σ2χ2
n

n
1d×d

)]
− E

[
g1

(σ2ω2
n

n
1d×d

)]∣∣∣

=
∣∣∑n

i=1
E
[
g1(

σ2

n
W̄i(ξ

2
i )1d×d)− g1(

σ2

n
W̄i(Zi)1d×d)

]∣∣

≤
∑n

i=1
E
[

sup
w∈[0,ξ2

i ]

∣∣D3
i g1;i(w)

σ6(ξ2
i )3

n3 (1d×d)
⊗3
∣∣+ sup

w∈[0,Zi]

∣∣D3
i g1;i(w)

σ6(Zi)
3

n3 (1d×d)
⊗3
∣∣
]
.

(D.74)

Similarly,
∣∣E
[
g1

(σ2χ2
n

n
1d×d

)2 − g1

(σ2ω2
n

n
1d×d

)2]∣∣

≤ 2
∑n

i=1
E
[

sup
w∈[0,ξ2

i ]

∣∣(g1;i(w)D3
i g1;i(w) +Dig1;i(w)D2

i g1;i(w)
)σ6(ξ2

i )3

n3 (1d×d)
⊗3
∣∣

+ sup
w∈[0,Zi]

∣∣(g1;i(w)D3
i g1;i(w) +Dig1;i(w)D2

i g1;i(w)
)σ6(Zi)

3

n3 (1d×d)
⊗3
∣∣
]
.

(D.75)

Given Σ = x1d×d for some x > 0, the explicit forms of g1(Σ) and its derivatives from
Lemma D.36 imply that

g1;i(w) =
dσ2λ2

(λ+ dσ
2W̄i(w)
n )2

, Dig1;i(w)1d×d = − 2d2σ2λ2

(λ+ dσ
2W̄i(w)
n )3

,

D2
i g1;i(w)(1d×d)

⊗2 =
6d3σ2λ2

(λ+ dσ
2W̄i(w)
n )4

, D3
i g1;i(w)(1d×d)

⊗3 = − 24d4σ2λ2

(λ+ dσ
2W̄i(w)
n )5

.

Therefore, by noting λ = dλ̃, we get

(D.74) = 24n−3d4σ8λ2
∑n

i=1
E
[

sup
w∈[0,ξ2

i ]

∣∣∣ (ξ2
i )3

(λ+ dσ2W̄i(w)
n )5

∣∣∣+ sup
w∈[0,Zi]

∣∣∣ (Zi)
3

(λ+ dσ2W̄i(w)
n )5

∣∣∣
]

(a)

≤ 24n−3d4σ8λ−3
∑n

i=1
E[(ξ2

i )
3 + Z3

i ]

= 24n−2dσ8λ̃−3E[(ξ2
1)3 + Z3

1 ] = O(n−2d) .

where in (a) we have used that W̄i(w) ≥ 0 almost surely for w ∈ [0, ξ2
i ] and for w ∈

[0, Zi]. By the same argument,

(D.75) = 72n−3d5σ10λ4
∑n

i=1
E
[

sup
w∈[0,ξ2

i ]

∣∣ (ξ2
i )3

(λ+ dσ
2W̄i(w)
n )7

∣∣+ sup
w∈[0,Zi]

∣∣ (Z2
i )3

(λ+ dσ
2W̄i(w)
n )7

∣∣
]

≤ 72n−2d2σ10λ̃−3E[(ξ2
i )

3 + Z3
i ] = O(n−2d2) .

Moreover,
∣∣∣E
[
g1

(σ2χ2
n

n
1d×d

)]
+ E

[
g1

(σ2ω2
n

n
1d×d

)]∣∣∣ = |E[g1;n(ξ2
n) + g1;1(Z1)]| = O(d) .

(D.76)
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Finally the above three bounds imply that

n|Var[RΦX ]− Var[RZ ]| ≤ n (D.73) ≤ n (D.74)× (D.76) + n (D.75) = O(n−1d2) ,

which is the desired bound.

Lemma D.36. Consider Σ = x1d×d for some x > 0 and g1(Σ) := gR(Σ,Σ) where gR
is defined as in (D.62) under the model (D.69). Then, the following derivative formulas

hold:

g1(Σ) =
dσ2λ2

(λ+ dx)2 , ∂g1(Σ)1d×d = − 2d2σ2λ2

(λ+ dx)3 ,

∂2g1(Σ)(1d×d)
⊗2 =

6d3σ2λ2

(λ+ dx)4 , ∂3g1(Σ)(1d×d)
⊗3 = − 24d4σ2λ2

(λ+ dx)5 .

Proof. First note that

E[‖Ynew‖2
2] = E[‖Vnew‖2

2] = σ2d , E[VnewY
>
new] = E[VnewV

>
new] = σ21d×d ,

which allows us to write

g1(Σ) = σ2d− 2σ2
∑d

r,s=1
gB;rs(Σ,Σ) + σ2

∑d

r,s,t=1
gB;rt(Σ,Σ)gB;ts(Σ,Σ),

where we have recalled the expression

gB;rs(Σ,Σ) = e>r (Σ + λId×d)
−1Σes .

Denoting Σ̃ = (Σ + λId×d)
−1 = (Σ + λId)

−1, the partial derivative of gB;rs has been
computed in the proof of Lemma D.32(i) as

∂gB;rs(Σ,Σ)

∂Σr1s1
= −e>r Σ̃−1er1e

>
s1

Σ̃−1Σes + e>r Σ̃−1er1I{s=s1}

= e>r Σ̃−1er1e
>
s1

(
− Σ̃−1Σ + Σ̃−1Σ̃

)
es = ψ(d)λ̃e>r Σ̃−1er1e

>
s1

Σ̃−1es ,

Similarly

∂2gB;rs(Σ,Σ)

∂Σr1s1∂Σr2s2
=
∑

l1,l2∈{1,2}; l1 6=l2

(
erΣ̃

−1erl1
e>sl1

Σ̃−1erl2
e>sl2

Σ̃−1Σes

− e>r Σ̃−1 erl1
e>sl1

Σ̃−1 erl2
I{s=sl2}

)

= − ψ(d)λ̃
∑

l1,l2∈{1,2}; l1 6=l2
erΣ̃

−1erl1
e>sl1

Σ̃−1erl2
e>sl2

Σ̃−1es ,

and
∂3gB;rs(Σ,Σ)

∂Σr1s1∂Σr2s2∂Σr3s3
= −

∑
l1,l2,l3∈{1,2,3}
l1,l2,l3 distinct

(
e>r Σ̃−1erl1

e>sl1
Σ̃−1erl2

e>sl2
Σ̃−1erl3

e>sl3
Σ̃−1Σes

− e>r Σ̃−1erl1
e>sl1

Σ̃−1erl2
e>sl2

Σ̃−1erl3
I{s=sl3}

)

= ψ(d)λ̃
∑

l1,l2,l3∈{1,2,3}
l1,l2,l3 distinct

e>r Σ̃−1erl1
e>sl1

Σ̃−1erl2
e>sl2

Σ̃−1erl3
e>sl3

Σ̃−1es .
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On the other hand, since Σ = x1d×d, a calculation gives

Σ̃−1 = (x1d×d + λId)
−1 =

1

λ(λ+ dx)

(
(λ+ dx)Id − x1d×d

)
, (D.77)

in which case, denoting Jr,s(x) := (I{r=s}(λ+ (d− 1)x)− I{r 6=s}x), we have

gB;rs(Σ,Σ) =
x

λ (λ+ dx)

(
(λ+ dx)− dx) =

x

λ+ dx
,

∂gB;rs(Σ,Σ)

∂Σr1s1
=

Jr,r1(x)Js,s1(x)

λ (λ+ dx)2 ,

∂2gB;rs(Σ,Σ)

∂Σr1s1∂Σr2s2
= −

∑
l1,l2∈{1,2}; l1 6=l2

Jr,rl1
(x)Jsl1 ,rl2

(x)Jsl2 ,s
(x)

λ2 (λ+ dx)3 ,

∂3gB;rs(Σ,Σ)

∂Σr1s1∂Σr2s2∂Σr3s3
=
∑

l1,l2,l3∈{1,2,3}
l1,l2,l3 distinct

Jr,rl1
(x)Jsl1 ,rl2

(x)Jsl2 ,rl3
(x)Jsl3 ,s

(x)

λ3 (λ+ dx)4 .

Note that Jr,s(x) = Js,r(x) and
∑d

r=1 Jr,s(x) = λ. These formulas and the above deriva-
tives imply that

g1(Σ) = σ2d− 2σ2
∑d

r,s=1
gB;rs(Σ,Σ) + σ2

∑d

r,s,t=1
gB;rt(Σ,Σ)gB;ts(Σ,Σ)

= σ2d− 2
σ2xd2

λ+ dx
+

σ2x2d3

(λ+ dx)2 =
dσ2λ2

(λ+ dx)2 ,

∂g1(Σ)1d×d =
∑d

r1,s1=1

∂g1(Σ)

∂Σr1s1

= − 2σ2
∑

r,s,r1,s1

∂gB;rs(Σ,Σ)

∂Σr1s1
+ 2σ2

∑
r,s,t,r1,s1

∂gB;rt(Σ,Σ)

∂Σr1s1
gB;ts(Σ,Σ)

= − 2d2σ2λ

(λ+ dx)2 +
2d3σ2xλ

(λ+ dx)3 = − 2d2σ2λ2

(λ+ dx)3 ,

∂2g1(Σ)(1d×d)
⊗2 =

∑d

r1,s1,r2,s2=1

∂2g1(Σ)

∂Σr1s1∂Σr2s2

= − 2σ2
∑

r,s,r1,s1,r2,s2

∂2gB;rs(Σ,Σ)

∂Σr1s1∂Σr2s2
+ 2σ2

∑
r,s,t,r1,s1,r2,s2

∂2gB;rt(Σ,Σ)

∂Σr1s1∂Σr2s2
gB;ts(Σ,Σ)

+ 2σ2
∑

r,s,t,r1,s1,r2,s2

∂gB;rt(Σ,Σ)

∂Σr1s1

∂gB;ts(Σ,Σ)

∂Σr2s2

=
4d3σ2λ

(λ+ dx)3 −
4d4σ2λx

(λ+ dx)4 +
2d3σ2λ2

(λ+ dx)4 =
6d3σ2λ2

(λ+ dx)4 ,

∂3g1(Σ)(1d×d)
⊗3 = − 2σ2

∑
r,s,r1,s1,r2,s2,r3,s3

∂3gB;rs(Σ,Σ)

∂Σr1s1∂Σr2s2∂Σr3s3

+ 2σ2
∑

r,s,t,r1,s1,r2,s2,r3,s3

∂3gB;rt(Σ,Σ)

∂Σr1s1∂Σr2s2∂Σr3s3
gB;ts(Σ,Σ)

+ 6σ2
∑

r,s,t,r1,s1,r2,s2,r3,s3

∂2gB;rt(Σ,Σ)

∂Σr1s1∂Σr2s2

∂gB;ts(Σ,Σ)

∂Σr3s3

= − 12d4σ2λ

(λ+ dx)4 +
12d5σ2λx

(λ+ dx)5 −
12d4σ2λ2

(λ+ dx)5 = − 24d4σ2λ2

(λ+ dx)5 ,

which completes the proof.
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D.6.5. Maximum of exponentially many correlated random variables

The challenge in Proposition 6.13 is that f(x11:nk) := max1≤l≤dn
1
nk

∑
i≤n

∑
j≤k xijl ∈

Rdn is that the statistic is non-smooth and we also need to have careful control to deal
with growing dimensions. We employ Corollary D.9, a result that adapts Theorem 4.1
to this setting by introducing smooth approximating functions f (t). In this section, we
first propose an appropriate choice of f (t) to yield a suitable bound similar to Theorem
4.1. The use of Corollary D.9 introduces additional moment terms of f to be controlled
as n, dn grow, for which the bounds are obtained via a martingale difference argument in
Lemma D.38. Finally, putting the results together allow us to compute a bound for dH
and for difference in variances in both the augmented and unaugmented cases.

The function of interest can be written as f(x11, . . . ,xnk) = g
(

1
nk

∑
i,j xij

)
where

g(x) := max1≤s≤dn xs ∈ R . (D.78)

We first propose the choice of approximating function gt for g and present its approxi-
mating quality in terms of t and explicit forms for its derivatives.

Lemma D.37. Consider g : Rdn → R defined in (D.78). Define, for t > 0,

g(t)(x) :=
log
(∑

s≤dn e
t log(dn)xs

)

t log(dn)
.

Then for every t, g(t) is infinitely differentiable, and |g(t)(x) − g(x)| ≤ 1
t
. Moreover,

defining
ωl(x) :=

exp(t log(dn)xl)∑dn
s=1 exp(t log(dn)xs)

,

the derivatives of gt are given by

(i) ∂
∂xl
g(t)(x) = ωl(x),

(ii) ∂2

∂xl2
∂xl1

g(t)(x) = −(t log(dn))ωl2(x)ωl1(x) + I{l1=l2}(t log(dn))ωl1(x),

(iii)
∂3

∂xl3∂xl2∂xl1
g(t)(x)

=(t log(dn))2 ωl3(x)ωl2(x)ωl1(x)− I{l2=l3}(t log(dn))2 ωl2(x)ωl1(x)

− I{l1=l3}(t log(dn))2 ωl2(x)ωl1(x)− I{l1=l2}(t log(dn))2 ωl2(x)ωl1(x)

+ I{l1=l2=l3}(t log(dn))2ωl1(x11:nk) .

In particular, this implies that ν̃(t)
r defined in Corollary D.9 with respect to g(t) satisfy

ν̃
(t)
1 ≤ 1 , ν̃

(t)
2 ≤ 2t log(dn) , ν̃

(t)
3 ≤ 5t2 log(dn)2 .

Proof. g(t) is infinitely differentiable as it is a composition of infinitely differentiable
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functions. The approximation error is given by

|g(x)− g(t)(x)| =
∣∣∣∣
log
(∑dn

l=1 exp(t log(dn)xl)
)
− log

(
exp(t log(dn) maxr≤dn xr)

)

t log(dn)

∣∣∣∣

=

∣∣∣∣∣
log
(∑dn

l=1 exp
(
t log(dn)(xl −maxr≤dnMr)

))

t log(dn)

∣∣∣∣∣
(a)

≤ log(dn)

t log(dn)
=

1

t
.

