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Abstract
In this paper, we provide a sufficient condition for a
Furstenberg measure generated by a finitely supported
measure to be absolutely continuous. Using this, we
give completely explicit examples of absolutely contin-
uous Furstenberg measures including examples which
are generated by measures which are not symmetric.
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1 INTRODUCTION

In this paper, we find a sufficient condition for a Furstenbergmeasure to be absolutely continuous.
Using this, we are able to give explicit examples of measures 𝜇 on PSL2(ℝ) supported on finitely
many points — including examples supported on only two points — such that the Furstenberg
measure 𝜈 on 𝑃1(ℝ) generated by 𝜇 is absolutely continuous. We are able to give much broader
classes of examples than are given in earlier works such as [8]. In particular, we do not require 𝜇
to be symmetric.
Given a measure 𝜇 on PSL2(ℝ), we say that a measure 𝜈 on 𝑃1(ℝ) is a Furstenberg measure

generated by 𝜇 if 𝜈 is stationary under action by 𝜇. In other words, we require

𝜈 = 𝜇 ∗ 𝜈,

where ∗ denotes convolution. It is a theorem of Furstenberg in [18] that if 𝜇 is strongly irreducible
and the support of 𝜇 is not contained in a compact subgroup of PSL2(ℝ), then there is a unique
Furstenberg measure generated by 𝜇. Throughout this paper, we will only be concerned with the
case where 𝜇 is supported on finitely many points.
Furstenberg measures have many similarities with self-similar measures. A probability mea-

sure 𝜆 onℝ𝑑 is self-similar if there are similarities 𝑆1, 𝑆2, … , 𝑆𝑛 ∶ ℝ𝑑 → ℝ𝑑 and a probability vector
(𝑝1, 𝑝2, … , 𝑝𝑛) such that

𝜆 =

𝑛∑
𝑖=1

𝑝𝑖𝜆◦𝑆
−1
𝑖 .

Some important recent developments in the study of self-similar measures and their dimensions
can be found in, for example, [21, 35–37] or [27].
Two fundamental questions about Furstenberg measures are what are their dimensions? And

when are they absolutely continuous?
It is a classical result by Guivarc’h [19] that if 𝜇 is strongly irreducible and the support of 𝜇 is not

contained in a compact subgroup of PSL2(ℝ) and there is some 𝜀 > 0 such that ∫ ‖g‖𝜀 𝑑𝜇(g) < ∞,
then there exist 𝐶, 𝛿 > 0 such that if we let 𝜈 be the Furstenberg measure generated by 𝜇, let
𝑥 ∈ 𝑃1(ℝ) and let 𝑟 > 0, then

𝜈(𝐵(𝑥, 𝑟)) ⩽ 𝐶𝑟𝛿,

where𝐵(𝑥, 𝑟) is the open ball in 𝑃1(ℝ) centre 𝑥 and radius 𝑟. This implies, in particular, that under
these conditions, 𝜈 has positive dimension.
In [24], it was conjectured that if 𝜇 is supported on finitely many points, then its Furstenberg

measure 𝜈 is singular. This conjecture was disproved by Bárány, Pollicott and Simon in [2] which
gave a probabilistic construction of measures 𝜇 on PSL2(ℝ) supported on finitely many points
with absolutely continuous Furstenberg measures. A variant of this conjecture that also requires
𝜇 to be supported on a discrete subgroup of PSL2(ℝ) remains open.
In [8], Bourgain gives examples of measures 𝜇 on PSL2(ℝ) supported on finitely many points

such that the Furstenberg measure generated by 𝜇 is absolutely continuous.
In [22], building on the work of Hochman in [21], Hochman and Solomyak show that providing

𝜇 satisfies some exponential separation condition, then its Furstenberg measure 𝜈 satisfies

dim𝜈 = min

{
ℎ𝑅𝑊
2𝜒

, 1

}
,
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 3 of 100

where ℎ𝑅𝑊 is the random walk entropy and 𝜒 is the Lypanov exponent. In particular, they show
that if 𝜇 satisfies some exponential separation condition and

ℎ𝑅𝑊
𝜒

⩾ 2,

then 𝜈 has dimension 1. In this paper, we will show that there is some 𝐶 which depends on,
amongst other things, the rate of the exponential separation such that if

ℎ𝑅𝑊
𝜒

⩾ 𝐶,

then 𝜈 is absolutely continuous. The result we end up with is similar to the result of Varjú in
[37, Theorem 1] but applies to Furstenberg measures rather than Bernoulli convolutions. Our
techniques are somewhat inspired by those of Hochman [21], Hochman and Solomyak [22] and
Varjú [37], but we introduce several crucial new ingredients including, amongst other things, the
concept of ‘detail’ from [27].

1.1 Main results

We now state our result on the absolute continuity of Furstenberg measures. To do this, we first
need some definitions.

Definition 1.1. Let 𝜇 be a probability measure on PSL2(ℝ). We say that 𝜇 is strongly irreducible
if there is no finite set 𝑆 ⊂ 𝑃1(ℝ) which is invariant when acted upon by the support of 𝜇.

Definition 1.2. Given ameasure 𝜇 on PSL2(ℝ), we define the Lyapunov exponent of 𝜇 to be given
by the almost sure limit

𝜒 ∶= lim
𝑛→∞

1

𝑛
log ‖‖𝛾1𝛾2 … 𝛾𝑛

‖‖,
where 𝛾1, 𝛾2, … are i.i.d. samples from 𝜇.

It is a result of Furstenberg and Kesten [17] and Furstenberg [16] that if

∫ log ‖g‖𝑑𝜇(g) < ∞,

𝜇 is strongly irreducible and its support is not contained in a compact subgroup of PSL2(ℝ), then
this limit exists almost surely and is positive.
Note that 𝜇 being strongly irreducible and its support not being contained in a compact sub-

group is equivalent to the support of 𝜇 generating a Zariski-dense semigroup. Therefore, using the
notation of [3], we will refer to such measures as Zariski-densemeasures.
Throughout this paper, given some g ∈ PSL2(ℝ), we will write ‖g‖ to mean the operator norm

of ĝ where ĝ ∈ SL2(ℝ) is some representative of g . Note that this does not depend on our choice
of ĝ . We will also fix some left invariant Riemannian metric on PSL2(ℝ) and let 𝑑 be its distance
function. We then have the following definition.
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4 of 100 KITTLE

Definition 1.3. Let 𝜇 be a discrete measure on PSL2(ℝ) supported on finitely many points. Let

𝑆𝑛 ∶=

𝑛⋃
𝑖=1

supp(𝜇∗𝑖).

Then, we define the splitting rate of 𝜇, which we will denote by𝑀𝜇, by

𝑀𝜇 ∶= exp

(
lim sup

𝑥,𝑦∈𝑆𝑛,𝑥≠𝑦
−
1

𝑛
log 𝑑(𝑥, 𝑦)

)
.

Note that all left invariant Riemannian metrics are equivalent and therefore 𝑀𝜇 does not
depend on our choice of Riemannian metric. We also need to define the following.

Definition 1.4. We define the bijective function 𝜙 by

𝜙 ∶ 𝑃1(ℝ) → ℝ∕𝜋ℤ[(
cos 𝑥

sin 𝑥

)]
↦ 𝑥.

We now define the following quantitative non-degeneracy condition.

Definition 1.5. Given some probabilitymeasure 𝜇 on PSL2(ℝ) generating a Furstenbergmeasure
𝜈 on 𝑃1(ℝ) and given some 𝛼0, 𝑡 > 0, we say that 𝜇 is 𝛼0, 𝑡-non-degenerate if whenever 𝑎 ∈ ℝ, we
have

𝜈(𝜙−1([𝑎, 𝑎 + 𝑡] + 𝜋ℤ)) ⩽ 𝛼0.

This just says that each arc of length 𝑡 has 𝜈 measure at most 𝛼0. We now have everything
needed to state our new result on the absolute continuity of Furstenberg measures.

Theorem1.6. For all𝑅 > 1,𝛼0 ∈ (0, 1
3
) and 𝑡 > 0, there is some𝐶 > 0 such that the following holds.

Suppose that 𝜇 is a probability measure on PSL2(ℝ) which is Zariski-dense, 𝛼0, 𝑡- non-degenerate,
and is such that on the support of 𝜇, the operator norm is at most 𝑅. Suppose that𝑀𝜇 < ∞ and

ℎ𝑅𝑊
𝜒

> 𝐶

(
max

{
1, log

log𝑀𝜇

ℎ𝑅𝑊

})2

. (1)

Then, the Furstenberg measure 𝜈 on 𝑃1(ℝ) generated by 𝜇 is absolutely continuous.

The constant 𝐶 can be computed by following the proof.

Remark 1.7. The condition𝑀𝜇 < ∞ is closely related to the exponential separation condition in
[22]. Indeed, in [22], Hochman and Solomyak prove that if

lim sup
𝑥,𝑦∈supp(𝜇∗𝑛),𝑥≠𝑦

−
1

𝑛
log 𝑑(𝑥, 𝑦) < ∞

and ℎ𝑅𝑊
𝜒

⩾ 2, then the Furstenberg measure has dimension 1.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 5 of 100

We will now discuss how this result compares to previously existing results.
As we mentioned above, Bourgain [8] gave examples of absolutely continuous Furstenberg

measures generated by measures on PSL2(ℝ) supported on finitely many points. Bourgain was
able to construct examples with density function in 𝐶𝑟 for every finite 𝑟 > 0. His approach was
revisited by several authors including Benoist and Quint [4], Boutonnet, Ioana and Golsefidy [9],
Lequen [31] and Kogler [29]. We quote the following result from [29].

Theorem 1.8. For every 𝑐1, 𝑐2 > 0 and𝑚 ∈ ℤ>0, there is some positive 𝜀0 = 𝜀0(𝑚, 𝑐1, 𝑐2) such that
the following holds. Suppose that 𝜀 ⩽ 𝜀0 and let 𝜇 be a symmetric probability measure on PSL2(ℝ)

such that

𝜇∗𝑛(𝐵𝜀𝑐1𝑛 (𝐻)) ⩽ 𝜀𝑐2𝑛 (2)

for all proper closed connected subgroups𝐻 < PSL2(ℝ) and all sufficiently large 𝑛. Suppose further
that

supp 𝜇 ⊂ 𝐵𝜀(Id). (3)

Then, the Furstenberg measure generated by 𝜇 is absolutely continuous with 𝑚-times continuously
differentiable density function.

Here, 𝐵𝜀(⋅) denotes 𝜀-neighbourhood of a set with respect to our left invariant Riemannianmet-
ric.
The conditions of this theorem are not directly comparable to ours but they are related. Condi-

tion (2) can be verified for 𝐻 = {Id} if𝑀𝜇 ⩽ 𝜀−𝑐1 and 𝜇∗𝑛(Id) ⩽ 𝜀𝑐2𝑛 for all sufficiently large 𝑛. If
that is the case, then ℎ𝑅𝑊 ⩾ 𝑐2 log 𝜀

−1. When condition (3) holds, we must have 𝜒 ⩽ 𝑂(𝜀). Infor-
mally speaking the conditions (2) and (3) correspond to𝑀𝜇 ⩽ 𝜀−𝑐1 , ℎ𝑅𝑊 ⩾ 𝑐2 log 𝜀

−1 and𝜒 ⩽ 𝑂(𝜀).
In comparison condition (1) in Theorem 1.6 is satisfied if𝑀𝜇 ⩽ exp

(
exp

(
𝑐𝜀−1∕2

))
, ℎ𝑅𝑊 ⩾ 𝑐, and

𝜒 ⩽ 𝜀 for some suitably small 𝑐 > 0.
It is important to note, however, that Theorem 1.8 gives higher regularity for the Furstenberg

measure than our result.
To demonstrate the applicability of our result, we give several examples of measures satisfy-

ing the conditions of Theorem 1.6. We will prove that these examples satisfy the conditions of
Theorem 1.6 in Section 9.

Definition 1.9 (Height). Let 𝛼1 be an algebraic number of degree 𝑑 with algebraic conju-
gates 𝛼2, 𝛼3, … , 𝛼𝑑. Suppose that the minimal polynomial for 𝛼1 over ℤ[𝑋] has positive leading
coefficient 𝑎0. Then, we define the height of 𝛼1 by

(𝛼1) ∶=

(
𝑎0

𝑛∏
𝑖=1

max{1, |𝛼𝑖|})1∕𝑑

.

Note that the height of a rational number is the maximum of the absolute values of its numera-
tor and denominator. Also note that the height of an algebraic number is the 𝑑th root of itsMahler
measure.

Corollary 1.10. For every 𝐴 > 0, there is some 𝐶 > 0 such that the following is true. Let 𝑟 > 0 be
sufficiently small (depending on 𝐴) and let 𝜇 be a finitely supported symmetric probability measure
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6 of 100 KITTLE

on PSL2(ℝ). Suppose that all the entries of the matrices in the support of 𝜇 are algebraic and that
the support of 𝜇 is not contained in any compact subgroup of PSL2(ℝ). Let𝑀 be the greatest of the
heights of these entries and let 𝑘 be the degree of the number field generated by these entries.
Let𝑈 be a random variable taking values in 𝔭𝔰𝔩2(ℝ) such that ‖𝑈‖ ⩽ 𝑟 almost surely, exp(𝑈) has

law 𝜇, and the smallest eigenvalue of the covariance matrix of𝑈 is at least 𝐴𝑟2.
Suppose that for any virtually solvable group𝐻 < PSL2(ℝ), we have 𝜇(𝐻) ⩽ 1∕2.
Suppose further that

𝑟 ⩽ 𝐶(log 𝑘 + log log(𝑀 + 10))−2.

Then, the Furstenberg measure generated by 𝜇 is absolutely continuous.

In the above corollary,we can replace the requirement that𝜇 is symmetricwith the requirement‖𝔼[𝑈]‖ < 𝑐𝑟2 for any 𝑐 > 0. We can also replace the requirement 𝜇(𝐻) ⩽ 1∕2 with 𝜇(𝐻) ⩽ 1 − 𝜀

for any 𝜀 > 0. If we do this, then we must allow 𝐶 to also depend on 𝑐 and 𝜀.
Unlike examples based on the methods of Bourgain, we do not require the support of 𝜇 to be

close to the identity. We may prove the following.

Corollary 1.11. For all 𝑟 > 0, there exists some Zariski-dense finitely supported probability measure
𝜇 on PSL2(ℝ) such that all the elements in the support of 𝜇 are conjugate to a diagonal matrix with
largest entry at least 𝑟 under conjugation by a rotation and the Furstenberg measure generated by 𝜇
is absolutely continuous.

We also have the following family of examples supported on two elements.

Corollary 1.12. For all sufficiently large 𝑛 ∈ ℤ>0, the following is true.
Let 𝐴 ∈ PSL2(ℝ) be defined by

𝐴 ∶=
⎛⎜⎜⎝
𝑛2−1

𝑛2+1
− 2𝑛

𝑛2+1

2𝑛

𝑛2+1

𝑛2−1

𝑛2+1

⎞⎟⎟⎠ ,
and let 𝐵 ∈ PSL2(ℝ) be defined by

𝐵 ∶=
⎛⎜⎜⎝
𝑛3+1

𝑛3
0

0 𝑛3

𝑛3+1

⎞⎟⎟⎠ .
Let 𝜇 = 1

2
𝛿𝐴 + 1

2
𝛿𝐵. Then 𝜇 is Zariski-dense and the Furstenberg measure generated by 𝜇 is

absolutely continuous.

1.2 Outline of the proof

Wewill now give an overview of the proof of Theorem 1.6.We adapt the concept of detail from [27]
to work with measures on 𝑃1(ℝ) or equivalently ℝ∕𝜋ℤ instead of measures on ℝ. The detail of a
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 7 of 100

measure 𝜆 around scale 𝑟, denoted by 𝑠𝑟(𝜆), is a quantitative measure of how smooth a measure
is at scale 𝑟. We will define this in Definition 3.3. We then need the following result.

Lemma 1.13. Suppose that 𝜆 is a probability measure on 𝑃1(ℝ) and that there exists some constant
𝛽 > 1 such that for all sufficiently small 𝑟 > 0, we have

𝑠𝑟(𝜆) <
(
log 𝑟−1

)−𝛽
.

Then, 𝜆 is absolutely continuous.

A similar result for measures on ℝ is proven in [27, Lemma 1.18]. The same proof works for
measures on ℝ∕𝜋ℤ.
In Definition 3.5, we introduce a new quantity for measuring how smooth ameasure is at some

scale 𝑟 > 0which we will call order 𝑘 detail around scale 𝑟 and denote by 𝑠(𝑘)𝑟 (⋅). The definition is
chosen such that trivially, we have

𝑠(𝑘)𝑟 (𝜆1 ∗ 𝜆2 ∗ ⋯ ∗ 𝜆𝑘) ⩽ 𝑠𝑟(𝜆1)𝑠𝑟(𝜆2) … 𝑠𝑟(𝜆𝑘). (4)

We can also bound detail in terms of order 𝑘 detail using the following lemma.

Lemma 1.14. Let 𝑘 be an integer greater than 1 and suppose that 𝜆 is a probability measure on
ℝ∕𝜋ℤ. Suppose that 𝑎, 𝑏 > 0 and 𝛼 ∈ (0, 1). Suppose that 𝑎 < 𝑏 and that for all 𝑟 ∈ [𝑎, 𝑏], we have

𝑠(𝑘)𝑟 (𝜆) ⩽ 𝛼.

Then, we have

𝑠
𝑎
√
𝑘
(𝜆) ⩽ 𝛼𝑘

(
2𝑒

𝜋

) 𝑘−1
2

+ 𝑘! ⋅ 𝑘𝑎2𝑏−2.

Remark 1.15. Combining Lemma 1.14 with (4), we get a result that can be stated informally as
follows. Let 𝜆1, 𝜆2, … , 𝜆𝑛 be measures on ℝ∕𝜋ℤ. Assume that we have some bound on 𝑠𝑟(𝜆𝑖) for
all integers 𝑖 ∈ [1, 𝑛] and all 𝑟 in a suitably large range of scales around some scale 𝑟0. Then, we
can get a vastly improved bound for 𝑠𝑟0(𝜆1 ∗ 𝜆2 ∗ ⋯ ∗ 𝜆𝑛).
This is essentially the same as [27, Theorem 1.19]. However, [27, Theorem 1.19] is not suffi-

cient for the proof of our result on Furstenberg measures. In what follows, we decompose the
Furstenberg measure 𝜈 as the convex combination of measures that can be approximated by
the convolutions of measures. This allows us to estimate 𝑠(𝑘)𝑟 (𝜈) for arbitrary scales using (4)
amongst other things. Unlike the setting of, for example [27], we cannot estimate the detail of
the convolution factors at a sufficiently large range of scales and so cannot apply [27, Theorem
1.19].
In fact, the decomposition we use to estimate 𝑠(𝑘)𝑟 (𝜈) depends on the exact value of 𝑟. For this

reason, the notion of order 𝑘 detail is a key innovation of this paper that is necessary for the proof.

We now need tools for bounding the detail of a measure at a given scale. One of them is the
following.

 1460244x, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70072 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [27/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 100 KITTLE

Lemma 1.16. For every 𝛼 > 0, there exists some 𝐶 > 0 such that the following is true. Let
𝑋1, 𝑋2, … , 𝑋𝑛 be independent random variables taking values in ℝ∕𝜋ℤ such that |𝑋𝑖| < 𝑠 almost
surely for some 𝑠 > 0. Let 𝜎 > 0 be defined by 𝜎2 =

∑𝑛
𝑖=1 Var𝑋𝑖 . Let 𝑟 ∈ (𝑠, 𝜎). Suppose that

𝜎

𝑟
,
𝑟

𝑠
⩾ 𝐶.

Then,

𝑠𝑟(𝑋1 + 𝑋2 +⋯ + 𝑋𝑛) ⩽ 𝛼.

Here and through out this paper when 𝑥 ∈ ℝ∕𝜋ℤ, we use |𝑥| to denote min𝑦∈𝑥 |𝑦|. The idea
of the proof of Theorem 1.6 is to show that 𝜈◦𝜙−1 can be expressed as a convex combination of
measures each of which can be approximated by the law of the sum of many small independent
random variables with some control over the variances of these variables. One difficulty with this
is that the measures which 𝜈◦𝜙−1 is a convex combination of are only approximately the laws of
sums of small independent random variables of the required form. To deal with this, we will need
the following.

Lemma 1.17. There is some constant 𝐶 > 0 such that the following is true. Let 𝜆1 and 𝜆2 be
probability measures on ℝ∕𝜋ℤ and let 𝑟 > 0. Let 𝑘 ∈ ℤ>0. Then,|||𝑠(𝑘)𝑟 (𝜆1) − 𝑠(𝑘)𝑟 (𝜆2)

||| ⩽ 𝐶𝑟−11(𝜆1, 𝜆2).

Here,1(⋅, ⋅) denotes Wasserstein distance.
Now we need to explain how we express 𝜈◦𝜙−1 as a convex combination of measures each of

which are close to the law of a sum of small independent random variables. To do this, we will
need a chart for some neighbourhood of the identity in PSL2(ℝ).
To do this, we use the logarithm from PSL2(ℝ) to its Lie algebra 𝔭𝔰𝔩2(ℝ) defined in some open

neighbourhood of the identity inPSL2(ℝ).We also fix somebasis of𝔭𝔰𝔩2(ℝ) anduse this to identify
𝔭𝔰𝔩2(ℝ) with ℝ3 and fix some Euclidean product and corresponding norm on 𝔭𝔰𝔩2(ℝ).
Now we consider the expression

𝑥 = 𝛾1𝛾2 … 𝛾𝑇𝑏,

where 𝑇 is a stopping time, 𝛾1, 𝛾2, … are random variables taking values in PSL2(ℝ) which are
i.i.d. samples from 𝜇 and 𝑏 is a sample from 𝜈 independent of the 𝛾𝑖 . Clearly, 𝑥 is a sample from
𝜈. We then construct some 𝜎-algebra such that we can write

𝑥 = g1 exp(𝑢1)g2 exp(𝑢2)… g𝑛 exp(𝑢𝑛)𝑏, (5)

where all of the g𝑖 are  -measurable random variables taking values in PSL2(ℝ) and 𝑏 is an -
measurable random variable taking values in 𝑃1(ℝ). Furthermore, the 𝑢𝑖 are random variables
taking values in 𝔭𝔰𝔩2(ℝ) in a small ball around the origin such that conditional onwe can find
a lower bound on their variance. We then Taylor expand to show that 𝜙(𝑥) can be approximated
in the required way after conditioning on. To do this construction, we construct stopping times
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 9 of 100

0 = 𝑇0 < 𝑇1 < 𝑇2 < ⋯ < 𝑇𝑛 = 𝑇 and construct our random variables such that

g𝑖 exp(𝑢𝑖) = 𝛾𝑇𝑖−1+1 … 𝛾𝑇𝑖 .

To explain this statement more precisely, we first need to define the Cartan decomposition.

Definition 1.18 (Cartan decomposition). We can write each element g of PSL2(ℝ) with ‖g‖ > 1

in the form

𝑅𝜃1
𝐴𝜆𝑅−𝜃2

where

𝑅𝑥 ∶=

(
cos 𝑥 − sin 𝑥

sin 𝑥 cos 𝑥

)
is the rotation by 𝑥 and

𝐴𝜆 ∶=

(
𝜆 0

0 𝜆−1

)
in exactly one way with 𝜆 > 1 and 𝜃1, 𝜃2 ∈ ℝ∕𝜋ℤ. We will let 𝑏+(g) = 𝜙−1(𝜃1) and 𝑏−(g) =

𝜙−1(𝜃2 +
𝜋

2
).

Remark 1.19. Note that in this notation, we have that if ‖g‖ is large then providing 𝑏 ∈ 𝑃1(ℝ) is not
too close to 𝑏−(g), we have that g𝑏 is close to 𝑏+(g). We will make this more precise in Lemma 4.9.

We now let 𝑑 denote the metric on 𝑃1(ℝ) induced by 𝜙. In other words, if 𝑥, 𝑦 ∈ 𝑃1(ℝ), then
𝑑(𝑥, 𝑦) ∶= |𝜙(𝑥) − 𝜙(𝑦)|. Whenever we write 𝑑(⋅, ⋅), it will be clear whether we are applying it to
elements of PSL2(ℝ) or elements of 𝑃1(ℝ) and so clear if we are referring to the distance function
of our left invariant Riemannian metric on PSL2(ℝ) or to our metric on 𝑃1(ℝ).
By carrying out some calculations about the Cartan decomposition and applying Taylor’s

theorem, we can prove the following.

Proposition 1.20. For every 𝑡 > 0, there exist 𝐶, 𝛿 > 0 such that the following is true. Let 𝑛 ∈ ℤ>0

and let 𝑢(1), 𝑢(2), … , 𝑢(𝑛) ∈ 𝔭𝔰𝔩2(ℝ). Let g1, … , g𝑛 ∈ PSL2(ℝ) and let 𝑏 ∈ 𝑃1(ℝ). Let 𝑟 > 0. Suppose
that for each integer 𝑖 ∈ [1, 𝑛], we have

‖‖g𝑖‖‖ ⩾ 𝐶

and

‖‖‖𝑢(𝑖)‖‖‖ ⩽ ‖‖g1g2 … g𝑖
‖‖2𝑟.

Suppose that for each integer 𝑖 ∈ [1, 𝑛 − 1], we have

𝑑(𝑏+(g𝑖), 𝑏
−(g𝑖+1)) > 𝑡
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10 of 100 KITTLE

and also that

𝑑(𝑏, 𝑏−(g𝑛)) > 𝑡.

Suppose further that

‖‖g1g2 … g𝑛‖‖2𝑟 < 𝛿.

Let 𝑥 be defined by

𝑥 = g1 exp(𝑢
(1)) … g𝑛 exp(𝑢

(𝑛))𝑏. (6)

For each integer 𝑖 ∈ [1, 𝑛], let 𝜁𝑖 ∈ 𝔭𝔰𝔩∗2 be the derivative defined by

𝜁𝑖 = 𝐷𝑢(𝜙(g1g2 … g𝑖 exp(𝑢)g𝑖+1g𝑖+2 … g𝑛𝑏))|𝑢=0, (7)

and let 𝑆 be defined by

𝑆 = 𝜙(g1g2 … g𝑛𝑏) +

𝑛∑
𝑖=1

𝜁𝑖(𝑢
(𝑖)).

Then, we have

𝑑(𝜙(𝑥), 𝑆) ⩽ 𝐶𝑛‖‖g1g2 … g𝑛‖‖2𝑟2.
Informally, this proposition states that under some conditions, when 𝑥 is of the form (6), then

𝜙(𝑥) is close to its first order Taylor expansion in the 𝑢(𝑖).
In (7), 𝐷𝑢 denotes the derivative of the map with respect to 𝑢.
We will later use this along with some results about the first derivatives of the exponential at 0,

Lemma 1.16, and (4) to get a bound on the order 𝑘 detail of the expression 𝑥. We can then get an
upper bound on the order 𝑘 detail of some sample 𝑥 from 𝜈 conditional on some 𝜎-algebra. Due
to the convexity of 𝑠(𝑘)𝑟 (⋅), we can then find an upper bound for 𝑠(𝑘)𝑟 (𝜈) by taking the expectation
of this bound.
We will now outline some of the tools we will use to decompose 𝑥 in the way described in (5).

To do this, we introduce the following stopping times.

Definition 1.21. Suppose that 𝛾 = (𝛾1, 𝛾2, … ) is a sequence of random variables taking values in
PSL2(ℝ). Then given some 𝑃 > 0 and some 𝑣 ∈ 𝑃1(ℝ), we define the stopping time 𝜏𝑃,𝑣(𝛾) by

𝜏𝑃,𝑣(𝛾) ∶= inf {𝑛 ∶
‖‖‖(𝛾1𝛾2 … 𝛾𝑛)

𝑇𝑣
‖‖‖ ⩾ 𝑃‖𝑣‖},

where 𝑣 ∈ ℝ2∖{0} is a representative of 𝑣 and 𝑇 denotes transpose. Where 𝛾 is obvious from
context, we will write 𝜏𝑃,𝑣 to mean 𝜏𝑃,𝑣(𝛾).

Note that this definition does not depend on our choice of 𝑣. We now let 𝛾1, 𝛾2, … be
i.i.d. samples from 𝜇. We will show that we can find some 𝜎-algebra ̂, some ̂-measurable

 1460244x, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70072 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [27/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 11 of 100

random variable 𝑎 taking values in PSL2(ℝ) and some random variable 𝑢 taking values in a small
ball around the origin in 𝔭𝔰𝔩2(ℝ) such that we may write 𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣 = 𝑎 exp(𝑢) and such that
conditional on ̂ we know that 𝑢 has at least some variance.
Firstly, we need to define some analogue of variance for random values taking values in

PSL2(ℝ). For this, we will make use of log. Specifically given some fixed g0 ∈ PSL2(ℝ) and some
random variable g taking values in PSL2(ℝ) such that g−10

g is always in the domain of log, we will
define TrVarg0 [g] to be the trace of the covariance matrix of log(g

−1
0

g). This clearly depends on
our choice of Euclidean structure on 𝔭𝔰𝔩2(ℝ). The proof will work with any choice of structure
though the choice will affect the value of the constant 𝐶 we find in Theorem 1.6.
We now define the quantity 𝑣(g ; 𝑟) as follows.

Definition 1.22. Let g be a random variable taking values in PSL2(ℝ) and let 𝑟 > 0. We then
define 𝑣(g ; 𝑟) to be the supremumof all 𝑣 ⩾ 0 such thatwe can find some𝜎-algebra and some-
measurable random variable 𝑎 taking values in PSL2(ℝ) such that | log(𝑎−1g)| ⩽ 𝑟 almost surely
and

𝔼[TrVar𝑎 [g|]] ⩾ 𝑣𝑟2.