The inequality at (a) is obtained by noting that exp
(
t log(dn)(xl−maxr≤dn xr)

)
∈ (0, 1]

and that it attains 1 for some l. The sum inside the logarithm therefore lies in [1, dn].

The derivatives are obtained by repeated applications of chain rule.

For the final identities, note that
∑dn

l=1 ωl(x) = 1 and ωl(x) ∈ [0, 1]. Therefore we
get ∥∥ ∂

∂x
g(t)(x)

∥∥
1

=
∣∣∑dn

l=1
ωl(x)

∣∣ = 1 ,

for any x ∈ Rdn . Similarly for the second and third derivatives,
∥∥ ∂2

∂x2 g
(t)(x)

∥∥
1
≤ 2t log(dn) ,

∥∥ ∂3

∂x3 g
(t)(x)

∥∥
1
≤ 5t2 log(dn)2 .

Recall that for g(t) with output dimension 1, the noise stability terms are given by

ν̃
(t)
r = maxi≤n ζi;12

(∥∥ ∂

∂xr
g(t)
(
Wi( • )

)∥∥
1

)
,

Since the bounds above apply to ‖ ∂
∂xr

g(t)(Wi( • ))‖1 almost surely, we obtain the desired
bounds for ν̃(t)

1 , ν̃(t)
2 and ν̃(t)

3 .

Recall that in Theorem D.8, the terms ‖f(ΦX )‖L2
and ‖f(Z)‖L2

are introduced in the
bound and needs to be controlled. Bounding the moment of a maximum of exponentially
many correlated coordinates is made possible by the following lemma, which makes use
of Rosenthal’s inequality for a martingale difference sequence (Dharmadhikari et al.,
1968a).

Lemma D.38. Consider i.i.d. zero-mean random vectors Y1, . . . ,Yn in Rdn . Denote Yi,l

as the lth coordinate of Yi for l ≤ dn. For any m ≥ 3, if Mm := ‖maxl≤dn |Y1,l|‖Lm <

∞, then there exists a constant Cm that does not depend on dn or (Yi)i≤n such that
∥∥max
l≤dn

1

n

∑
i≤nYi,l

∥∥
Lm
≤ infν∈R

[
2n−(1−ν) + log(dn)n−ν M2

2 + n−1/2CmMm

]
.

In particular, this implies that for f(ΦX ) and f(Z) defined in Proposition 6.13, if

log(dn) = o(na) for some a ≥ 0, then

ν̃
(t)
0 = o(n−(1−a)/2 + t−1) , ‖f(ΦX )‖L2

, ‖f(Z)‖L2
= o(n−(1−a)/2) .

Proof. The general idea is to apply the triangle inequality to the following quantities:
∣∣∣E
[

max
l≤dn

1

n

∑
i≤nYi,l

]∣∣∣ ,
∥∥∥maxl≤dn

1

n

∑
i≤nYi,l −

∣∣∣E
[

max
l≤dn

1

n

∑
i≤nYi,l

]∣∣∣
∥∥∥
Lm

,

324



which are controlled separately. The first quantity is controlled by a second-order Taylor
expansion on a smooth approximating function of the maximum, and the second quantity
is controlled by martingale bounds.

The first step is to bound E
[

maxl≤dn
1
n

∑
i≤nYi,l

]
. For y1, . . . ,yn ∈ Rdn , consider

the following function which can be expressed in terms of g(t) from Lemma D.37:

Ft;α(y1, . . . ,yn) :=
log
(∑

l≤dn exp(t log(dn) 1
nα

∑
i≤n yil)

)

n1−αt log(dn)
= n−(1−α)g(t)

( 1

nα

∑
i≤n yi

)
.

For g defined in Lemma D.37, Ft;α then satisfies
∣∣∣Ft;α(y1, . . . ,yn)−maxl≤dn

1

n

∑
i≤n yil

∣∣∣ =
1

n1−α

∣∣∣g(t)
(

1

nα

∑
i≤n yi

)
− g
(

1

nα

∑
i≤n yi

)∣∣∣

≤ 1

n1−αt
,

and recall the intermediate bounds in the proof of Lemma D.37 that for any y ∈ Rdn ,

‖∂g(t)(y)‖ ≤ 1 , ‖∂2g(t)(y)‖ ≤ 2t log(dn) , ‖∂3g(t)(y)‖ ≤ 5t2 log(dn)2 .

Therefore
∣∣E[Ft;α(Y1, . . . ,Yn)]− E

[
maxl≤dn

1

n

∑
i≤nYi,l

]∥∥ ≤ 1

n1−αt
,

and by expanding a telescoping sum followed by a Taylor expansion, we get

|E[Ft;α(Y1, . . . ,Yn)]| =
1

n1−α

∣∣E
[
g(t)
( 1

nα

∑
i≤nYi

)]∣∣

≤ 1

n1−α |g(t)(0)|+ 1

n1−α

∑n

i=1

∣∣∣E
[
g(t)
( 1

nα

∑i

i′=1
Yi′
)
− g(t)

( 1

nα

∑i−1

i′=1
Yi′
)]∣∣∣

≤ 1

n1−αt
+

1

n

∑
i≤n

∣∣E
[
∂g(t)

( 1

nα

∑i−1

i′=1
Yi′
)
Yi

]∣∣

+
1

2n1+α

∑
i≤n

∣∣E
[

supz∈[0,Yi]
∂2g(t)

( 1

nα

∑i−1

i′=1
Yi′ + z

)
YiY

>
i

]∣∣
(a)

≤ 1

n1−αt
+

1

2n1+α

∑
i≤n E

[
supz∈[0,Yi]

‖∂2g(t)
( 1

nα

∑i−1

i′=1
Yi′ + z

)
‖1(maxl≤dn |Yi,l|)2

]

(b)

≤ 1

n1−αt
+
t log(dn)

nα
‖maxl≤dn |Y1,l|‖2

L2
=

1

n1−αt
+
t log(dn)

nα
M2

2 .

To get (a), we have used the fact that (Yi)i≤n are i.i.d. with E[Yi] = 0 followed by ap-
plying Hölder’s inequality. To get (b), we have used the bounds on the second derivative
of gt from Lemma D.37. Now by triangle inequality and taking t = nα−ν , we obtain a
bound on the mean of the maximum as

∣∣∣E
[

maxl≤dn
1

n

∑
i≤nYi,l

]∣∣∣ ≤ infν∈R

[
2

n1−αnα−ν
+

log(dn)

nαn−α+ν M
2
2

]

= infν∈R
[
2n−(1−ν) + log(dn)n−νM2

2

]
. (D.79)

The second step is to control
∥∥maxl≤dn

1

n

∑
i≤nYi,l − E

[
maxl≤dn

1

n

∑
i≤nYi,l

]∥∥
Lm

. (D.80)
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Define the filtrations (Fi)ni=0 by Fi := σ(Y1, . . . ,Yi), and consider the martingale
(Si)

n
i=0 with respect to (Fi)ni=0 defined by S0 := 0 and, for 1 ≤ i ≤ n,

Si := E
[

maxl≤dn
1

n

∑
j≤nYj,l

∣∣Fi
]
− E

[
maxl≤dn

1

n

∑
j≤nYj,l

]
.

Note that the quantity to be controlled in (D.80) is exactly Sn. We also define the martin-
gale difference sequence (Di)

n
i=1 by

Di := Si − Si−1 = E
[

maxl≤dn
1

n

∑
j≤nYj,l

∣∣Fi
]
− E

[
maxl≤dn

1

n

∑
j≤nYj,l

∣∣Fi−1

]
.

Then by a bound on moments of martingales (Dharmadhikari et al., 1968a), there exist
constants C ′m that do not depend on n, dn or (Yi)i≤n such that

(D.80) = ‖Sn‖Lm ≤ C ′mn
1/2
( 1

n

∑n

i=1
E
[
|Di|m

])1/m
. (D.81)

Moreover, by independence between Yi and {Yj}j 6=i, we have that almost surely

E
[

maxl≤dn
∑

j 6=iYj,l

∣∣Fi
]

= E
[

maxl≤dn
∑

j 6=iYj,l

∣∣Fi−1

]
. (D.82)

To control the martingale differences, we note that nDi satisfies, almost surely,

nDn ≤ E
[

maxl≤dn Yi,l + maxl≤dn
∑

j 6=iYj,l

∣∣∣Fi
]
− E

[
maxl≤dn

∑
j≤nYj,l

∣∣∣Fi−1

]

(D.82)
= maxl≤dn Yi,l + E

[
maxl≤dn

∑
j 6=iYj,l

∣∣∣Fi−1

]
− E

[
maxl≤dn

∑
j≤nYj,l

∣∣∣Fi−1

]

≤ maxl≤dn Yi,l + E
[

maxl≤dn
∑

j≤nYj,l + maxl≤dn(−Yi,l)
∣∣∣Fi−1

]

− E
[

maxl≤dn
∑

j≤nYj,l

∣∣∣Fi−1

]

= maxl≤dn Yi,l + E
[

maxl≤dn(−Yi,l)
]

≤ maxl≤dn |Yi,l|+ E[ maxl≤dn |Yi,l| ] .

Similarly by expanding the E[ • |Fi−1] term, almost surely,

−nDn ≤ E
[

maxl≤dn Yi,l + maxl≤dn
∑

j 6=iYj,l

∣∣∣Fi−1

]
− E

[
maxl≤dn

∑
j≤nYj,l

∣∣∣Fi
]

(D.82)
= E

[
maxl≤dn Yi,l

]
+ E

[
maxl≤dn

∑
j 6=iYj,l

∣∣∣Fi
]
− E

[
maxl≤dn

∑
j≤nYj,l

∣∣∣Fi
]

= E
[

maxl≤dn Yi,l

]
+ E

[
maxl≤dn

∑
j≤nYj,l + maxl≤dn(−Yi,l)

∣∣∣Fi
]

− E
[

maxl≤dn
∑

j≤nYj,l

∣∣∣Fi
]

= E
[

maxl≤dn Yi,l

]
+ maxl≤dn(−Yi,l)

≤ E
[

maxl≤dn |Yi,l|
]

+ maxl≤dn |Yi,l| .

This implies the mth moment of |nDi| can be bounded by

E[|nDi|m] ≤ E
[(
E
[

maxl≤dn |Yi,l|
]

+ maxl≤dn |Yi,l|
)m]

=
∑m

r=1

(
m

r

)
E
[

maxl≤dn |Yi,l|
]rE
[(

maxl≤dn |Yi,l|
)m−r]

≤ 2mE
[(

maxl≤dn |Yi,l|
)m]

= 2m(Mm)m .
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Substituting into (D.81) yields the bound on (D.80):

(D.80) ≤ C ′mn
−1/2

( 1

n

∑n

i=1
E
[
|nDi|m

])1/m ≤ n−1/2CmMm ,

where we have defined Cm := 2C ′m. Therefore by applying triangular inequality together
with (D.79), the bound on the mean of a maximum, we get
∥∥maxl≤dn

1

n

∑
i≤nYi,l

∥∥
Lm
≤ infν∈R

[
2n−(1−ν) + log(dn)n−ν M2

2 + n−1/2CmMm

]
,

which is the required bound. For the final bound, note that if we choose Yi above to be
1
k

∑k
j=1 φijXi from Proposition 6.13, (Yi)

n
i=1 are indeed i.i.d. zero-mean, and

M6 =
∥∥∥max
l≤dn

1

k

∑k

j=1
(φ1jX1)l

∥∥∥
L6

≤
∥∥∥max
l≤dn

(φ11X1)l

∥∥∥
L6

(d)
< ∞ ,

where (d) is by the assumption in Proposition 6.13. Then applying the bound above and
plugging in log(dn) = o(na) gives

‖f(ΦX )‖L2
≤ ‖f(ΦX )‖L6

=
∥∥maxl≤dn

1

n

∑
i≤nYi,l

∥∥
L6

= o
(

infν∈R
[
2n−(1−ν) + na−νM2

6 + n−1/2C2M6

])

(e)
= o
(
2n−

1−a
2 + n−

1−a
2 M2

2 + n−1/2C2M2

)
= o(n−(1−a)/2) ,

where we have set ν = 1+α
2

in (e). This is the desired bound for ‖f(ΦX )‖L2
. Applying

the exact same argument to f(Z) yields the same bound:

‖f(Z)‖L2
≤ ‖f(Z)‖L6

= o(n−(1−a)/2) .

By definition of ν̃(t)
0 ,

ν̃
(t)
0 = O(max{‖f(ΦX )‖L6

, ‖f(Z)‖L6
}+ ε(t)) = o(n−(1−a)/2 + t−1) .

We are now ready to prove Proposition 6.13.

Proof of Proposition 6.13. Consider the approximation function gt defined in Lemma
D.37, which satisfies the condition of Corollary D.9 with approximation quality ε(t) = 1

t
.

By assumption we have log(dn) = o(n1/10). Take t = o(n11/20). Then by Lemma D.38,
‖f(ΦX )‖L2

, ‖f(Z)‖L2
= o(n−9/20) and

ν̃
(t)
0 = o(n−9/20 + t−1) = o(n−9/20) ,

and by Lemma D.37,

ν̃
(t)
1 ≤ 1 , ν̃

(t)
2 ≤ 2t log(dn) = o(n13/20) , ν̃

(t)
3 ≤ 5t2 log(dn)2 = o(n24/20) .

Moreover, by the assumption ‖maxl≤dn |(φ11X1)l|‖L6
, ‖maxl≤dn |(Z11)l|‖L6

< ∞, the

327



moment terms in Corollary D.9 satisfy

c̃X =
1

6

√
E
[

maxl≤dn |(φijXi)l|6
]

= O(1) ,

c̃Z =
1

6

√
E
[

1

k

∑k

j=1
maxl≤dn |(Z1j)l|6

]
(a)
=
√

E[maxl≤d |(Z1j)l|6]

(b)
= O

(
‖maxl≤dn |(φijXi)l|‖3

L2
(log dn)3/2) = o(n3/20) ,

In (a) we have used that the moment conditions (6.4) and the fact that Z1 is Gaussian
implies that Z11, . . . ,Z1k are identically distributed. In (b) we have used Lemma D.23 to
bound the moment of maximum of a Gaussian. Therefore by Corollary D.9, we get that

dH(
√
nf(ΦX ),

√
nf(Z)) = o

(
(n−1/2(ν̃

(t)
1 )3 + 3n−1ν̃

(t)
1 ν̃

(t)
2 + n−3/2ν̃

(t)
3 )(c̃X + c̃Z)

+
√
nε(t)

)

= o
(
n−7/20 + n−4/20 + n−3/20 + n−1/20

) n→∞−−−→ 0 ,

and

n|Var[f(ΦX )]− Var[f(Z)]| = o
(
n−1(ν̃

(t)
0 ν̃

(t)
3 + ν̃

(t)
1 ν̃

(t)
2 )(c̃X + c̃Z)

+ n(‖f(ΦX )‖L2
+ ‖f(Z)‖L2

)ε(t) + nε(t)2
)

= o
(
n−2/20 + n−4/20 + 1 + n−2/20

) n→∞−−−→ 0 ,

which are the desired convergences.

D.6.6. Derivation of examples: softmax ensemble

In this section, we examine the effect of augmentation on the softmax ensemble estimator

f(x11, . . . ,xnk) :=
∑mn

r=1
βr

exp
(
− t log(mn)

nk

∑n
i=1

∑k
j=1 L(βr,xij)

)
∑mn
s=1 exp

(
− t log(mn)

nk

∑n
i=1

∑k
j=1 L(βs,xij)

) for xij ∈ Rd .

The log(mn) scaling is justified in Lemma D.39. To prove Proposition 6.14 about the
effect of augmentations on testing data size, we consider the modified augmentations
πij, τij : Rd → Rmn defined by

πij(Xi) :=
(
L(β1, φijXi), . . . , L(βmn , φijXi)

)
,

τij(Xi) :=
(

1

cφ
(L(β1,Xi)− µ1) + µ1, . . . ,

1

cφ
(L(βmn ,Xi)− µmn) + µmn

)
. (D.83)

Then defining the function g : Rmn → Rp by

g(x) :=
∑mn

r=1
βr

exp(−t log(mn)xr)∑mn
s=1 exp(−t log(mn)xs)

, (D.84)

we can write the two quantities of interest as

f(ΦX ) = g
( 1

nk

∑n

i=1

∑k

j=1
πij(Xi)

)
, f ∗(X ) = g

( 1

nk

∑n

i=1

∑k

j=1
τij(Xi)

)
.

(D.85)
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This allows us to invoke Corollary D.10 to study convergence of each estimator to their
first-order Taylor expansions and provide an explicit formula of cφ:

cφ :=
(∂g(µ))>

( 1

n
Σ11

)
∂g(µ)

(∂g(µ))>
( 1

nk
Σ11 +

k − 1

nk
Σ12

)
∂g(µ)

≥ 1 . (D.86)

The fact that Corollary D.10 is adapted for high dimensions is what allows mn to grow
exponentially in n.

In the proof of Proposition 6.14, we first compare f(ΦX ) to a first order Taylor ex-
pansion fT (Z) that is equal in distribution to fT (Z̃φ) for some surrogate variables Z̃φ to
be specified, which is in turn compared to f ∗(X ) defined in Proposition 6.14.

Proof of Proposition 6.14. Recall from (D.84) that

g(x) :=
∑mn

r=1
βr

exp(−t log(mn)xr)∑mn
s=1 exp(−t log(mn)xs)

.

Denote wr := exp(−t log(mn)xr)∑mn
s=1 exp(−t log(mn)xs)

, and use (β)l to denote the lth coordinate of a Rp

vector. To apply Corollary D.10 to g, we first compute the partial derivatives of each lth
coordinate of g as

∂gl(x)

∂xr1
= − t log(mn)(βr1)l

wr1∑mn
s=1 ws

+ t log(mn)
∑mn

s′=1
(βs′)l

ws′wr1

(
∑mn

s=1
ws)2

,

∂2gl(x)

∂xr2∂xr1
= t2 log(mn)2(βr1)l

wr1∑mn
s=1 ws

I{r1=r2} − t2 log(mn)2(βr1)l
wr1wr2

(
∑mn
s=1 ws)

2

− t2 log(mn)2(βr2)l
wr2wr1

(
∑mn
s=1 ws)

2
− t2 log(mn)2

∑mn

r′=1
(βr′)l

wr′wr1

(
∑mn

s=1
ws)2

I{r1=r2}

+ 2t2 log(mn)2
∑mn

s′=1
(βs′)l

ws′wr1wr2

(
∑mn

s=1
ws)3

.

Since wr ≥ 0 for all r ≤ mn, we get by triangle inequality and Cauchy-Schwarz that
∥∥∥∂gl(x)

∂x

∥∥∥
1
≤ t log(mn)

∑mn

r1=1

(
|(βr1)l|

∣∣∣ wr1∑mn
s=1 ws

∣∣∣+
∑mn

s′=1
|(βs′)l|

∣∣∣ ws′wr1

(
∑mn

s=1
ws)2

∣∣∣
)

≤ t log(mn)(supr≤mn |(βr)l|)
(∑mn

r1=1 wr1∑mn
s=1 ws

+

∑mn
r1,s

′=1 ws′wr1
(
∑mn
s=1 ws)

2

)

= 2t log(mn)(supr≤mn |(βr)l|) ,

and similarly
∥∥∥∂

2gl(x)

∂x2

∥∥∥
1
≤ 6t2 log(mn)2(supr≤mn |(βr)l|) .

Recall that κ̃r :=
∑

l≤p

∥∥supw∈[0,X̄]

∥∥∂rgl
(
µ + w

)∥∥
1

∥∥
L6

. Since logmn = o(n1/9), t is
fixed and

∑p

l=1
(supr≤mn |(βr)l|) is assumed to be O(1), the above bounds imply

κ̃1 ≤ 2t log(mn)
∑p

l=1
(supr≤mn |(βr)l|) = o(n1/9) ,

κ̃2 ≤ 6t2 log(mn)2
∑p

l=1
(supr≤mn |(βr)l|) = o(n2/9) ,
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where we have used the assumption
∑p

l=1(maxr≤mn |(βr)l|) = O(1). Now recall from
(D.85) that

f(ΦX ) = g
( 1

nk

∑n

i=1

∑k

j=1
πij(Xi)

)
,

where πij is as defined in (D.83). Take the surrogate variables Z to be {Zi}i≤n, where
Z2, . . . ,Zn are i.i.d. copies of the Gaussian vector Z1 specified in the statement in Propo-
sition 6.14. The moment terms in Corollary D.10 can be bounded as

c̃X =
1

6

√
E
[

maxr≤mn |(π11(Xi))l|6
]

=
1

6

∥∥maxr≤mn |L(βr, φ11X1)|
∥∥3

L6

(a)
= O(1) ,

c̃Z =
1

6

√
E
[

1

k

∑k

j=1
maxr≤mn |(Z1j)r|6

]
(b)
=

1

6

√
E
[

maxr≤mn |(Z11)r|6
]

(c)
= O(

∥∥maxr≤mn |L(βr, φ11X1)|
∥∥3

L2
(logmn)3/2) = o(n1/6) ,

where (a) is by assumption of Proposition 6.14 and (b) is by noting that the Gaussianity
of Z1 and its specified moments imply that Z11, . . . ,Z1k are identically distributed. In
(c), we have used Lemma D.23. By Corollary D.10 and that logmn = o(n1/9), we get
that

dH(
√
nf(ΦX ),

√
nfT (Z)) = o

(
n−1/2+1/9κ̃2

)
+O

(
n−1/2κ̃3

1c̃Z
)

= o(1) ,

(D.87)

n
∥∥Var[f(ΦX )]− Var

[
fT (Z)

]∥∥ = o
(
n−1/2+1/6κ̃1κ̃2 + n−1+2/9κ̃2

2

)
= o(1) . (D.88)

Next we compare fT (Z) to fT (Z̃φ) for some Z̃φ. Writing µ := {µr}r≤mn = E[π11(X1)] =

E[{L(βr, φ11X1)}r≤mn ] = E[Z11], we can express

fT (Z) = g(µ) + (∂g(µ))>
(

1

nk

∑n

i=1

∑k

j=1
Zij − µ

)
,

where we have viewed ∂g(µ) as a vector in Rmn instead of a map Rmn → R as before and
hence included a transpose. On the other hand, write Z̃ := {Z̃i}i≤n, where Z̃2, . . . , Z̃n

are i.i.d. copies of the Gaussian vector Z̃1 specified in the statement in Proposition 6.14.
Then by distributional invariance assumption φ11X1

d
= X1 and the assumption on Z̃1, we

get that for 1 ≤ j ≤ k,

E[Z̃1j] = E[Z̃11] = E[τ11(X1)] = E[{L(βr,X1)}r≤mn ] = E[{L(βr, φ11X1)}r≤mn ] = µ .

Therefore, writing

Σ11 := Var[π11(X1)] , Σ12 := Cov[π11(X1), π12(X1)] ,

we get that
(

1
nk

∑n
i=1

∑k

j=1
Z̃ij − µ

)
and

(
1
nk

∑n
i=1

∑k

j=1
Zij − µ

)
are both zero-mean

Gaussian vectors in Rmn with variance given by

Var
[

1

nk

∑n

i=1

∑k

j=1
Zij − µ

]
=

1

nk
Σ11 +

k − 1

nk
Σ12 ,
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Var
[

1

nk

∑n

i=1

∑k

j=1
Z̃ij − µ

]
=

1

nk
Var[τ11(X1)] +

k − 1

nk
Cov[τ11(X1), τ12(X1)]

(a)
=

1

n
Σ11 ,

where (a) is because

Var[τ11(X1)] = Cov[τ11(X1), τ12(X1)] = Var[{L(βr,X1)}r≤mn ]

= Var[{L(βr, φ11X1)}r≤mn ] = Var[π11(X1)] = Σ11 .

In particular, this implies that fT (Z) is a Gaussian vector with mean g(µ) and variance
satisfying

Var[fT (Z)] = (∂g(µ))>
( 1

nk
Σ11 +

k − 1

nk
Σ12

)
∂g(µ)

(a)

≤ (∂g(µ))>
( 1

n
Σ11

)
∂g(µ) ,

where we have noted in (a) that Σ11 = Var[π11(X1)] � Cov[π11(X1), π12(X1)] = Σ12

by Lemma D.19. This suggests that if we define cφ as in (D.86),

cφ :=
(∂g(µ))>

( 1

n
Σ11

)
∂g(µ)

(∂g(µ))>
( 1

nk
Σ11 +

k − 1

nk
Σ12

)
∂g(µ)

≥ 1 ,

then fT (Z) is equal in distribution to the Gaussian vector

g(µ) +
1

cφ
(∂g(µ))>

(
1

nk

∑n

i=1

∑k

j=1
Z̃ij − µ

)
=: fT

(
Z̃φ
)
,

where we have defined Z̃φ := {Z̃φi }i≤n, where Z̃φi := 1
cφ

(Z̃i−µ) +µ. This together with
(D.87) and the triangle inequality implies

dH(
√
nf(ΦX ),

√
nfT (Z̃φ))

≤ dH(
√
nf(ΦX ),

√
nfT (Z)) + suph∈H |E[h(

√
nf(ΦX ))− h(

√
nfT (Zφ))]|

= o(1) + 0 = o(1) , (D.89)

and similarly by (D.88),

n‖Var[f(ΦX )]− Var[fT (Z̃φ)‖
≤ n‖Var[f(ΦX )]− Var[fT (Z)]‖+ n‖Var[fT (Z)]− Var[fT (Z̃φ)]‖
= o(1) + 0 = o(1) . (D.90)

Finally, note that Z̃φi match the first two moments of
1

cφ
({L(βr,Xi)}r≤mn − µ) + µ =

{
1

cφ
(L(βr,Xi)− µr) + µr

}
r≤mn

= τij(Xi) ,

where we have invoked the definition of τij from (D.83). We check that the bounds on
c̃φX and c̃φZ (i.e. c̃X and c̃Z defined as in Corollary D.10 but for τ11(X1) and Z̃φ1 ) holds:

c̃φX =
1

6

√
E
[

maxr≤mn |(τ11(Xi))l|6
]

=
1

6

∥∥maxr≤mn
∣∣ 1

cφ
(L(βr,X1)− µr) + µr

∣∣ ∥∥3

L6

≤ 1

6

(
1

cφ

∥∥maxr≤mn
∣∣L(βr,X1)

∣∣ ∥∥
L6

+
cφ − 1

cφ
maxr≤mn |µr|

)3
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≤ 1

6

(
1

cφ

∥∥maxr≤mn
∣∣L(βr,X1)

∣∣ ∥∥
L6

+
cφ − 1

cφ
‖maxr≤mn L(βr,X1)‖L1

)3

≤ 1

6

∥∥maxr≤mn
∣∣L(βr,X1)

∣∣ ∥∥3

L6
= O(1) ,

where the last bound is by assumption of Proposition 6.14. Similarly for the moment
term of the surrogate variable, by noting that Z̃φi := 1

cφ
(Z̃i − µ) + µ, we have

c̃φZ =
1

6

√
E
[

1

k

∑k

j=1
maxr≤mn |(Z̃

φ
1j)r|6

]
=

1

6

√
E
[

maxr≤mn |(Z̃
φ
11)r|6

]

≤ 1

6

(
1

cφ

∥∥maxr≤mn
∣∣Z̃11

∣∣ ∥∥
L6

+
cφ − 1

cφ
‖maxr≤mn L(βr,X1)‖L1

)3

≤ 1

6
max

{∥∥maxr≤mn
∣∣Z̃11

∣∣ ∥∥
L6
, ‖maxr≤mn L(βr,X1)‖L6

}3

= O
(∥∥maxr≤mn

∣∣Z̃11

∣∣ ∥∥3

L6

)
= O((logmn)3/2) = o(n1/6),

where in the last display line, we have used Lemma D.23 similar to how we have bounded
c̃Z . The bounds on derivative terms of g are the same as before, and therefore we get an
analogous result to (D.87) and (D.88) for X̃ := {τij(Xi)}i≤n,j≤k:

dH(
√
nf(X̃ ),

√
nfT (Z̃φ)) = o(1) , n

∥∥Var[f(X̃ )]− Var
[
fT (Z̃φ)

]∥∥ = o(1) .

Observe that by construction, f(X̃ ) = f ∗(X ) as noted in (D.85). Combining the above
bounds with (D.89) and (D.90) by the triangle inequality, we get

dH(
√
nf(ΦX ),

√
nf ∗(X )) = o(1) , n

∥∥Var[f(ΦX )]− Var
[
f ∗(X )

]∥∥ = o(1) .

This completes the proof of Proposition 6.14.