Proposition 1.23. There is some absolute constant 𝑐 > 0 such that the following is true. Let 𝜇 be a
finitely supported Zariski-dense probability measure on PSL2(ℝ) and let 𝜈̂ be some probability mea-
sure on 𝑃1(ℝ). Suppose that𝑀𝜇 < ∞ and that ℎ𝑅𝑊∕𝜒 is sufficiently large. Let𝑀 > 𝑀𝜇 be chosen
large enough that log𝑀 ⩾ ℎ𝑅𝑊 . Suppose that 𝑃 is sufficiently large (depending on 𝜇 and𝑀) and let
𝑚̂ =

⌊
log𝑀

100𝜒

⌋
.

Let 𝛾1, 𝛾2, … be i.i.d. samples from 𝜇 and let 𝜏𝑃,𝑣 be as in Definition 1.21. Then, there exist some
𝑠1, 𝑠2, … , 𝑠𝑚̂ > 0 such that for each 𝑖 ∈ [1, 𝑚̂] ∩ ℤ

𝑠𝑖 ∈

(
𝑡
−

log𝑀

𝜒 , 𝑡
−

ℎ𝑅𝑊
10𝜒

)
and for each 𝑖 ∈ [𝑚̂ − 1]

𝑠𝑖+1 ⩾ 𝑃3𝑠𝑖

and such that

𝑚̂∑
𝑖=1

∫𝑃1(ℝ) 𝑣(𝛾1𝛾2 … 𝛾𝜏𝑃,𝑤 ; 𝑠𝑖) 𝜈̂(𝑑𝑤) ⩾ 𝑐

(
ℎ𝑅𝑊
𝜒

)(
max

{
1, log

log𝑀

ℎ𝑅𝑊

})−1

.

The measure 𝜈̂ for which we apply Proposition 1.23 comes from the following result in renewal
theory.

Theorem 1.24. Let 𝜇 be a Zariski-dense compactly supported probability measure on PSL2(ℝ).
Then there is some probability measure 𝜈̂ on 𝑃1(ℝ) such that the following is true. Let 𝛾1, 𝛾2, … be
i.i.d. samples from 𝜇. Then for all 𝑣 ∈ 𝑃1(ℝ), the law of (𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣 )

𝑇𝑣 converges weakly to 𝜈̂ as
𝑃 → ∞. Furthermore, this convergence is uniform in 𝑣.
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12 of 100 KITTLE

We will also need the following corollary.

Corollary 1.25. Let 𝜇 be a Zariski-dense compactly supported probability measure on PSL2(ℝ). Let
𝜈̂ be as in Theorem 1.24. Let 𝛾1, 𝛾2, … be i.i.d. samples from 𝜇. Let 𝑎 ∈ PSL2(ℝ), 𝑃 > 0 and define
𝜏𝑃,𝑎 by

𝜏𝑃,𝑎 ∶= inf {𝑛 ∶ ‖‖𝑎𝛾1𝛾2 … 𝛾𝑛
‖‖ ⩾ 𝑃‖𝑎‖}.

Then 𝑏−(𝑎𝛾1𝛾2 … 𝛾𝜏𝑃,𝑎 )
⟂ converges weakly to 𝜈̂ as 𝑃 → ∞. Furthermore, this convergence is uniform

in 𝑎.

In [26, Theorem 1], it is proven that Theorem 1.24 holds without the condition that it is uniform
in 𝑣 in a much more general setting providing some conditions are satisfied. In [20, Section 4], it
is shown that the conditions of [26, Theorem 1] are satisfied in the setting of Theorem 1.24. In the
Appendix, we will prove Theorem 1.24 by deducing uniform convergence from (not necessarily
uniform) convergence and deduce Corollary 1.25 from it. A formula for 𝜈̂ is given in [26, Theorem
1] though this will not be needed for the purposes of this paper.
In Section 7, we show how to construct the decomposition (5) of a sample 𝑥 from 𝜈. The details

are very technical, so we only discuss in this outline how given a sufficiently small scale 𝑟 one can
construct a stopping time 𝜏, and a 𝜎-algebra such that

𝛾1𝛾2 … 𝛾𝜏 = g exp(𝑢)

for some -measurable random variable g taking values in PSL2(ℝ) and some random 𝑢 taking
values in 𝔭𝔰𝔩2(ℝ) such that ‖𝑢‖ ⩽ ‖g‖2 𝑟 almost surely and after conditioning on , we have a
good lower bound for Var(𝑢)‖g‖4𝑟2 .
We fix a small 𝑠 and some 𝑃 that is much smaller that 𝑠−1. Let 𝑠𝑖0 be one of the scales we get

when we apply Proposition 1.23 with the measure from Theorem 1.24 in the role of 𝜈̂.
Fix an arbitrary 𝑏 ∈ 𝑃1(ℝ). Let 𝑄 = (𝑠∕𝑠𝑖0)

1∕2∕𝑃 and let the stopping time 𝑆 be defined by

𝑆 = inf {𝑛 ∶ ‖(𝛾1 … 𝛾𝑛)
𝑇𝑏‖ ⩾ 𝑄‖𝑏‖}.

By Theorem 1.24, there is a random variable 𝑤 taking values in 𝑃1(ℝ) such that 𝑤⟂ has law 𝜈̂

and

𝑑(𝑏−(𝛾1𝛾2 … 𝛾𝑆), 𝑤)

is small with high probability.
Now let

𝑇 = inf {𝑛 ∶ ‖(𝛾𝑆+1𝛾𝑆+2 … 𝛾𝑛)
𝑇𝑤⟂‖ ⩾ 𝑃‖𝑤⟂‖}.

Note that by Proposition 1.23, there is some 𝜎-algebra ̃ such that

𝛾𝑆+1𝛾𝑆+2 … 𝛾𝑇 = 𝑎 exp(𝑢),
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 13 of 100

where 𝑎 is an ̃-measurable random element of PSL2(ℝ) and 𝑢 is a random element of 𝔭𝔰𝔩2(ℝ)
with ‖𝑢‖ ⩽ 𝑠𝑖0 and a good lower bound on

TrVar(𝑢)

𝑠2
𝑖0

.

Now we define g = 𝛾1 …𝛾𝑆𝑎. Using the definition of 𝑤, it is possible to show that ‖g‖ is
approximately 𝑄 ⋅ 𝑃 = (𝑠∕𝑠𝑖0)

1∕2.
Note that the scale 𝑠𝑖0 depends on the measure 𝜈̂, so the convergence in Theorem 1.24 is

important. On the other hand, it does not matter what this limit measure is.
The construction in Section 7 is significantly more elaborate. In particular, we will make use

of all the scales 𝑠1, … , 𝑠𝑚̂ provided by Proposition 1.23. Moreover, we will need to apply it for a
carefully chosen sequence of parameters in the role of 𝑃. To aidwith this in Section 7, we construct
a family of ways of writing a stopped random walk in PSL2(ℝ) in such a way that we may apply
Proposition 1.20 which is closed under concatenation.
Finally, we discuss some ingredients of the proof of Proposition 1.23. We define the entropy of

an absolutely continuous random variable taking values in PSL2(ℝ) to be the differential entropy
with respect to a certain normalisation of the Haar measure and denote this by 𝐻(⋅). We define
this more precisely in Section 5.2. We will then prove the following theorem.

Theorem 1.26. Let g , 𝑠1 and 𝑠2 be independent random variables taking values in PSL2(ℝ) such
that 𝑠1 and 𝑠2 are absolutely continuous and have finite entropy. Define 𝑘 by

𝑘 ∶= 𝐻(g𝑠1) − 𝐻(𝑠1) − 𝐻(g𝑠2) + 𝐻(𝑠2),

and let 𝑐 ∶= 3

2
log 2

3
𝜋𝑒 TrVarId[𝑠1] − 𝐻(𝑠1). Suppose that 𝑘 > 0. Suppose further that 𝑠1 and 𝑠2 are

supported on the ball of radius 𝜀 centred at the identity for some sufficiently small 𝜀 > 0. Suppose
also that TrVarId[𝑠1] ⩾ 𝐴𝜀2 for some positive constant 𝐴. Then

𝔼
[
TrVarg𝑠2 [g|g𝑠2]] ⩾

2

3
(𝑘 − 𝑐 − 𝐶𝜀) TrVarId[𝑠1],

where 𝐶 is some positive constant depending only on 𝐴.

We apply this theorem when 𝑠1 and 𝑠2 are smoothing functions at appropriate scales with 𝑠2
corresponding to a larger scale than 𝑠1. The value 𝑘 can be thought of as the new information
that can be gained by discretising at the scale corresponding to 𝑠1 after discretising at the scale
corresponding to 𝑠2. When we apply this theorem, we bound 𝑘 in the following way. We let g =

𝛾1𝛾2 … 𝛾𝜏 where the 𝛾𝑖 are i.i.d. samples from 𝜇 and 𝜏 is some stopping time. We let 𝑠1, 𝑠2, … , 𝑠𝑛 be
a sequence of smoothing random variables corresponding to various scales with 𝑠𝑖 corresponding
to a larger scale than 𝑠𝑗 whenever 𝑖 > 𝑗. For 𝑖 = 1, … , 𝑛 − 1, we let 𝑘𝑖 be defined by

𝑘𝑖 = 𝐻(g𝑠𝑖) − 𝐻(𝑠𝑖) − 𝐻(g𝑠𝑖+1) + 𝐻(𝑠𝑖+1),

and note that we have the following telescoping sum:

𝑛−1∑
𝑖=1

𝑘𝑖 =

𝑛−1∑
𝑖=1

𝐻(g𝑠𝑖) − 𝐻(𝑠𝑖) − 𝐻(g𝑠𝑖+1) + 𝐻(𝑠𝑖+1)

= 𝐻(g𝑠1) − 𝐻(𝑠1) − 𝐻(g𝑠𝑛) + 𝐻(𝑠𝑛).

 1460244x, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70072 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [27/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 of 100 KITTLE

Since whenwe apply this theorem, 𝑠𝑛 will correspond to a scale much larger than 𝑠1 we are able to
bound 𝐻(g𝑠1) − 𝐻(𝑠1) − 𝐻(g𝑠𝑛) + 𝐻(𝑠𝑛) for our careful choice of smoothing functions in terms
of ℎ𝑅𝑊 ,𝑀𝜇 and 𝜒.
The value 𝑐 in the above theorem measures how close 𝑠1 is to being a spherical normal dis-

tribution. For random variables taking values in ℝ𝑑, it is well known that the random variable
with the greatest differential entropy out of all random variables with a given covariance matrix
is a multivariate normal distribution. From this, it is easy to deduce that if 𝑋 is a continuous ran-
dom variable taking values in ℝ𝑑, then 𝐻(𝑋) ⩽ 𝑑

2
log 2

𝑑
𝜋𝑒 TrVar𝑋 with equality if and only if

𝑋 is a spherical normal distribution. A similar thing is true for random variables taking values
in PSL2(ℝ). In particular, 𝑐 is small when 𝑠1 is close to being the image of a spherical normal
distribution on 𝔭𝔰𝔩2(ℝ) under exp.
For the conclusion of Theorem 1.26 to be useful in proving Proposition 1.23, we need g to almost

surely be contained in some ball of radius 𝑂
(√

TrVarId[𝑠1]
)
centred on g𝑠2. For this reason, we

require 𝑠2 to be compactly supported. To make our telescoping sum useful, we need 𝑠1 and 𝑠2
to be members of the same family of random variables. For this reason, we take 𝑠1 and 𝑠2 to be
compactly supported approximations of the image of the spherical normal distribution on𝔭𝔰𝔩2(ℝ)
under exp. To do this, we will find bounds on the differential entropy of various objects smoothed
with these compactly supported approximations to the normal distribution at different scales.
We then combine Theorems 1.26 and a bound for the entropy of the stopped random walk

along with some calculations about the entropy and variance of the smoothing functions to prove
Proposition 1.23.

1.3 Notation

Wewill use Landau’s𝑂(⋅) notation. Given some positive quantity𝑋, we write𝑂(𝑋) to mean some
quantitywhose absolute values is bounded above by𝐶𝑋 some constant𝐶. If𝐶 is allowed to depend
on some other parameters, then these will be denoted by subscripts. Similarly, we write 𝑜(𝑋) to
mean some quantity whose absolute value is bounded above by 𝑐𝑋, where 𝑐 is some positive value
which tends to 0 as𝑋 → ∞. Again, if 𝑐 is allowed to depend on some other parameters, then these
will be denoted by subscripts. We also let Θ(𝑋) be some quantity which is bounded below by 𝐶𝑋
where 𝐶 is some positive absolute constant. If 𝐶 is allowed to depend on some other parameters,
then these will be denoted by subscripts.
We write 𝑋 ≲ 𝑌 to mean that there is some constant 𝐶 > 0 such that 𝑋 ⩽ 𝐶𝑌. Similarly, we

write 𝑋 ≳ 𝑌 to mean that there is some constant 𝐶 > 0 such that 𝑋 ⩾ 𝐶𝑌 and 𝑋 ≅ 𝑌 to mean
𝑋 ≲ 𝑌 and𝑋 ≳ 𝑌. If these constants are allowed to depend on some other parameters, then these
are denoted in subscripts.

1.4 Organisation of the paper

Here, we give some brief remarks on the organisation of the paper. In Section 2, we state some
results on random walks on PSL2(ℝ), entropy and probability which will be used thoughout the
paper. In Section 3, we recall some results on detail from [27] and introduce order 𝑘 detail. In Sec-
tion 4, we carry out some calculations on derivatives of various products in PSL2(ℝ) and prove
Proposition 1.20. In Section 5, we prove some basic results about entropy, regular conditional
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 15 of 100

probability and variance onPSL2(ℝ) anduse them to proveTheorem 1.26. In Section 6,weuseThe-
orem 1.26 and some calculations with entropy to prove Proposition 1.23. In Section 7, we develop
some tools for putting together the variance found in Proposition 1.23 at different scales. In Sec-
tion 8, we use these tools to prove Theorem 1.6. In Section 9, we give examples of Furstenbergmea-
sures satisfying the conditions of Theorem 1.6. Finally, in the Appendix, we prove Theorem 1.24.

2 PREREQUISITES

In this subsection, we give some prerequisites for the paper.

2.1 Randomwalks on 𝐏𝐒𝐋𝟐(ℝ)

Here, we give some well-known results about random walks on PSL2(ℝ). These results may be
found in [7] or follow easily from results found therein.

Lemma2.1. Suppose that𝜇 is a compactly supportedZariski-dense probabilitymeasure onPSL2(ℝ)
and let 𝜒 be its Lyaponuv exponent. Let 𝛾1, 𝛾2, … be i.i.d. samples from 𝜇. Then for every 𝜀 > 0, there
is some 𝛿 > 0 such that the following holds.
For all sufficiently large 𝑛, we have

ℙ
[||𝑛𝜒 − log ‖‖𝛾1𝛾2 … 𝛾𝑛

‖‖|| > 𝜀𝑛
]
< exp(−𝛿𝑛). (8)

Furthermore, for all 𝑣 ∈ ℝ2∖{0} for all sufficiently large 𝑛, we have

ℙ
[|||𝑛𝜒 + log ‖𝑣‖ − log

‖‖‖(𝛾1𝛾2 … 𝛾𝑛)
𝑇𝑣

‖‖‖||| > 𝜀𝑛
]
< exp(−𝛿𝑛). (9)

Furthermore, if 𝑃 > 0 is sufficiently large and we define

𝜏𝑃 ∶= inf {𝑛 ∶ ‖‖𝛾1𝛾2 … 𝛾𝑛
‖‖ ⩾ 𝑃},

then

ℙ
[||𝜏𝑃 − log 𝑃∕𝜒|| > 𝜀 log 𝑃

]
< exp(−𝛿 log 𝑃). (10)

Furthermore, for all 𝑣 ∈ 𝑃1(ℝ) for all sufficiently large 𝑃 > 0 if we take 𝜏𝑃,𝑣 as in Definition 1.21,
then

ℙ
[||𝜏𝑃,𝑣 − log 𝑃∕𝜒|| > 𝜀 log 𝑃

]
< exp(−𝛿 log 𝑃). (11)

Proof. Equation (8) follows from [7, Theorem V.6.2]. Equation (9) is a special case of [7, Theorem
V.6.1].
We now deduce (10) from (8). If 𝜏𝑃 > log 𝑃∕𝜒 + 𝜀 log 𝑃, then we must have

‖‖‖𝛾1𝛾2 … 𝛾⌊log 𝑃∕𝜒+𝜀 log 𝑃⌋‖‖‖ ⩽ 𝑃.
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16 of 100 KITTLE

By (8), providing 𝑃 is sufficiently large, this has probability at most exp(−𝛿 log 𝑃).
Choose 𝑅 > 0 such that ‖‖𝛾𝑖‖‖ ⩽ 𝑅 almost surely (this is possible as 𝜇 is compactly supported). If

𝜏 < log 𝑃∕𝜒 − 𝜀 log 𝑃, then there must be some integer 𝑘 ∈ [log 𝑃∕ log 𝑅, log 𝑃∕𝜒 − 𝜀 log 𝑃] such
that

log ‖‖𝛾1𝛾2 … 𝛾𝑘
‖‖ ⩾ log 𝑃 > 𝑘(𝜒 + 𝜀𝜒).

The result now follows from (8) and summing a geometric series.
Finally, (11) follows from (9) by essentially the same argument. □

We will need the following positive dimensionality result.

Theorem 2.2. Suppose that 𝜇 is a Zariski-dense probability measure on PSL2(ℝ) and let 𝜈 be its
Furstenberg measure. Suppose that there exists some 𝜀 > 0 such that

∫ ‖g‖𝜀 𝑑𝜇(g) < ∞.

Then, there exist 𝐶, 𝛿 > 0 such that for any 𝑥 ∈ 𝑃1(ℝ) and any 𝑟 > 0, we have

𝜈(𝐵(𝑥, 𝑟)) < 𝐶𝑟𝛿.

Proof. This is [7, Corollary VI.4.2]. □

We also need the following facts about the speed of convergence to the Furstenberg measure.

Lemma 2.3. Suppose that 𝜇 is a compactly supported Zariski-dense probability measure on
PSL2(ℝ) and let 𝛾1, 𝛾2, … be i.i.d. samples from 𝜇. Then, 𝑏+(𝛾1𝛾2 … 𝛾𝑛) converges almost surely, and
furthermore, there exists some constant 𝜀 > 0 such that for all sufficiently large 𝑛,

ℙ[𝑑(𝑏+(𝛾1𝛾2 … 𝛾𝑛), lim𝑛→∞
𝑏+(𝛾1𝛾2 … 𝛾𝑛)) > exp(−𝜀𝑛)] < exp(−𝜀𝑛). (12)

Furthermore, for all sufficiently large𝑁, we have

ℙ[∃𝑛 ⩾ 𝑁 ∶ 𝑑(𝑏+(𝛾1𝛾2 … 𝛾𝑛), lim𝑚→∞
𝑏+(𝛾1𝛾2 … 𝛾𝑚)) > exp(−𝜀𝑛)] < exp(−𝜀𝑁), (13)

and for all 𝑣 ∈ 𝑃1(ℝ), we have

ℙ[∃𝑚 ⩾ 𝑁 ∶ 𝑑(𝑣, 𝑏+(𝛾1 … 𝛾𝑚)) < exp(−𝜀𝑚)] < exp(−𝛿𝑁). (14)

Proof. The convergence of 𝑏+(𝛾1𝛾2 … 𝛾𝑛) and (12) follow from for example [7, Proposition V.2.3].
Equation (13) follows from (12) and summing a geometric series. Finally, (14) follows easily from
(13) and Theorem 2.2. □

We finish this subsection with the following corollary.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 17 of 100

Corollary 2.4. Suppose that 𝜇 is a compactly supported Zariski-dense probability measure on
PSL2(ℝ). Let 𝛾1, 𝛾2, … be i.i.d. samples from 𝜇 and let 𝜀 > 0. Then there exists 𝑑𝑒𝑙𝑡𝑎 > 0 such that
for all sufficiently large 𝑃 and all 𝑣 ∈ 𝑃1(ℝ), we have

ℙ[
|||log ‖‖‖𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣

‖‖‖ − log 𝑃
||| > 𝜀 log 𝑃] < exp(−𝛿 log 𝑃).

Proof. By definition, we trivially have ‖‖‖𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣
‖‖‖ ⩾ 𝑃. Let 𝑅 be chosen such that ‖⋅‖ ⩽ 𝑅 on the

support of 𝜇. Clearly, 𝜏𝑃,𝑣 ⩾ log 𝑃∕ log 𝑅 and

𝑃𝑅 ⩾
‖‖‖(𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣 )

𝑇𝑣
‖‖‖

=
‖‖‖𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣

‖‖‖ sin 𝑑(𝑏+(𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣 ), 𝑣).

In particular, if log ‖‖‖𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣
‖‖‖ ⩾ (1 + 𝜀) log 𝑃, then

𝑑(𝑏+(𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣 ), 𝑣) ⩽ 10𝑅 exp(−𝜀 log 𝑃).

The result now follows by (14). □

2.2 Entropy

In this subsection, we will describe some of the properties of entropy used in this paper. We will
describe entropy for both absolutely continuous and discrete measures on ℝ𝑑 and PSL2(ℝ).

Definition 2.5 (KL-divergence). Let 𝜆1 be a probability measure on a measurable space (𝐸, 𝜉)
and let 𝜆2 be a measure on (𝐸, 𝜉). Then, we define the KL-divergence of 𝜆1 given 𝜆2 by

(𝜆1, 𝜆2) ∶= ∫𝐸 log
𝑑𝜆1
𝑑𝜆2

𝑑𝜆1.

Definition 2.6 (Entropy). Given a probability measure 𝜆1 on a measurable space (𝐸, 𝜉) and a
measure 𝜆2 on the same space, we define the entropy of 𝜆1 with respect to 𝜆2 by

𝐷(𝜆1||𝜆2) ∶= −(𝜆1, 𝜆2).
Definition 2.7. Given a discrete probability measure 𝜆 on some measurable set (𝐸, 𝜉), we define
the entropy of 𝜆 to be the entropy with respect to the counting measure and we denote this by
𝐻(𝜆). In other words, if 𝜆 =

∑
𝑖 𝑝𝑖𝛿𝑥𝑖 , then

𝐻(𝜆) ∶= −
∑
𝑖

𝑝𝑖 log 𝑝𝑖.

We define the entropy of a random variable to be the entropy of its law.
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18 of 100 KITTLE

Definition 2.8. Given an absolutely continuous probability measure 𝜆 on ℝ𝑑, we define the
entropy of 𝜆 to be the entropy of 𝜆 with respect to the Lebesgue measure and denote this by𝐻(𝜆).
We define the entropy of a random variable to be the entropy of its law.

We use 𝐻 to denote entropy in both cases. It will be clear from context whether 𝐻 is being
applied to a discrete measure (or random variable) or an absolutely continuous measure (or
random variable), so this will not cause confusion.
We now wish to define entropy for an absolutely continuous probability measure on PSL2(ℝ).

To do this, we introduce the following normalisation of the Haar measure.

Definition 2.9. Let 𝑚̃ denote the Haar measure on PSL2(ℝ) normalised such that

𝑑𝑚̃

𝑑𝑚◦ log
(Id) = 1,

where𝑚 denotes the Lebesgue measure on 𝔭𝔰𝔩2(ℝ) under our identification of 𝔭𝔰𝔩2(ℝ) with ℝ3.

Definition 2.10. Let 𝜆 be an absolutely continuous measure on PSL2(ℝ). We then define the
entropy of 𝜆 to be its entropy with respect to 𝑚̃ and denote this by𝐻(𝜆).
Similarly, if g is a randomvariable taking values inPSL2(ℝ), thenwe let𝐻(g)denote the entropy

of its law.

We have the following simple result.

Lemma 2.11. Suppose that g1 and g2 are independent random variables taking values in some
group 𝐆 with 𝜎-algebra 𝜉. Let 𝜆 be a left invariant measure on (𝐆, 𝜉). Then,

𝐷((g1g2)||𝜆) ⩾ 𝐷((g2)||𝜆).
Here and throughout this paper given a random variable 𝑋, we will use (𝑋) to denote the law

of 𝑋

Proof. This is well known. A proof in the special case where 𝐆 = (ℝ,+) is given in [23, Lemma
1.15]. The same proof works in the more general setting described above. □

We also define entropy for non-probability measures.

Definition 2.12. Suppose that 𝜆 is a finite measure discrete measure on some set 𝑆. Then, we
define

𝐻(𝜆) ∶= ‖𝜆‖1𝐻(𝜆∕‖𝜆‖1),
where 𝐻(𝜆∕ ‖𝜆‖1) denotes either the Shannon entropy of 𝜆∕‖𝜆‖1. Similarly if 𝜆 is a finite
absolutely continuous measure on ℝ𝑑 or PSL2(ℝ), we define 𝐻(𝜆) ∶= ‖𝜆‖1 𝐻(𝜆∕ ‖𝜆‖1) where
𝐻(𝜆∕ ‖𝜆‖1) denotes the differential entropy of 𝜆∕ ‖𝜆‖1 with respect to the Lebesgue measure on
ℝ𝑑 or 𝑚̃, respectively.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 19 of 100

We say that a finite discrete measure with masses 𝑝1, 𝑝2, … has finite entropy if

∞∑
𝑖=1

𝑝𝑖| log 𝑝𝑖| < ∞.

Similarly, we say that a finite absolutely continuous measure onℝ𝑑 or PSL2(ℝ)with density func-
tion 𝑓 with respect to the Lebesgue measure or our normalised version of the Haar measure has
finite entropy if

∫ 𝑓| log 𝑓| < ∞.

We now have the following simple lemmas.

Lemma 2.13 (Entropy is concave). Let 𝜆1, 𝜆2, … be finite measures with finite entropy either all
on ℝ𝑑 or all on PSL2(ℝ) which are either all absolutely continuous or all discrete. Suppose that∑∞

𝑖=1
‖‖𝜆𝑖‖‖1 < ∞ and both𝐻

(∑∞
𝑖=𝑁 𝜆𝑖

)
and

∑∞
𝑖=𝑁 𝐻 (𝜆𝑖) tend to 0 as𝑁 → ∞. Then

𝐻(

∞∑
𝑖=1

𝜆𝑖) ⩾

∞∑
𝑖=1

𝐻(𝜆𝑖).

Proof. This is proven for measures on ℝ𝑑 in [27, Lemma 4.6]. The same proof also works in this
setting. □

Lemma 2.14 (Entropy is almost convex). Let 𝜆1, 𝜆2, … be probability measures either all on ℝ𝑑

or all on PSL2(ℝ) which are either all absolutely continuous or all discrete. Suppose that all of the
probability measures have finite entropy. Let 𝐩 = (𝑝1, 𝑝2, … ) be a probability vector. Then,

𝐻

(
∞∑
𝑖=1

𝑝𝑖𝜆𝑖

)
⩽

∞∑
𝑖=1

𝑝𝑖𝐻(𝜆𝑖) + 𝐻(𝐩).

In particular, if 𝑝𝑖 = 0 for all 𝑖 > 𝑘 for some 𝑘 ∈ ℤ>0, then

𝐻

(
𝑘∑
𝑖=1

𝑝𝑖𝜆𝑖

)
⩽

𝑘∑
𝑖=1

𝑝𝑖𝐻(𝜆𝑖) + log 𝑘.

Proof. This is proven in [27, Lemma 4.7] for measures on ℝ𝑑. The same proof works in this
setting. □

Lemma 2.15. Let 𝑑 be the distance function of a left invariant metric and let 𝑟 > 0. Suppose that g
is a discrete random variable taking values in PSL2(ℝ) and that there are 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ PSL2(ℝ)

and a probability vector 𝐩 = (𝑝1, 𝑝2, … , 𝑝𝑛) such that

ℙ[g = 𝑥𝑖] = 𝑝𝑖.
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20 of 100 KITTLE

Suppose further that for every 𝑖 ≠ 𝑗, we have 𝑑(𝑥𝑖, 𝑥𝑗) > 2𝑟. Let ℎ be an absolutely continuous ran-
dom variable taking values in PSL2(ℝ). Suppose that 𝑑(Id, ℎ) ⩽ 𝑟 almost surely. Suppose further that
ℎ has finite entropy. Then,

𝐻(gℎ) = 𝐻(g) + 𝐻(ℎ).

Proof. This is proven for random variables taken values in ℝ𝑑 in [27, Lemma 4.8]. The same proof
works in this context. □

We will also adopt the following convention for defining the entropy on a product space. Let
(𝐸1, 𝜉1) and (𝐸2, 𝜉2) bemeasurable spaces endowedwith referencemeasures𝑚1 and𝑚2 such that
if 𝜆 is a measure on (𝐸𝑖, 𝜉𝑖), then we define the entropy of 𝜆 by 𝐻(𝜆) ∶= 𝐷(𝜆||𝑚𝑖). Then we take
𝑚1 × 𝑚2 to be the corresponding reference measure for 𝐸1 × 𝐸2. That is given somemeasure 𝜆 on
𝐸1 × 𝐸2 we take the entropy of 𝜆 to be defined by 𝐻(𝜆) = 𝐷(𝜆||𝑚1 × 𝑚2). With this, we can give
the following definition.

Definition 2.16 (Conditional entropy). Let 𝑋1 and 𝑋2 be two random variables with finite
entropy. Then, we define the entropy of 𝑋1 given 𝑋2 by

𝐻(𝑋1|𝑋2) = 𝐻(𝑋1, 𝑋2) − 𝐻(𝑋2).

2.3 Probability

In this subsection, we will list some standard results from probability which we will use in this
paper.