The following lemma justifies the log(mn) scaling in the definition of softmax en-
semble in Proposition 6.14:

βt :=
∑mn

r=1
βr

exp
(
− t log(mn)

nk

∑n
i=1

∑k
j=1 L(βr,xij)

)
∑m
s=1 exp

(
− t log(mn)

nk

∑n
i=1

∑k
j=1 L(βs,xij)

) .

Lemma D.39. Fix n, k, mn, the training set on which βr’s are trained and the testing set

{x11, . . . ,xnk}. Denote L̄(βr) := 1
nk

∑n
i=1

∑k
j=1 L(βr,xij) and L̄min := mins≤mn L̄(βs).

Define the minimizing set S := {r ∈ {1, . . . ,mn} | L̄(βr) = L̄min}, i.e. S is the indexing

set of βr’s that minimize L̄. Consider βS(x11:nk) := 1
|S|
∑

r∈S βr(x1:n1
), an average of

βr’s within the minimizing set S, and define L̄2 := mins 6∈S L̄(βs). Then, if |S| = mn,

βt(x11:nk) = βS(x11:nk) and otherwise
∥∥βt(x11:nk)− βS(x11:nk)

∥∥

≤ 2 maxr≤mn ‖βr(x11:nk)‖
(

1− 1

1 + exp(log(mn)− t log(mn)(L̄2 − L̄min))

)
.

Notably if maxr≤mn ‖βr(x11:nk)‖ is bounded, then as t→∞, βt(x11:nk)→ βS(x11:nk).
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Proof of Lemma D.39. Denote wr := exp(−t log(mn)L̄(βr))∑
s≤mn

exp(−t log(mn)L̄(βs))
. If |S| = mn, the equality

holds since wr =
1

mn
for all r. If |S| 6= mn, wr < 1

|S| for r ∈ S. By triangle inequality,

∥∥βt(x11:nk)− βS(x11:nk)
∥∥ =

∥∥∥
∑mn

r=1
βr(x1:n1

)wr −
∑

r∈S βr(x1:n1
)

1

|S|

∥∥∥

=
∥∥∥
∑

r 6∈S βr(x1:n1
)wr −

∑
r∈S βr(x1:n1

)
(

1

|S| − wr
)∥∥∥

≤
∑

r 6∈S

∥∥βr(x1:n1
)wr
∥∥+

∑
r∈S

∥∥∥βr(x1:n1
)
(

1

|S| − wr
)∥∥∥

≤ max1≤r≤mn

∥∥βr(x1:n1
)
∥∥
(∑

r 6∈S wr +
∑

r∈S

(
1

|S| − wr
))

= max1≤r≤mn

∥∥βr(x1:n1
)
∥∥
(∑

r 6∈S wr + 1−
∑

r∈S wr

)

= 2 max1≤r≤mn

∥∥βr(x1:n1
)
∥∥
(

1−
∑

r∈S wr

)
. (D.91)

The final equality is by
∑

r≤mn wr = 1. For r ∈ S, by construction, L̄(βr) = L̄min, so

∑
r∈S wr =

∑
r∈S

exp(−t log(mn)L̄min)

|S| exp(−t log(mn)L̄min) +
∑
s6∈S exp(−t log(mn)L̄(βs))

=
1

1 + 1
|S|
∑
s6∈S exp(−t log(mn)(L̄(βs)− L̄min))

≤ 1

1 + mn−|S|
|S| exp(−t log(mn)(L̄2 − L̄min))

≤ 1

1 + exp(log(mn)− t log(mn)(L̄2 − L̄min))
.

Substituting the bound into (D.91) recovers the desired result. The last statement is ob-
tained by noting that if |S| = m, βt(x11:nk) = βS(x11:nk) by definition, and if not,
L̄2 − L̄min > 0, so the bound proved above goes to zero as t→∞.

D.7 Proof for Section 6.5 and Appendix D.2.2

We follow the notation in Section 6.5 and Appendix D.2.2. We first prove a list of results
on f (1)

λ and f (2)
λ , collected in Lemma D.40, that are useful for subsequent derivations.

Section D.7.1 presents the proofs for results in Appendix D.2.2 and Appendix D.7.2
presents the proofs for Section 6.5.

Throughout, for a real symmetric matrixA ∈ Rn×n, we denote λ1(A) ≤ . . . ≤ λd(A)

as its eigenvalues and denote the associated eigenvectors as v1(A), . . . , vd(A).

Lemma D.40. Let A, A′ and B be Rd×d symmetric matrices and fix λ ≥ 0.

(i) The following bounds control the sizes of f (1)
λ and f (2)

λ :

|f (1)
λ (A)| ≤ max

l≤d; λl(A)6=−λ

λ2

(λl(A) + λ)2‖β‖2 for λ > 0 ,
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|f (1)
0 (A)| ≤

∑d

l=1
I{λl(A)=0}‖β‖2 ,

|f (2)
λ (A,B)| ≤ max

l≤d; λl(A) 6=−λ

d σ2
ε ‖B‖op

n(λl(A) + λ)2 .

(ii) The following bounds hold for the approximations of f (1)
0 by f (1)

λ and f (2)
0 by f (2)

λ ,

where λ > 0:
∣∣f (1)
λ (A)− f (1)

0 (A)
∣∣ ≤ maxl≤d;λl(A)6∈{0,−λ}

λ2‖β‖2
(λl(A) + λ)2 ,

∣∣f (2)
λ (A,B)− f (2)

0 (A,B)
∣∣ ≤ σ2

ε

nλ2

∑d

l=1
I{λl(A)∈{0,−λ}}|vl(A)>B vl(A)|

+
λdσ2

ε

n
max

l≤d;λl(A)6∈{0,−λ}

|λ+ 2λl(A)| ‖B‖op
λl(A)2(λl(A) + λ)2 .

Now suppose additionally that λ > 0, λ1(A) ≥ −λ/2 and λ1(A′) ≥ −λ/2. Then we

have

(iii) the following bounds hold on the effect of perturbing the argument of f (1)
λ and f (2)

λ :
∣∣f (1)
λ (A)− f (1)

λ (A′)
∣∣ ≤ 4 ‖β‖2‖A− A′‖op

∣∣f (2)
λ (A,B)− f (2)

λ (A′, B)
∣∣ ≤ 16σ2

εd

nλ3 ‖A− A′‖op‖B‖op .

Proof of Lemma D.40. To prove (i), we first note that for λ > 0,
∣∣ f (1)

λ (A)
∣∣ = λ2

∣∣β>
(
A+ λId

)−2
β
∣∣

=
∑d

l=1

λ2 ‖β‖2
(λl(A) + λ)2 I{λl(A)6=−λ} ≤ max

l≤d; λl(A) 6=−λ

λ2‖β‖2
(λl(A) + λ)2 ,

whereas for λ = 0, we have
∣∣ f (1)

0 (A)
∣∣ =

∥∥(A†A− Id
)
β
∥∥2

=
∑d

l=1

(
(0− 1)2I{λl(A)=0} + (1− 1)2I{λl(A)6=0}

)
‖β‖2

=
∑d

l=1
I{λl(A)=0}‖β‖2 .

Meanwhile for λ ≥ 0, we have
∣∣ f (2)

λ (A,B)
∣∣ =

σ2
ε

n

∣∣Tr
((
A+ λId

)−2
B
)∣∣

≤ σ2
ε ‖B‖op
n

∣∣∣
∑d

l=1

I{λl(A) 6= −λ}
(λl(A) + λ)2

∣∣∣ = max
l≤d; λl(A) 6=−λ

d σ2
ε ‖B‖op

n(λl(A) + λ)2 .

To prove (ii), note that by assumption λ > 0. The first difference can be bounded as
∣∣f (1)
λ (A)− f (1)

0 (A)
∣∣ =

∣∣β>
( (
A†A− Id

)2 − λ2
(
A+ λId

)−2 )
β
∣∣

≤ ‖β‖2
∥∥(A†A− Id

)2 − λ2
(
A+ λId

)−2∥∥
op

(a)
= ‖β‖2 max

{∣∣∣(−1)2 − λ2

λ2

∣∣∣ , maxl≤d;λl(A)6=0

∣∣∣02 − λ2I{λl(A) 6= −λ}
(λl(A) + λ)2

∣∣∣
}
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≤ maxl≤d;λl(A)6∈{0,−λ}
λ2‖β‖2

(λl(A) + λ)2 .

In (a), we have noted that all matrices involved share the same set of eigenvectors. The
second difference can be controlled as
∣∣f (2)
λ (A,B)− f (2)

0 (A,B)
∣∣ =

σ2
ε

n

∣∣∣Tr
(((

A+ λId
)−2 − A−2

)
B
)∣∣∣

≤ σ2
ε

n

∑d

l=1

∣∣∣
( I{λl(A) 6= −λ}

(λl(A) + λ)2 −
I{λl(A) 6= 0}

λl(A)2

)
(vl(A)>B vl(A))

∣∣∣

≤ σ2
ε

n

∑d

l=1

( I{λl(A) ∈ {0,−λ}}
λ2 + I{λl(A)6∈{0,−λ}}

|λ2 + 2λλl(A)|
λl(A)2(λl(A) + λ)2

)
|vl(A)>B vl(A)|

≤ σ2
ε

nλ2

∑d

l=1
I{λl(A)∈{0,−λ}}|vl(A)>B vl(A)|

+
λdσ2

ε ‖B‖op
n

max
l≤d;λl(A)6∈{0,−λ}

|λ+ 2λl(A)|
λl(A)2(λl(A) + λ)2 .

To prove (iii), we first note that by assumption, λl(A) ≥ −λ/2 > −λ for all l ≤ d, so the
map Ã 7→ (Ã + λId)

−1 is smooth in the local neighbourhood of the line segment [0, A];
the same holds for A′. We can now apply the mean value theorem to f (1)

λ and f (2)
λ by

computing their first derivatives: Writing Ãt = t(A− A′) + A′, we have
∣∣f (1)
λ (A)− f (1)

λ (A′)
∣∣ ≤ supt∈[0,1]

∣∣∣λ2β>(Ãt + λId)
−1(A− A′)

(
Ãt + λId

)−1
β
∣∣∣

≤ λ2‖β‖2‖A−A′‖op
(λ/2)2 = 4 ‖β‖2‖A− A′‖op .

In the last line, we have noted that all eigenvalues of t(A − A′) + A′ are bounded from
below by −λ/2. Similarly we have

∣∣f (2)
λ (A,B)− f (2)

λ (A′, B)
∣∣

≤ σ2
ε

n

∑
q1,q2∈N
q1+q2=3

sup
t∈[0,1]

∣∣Tr
(
(Ãt + λId)

−q1(A− A′)(Ãt + λId)
−q2B

)∣∣

≤ 2σ2
εd

n
‖A− A′‖op

∥∥(Ãt + λId)
−1
∥∥3

op
‖B‖op

≤ 16σ2
εd

nλ3 ‖A− A′‖op‖B‖op .

D.7.1. Proofs for Appendix D.2.2

The proof exploits the assumption below on the distribution of the extreme eigenvalues
of X̄1, X̄2, Z̄1 and Z̄2, as well as the alignment of their zero eigenspace.

Proof of Lemma D.15. First note that by the triangle inequality, almost surely
∣∣fλ(X̄1, X̄2)− f0(X̄1, X̄2)

∣∣

≤
∣∣f (1)
λ (X̄1, X̄2)− f (1)

0 (X̄1, X̄2)
∣∣+
∣∣f (2)
λ (X̄1, X̄2)− f (2)

0 (X̄1, X̄2)
∣∣ .
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Applying Lemma D.40(ii), we get that almost surely
∣∣f (1)
λ (X̄1, X̄2)− f (1)

0 (X̄1, X̄2)
∣∣ ≤ λ2‖β‖2 max

l≤d;λl(X̄1)6∈{0,−λ}

1

(λl(X̄1) + λ)2
,

and
∣∣f (2)
λ (X̄1, X̄2)− f (2)

0 (X̄1, X̄2)
∣∣ ≤ σ2

ε

nλ2

∑d

l=1
I{λl(X̄1)∈{0,−λ}}

(
vl(X̄1)>X̄2 vl(X̄1)

)

+
λdσ2

ε ‖X̄2‖op
n

max
l≤d;λl(X̄1)6∈{0,−λ}

|λ+ 2λl(X̄1)|
λl(X̄1)2(λl(X̄1) + λ)2

.

The above bound can be simplified by noting that all eigenvalues of X̄1 are non-negative,
which implies that almost surely for all 1 ≤ l ≤ d,

I{λl(X̄1) 6∈ {0,−λ}}
(λl(X̄1) + λ)2

≤ I{λl(X̄1) 6= 0}
λl(X̄1)2

≤
∥∥X̄†1

∥∥2

op
, I{λl(X̄1)∈{0,−λ}} = I{λl(X̄1)=0}

I{λl(X̄1) 6∈ {0,−λ}} × |λ+ 2λl(X̄1)|
λl(X̄1)2(λl(X̄1) + λ)2

≤ 2 I{λl(X̄1) 6= 0}
λl(X̄1)3

≤ 2
∥∥X̄†1

∥∥3

op
.

Combining the bounds above and applying Assumption 6.2 gives that
∣∣f (1)
λ (X̄1, X̄2)− f (1)

0 (X̄1, X̄2)
∣∣ = Oγ′(λ

2) ,
∣∣f (2)
λ (X̄1, X̄2)− f (2)

0 (X̄1, X̄2)
∣∣ = Oγ′

(
λ+

1

nλ2

)
,

∣∣fλ(X̄1, X̄2)− f0(X̄1, X̄2)
∣∣ = Oγ′

(
λ+ λ2 +

1

nλ2

)

with probability 1−oγ′(1). By the definition of the Lévy–Prokhorov metric dP (D.8), we
obtain

dP
(
f

(1)
λ (X̄1, X̄2) , f

(1)
0 (X̄1, X̄2)

)
= Oγ′(λ

2) ,

dP
(
f

(2)
λ (X̄1, X̄2) , f

(2)
0 (X̄1, X̄2)

)
= Oγ′

(
λ+

1

nλ2

)
,

dP
(
fλ(X̄1, X̄2) , f0(X̄1, X̄2)

)
= Oγ′

(
λ+ λ2 +

1

nλ2

)
,

which proves the first bound. The second bound follows from applying the same argu-
ment with X̄1, X̄2 replaced by Z̄1, Z̄1 + E12.

The next proof exploits orthogonal invariance of isotropic Gaussians.

Proof of Lemma D.16. Consider the Rd×nk-valued random matrix

U :=
(
V1 + ξ11,V1 + ξ12, . . . ,Vn + ξnk

)
,

We can then express

Z̄1 =
1

nk
UU> .

Notice that under (6.22), U have i.i.d. rows, each of which has a covariance matrix

In ⊗
(
1k×k + σ2

AIk
)

= In ⊗ k Q>kDkQk .
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This implies that we can express, for some choice of η′1, . . . , η′d
i.i.d.∼ N (0, Ink), almost

surely

U =
√
k

(
← (η′1)> →

...
← (η′d)> →

)
(In ⊗D1/2

k Qk) =:
√
kH(In ⊗D1/2

k Qk) ,

and therefore almost surely we have

Z̄1 =
k

nk
H
(
In ⊗D1/2

k QkQ
>
kD

1/2
k

)
H> =

1

n
H
(
In ⊗Dk

)
H> ,

where H is an Rd×nk matrix with i.i.d. standard Gaussian entries. Meanwhile, observing
that

Z̄2 =
1

nk
UKK>U>

proves the second statement. The final statement follows by identifying η11, . . . , ηnk as
the column vectors of H, which yields

Z̄1 =
1

n

∑n

i=1

(
k + σ2

A

k
ηi1η

>
i1 +

σ2
A

k

∑k

j=2
ηijη

>
ij

)
.

By recalling that

Qk :=




k−1/2 ... k−1/2

← v>1 →
...

← v>k−1 →


 ,

and observing that
(
V1 + ξ11,V1 + ξ12, . . . ,Vn + ξnk

)
= U =

√
k
( ↑ ↑
η11 ··· ηnk
↓ ↓

)
(In ⊗D1/2

k Qk) ,

we obtain that

ηi1 =
1

k

∑k

j=1
(Vi + ξij)×

√
k√

k + σ2
A

and therefore we can express

Z̄1 =
1

n

n∑

i=1

((
1

k

k∑

j=1

(Vi + ξij)

)(
1

k

k∑

j=1

(Vi + ξij)

)>
+
σ2
A

k

k∑

j=2

ηijη
>
ij

)

= Z̄2 +
σ2
A

nk

∑n

i=1

∑k

j=2
ηijη

>
ij .

Proof of Lemma D.17. We first verify Assumption 6.2. Under (6.22), we can apply
Lemma D.16 to express

Z̄1 =
1

n
H
(
In ⊗Dk

)
H> ,

where Dk ∈ Rk×k is a positive diagonal matrix with minimum eigenvalue σ2
A/k > 0
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and H is an Rd×nk matrix with i.i.d. standard Gaussian entries. Given a real symmetric
matrix A, let σmin(A) denote its minimum non-zero eigenvalue and σmin;>0(A) denote its
minimum non-zero eigenvalue. Then almost surely

‖X̄†1‖op
d
= ‖Z̄†1‖op =

(
σmin;>0(Z̄1)

)−1

=
(
σmin;>0

(
1

n

(
In ⊗D1/2

k

)
HH>

(
In ⊗D1/2

k

)))−1

≤ 1

σ2
A

(
σmin;>0

(
1

nk
HH>

))−1

=
1

σ2
A

(
σmin;>0

(
1

nk

∑d

l=1
ηlη
>
l

))−1

,

where η1, . . . , ηd are some i.i.d. standard Gaussian vectors in Rnk. Meanwhile, by the
minimum singular value bound from Theorem 6.1 of Wainwright (2019), for any fixed
ε > 0 and nk ≤ d,

P
(
σmin

(
1

d

∑d

l=1
ηlη
>
l

)
>
(

(1− ε)− (nk)1/2

d1/2

)2)
≥ 1− e−dε2/2 ,

so if nk ≤ d with γ′ = lim d/(kn) ∈ (1,∞), we get that σmin

(
1
nk

∑d
l=1 ηlη

>
l

)
is bounded

from below by some constant c′γ′ ∈ (0,∞) that only depends on γ′. This is still true if
nk ≥ d with γ′ ∈ [0, 1), since in this case

σmin;>0

(
1

nk

∑d

l=1
ηlη
>
l

)
= σmin;>0

(
1

nk

( ↑ ↑
η1 ... ηd
↓ ↓

)(← η>1 →
...

← η>d →

))

= σmin

(
1

nk

(
← η>1 →

...
← η>d →

)( ↑ ↑
η1 ... ηd
↓ ↓

))
=: σmin(Wnk) ,

and the same argument applies to the Rd×d Wishart matrix Wnk. This implies that ‖X̄†1‖op
and ‖Z̄†1‖op are both Oγ′(1) with probability 1− oγ′(1) under the stated assumptions.

Meanwhile, by Lemma D.16 again,

X̄2
d
= Z̄2

a.s.
=

1

n
H
(
In ⊗D1/2

k Qk

)
KK>

(
In ⊗Q>kD1/2

k

)
H>

where Qk ∈ Rk×k is an orthogonal matrix. Therefore almost surely
∥∥Z̄2

∥∥
op
≤ σmax

(
KK>

)
σmax

(
Z̄1

)
≤ k + σ2

A

k
× σmax

(
1

n

∑d

l=1
ηlη
>
l

)
, (D.92)

where we have recalled from the definitions in Lemma D.16 that

σmax(KK>) = σmax

(
1

k
In ⊗ 1k×k

)
= 1 and

∥∥In ⊗D1/2
k Qk

∥∥ ≤
√

k + σ2
A

k
.

Applying the maximum singular value bound from Theorem 6.1 of Wainwright (2019)
to 1

nk

∑d
l=1 ηlη

>
l implies that ‖X̄2‖op is Oγ′(1) with probability 1 − oγ′(1) provided that

nk ≤ d with γ′ = lim d/nk > 1, and by noting again that

σmax

(
1

nk

∑d

l=1
ηlη
>
l

)
= σmax(Wnk)
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for the Rd×d Wishart matrix Wnk, we get that the same holds when nk ≥ d with γ′ =

lim d/nk < 1. This implies that ‖X̄2‖op and ‖Z̄2‖op are both Oγ′(1) with probability
1− oγ′(1) under the stated assumptions.

The final quantity in Assumption 6.2 can be expressed as
∑d

l=1
I{λl(X̄1)=0}

(
vl(X̄1)>X̄2vl(X̄1)

) d
=
∑d

l=1
I{λl(Z̄1)=0}

(
vl(Z̄1)>Z̄2vl(Z̄1)

)

=
∑d

l=1
I
{
λl

(
1

nk

∑d

l=1
ηlη
>
l

)
= 0
}
.

Since Z̄1 = 1
n
H(In ⊗ Dk)H

>, where In ⊗ Dk is positive-definite, if vl(Z̄1) is a zero
eigenvector of Z̄1, then we must have H>vl(Z̄1) = 0 almost surely. This implies

vl(Z̄1)>Z̄2 vl(Z̄1) =
1

n
vl(Z̄1)>H

(
In ⊗D1/2

k Qk

)
KK>

(
In ⊗Q>kD1/2

k

)
H>vl(Z̄1) = 0

almost surely, and therefore with probability 1− o(1),
∑d

l=1
I{λl(X̄1)=0}

(
vl(X̄1)>X̄2vl(X̄1)

)
=
∑d

l=1
I{λl(Z̄1)=0}

(
vl(Z̄1)>Z̄2vl(Z̄1)

)
= 0 .

This verifies Assumption 6.2.

To verify Assumption 6.1, we first note that since the entries of the matrices are
all Gaussian, we automatically have maxi≤n,j≤k,l≤d ‖Xijl‖L10

= O(1). Meanwhile by
(D.92),
∥∥‖X̄2‖op

∥∥
L60

=
∥∥‖Z̄2‖op

∥∥
L60
≤ k + σ2

A

k

∥∥∥
∥∥∥ 1

nk

∑d

l=1
ηlη
>
l

∥∥∥
op

∥∥∥
L60

=
k + σ2

A

k

∥∥∥∥Wnk

∥∥
op

∥∥
L60

where Wnk is the Rd×d Wishart matrix defined above. By Theorem 4.6.1 of Vershynin
(2018), there exists some constant C1 > 0 such that, for all t > 0,

P
(∥∥Wnk − Id

∥∥
op
> 2C1

√
d + t√
nk

+ C2
1

(
√
d + t)2

nk

)
≤ 2 exp(−t2) .

Using that d/(kn) = O(1), we get that for every fixed m ∈ N, there exists some constant
Cm > 0 depending on m such that

E
[
‖Z̄2 − Id‖mop

]
≤

∫ ∞

0
P
(
‖Wnk − Id‖op > s1/m

)
ds ≤ Cm .

This implies
∥∥‖X̄2‖op

∥∥
L60

=
∥∥‖Z̄2‖op

∥∥
L60
≤
∥∥‖Wnk − Id‖op

∥∥
L60

+ ‖Id‖op = O(1) ,

which verifies Assumption 6.1.

D.7.2. Proofs for Section 6.5

Proof of Proposition 6.10: Universality for oracle augmentation The proof adapts
the two-moment matching argument from Theorem 6.1 to utilize the matching of four
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moments. For 1 ≤ i ≤ n and 1 ≤ l ≤ d, define the Rk vectors

X̃il := (Xi1l , . . . , Xikl) and Z̃il := (Zi1l , . . . , Zikl) .

We also rewrite

X̄1 =
1

nk

∑n

i=1

∑d

l1,l2=1
X̃>il1X̃il2

el1e
>
l2

=: S1(X̃11, . . . , X̃nd) ,

X̄2 =
1

nk2

∑n

i=1

∑d

l1,l2=1

∑k

j1,j2=1
Xij1l1

Xij2l2
el1e

>
l2

=: S2(X̃11, . . . , X̃nd) ,

Z̄1 = S1(Z̃11, . . . , Z̃nd) , Z̄2 = S2(Z̃11, . . . , Z̃nd) .

As mentioned in Remark D.4, Theorem 6.1 can be directly extended to the independent
but non-i.i.d. case, and we shall use it to replace the sequence of independent vectors
(X̃11, . . . , X̃nd) by (Z̃11, . . . , Z̃nd) (note that in this case, k in Theorem 6.1 is set to 1).
We also seek to exploit the fact that X̃ij and Z̃ij matches in the first four moments by
assumption. By replacing the third-order Taylor expansion in Theorem 6.1 by a fifth-
order Taylor expansion and a fifth-order Faà di Bruno’s formula, we obtain that

dH
(
fλ(X̄1, X̄2) , fλ(Z̄1, Z̄2)

)

≤
n∑

i=1

d∑

l=1

√
E
(∑k

j=1X
2
ijl

)5
+
√
E
(∑k

j=1 Z
2
ijl

)5

120

×
(
θ5

1;10;X + 10θ3
1;8;Xθ2;8;X + 10θ2

1;6;Xθ3;6;X + 15θ1;6;Xθ
2
2;6;X + 10θ2;4;Xθ3;4;X

+ 5θ1;4;Xθ4;4;X + θ5;2;X

+ θ5
1;10;Z + 10θ3

1;8;Zθ2;8;Z + 10θ2
1;6;Zθ3;6;Z + 15θ1;6;Zθ

2
2;6;Z + 10θ2;4;Zθ3;4;Z

+ 5θ1;4;Zθ4;4;Z + θ5;2;Z

)
,

where, for m ≥ 2, q ∈ N and r ∈ {1, 2}, we define

θq;m;X := max
i≤n,l≤d

∥∥∥
∥∥∥∂qil fλ

(
W̄

(1)
il (ΘX̃il),W̄

(2)
il (ΘX̃il)

)∥∥∥
∥∥∥
Lm

,

θq;m;Z := max
i≤n,l≤d

∥∥∥
∥∥∥∂qil fλ

(
W̄

(1)
il (ΘZ̃il),W̄

(2)
il (ΘZ̃il)

)∥∥∥
∥∥∥
Lm

,

W̄
(r)
il (x) := Sr

(
X̃≤il,x, Z̃≥il

)
.

Θ ∼ Uniform[0, 1] is independent of all other random variables, X̃≤il is the sequence
formed by X̃i′l′’s such that (i′, l′) is before (i, l) in the lexicographical order, and Z̃≥il

corresponds to Z̃i′l′’s such that (i′, l′) comes after (i, l). Now note that by the Jensen’s
inequality, we have
√
E
(∑k

j=1
X2
ijl

)5
= k5/2

√
E
(1

k

∑k

j=1
X2
ijl

)5 ≤ k5/2 max
j≤k
‖Xijl‖5

L10
≤ k5/2c5

0 ,

where we have used Assumption 6.1 for the last inequality. Similarly
√

E
(∑k

j=1
X2
ijl

)5 ≤ k5/2 max
j≤k
‖Zijl‖5

L10
≤ C ′k5/2c5

0
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for some absolute constant C ′ > 0; in the bound above, we have used that Zijl matches
Xijl in the first two moments, the moment formula of a Gaussian and that ‖Xijl‖L1

≤
‖Xijl‖L2

≤ ‖Xijl‖L10
. This implies that for some absolute constant C ′′ > 0, we have

dH
(
fλ(X̄1,X̄2) , fλ(Z̄1, Z̄2)

)

≤ C ′′ndk5/2
(
θ5

1;10;X + 10θ3
1;8;Xθ2;8;X + 10θ2

1;6;Xθ3;6;X + 15θ1;6;Xθ
2
2;6;X + 10θ2;4;Xθ3;4;X

+ 5θ1;4;Xθ4;4;X + θ5;2;X

+ θ5
1;10;Z + 10θ3

1;8;Zθ2;8;Z + 10θ2
1;6;Zθ3;6;Z + 15θ1;6;Zθ

2
2;6;Z + 10θ2;4;Zθ3;4;Z

+ 5θ1;4;Zθ4;4;Z + θ5;2;Z

)
. (D.93)

The remaining proof controls the derivatives. We will perform a detailed calculation
of the first derivative, comment on the shared pattern and state the remaining derivatives.
We first write xijl as the l-th coordinate of xij and note that

∂S1(x11, . . . ,xnd)

∂xijl
=

1

nk

∑d

l′=1
xijl′

(
ele
>
l′ + el′e

>
l

)
=

1

nk

(
el

(
xij1

...
xijd

)>
+

(
xij1

...
xijd

)
e>l
)
,

∂2S1(x11, . . . ,xnd)

∂x2
ijl

=
1

nk

(
ele
>
l′ + el′e

>
l

)
,

∂3S1(x11, . . . ,xnd)

∂x3
ijl

= 0 ,

∂S2(x11, . . . ,xnd)

∂xijl
=

1

nk2

∑d

l′=1

∑k

j′=1
xij′l′

(
ele
>
l′ + el′e

>
l

)

=
1

nk2

∑k

j′=1

(
el

( xij′1
...

xij′d

)>
+

( xij′1
...

xij′d

)
e>l
)
,

∂2S2(x11, . . . ,xnd)

∂x2
ijl

=
1

nk2

(
ele
>
l′ + el′e

>
l

)
,

∂3S2(x11, . . . ,xnd)

∂x3
ijl

= 0 .