Definition 2.17 (Filtration). We say that a sequence of 𝜎-algebras  = (1,2, … ) is a filtration
if 1 ⊂ 2 ⊂ … . Furthermore, if we are also given a sequence of random variables 𝛾 = (𝛾1, 𝛾2 … ),
then we say that  is a filtration for 𝛾 if in addition 𝛾𝑖 is 𝑖-measurable.

Definition 2.18 (Stopping time). Given a filtration  = (1,2, … ), we say that a random vari-
able 𝑇 taking values in ℤ>0 is a stopping time for  if for every 𝑛 ∈ ℤ>0, the event 𝑇 = 𝑛 is 𝑛

measurable. Given a sequence of random variables 𝛾 = (𝛾1, 𝛾2, … ), we say that𝑇 is a stopping time
for 𝛾 if it is a stopping time for the filtration 𝜎(𝛾1), 𝜎(𝛾1, 𝛾2), 𝜎(𝛾1, 𝛾2, 𝛾3), … .

Stopping times and filtrations are important objects in probability. A fundamental property is
that if  is a filtration for a sequence of i.i.d. random variables 𝛾 with 𝛾𝑖+1 independent of 𝑖

for all 𝑖 and 𝑇 is a stopping time for  , then (𝛾𝑇+1, 𝛾𝑇+2, 𝛾𝑇+3, … ) has the same law as (𝛾1, 𝛾2, … )

and is independent of 𝑇 . This is known as the strong Markov property. For a more thorough
introduction to stopping times and filtrations, see, for example, [28, Chapter 17].

Lemma 2.19. Let 𝐆 be a group acting on some set 𝐁. Let 𝜇 be a probability measure on 𝐆 and
suppose that 𝜈 is some probability measure on 𝐁 which is invariant under 𝜇— that is 𝜈 = 𝜇 ∗ 𝜈.
Let 𝛾1, 𝛾2, … be i.i.d. random variables with law 𝜇 and let 𝑖 be a filtration for the 𝛾𝑖 such that

𝛾𝑖+1 is independent from 𝑖+1. Let 𝜏 be a stopping time for the filtration 𝑖 . Let 𝑏 be an independent
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 21 of 100

sample from 𝜈. Then

𝛾1𝛾2 … 𝛾𝜏𝑏

has law 𝜈.

Proof. Firstly we will deal with the case where there is some 𝑁 ∈ ℤ>0 such that 𝜏 ⩽ 𝑁 almost
surely. By the strong Markov property, we know that

𝛾𝜏+1𝛾𝜏+2 … 𝛾𝑁𝑏

has law 𝜈 and is independent from 𝛾1, 𝛾2, … , 𝛾𝜏. In particular, this means that 𝛾1𝛾2 … 𝛾𝜏𝑏 has the
same law as 𝛾1𝛾2 … 𝛾𝑁𝑏 and so 𝛾1𝛾2 … 𝛾𝜏𝑏 has law 𝜈. The general case follows by considering the
stopping time 𝜏′ = min{𝜏,𝑁} and taking the limit as 𝑁 → ∞. □

Lemma 2.20. Let (ℙ,Ω, 𝜉) be a probability space. Suppose that 𝛾1, 𝛾2, … are i.i.d. random variables
on this probability space taking values in some measurable set𝐗 with filtration𝑖 and suppose that
𝛾𝑖+1 is independent of𝑖 . Let 𝑆 be a stopping time for (𝑖)

∞
𝑖=1

and let ̂ ⊂ 𝜉 be a 𝜎-algebra which is
conditionally independent of 𝛾𝑆+1, 𝛾𝑆+2, … given 𝛾1, 𝛾2, … , 𝛾𝑆 . For 𝑖 = 1, 2, … , define 𝑖 by

𝑖 = {𝐹 ∈ 𝜉 ∶ 𝐹 ∩ {𝑖 < 𝑆} ∈ 𝑖 , 𝐹 ∩ {𝑖 ⩾ 𝑆} ∈ 𝜎(𝑖 , ̂)}.

Then 𝑖 is a filtration for the 𝛾𝑖 and 𝛾𝑖+1 is independent of 𝑖 .

Firstly note that this lemma is in some sense trivial. Essentially, it says that if we have a sequence
of independent random variables which we sequentially draw and after some stopping time we
gain some extra information which is conditionally independent of everything after that stopping
time given what we have seen so far, then at each step in this process, the value of the next ran-
dom variable will be independent of all the information we have so far. We now give a formal
proof.

Proof. It is trivial that 𝑖 is a filtration for the 𝛾𝑖 . This means that we only need to show that 𝛾𝑖+1 is
independent of 𝑖 . Let 𝐷 ⊂ 𝐗 be measurable and let 𝐹 ∈ 𝑖 . Then we have 𝐹 ∩ {𝑖 < 𝑆} ∈ 𝑖 and
so since 𝛾𝑖+1 is independent of𝑖 , we have

ℙ[𝐹 ∩ {𝑖 < 𝑆} ∩ {𝛾𝑖+1 ∈ 𝐷}] = ℙ[𝐹 ∩ {𝑖 < 𝑆}]ℙ[{𝛾𝑖+1 ∈ 𝐷}]. (15)

We also know that for each integer 𝑘 ⩽ 𝑖, we have 𝐹 ∩ {𝑆 = 𝑘} ∈ 𝜎(𝑖 , ̂𝑖). This means that for
each 𝑘 ⩽ 𝑖, we can write

𝐹 ∩ {𝑆 = 𝑘} =

∞⨆
𝑗=1

𝐴𝑗 ∩ 𝐵𝑗

with 𝐴𝑗 ∈ 𝑖 , 𝐴𝑗 ⊂ {𝑆 = 𝑘} and 𝐵𝑗 ∈ ̂. Here,⨆ denotes a disjoint union.
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22 of 100 KITTLE

Since ̂ is conditionally independent of 𝛾𝑆+1, 𝛾𝑆+2, … given 𝛾1, 𝛾2, … , 𝛾𝑆 and 𝐴𝑗 ∈

𝜎(𝛾1, 𝛾2, … , 𝛾𝑆), we have

ℙ[𝐴𝑗 ∩ 𝐵𝑗 ∩ {𝛾𝑖+1 ∈ 𝐷}] = ℙ[𝐴𝑗 ∩ 𝐵𝑗 ∩ {𝛾𝑆+𝑖+1−𝑘 ∈ 𝐷}]

= ℙ[𝐵𝑗 ∩ {𝛾𝑆+𝑖+1−𝑘 ∈ 𝐷}|𝐴𝑗]ℙ[𝐴𝑗]

= ℙ[𝐵𝑗|𝐴𝑗]ℙ[{𝛾𝑆+𝑖+1−𝑘 ∈ 𝐷}|𝐴𝑗]ℙ[𝐴𝑗]

= ℙ[𝐴𝑗 ∩ 𝐵𝑗]ℙ[{𝛾𝑆+𝑖+1−𝑘 ∈ 𝐷}]

= ℙ[𝐴𝑗 ∩ 𝐵𝑗]ℙ[{𝛾𝑖+1 ∈ 𝐷}].

Summing this result over 𝑗 gives

ℙ[𝐹 ∩ {𝑆 = 𝑘} ∩ {𝛾𝑖+1 ∈ 𝐷}] = ℙ[𝐹 ∩ {𝑆 = 𝑘}]ℙ[{𝛾𝑖+1 ∈ 𝐷}].

Summing over 𝑘 and adding (15) completes the proof. □

2.3.1 Regular conditional probability

In order to understand our decomposition (5) after conditioning on  and in order to prove
Theorem 1.26, we need to introduce the concept of regular condition probability.
For amore comprehensive text on regular conditional distributions, see, for example, [28, Chap-

ter 8]. Some readers may be more familiar with the use of conditional measures as described in,
for example, [14, Chapter 5]. These two concepts are equivalent.

Definition 2.21 (Markov kernel). Let (Ω1,1) and (Ω2,2) be measurable spaces. We say that a
function 𝜅 ∶ Ω1 ×2 ∶→ [0, 1] is aMarkov Kernel on (Ω1,1) and (Ω2,2) if:

∙ For any 𝐴2 ∈ 2, the function 𝜔1 ↦ 𝜅(𝜔1, 𝐴2) is1 —measurable
∙ For any 𝜔1 ∈ Ω1, the function 𝐴2 ↦ 𝜅(𝜔1, 𝐴2) is a probability measure.

Definition 2.22. Let (Ω, , ℙ) be a probability space, let (𝐸, 𝜉) be a measurable space and let
𝑌 ∶ (Ω,) → (𝐸, 𝜉) be a random variable. Let ⊂  be a 𝜎-algebra. Then, we say that a Markov
kernel

𝜅𝑌, ∶ Ω × 𝜉 → [0, 1]

on (Ω,) and (𝐸, 𝜉) is a regular conditional distribution for 𝑌 given if

𝜅𝑌,(𝜔, 𝐵) = ℙ[𝑌 ∈ 𝐵|]

for all 𝐵 ∈ 𝜉 and almost all 𝜔 ∈ Ω.
In other words, we require

ℙ[𝐴 ∩ {𝑌 ∈ 𝐵}] = 𝔼
[
𝕀𝐴𝜅𝑌,(⋅, 𝐵)

]
for all 𝐴 ∈ , 𝐵 ∈ 𝜉.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 23 of 100

In the casewhere𝑌 is as above and𝑋 is another random variable taking values in somemeasur-
able space (𝐸′, 𝜉′), thenwe let the regular conditional distribution of𝑌 given𝑋 refer to the regular
conditional distribution of 𝑌 given 𝜎(𝑋). For this definition to be useful, we need the following
theorem.

Theorem 2.23. Let (Ω, , ℙ) be a probability space, let (𝐸, 𝜉) be a standard Borel space and let
𝑌 ∶ (Ω,) → (𝐸, 𝜉) be a random variable. Then given any 𝜎-algebra ⊂  , there exists a regular
conditional distribution for 𝑌 given.
Proof. This is [28, Theorem 8.37]. □

Definition 2.24. Given some random variable𝑌 and some 𝜎- algebra ⊂  (or random variable
𝑋), we will write (𝑌|) (or (𝑌|𝑋)) to mean the regular conditional distribution of 𝑌 given (or
given 𝑋).
We also let [𝑌|] (or [𝑌|𝑋]) denote random variables defined on a different probability space

to 𝑌 which have law (𝑌|) (or (𝑌|𝑋)).
One can easily check that if the regular conditional distribution exists, then it is unique up to

equality almost everywhere.
Next, we will need the following simple facts about regular condition distributions.

Definition 2.25. Let (Ω, , ℙ) be a probability space and let  ⊂  be a 𝜎-algebra. We say that
two 𝜎- algebras 1,2 ⊂  are conditionally independent given if for any 𝑈 ∈ 1 and 𝑉 ∈ 2,
we have

ℙ[𝑈 ∩ 𝑉|] = ℙ[𝑈|]ℙ[𝑉|]

almost surely. Similarly, we say that two random variables or a random variable and a 𝜎-algebra
are conditionally independent given  if the 𝜎-algebras generated by them are conditionally
independent given.
Now we have these three lemmas.

Lemma 2.26. Let (Ω, , ℙ) be a probability space and let  ⊂  be a 𝜎-algebra. Let g and 𝑥 be
random variables on (Ω, , ℙ) with g taking values in PSL2(ℝ) and with 𝑥 taking values in𝑋 where
𝑋 is either PSL2(ℝ) or 𝑃1(ℝ). Suppose that g and 𝑥 are conditionally independent given. Then,

(g𝑥|) = (g|) ∗ (𝑥|)

almost surely.

Proof. This follows by essentially the same proof as the proof that the law of g𝑥 is the convolution
of the laws of g and of 𝑥 and is left to the reader. □

Lemma 2.27. Let (Ω, , ℙ) be a probability space and let ⊂  be a 𝜎-algebra. Let g be a random
variable taking values in some measurable space (𝑋, 𝜉). Let  be a 𝜎-algebra such that

 ⊂  ⊂  ,
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24 of 100 KITTLE

and g is independent of  conditional on. Then,
(g|) = (g|).

Proof. This is immediate from the definitions of the objects involved. □

Lemma 2.28. Let (Ω, , ℙ) be a probability space and let ⊂  be a 𝜎-algebra. Let g be a random
variable taking values in some measurable space (𝑋, 𝜉). Suppose that g is-measurable. Then

(g|) = 𝛿g

almost surely.

Proof. This is immediate from the definitions of the objects involved. □

Lemma 2.29. Let (Ω, , ℙ) be a probability space and let ⊂  be a 𝜎-algebra. Let g be a random
variable taking values in some measurable space (𝑋, 𝜉). Let  be a 𝜎-algebra such that  ⊂  ⊂ 
and g is measurable. Let 𝐴 ∈  and construct the 𝜎-algebra ̂ by

̂ = 𝜎(, {𝐺 ∈  ∶ 𝐺 ⊂ 𝐴}).

Then, for almost all 𝜔 ∈ Ω, we have

(g|̂)(𝜔, ⋅) =

{
𝛿g if 𝜔 ∈ 𝐴

(g|)(𝜔, ⋅) otherwise.

Proof. Let

𝑄(𝜔, ⋅) ∶=

{
𝛿g if 𝜔 ∈ 𝐴

(g|)(𝜔, ⋅) otherwise.

We will show that 𝑄 satisfies the conditions of being a regular conditional distribution for g
given ̂. Clearly, 𝑄 is a Markov kernel. Now let 𝐷 ∈ ̂ and let 𝐵 ∈ 𝜉. We simply need to show
that

ℙ[𝐷 ∩ {g ∈ 𝐵}] = 𝔼[𝕀𝐷𝑄(⋅, 𝐵)]. (16)

First suppose that 𝐷 ⊂ 𝐴. In this case, the right-hand side of (16) becomes 𝔼[𝕀𝐷𝕀g∈𝐵] which is
trivially equal to the left-hand side.
Now suppose that𝐷 ⊂ 𝐴𝐶 . This means that𝐷 ∈ . In this case by the definition of (g|)(𝜔, ⋅),

we know that (16) is satisfied.
The general case follows by summing. □

We also need some results about the entropy of regular condition distributions.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 25 of 100

Definition 2.30. Given some random variable 𝑌 and a 𝜎-algebra ⊂  , we define𝐻((𝑌|)) to
be the random variable

𝐻((𝑌|)) ∶ 𝜔 ↦ 𝐻((𝑌|)(𝜔, ⋅)),

where (𝑌|)(𝜔, ⋅) is the regular conditional distribution for 𝑌 given . Similarly, given some
random variable 𝑋, we let𝐻((𝑌|𝑋)) ∶= 𝐻((𝑌|𝜎(𝑋))).
Lemma 2.31. Let 𝑋1 and 𝑋2 be two random variables with finite entropy and finite joint entropy.
Then

𝐻(𝑋1|𝑋2) = 𝔼[𝐻((𝑋1|𝑋2))].

Proof. This is just the chain rule for conditional distributions. It follows from a simple
computation and a proof may be found in [38, Proposition 3]. □

Lemma 2.32. Let g be a random variable taking values in PSL2(ℝ), let be a 𝜎-algebra and let 𝑎
be a-measurable random variable taking values in PSL2(ℝ). Then,

𝐻((𝑎g|)) = 𝐻((g|))

almost surely. In particular, if ℎ ∈ PSL2(ℝ) is fixed, then

𝐻(ℎg) = 𝐻(g).

Proof. For the first part, note that [𝑎g|] = 𝑎[g|] almost surely. Also note that by the left
invariance of the Haar measure

𝐻(𝑎[g|]) = 𝐻([g|]).

The last part follows trivially by the first part. □

3 ORDER 𝒌 DETAIL

In this section, we discuss the basic properties of detail around a scale. We will recall basic
properties of detail from [27] and introduce order 𝑘 detail and prove some properties of
it.
Detail is a quantitative measure of the smoothness of a measure at a given scale. The detail of a

measure at some scale 𝑟 > 0 is close to 1 if, for example, the measure is supported on a number of
disjoint intervals of length much smaller than 𝑟, which are separated by a distance much greater
than 𝑟. The detail of a measure is small if, for example, the measure is uniform on an interval of
length significantly greater than 𝑟.
We now explain how we extend the concept of detail to measures taking values in 𝑃1(ℝ) or

equivalently ℝ∕𝜋ℤ. For this, we need the following.
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26 of 100 KITTLE

Definition 3.1. Given some 𝑦 > 0, let 𝜂𝑦 be the density of the pushforward of the normal
distribution with mean 0 and variance 𝑦 onto ℝ∕𝜋ℤ. In other words, given 𝑥 ∈ ℝ∕𝜋ℤ, let

𝜂𝑦(𝑥) ∶=
∑
𝑢∈𝑥

𝜂𝑦(𝑢).

We will also use the following notation.

Definition 3.2. Given some 𝑦 > 0, let 𝜂′𝑦 be defined by

𝜂′𝑦 ∶=
𝜕

𝜕𝑦
𝜂𝑦.

We now define the following.

Definition 3.3. Given a probability measure 𝜆 on ℝ∕𝜋ℤ and some 𝑟 > 0, we define the detail of
𝜆 around scale 𝑟 by

𝑠𝑟(𝜆) ∶= 𝑟2
√

𝜋𝑒

2
‖‖‖𝜆 ∗ 𝜂′

𝑟2
‖‖‖1.

Similarly, we define the detail of a probability measure on 𝑃1(ℝ) to be the detail of the pushfor-
wardmeasure under 𝜙 and we define the detail of a random variable to be the detail of its law. The
factor 𝑟2

√
𝜋𝑒

2
exists to ensure that 𝑠𝑟(𝜆) ∈ [0, 1]. The smaller the value of detail around a scale,

the smoother the measure is at that scale.

Remark 3.4. We motivate our definition of detail as follows. Earlier work on stationary measures,
including [12, 21, 22] and [37] studied quantities like

𝐻(𝜇 ∗ 𝐹𝑟1
) − 𝐻(𝜇 ∗ 𝐹𝑟2

),

where 𝐹𝑟 is a smoothing function associated to scale 𝑟 (e.g. the law of the normal distribution with
standard deviation 𝑟 or the law of a uniform random variable on [0, 𝑟]). Motivated by this and the
work of Shmerkin [35], it is natural to study quantities like

‖𝜇 ∗ 𝐹𝑟1
‖𝑝 − ‖𝜇 ∗ 𝐹𝑟2

‖𝑝.
However, it turns out to be more useful to study

‖𝜇 ∗ 𝐹𝑟1
− 𝜇 ∗ 𝐹𝑟2

‖𝑝
at least when 𝑝 = 1. Detail is an infinitesimal version of this quantity with Gaussian smoothing.
The Gaussian is chosen because the heat equation plays an important role in the proof of

Lemma 3.6 and [27, Lemma 2.5]. The property that the convolution of a Gaussian with a Gaussian
is another Gaussian also plays a key role.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 27 of 100

In Section 3.1, we introduce a new quantity which we refer to as order 𝑘 detail. In Section 3.2,
we use this to bound detail. In Section 3.3, we prove Lemma 1.17. Finally, in Section 3.4, we prove
Lemma 1.16.

3.1 Order 𝒌 detail

We can now define the order 𝑘 detail around a scale.

Definition 3.5 (Order 𝑘 detail around a scale). Given a probability measure 𝜆 onℝ∕𝜋ℤ and some
𝑘 ∈ ℤ>0, we define the order 𝑘 detail of 𝜆 around scale 𝑟, which we will denote by 𝑠

(𝑘)
𝑟 (𝜆), by

𝑠(𝑘)𝑟 (𝜆) ∶= 𝑟2𝑘
(
𝜋𝑒

2

)𝑘∕2
‖‖‖‖‖‖𝜆 ∗

𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2
‖‖‖‖‖‖1.

We also define the order 𝑘 detail of a measure on 𝑃1(ℝ) to be the order 𝑘 detail of the pushfor-
ward measure under 𝜙 and define the order 𝑘 detail of a random variable to be the order 𝑘 detail
of its law. It is worth noting that 𝑠(1)𝑟 (⋅) = 𝑠𝑟(⋅). We will now prove some basic properties of order
𝑘 detail.

Lemma 3.6. Let 𝜆1, 𝜆2, … , 𝜆𝑘 be probability measures on ℝ∕𝜋ℤ. Then, we have

𝑠(𝑘)𝑟 (𝜆1 ∗ 𝜆2 ∗ ⋯ ∗ 𝜆𝑘) ⩽ 𝑠𝑟(𝜆1)𝑠𝑟(𝜆2) … 𝑠𝑟(𝜆𝑘).

This is (4) from Section 1.2.

Proof. From the heat equation, we know that

𝜕

𝜕𝑦
𝜂𝑦(𝑥) =

1

2

𝜕2

𝜕𝑥2
𝜂𝑦(𝑥).

Therefore, by standard properties of convolution, we have

𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2 = 2−𝑘
𝜕2𝑘

𝜕𝑥2𝑘
𝜂𝑘𝑟2

=

(
1

2

𝜕2

𝜕𝑥2
𝜂𝑟2

)
∗

(
1

2

𝜕2

𝜕𝑥2
𝜂𝑟2

)
∗ ⋯ ∗

(
1

2

𝜕2

𝜕𝑥2
𝜂𝑟2

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑘 times

= 𝜂′
𝑟2

∗ 𝜂′
𝑟2

∗ ⋯ ∗ 𝜂′
𝑟2

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
𝑘 times

,

and therefore,

𝜆1 ∗ 𝜆2 ∗ ⋯ ∗ 𝜆𝑘 ∗
𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2 = 𝜆1 ∗ 𝜂′
𝑟2

∗ 𝜆2 ∗ 𝜂′
𝑟2

∗ ⋯ ∗ 𝜆𝑘 ∗ 𝜂′
𝑟2
.
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28 of 100 KITTLE

This means‖‖‖‖‖‖𝜆1 ∗ 𝜆2 ∗ ⋯ ∗ 𝜆𝑘 ∗
𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2
‖‖‖‖‖‖1 ⩽

‖‖‖𝜆1 ∗ 𝜂′
𝑟2
‖‖‖1 ⋅ ‖‖‖𝜆2 ∗ 𝜂′

𝑟2
‖‖‖1 ⋅ ⋯ ⋅ ‖‖‖𝜆𝑘 ∗ 𝜂′

𝑟2
‖‖‖1.

The result follows. □

The following corollary will be useful.

Corollary 3.7. Suppose that 𝜆 is a probability measure on ℝ∕𝜋ℤ. Then,

𝑠(𝑘)𝑟 (𝜆) ⩽ 1.

Proof. This is immediate by letting all but one of the measures in Lemma 3.6 be a delta
function. □

There is no reason to assume that the bound in Corollary 3.7 is optimal for any 𝑘 ⩾ 2. Indeed, it
is fairly simple to show that it is not. However, the trivial upper bound of 1 will still prove useful.
We also need the following corollary of Lemma 1.16 (which will be proven in Section 3.4) and

Lemma 3.6.

Corollary 3.8. For every 𝛼 > 0, there exists some 𝐶 > 0 such that the following is true. Let
𝑋1, 𝑋2, … , 𝑋𝑛 be independent random variables taking values in ℝ∕𝜋ℤ such that |𝑋𝑖| < 𝑠 almost
surely for some 𝑠 > 0. Let 𝜎 > 0 be defined by 𝜎2 =

∑𝑛
𝑖=1 Var𝑋𝑖 . Let 𝑟 ∈ (𝑠, 𝜎). Let 𝑘 ∈ ℤ>0 and

suppose that

𝑟

𝑠
⩾ 𝐶

and

𝜎2

𝑟2
⩾ 𝐶𝑘.

Then,

𝑠(𝑘)𝑟 (𝑋1 + 𝑋2 +⋯ + 𝑋𝑛) ⩽ 𝛼𝑘.

Proof. Let 𝐶1 be the 𝐶 from Lemma 1.16 with this value of 𝛼. Suppose that

𝑟

𝑠
⩾ max{𝐶1, 1}

and

𝜎2

𝑟2
⩾ (𝐶2

1 + 1)𝑘.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 29 of 100

Partition [1, 𝑛] ∩ ℤ into 𝑘 sets 𝐽1, 𝐽2, … , 𝐽𝑘 such that for each 𝑖 = 1, 2, … , 𝑘, we have∑
𝑗∈𝐽𝑖

Var𝑋𝑗 ⩾ 𝐶2
1𝑟

2.

This is possible by a greedy algorithm. Note that by Lemma 1.16, this means

𝑠𝑟

(∑
𝑗∈𝐽𝑖

𝑋𝑗

)
< 𝛼.

Noting that

𝑋1 + 𝑋2 +⋯ + 𝑋𝑛 =

𝑘∑
𝑖=1

(∑
𝑗∈𝐽𝑖

𝑋𝑗

)

and applying Lemma 3.6 gives the required result. □

3.2 Bounding detail using order k detail

The purpose of this subsection is to prove Lemma 1.14. For this, we first need the following result.

Lemma 3.9. Let 𝑘 be an integer greater than 1 and suppose that 𝜆 is a probabilitymeasure onℝ∕𝜋ℤ.
Suppose that 𝑎, 𝑏, 𝑐 > 0 and 𝛼 ∈ (0, 1). Suppose that 𝑎 < 𝑏 and that for all 𝑟 ∈ [𝑎, 𝑏], we have

𝑠(𝑘)𝑟 (𝜆) ⩽ 𝛼 + 𝑐𝑟2𝑘. (17)

Then, for all 𝑟 ∈
[
𝑎
√

𝑘

𝑘−1
, 𝑏

√
𝑘

𝑘−1

]
, we have

𝑠(𝑘−1)𝑟 (𝜆) ⩽
𝑘

𝑘 − 1

√
2𝑒

𝜋
𝛼 +

(
𝑏−2𝑘+2 + 𝑘𝑏2𝑐

)
𝑟2(𝑘−1).

Proof. Recall that

𝑠(𝑘)𝑟 (𝜆) = 𝑟2𝑘
(
𝜋𝑒

2

) 𝑘
2

‖‖‖‖‖‖𝜆 ∗
𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2
‖‖‖‖‖‖1.

This means by (17) that when 𝑦 = 𝑘𝑟2, we have

‖‖‖‖‖𝜆 ∗
𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

‖‖‖‖‖1 ⩽ 𝛼𝑟−2𝑘
(
𝜋𝑒

2

)−𝑘
2
+ 𝑐

(
𝜋𝑒

2

)−𝑘
2

= 𝛼𝑦−𝑘𝑘𝑘
(
𝜋𝑒

2

)−𝑘
2
+ 𝑐

(
𝜋𝑒

2

)−𝑘
2
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30 of 100 KITTLE

for all 𝑦 ∈ [𝑘𝑎2, 𝑘𝑏2]. This means that for 𝑦 ∈ [𝑘𝑎2, 𝑘𝑏2], we have

‖‖‖‖‖𝜆 ∗
𝜕𝑘−1

𝜕𝑦𝑘−1
𝜂𝑦

‖‖‖‖‖1
⩽

‖‖‖‖𝜆 ∗
𝜕𝑘−1

𝜕𝑢𝑘−1
𝜂𝑢

||||𝑢=𝑘𝑏2‖‖‖‖1 + ∫
𝑘𝑏2

𝑦

‖‖‖‖𝜆 ∗
𝜕𝑘

𝜕𝑢𝑘
𝜂𝑢

‖‖‖‖1 𝑑𝑢
⩽

‖‖‖‖ 𝜕𝑘−1

𝜕𝑢𝑘−1
𝜂𝑢

||||𝑢=𝑘𝑏2‖‖‖‖1 + ∫
𝑘𝑏2

𝑦
𝛼𝑢−𝑘𝑘𝑘

(
𝜋𝑒

2

)−𝑘
2
+ 𝑐

(
𝜋𝑒

2

)−𝑘
2
𝑑𝑢

⩽

(
𝑘𝑏2

𝑘 − 1

)−𝑘+1(
𝜋𝑒

2

)−(𝑘−1)∕2
+ 𝛼

𝑦−𝑘+1

𝑘 − 1
𝑘𝑘

(
𝜋𝑒

2

)−𝑘
2
+ 𝑘𝑏2𝑐

(
𝜋𝑒

2

)−𝑘
2
, (18)

where in (18), we bound ‖‖‖ 𝜕𝑘−1

𝜕𝑢𝑘−1
𝜂𝑢

|||𝑢=𝑘𝑏2‖‖‖1 using the fact that order 𝑘 − 1 detail is at most one,

we bound ∫ 𝑘𝑏2

𝑦 𝛼𝑢−𝑘𝑘𝑘
(
𝜋𝑒

2

)−𝑘
2
𝑑𝑢 by ∫ ∞

𝑦 𝛼𝑢−𝑘𝑘𝑘
(
𝜋𝑒

2

)−𝑘
2
𝑑𝑢 and bound ∫ 𝑘𝑏2

𝑦 𝑐
(
𝜋𝑒

2

)−𝑘
2
𝑑𝑢 by

∫ 𝑘𝑏2

0 𝑐
(
𝜋𝑒

2

)−𝑘
2
𝑑𝑢. Noting that (

𝑘

𝑘 − 1

)−𝑘+1

< 1

and (
𝜋𝑒

2

)−1
2
< 1,

we get

‖‖‖‖‖𝜆 ∗
𝜕𝑘−1

𝜕𝑦𝑘−1
𝜂𝑦

‖‖‖‖‖1 ⩽ 𝛼
𝑦−𝑘+1

𝑘 − 1
𝑘𝑘

(
𝜋𝑒

2

)−𝑘
2
+

(
𝑏−2𝑘+2 + 𝑘𝑏2𝑐

)(𝜋𝑒
2

)−𝑘−1
2
.