Meanwhile, since W̄(1)
il (tX̃il) is positive semi-definite almost surely for all t ∈ [0, 1], the

map A 7→ (A + λI)−1 is differentiable in the local neighborhood of the line segment
[0,W̄

(1)
il (tX̃il)] with respect to the Euclidean norm. For positive semi-definite matrix

A ∈ Rd×d and another matrix B ∈ Rd×d, denoting Aλ := A+ λId, we can compute

∂f
(1)
λ (A)

∂Aij
= −

∑
q1,q2∈N
q1+q2=3

λ2β>A−q1λ EijA
−q2
λ β ,

∂f
(2)
λ (A,B)

∂Aij
=

σ2
ε

n

∑
q1,q2∈N
q1+q2=3

Tr
(
A−q1λ EijA

−q2
λ B

)
,

∂f
(2)
λ (A,B)

∂Bij
=

σ2
ε

n
Tr
(
A−2
λ Eij

)
.

Fixm ∈ [2, 10]. Using a chain rule with the derivatives computed above, we can calculate

θ1;m;X =
∥∥∥
∥∥∥∂il fλ

(
W̄

(1)
il (ΘX̃il),W̄

(2)
il (ΘX̃il)

)∥∥∥
∥∥∥
Lm

≤
∥∥∥
∥∥∥∂il f (1)

λ

(
W̄

(1)
il (ΘX̃il)

)∥∥∥
∥∥∥
Lm

+
∥∥∥
∥∥∥∂il f (2)

λ

(
W̄

(1)
il (ΘX̃il),W̄

(2)
il (ΘX̃il)

)∥∥∥
∥∥∥
Lm

=

∥∥∥∥
( k∑

j=1

(
− λ2

∑
q1,q2∈N
q1+q2=3

β>
(
W̄

(1)
il (ΘX̃il) + λId

)−q1 1

nk
Θ
(
el(πijVi)

> + (πijVi)e
>
l

)
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(
W̄

(1)
il (ΘX̃il) + λId

)−q2β
)2
)1/2 ∥∥∥∥

Lm

+

∥∥∥∥
( k∑

j=1

(
σ2
ε

n

∑
q1,q2∈N
q1+q2=3

Tr
((
W̄

(1)
il (ΘX̃il) + λId

)−q1

× 1

nk
Θ
(
el(πijXi)

> + (πijXi)e
>
l

)
×
(
W̄

(1)
il (ΘX̃il) + λId

)−q2W̄(2)
il (ΘX̃il)

)

+
σ2
ε

n
Tr
((

W̄
(1)
il (ΘX̃il) + λId

)−2 1

nk2

k∑

j′=1

Θ
(
el(πij′Xi)

> + (πij′Xi)e
>
l

)) )2
)1/2 ∥∥∥∥

Lm

≤ 2λ2 ‖β‖2
nk

∥∥∥
∥∥∥
(
W̄

(1)
il (ΘX̃il) + λId

)−1
∥∥∥

3

op
×
(∑k

j=1
‖πijVi‖2

)1/2∥∥∥
Lm

+
4σ2

ε

n2k

∥∥∥
∥∥∥
(
W̄

(1)
il (ΘX̃il) + λId

)−1
∥∥∥

3

op
×
∥∥∥W̄(2)

il (ΘX̃il)
∥∥∥
op

×
(∑k

j=1
‖πijXi‖2

)1/2 ∥∥∥
Lm

+
2σ2

ε

n2k3/2

∥∥∥
∥∥∥
(
W̄

(1)
il (ΘX̃il) + λId

)−1
∥∥∥

2

op
×
(∑k

j′=1
‖πij′Xi‖

)∥∥∥
Lm

.

To simplify this bound, notice that since W̄
(1)
il (ΘX̃il) is positive semi-definite, almost

surely
∥∥∥
(
W̄

(1)
il (ΘX̃il) + λId

)−1
∥∥∥
op
≤ 1

λ
.

Meanwhile since m ≥ 2, by the Jensen’s inequality,
∥∥∥
(∑k

j=1
‖πijVi‖2

)1/2∥∥∥
Lm

= k1/2
(
E
[(

1

k

∑k

j=1
‖πijVi‖2

)m/2])1/m

≤ k1/2 maxj≤k

(
E
[
‖πijVi‖m

])1/m

= d1/2k1/2 maxj≤k

(
E
[(

1

d

∑d

l=1
X2
ijl

)m/2])1/m

≤ d1/2k1/2 maxi≤n,j≤k,l≤d ‖Xijl‖Lm = O(d1/2k1/2) ,

where we have applied Assumption 6.1 by noting that m ≤ 12. Similarly
∥∥∥
∑k

j′=1
‖πij′Xi‖

∥∥∥
Lm

= O(d1/2) .

Applying Assumption 6.1 again and noting that |Θ| ≤ 1 almost surely, we have
∥∥∥
∥∥∥W̄(2)

il (ΘX̃il)
∥∥∥
op

∥∥∥
Lm

≤
∥∥∥
∥∥∥ 1

n

∑i−1

i′=1

(
1

k

∑k

j=1
(πi′jVi)

)(
1

k

∑k

j=1
(πi′jVi)

)>∥∥∥
op

∥∥∥
Lm

+
∥∥∥
∥∥∥Θ2

n

(
1

k

∑k

j=1
(πijVi)

)(
1

k

∑k

j=1
(πijVi)

)>∥∥∥
op

∥∥∥
Lm

+
∥∥∥
∥∥∥ 1

n

∑n

i′=i+1

(
1

k

∑k

j=1
Zi

)(
1

k

∑k

j=1
Zi

)>∥∥∥
op

∥∥∥
Lm

≤ i− 1

n
c0 +

1

n
c0 +

n− i
n
c0 = O(1) .

Combining the above calculations and noting additionally that ‖β‖ = O(1), σε = O(1)
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and d = O(n), we get that the first derivative term can be bounded as

θ1;m;X = O
(
d1/2λ−1

nk1/2
+
d1/2(λ−3 + λ−2)

n2k1/2

)
= O

(
max{1, λ−3}
n1/2k1/2

)
.

By using the same argument and additionally bounding ‖Zijl‖Lm by C ′′‖Xijl‖Lm for
some absolute constant C ′′, we also have

θ1;m;Z = O
(

max{1, λ−3}
n1/2k1/2

)
.

To handle the higher-order derivative terms up to the fifth order, notice that in the
above calculation, differentiating f (1)

λ and f (2)
λ with respect to W̄

(1)
il (ΘX̃il) results in

• an additional (W̄
(1)
il (ΘX̃il) + λId)

−1 term, which contributes an 1/λ factor, and

• an additional
∂W̄

(1)
il (ΘX̃il)

∂Xijl
=

Θ

nk

(
el(πijXi)

> + (πijXi)e
>
l ) term, which contributes

an d1/2/nk factor,

whereas differentiating f (2)
λ with respect to W̄

(2)
il (ΘX̃il) results in

• an additional
∥∥∥W̄(2)

il (ΘX̃il)
∥∥∥
op

term, which is O(1), and

• an additional
∂W̄

(2)
il (ΘX̃il)

∂Xijl
=

Θ

nk2

∑k
j′=1

(
el(πij′Xi)

>+(πij′Xi)e
>
l ) term, which con-

tributes an d1/2/nk factor.

We also note a few additional points:

• The initial sizes of f (1)
λ and f (2)

λ before differentiation are O(1) and O(n−1λ−2) re-
spectively, and that the norm we compute in θq;m;X has a persisting k1/2 factor;

• The higher derivatives will also involve higher derivatives of W̄(1)
il (ΘX̃il) and W̄

(2)
il (ΘX̃il)

with respect to Xijl. But since the third derivatives vanish, the only additional terms
are their second derivatives, which brings the sizes of the first derivatives down from
O(d1/2/nk) down to O(1/nk);

• The q-th derivative involves at most one copy of W̄(2)
il (ΘX̃il) and q copies of πijVi,

so the bounding constant involves at most (q+1)m-th moments of X̄2, Z̄2 and πijVi.
As Assumption 6.1 controls moments up to the order 60 ≥ (q + 1)m for q ≤ 5, it
yields the necessary moment controls for computing up to the fifth derivative.
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One can therefore perform a tedious calculation to verify that each further differentiation
brings a multiplicative factor of at most max{1, λ−1}n−1/2 to the overall upper bound,
i.e. for 1 ≤ q ≤ 5,

max{θq;m;X , θq;m;Z} = O
(

max{1, λ−2−q}
nq/2k1/2

)
.

Plugging the bounds into (D.93) implies

dH
(
fλ(X̄1,X̄2) , fλ(Z̄1, Z̄2)

)

≤ C ′′ndk5/2

×
(
θ5

1;10;X + 10θ3
1;8;Xθ2;8;X + 10θ2

1;6;Xθ3;6;X + 15θ1;6;Xθ
2
2;6;X + 10θ2;4;Xθ3;4;X

+ 5θ1;4;Xθ4;4;X + θ5;2;X

+ θ5
1;10;Z + 10θ3

1;8;Zθ2;8;Z + 10θ2
1;6;Zθ3;6;Z + 15θ1;6;Zθ

2
2;6;Z + 10θ2;4;Zθ3;4;Z

+ 5θ1;4;Zθ4;4;Z + θ5;2;Z

)

= O
(
ndk5/2 × max{1, λ−2−5}

n5/2k1/2

)
= O

(
k2 max{1, λ−7}

n1/2

)
,

where we have again used d = O(n). This proves the universality statement for λ > 0

fixed.

For the ridgeless case, recall from Lemma D.18 that dP ( • , ?) ≤ 84/5dH( • , ?)1/5. By
the triangle inequality and Lemma D.15, we have that for every λ ∈ (0, 1],

dP
(
f0(X̄1, X̄2) , f0(Z̄1, Z̄2)

)

≤ dP
(
f0(X̄1, X̄2) , fλ(X̄1, X̄2)

)
+ 8

4
5dH

(
fλ(X̄1, X̄2) , fλ(Z̄1, Z̄2)

) 1
5

+ dP
(
fλ(Z̄1, Z̄2) , f0(Z̄1, Z̄2)

)

= O
(
λ+ λ2 +

1

nλ
+
(
k2 max{1, λ−7}

n1/2

)1/5)
.

Since d = O(n) and 1 ≤ k2 = o(n1/2), setting λ = k1/7n−1/28 implies that the above
bound is o(1), which finishes the proof.

Proof of Proposition 6.11: Oracle augmentation via unaugmented risk The proof
consists of three steps: We first quantify the error of approximating Z̄1 by

Z̄2 +
(k − 1)σ2

A

k
Id

in the risk in the case λ > 0. This is followed by a similar approximation for the case
λ = 0. Then we compute the limiting risk by reducing the risk to that of an unaugmented
ridge regressor.
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Step 1: Replace Z̄1 in fλ(Z̄1, Z̄2) for λ > 0. Recall from Lemma D.16 that

Z̄1 = Z̄2 + ∆ ,

where we denote the following rescaled Wishart matrix

∆ :=
σ2
A

nk

∑n

i=1

∑k

j=2
ηijη

>
ij ,

and ηij’s are i.i.d. standard Gaussians in Rd. Also note that

(k − 1)σ2
A

k
Id = E[∆] .

This allows us to control
∣∣∣f (1)
λ (Z̄1)− f (1)

λ

(
Z̄2 +

(k − 1)σ2
A

k
Id

)∣∣∣

= λ2
∣∣∣β>
(

(Z̄1 + λId)
−2 − (Z̄2 + E[∆] + λId)

−2
)
β
∣∣∣

≤ λ2‖β‖2
∥∥∥(Z̄1 + λId)

−2
(
(Z̄2 + E[∆] + λId)

2 − (Z̄1 + λId)
2
)

(Z̄2 + E[∆] + λId)
−2
∥∥∥
op

≤ λ2‖β‖2

λ2
(
k−1
k σ2

A + λ
)2
∥∥∥Z̄2 +

(k − 1)σ2
A

k
Id + λId + Z̄1 + λId

∥∥∥
op
‖E[∆]−∆‖op

≤ ‖β‖2
(
k−1
k σ2

A + λ
)2
(
‖Z̄2‖op + ‖Z̄1‖op +

(k − 1)σ2
A

k
+ 2λ

)
‖E[∆]−∆‖op .

By adapting the proof of Lemma D.17 and using the maximum singular value bound
from Theorem 6.1 of Wainwright (2019), we see that for any ε > 0, with probability
1− ε we have

∥∥Z̄l
∥∥
op
≤ k + σ2

A

k

(
1 +

√
2 log(1/ε)

n
+

√
d

n

)

for both l = 1, 2. Meanwhile, by noting that ∆ is a rescaled sample covariance matrix of
n(k − 1) i.i.d. isotropic Gaussians, by Theorem 4.6.1 of Vershynin (2018), there is some
absolute constant C ′ > 0 such that for any ε > 0, with probability 1− ε we have

‖∆− E[∆]‖op ≤ C ′
(k − 1)σ2

A

k

(√
d +

√
log(2/ε)√

n(k − 1)
+

(
√
d +

√
log(2/ε) )2

n(k − 1)

)
.

Also note that since k ≥ 2, k−1
k
∈ [1

2
, 1]. This implies that for some absolute constants

C ′′, C ′′′ > 0 such that with probability 1− 3ε,
∣∣∣f (1)
λ (Z̄1)− f (1)

λ

(
Z̄2 +

(k − 1)σ2
A

k
Id

)∣∣∣

≤ C ′′‖β‖2 1

(σ2
A + λ)2

(
k + σ2

A

k

(
1 +

√
2 log(1/ε)

n
+

√
d

n

)
+

(k − 1)σ2
A

k
+ λ
)

‖E[∆]−∆‖op

≤ C ′′′‖β‖2
(σ2
A + λ)2

(
k + σ2

A

k

(√
2 log(1/ε)

n
+

√
d

n

)
+ 1 + σ2

A + λ
)
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× σ2
A

(√
d +

√
log(2/ε)√

n(k − 1)
+

(
√
d +

√
log(2/ε) )2

n(k − 1)

)
.