Substituting in the definition of order 𝑘 detail gives

𝑠(𝑘−1)𝑟 (𝜆) = 𝑟2(𝑘−1)
(
𝜋𝑒

2

) 𝑘−1
2

‖‖‖‖‖‖𝜆 ∗
𝜕𝑘−1

𝜕𝑦𝑘−1
𝜂𝑦

|||||𝑦=(𝑘−1)𝑟2
‖‖‖‖‖‖1

⩽ 𝑟2(𝑘−1)
(
𝜋𝑒

2

)−1
2
𝛼
((𝑘 − 1)𝑟2)−𝑘+1

𝑘 − 1
𝑘𝑘 + 𝑟2(𝑘−1)

(
𝜋𝑒

2

)−1
2 (
𝑏−2𝑘+2 + 𝑘𝑏2𝑐

)
,

and so, we have

𝑠(𝑘−1)𝑟 (𝜆) ⩽ 𝛼

√
2

𝜋𝑒

(
1 +

1

𝑘 − 1

)𝑘

+ (𝑏−𝑘+1 + 𝑘𝑐𝑏)𝑟2(𝑘−1)

for all 𝑟 ∈
[
𝑎
√

𝑘

𝑘−1
, 𝑏

√
𝑘

𝑘−1

]
. Noting that

(
1 + 1

𝑘−1

)𝑘
⩽

𝑘

𝑘−1
𝑒 gives the required result. □
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 31 of 100

We apply this inductively to prove Lemma 1.14.

Proof of Lemma 1.14. Using Lemma 3.9, we will prove by induction for 𝑗 = 𝑘, 𝑘 − 1,… , 1 that for
all 𝑟 ∈

[
𝑎
√

𝑘

𝑗
, 𝑏

√
𝑘

𝑗

]
, we have

𝑠
(𝑗)
𝑟 (𝜆) ⩽ 𝛼

𝑘

𝑗

(
2𝑒

𝜋

) 𝑘−𝑗

2
+

𝑘!

𝑗!
𝑏−2𝑗𝑟2𝑗.

The case 𝑗 = 𝑘 follows by the conditions of the lemma. Suppose that for all 𝑟 ∈[
𝑎
√

𝑘

𝑗+1
, 𝑏

√
𝑘

𝑗+1

]
, we have

𝑠
(𝑗+1)
𝑟 (𝜆) ⩽ 𝛼

𝑘

𝑗 + 1

(
2𝑒

𝜋

) 𝑘−𝑗−1

2
+

𝑘!

(𝑗 + 1)!
𝑏−2𝑗−2𝑟2(𝑗+1).

Then, by Lemma 3.9 for all 𝑟 > 0 such that 𝑟 ∈
[
𝑎
√

𝑘

𝑗
, 𝑏

√
𝑘

𝑗

]
, we have

𝑠
(𝑗)
𝑟 (𝜆) ⩽ 𝛼

𝑘

𝑗

(
2𝑒

𝜋

) 𝑘−𝑗

2
+

(
𝑏−2𝑗 + 𝑗𝑏2

(
𝑘!

(𝑗 + 1)!
𝑏−2𝑗−2

))
𝑟2𝑗

⩽ 𝛼
𝑘

𝑗

(
2𝑒

𝜋

) 𝑘−𝑗

2
+

(
𝑘!

(𝑗 + 1)!
𝑏−2𝑗 + 𝑗𝑏2

(
𝑘!

(𝑗 + 1)!
𝑏−2𝑗−2

))
𝑟2𝑗

= 𝛼
𝑘

𝑗

(
2𝑒

𝜋

) 𝑘−𝑗

2
+ (𝑗 + 1)

𝑘!

(𝑗 + 1)!
𝑏−2𝑗𝑟2𝑗

= 𝛼
𝑘

𝑗

(
2𝑒

𝜋

) 𝑘−𝑗

2
+

𝑘!

𝑗!
𝑏−2𝑗𝑟2𝑗

as required. Lemma 1.14 follows easily from the 𝑗 = 1 case. □

3.3 Wasserstein distance bound

In this subsection, we will bound the difference in order 𝑘 detail between two measures in terms
of the Wasserstein distance between those two measures. Specifically, we will prove Lemma 1.17.
Firstly we need to define Wasserstein distance.

Definition 3.10 (Coupling). Given two probability measures 𝜆1 and 𝜆2 on a set 𝑋, we say that
a coupling between 𝜆1 and 𝜆2 is a measure 𝛾 on 𝑋 × 𝑋 such that 𝛾(⋅ × 𝑋) = 𝜆1(⋅) and 𝛾(𝑋 × ⋅) =
𝜆2(⋅).

Definition 3.11 (Wasserstein distance). Given two probability measures 𝜆1 and 𝜆2 on ℝ∕𝜋ℤ, the
Wasserstein distance between 𝜆1 and 𝜆2, which we will denote by1(𝜆1, 𝜆2), is given by

1(𝜆1, 𝜆2) ∶= inf
𝛾∈Γ∫(ℝ∕𝜋ℤ)2 |𝑥 − 𝑦| 𝛾(𝑑𝑥, 𝑑𝑦),

where Γ is the set of couplings between 𝜆1 and 𝜆2.
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32 of 100 KITTLE

We can now prove Lemma 1.17.

Proof of Lemma 1.17. Let 𝑋 and 𝑌 be random variables with laws 𝜆1 and 𝜆2, respectively. Then,
we have

(𝜆1 − 𝜆2) ∗
𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2(𝑣) = 𝔼

[
𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2(𝑣 − 𝑋) −
𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2(𝑣 − 𝑌)

]
.

In particular,

||||||(𝜆1 − 𝜆2) ∗
𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2(𝑣)
|||||| ⩽ 𝔼

|||||| 𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2(𝑣 − 𝑋) −
𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2(𝑣 − 𝑌)

||||||.
We note that|||||| 𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2(𝑣 − 𝑋) −
𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2(𝑣 − 𝑌)

|||||| ⩽ ∫
𝑌

𝑋

|||||| 𝜕𝑘+1

𝜕𝑥𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2(𝑣 − 𝑢)

|||||| |𝑑𝑢|,
where

∫
𝑦

𝑥
⋅ |𝑑𝑢|

is understood to be the integral along the shortest path between 𝑥 and 𝑦. This means that

‖‖‖‖‖‖(𝜆1 − 𝜆2) ∗
𝜕𝑘

𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2
‖‖‖‖‖‖1 ⩽ ∫ℝ∕𝜋ℤ

𝔼

[
∫

𝑌

𝑋

|||||| 𝜕𝑘+1

𝜕𝑥𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2(𝑣 − 𝑢)

|||||| |𝑑𝑢|
]
𝑑𝑣

= 𝔼

[
∫

𝑌

𝑋 ∫ℝ∕𝜋ℤ

|||||| 𝜕𝑘+1

𝜕𝑥𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2(𝑣 − 𝑢)

|||||| 𝑑𝑣 |𝑑𝑢|]

= 𝔼

[
∫

𝑌

𝑋

‖‖‖‖‖‖ 𝜕𝑘+1

𝜕𝑥𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2
‖‖‖‖‖‖1 |𝑑𝑢|

]

=

‖‖‖‖‖‖ 𝜕𝑘+1

𝜕𝑥𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2
‖‖‖‖‖‖1𝔼|𝑋 − 𝑌|.

We now bound
‖‖‖‖ 𝜕𝑘+1

𝜕𝑥𝜕𝑦𝑘
𝜂𝑦

|||𝑦=𝑘𝑟2‖‖‖‖1. To do this, note that‖‖‖‖‖‖ 𝜕𝑘+1

𝜕𝑥𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2
‖‖‖‖‖‖1 ⩽

‖‖‖‖‖‖ 𝜕𝑘+1

𝜕𝑥𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2
‖‖‖‖‖‖1.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 33 of 100

By using the relation 𝜂′𝑦 = 𝜕2

𝜕𝑥2
𝜂𝑦 in the same way as in the proof of Lemma 3.6, we get

𝜕𝑘+1

𝜕𝑥𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2 = 𝜕

𝜕𝑥
𝜂𝑦

||||𝑦=𝑟2 ∗ 𝜕

𝜕𝑦
𝜂𝑦

||||𝑦=𝑟2 ∗ 𝜕

𝜕𝑦
𝜂𝑦

||||𝑦=𝑟2 ∗ ⋯ ∗
𝜕

𝜕𝑦
𝜂𝑦

||||𝑦=𝑟2
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑘 times

,

and so,

‖‖‖‖‖‖ 𝜕𝑘+1

𝜕𝑥𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2
‖‖‖‖‖‖1 ⩽

‖‖‖‖ 𝜕

𝜕𝑥
𝜂𝑟2

‖‖‖‖1 ⋅ ‖‖‖𝜂′𝑟2‖‖‖𝑘1 .
Note that trivially, there is some constant 𝐶 > 0 such that

‖‖‖‖ 𝜕

𝜕𝑥
𝜂𝑟2

‖‖‖‖1 = 𝐶𝑟−1.

From the fact that detail is bounded above by 1, we have

‖‖‖‖‖ 𝜕

𝜕𝑦
𝜂𝑦

||||𝑦=𝑟2
‖‖‖‖‖1 = 𝑟−2

√
2

𝜋𝑒
,

meaning

‖‖‖‖‖‖ 𝜕𝑘+1

𝜕𝑥𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2
‖‖‖‖‖‖1 ⩽ 𝐶𝑟−2𝑘−1

(
𝜋𝑒

2

)−𝑘
2
.

Therefore,

𝑟2𝑘
(
𝜋𝑒

2

) 𝑘
2

‖‖‖‖‖‖ 𝜕𝑘+1

𝜕𝑥𝜕𝑦𝑘
𝜂𝑦

|||||𝑦=𝑘𝑟2
‖‖‖‖‖‖1 ⩽ 𝐶𝑟−1.

Choosing a coupling for 𝑋 and 𝑌 which minimises 𝔼|𝑋 − 𝑌| gives the required result. □

3.4 Small random variables bound

In this subsection, we prove Lemma 1.16. Recall that this gives a bound for the detail of the sum of
many independent random variables each of which are contained in a small interval containing
0 and have at least some variance. To prove this, we will need the following quantitative version
of the central limit theorem.

Theorem 3.12. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent random variables taking values in ℝ with
mean 0 and for each 𝑖 ∈ [1, 𝑛], let 𝔼[𝑋2

𝑖
] = 𝜔2

𝑖
and 𝔼[|𝑋𝑖|3] = 𝛾3

𝑖
< ∞. Let 𝜔2 =

∑𝑛
𝑖=1 𝜔

2
𝑖
and let
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34 of 100 KITTLE

𝑆 = 𝑋1 +⋯ + 𝑋𝑛. Then

1(𝑆, 𝜂𝜔2) ≲

∑𝑛
𝑖=1 𝛾

3
𝑖∑𝑛

𝑖=1 𝜔
2
𝑖

.

Proof. Applying [15, Theorem 1] with 𝑝 = 1 and 𝜏𝑘 = 𝜏′
𝑘
= ∞ for 𝑘 = 1…𝑛 and using the classical

result that the Wasserstein distance between two real values random variables is equal to the 𝐿1
distance between their cumulative distribution functions, we get

1

(
𝑆

𝜔
, 𝜂1

)
≲

∑𝑛
𝑖=1 𝛾

3
𝑖

𝜔3
.

The result follows. □

We are now ready to prove Lemma 1.16.

Proof of Lemma 1.16. We will prove this in the case where the 𝑋𝑖 take values in ℝ. The case where
they take values in ℝ∕𝜋ℤ follows trivially from this case.
For 𝑖 = 1, … , 𝑛, let𝑋′

𝑖
= 𝑋𝑖 − 𝔼[𝑋𝑖] and let 𝑆′ =

∑𝑛
𝑖=1 𝑋

′
𝑖
. Note that 𝑠𝑟(𝑆) = 𝑠𝑟(𝑆

′). Let𝔼[|𝑋′
𝑖
|2] =

𝜔2
𝑖
and 𝔼[|𝑋′

𝑖
|3] = 𝛾3

𝑖
. Note that Var𝑋𝑖 = 𝜔2

𝑖
and so 𝜔2 =

∑𝑛
𝑖=1 𝜔

2
𝑖
. Note that almost surely |𝑋′

𝑖
| ⩽

2𝑠. This means that 𝛾3
𝑖
⩽ 2𝑠𝜔2

𝑖
. Therefore, by Theorem 3.12, we have

1

(
𝑆′, 𝜂𝜔2

)
⩽ 𝑂(𝑠).

We also compute

𝑠𝑟(𝜂𝜔2) =

‖‖‖𝜂′𝑟2+𝜔2

‖‖‖1‖‖‖𝜂′𝑟2‖‖‖1
=

𝑟2

𝑟2 + 𝜔2
,

and so, noting that 𝑠𝑟(⋅) = 𝑠(1)𝑟 (⋅), we have by Lemma 1.17 that

𝑠𝑟(𝑆) = 𝑠𝑟(𝑆
′)

⩽ 𝑂
(
𝑠

𝑟

)
+

𝑟2

𝑟2 + 𝜔2
.

This gives the required result. □

4 COMPUTATIONS FOR THE TAYLOR EXPANSION

In this section, we will prove Proposition 1.20. We also do some computations on the derivatives
𝜁𝑖 ∈ 𝔭𝔰𝔩∗2 from Proposition 1.20 which will later enable us to give bounds on the order 𝑘 detail
of random variables produced by allowing the 𝑢(𝑖) in the proposition to be appropriately chosen
independent random variables. Firstly we will give more detail on our notation.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 35 of 100

Given normed vector spaces 𝑉 and𝑊, some vector 𝑣 ∈ 𝑉 and a function 𝑓 ∶ 𝑉 → 𝑊 which is
differentiable at 𝑣, we write 𝐷𝑣𝑓(𝑣) for the linear map 𝑉 → 𝑊 which is the derivative of 𝑓 at 𝑣.
Similarly, if 𝑓 is 𝑛 times differentiable at 𝑣, we write 𝐷𝑛

𝑣𝑓(𝑣) for the 𝑛-multi-linear map 𝑉
𝑛 → 𝑊

which is the 𝑛th derivative of 𝑓 at 𝑣.
Now given some normed vector space 𝑉, some vector 𝑣 ∈ 𝑉 and a function 𝑓 ∶ 𝑉 → ℝ∕𝜋ℤ

which is 𝑛 times differentiable at 𝑣, we can find some open set 𝑈 ⊂ 𝑉 containing 𝑣 such that
there exists some function 𝑓 ∶ 𝑈 → ℝ which is 𝑛 times differentiable at 𝑣 and such that for all
𝑢 ∈ 𝑈, we have

𝑓(𝑢) = 𝑓(𝑢) + 𝜋ℤ.

In this case, we take 𝐷𝑛
𝑣𝑓(𝑣) to be 𝐷

𝑛
𝑣𝑓(𝑣). Clearly, this does not depend on our choice of 𝑈 or

𝑓. Similarly, given a sufficiently regular function 𝑓 ∶ ℝ∕𝜋ℤ → 𝑉, we take 𝐷𝑣𝑓(𝑣) to be 𝐷𝑣𝑓(𝑣)

where 𝑓 ∶ ℝ → 𝑉 is defined by

𝑓(𝑥) = 𝑓(𝑥 + 𝜋ℤ).

As well as proving Proposition 1.20, we also derive some bounds on the size of various first
derivatives.

Definition 4.1. Given some 𝑏 ∈ 𝑃1(ℝ), we let 𝜚𝑏 ∈ 𝔭𝔰𝔩∗2 be defined by

𝜚𝑏 = 𝐷𝑢𝜙(exp(𝑢)𝑏)|𝑢=0.
Proposition 4.2. For all 𝑡 > 0, there is some 𝛿 > 0 such that the following is true. Let 𝑣 ∈ 𝔭𝔰𝔩2(ℝ)

be a unit vector. Then there exist some 𝑎1, 𝑎2 ∈ ℝ such that if

𝑏 ∈ 𝑃1(ℝ)∖𝜙−1((𝑎1, 𝑎1 + 𝑡) ∪ (𝑎2, 𝑎2 + 𝑡)),

then

|𝜚𝑏(𝑣)| ⩾ 𝛿.

Furthermore, we may construct 𝑎1 and 𝑎2 in such a way that they are measurable functions of 𝑣.

Motivated by this, we have the following definition.

Definition 4.3. Let 𝑡, 𝑣, 𝑎1 and 𝑎2 be as in Proposition 4.2 and let 𝜀 > 0. Then, we define 𝑈𝑡(𝑣)

and 𝑈𝑡,𝜀(𝑣) by

𝑈𝑡(𝑣) ∶= 𝑃1(ℝ)∖𝜙−1((𝑎1, 𝑎1 + 𝑡) ∪ (𝑎2, 𝑎2 + 𝑡))

and

𝑈𝑡,𝜀(𝑣) ∶= 𝑃1(ℝ)∖𝜙−1((𝑎1 − 𝜀, 𝑎1 + 𝑡 + 𝜀) ∪ (𝑎2 − 𝜀, 𝑎2 + 𝑡 + 𝜀)).

We also have the following.
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36 of 100 KITTLE

Definition 4.4. Let 𝑋 be a random variable taking values in some Euclidean vector space 𝑉. We
say that 𝑢 ∈ 𝑉 is a first principal component of 𝑋 if it is an eigenvector of its covariance matrix
with maximal eigenvalue.

Definition 4.5. Given a random variable 𝑋 taking values in 𝔭𝔰𝔩2(ℝ), 𝑡 > 0 and 𝜀 > 0, we let

𝑈𝑡(𝑋) = ∪𝑣∈𝑃𝑈𝑡(𝑣)

and

𝑈𝑡,𝜀(𝑋) = ∪𝑣∈𝑃𝑈𝑡,𝜀(𝑣),

where 𝑃 is the set of first principal components of𝑋. Similarly, if 𝜇 is a probability measure which
is the law of a random variable 𝑋, then we define 𝑈𝑡(𝜆) ∶= 𝑈𝑡(𝑋) and 𝑈𝑡,𝜀(𝜆) ∶= 𝑈𝑡,𝜀(𝑋).

From this, we may deduce the following.

Proposition 4.6. For all 𝑡 > 0, there is some 𝛿 > 0 such that the following is true. Suppose that 𝑉
is a random variable taking values in 𝔭𝔰𝔩2(ℝ) and that 𝑏 ∈ 𝑃1(ℝ). Suppose that

𝑏 ∈ 𝑈𝑡(𝑉).

Then,

Var 𝜌𝑏(𝑉) ⩾ 𝛿 Var𝑉.

We will prove Propositions 4.2 and 4.6 in Section 4.3.

4.1 Cartan decomposition

The purpose of this subsection is to prove the following proposition and a simple corollary of it.

Proposition 4.7. Given any 𝑡 > 0 and 𝜀 > 0, there exist some constants 𝐶, 𝛿 > 0 such that the
following is true. Suppose that 𝑛 ∈ ℤ>0, g1, g2, … , g𝑛 ∈ PSL2(ℝ), for 𝑖 = 1, … , 𝑛, we have

‖‖g𝑖‖‖ ⩾ 𝐶

and for 𝑖 = 1, … , 𝑛 − 1,

𝑑(𝑏−(g𝑖), 𝑏
+(g𝑖+1)) > 𝑡.

Suppose also that there are 𝑢1, 𝑢2, … , 𝑢𝑛−1 ∈ 𝔭𝔰𝔩2(ℝ) such that for 𝑖 = 1, … , 𝑛 − 1, we have

‖‖𝑢𝑖‖‖ < 𝛿.

Then, if we let g ′ = g1 exp(𝑢1)g2 exp(𝑢2)… g𝑛, we have
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 37 of 100

‖‖g ′‖‖ ⩾ 𝐶−(𝑛−1)‖‖g1‖‖ ⋅ ‖‖g2‖‖ ⋅ ⋯ ⋅ ‖‖g𝑛‖‖, (19)

𝑑(𝑏+(g ′), 𝑏+(g1)) < 𝜀 (20)

and

𝑑(𝑏−(g ′), 𝑏−(g𝑛)) < 𝜀. (21)

Corollary 4.8. Given any 𝑡 > 0 and 𝜀 > 0, there exist some constants 𝐶, 𝛿 > 0 such that the fol-
lowing is true. Suppose that 𝑛 ∈ ℤ>0, g1, … , g𝑛 ∈ PSL2(ℝ) and 𝑢1, 𝑢2, … , 𝑢𝑛 ∈ 𝔭𝔰𝔩2(ℝ) satisfy the
conditions of Proposition 4.7. Suppose further that 𝑏 ∈ 𝑃1(ℝ) is such that

𝑑(𝑏−(g𝑛), 𝑏) > 𝑡.

Then, if we let 𝑏′ = g1 exp(𝑢1)g2 exp(𝑢2)… g𝑛 exp(𝑢𝑛)𝑏, we have

𝑑(𝑏′, 𝑏+(g1)) < 𝜀.

We will prove Proposition 4.7 by induction and then deduce Corollary 4.8 from it. Firstly we
need the following lemmas.

Lemma 4.9. Let g ∈ PSL2(ℝ), and 𝑏 ∈ 𝑃1(ℝ). Then,

𝑑(𝑏+(g), g𝑏) ≲ ‖g‖−2𝑑(𝑏−(g), 𝑏)−1,
and for any representative 𝑏̂ ∈ ℝ2∖{0} of 𝑏, we have

‖‖‖g 𝑏̂‖‖‖ ≳ ‖g‖ ⋅ ‖‖‖𝑏̂‖‖‖𝑑(𝑏−(g), 𝑏).
Proof. The first part follows from [5, Lemma A.6]. The second part follows from equation (A.11)
in [5, Lemma A.3]. □

We also have the following simple corollary.

Corollary 4.10. For every 𝜀 > 0, there exists some 𝐶 > 0 such that the following is true. Let g ∈

PSL2(ℝ) and 𝑏 ∈ 𝑃1(ℝ). Suppose that

‖g‖ ⩾ 𝐶

and

𝑑(𝑏−(g), 𝑏) ⩾ 𝜀.

Then

𝑑(𝑏+(g), g𝑏) ⩽ 𝜀,
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38 of 100 KITTLE

and for any representative 𝑏̂ ∈ ℝ2∖{0} of 𝑏

‖‖‖g 𝑏̂‖‖‖ ⩾ 𝐶−1‖g‖ ⋅ ‖‖‖𝑏̂‖‖‖.
This corollary is trivial and left as an exercise to the reader.

Lemma 4.11. Let g1, g2 ∈ PSL2(ℝ). Then‖‖g1‖‖ ⋅ ‖‖g2‖‖ sin 𝑑(𝑏−(g1), 𝑏+(g2)) ⩽ ‖‖g1g2‖‖ ⩽ ‖‖g1‖‖ ⋅ ‖‖g2‖‖. (22)

Furthermore, for every 𝐴 > 1 and 𝑡 > 0, there exists some 𝐶 > 0 with

𝐶 ⩽ 𝑂((𝐴 − 1)−1𝑡−1)

such that if ‖‖g1‖‖ , ‖‖g2‖‖ ⩾ 𝐶 and 𝑑(𝑏−(g1), 𝑏+(g2)) ⩾ 𝑡, then

‖‖g1g2‖‖ ⩽ 𝐴‖‖g1‖‖ ⋅ ‖‖g2‖‖ sin 𝑑(𝑏−(g1), 𝑏+(g2)). (23)

Proof. The right-hand side of (22) is a well-known result about the operator norm. For the left-
hand side without loss of generality, suppose that

g1 =

(
𝜆1 0

0 𝜆−1
1

)
and

g2 =

(
cos 𝑥 − sin 𝑥

sin 𝑥 cos 𝑥

)(
𝜆2 0

0 𝜆−1
2

)
=

(
𝜆2 cos 𝑥 −𝜆−1

2
sin 𝑥

𝜆2 sin 𝑥 𝜆−1
2

cos 𝑥

)
.

Note that

g1g2

(
1

0

)
=

(
𝜆1𝜆2 cos 𝑥

𝜆−1
1
𝜆2 sin 𝑥

)
.

This means ‖‖g1g2‖‖ ⩾ 𝜆1𝜆2 cos 𝑥 = ‖‖g1‖‖ ⋅ ‖‖g2‖‖ sin |𝜙(𝑏−(g1)) − 𝜙(𝑏+(g2))| which proves (22).
For (23), note that

g1g2 =

(
𝜆1𝜆2 cos 𝑥 −𝜆1𝜆

−1
2

sin 𝑥

𝜆−1
1
𝜆2 sin 𝑥 𝜆1𝜆

−1
2

cos 𝑥

)
.

This means that

‖‖g1g2‖‖ ⩽ ‖‖g1g2‖‖2 ⩽
(
1 + 3𝐶−2(cos 𝑥)−1

)
𝜆1𝜆2 cos 𝑥.

This gives the required result. □

Lemma 4.12. Given any 𝜀 > 0 and any 𝑡 > 0, there is some constant 𝐶 > 0 such that the following
holds. Let g1, g2 ∈ PSL2(ℝ) be such that ‖‖g1‖‖ , ‖‖g2‖‖ ⩾ 𝐶 and 𝑑(𝑏−(g1), 𝑏+(g2)) ⩾ 𝑡. Then,

𝑑(𝑏+(g1), 𝑏
+(g1g2)) < 𝜀 (24)
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 39 of 100

and

𝑑(𝑏−(g2), 𝑏
−(g1g2)) < 𝜀. (25)

Furthermore, we have 𝐶 ⩽ 𝑂
(
(min{𝜀, 𝑡})−1

)
.

Proof. This follows from [5, Lemma A.9]. □

Lemma 4.13. Given any 𝜀 > 0, there exist 𝐶, 𝛿 > 0 such that the following is true. Suppose that
g ∈ PSL2(ℝ), 𝑏 ∈ 𝑃1(ℝ) and 𝑢 ∈ 𝔭𝔰𝔩2(ℝ). Suppose further that ‖g‖ ⩾ 𝐶 and ‖𝑢‖ < 𝛿. Then, we
have

𝐶−1‖g‖ ⩽ ‖‖exp(𝑢)g‖‖ ⩽ 𝐶‖g‖, (26)

𝑑(𝑏, exp(𝑢)𝑏) < 𝜀, (27)

and

𝑑(𝑏+(g), 𝑏+(exp(𝑢)g)) < 𝜀. (28)

Proof. First note that (26) and (27) both follow from the fact that exp(⋅) is smooth and 𝑃1(ℝ) is
compact. Equation (28) follows from (26), (27) and applying Lemma 4.9 with some element of
𝑃1(ℝ) which is not close to 𝑏−(g) or 𝑏−(exp(𝑢)g) in the role of 𝑏. □

This is enough to prove Proposition 4.7 and Corollary 4.8.

Proof of Proposition 4.7. Without loss of generality, assume that 𝜀 < 𝑡. Let𝐶1 be as in Corollary 4.10
with 1

10
𝜀 in the role of 𝜀. Let 𝐶2 and 𝛿2 be 𝐶 and 𝛿 from Lemma 4.13 with 1

10
𝜀 in the role of 𝜀.

We now take 𝐶 = max{𝐶1𝐶2,
(
sin 1

10
𝑡
)−1

} and 𝛿 = 𝛿2.
Firstly, we will deal with (20). Choose 𝑏 such that

𝑑(𝑏, 𝑏−(g𝑛)) >
1

10
𝜀

and

𝑑(𝑏, 𝑏−(g ′)) >
1

10
𝜀.

Note that by Corollary 4.10, we know that

𝑑(g𝑛𝑏, 𝑏
+(g𝑛)) <

1

10
𝜀.

By Lemma 4.13, we know that

𝑑(exp(𝑢𝑛−1)g𝑛𝑏, g𝑛𝑏) <
1

10
𝜀

and so

𝑑(exp(𝑢𝑛−1)g𝑛𝑏, 𝑏
−(g𝑛−1)) >

1

10
𝜀.
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40 of 100 KITTLE

Repeating this process, we are able to show that

𝑑(g ′𝑏, 𝑏+(g1)) <
1

10
𝜀.

We also know that

𝑑(g ′𝑏, 𝑏+(g ′)) <
1

10
𝜀.

Hence,

𝑑(𝑏+(g ′), 𝑏+(g1)) < 𝜀.

To prove (21), simply take the transpose of everything.
Now to prove (19). Let 𝑏 be chosen as before and let 𝑢 ∈ 𝑏 be a unit vector. Note that by

Corollary 4.10,

‖‖g𝑛𝑢‖‖ ⩾ 𝐶−1
1

‖‖g𝑛‖‖ ⋅ ‖𝑢‖,
and by Lemma 4.13, we know that

‖‖exp(𝑢𝑛−1)g𝑛𝑢‖‖ ⩾ 𝐶−1
1 𝐶−1

2
‖‖g𝑛‖‖ ⋅ ‖𝑢‖.

Repeating this gives the required result. □

We also prove Corollary 4.8.

Proof of Corollary 4.8. This follows from applying Proposition 4.7 to

g1 exp(𝑢1)g2 exp(𝑢2)… g𝑛−1 exp(𝑢𝑛−1)g𝑛

before applying Lemma 4.13 to exp(𝑢𝑛)𝑏 and then applying Lemma 4.9. □

4.2 Proof of Proposition 1.20

In this subsection, we will prove Proposition 1.20. To do this, we will need to find an upper bound
on the size of various second derivatives and apply Taylor’s theorem. We will use the following
version of Taylor’s theorem.

Theorem 4.14. Let 𝑓 ∶ ℝ𝑛 → ℝ∕𝜋ℤ be twice differentiable and let 𝑅1, 𝑅2, … , 𝑅𝑛 > 0. Let 𝑈 =

[−𝑅1, 𝑅1] × [−𝑅2, 𝑅2] ×⋯ × [−𝑅𝑛, 𝑅𝑛]. For integers 𝑖, 𝑗 ∈ [1, 𝑛], let 𝐾𝑖,𝑗 = sup
𝑈

|||| 𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗

|||| and let 𝐱 ∈

𝑈. Then, we have |||||𝑓(𝐱) − 𝑓(0) −

𝑛∑
𝑖=1

𝑥𝑖
𝜕𝑓

𝜕𝑥𝑖

||||𝐱=0
||||| ⩽ 1

2

𝑛∑
𝑖,𝑗=1

𝑥𝑖𝐾𝑖,𝑗𝑥𝑗.