Notice that by recycling the bound above, we have
∣∣∣f (2)
λ (Z̄1, Z̄2)− f (2)

λ

(
Z̄2 +

(k − 1)σ2
A

k
Id, Z̄2

)∣∣∣

=
σ2
ε

n

∣∣∣Tr
((

Z̄1 + λId
)−2

Z̄2 −
(
Z̄2 +

(k − 1)σ2
A

k
Id + λId

)−2

Z̄2

)∣∣∣

≤ σ2
εd

n
‖Z̄2‖op

∥∥∥
(
Z̄1 + λId

)−2 −
(
Z̄2 +

(k − 1)σ2
A

k
Id + λId

)−2∥∥∥
op

≤ C ′′′

λ2(σ2
A + λ)2

(
k + σ2

A

k

(√
2 log(1/ε)

n
+

√
d

n

)
+ 1 + σ2

A + λ
)2

× σ2
A

(√
d +

√
log(2/ε)√

n(k − 1)
+

(
√
d +

√
log(2/ε) )2

n(k − 1)

)

for some absolute constant C ′′′ > 0 with probability 1 − 3ε for any ε > 0. By a union
bound, we obtain that there exists some absolute constant C > 0 such that for any ε > 0,
with probability 1− 6ε, we have

∣∣∣ fλ(Z̄1, Z̄2)− fλ
(
Z̄2 +

(k − 1)σ2
A

k
Id, Z̄2

)∣∣∣

≤ C
1

(σ2
A + λ)2

(
‖β‖2 + λ−2

) (k + σ2
A

k

(√
2 log(1/ε)

n
+

√
d

n

)
+ 1 + σ2

A + λ
)2

× σ2
A

(√
d +

√
log(2/ε)√

n(k − 1)
+

(
√
d +

√
log(2/ε) )2

n(k − 1)

)
.

In particular this implies that for λ > 0 fixed, d = O(n), k ≥ 2 and σ2
A ≤ 1,

∣∣∣fλ(Z̄1, Z̄2)− fλ
(
Z̄2 +

(k − 1)σ2
A

k
Id, Z̄2

)∣∣∣ = O
(

max
{

1 ,
d

n

}3/2
√
d√
n

σ2
A(1 + λ−2)√

k

)

= O
(
σ2
A√
k

√
d√
n

max
{

1 ,
d

n

}3/2)

with probability 1−O(e−min{d,n}). By the definition of the Lévy-Prokhorov metric (D.8),
we have

dP

(
fλ(Z̄1, Z̄2) , fλ

(
Z̄2 +

(k − 1)σ2
A

k
Id, Z̄2

))
= O

(
σ2
A√
k

√
d√
n

max
{

1 ,
d

n

}3/2)
.

(D.94)

Step 2: Approximate f0(Z̄1, Z̄2) by fλ
(
Z̄2 +

(k−1)σ2
A

k
Id, Z̄2

)
. By Lemma D.17, we

get that the assumptions of Lemma D.15 are fulfilled, and in particular in the proof of
Lemma D.17 we have shown that the 1/(nλ2) term in fact vanishes. This implies for λ
small,

dP
(
fλ(Z̄1, Z̄2) , f0(Z̄1, Z̄2)

)
= O(λ) .

Setting λ = σ
2/3
A k−1/6(d/n)1/2 and combining this bound with the dP bound from above,
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we obtain

dP

(
f0(Z̄1, Z̄2) , f

σ
2/3
A

k1/6
d1/2

n1/2

(
Z̄2 +

(k − 1)σ2
A

k
Id, Z̄2

))
= O

(
σ

2/3
A

k1/6

d1/6

n1/6
max

{
1 ,

d

n

}1/2
)
.

(D.95)

Step 3: Compute the limiting risk of fλ
(
Z̄2 +

(k−1)σ2
A

k
Id, Z̄2

)
. Define

λk :=
(k − 1)σ2

A

k
+ λ , σ2

k :=
k + σ2

A

k
, Z̃ :=

1

n

∑n

i=1
ηi1η

>
i1 ,

where ηi1’s are the i.i.d. standard Gaussians defined in Lemma D.16. Recall also that

Z̄2 =
k + σ2

A

k

1

n

∑n

i=1
ηi1η

>
i1 = σ2

k Z̃ ,

where ηi1’s are i.i.d. standard Gaussians. Observe that

fλ

(
Z̄2 +

(k − 1)σ2
A

k
Id, Z̄2

)
= λ2β>

(
Z̄2 + λk Id

)−2
β +

σ2
ε

n
Tr
((
Z̄2 + λk Id

)−2
Z̄2

)

=
λ2

λ2
k

f
(1)

λk/σ
2
k
(Z̃) +

1

σ2
k

f
(2)

λk/σ
2
k
(Z̃, Z̃) .

Denote the bias and variance parts of the risk defined in Hastie et al. (2022) as

R(1)(β, λ, γ) := ‖β‖2λ2 ∂mγ(−λ) and R(2)(σ, λ, γ) := σ2γ
(
mγ(−λ)− λ∂mγ(−λ)

)
,

where we recall mγ(z) =
1−γ−z−

√
(1−γ−z)2−4γz

2γz
. Now suppose k is fixed and λ > 0. By

Corollary 5 of Hastie et al. (2022), we get that almost surely as d, n→∞ with d/n→ γ,

fλ

(
Z̄2 +

(k − 1)σ2
A

k
Id, Z̄2

)
a.s.−−→ λ2

λ2
k

R(1)
(
β,

λk
σ2
k

, γ
)

+
1

λ2
k

R(2)
(
σε,

λk
σ2
k

, γ
)

= R(1)
(
λ

λk
β,

λk
σ2
k

, γ
)

+R(2)
(
σε
σk
,
λk
σ2
k

, γ
)

= R
(
λ

λk
β,

σε
σk
,
λk
σ2
k

, γ
)

(D.96)

for every k ≥ 2 and σ2
A ≤ 1. Note that Lemma D.17 shows that Assumptions 6.1 and

6.2 both hold under the isotropic setup, so the universality bounds in Proposition 6.10
hold. In the case λ > 0, combining the above first with (D.94) under the assumption that
σ2
A√
k

√
d√
n

= o(1) and then with Proposition 6.10, we have

fλ(X̄1, X̄2)
P−→ lim R

(
λ

λk
β,

σε
σk
,
λk
σ2
k

, γ
)
,

where lim denotes the limit under (6.20) with σ2
A√
k

√
d√
n

= o(1). For the ridgeless case λ = 0,
the same argument applies: Proposition 6.10 shows that f0(X̄1, X̄2) and f0(Z̄1, Z̄2) have
the same distributional limit under (6.20), whereas (D.95) shows that f0(Z̄1, Z̄2) and
f
σ

2/3
A

k1/6
d1/2

n1/2

(
Z̄2 +

(k−1)σ2
A

k
Id, Z̄2

)
have the same distributional limit under σ2

A√
k

√
d√
n

= o(1).

The distributional limit of f
σ

2/3
A

k1/6
d1/2

n1/2

(
Z̄2 +

(k−1)σ2
A

k
Id, Z̄2

)
under (6.20) is given by (D.96),
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and we note that

R(0, σε, σ
2
A, γ) = lim

λ→0+
R
(

λ

λ+ σ2
A

β, σε, λ+ σ2
A, γ
)

exists by continuity as shown in Hastie et al. (2022).

Proof for Proposition 6.12: Two-stage augmentation The proof expresses the differ-
ence R(β̂

(m)
0 )− L̂(ora)

0 −
∥∥X̄†1X̄∆(β̃

(m)
0 − β)‖2 − σ2

ε as two quantities involving averages
and uses a concentration argument to show that they both converge to zero in probability.

We first recall from Appendix D.2.2 that

L̂
(ora)
0 = β>

(
X̄†1X̄1 − Id

)2
β +

σ2
ε

n
Tr
(
X̄†1X̄2X̄

†
1

)
.

Meanwhile, recall that we have defined

X̄∆ =
1

n

∑n

i=1

(
1

k

∑k

j=1
(Vi + ξij)

)(
1

k

∑k

j=1
ξij

)>
,

and denote x̄ε = 1
n

∑n
i=1

(
1
k

∑k
j=1(Vi + ξij)

)
εi. Then we can express

β̂
(m)
0 = X̄†1

(
1

n

∑n

i=1

∑k

j=1
(Vi + ξij)(V

>
i β + εi + ξ>ij β̃

(m)
0 )

)

= X̄†1X̄1β + X̄†1X̄∆(β̃
(m)
λ − β) + X̄†1x̄ε ,

and therefore the risk of interest can be expressed as

R(β̂
(m)
0 ) = σ2

ε + ‖β̂(m)
0 − β‖2

= σ2
ε +

∥∥∥
(
X̄†1X̄1 − Id

)
β + X̄†1X̄∆(β̃

(m)
λ − β) + X̄†1x̄ε

∥∥∥
2

(a)
= σ2

ε + β>
(
X̄†1X̄1 − Id

)2
β +

∥∥X̄−1
1 X̄∆(β̃

(m)
λ − β)

∥∥2

+ 2(β̃
(m)
λ − β)>X̄∆X̄

−2
1 x̄ε + x̄>ε X̄

−2
1 x̄ε

= σ2
ε + L̂

(ora)
0 +

∥∥X̄−1
1 X̄∆(β̃

(m)
λ − β)

∥∥2

− 2 (β̃
(m)
λ − β)>X̄∆X̄

−2
1 x̄ε︸ ︷︷ ︸

=:Q1

−
(
x̄>ε X̄

−2
1 x̄ε −

σ2
ε

n
Tr
(
X̄†1X̄2X̄

†
1

))

︸ ︷︷ ︸
=:Q2

.

In (a), we have noted that (X̄1X̄
†
1− Id)X̄

†
1 = 0 by the property of pseudo-inverse, which

allows some cross-terms to vanish.

We now prove that Q1 and Q2 converge in probability to zero. By assumption,
‖X̄†1‖op+‖X̄2‖op+‖X̄∆‖op+‖β̃(m)

λ −β‖ ≤ C for some constantC <∞with probability
1− o(1). Define the event

E :=
{
‖X̄†1‖op + ‖X̄2‖op + ‖X̄∆‖op + ‖β̃(m)

λ − β‖ ≤ C
}
.
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By the expression of x̄ε, we can write

Q1 = (β̃
(m)
λ − β)>X̄∆X̄

−2
1 x̄ε =

1

n

∑n

i=1
(β̃

(m)
λ − β)>X̄∆X̄

−2
1

(
1

k

∑
j≤k(Vi + ξij)

)
εi .

Conditioning on X̃ = (Vi, ξij)i≤n,j≤k, we get that almost surely

E[Q1 | X̃ ] = 0 ,

Var[Q1 | X̃ ] =
σ2
ε

n2

n∑

i=1

((
1

k

∑

j≤k

(Vi + ξij)
)>

X̄−2
1 X̄∆(β̃

(m)
λ − β)

(β̃
(m)
λ − β)>X̄∆X̄

−2
1

(
1

k

∑

j≤k

(Vi + ξij)
))

=
σ2
ε

n
(β̃

(m)
λ − β)>X̄∆X̄

−2
1 X̄2X̄

−2
1 X̄∆(β̃

(m)
λ − β)

≤ σ2
ε

n
‖X̄2‖op‖X̄†1‖4

op‖X̄∆‖2
op‖β̃(m)

λ − β‖2 ,

which is O(n−1) on the event E. Therefore by splitting the probability according to E
and applying the Markov’s inequality, we obtain that for any t > 0,

P(|Q1| > t) ≤ P(|Q1| > t,E) + P(Ec)

= E
[
P(|Q1| > t | X̃ ) IE

]
+ o(1)

≤ t−2 E
[

Var[Q1 | X̃ ] IE
]

+ o(1) = o(1) ,

i.e. Q1 converges to zero in probability. Q2 can be handled by a similar argument: First
note that E[Q2] = 0 since

E
[
x̄>ε X̄

−2
1 x̄ε

∣∣ X̃
]

=
1

n2

∑n

i=1
E
[
εi

(
1

k

∑

j≤k

(Vi + ξij)
)>

X̄−2
1

(
1

k

∑

j≤k

(Vi + ξij)
)
εi

∣∣∣ X̃
]

=
σ2
ε

n
Tr
(
X̄†1X̄2X̄

†
1

)
.

While the expression of Var
[
Q2

∣∣ X̃
]

involves a complicated expansion of four sums, we
note that since εi is zero-mean and independent, the only non-vanishing terms are of the
form ε2i ε

2
i′ with i 6= i′, with a multiplicity of O(n2), and ε4i , with a multiplicity of O(n).

Therefore, conditioning on the event E, we have that

Var
[
Q2

∣∣ X̃
]

= O(n−2) = o(1) ,

and applying the same argument of splitting the probability according to E followed by
Markov’s inequality gives that Q2 converges to zero in probability. In summary, we have
proved the desired statement that

R(β̂
(m)
0 )−

(
σ2
ε + L̂

(ora)
0 +

∥∥X̄−1
1 X̄∆(β̃

(m)
λ − β)

∥∥2) P−→ 0 .
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Appendix E

Proofs for Section 7.1.2

In this appendix, we prove Theorem 7.1 and Corollary 7.2. The proof recipe is similar
to that of a standard CGMT: We start by proving a Gaussian min-max theorem (GMT)
on discrete sets in Lemma E.1, proceed to extend it to compact sets in Lemma E.2,
and then prove the results in Theorem 7.1. Corollary 7.2 then follows directly from
Theorem 7.1(ii).

As with the standard CGMT, the Gaussian min-max theorem (GMT) on discrete sets
is proved for a surrogate optimisation problem. Let (ξl)l≤M be a collection of univariate
standard Gaussians independent of H, and define

Ψξ
Sd,Sn

:= min
w∈Sd

max
u∈Sn

LξΨ(w, u) ,

where LξΨ(w, u) := w>Hu+
∑M

l=1
ξl ‖w‖Σ(l)‖u‖Σ̃(l) + f(w, u) .

We also recall the risk ψSn,In of the auxiliary optimisation defined in Theorem 7.1.