In order to prove Proposition 1.20, we need the following proposition.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 41 of 100

Proposition 4.15. Let 𝑡 > 0. Then there exist some constants 𝐶, 𝛿 > 0 such that the following holds.
Suppose that 𝑛 ∈ ℤ>0, g1, g2 … , g𝑛 ∈ PSL2(ℝ), 𝑏 ∈ 𝑃1(ℝ) and let

𝑢(1), 𝑢(2), … , 𝑢(𝑛) ∈ 𝔭𝔰𝔩2(ℝ)

be such that ‖‖‖𝑢(𝑖)‖‖‖ ⩽ 𝛿. Suppose that for each integer 𝑖 ∈ [1, 𝑛], we have

‖‖g𝑖‖‖ ⩾ 𝐶

and for integers 𝑖 ∈ [1, 𝑛 − 1], we have

𝑑(𝑏−(g𝑖), 𝑏
+(g𝑖+1)) > 𝑡

and

𝑑(𝑏−(g𝑛), 𝑏) > 𝑡.

Let 𝑥 be defined by

𝑥 = g1 exp(𝑢
(1))g2 exp(𝑢

(2)) … g𝑛 exp(𝑢
(𝑛))𝑏.

Then, for any 𝑖, 𝑗 ∈ {1, 2, 3} and any integers 𝑘,𝓁 ∈ [1, 𝑛] with 𝑘 ⩽ 𝓁, we have|||||||
𝜕2

𝜕𝑢(𝑘)
𝑖

𝜕𝑢(𝓁)
𝑗

𝜙(𝑥)

||||||| < 𝐶𝑛‖‖g1g2 … g𝓁
‖‖−2.

We will prove this later in this subsection.
Note that given some 𝑢 ∈ 𝔭𝔰𝔩2(ℝ) and some 𝑖 ∈ {1, 2, 3} by 𝑢𝑖 , we mean the 𝑖th component of 𝑢

with respect to our choice of basis for 𝔭𝔰𝔩2(ℝ) which we will fix throughout this paper. To prove
this, we need to understand the size of the second derivatives. For this, we will need the following
lemmas.

Lemma 4.16. Let 𝑡 > 0, let 𝑥 ∈ ℝ∕𝜋ℤ and let g ∈ PSL2(ℝ). Suppose that

𝑑(𝑏−(g), 𝜙−1(𝑥)) > 𝑡. (29)

Let 𝑦 = 𝜙(g𝜙−1(𝑥)). Then,

‖g‖−2 ⩽
𝜕𝑦

𝜕𝑥
⩽ 𝑂𝑡

(‖g‖−2)
and |||||𝜕

2𝑦

𝜕𝑥2

||||| ⩽ 𝑂𝑡

(‖g‖−2).
Proof. Let g = 𝑅𝜙𝐴𝜆𝑅−𝜃. Firstly note that

𝑦 = tan−1
(
𝜆−2 tan(𝑥 − 𝜃)

)
+ 𝜙. (30)
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42 of 100 KITTLE

Recall that if 𝑣 = tan−1 𝑢, then 𝑑𝑣

𝑑𝑢
= 1

𝑢2+1
. This means that by the chain rule, we have

𝜕𝑦

𝜕𝑥
=

(
1

𝜆−4 tan2(𝑥 − 𝜃) + 1

)
⋅ 𝜆−2 ⋅

(
1

cos2(𝑥 − 𝜃)

)
=

1

𝜆2 cos2(𝑥 − 𝜃) + 𝜆−2 sin2(𝑥 − 𝜃)
.

Differentiating this again gives

𝜕2𝑦

𝜕𝑥2
=

2(𝜆2 + 𝜆−2) cos(𝑥 − 𝜃) sin(𝑥 − 𝜃)(
𝜆2 cos2(𝑥 − 𝜃) + 𝜆−2 sin2(𝑥 − 𝜃)

)2 .
Noting that (29) forces cos(𝑥 − 𝜃) ⩾ sin 𝑡 gives the required result. □

We also need to bound the second derivatives of various expressions involving exp.

Lemma 4.17. There exists some constant 𝐶 > 0 such that the following is true. Let 𝑏 ∈ 𝑃1(ℝ) and
define 𝑤 by

𝑤 ∶ 𝔭𝔰𝔩2(ℝ) → ℝ∕𝜋ℤ

𝑢 ↦ 𝜙(exp(𝑢)𝑏).

Then whenever ‖𝑢‖ ⩽ 1, we have

‖‖𝐷𝑢𝑤
‖‖ ⩽ 𝐶

and

‖‖‖𝐷2
𝑢𝑤

‖‖‖ ⩽ 𝐶.

Proof. This follows immediately from the fact that ‖‖𝐷𝑢𝑤
‖‖ and ‖‖𝐷2

𝑢𝑤
‖‖ are continuous in 𝑏 and 𝑢

and compactness. □

We will also need the following bound. Unfortunately, this lemma does not follow easily from
a compactness argument and needs to be done explicitly.

Lemma 4.18. For every 𝑡 > 0, there exist some constants 𝐶, 𝛿 > 0 such that the following holds. Let
g ∈ PSL2(ℝ), let 𝑏 ∈ 𝑃1(ℝ) and let 𝑤 be defined by

𝑤 ∶ 𝔭𝔰𝔩2(ℝ) × 𝔭𝔰𝔩2(ℝ) → ℝ∕𝜋ℤ

(𝑥, 𝑦) ↦ 𝜙(exp(𝑥)g exp(𝑦)𝑏).

Suppose that

𝑑(𝑏−(g), 𝑏) > 𝑡,
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 43 of 100

and that ‖𝑥‖ , ‖𝑦‖ ⩽ 𝛿. Then, |||||𝜕
2𝑤(𝑥, 𝑦)

𝜕𝑥𝑖𝜕𝑦𝑗

||||| ⩽ 𝐶‖g‖−2.
Proof. Let 𝑣 = 𝜙(exp(𝑦)𝑏). Firstly note that by compactness, we have||||| 𝜕𝑣𝜕𝑦𝑗

||||| ⩽ 𝑂(1).

Now let 𝑣 ∶= 𝜙(g exp(𝑦)𝑏). By Lemmas 4.13 and 4.16, we have||||𝜕𝑣𝜕𝑣 |||| ⩽ 𝑂𝑡

(
𝐶‖g‖−2).

Also note that by compactness, |||| 𝜕2𝑤

𝜕𝑣𝜕𝑥𝑖

|||| ⩽ 𝑂(1).

Hence, ||||| 𝜕2𝑤

𝜕𝑥𝑖𝜕𝑦𝑗

||||| = |||| 𝜕2𝑤

𝜕𝑣𝜕𝑥𝑖

|||| ⋅ ||||𝜕𝑣𝜕𝑣 |||| ⋅ ||||| 𝜕𝑣𝜕𝑦𝑗
||||| ⩽ 𝑂𝑡

(‖g‖−2).
We are now done by Lemma 4.13. □

This is enough to prove Proposition 4.15.

Proof of Proposition 4.15. Firstly we will deal with the case where 𝓁 = 𝑘. Let

𝑎1 = g1 exp(𝑢
(1))g2 exp(𝑢

(2)) … g𝑘−1 exp(𝑢
(𝑘−1))g𝑘

and

𝑎2 = g𝑘+1 exp(𝑢
(𝑘+1))g𝑘+2 exp(𝑢

(𝑘+2)) … g𝑛 exp(𝑢
(𝑛))𝑏,

and let 𝑎3 = 𝜙(exp(𝑢(𝑘))𝑎2). We have

𝜕𝑥

𝜕𝑢(𝑘)
𝑖

=
𝜕𝑥

𝜕𝑎3

𝜕𝑎3

𝜕𝑢(𝑘)
𝑖

,

and so

𝜕2𝑥

𝜕𝑢(𝑘)
𝑖

𝜕𝑢(𝑘)
𝑗

=
𝜕2𝑥

𝜕𝑎2
3

𝜕𝑎3

𝜕𝑢(𝑘)
𝑖

𝜕𝑎3

𝜕𝑢(𝑘)
𝑗

+
𝜕𝑥

𝜕𝑎3

𝜕2𝑎3

𝜕𝑢(𝑘)
𝑖

𝜕𝑢(𝑘)
𝑗

.

By Proposition 4.7, we know that providing 𝐶 is sufficiently large and 𝛿 is sufficiently small
that

𝑑(𝑏−(𝑎1), 𝑎2) >
1

2
𝑡.
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44 of 100 KITTLE

By Lemmas 4.16 and 4.17, this means that

|||||||
𝜕2𝑥

𝜕𝑢(𝑘)
𝑖

𝜕𝑢(𝑘)
𝑗

||||||| ⩽ 𝑂𝑡

(‖‖𝑎1‖‖−2).
In particular, by Proposition 4.7, there is some constant 𝐶 depending only on 𝑡 such that

|||||||
𝜕2𝑥

𝜕𝑢(𝑘)
𝑖

𝜕𝑢(𝑘)
𝑗

||||||| ⩽ 𝐶𝑛‖‖g1g2 … g𝑘
‖‖−2

as required.
Now we will deal with the case where 𝓁 > 𝑘. Let

𝑎1 = g1 exp(𝑢
(1))g2 exp(𝑢

(2)) … g𝑘−1 exp(𝑢
(𝑘−1))g𝑘

and

𝑎2 = g𝑘+1 exp(𝑢
(𝑘+1))g𝑘+2 exp(𝑢

(𝑘+2)) … g𝓁−1 exp(𝑢
(𝓁−1))g𝓁

and

𝑎3 = g𝓁+1 exp(𝑢
(𝓁+1))g𝓁+2 exp(𝑢

(𝓁+2)) … g𝑛 exp(𝑢
(𝑛))𝑏.

Let 𝑎4 = 𝜙(exp(𝑢(𝑘))𝑎2 exp(𝑢
(𝓁))𝑎3). Again, we have

𝜕2𝑥

𝜕𝑢(𝑘)
𝑖

𝜕𝑢(𝑘)
𝑗

=
𝜕2𝑥

𝜕𝑎2
4

𝜕𝑎4

𝜕𝑢(𝑘)
𝑖

𝜕𝑎4

𝜕𝑢(𝑘)
𝑗

+
𝜕𝑥

𝜕𝑎4

𝜕2𝑎4

𝜕𝑢(𝑘)
𝑖

𝜕𝑢(𝑘)
𝑗

.

In a similar way to the case 𝓁 = 𝑘 but using Lemma 4.18 instead of Lemma 4.17, we get

|||||||
𝜕2𝑥

𝜕𝑢(𝑘)
𝑖

𝜕𝑢(𝓁)
𝑗

||||||| < 𝐶𝑛‖‖g1g2 … g𝓁‖‖−2
as required. □

From this, we can now prove Proposition 1.20.

Proof of Proposition 1.20. By Theorem 4.14 and Proposition 4.15, we know that

|||||𝜙(𝑥) − 𝜙(g1g2 … g𝑛+1) −

𝑛∑
𝑖=1

𝜁𝑖(𝑢
(𝑖))

|||||
⩽ 𝑛2𝐶𝑛 max

{‖‖g1g2 … g𝑖‖‖2 ∶ 𝑖 ∈ [1, 𝑛]
}
𝑟2.

This is because each of the 𝑛2 terms in the error term in the Taylor expansion can be bounded
above by an expression of the form 𝐶𝑖 ‖‖g1g2 … g𝑖‖‖2 𝑟2. The result follows by replacing 𝐶 with a
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 45 of 100

slightly larger constant and noting that by Proposition 4.7

max
{‖‖g1g2 … g𝑖‖‖2 ∶ 𝑖 ∈ [1, 𝑛]

}
= ‖‖g1g2 … g𝑛‖‖2. □

4.3 Bounds on first derivatives

The purpose of this subsection is to prove Propositions 4.2 and 4.6. This bounds the size of various
first derivatives. Firstly we need the following lemma.

Lemma 4.19. Let 𝑢 ∈ 𝔭𝔰𝔩2(ℝ)∖{0} and given 𝑏 ∈ 𝑃1(ℝ) define 𝜚𝑏 as in Proposition 4.2. Then, there
are at most two points 𝑏 ∈ 𝑃1(ℝ) such that

𝜚𝑏(𝑢) = 0.

Proof. Let 𝜙̃ be defined by

𝜙̃ ∶ ℝ2∖{0} → ℝ∕𝜋ℤ

𝑏̂ ↦ 𝜙([𝑏̂]),

where [𝑏̂] denotes the equivalent class of 𝑏̂ in 𝑃1(ℝ).
Given 𝑏 ∈ 𝑃1(ℝ), let 𝑏̂ ∈ ℝ2∖{0} be some representative of 𝑏. Note that this means

𝜙(exp(𝑣)𝑏) = 𝜙̃(exp(𝑣)𝑏̂).

This means that 𝜚𝑏(𝑣) = 0 if and only if 𝐷(exp(𝑢)𝑏̂)|𝑢=0(𝑣) is in the kernel of 𝐷𝑏̂(𝜙̃(𝑏̂)). Trivially,
the kernel of𝐷𝑏̂(𝜙̃(𝑏̂)) is just the space spanned by 𝑏̂. It also follows by the definition of the matrix
exponential that for any 𝑣 ∈ 𝔭𝔰𝔩2(ℝ), we have

𝐷(exp(𝑢)𝑏̂)|𝑢=0(𝑣) = 𝑣𝑏̂.

Hence, 𝜚𝑏(𝑣) = 0 if and only if 𝑏̂ is an eigenvector of 𝑣. Clearly, for each 𝑣 ∈ 𝔭𝔰𝔩2(ℝ)∖{0}, there
are at most two 𝑏 ∈ 𝑃1(ℝ) with this property. The result follows. □

Proof of Proposition 4.2. Given 𝑎1, 𝑎2 ∈ ℝ, let 𝑈(𝑎1, 𝑎2) be defined by

𝑈(𝑎1, 𝑎2) = 𝑃1(ℝ)∖𝜙−1(((𝑎1, 𝑎1 + 𝑡) ∪ (𝑎2, 𝑎2 + 𝑡))).

In other words, 𝑈(𝑎1, 𝑎2) is all of 𝑃1(ℝ) except for two arcs of length 𝑡 starting at 𝑎1 and 𝑎2,
respectively. Given some 𝑣 ∈ 𝔭𝔰𝔩2(ℝ), let 𝑓(𝑣) be given by

𝑓(𝑣) ∶= max
𝑎1,𝑎2∈ℝ

min
𝑏∈𝑈(𝑎1,𝑎2)

|𝜚𝑏(𝑣)|.
Both themin and themax are achieved due to a trivial compactness argument. By Lemma 4.19, we
know that 𝑓(𝑣) > 0 whenever ‖𝑣‖ = 1. Note that

{
𝜚𝑏(⋅) ∶ 𝑏 ∈ 𝑃1(ℝ)

}
is a bounded set of linear

maps and so is uniformly equicontinuous. This means that 𝑓 is continuous. Since the set of all
𝑣 ∈ 𝔭𝔰𝔩2(ℝ) with ‖𝑣‖ = 1 is compact, this means that there is some 𝛿 > 0 such that 𝑓(𝑣) ⩾ 𝛿.
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46 of 100 KITTLE

Finally, note that trivially, we can choose the 𝑎1 and 𝑎2 using this construction in such a way that
they are measurable as functions of 𝑣. □

We will now prove Proposition 4.6.

Proof of Proposition 4.6. By elementary linear algebra, we can write 𝑋 as

𝑋 = 𝑋1𝑣1 + 𝑋2𝑣2 + 𝑋3𝑣3,

where 𝑋1, 𝑋2 and 𝑋3 are uncorrelated random variables taking values in ℝ and 𝑣1, 𝑣2 and 𝑣3 are
the eigenvectors of the covariance matrix of 𝑋 with corresponding eigenvalues Var𝑋1, Var𝑋2

and Var𝑋3. Furthermore, we may assume that Var𝑋1 ⩾ Var𝑋2 ⩾ Var𝑋3 and so, in particular,
Var𝑋1 ⩾

1

3
TrVar𝑋. Without loss of generality, we may assume that𝑋1,𝑋2,𝑋3 and𝑋 have mean

0.We also note that since 𝑣1 is a principal component of𝑋 by Proposition 4.2, we have |𝜌𝑏(𝑣1)| ⩾ 𝛿.
We then compute

Var 𝜌𝑏(𝑋) = 𝔼
[|𝜌𝑏(𝑋)|2]

= 𝔼
[
𝑋2
1|𝜌𝑏(𝑣1)|2 + 𝑋2

2|𝜌𝑏(𝑣2)|2 + 𝑋2
3|𝜌𝑏(𝑣3)|2]

⩾ 𝔼
[
𝑋2
1|𝜌𝑏(𝑣1)|2]

⩾
1

3
𝛿2 TrVar𝑋.

This gives the required result. □

5 DISINTEGRATION ARGUMENT

The purpose of this section is to prove Theorem 1.26. We first discuss some basic properties of
entropy and variance for random variables taking values in PSL2(ℝ). After these preparations,
which occupy most of the section, the proof of Theorem 1.26 will be short.
Before we begin, we outline the main steps of the proof of Theorem 1.26.
The first step is the following simple lemma.

Lemma 5.1. Let g , 𝑠1 and 𝑠2 be independent random variables taking values in PSL2(ℝ). Suppose
that 𝑠1 and 𝑠2 are absolutely continuous with finite entropy and that g𝑠1 and g𝑠2 have finite entropy.
Define 𝑘 by

𝑘 ∶= 𝐻(g𝑠1) − 𝐻(𝑠1) − 𝐻(g𝑠2) + 𝐻(𝑠2).

Then,

𝔼[𝐻((g𝑠1|g𝑠2))] ⩾ 𝑘 + 𝐻(𝑠1).

Here, (g𝑠1|g𝑠2) denotes the regular conditional distribution which is defined in Section 2.3.1.
We prove this lemma in Section 5.2.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 47 of 100

Wewill apply this lemmawhen 𝑠1 and 𝑠2 are smoothing randomvariables, and 𝑠2 corresponds to
a larger scale than 𝑠1. The quantity 𝑘 can be thought of as the difference between the information
of g discretised at the scales corresponding to 𝑠1 and 𝑠2.
It is well known that amongst all random vectors whose covariance matrix has a given trace,

the spherical normal distribution has the largest (differential) entropy. This allows us to estimate
the variance of a random vector in terms of its entropy from below. Once the definitions are in
place, we can translate this to random elements of PSL2(ℝ).

Lemma5.2. Let 𝜀 > 0and suppose that g is an absolutely continuous randomvariable taking values
in PSL2(ℝ) such that g−10

g takes values in the ball of radius 𝜀 and centre Id for some g0 ∈ PSL2(ℝ).
Then, providing 𝜀 is sufficiently small, we have

𝐻(g) ⩽
3

2
log

2𝜋𝑒

3
TrVarg0 [g] + 𝑂(𝜀).

We will prove this in Section 5.2. Combining the above two lemmas, we can get a lower bound
onTrVarg𝑠2 [g𝑠1|g𝑠2]. Here,Var⋅[⋅|⋅] denotes the conditional variance of a random variable taking
values in PSL2(ℝ)whichwewill define in Definition 5.5. The last part of the proof of Theorem 1.26
is the following.

Lemma 5.3. Let 𝜀 > 0 be sufficiently small and let 𝑎 and 𝑏 be random variables taking values in
PSL2(ℝ) and let  be a 𝜎-algebra. Suppose that 𝑏 is independent from 𝑎 and . Let g0 be an -
measurable random variable taking values in PSL2(ℝ). Suppose that g−10

𝑎 and 𝑏 are almost surely
contained in a ball of radius 𝜀 around Id. Then,

TrVarg0 [𝑎𝑏|] = TrVarg0 [𝑎|] + TrVarId[𝑏] + 𝑂(𝜀3).

We prove this in Section 5.1.

5.1 Variance on 𝐏𝐒𝐋𝟐(ℝ)

Recall from the introduction that given some random variable g taking values in PSL2(ℝ) and
some fixed g0 ∈ PSL2(ℝ) such that g−10

g is always in the domain of log we define Varg0 [g] to be
the covariance matrix of log[g−1

0
g].

We need the following lemma.

Lemma 5.4. Let 𝜀 > 0 be sufficiently small and let g and ℎ be independent random variables taking
values in PSL2(ℝ). Suppose that the image of g is contained in a ball of radius 𝜀 around Id and the
image of ℎ is contained in a ball of radius 𝜀 around some ℎ0 ∈ PSL2(ℝ). Then

TrVarℎ0[ℎg] = TrVarℎ0[ℎ] + TrVarId[g] + 𝑂(𝜀3).

Proof. Let 𝑋 = log(ℎ−1
0
ℎ) and let 𝑌 = log(g). Then, by Taylor’s theorem,

log(exp(𝑋) exp(𝑌)) = 𝑋 + 𝑌 + 𝐸,
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48 of 100 KITTLE

where𝐸 is some random variable with |𝐸| ⩽ 𝑂(𝜀2) almost surely. Note that we also have |𝑋|, |𝑌| ⩽
𝑂(𝜀). Therefore,

TrVarℎ0[ℎg] = 𝔼[|𝑋 + 𝑌 + 𝐸|2] − |𝔼[𝑋 + 𝑌 + 𝐸]|2
= 𝔼[|𝑋 + 𝑌|2] − |𝔼[𝑋 + 𝑌]|2 + 2𝔼[(𝑋 + 𝑌) ⋅ 𝐸] + 𝔼[|𝐸|2]
− 2𝔼[𝑋 + 𝑌] ⋅ 𝔼[𝐸] − |𝔼[𝐸]|2

= Var[𝑋 + 𝑌] + 𝑂(𝜀3)

as required. □

We also need to describe the variance of a regular conditional distribution.

Definition 5.5. Given some random variable g taking values in PSL2(ℝ), some 𝜎-algebra and
some-measurable random variable g0 taking values in PSL2(ℝ), we let TrVarg0 [g|] to be the
-measurable random variable given by

TrVarg0 [g|](𝜔) = TrVarg0(𝜔)[(g|)(𝜔)].

Similarly given a random variable ℎ and some 𝜎(ℎ)-measurable random variable g0 taking values
in PSL2(ℝ), we let TrVarg0 [g|ℎ] = TrVarg0 [g|𝜎(ℎ)].
Lemma 5.3 now follows easily from Lemma 5.4.

Proof of Lemma 5.3. This follows immediately from Lemma 5.4 and Lemma 2.26. □

5.2 Entropy

Firstly we need the following well-known result.

Lemma 5.6. If𝑋 is an absolutely continuous random variable taking values inℝ𝑑 and TrVar𝑋 =

𝑟2, then

𝐻(𝑋) ⩽
𝑑

2
log

(
2𝜋𝑒

𝑑
𝑟2
)

with equality if and only if 𝑋 is a spherical normal distribution.

Proof. This is well known and follows trivially from [13, Example 12.2.8]. □

We now wish to prove a similar result for random variables taking values in PSL2(ℝ). Firstly
we need the following.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 49 of 100

Lemma 5.7. Let 𝜆1 be a probability measure on some measurable space 𝐸 and let 𝜆2 and 𝜆3 be
measures on 𝐸 and let𝑈 ⊂ 𝐸. Suppose that the support of 𝜆1 is contained in𝑈. Then,

||(𝜆1, 𝜆2) −(𝜆1, 𝜆3)|| ⩽ sup
𝑥∈𝑈

||||log 𝑑𝜆2
𝑑𝜆3

||||.
Proof. We have

||(𝜆1, 𝜆2) −(𝜆1, 𝜆3)|| = ||||∫𝑈 log
𝑑𝜆1
𝑑𝜆2

𝑑𝜆1 − ∫𝑈 log
𝑑𝜆1
𝑑𝜆3

𝑑𝜆1
||||

⩽ ∫𝑈
||||log 𝑑𝜆1

𝑑𝜆2
− log

𝑑𝜆1
𝑑𝜆3

||||𝑑𝜆1
= ∫𝑈

||||log 𝑑𝜆2
𝑑𝜆3

|||| 𝑑𝜆1
⩽ sup

𝑥∈𝑈

||||log 𝑑𝜆2
𝑑𝜆3

||||. □

We can now prove Lemma 5.2.

Proof of Lemma 5.2. This follows easily from Lemma 5.6 and Lemma 5.7.
Let 𝑈 be the ball in PSL2(ℝ) of centre Id and radius 𝜖. Due to properties of the Haar measure,

we have 𝐻(g) = 𝐻(g−1
0

g) and by definition, TrVarg0 [g] = TrVarId[g
−1
0

g]. This means that it is
sufficient to show that

𝐻(g−10 g) ⩽
3

2
log

2𝜋𝑒

3
TrVarId[g

−1
0 g] + 𝑂(𝜀).

Recall that 𝑑𝑚̃

𝑑𝑚◦ log
is smooth and equal to 1 at Id. This means that providing 𝜀 < 1 on 𝑈, we

have

𝑑𝑚̃

𝑑𝑚◦ log
= 1 + 𝑂(𝜀).

In particular, providing 𝜀 is sufficiently small, we have

sup
𝑈

||||log 𝑑𝑚̃

𝑑𝑚◦ log

|||| < 𝑂(𝜀).

Clearly,

(g−10 g , 𝑚◦ log) = (log(g−10 g),𝑚).

We have by definition that 𝐻(g−1
0

g) = (g−1
0

g , 𝑚̃) and by Lemma 5.7, we have|||(g−1
0

g , 𝑚◦ log) −(g−1
0

g , 𝑚̃)
||| ⩽ 𝑂(𝜀). By Lemma 5.6, we know that

(log(g−10 g),𝑚) ⩽
3

2
log

2𝜋𝑒

3
TrVarId[g

−1
0 g].
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50 of 100 KITTLE

Therefore,

𝐻(g−10 g) ⩽
3

2
log

2𝜋𝑒

3
TrVar[g−10 g] + 𝑂(𝜀)

as required. □

We now have all the tools required to prove Lemma 5.1.

Proof of Lemma 5.1. Firstly note that we have

𝐻(g𝑠2|g𝑠1) ⩾ 𝐻(g𝑠2|g , 𝑠1) = 𝐻(𝑠2),

and so,

𝐻(g𝑠2, g𝑠1) ⩾ 𝐻(g𝑠1) + 𝐻(𝑠2).

This means that

𝐻(g𝑠1|g𝑠2) = 𝐻(g𝑠2, g𝑠1) − 𝐻(g𝑠2)

⩾ 𝐻(g𝑠1) − 𝐻(g𝑠2) + 𝐻(𝑠2)

= 𝑘 + 𝐻(𝑠1).

Recalling that by Lemma 2.31𝐻(g𝑠1|g𝑠2) = 𝔼[𝐻((g𝑠1|g𝑠2))], we get
𝔼[𝐻((g𝑠1|g𝑠2))] ⩾ 𝑘 + 𝐻(𝑠1)

as required. □

5.3 Proof of Theorem 1.26

We now have everything needed to prove Theorem 1.26.

Proof of Theorem 1.26. Note that by Lemma 5.1, we have

𝔼[𝐻((g𝑠1|g𝑠2))] ⩾ 𝑘 + 𝐻(𝑠1),

and so, by Lemma 5.2, we have

𝔼
[
3

2
log

2

3
𝜋𝑒 TrVarg𝑠2 [g𝑠1|g𝑠2]] + 𝑂(𝜀) ⩾ 𝑘 + 𝐻(𝑠1). (31)

Note that (g𝑠2)−1g = 𝑠−1
2

which is contained in a ball of radius 𝜀 centred on the identity.
Therefore, by Lemma 5.3, we have

TrVarg𝑠2 [g𝑠1|g𝑠2] ⩽ TrVarg𝑠2 [g|g𝑠2] + TrVarId[𝑠1] + 𝑂(𝜀3).

Putting this into (31) gives

𝔼
[
3

2
log

2

3
𝜋𝑒(TrVarg𝑠2 [g|g𝑠2] + TrVarId[𝑠1] + 𝑂(𝜀3))

]
+ 𝑂(𝜀) ⩾ 𝑘 + 𝐻(𝑠1),
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 51 of 100

which becomes

𝔼

[
log (1 +

TrVarg𝑠2 [g|g𝑠2]
Tr VarId[𝑠1]

+ 𝑂𝐴(𝜀))

]
+ 𝑂(𝜀) ⩾

2

3
(𝑘 + 𝐻(𝑠1) −

3

2
log

2

3
𝜋𝑒 TrVarId[𝑠1]).

Noting that for 𝑥 ⩾ 0 we have 𝑥 ⩾ log(1 + 𝑥), we get

𝔼[TrVarg𝑠2 [g|g𝑠2]] ⩾ 2

3
(𝑘 − 𝑐 − 𝑂𝐴(𝜀)) Tr VarId[𝑠1]

as required. □

6 ENTROPY GAP

The purpose of this section is to prove Proposition 1.23. This shows that for a stopped random
walk 𝛾1𝛾2 … 𝛾𝜏, there are many choices of 𝑠 such that 𝑣(𝛾1𝛾2 … 𝛾𝜏; 𝑠) is large.
Recall that 𝑣(g ; 𝑠) is defined to be the supremum of all 𝑣 ⩾ 0 such that we can find some

𝜎-algebra  and some - measurable random variable 𝑎 taking values in PSL2(ℝ) such that| log(𝑎−1g)| ⩽ 𝑠 and

𝔼[TrVar𝑎 [g|]] ⩾ 𝑣𝑠2.