Lemma E.1 (GMT on discrete sets). Let Id ⊆ Rd, In ⊆ Rn be discrete sets, and f be

finite on Id × In. Then for all c ∈ R,

P
(
Ψξ
Id,In ≥ c

)
≥ P

(
ψId,In ≥ c

)
.

Proof of Lemma E.1. Similar to the proof for the standard GMT (see e.g. proof of Lemma
A.1.1 of Thrampoulidis (2016)), the proof relies on an application of Gordon’s Gaussian
comparison inequality (see e.g. Corollary 3.13 of Ledoux and Talagrand (1991)) applied
to two suitably defined Gaussian processes. Consider the two centred Gaussian processes
indexed on the set Id × In:

Yw,u := w>Hu+
∑M

l=1
ξl ‖w‖Σ(l)‖u‖Σ̃(l) ,

Xw,u :=
∑M

l=1

(
‖w‖Σ(l)h>l

(
Σ̃(l)
)1/2

u+ w>
(
Σ(l)
)1/2

gl‖u‖Σ̃(l)

)
.

To compare their second moments, we use the independence of H and {ξl}l≤M as well
as the independence of (hl,gl)l≤M : For w,w′ ∈ Id and u, u′ ∈ In, we have

E[Yw,uYw′,u′ ]− E[Xw,uXw′,u′ ]
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(a)
= E[w>Hu(w′)>Hu′] +

∑M

l=1
‖w‖Σ(l) ‖w′‖Σ(l) ‖u‖Σ̃(l) ‖u′‖Σ̃(l)

−
∑M

l=1

(
‖w‖Σ(l) ‖w′‖Σ(l) u>Σ̃(l)u′ + w>Σ(l)w′ ‖u‖Σ̃(l) ‖u′‖Σ̃(l)

)

(b)
=

∑M

l=1

(
w>Σ(l)w′ u>Σ̃(l)u′ + ‖w‖Σ(l) ‖w′‖Σ(l) ‖u‖Σ̃(l) ‖u′‖Σ̃(l)

− ‖w‖Σ(l) ‖w′‖Σ(l) u>Σ̃(l)u′ − w>Σ(l)w′‖u‖Σ̃(l)‖u′‖Σ̃(l)

)

=
∑M

l=1

(
‖w‖Σ(l) ‖w′‖Σ(l) − w>Σ(l)w′

)(
‖u‖Σ̃(l) ‖u′‖Σ̃(l) − u>Σ̃(l)u′

)
. (E.1)

In (a), we have used that ξl’s, hl’s and gl’s are all standard Gaussians; in (b), we have
used

E[w>Hu(w′)>Hu′] =
∑n

i,i′=1

∑d

j,j′=1
wiw

′
i′uju

′
j′ E[HijHi′j′ ]

=
∑M

l=1

∑n

i,i′=1

∑d

j,j′=1
wiΣ

(l)
ii′w

′
i′ujΣ̃

(l)
jj′u

′
j′

=
∑M

l=1
w>Σ(l)w′ u>Σ̃(l)u′ .

By the positive semi-definiteness of Σ(l) and Σ̃(l), (E.1) is non-negative, and equals
to zero when w = w′. This shows that the Gaussian processes (Yw,u)w∈Id,u∈In and
(Xw,u)w∈Id,u∈In verify the conditions of the Gaussian comparison inequality (Corollary
3.13 of Ledoux and Talagrand (1991)) and therefore for any real sequence (λw,u)w∈Id,u∈In ,

P
(
∩w∈Id ∪v∈In {Yw,u ≥ λw,u}

)
≥ P

(
∩w∈Id ∪v∈In {Xw,u ≥ λw,u}

)
.

Choosing λw,u = −f(w, u) + c yields that

P
(

min
w∈Id

max
v∈In

(Yw,u + f(w, u)) ≥ c
)
≥ P

(
min
w∈Id

max
v∈In

(Xw,u + f(w, u)) ≥ c
)
.

Noting that the two min-max quantities correspond to Ψξ
Id,In and ψId,In concludes the

proof.

The next result extends Lemma E.1 to compact sets.

Lemma E.2 (GMT for compact sets). Suppose Sd ⊂ Rp and Sn ⊂ Rn are compact and

f is continuous on Sd × Sn. Then for all c ∈ R,

P(Ψξ
Sd,Sn ≥ c) ≥ P(ψSp,Sn ≥ c) .

Proof of Lemma E.2. The proof is almost identical to the proof of standard GMT results
for compact sets, now that we have established Lemma E.1: We show by a compactness
argument that both losses only change a little when replacing Sd and Sn by their δ-nets Sδp
and Sδn, induced by the Euclidean norms on Rn and Rd respectively. The only difference
from their proof is that we use a slightly different concentration inequality. Therefore we
only set up the essential notation, highlight the differences and refer interested readers to
the proof of Theorem 3.2.1 of Thrampoulidis (2016), found in Pg 185-187.
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First fix some ε > 0. Since f is continuous and thereby uniformly continuous on the
compact set Sδp × Sδn, there exists some δ = δ(ε) > 0 such that for all (w, u), (w′, u′) ∈
Sd × Sn with ‖(w, u) − (w′, u′)‖ ≤ δ, we have ‖f(w, u) − f(w′, u′)‖ ≤ ε. Use this δ
to form the δ-nets Sδp and Sδn. We also write ‖ • ‖op as the operator norm of a matrix, and
write

S := max
1≤l≤M

max{‖Σ(l)‖op , ‖Σ̃(l)‖op} and K := max
{

sup
w∈Sd
‖w‖ , sup

u∈Sn
‖u‖
}
.

K is bounded since Sd and Sn are compact, and for w ∈ Sd, u ∈ Sn and l ≤M , we have

‖w‖ ≤ K , ‖w‖Σ(l) ≤ SK , ‖u‖ ≤ K , ‖u‖Σ̃(l) ≤ SK .

Then by the same argument as the proof of Theorem 3.2.1 of Thrampoulidis (2016), there
exists w1 ∈ Sd, w′1 ∈ Sδp with ‖w1 − w′1‖ ≤ δ and u1 ∈ Sδn such that

∆ξ
Ψ := minw∈Sδp maxu∈Sδn L

ξ
Ψ(w, u) − minw∈Sd maxu∈Sn L

ξ
Ψ(w, u)

≤ LξΨ(w′1, u1)− LξΨ(w1, u1) .

Computing the difference gives

∆ξ
Ψ ≤ (w′1 − w1)>Hu1 +

M∑

l=1

ξl (‖w′1‖Σ(l) − ‖w1‖Σ(l))‖u1‖Σ̃(l) + (f(w′1, u1)− f(w1, u1))

≤ δ‖H‖K + SK
∑M

l=1
|ξl| ‖w′1 − w1‖Σ(l) + |f(w′1, u1)− f(w1, u1)|

≤ δK‖H‖+ δS2K
∑M

l=1
|ξl|+ ε .

We seek to control ‖H‖ and
∑M

1=1
|ξl| via concentration inequalities. Let vec(H) denote

the Rpn-valued vector formed from the entries of H, and ΣH := Var[vec(H)]. Then we
can express, for some Rpn-valued standard Gaussian vector η,

‖H‖2 = ‖vec(H)‖2 = η>ΣH η .

Then by a Chernoff bound, we have that for any t > 0,

P(‖H‖ ≥ t) ≤ infa>0 e
−at2E

[
ea‖H‖

2]
= infa>0 e

−at2E
[
ea η

>ΣHη
]

Applying the formula of the moment-generating function of a Gaussian quadratic form
(see e.g. Rencher and Schaalje (2008)) followed by setting a = 1

4‖ΣH‖op
, we obtain

P(‖H‖ ≥ t) ≤ infa>0
e−at

2

√
det(Ipn − 2aΣH)

≤ e−t
2/(4‖ΣH‖op)

√
det(Ipn − 1

2‖ΣH‖op
ΣH)

≤ 2pn/2 e−t
2/(4‖ΣH‖op) . (E.2)

On the other hand, a standard concentration result on univariate Gaussians yields

P(|ξl| > t) ≤ 2e−t
2/2 .
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Taking a union bound, we obtain that for any t > 0,

P
(

∆ξ
Ψ ≤ δKt+ δS2KMt+ ε

)
≥ 1− 2pn/2 e−t

2/(4‖ΣH‖op) − 2Me−t
2/2 ,

and therefore for any c ∈ R and t > 0,

P
(

minw∈Sd maxu∈Sn L
ξ
Ψ(w, u) ≥ c− δKt− δS2KMt− ε

)

≥ P
(

minw∈Sδp maxu∈Sδn L
ξ
Ψ(w, u) ≥ c

)
− 2pn/2 e−t

2/(4‖ΣH‖op) − 2e−t
2/2 .

(E.3)

A similar argument as in the proof of Theorem 3.2.1 of Thrampoulidis (2016) shows that,
there exists w2 ∈ Sδp , u2 ∈ Sd and u′2 ∈ Sδn with ‖u2 − u′2‖ ≤ δ such that

min
w∈Sδp

max
u∈Sδn

Lψ(w, u) − min
w∈Sd

max
u∈Sn

Lψ(w, u) ≥ Lψ(w2, u
′
2)− Lψ(w2, u2)

=
∑M

l=1

(
‖w2‖Σ(l)h>l

(
Σ̃(l)
)1/2

(u′2 − u2) + w>2
(
Σ(l)
)1/2

gl(‖u′2‖Σ̃(l) − ‖u2‖Σ̃(l))
)

+ (f(w2, u
′
2)− f(w2, u2))

≥ −δS2K
∑M

l=1
(‖hl‖+ ‖gl‖)− ε .

Applying (E.2) to each ‖hl‖ and ‖gl‖ yields that, for any t > 0 and 1 ≤ l ≤M ,

P(‖hl‖ ≥ t) ≤ 2n/2e−t
2/4 and P(‖gl‖ ≥ t) ≤ 2p/2e−t

2/4 .

Taking another union bound, we get that for any t > 0,

P( minw∈Sd maxu∈Sn Lψ(w, u) ≥ c+ 2δS2KMt+ ε )

≤ P( minw∈Sδd maxu∈Sδn Lψ(w, u) ≥ c ) + 2n/2Me−t
2/4 + 2p/2Me−t

2/4 . (E.4)

Now by Lemma E.1, we have

P( minw∈Sδn maxu∈Sδd Lψ(w, u) ≥ c ) ≤ P
(

minw∈Sδp maxu∈Sδn L
ξ
Ψ(w, u) ≥ c

)
.

Combining this with (E.3) and (E.4) yields

P( minw∈Sn maxu∈Sd Lψ(w, u) ≥ c+ 2δS2KMt+ ε )

≤ P
(

minw∈Sn maxu∈Sd L
ξ
Ψ(w, u) ≥ c− δKt− δS2KMt− ε

)

+ 2n/2Me−t
2/4 + 2p/2Me−t

2/4 + 2np/2 e−t
2/(4‖ΣH‖op) + 2e−t

2/2 .

The above holds for all ε > 0 and t > 0. Set t = δ−1/2, take ε → 0 and choosing a
sequence δ(ε)→ 0, we obtain that

P( minw∈Sd maxu∈Sn Lψ(w, u) ≥ c ) ≤ P
(

minw∈Sd maxu∈Sn L
ξ
Ψ(w, u) ≥ c

)
,

i.e. P(Ψξ
Sd,Sn ≥ c) ≥ P(ψSp,Sn ≥ c).

We are now ready to prove Theorem 7.1 and Corollary 7.2.
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Proof of Theorem 7.1. The proof is almost identical to the proof of Theorem 3.3.1 of
Thrampoulidis (2016) given the GMT result from Lemma E.2, and we focus on high-
lighting the differences. To prove the first bound in (i), we first apply Lemma E.2 to
obtain that for all c ∈ R,

P
(

min
w∈Sn

max
u∈Sd

LΨ(w, u) +
∑M

l=1
ξl ‖w‖Σ(l)‖u‖Σ̃(l) ≤ c

)
≤ P(ψSn,Sd ≤ c) ,

where (ξl)l≤M is a collection of univariate standard Gaussians independent of H. First
notice that, by conditioning on the event ∩l≤M{ξl ≥ 0}, we have that

P(ΨSp,Sn ≤ c) = P
(

min
w∈Sn

max
u∈Sd

LΨ(w, u) ≤ c
)

≤ P
(

min
w∈Sn

max
u∈Sd

LΨ(w, u) +
∑M

l=1
ξl ‖w‖Σ(l)‖u‖Σ̃(l) ≤ c

∣∣ ξ1, . . . , ξM ≤ 0
)

which holds almost surely. Since ξl’s are all independent and symmetric about zero, and
there are 2M possibilities for the signs of (ξ1, . . . , ξM), we obtain that

1

2M
P(ΨSp,Sn ≤ c)

≤ 1

2M
P
(

min
w∈Sn

max
u∈Sd

LΨ(w, u) +
∑M

l=1
ξl ‖w‖Σ(l)‖u‖Σ̃(l) ≤ c

∣∣ ξ1, . . . , ξM ≤ 0
)

≤ P
(

min
w∈Sn

max
u∈Sd

LΨ(w, u) +
∑M

l=1
ξl ‖w‖Σ(l)‖u‖Σ̃(l) ≤ c

)

≤ P(ψSn,Sd ≤ c) ,

which gives the desired statement.

The proof of the bound in (ii) is exactly the same as the proof of Theorem 3.3.1(ii)
of Thrampoulidis (2016): It relies on the ability to apply a min-max theorem or a min-
max inequality for swapping minimum and maximum under the stated convex-concave
assumptions, as well as the invariance of the random term of the loss under a sign change.
Both hold for our losses LΨ and Lψ, since H in our LΨ is still zero-mean Gaussian, Lψ
is a linear sum of independent mean-zero Gaussian terms and all additional matrices Σ(l)

and Σ̃(l) are positive semi-definite. We refer readers to the proof of Theorem 3.3.1(ii) of
Thrampoulidis (2016) for a detailed derivation, and note that the only difference in our
result is in that the coefficient from the first bound in (i) is now 2M instead of 2.

The proof of (iii) is also exactly the same as the proof of Theorem 3.3.1(iii) of Thram-
poulidis (2016), which only relies on the three assumptions, the statements (i) and (ii)
proved above and a union bound. We again refer readers to the proof of Theorem 3.3.1(iii)
of Thrampoulidis (2016) for a detailed derivation.

Proof of Corollary 7.2. The result follows directly from Theorem 7.1(ii); see Corollary
3.3.2 of Thrampoulidis (2016).
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