We apply Theorem 1.26 with a careful choice of 𝑠1 and 𝑠2. We will take these to be compactly
supported approximations to the image of spherical normal random variables on 𝔭𝔰𝔩2(ℝ) under
exp. More precisely, we have the following.

Definition 6.1. Given 𝑟 > 0 and 𝑎 ⩾ 1, let 𝜂𝑟,𝑎 be the randomvariable onℝ3with density function
𝑓 ∶ ℝ3 → ℝ given by

𝑓(𝑥) =

⎧⎪⎨⎪⎩
𝐶𝑒

−
‖𝑥‖2
2𝑟2 if ‖𝑥‖ ⩽ 𝑎𝑟

0 otherwise,

where 𝐶 is a normalising constant chosen to ensure that 𝑓 integrates to 1.

We can then define the following family of smoothing functions.

Definition 6.2. Given 𝑟 > 0 and 𝑎 ⩾ 1, let 𝑠𝑟,𝑎 be the random variable on PSL2(ℝ) given by

𝑠𝑟,𝑎 = exp(𝜂𝑟,𝑎).

In this definition, we use our identification of 𝔭𝔰𝔩2(ℝ) with ℝ3.
After doing some computations on the entropy and variance of the 𝜂𝑟,𝑎, we can prove the

following proposition by putting these estimates into Theorem 1.26.
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52 of 100 KITTLE

Proposition 6.3. There is some constant 𝑐 > 0 such that the following holds. Let g be a random
variable taking values in PSL2(ℝ), let 𝑎 ⩾ 1 and let 𝑟 > 0. Define 𝑘 by

𝑘 = 𝐻(g𝑠𝑟,𝑎) − 𝐻(𝑠𝑟,𝑎) − 𝐻(g𝑠2𝑟,𝑎) + 𝐻(𝑠2𝑟,𝑎).

Then,

𝑣(g ; 2𝑎𝑟) ⩾ 𝑐𝑎−2(𝑘 − 𝑂(𝑒−
𝑎2

4 ) − 𝑂𝑎(𝑟)).

This will be proven in Section 6.1.
To make this useful, we will need a way to bound 𝑘 from Proposition 6.3 from below for

appropriately chosen scales. We will do this by bounding

𝐻(g𝑠𝑟,𝑎) − 𝐻(𝑠𝑟,𝑎) − 𝐻(g𝑠2𝑛𝑟,𝑎) + 𝐻(𝑠2𝑛𝑟,𝑎)

for some carefully chosen 𝑛 and 𝑟 and then noting the identity

𝐻(g𝑠𝑟,𝑎) − 𝐻(𝑠𝑟,𝑎) − 𝐻(g𝑠2𝑛𝑟,𝑎) + 𝐻(𝑠2𝑛𝑟,𝑎)

=

𝑛∑
𝑖=1

𝐻(g𝑠2𝑖−1𝑟,𝑎) − 𝐻(𝑠2𝑖−1𝑟,𝑎) − 𝐻(g𝑠2𝑖𝑟,𝑎) + 𝐻(𝑠2𝑖𝑟,𝑎).

We use this to find scales where we can apply Proposition 6.3. Specifically, we will prove the
following.

Proposition 6.4. Let 𝜇 be a finitely supported Zariski-dense measure on PSL2(ℝ). Suppose that
𝑀𝜇 < ∞ and ℎ𝑅𝑊∕𝜒 is sufficiently large. Let 𝛾1, 𝛾2, … be i.i.d. samples from 𝜇. Let 𝑃 > 0, let
𝑤 ∈ 𝑃1(ℝ) and let 𝜏 = 𝜏𝑃,𝑤 be as in Definition 1.21. Suppose that 0 < 𝑟1 < 𝑟2 < 1. Suppose that
𝑟1 < 𝑀−log 𝑃∕𝜒 . Let 𝑎 ⩾ 1. Then,

𝐻(𝛾1𝛾2 … 𝛾𝜏𝑠𝑟1,𝑎) ⩾
ℎ𝑅𝑊
𝜒

log 𝑃 + 𝐻(𝑠𝑎,𝑟1 ) + 𝑜𝑀,𝜇,𝑎,𝑤(log 𝑃) (32)

and

𝐻(𝛾1𝛾2 … 𝛾𝜏𝑠𝑟2,𝑎) ⩽ 2 log 𝑃 + 𝑜𝑀,𝜇,𝑎,𝑤(log 𝑃). (33)

In particular,

𝐻(𝛾1𝛾2 … 𝛾𝜏𝑠𝑟1,𝑎) − 𝐻(𝑠𝑟1,𝑎) − 𝐻(𝛾1𝛾2 … 𝛾𝜏𝑠𝑟2,𝑎) + 𝐻(𝑠𝑟2,𝑎)

⩾

(
ℎ𝑅𝑊
𝜒

− 2

)
log 𝑃 + 3 log 𝑟2 + 𝑜𝑀,𝜇,𝑎,𝑤(log 𝑃). (34)

This is proven in Section 6.2. This proposition is unsurprising. To motivate (32), note that it is
well known that with high probability 𝜏 ≈ log 𝑃∕𝜒. We also know by the definition of ℎ𝑅𝑊 that

𝐻(𝛾1𝛾2 … 𝛾⌊log 𝑃∕𝜒⌋) ⩾ ℎ𝑅𝑊 ⌊log 𝑃∕𝜒⌋ .
Providing 𝑃 is sufficiently large, 𝑠𝑟1,𝑎 is contained in a ball with centre Id and radius
𝑂𝑀,𝜇,𝑎(𝑀

− log 𝑃∕𝜒). In particular, providing 𝑃 is sufficiently large, this radius is less than
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 53 of 100

half the minimum distance between points in the image of 𝛾1𝛾2 … 𝛾⌊log 𝑃∕𝜒⌋ and so
𝐻(𝛾1𝛾2 … 𝛾⌊log 𝑃∕𝜒⌋𝑠𝑟1,𝑎) = 𝐻(𝛾1𝛾2 … 𝛾⌊log 𝑃∕𝜒⌋) + 𝐻(𝑠𝑟1,𝑎). It turns out we can prove something
similar when ⌊log 𝑃∕𝜒⌋ is replaced by 𝜏.
The bound (33) follows easily from the fact that the Haar measure of most of the image of

𝛾1𝛾2 … 𝛾𝜏𝑠𝑟2,𝑎 is at most 𝑂𝜇,𝑎(𝑃
2).

Finally, (34) follows from combining (32) and (33) and noting that𝐻(𝑠𝑟2,𝑎) = 3 log 𝑟2 + 𝑂(1).
We then combine Propositions 6.3 and 6.4 to get the following.

Proposition 6.5. There is some absolute constant 𝑐 > 0 such that the following is true. Suppose
that 𝜇 finitely supported Zariski-dense probability measure. Suppose that𝑀𝜇 < ∞ and that ℎ𝑅𝑊∕𝜒

is sufficiently large. Let 𝑀 > 𝑀𝜇. Suppose that 𝑀 is chosen large enough that ℎ𝑅𝑊 ⩽ log𝑀. Let
𝛾1, 𝛾2, … be i.i.d. samples from 𝜇 and let 𝑏 ∈ 𝑃1(ℝ). Then, for all sufficiently large (depending on
𝑀, 𝜇 and 𝑤) 𝑃, we have

∫
𝑃
−

ℎ𝑅𝑊
10 log𝜒

𝑃
−
log𝑀
log𝜒

1

𝑢
𝑣(𝛾1𝛾2 … 𝛾𝜏𝑃,𝑏 ; 𝑢) 𝑑𝑢 ⩾ 𝑐

(
ℎ𝑅𝑊
𝜒

)(
max

{
1, log

log𝑀

𝜒

})−1

log 𝑃.

We prove this in Section 6.3. Proposition 1.23 follows easily from this.

6.1 Smoothing random variables

In this subsection, we give bounds on the variance and entropy of the 𝑠𝑟,𝑎 and use this to prove
Proposition 6.3.
Recall the definition of 𝜂𝑟,𝑎 from Definition 6.1. Firstly we have the following.

Lemma 6.6. Let 𝑟 > 0 and 𝑎 ⩾ 1. Then

Θ(𝑟2) ⩽ TrVar 𝜂𝑟,𝑎 ⩽ 3𝑟2.

The proof of this lemma is trivial and is left to the reader.

Lemma 6.7. There is some constant 𝑐 > 0 such that the following is true. Let 𝑟 > 0 and 𝑎 ⩾ 1. Then

𝐻(𝜂𝑟,𝑎) =
3

2
log 2𝜋𝑒𝑟2 + 𝑂

(
𝑒−

𝑎2

4

)
.

The proof of Lemma 6.7 is a simple computation which we will do later. We deduce the
following about 𝑠𝑟,𝑎.

Lemma 6.8. Let 𝑟 > 0 and 𝑎 ⩾ 1. Suppose that 𝑎𝑟 is sufficiently small. Then,

Θ(𝑟2) ⩽ TrVarId 𝑠𝑟,𝑎 ⩽ 3𝑟2.

Proof. This follows immediately from substituting Lemma 6.6 into the definition of VarId. □
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54 of 100 KITTLE

Lemma 6.9. Let 𝑟 > 0 and 𝑎 ⩾ 1. Then

𝐻(𝑠𝑟,𝑎) =
3

2
log 2𝜋𝑒𝑟2 + 𝑂(𝑒−

𝑎2

4 ) + 𝑂𝑎(𝑟).

Proof. This follows immediately from Lemma 6.7 and Lemma 5.7. □

We also have the following fact.

Lemma 6.10. Let 𝑟 > 0 and 𝑎 ⩾ 1. Suppose that 𝑎𝑟 is sufficiently small. Then,

‖‖log(𝑠𝑟,𝑎)‖‖ ⩽ 𝑎𝑟

almost surely.

Proof. This is trivial from the definition of 𝑠𝑟,𝑎. □

We now have enough to prove Proposition 6.3.

Proof of Proposition 6.3. We apply Theorem 1.26 with 𝑠1 = 𝑠𝑟,𝑎 and 𝑠2 = 𝑠2𝑟,𝑎. We also take 𝜀 = 3𝑎𝑟.
By Lemma 6.8, we know that

TrVarId[𝑠1] ⩾ Θ(𝑟2) ⩾ Θ𝑎(𝜀
2),

and by Lemmas 6.9 and 6.8, we know that

𝑐 =
3

2
log

2

3
𝜋𝑒 TrVar[𝑠1] − 𝐻(𝑠1) ⩽ 𝑂(𝑒−

𝑎2

4 ).

This means that

𝔼[TrVarg𝑠2 [g|g𝑠2]] ⩾ 2

3
(𝑘 − 𝑂(𝑒−

𝑎2

4 ) − 𝑂𝑎(𝑟))(𝑐𝑟
2)

for some absolute constant 𝑐 > 0.
We know that

‖‖‖log ((g𝑠2)−1g)‖‖‖ = ‖‖log 𝑠2‖‖ ⩽ 2𝑎𝑟,

and so, by the definition of 𝑣(⋅; ⋅), we have

𝑣(g ; 2𝑎𝑟) ⩾ (2𝑎𝑟)−2𝔼[TrVarg𝑠2 [g|g𝑠2]]
⩾ 𝑐′𝑎−2(𝑘 − 𝑂(𝑒−

𝑎2

4 ) − 𝑂𝑎(𝑟))

for some absolute constant 𝑐′ > 0. □

To finish the subsection, we just need to prove Lemma 6.7.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 55 of 100

Proof of Lemma 6.7. Recall that 𝜂𝑎,𝑟 has density function 𝑓 ∶ ℝ3 → ℝ given by

𝑓(𝑥) =

⎧⎪⎨⎪⎩
𝐶𝑒

−
‖𝑥‖2
2𝑟2 if ‖𝑥‖ ⩽ 𝑎𝑟

0 otherwise,

where 𝐶 is a normalising constant chosen to ensure that 𝑓 integrates to 1.
Firstly we will deal with the case where 𝑟 = 1. Note that

∫𝑥∈ℝ3∶‖𝑥‖⩽𝑎 𝑒−
𝑥2

2 𝑑𝑥 ⩽ ∫ℝ3
𝑒−

𝑥2

2 𝑑𝑥 = (2𝜋)
3
2

and

∫𝑥∈ℝ3∶‖𝑥‖⩾𝑎 𝑒−
𝑥2

2 𝑑𝑥 = ∫
∞

𝑢=𝑎
4𝜋𝑢2𝑒−

𝑢2

2 𝑑𝑢

⩽ 𝑂

(
∫

∞

𝑢=𝑎
4𝜋𝑎2𝑒−

𝑎𝑢
3 𝑑𝑢

)
⩽ 𝑂

(
𝑒−

𝑎2

4

)
.

This means

∫𝑥∈ℝ3∶‖𝑥‖⩽𝑎 𝑒−
𝑥2

2 𝑑𝑥 = (2𝜋)
3
2 − ∫𝑥∈ℝ3∶‖𝑥‖⩾𝑎 𝑒−

𝑥2

2 𝑑𝑥 ⩾ (2𝜋)
3
2 − 𝑂

(
𝑒−

𝑎2

4

)
.

Therefore,

𝐶 = (2𝜋)−3∕2 + 𝑂

(
𝑒−

𝑎2

4

)
.

Note that

𝐻(𝜂1,𝑎) = ∫‖𝑥‖⩽𝑎 −𝐶𝑒−‖𝑥‖2∕2 log(𝐶𝑒−‖𝑥‖2∕2) 𝑑𝑥

= ∫‖𝑥‖⩽𝑎 𝐶
(‖𝑥‖2

2
− log𝐶

)
𝑒−‖𝑥‖2∕2 𝑑𝑥.

We have

∫𝑥∈ℝ3
𝐶

(‖𝑥‖2
2

− log𝐶

)
𝑒−‖𝑥‖2∕2 𝑑𝑥

= (2𝜋)3∕2𝐶
(
3

2
− log𝐶

)
=

(
1 + 𝑂

(
𝑒−

𝑎2

4

))(
3

2
log 𝑒 +

3

2
log 2𝜋 + 𝑂

(
𝑒−

𝑎2

4

))
=

3

2
log 2𝜋𝑒 + 𝑂

(
𝑒−

𝑎2

4

)
.
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We also have

∫𝑥∈ℝ3∶‖𝑥‖⩾𝑎 𝐶
(‖𝑥‖2

2
− log𝐶

)
𝑒−‖𝑥‖2∕2 𝑑𝑥

= ∫
∞

𝑢=𝑎
4𝜋𝑢2𝐶

(
𝑢2

2
− log𝐶

)
𝑒−𝑢

2∕2 𝑑𝑢

⩽ 𝑂

(
∫

∞

𝑢=𝑎
𝑎4𝑒−𝑎𝑢∕3 𝑑𝑢

)
⩽ 𝑂

(
𝑒−𝑎

2∕4
)
.

This gives

𝐻(𝜂1,𝑎) ⩾
3

2
log 2𝜋𝑒 + 𝑂(𝑒−𝑎

2∕4).

From this, we may immediately deduce that

𝐻(𝜂𝑟,𝑎) ⩾
3

2
log 2𝜋𝑒𝑟2 + 𝑂(𝑒−𝑎

2∕4)

as required. The fact that 𝐻(𝜂𝑟,𝑎) ⩽
3

2
log 2𝜋𝑒𝑟2 follows immediately from Lemmas 5.6 and

6.6. □

6.2 Entropy gap

We now prove Proposition 6.4. This proposition bounds the difference in entropy of 𝛾1𝛾2 … 𝛾𝜏
smoothed at two different scales. Before proving this, we need the following results about entropy.

Lemma 6.11. Let𝑋 and𝑌 be discrete random variables defined on the same probability space each
having finitely many possible values. Suppose that 𝐾 is an integer such that for each 𝑦 in the image
of 𝑌, there are at most 𝐾 elements 𝑥 in the image of 𝑋 such that

ℙ[{𝑋 = 𝑥} ∩ {𝑌 = 𝑦}] > 0.

Then,

𝐻(𝑋|𝑌) ⩽ log𝐾.

Proof. Note that (𝑋|𝑌) is almost surely supported on at most 𝐾 points. This means that

𝐻((𝑋|𝑌)) ⩽ log𝐾

almost surely. The result now follows by Lemma 2.31. □

Lemma 6.12. Given 𝑢 > 0, let 𝐾𝑢 denote the set

𝐾𝑢 ∶= {g ∈ PSL2(ℝ) ∶ ‖g‖ ⩽ 𝑢}.

 1460244x, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70072 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [27/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 57 of 100

Then,

𝑚̃(𝐾𝑢) ⩽ 𝑂(𝑢2).

Here 𝑚̃ is the Haar measure on PSL2(ℝ) defined in 2.9.

The proof of Lemma 6.12 is a simple computation involving the Haar measure which we will
carry out later in this section.
We now have everything we need to prove Proposition 6.4.

Proof of Proposition 6.4. Firstly we will deal with (32). Fix some 𝜀 > 0 which is sufficiently small
depending on𝑀 and 𝜇. Let𝑚 =

⌊
log 𝑃

𝜒

⌋
and define 𝜏̃ by

𝜏̃ =

⎧⎪⎨⎪⎩
⌈(1 + 𝜀)𝑚⌉ if 𝜏 > ⌈(1 + 𝜀)𝑚⌉⌊(1 − 𝜀)𝑚⌋ if 𝜏 < ⌊(1 − 𝜀)𝑚⌋
𝜏 otherwise.

Given some random variable 𝑋, let (𝑋) denote its law. If we are also given some event 𝐴, we
will let (𝑋)|𝐴 denote the (not necessarily probability) measure given by the push forward of the
restriction of ℙ to 𝐴 under the random variable 𝑋. Note that ‖‖(𝑋)|𝐴‖‖1 = ℙ[𝐴].
Given 𝑛 ∈ ℤ>0, let 𝑞𝑛 = 𝛾1 … 𝛾𝑛. We have the following inequality.

𝐻(𝑞𝜏𝑠𝑟1,𝑎) = 𝐻((𝑞𝜏) ∗ (𝑠𝑟1,𝑎))
⩾ 𝐻((𝑞𝜏)|𝜏=𝜏̃ ∗ (𝑠𝑟1,𝑎)) + 𝐻((𝑞𝜏)|𝜏≠𝜏̃ ∗ (𝑠𝑟1,𝑎)) (35)

⩾ 𝐻((𝑞𝜏)|𝜏=𝜏̃ ∗ (𝑠𝑟1,𝑎)) + ℙ[𝜏 ≠ 𝜏̃]𝐻((𝑠𝑟1,𝑎)). (36)

Here, (35) follows from Lemma 2.13 and (36) follows from Lemmas 2.32 and 2.13.
Firstly, we will bound𝐻((𝑞𝜏)|𝜏=𝜏̃). To do this, we let for 𝑖 ∈ ℤ⩾0we let 𝑞𝑖 ∶= 𝛾1𝛾2 … 𝛾𝑖 and we

introduce the random variable 𝑋̃ which is defined by

𝑋̃ =
(
𝑞⌊(1−𝜀)𝑚⌋, 𝛾⌊(1−𝜀)𝑚⌋+1, 𝛾⌊(1−𝜀)𝑚⌋+2, … , 𝛾⌈(1+𝜀)𝑚⌉).

We know that 𝑞𝜏̃ is completely determined by 𝑋̃ so

𝐻(𝑋̃|𝑞𝜏̃) = 𝐻(𝑋̃) − 𝐻(𝑞𝜏̃). (37)

Let 𝐾 be the number of points in the support of 𝜇. Clearly, if

𝛾⌊(1−𝜀)𝑚⌋+1, 𝛾⌊(1−𝜀)𝑚⌋+2, … , 𝛾⌈(1+𝜀)𝑚⌉,
and 𝜏̃ are fixed then for any possible value of 𝑞𝜏̃, there is at most one choice of 𝑞⌊(1−𝜀)𝑚⌋ which
would lead to this value of 𝑞𝜏̃. Therefore, for each 𝑦 in the image of 𝑞𝜏̃, there are at most

(2𝜀𝑚 + 2)𝐾(2𝜀𝑚+2)
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elements 𝑥 in the image of 𝑋̃ such that ℙ[𝑋̃ = 𝑥 ∩ 𝑞𝜏̃ = 𝑦] > 0. By Lemma 6.11, this gives

𝐻(𝑋̃|𝑞𝜏̃) ⩽ log
(
(2𝜀𝑚 + 2)𝐾(2𝜀𝑚+2)

)
⩽

2𝜀 log𝐾

𝜒
log 𝑃 + 𝑜𝜇(log 𝑃). (38)

We also know that

𝐻(𝑋̃) ⩾ 𝐻(𝑞𝑚) ⩾ ℎ𝑅𝑊 ⋅𝑚 ⩾
ℎ𝑅𝑊
𝜒

log 𝑃 − 𝑜𝜇(log 𝑃). (39)

Combining equations (37), (38) and (39) gives

𝐻(𝑞𝜏̃) ⩾
ℎ𝑅𝑊 − 2𝜀 log𝐾

𝜒
log 𝑡 − 𝑜𝜇(log 𝑡).

We note by Lemma 2.14 that

𝐻((𝑞𝜏̃)) ⩽ 𝐻((𝑞𝜏̃)|𝜏=𝜏̃) + 𝐻((𝑞𝜏̃)|𝜏≠𝜏̃) + 𝐻(𝕀𝜏=𝜏̃).

Wewish to use this to bound𝐻((𝑞𝜏̃)|𝜏=𝜏̃) from below. Firstly note that trivially𝐻(𝕀𝜏=𝜏̃) ⩽ log 2 ⩽

𝑜(log 𝑃). Note that by (11) fromLemma 2.1, we have that providing𝑃 is sufficiently large depending
on 𝜀 and 𝜇

ℙ[𝜏 ≠ 𝜏̃] ⩽ 𝛼𝑚

for some 𝛼 ∈ (0, 1)which depends only on 𝜀 and 𝜇. We also know that conditional on 𝜏 ≠ 𝜏̃, there
are at most 𝐾⌈(1+𝜀)𝑚⌉ + 𝐾⌊(1−𝜀)𝑚⌋ possible values for 𝑞𝜏̃. This means that

𝐻((𝑞𝜏̃)|𝜏≠𝜏̃) ⩽ 𝛼𝑚 log
(
𝐾⌈(1+𝜀)𝑚⌉ + 𝐾⌊(1−𝜀)𝑚⌋) ⩽ 𝑜𝜇,𝜀(log 𝑃).

Therefore,

𝐻((𝑞𝜏̃)|𝜏=𝜏̃) ⩾ ℎ𝑅𝑊 − 2𝜀 log𝐾

𝜒
log 𝑃 − 𝑜𝜇,𝜀(log 𝑃).

Recall that 𝑑 is the distance function of some left invariant Riemannian metric and that by the
definition of 𝑀𝜇 given any 𝑁 ∈ ℤ>0 and any two distinct 𝑥, 𝑦 ∈ PSL2(ℝ) such that for each of
them, there is some 𝑛 ⩽ 𝑁 such that they are in the support of 𝜇∗𝑛, we have

𝑑(𝑥, 𝑦) ⩾ 𝑀
−𝑁+𝑜𝜇(𝑁)

𝜇 .

In particular, this means that if 𝑥 and 𝑦 are both in the image of 𝑞𝜏̃, then

𝑑(𝑥, 𝑦) ⩾ 𝑀
−𝑚(1+𝜀)+𝑜𝜇(𝑁)

𝜇 .

Note also that trivially for all sufficiently small 𝑟, we have 𝑑(exp(𝑢), Id) ⩽ 𝑂(𝑟) whenever 𝑢 ∈

𝔭𝔰𝔩2(ℝ) satisfies ‖𝑢‖ ⩽ 𝑟. In particular, since 𝑟1 < 𝑀−𝑚, thismeans that providing𝑃 is sufficiently
large depending on𝑀 and 𝑎, we have

𝑑(𝑠𝑟1,𝑎, Id) ⩽ 𝑂(𝑎𝑀−𝑚)
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almost surely. Therefore, providing 𝜀 is small enough that 𝑀(1+𝜀)
𝜇 < 𝑀 and 𝑡 is sufficiently large

depending on 𝜇, 𝑎, 𝜀 and𝑀, we have

𝑑(𝑠𝑟1,𝑎, Id) <
1

2
min

𝑥,𝑦∈supp(𝑞𝜏̃),𝑥≠𝑦
𝑑(𝑥, 𝑦).

In particular, by Lemma 2.15 and Definition 2.12, we have

𝐻((𝑞𝜏)|𝜏=𝜏̃ ∗ (𝑠𝑟1,𝑎)) = 𝐻((𝑞𝜏)|𝜏=𝜏̃) + ℙ[𝜏 = 𝜏̃]𝐻((𝑠𝑟1,𝑎)).
Putting this into the estimate (36) for𝐻(𝑞𝜏𝑠𝑟1,𝑎), we get

𝐻(𝑞𝜏𝑠𝑟1,𝑎) ⩾
ℎ𝑅𝑊 − 2𝜀 log𝐾

𝜒
log 𝑃 + 𝐻(𝑠𝑠1,𝑎) − 𝑜𝜇,𝑀,𝑎,𝜀(log 𝑃).

Since 𝜀 can be made arbitrarily small, this becomes

𝐻(𝑞𝜏𝑠𝑟1,𝑎) ⩾
ℎ𝑅𝑊
𝜒

log 𝑃 + 𝐻(𝑠𝑟1,𝑎) − 𝑜𝜇,𝑀,𝑎(log 𝑃)

as required.
Now to prove (33). Fix some 𝜀 > 0 and let 𝐴 be the event that

‖‖𝑞𝜏‖‖ < 𝑃1+𝜀.

Firstly note that by (8) and (11) from Lemma 2.1, there is some 𝛿 depending on 𝜇 and 𝜀 such that
for all sufficiently large (depending on 𝜇, 𝜀 and 𝑏) 𝑡, we have

ℙ[𝐴𝐶] < 𝑡−𝛿.

Note that when𝐴 occurs ‖‖‖𝑞𝜏𝑠𝑟2,𝑎‖‖‖ ⩽ 𝑃1+𝜀𝑎𝑟2. Therefore, by Lemma 6.12, when𝐴 occurs 𝑞𝜏𝑠𝑟2,𝑎
is contained in a set of 𝑚̃-measure at most 𝑂𝜇,𝑎(𝑃

2+2𝜀)where 𝑚̃ is our normalised Haar measure.
Trivially, by Jensen’s inequality, this gives

𝐻((𝑞𝜏𝑠𝑟2,𝑎)|𝐴) ⩽ (2 + 2𝜀) log 𝑃 + 𝑜𝜇,𝑀,𝑎(log 𝑃). (40)

Now we need to bound 𝐻((𝑞𝜏𝑠𝑟2,𝑎)|𝐴𝐶 ). We will do this by bounding the Shannon entropy
𝐻((𝑞𝜏)|𝐴𝐶 ). It is easy to see that the contribution to this from the case where 𝜏 <

2 log 𝑃

𝜒
is at most

𝑃−𝛿 2 log 𝑃

𝜒
log𝐾. By (11) from Lemma 2.1, the contribution from the case where 𝜏 = 𝑛 for some

𝑛 ⩾
2 log 𝑃

𝜒
can be bounded above by 𝛼𝑛𝑛 log𝐾 where 𝛼 ∈ (0, 1) is some constant depending only

on 𝜇. From summing over 𝑛, it is easy to see that

𝐻((𝑞𝜏)|𝐴𝐶 ) ⩽ 𝑜𝜇(log 𝑃).

This gives 𝐻((𝑞𝜏𝑠𝑟2,𝑎)|𝐴𝐶 ) < 𝑜𝜇,𝑀,𝑎(log 𝑃). Combining this with (40) and noting that 𝜀 can be
arbitrarily small gives (33).
Subtracting (33) from (32) gives

𝐻(𝑞𝜏𝑠𝑟1,𝑎) − 𝐻(𝑞𝜏𝑠𝑟2,𝑎) ⩾

(
ℎ𝑅𝑊
𝜒

− 2

)
log 𝑃 + 𝐻(𝑠𝑟1,𝑎) − 𝑜𝑀,𝜇,𝑎(log 𝑃).
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60 of 100 KITTLE

Noting that |𝐻(𝑠𝑟2,1) − 3 log 𝑟2| ⩽ 𝑂𝑎(1) ⩽ 𝑜𝑀,𝜇,𝑎(log 𝑃) gives (34) as required. □

We will now prove Lemma 6.12. To do this, we will use the following explicit formula for the
Haar measure on PSL2(ℝ).

Definition 6.13 (Iwasawa decomposition). Each element of PSL2(ℝ) can be written uniquely in
the form (

1 𝑥

0 1

)(
𝑦

1
2 0

0 𝑦−
1
2

)(
cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃

)
with 𝑥 ∈ ℝ, 𝑦 ∈ ℝ>0 and 𝜃 ∈ ℝ∕𝜋ℤ. This is called the Iwasawa decomposition.

Lemma 6.14. There is a Haar measure for PSL2(ℝ) which is given in the Iwasawa decomposition
by

1

𝑦2
𝑑𝑥 𝑑𝑦 𝑑𝜃.

Proof. This is proven in, for example, [30, Chapter III]. □

Proof of Lemma 6.12. Firstly, let

𝑀𝑥,𝑦,𝜃 ∶=

(
1 𝑥

0 1

)(
𝑦

1
2 0

0 𝑦−
1
2

)(
cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃

)
.

Note that we have

𝑀𝑥,𝑦,𝜃

(
cos 𝜃

− sin 𝜃

)
=

(
𝑦

1
2

0

)
and

𝑀𝑥,𝑦,𝜃

(
sin 𝜃

cos 𝜃

)
=

(
𝑥𝑦−

1
2

𝑦−
1
2

)
,

meaning that

‖‖‖𝑀𝑥,𝑦,𝜃
‖‖‖ ⩾ max{𝑦

1
2 , |𝑥|𝑦−1

2 , 𝑦−
1
2 }.

By Lemma 6.14 and the fact that any two Haar measures differ only by a positive multiplicative
constant, we have

𝑚̃(𝐾𝑃) ⩽ 𝑂
⎛⎜⎜⎝∫

𝑃2

𝑃−2 ∫
𝑃𝑦

1
2

−𝑃𝑦
1
2 ∫

2𝜋

0

1

𝑦2
𝑑𝜃 𝑑𝑥 𝑑𝑦

⎞⎟⎟⎠
= 𝑂

(
𝑃 ∫

𝑃2

𝑃−2
𝑦−

3
2 𝑑𝑦

)
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⩽ 𝑂

(
𝑃 ∫

∞

𝑃−2
𝑦−

3
2 𝑑𝑦

)
= 𝑂(𝑃2)

as required. □

6.3 Variance of a disintegration of a stopped randomwalk

In this subsection, we will prove Proposition 6.5 and then use this to prove Proposition 1.23.

Proof of Proposition 6.5. Let 𝜏 = 𝜏𝑃,𝑏 and let 𝑎 ⩾ 1 be a number we will choose later. Let 𝑟1 =

𝑎−1𝑀
−

log𝑃

𝜒 and let

𝑁 =

⌊(
1 −

ℎ𝑅𝑊
10 log𝑀

)
log𝑀 log 𝑃

𝜒 log 2

⌋
− 1.

Note that

1

4
𝑃

log𝑀

𝜒 ∕𝑃
ℎ𝑅𝑊
10𝜒 ⩽ 2𝑁 ⩽

1

2
𝑃

log𝑀

𝜒 ∕𝑃
ℎ𝑅𝑊
10𝜒 .

Given 𝑢 ∈ [1, 2) and an integer 𝑖 ∈ [1,𝑁], let

𝑘𝑖(𝑢) ∶= 𝐻(𝑞𝜏𝑚2𝑖−1𝑢𝑟1,𝑎
) − 𝐻(𝑚2𝑖−1𝑢𝑟1,𝑎

) − 𝐻(𝑞𝜏𝑚2𝑖𝑢𝑟1,𝑎
) + 𝐻(𝑚2𝑖𝑢𝑟1,𝑎

).

Note that by Proposition 6.3, there is some absolute constant 𝑐 > 0 such that we have

𝑣(𝑞𝜏; 𝑎2
𝑖𝑢𝑟1) ⩾ 𝑐𝑎−2(𝑘𝑖(𝑢) − 𝑂(𝑒−

𝑎2

4 ) − 𝑂𝑎(2
𝑖𝑟1)). (41)

This means that

𝑁∑
𝑖=1

𝑣(𝑞𝜏; 𝑎2
𝑖𝑢𝑟1) ⩾ 𝑐𝑎−2

𝑁∑
𝑖=1

𝑘𝑖(𝑢) − 𝑂(𝑁𝑒−
𝑎2

4 𝑎−2) − 𝑂𝑎(𝑁2𝑁𝑟1).

Note that for 𝑢 ∈ [1, 2), we have

𝑎2𝑁𝑢𝑟1 ⩽ 𝑡
−

ℎ𝑅𝑊
10𝜒

and

𝑎21𝑢𝑟1 ⩾ 𝑡
−

log𝑀

𝜒 .

This means that

∫
𝑡
−

ℎ𝑅𝑊
10 log𝜒

𝑃
−
log𝑀
log𝜒

1

𝑢
𝑣(𝑞𝜏; 𝑢) 𝑑𝑢 ⩾ 𝑐𝑎−2 ∫

2

1

1

𝑢

𝑁∑
𝑖=1

𝑘𝑖(𝑢) 𝑑𝑢 − 𝑂(𝑁𝑒−
𝑎2

4 𝑎−2) − 𝑂𝑎(𝑁2𝑁𝑟1). (42)
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62 of 100 KITTLE

Clearly, for any fixed 𝑢 ∈ [1, 2), we have

𝑁∑
𝑖=1

𝑘𝑖(𝑢) = 𝐻(𝑞𝜏𝑚𝑢𝑟1,𝑎
) − 𝐻(𝑚𝑢𝑟1,𝑎

) − 𝐻(𝑞𝜏𝑚2𝑁𝑢𝑟1,𝑎
) + 𝐻(𝑚2𝑁𝑢𝑟1,𝑎

).

This means that by Proposition 6.4, we have

𝑁∑
𝑖=1

𝑘𝑖(𝑢) ⩾

(
ℎ𝑅𝑊
𝜒

− 12

)
log 𝑃 + 3 log 2𝑁𝑢𝑟1 + 𝑜𝑀,𝜇,𝑎,𝑤(log 𝑃)

⩾

(
ℎ𝑅𝑊
𝜒

− 2 −
3ℎ𝑅𝑊
10𝜒

)
log 𝑃 + 𝑜𝑀,𝜇,𝑎,𝑤(log 𝑃). (43)

Let 𝐶 be chosen such that the error term 𝑂(𝑁𝑒−
𝑎2

4 𝑎−2) in (42) can be bounded above by

𝐶𝑁𝑒−
𝑎2

4 𝑎−2. Note that this is at most 𝑂
(

log𝑀

𝜒 log 2
𝑒−

𝑎2

4 𝑎−2 log 𝑃

)
. Let 𝑐 be as in (41). We take our

value of 𝑎 to be

𝑎 = 2

√
log

(
100𝐶

𝑐 log 2

log𝑀

ℎ𝑅𝑊

)
.

Note that 𝑎 depends only on 𝜇 and𝑀. This means

𝐶𝑁𝑒−
𝑎2

4 𝑎−2 ⩽ 𝑎−2
ℎ𝑅𝑊
100𝜒

𝑐 log 𝑃.

Note also that 𝑁2𝑁𝑟1 ⩽ 𝑜𝜇,𝑀(log 𝑃). Therefore, putting (43) into (42), we get

∫
𝑃
−
ℎ𝑅𝑊
10𝜒

𝑃
−
log𝑀
𝜒

1

𝑢
𝑣(𝑞𝜏; 𝑢) 𝑑𝑢 ⩾ 𝑐𝑎−2

(
ℎ𝑅𝑊
𝜒

− 2 −
3ℎ𝑅𝑊
10𝜒

−
ℎ𝑅𝑊
100𝜒

)
log 𝑃 + 𝑜𝑀,𝜇,𝑤(log 𝑃).

In particular providing ℎ𝑅𝑊
𝜒

> 10, we have

∫
𝑃
−
ℎ𝑅𝑊
10𝜒

𝑃
−
log𝑀
𝜒

1

𝑢
𝑣(𝑞𝜏; 𝑢) 𝑑𝑢 ≳ 𝑎−2

(
ℎ𝑅𝑊
𝜒

)
log 𝑃 + 𝑜𝑀,𝜇,𝑤(log 𝑃).

Noting that 𝑎2 ⩽ 𝑂(max
{
1, log

log𝑀

ℎ𝑅𝑊

}
), we have that for all sufficiently large (depending on 𝜇,

𝑀, and 𝑤) 𝑃, we have

∫
𝑃
−

ℎ𝑅𝑊
10 log𝜒

𝑃
−
log𝑀
log𝜒

1

𝑢
𝑣(𝑞𝜏; 𝑢) 𝑑𝑢 ≳

(
ℎ𝑅𝑊
𝜒

)(
max

{
1, log

log𝑀

ℎ𝑅𝑊

})−1

log 𝑃

as required. □

We wish to prove Proposition 1.23. Firstly we need the following corollary of Proposition 6.5.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 63 of 100

Corollary 6.15. Suppose that 𝜈̂ is a probability measure on 𝑃1(ℝ). Suppose that 𝜇 is a finitely sup-
ported Zariski-dense probability measure. Suppose further that𝑀𝜇 < ∞ and let𝑀 > 𝑀𝜇. Suppose
that𝑀 is chosen large enough that ℎ𝑅𝑊 ⩽ log𝑀. Then, for all sufficiently large (depending on 𝜇, 𝜈̂
and𝑀) 𝑃, we have

∫𝑃1(ℝ) ∫
𝑃
−

ℎ𝑅𝑊
10 log𝜒

𝑃
−
log𝑀
log𝜒

1

𝑢
𝑣(𝑞𝜏𝑃,𝑏 ; 𝑢) 𝑑𝑢 𝜈̂(𝑑𝑏) ≳

(
ℎ𝑅𝑊
𝜒

)(
max

{
1, log

log𝑀

𝜒

})−1

log 𝑃.

Proof. Given 𝜇 and𝑀, let

𝑆(𝑃) ∶= {𝑏 ∈ 𝑃1(ℝ) ∶ 𝑃 is large enough to satisfy Proposition 6.5 for this 𝑏, 𝜇 and𝑀}.

By Proposition 6.5, we know that 𝑆(𝑃) ↗ 𝑃1(ℝ). Therefore, 𝜈̂(𝑆(𝑃)) ↗ 1. In particular, providing
𝑃 is sufficiently large (depending on 𝜇 and𝑀), we have 𝜈̂(𝑆(𝑃)) ⩾ 1

2
. This, along with the fact that

𝑣(⋅; ⋅) is always non-negative, is enough to prove Corollary 6.15. □

This is enough to prove Proposition 1.23.

Proof of Proposition 1.23. Recall that 𝑚̂ =
⌊
log𝑀

100𝜒

⌋
. Let

𝐴 ∶= 𝑃
log𝑀

2𝑚̂𝜒
−

ℎ𝑅𝑊
20𝑚̂𝜒 .

Define 𝑎1, 𝑎2, … , 𝑎2𝑚̂+1 by

𝑎𝑖 ∶= 𝑃
−

log𝑀

𝜒 𝐴𝑖−1.

Note that this means 𝑎1 = 𝑃
−

log𝑀

𝜒 and 𝑎2𝑚̂+1 = 𝑃
−

ℎ𝑅𝑊
10𝜒 . Furthermore, providing ℎ𝑅𝑊∕𝜒 is

sufficiently large, we have

𝑃3 ⩽ 𝐴 ⩽ 𝑃50.

In particular, 𝑎𝑖+1 ⩾ 𝑃3𝑎𝑖 .
Let 𝑈,𝑉 be defined by

𝑈 ∶=

𝑚̂⋃
𝑖=1

[𝑎2𝑖−1, 𝑎2𝑖)

and

𝑉 ∶=

𝑚̂⋃
𝑖=1

[𝑎2𝑖, 𝑎2𝑖+1).

Note that 𝑈 and 𝑉 partition
[
𝑃
−

log𝑀

𝜒 , 𝑃
−

ℎ𝑅𝑊
10𝜒

)
.
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64 of 100 KITTLE

Let 𝑐 > 0 be the absolute constant in Corollary 6.15. By Corollary 6.15, providing 𝑃 is sufficiently
large depending on 𝜇 and𝑀, we have

∫𝑈∪𝑉 ∫𝑃1(ℝ)
1

𝑢
𝑣(𝑞𝜏𝑃,𝑏 ; 𝑢) 𝜈̂(𝑑𝑏) 𝑑𝑢 ⩾ 𝑐

(
ℎ𝑅𝑊
𝜒

)(
max

{
1, log

log𝑀

ℎ𝑅𝑊

})−1

log 𝑃.

In particular, either

∫𝑈 ∫𝑃1(ℝ)
1

𝑢
𝑣(𝑞𝜏𝑃,𝑏 ; 𝑢) 𝜈̂(𝑑𝑏) 𝑑𝑢 ⩾

1

2
𝑐

(
ℎ𝑅𝑊
𝜒

)(
max

{
1, log

log𝑀

ℎ𝑅𝑊

})−1

log 𝑃. (44)

or

∫𝑉 ∫𝑃1(ℝ)
1

𝑢
𝑣(𝑞𝜏𝑃,𝑏 ; 𝑢) 𝜈̂(𝑑𝑏) 𝑑𝑢 ⩾

1

2
𝑐

(
ℎ𝑅𝑊
𝜒

)(
max

{
1, log

log𝑀

ℎ𝑅𝑊

})−1

log 𝑃.

Without loss of generality, assume that (44) holds. For 𝑖 = 1, 2, … , 𝑚̂, let 𝑠𝑖 ∈ (𝑎2𝑖−1, 𝑎2𝑖) be
chosen such that

∫𝑃1(ℝ) 𝑣(𝑞𝜏𝑃,𝑏 ; 𝑠𝑖) 𝜈̂(𝑑𝑏) ⩾
1

2
sup

𝑢∈(𝑎2𝑖−1,𝑎2𝑖)
∫𝑃1(ℝ) 𝑣(𝑞𝜏𝑃,𝑏 ; 𝑢) 𝜈̂(𝑑𝑏).

In particular, this means that

∫𝑃1(ℝ) 𝑣(𝑞𝜏𝑃,𝑏 ; 𝑠𝑖) 𝜈̂(𝑑𝑏) ⩾
1

2 log𝐴 ∫
𝑎2𝑖

𝑎2𝑖−1
∫𝑃1(ℝ)

1

𝑢
𝑣(𝑞𝜏𝑃,𝑏 ; 𝑢) 𝜈̂(𝑑𝑏) 𝑑𝑢.

Summing over 𝑖 gives

𝑚̂∑
𝑖=1

∫𝑃1(ℝ) 𝑣(𝑞𝜏𝑃,𝑏 ; 𝑠𝑖) 𝜈̂(𝑑𝑏) ⩾
1

2 log𝐴 ∫𝑈 ∫𝑃1(ℝ)
1

𝑢
𝑣(𝑞𝜏𝑃,𝑏 ; 𝑢) 𝜈̂(𝑑𝑏) 𝑑𝑢

⩾
1

4 log𝐴
𝑐

(
ℎ𝑅𝑊
𝜒

)(
max

{
1, log

log𝑀

ℎ𝑅𝑊

})−1

log 𝑃.

Noting that log𝐴 ⩽ 𝑂(log 𝑡) we get that providing 𝑃 is sufficiently large depending on 𝜇 and 𝑀

that

𝑚̂∑
𝑖=1

∫𝑃1(ℝ) 𝑣(𝑞𝜏𝑃,𝑏 ; 𝑠𝑖) 𝜈̂(𝑑𝑏) ⩾ 𝑐′
(
ℎ𝑅𝑊
𝜒

)(
max

{
1, log

log𝑀

ℎ𝑅𝑊

})−1

for some absolute constant 𝑐′ > 0. Finally, note that 𝐴 ⩾ 𝑃3 means that 𝑠𝑖+1 ⩾ 𝑃3𝑠𝑖 . □

7 VARIANCE SUM

Recall from the introduction that the strategy of the proof is as follows. We let (𝛾𝑖)
∞
𝑖=1 be i.i.d.

samples from 𝜇 and let 𝑏 be an independent sample from 𝜈 and for each sufficiently small scale
𝑟 > 0, we construct some 𝜎-algebra and some stopping time 𝜏. We also construct some 𝑛 ∈ ℤ>0,
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 65 of 100

some -measurable random variables g1, g2, … , g𝑛 taking values in PSL2(ℝ) and some random
variables 𝑈1,𝑈2, … ,𝑈𝑛 taking values in 𝔭𝔰𝔩2(ℝ) such that

𝛾1𝛾2 … 𝛾𝜏𝑏 = g1 exp(𝑈1)g2 exp(𝑈2)… g𝑛 exp(𝑈𝑛)𝑏. (45)

We also require the 𝑈𝑖 to be small and have at least some variance after conditioning on . We
then condition on and Taylor expand in the𝑈𝑖 so that after disintegrating, we may express the
Furstenberg measure as the law of the sum of many small random variables each of which have
at least some variance.
In order to carry out this Taylor expansion, we will use Proposition 1.20. This requires the g𝑖

to satisfy a number of conditions. We wish to construct a class of ways of expressing random
variables of the form 𝛾1 … 𝛾𝜏 in the form g1 exp(𝑈1)… g𝑛 exp(𝑈𝑛) such that the g𝑖 and 𝑈𝑖 satisfy
(amongst other things) the conditions of Proposition 1.20 and so that this class is closed under
concatenation. To this end, we define the following.

Definition 7.1. Let 𝜇 be a probability measure on PSL2(ℝ), let 𝑛, 𝐾 ∈ ℤ⩾0, let 𝑎 and 𝑎 be ran-
dom variables taking values in PSL2(ℝ) and let 𝐶, 𝑡, 𝜀, 𝑟 > 0. Let 𝑓 = (𝑓𝑖)

𝑛
𝑖=1

and ℎ = (ℎ𝑖)
𝑛
𝑖=1

be
sequences of random variables taking values in PSL2(ℝ). Let 𝑈 = (𝑈𝑖)

𝑛
𝑖=1

be a sequence of ran-
dom variables taking values in 𝔭𝔰𝔩2(ℝ), let  = (𝑖)

𝑛
𝑖=0 be a sequence of 𝜎-algebras, let 𝐴 be an

𝑛-measurable event, let 𝐼 be a random subset of [1, 𝑛] ∩ ℤ and let𝑚 = (𝑚𝑖)
𝑛
𝑖=1 be a sequence of

non-negative real numbers. Let 𝛾 = (𝛾𝑖)
∞
𝑖=1 be i.i.d. samples from 𝜇 and let  = (𝑖)

∞
𝑖=1 be a filtra-

tion for 𝛾 and suppose that for all 𝑖, we have that 𝛾𝑖+1 is independent of 𝑖 . Let 𝑆 = (𝑆𝑖)
𝑛
𝑖=1 and

𝑇 = (𝑇𝑖)
𝑛
𝑖=1 be sequences of stopping times for the filtration  . Let 𝓁 be a random variable taking

values in PSL2(ℝ). Then, we say that

(𝑓, ℎ,𝑈,𝑚,, 𝐴, 𝐼, 𝛾, , 𝑆, 𝑇,𝓁)

is a proper decomposition for
(
𝜇, 𝑛, 𝐾, 𝑎, 𝑎, 𝑡, 𝐶, 𝜀

)
at scale 𝑟 ifℙ[𝐴] ⩾ 1 − 𝜀 and on𝐴 the following

conditions are satisfied.

A1. We have 𝑆1 ⩽ 𝑇1 ⩽ 𝑆2 ⩽ 𝑇2 ⩽ ⋯ ⩽ 𝑆𝑛 ⩽ 𝑇𝑛.
A2. We have 𝑓1 exp(𝑈1) = 𝛾1 … 𝛾𝑆1 and for 𝑖 = 2, … , 𝑛, we have 𝑓𝑖 exp(𝑈𝑖) = 𝛾𝑇𝑖−1+1 … 𝛾𝑆𝑖 .
A3. We have ℎ𝑖 = 𝛾𝑆𝑖+1 … 𝛾𝑇𝑖 .
A4. The𝑖 are nested — that is0 ⊂ 1 ⊂ ⋯ ⊂ 𝑛.
A5. For each 𝑖 = 1, 2, … , 𝑛, we have that 𝑈𝑖 is conditionally independent of𝑛 given𝑖 .
A6. The 𝑈𝑖 are conditionally independent given𝑛.
A7. We have that 𝑎 and 𝑎 are 0 measurable and for each 𝑖 = 1, … , 𝑛, the 𝑓𝑖 and ℎ𝑖 are 𝑖-

measurable.
A8. For each 𝑖 = 1, 2, … , 𝑛, we have

𝔼

[
Var[𝑈𝑖|𝑖]‖‖𝑎𝑓1ℎ1𝑓2ℎ2 …𝑓𝑖−1ℎ𝑖−1𝑓𝑖

‖‖4𝑟2 |𝑖−1

]
⩾ 𝑚𝑖.

A9. For each 𝑖 ∈ [1, 𝑛] ∩ ℤ∖𝐼, we have 𝑈𝑖 = 0.
A10. For each 𝑖 ∈ 𝐼, we have

‖‖𝑈𝑖
‖‖ ⩽ ‖‖𝑎𝑓1ℎ1𝑓2ℎ2 …𝑓𝑖−1ℎ𝑖−1𝑓𝑖

‖‖2𝑟
almost surely and 𝑏+(ℎ𝑖) ∈ 𝑈𝑡∕4,𝑡∕8(𝑈𝑖|𝑛).
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66 of 100 KITTLE

A11. When 𝐼 is not empty if we enumerate 𝐼 as {𝑗1, … , 𝑗𝑝} with 𝑗1 < ⋯ < 𝑗𝑝 and define g1 ∶=

𝑎𝑓1ℎ1𝑓2ℎ2 …𝑓𝑗1 and for 𝑖 = 2, … , 𝑝 define g𝑖 ∶= ℎ𝑗𝑖−1𝑓𝑗𝑖−1+1ℎ𝑗𝑖−1+1 …𝑓𝑗𝑖−1ℎ𝑗𝑖−1𝑓𝑗𝑖 . Then,
for each 𝑖 = 1, … , 𝑝, we have

‖‖g𝑖‖‖ ⩾ 𝐶.

A12. With g𝑖 defined as above when 𝐼 is not empty for 𝑖 = 1, … ,𝓁, we have

𝑑(𝑏−(g𝑖), 𝑏
+(ℎ𝑗𝑖 )) > 𝑡∕4.

A13. For 𝑖 = 1, … , 𝑛, we have 𝑇𝑖 ⩾ 𝑆𝑖 + 𝐾.
A14. We have 𝓁 = ℎ𝑗𝑚𝑓𝑗𝑚+1ℎ𝑗𝑚+1 …𝑓𝑛ℎ𝑛

We refer to 𝓁 as the tail of the decomposition.
This definition is chosen such that given a proper decomposition, we can write

𝑎𝛾1 … 𝛾𝑇𝑛 = 𝑎g1 exp(𝑈1)g2 exp(𝑈2)… g𝑚 exp(𝑈𝑚)g𝑚+1

and then Taylor expand in the 𝑈𝑖 after conditioning on𝑛. The 𝜎- algebra𝑛 will play a similar
role to the 𝜎-algebra in (45).
We will now briefly discuss the purpose of each of these conditions. Conditions A1–A3 are

needed to describe the shape of the decomposition. We require Conditions A4 and A5 in order
to ensure that Var[𝑈𝑖|𝑛] = Var[𝑈𝑖|𝑖] and in particular is an𝑖 measurable random variable.
This enables us to apply a quantitative version Cramer’s theorem (see Lemma 7.8) to show that
after conditioning on 𝑛, the sum of the variances of the random variables produced by Taylor
expanding (45) in the𝑈𝑖 will, with very high probability, not be too small. Condition A6 is needed
for the small random variables given by this to be independent. Condition A7 is also important in
this step and is needed to ensure that the g𝑖 are𝑛-measurable.
We need to introduce the set 𝐼 because if 𝑏−(𝑓𝑖) is too close to 𝑏+(ℎ𝑖), then we will not have

good control on the derivatives with respect to𝑈𝑖 . This will prevent us from being able to use our
Taylor expansion. We cannot get around by, for example, replacing 𝑓𝑖 by

𝑓𝑖 ∶=

{
𝑓𝑖 if 𝑖 ∈ 𝐼

𝑓𝑖 exp(𝑈𝑖)ℎ𝑖𝑓𝑖+1 otherwise

and replacing 𝑈𝑖 by

𝑈̃𝑖 ∶=

{
𝑈𝑖 if 𝑖 ∈ 𝐼

𝑈𝑖+1 otherwise

in this case because we will not know if we want 𝑖 ∈ 𝐼 or not until after we define ℎ𝑖 . This means
that 𝑆𝑖 will not be a stopping time.
Condition A8 is needed to ensure that the small random variables we acquire after Taylor

expanding in the 𝑈𝑖 have at least some variance.
Conditions A.9–A.11 are needed to ensure that the conditions of Proposition 1.20 are satisfied.

Condition A13 is needed to ensure that 𝑏+(ℎ𝑗𝑖 ) is a good approximation of 𝑏
+(g𝑖+1).
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 67 of 100

We introduce the filtration (𝑖)
∞
𝑖=1 instead of just taking 𝑖 = 𝜎(𝛾1, 𝛾2, … , 𝛾𝑖) because in our

construction of a proper decomposition in Proposition 7.11, we need the𝑓𝑖 to be𝑆𝑖
—measurable.

The 𝑓𝑖 are not in general products of 𝛾𝑗 and so are not in general 𝜎(𝛾1, 𝛾2, … , 𝛾𝑆𝑖 )—measurable.
Note that when 𝑛 = 0, a proper decomposition will always exist. We will call this the trivial

proper decomposition.

Definition 7.2. Given some probability measure 𝜇 on PSL2(ℝ), some 𝑃 ⩾ 1 some fixed 𝑎, 𝑎 ∈

PSL2(ℝ) such that ‖𝑎‖ ⩽ 𝑃, some 𝑛, 𝐾 ∈ ℤ⩾0 and some 𝑡, 𝐶, 𝜀 > 0, we define the variance sum for
𝜇, 𝑛, 𝐾, 𝑡, 𝐶, 𝜀 from 𝑎, 𝑎 to 𝑃 at scale 𝑟 to be the maximum for 𝑘 = 0, 1, … , 𝑛 of the supremum of all
possible values of

𝑘∑
𝑖=1

𝑚𝑖,

where

(𝑓, ℎ,𝑈,𝑚,, 𝐴, 𝐼, 𝛾, , 𝑆, 𝑇,𝓁)

is a proper decomposition for
(
𝜇, 𝑘, 𝐾, 𝑎, 𝑎, 𝑡, 𝐶, 𝜀

)
at scale 𝑟with ‖‖𝑎𝑓1ℎ1 …𝑓𝑘ℎ𝑘

‖‖ ⩽ 𝑃 on the event
𝐴. We denote this by𝑊(𝜇, 𝑛, 𝐾, 𝑎, 𝑎, 𝑃, 𝑡, 𝐶, 𝜀; 𝑟).

To avoid trivial obstructions, we also take this supremum over all possible underlying
probability spaces. In particular, we allow the probability space to be a regular space.
Note that since a proper decomposition always exists when 𝑘 = 0, we have

𝑊(𝜇, 𝑛, 𝐾, 𝑎, 𝑃, 𝑡, 𝐶, 𝜀; 𝑟) ⩾ 0. We now introduce the following.

Definition 7.3. Given a probability measure 𝜇 on PSL2(ℝ), 𝑛 ∈ ℤ⩾0, 𝑃1, 𝑃2 ∈ ℝwith 1 ⩽ 𝑃1 ⩽ 𝑃2
and some 𝑡, 𝐶, 𝜀, 𝑟 > 0, we define

𝑉(𝜇, 𝑛, 𝐾, 𝑃1, 𝑃2, 𝑡, 𝐶, 𝜀; 𝑟) ∶= inf
𝑎,𝑎∈PSL2(ℝ),‖𝑎‖⩽𝑃1 𝑊(𝜇, 𝑛, 𝐾, 𝑎, 𝑎, 𝑃2, 𝑡, 𝐶, 𝜀; 𝑟).

Trivially, 𝑉(𝜇, 𝑛, 𝑃1, 𝑃2, 𝑡, 𝐶, 𝜀; 𝑟) ⩾ 0 due to the existence of the trivial decomposition. It is also
clear that it is decreasing in 𝑃1 and increasing in 𝑃2. The quantity 𝑉(⋅, ⋅, ⋅, ⋅, ⋅, ⋅, ⋅; ⋅) will play an
important role in the proof as is shown by the following propositions.

Proposition 7.4. Suppose that 𝜇 is a probability measure on PSL2(ℝ), 𝑛1, 𝑛2 ∈ ℤ⩾0, 𝑃1, 𝑃2, 𝑃3 ∈ ℝ

with 1 ⩽ 𝑃1 ⩽ 𝑃2 ⩽ 𝑃3 and 𝑡, 𝐶, 𝑟, 𝜀1, 𝜀2 > 0. Then, we have

𝑉(𝜇, 𝑛1 + 𝑛2, 𝑃1, 𝑃3, 𝑡, 𝐶, 𝜀1 + 𝜀2; 𝑟)

⩾ 𝑉(𝜇, 𝑛1, 𝑃1, 𝑃2, 𝑡, 𝐶, 𝜀1; 𝑟) + 𝑉(𝜇, 𝑛2, 𝑃2, 𝑃3, 𝑡, 𝐶, 𝜀2; 𝑟).

We also wish to show that when the variance sum is large, the order 𝑘 detail is small.

Proposition 7.5. For every𝛼, 𝑡 > 0, there are some constants𝐶,𝑄 > 0 such that the following is true.
Suppose that 𝜇 is a finitely supported Zariski-dense probability measure on PSL2(ℝ). Then, there is
some 𝑐 = 𝑐(𝜇) > 0 such that whenever 𝑃 ⩾ 1 and 𝑘, 𝐾, 𝑛 ∈ ℤ>0 with 𝐾 and 𝑛 sufficiently large (in
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68 of 100 KITTLE

terms of 𝑡, 𝛼 and 𝜇), 𝑟 > 0 is sufficiently small (in terms of 𝑡, 𝛼 and 𝜇) and

𝑉(𝜇, 𝑛, 𝐾, 1, 𝑃, 𝑡, 𝐶, 𝜀; 𝑟) > 𝐶𝑘,

we have

𝑠(𝑘)
𝑄𝑟

(𝜈) < 𝛼𝑘 + 𝑛 exp(−𝑐𝐾) + 𝑃2𝑟𝐶𝑛 + 𝜀. (46)

When we apply this proposition, the most important term in (46) will be 𝛼𝑘. Finally, we need
the following.

Proposition 7.6. For any 𝛼0 ∈ (0, 1∕3) and any 𝑡, 𝑅 > 0, there exists some 𝑐 = 𝑐(𝛼0, 𝑡, 𝑅) > 0 such
that the following is true. Suppose that 𝜇 is a finitely supported Zariski-dense probability measure.
Suppose further that 𝜇 is 𝛼0, 𝑡-non-degenerate and that the operator norm is at most 𝑅 on the sup-
port of 𝜇. Suppose that𝑀𝜇 < ∞ and that ℎ𝑅𝑊∕𝜒 is sufficiently large. Then, there is some constant
𝑐2 = 𝑐2(𝜇) > 0 such that the following holds. Let𝑀 > 𝑀𝜇 be chosen large enough that log𝑀 ⩾ ℎ𝑅𝑊 .

Suppose that 𝑃 is sufficiently large (depending on 𝜇,𝑀, 𝐶, 𝛼0, 𝑡 and 𝑅) and let 𝑚̂ =
⌊
log𝑀

100𝜒

⌋
.

Suppose that 𝑟 ∈
(
0, 𝑃

−
log𝑀

𝜒
−4

)
and that𝐾 is a positive integerwith𝐾 ⩽

log 𝑃

10𝜒
and𝐾 is sufficiently

large (depending on 𝜇,𝑀, 𝐶, 𝛼0, 𝑡 and 𝑅). Then,

𝑉(𝜇, 𝑚̂, 𝐾, 𝑃
−

log𝑀

𝜒 𝑟−1∕2, 𝑃
−

ℎ𝑅𝑊
40𝜒 𝑟−1∕2, 𝑡, 𝐶, exp(−𝑐2𝐾); 𝑟)

⩾ 𝑐

(
ℎ𝑅𝑊
𝜒

)(
max

{
1, log

log𝑀

ℎ𝑅𝑊

})−1

.

The rest of this section will be devoted to proving these three propositions. Later, we will prove
Theorem 1.6 by using these three propositions to bound the order 𝑘 detail of the Furstenberg
measure and then applying Lemmas 1.14 and 1.13.

7.1 Proof of Proposition 7.4

The proof of Proposition 7.4 follows easily from the following lemma.

Lemma 7.7. Let 𝜇 be a probability measure on PSL2(ℝ), let 𝑛1, 𝑛2, 𝐾 ∈ ℤ⩾0, let 𝑎, 𝑎 be a random
variables taking values in PSL2(ℝ) and let 𝑡, 𝐶, 𝑟, 𝜀1, 𝜀2 > 0. Suppose that(

𝑓(1), ℎ(1), 𝑈(1),𝑚(1),(1), 𝐴1, 𝐼1, 𝛾
(1), (1), 𝑆(1), 𝑇(1),𝓁1

)
is a proper decomposition for

(
𝜇, 𝑛1, 𝐾, 𝑎, 𝑎, 𝑡, 𝐶, 𝜀1

)
at scale 𝑟 and denote it by 𝐷1. Suppose that(

𝑓(2), ℎ(2), 𝑈(2),𝑚(2),(2), 𝐴2, 𝐼2, 𝛾
(2), (2), 𝑆(2), 𝑇(2),𝓁2

)
is a proper decomposition for

(
𝜇, 𝑛2, 𝐾, 𝑎𝑓

(1)
1
ℎ(1)
1

…𝑓(1)
𝑛1
ℎ(1)𝑛1

,𝓁1, 𝑡, 𝐶, 𝜀2
)
at scale 𝑟 and denote it by

𝐷2. Suppose that 𝐷2 is conditionally independent of (𝑎, 𝐷1) given 𝑎𝑓(1)
1
ℎ(1)
1

…𝑓(1)
𝑛1
ℎ(1)𝑛1

and 𝓁1. For
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 69 of 100

𝑖 = 1, … , 𝑛1 + 𝑛2, define 𝑓
(3)
𝑖

by

𝑓(3)
𝑖

=

{
𝑓(1)
𝑖

if 𝑖 ⩽ 𝑛1

𝑓(2)
𝑖−𝑛1

otherwise,

and define ℎ(3)
𝑖
,𝑚(3)

𝑖
, 𝑆(3)

𝑖
and 𝑇(3)

𝑖
similarly. Define(3)

𝑖
by

(3)
𝑖

=

{(1)
𝑖

if 𝑖 ⩽ 𝑛1

𝜎((1)
𝑛1
,(2)

𝑖−𝑛1
) otherwise.

Define

𝐼3 ∶= 𝐼1 ∪ {𝑖 + 𝑛1 ∶ 𝑖 ∈ 𝐼2}.

Let 𝑇 ∶= 𝑇(1)
𝑛1

and for 𝑖 = 1, 2, … define 𝛾(3)
𝑖
by

𝛾(3)
𝑖

=

{
𝛾(1)
𝑖

if 𝑖 ⩽ 𝑇

𝛾(2)
𝑖−𝑇

otherwise.

Define  (3)
𝑖

by

 (3)
𝑖

∶= {𝐴 ∈ 𝜉 ∶ 𝐴 ∩ {𝑇 ⩾ 𝑖} ∈  (1)
𝑖

and for all 𝑗 < 𝑖 we have

𝐴 ∩ {𝑇 = 𝑗} ∈ 𝜎( (1)
𝑇

, (2)
𝑖−𝑗

)},

where 𝜉 is the set of events in our underlying probability space. Let 𝓁3 = 𝓁2. Then,(
𝑓(3), ℎ(3), 𝑈(3),𝑚(3),(3), 𝐴1 ∩ 𝐴2, 𝐼1, 𝛾

(3), (3), 𝑆(3), 𝑇(3),𝓁1
)

is a proper decomposition for (𝜇, 𝑛1 + 𝑛2, 𝐾, 𝑎, 𝑃2, 𝑡, 𝐶, 𝜀1 + 𝜀2) at scale 𝑟.

Proof. It is easy to check that the 𝛾(3)
𝑖

are independent by standard properties of stopping times.
It is clear from checking the definition that  (3) is a filtration for 𝛾(3) and that the 𝑇𝑖 and 𝑆𝑖 are
stopping times for this filtration. All of the conditions in Definition 7.1 follow immediately from
construction. □

This is enough to prove Proposition 7.4.

Proof of Proposition 7.4. This follows immediately from Lemma 7.7. □

7.2 Proof of Proposition 7.5

In this subsection, we will prove Proposition 7.5. Before proving the proposition, we need the
following lemma.
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70 of 100 KITTLE

Lemma 7.8. Let 𝑎, 𝑏, 𝑐 > 0 with 𝑐 ⩽ 𝑎 and let 𝑛 ∈ ℤ>0. Let 𝑋1,… , 𝑋𝑛 be random variables taking
values in ℝ and let𝑚1,… ,𝑚𝑛 ⩾ 0 be such that we have almost surely

𝔼[𝑋𝑖|𝑋1,… , 𝑋𝑖−1] ⩾ 𝑚𝑖.

Suppose that
∑𝑛

𝑖=1 𝑚𝑖 = 𝑎𝑛. Suppose also that we have almost surely 𝑋𝑖 ∈ [0, 𝑏] for all integers 𝑖 ∈
[1, 𝑛]. Then, we have

ℙ[𝑋1 +⋯ + 𝑋𝑛 ⩽ 𝑛𝑐] ⩽

((
𝑎

𝑐

) 𝑐
𝑏

(
𝑏 − 𝑎

𝑏 − 𝑐

)1− 𝑐
𝑏

)𝑛

.

The proof of this lemma is very similar to the standard proof of Cramer’s theorem.Wewill prove
it after proving Proposition 7.5. We also need the following corollary.

Corollary 7.9. There is some constant 𝑐 > 0 such that the following is true for all 𝑎 ∈ [0, 1). Let
𝑛 ∈ ℤ>0, let 𝑋1,… , 𝑋𝑛 be random variables taking values in ℝ with and let 𝑚1,… ,𝑚𝑛 ⩾ 0 be such
that we have almost surely

𝔼[𝑋𝑖|𝑋1,… , 𝑋𝑖−1] ⩾ 𝑚𝑖.

Suppose that
∑𝑛

𝑖=1 𝑚𝑖 = 𝑎𝑛. Suppose also that we have almost surely 𝑋𝑖 ∈ [0, 1] for all integers 𝑖 ∈
[1, 𝑛]. Then,

log ℙ
[
𝑋1 +⋯ + 𝑋𝑛 ⩽

1

2
𝑛𝑎

]
⩽ −𝑐𝑛𝑎.

We are now ready to prove Proposition 7.5.

Proof of Proposition 7.5. The strategy of the proof is to apply Proposition 1.20 to write our sample
from the Furstenberg measure after conditioning on  as a sum of small independent random
variables with at least some variance. We then use Lemmas 1.16 and 3.6 to bound the order 𝑘
detail of this in terms of the sum of the variances of the small independent random variables.
We then use Lemma 7.8 to show that the sum of the variances is large with high probability and
conclude by using the concavity of order 𝑘 detail.
Firstly let

(𝑓, ℎ,𝑈,𝑚,, 𝐴, 𝐼, 𝛾, , 𝑆, 𝑇,𝓁)

be a proper decomposition for (𝜇, 𝑛, 𝐾, Id, Id, 𝑡, 𝐶, 𝜀) at scale 𝑟 such that

𝑛∑
𝑖=1

𝑚𝑖 ⩾
1

2
𝐶𝑘.

Let 𝑏 be an independent sample from 𝜈, let 𝑏 = 𝓁𝑏 and let ̂ = 𝜎(𝑛, 𝑏).
Let 𝑝 = |𝐼| (note that this is an𝑛 measurable random variable) and let g1, … , g𝑝 and 𝑗1, … , 𝑗𝑝

be as in Definition 7.1. For 𝑖 = 1, … ,𝑚, let 𝑢(𝑖) = 𝑈𝑗𝑖
. Let 𝑥 be defined by

𝑥 ∶= g1 exp(𝑢
(1)) … g𝑝 exp(𝑢

(𝑝))𝑏.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 71 of 100

By Lemma 2.19, 𝑥 is a sample from 𝜈.
Let 𝐸1 be the event that for each 𝑖 = 1, … , 𝑝 − 1, we have

𝑑(𝑏+(ℎ𝑗𝑖 ), 𝑏
+(g𝑖+1)) < 𝑡∕100

𝑑(𝑏+(ℎ𝑗𝑖 ), g𝑖+1g𝑖+2 … g𝑝𝑏) < 𝑡∕100

and

𝑑(𝑏+(ℎ𝑗𝑝 ), 𝑏) < 𝑡∕100.

Clearly, 𝐸1 is an ̂-measurable event and by (13) from Lemma 2.3, there is some 𝑐 > 0 depending
only on 𝜇 such that providing 𝐾 is sufficiently large (in terms of 𝜇), we have

ℙ[𝐸1] ⩾ 1 − 𝑛 exp(−𝑐𝐾).

Let 𝐶1 be the 𝐶 from Proposition 1.20 with 1

8
𝑡 in the role of 𝑡. It is easy to check that, providing

we choose 𝐶 to be sufficiently large, when 𝐴 ∩ 𝐸1 occurs, all of the conditions of Proposition 1.20
are satisfied with 1

8
𝑡 in the role of 𝑡 and 𝐶1 in the role of 𝐶. This means that if for 𝑖 = 1, … , 𝑝, we

define

𝜁𝑖 ∶= 𝐷𝑢(𝜙(g1 … g𝑖𝑢g𝑖+1 … g𝑝𝑏))|𝑢=0,
and we define 𝑆 ∈ ℝ∕𝜋ℤ by

𝑆 ∶= 𝜙(g1g2 … g𝑝) +

𝑝∑
𝑖=1

𝜁𝑖(𝑢
(𝑖)),

then

𝑑(𝜙(𝑥), 𝑆) ⩽ 𝐶𝑛
1 𝑃

2𝑟2.

In particular, by Lemma 1.17, there is some absolute constant 𝐶2 > 0 such that on 𝐴 ∩ 𝐸1, we
have

𝑠(𝑘)
𝑄𝑟

(𝑥|̂) ⩽ 𝑠(𝑘)
𝑄𝑟

(𝑆|̂) + 𝐶2𝐶
𝑛
1 𝑃

2𝑟.

Wenowwish to bound 𝑠(𝑘)
𝑄𝑟

(𝑆|̂)usingCorollary 3.8. To do this,weneed to estimate the variance
of the 𝜁𝑖(𝑢(𝑖)) after conditioning on ̂.
As in Definition 4.1 given 𝑦 ∈ 𝑃1(ℝ), define 𝜌𝑦 ∈ 𝔭𝔰𝔩∗2 by

𝜌𝑦 ∶= 𝐷𝑢(𝜙(exp(𝑢)𝑦))|𝑢=0.
By the chain rule, we know that

𝜁𝑖(𝑢) =
𝜕

𝜕𝑦
𝜙(g1g2 … g𝑖𝑦)

||||𝑦=g𝑖+1…g𝑝𝑏

⋅ 𝜌g𝑖+1…g𝑚𝑝(𝑢).
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72 of 100 KITTLE

By Proposition 4.7, we know that providing 𝐶 is sufficiently large in terms of 𝑡 on the event 𝐸1,
we have

𝑑(𝑏−(g1g2 … g𝑖), g𝑖+1 … g𝑝𝑏) > 𝑡∕10.

In particular, by Lemma 4.16, there is some 𝑐1 depending only on 𝑡 such that on the event 𝐸1, we
have

𝑐1
‖‖g1g2 … g𝑖

‖‖−2 ⩽
𝜕

𝜕𝑦
𝜙(g1g2 … g𝑖𝑦)

||||𝑦=g𝑖+1…g𝑝𝑏

⩽ ‖‖g1g2 … g𝑖
‖‖−2.

Combining this with the first part of Condition A10 and the fact that for all 𝑦 we have ‖‖‖𝜌𝑦‖‖‖ ⩽ 1

we see that on 𝐴 ∩ 𝐸1, we have

|𝜁𝑖(𝑢(𝑖))| < 𝑟.

We also have that

Var[𝜁𝑖(𝑢
(𝑖))|̂] ⩾ 𝑐21

‖‖g1g2 … g𝑖
‖‖−4 Var[𝜌g𝑖+1…g𝑝𝑏

(𝑢(𝑖))|̂].

By Proposition 4.6, there is some constant 𝑐2 > 0 depending only on 𝑡 such that on the event 𝐴1,
we have

Var[𝜌g𝑖+1…g𝑝𝑏
(𝑢(𝑖))|̂] ⩾ 𝑐2 Var[𝑢

(𝑖)|̂].

Now let 𝐶3 be the 𝐶 from Corollary 3.8 with the same value for 𝛼. Let 𝑄 = 𝐶3. Let 𝐸2 be the
event that

𝑝∑
𝑖=1

Var[𝑢(𝑖)|]‖‖g1g2 … g𝑖‖‖4𝑟2 > 𝐶3𝑄
2𝑐−21 𝑐−12 𝑘.

Note that on 𝐴 ∩ 𝐸1 ∩ 𝐸2 by Corollary 3.8, we have

𝑠(𝑘)
𝑄𝑟

(𝑆|) < 𝛼𝑘,

and so on, 𝐴 ∩ 𝐸1 ∩ 𝐸2, we have

𝑠𝑄𝑟(𝑥|) < 𝛼𝑘 + 𝐶2𝐶
𝑛
1 𝑃

2𝑟.

To conclude, we simply need to show that 𝐸2 occurs with high probability.
Note that

𝑝∑
𝑖=1

Var[𝑢(𝑖)|]‖‖g1g2 … g𝑖
‖‖4𝑟2 =

𝑛∑
𝑖=1

Var[𝑈𝑖|]‖‖𝑓1ℎ1𝑓2ℎ2 …𝑓𝑖
‖‖4𝑟2 .

For 𝑖 = 1, … , 𝑛, let

𝑋𝑖 ∶=
Var[𝑈𝑖|]‖‖𝑓1ℎ1𝑓2ℎ2 …𝑓𝑖

‖‖4𝑟2 .
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 73 of 100

Note that by Condition A10, we have 𝑋𝑖 ⩽ 1 and by Condition A8 and the fact that each 𝑋𝑖 is𝑖-measurable, we have

𝔼[𝑋𝑖|𝑋1, 𝑋2, … , 𝑋𝑖−1] ⩾ 𝑚𝑖.

Let 𝑐3 be the 𝑐 in Corollary 7.9. Note that by Corollary 7.9 if we choose 𝐶 sufficiently large, then

ℙ[𝐸2] ⩾ 1 − exp(−𝑐3𝐶𝑘).

In particular, if we take 𝐶 to be sufficiently large in terms of 𝛼, then

ℙ[𝐸2] ⩾ 1 − 𝛼𝑘.

We now conclude by noting that

𝑠(𝑘)
𝑄𝑟

(𝑥) ⩽ 𝔼[𝑠(𝑘)
𝑄𝑟

(𝑥|)]

⩽ 𝛼𝑘 + 𝐶2𝐶
𝑛
1 𝑃

2𝑟 + ℙ[𝐴𝐶] + ℙ[𝐸𝐶
1 ] + ℙ[𝐸𝐶

2 ]

⩽ 2𝛼𝑘 + 𝐶2𝐶
𝑛
1 𝑝

2𝑟 + 𝜀 + exp(−𝑐𝐾).

The result follows by replacing 𝛼 with a slightly smaller value. □

We now prove Lemma 7.8.

Proof of Lemma 7.8. Firstly note that by Jensen’s inequality for any 𝜆 ⩾ 0, we have

𝔼[𝑒−𝜆𝑋𝑖 |𝑋1,… , 𝑋𝑖−1] ⩽
(
1 −

𝑚𝑖

𝑏

)
+

𝑚𝑖

𝑏
𝑒−𝜆𝑏. (47)

Therefore, we have

𝔼[𝑒−𝜆(𝑋1+⋯+𝑋𝑛)] ⩽

𝑛∏
𝑖=1

((
1 −

𝑚𝑖

𝑏

)
+

𝑚𝑖

𝑏
𝑒−𝜆𝑏

)
⩽

((
1 −

𝑎

𝑏

)
+

𝑎

𝑏
𝑒−𝜆𝑏

)𝑛
. (48)

with (48) following from the AM-GM inequality. Applying Markov’s inequality for any 𝜆 ⩾ 0, we
have

ℙ(𝑋1 +⋯ + 𝑋𝑛 ⩽ 𝑛𝑐) ⩽ 𝑒𝜆𝑛𝑐𝔼[𝑒−𝜆(𝑋1+⋯+𝑋𝑛)]

⩽
(
𝑒𝜆𝑐

((
1 −

𝑎

𝑏

)
+

𝑎

𝑏
𝑒−𝜆𝑏

))𝑛
. (49)

We wish to substitute in the value of 𝜆 which minimises the right-hand side of (49). It is easy to
check by differentiation that this is 𝜆 = −1

𝑏
log 𝑐(𝑏−𝑎)

𝑎(𝑏−𝑐)
. It is easy to see that this value of 𝜆 is at

least 0 because 𝑐 ⩽ 𝑎. Note that with this value of 𝜆, we get 𝑒−𝜆𝑏 = 𝑐(𝑏−𝑎)

𝑎(𝑏−𝑐)
and 𝑒𝜆𝑐 =

(
𝑐(𝑏−𝑎)

𝑎(𝑏−𝑐)

)−𝑐∕𝑏
.

Hence, (
1 −

𝑎

𝑏

)
+

𝑎

𝑏
𝑒−𝜆𝑏 =

(
1 −

𝑎

𝑏

)
+

𝑎

𝑏

𝑐(𝑏 − 𝑎)

𝑎(𝑏 − 𝑐)

 1460244x, 2025, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70072 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [27/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



74 of 100 KITTLE

=
(𝑏 − 𝑎)(𝑏 − 𝑐)

𝑏(𝑏 − 𝑐)
+

𝑐(𝑏 − 𝑎)

𝑏(𝑏 − 𝑐)

=
𝑏 − 𝑎

𝑏 − 𝑐
.

The result follows. □

From this, we deduce Corollary 7.9.

Proof of Corollary 7.9. Let

𝑓(𝑎) ∶= log
⎛⎜⎜⎝2𝑎∕2

(
1 − 𝑎

1 − 𝑎

2

)1−𝑎∕2⎞⎟⎟⎠.
Note that by Lemma 7.8, we have

log ℙ
[
𝑋1 +⋯ + 𝑋𝑛 ⩽

1

2
𝑎
]
⩽ 𝑛𝑓(𝑎).

We note that

𝑓(𝑎) =
𝑎

2
log 2 +

(
1 −

𝑎

2

)
log(1 − 𝑎) −

(
1 −

𝑎

2

)
log

(
1 −

𝑎

2

)
,

and compute

𝑓′(𝑎) =
1

2
log 2 −

1

2
log(1 − 𝑎) −

1 − 𝑎

2

1 − 𝑎
+

1

2
log

(
1 −

𝑎

2

)
+

1

2

=
1

2

(
−

1

1 − 𝑎
+ log(2 − 𝑎) − log(1 − 𝑎)

)
and

𝑓′′(𝑎) =
1

2

(
−

1

(1 − 𝑎)2
−

1

2 − 𝑎
+

1

1 − 𝑎

)
.

In particular, 𝑓′(0) = −1

2
(1 − log 2) < 0 and 𝑓′′(𝑎) ⩽ 0 for all 𝑎 ∈ [0, 1). This proves the result for

𝑐 = 1

2
(1 − log 2). □

Remark 7.10. We could deduce a result similar to Lemma 7.8 from the Azuma–Hoeffding inequal-
ity. In our application of this result, 𝑎 will be very small compared to 𝑏. In this regime, the
Azuma–Hoeffding inequality is inefficient for several reasons the most important of which is the
inefficiency of Hoeffding’s lemma in this regime. Indeed, using Hoeffding’s lemma to bound the
left-hand side of (47) would lead to a bound of

exp

(
−𝜆𝑚𝑖 +

𝜆2𝑏2

8

)
.

When we apply the lemma, we end up with 𝑚𝑖 being very small, 𝑏 = 1, and 𝜆 ≈ log 2. Clearly,
this bound is weak when this occurs. It turns out that the bound from Azuma–Hoeffding is not
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 75 of 100

strong enough to prove Theorem 1.6 in its current form but we could prove a similar result with
(1) replaced by

ℎ𝑅𝑊
𝜒

> 𝐶

(
max

{
1,

log𝑀𝜇

ℎ𝑅𝑊

})(
max

{
1, log

log𝑀𝜇

ℎ𝑅𝑊

})3

.

7.3 Proof of Proposition 7.6

In this subsection, we prove Proposition 7.6. Firstly we need the following proposition.

Proposition 7.11. For any 𝛼0 ∈ (0, 1∕3) and any 𝑡, 𝑅 > 0, there exists some 𝑐1 = 𝑐1(𝛼0, 𝑡, 𝑅) > 0

such that the following is true. Let 𝜇 be a finitely supported Zariski-dense probability measure and
suppose that 𝜇 is 𝛼0, 𝑡- non-degenerate and that the operator norm is bounded above by 𝑅 on the
support of 𝜇. Then, there is a constant 𝑐2 = 𝑐2(𝜇) > 0 depending on 𝜇 such that the following holds.
Let 𝜒 be the Lyaponuv exponent of 𝜇 and let 𝐶, 𝛿 > 0. Let 𝑃, 𝑠 > 0 with 𝑃 sufficiently large (in terms
of 𝜇, 𝐶 and 𝛿) and 𝑠 > 0 sufficiently small (in terms of 𝜇, 𝐶 and 𝛿). Let𝐾 ∈ ℤ>0 and suppose that 𝐾
is sufficiently large (in terms of 𝜇, 𝐶 and 𝛿).
Let 𝜈̂ be as in Theorem 1.24, let 𝛾1, 𝛾2, … be i.i.d. samples from𝜇 and let 𝜏𝑃,𝑦 be as in Definition 1.21.

Let

𝑣 = ∫𝑦 𝑣(𝛾1𝛾2 … 𝛾𝜏𝑃,𝑦 ; 𝑠) 𝜈̂(𝑑𝑦).

Then, for any 𝑟 ∈ (0, 𝑃−2 exp(−4𝐾𝜒)𝑠), we have

𝑉(𝜇, 1, 𝐾, exp(−2𝐾𝜒)𝑃−1
√
𝑠∕𝑟, exp(2𝐾𝜒)

√
𝑠∕𝑟, 𝑡, 𝐶, exp(−𝑐2𝐾); 𝑟) > 𝑐1𝑣 − 𝛿.

Proof. Suppose that 𝑎, 𝑎 ∈ PSL2(ℝ) with ‖𝑎‖ ⩽ exp(−2𝐾𝜒)𝑃−1
√
𝑠∕𝑟. We wish to construct a

proper decomposition for (𝜇, 1, 𝐾, 𝑎, 𝑎, 𝑡, 𝐶, exp(−𝑐2𝐾)) at scale 𝑠. Let 𝛾1, 𝛾2, … be i.i.d. samples
from 𝜇. Let 𝑆 be defined by

𝑆 ∶= inf {𝑛 ∶ ‖‖𝑎𝛾1𝛾2 … 𝛾𝑛
‖‖ ⩾ 8𝑃−1

√
𝑠∕𝑟}.

We take 𝜀 > 0 to be some small constant which depends on 𝜇, 𝛼0, 𝑡, 𝑅 and 𝛿 which we will choose
later. Let 𝜈̂ be as in Theorem 1.24 and let 𝑦 be a sample from 𝜈̂ such that

ℙ[𝑑(𝑦, 𝑏−(𝑎𝛾1𝛾2 … 𝛾𝑆)
⟂) ⩾ 𝜀] < 𝜀

and 𝑦 is independent from 𝛾𝑆+1, 𝛾𝑆+2, … . This is possible by Corollary 1.25. Let 𝑆1 be defined by

𝑆1 ∶= inf {𝑛 ⩾ 𝑆 ∶
‖‖‖(𝛾𝑆+1𝛾𝑆+2 … 𝛾𝑛)

𝑇𝑦
‖‖‖ ⩾ 𝑃}.

Define

𝑓 ∶= 𝛾1 … 𝛾𝑆

and define

g ∶= 𝛾𝑆+1𝛾𝑆+2 … 𝛾𝑆1 .
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76 of 100 KITTLE

By the definition of 𝑣(⋅; ⋅), we can construct some 𝜎-algebra ̂which is conditionally independent
of 𝛾1, 𝛾2, … , 𝛾𝑆 given 𝑦, some ̂-measurable random variable 𝑓 taking values in PSL2(ℝ) and some
random variable 𝑉 taking values in 𝔭𝔰𝔩2(ℝ) such that

g = 𝑓 exp(𝑈),

‖𝑉‖ ⩽ 𝑟

and

𝔼
[
Var

[
𝑉|̂, 𝑦

]]
⩾

1

2
𝑣𝑟2.

We define 𝑇1 by 𝑇1 ∶= 𝑆1 + 𝐾 and define ℎ1 by

ℎ1 = 𝛾𝑆1+1𝛾𝑆1+2 … 𝛾𝑇1 .

We take 𝐼 to be {1} if and only if the following conditions hold:

∙ 𝑑(𝑦, 𝑏−(𝑎𝑓)) < 𝜀,
∙ 𝑑(𝑦, 𝑏+(𝑓)) > 100𝜀,
∙ 𝑏+(ℎ) ∈ 𝑈𝑡∕4,𝑡∕8(𝑉),
∙ 𝑑(𝑏−(𝑓), 𝑏+(ℎ1)) > 𝑡∕4.

Otherwise we take 𝐼 = ∅. Let 𝐸1 be the event that 𝑑(𝑦, 𝑏−(𝑎𝛾1𝛾2 … 𝛾𝑛)) < 𝜀 and 𝑑(𝑦, 𝑏+(𝑓)) > 100𝜀

and let𝐸2 be the event that 𝑏+(ℎ) ∈ 𝑈𝑡∕4,𝑡∕8 and 𝑑(𝑏−(𝑓), 𝑏+(ℎ)) > 𝑡∕4. Clearly, {1 ∈ 𝐼} = 𝐸1 ∩ 𝐸2.
We now define 𝑈1 by

𝑈1 =

{
𝑉 if 𝐼 = {1}

0 if 𝐼 = ∅

and define 𝑓1 by

𝑓1 =

{
𝑓𝑓 if 𝐼 = {1}

𝑓g if 𝐼 = ∅.

We define 1 ∶= 𝜎(𝑓1, ℎ1, 𝑎, 𝑎) and take 0 ∶= 𝜎(𝑎, 𝑎). Take 𝐴 to be the event that ‖𝑎𝑓ℎ‖ ⩽

exp(2𝐾𝜒)
√
𝑠∕𝑟, ‖‖𝑎𝑓‖‖ ⩾ 𝐶. This is clearly1 measurable and it is easy to see by applying (8) from

Lemma 2.1 and (14) from Lemma 2.3 that providing 𝑃 and 𝐾 are sufficiently large (depending on
𝜇) ℙ[𝐴] ⩾ 1 − exp(−𝑐2𝐾) for some constant 𝑐2 > 0 depending only on 𝜇.
We wish to show that we can choose 𝑚1 ⩾ Θ𝛼0,𝑡,𝑅

(𝑣) − 𝛿 and construct some filtration  =

(𝑖)
∞
𝑖=1 such that if we take 𝑓 = (𝑓𝑖)

1
𝑖=1, define ℎ,𝑈,𝑚, 𝑆 and 𝑇 similarly and take ∶= (𝑖)

1
𝑖=0,

then

(𝑓, ℎ,𝑈,𝑚,, 𝐼, 𝛾, , 𝑆, 𝑇, ℎ1)

is a proper decomposition for (𝜇, 1, 𝑎, 𝑎, 𝑡, 𝐶, exp(−𝑐2𝐾)) at scale 𝑠.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 77 of 100

Conditions A1, A2, A3, A4, A5, A6, A7, A13 and A14 follow immediately from our construction.
Providing 𝜀 is sufficiently small on 𝐸1, we have‖‖‖𝑎𝑓𝑓‖‖‖ ⩾

1

2
‖‖‖𝑎𝑓‖‖‖ ⋅ ‖‖‖𝑓‖‖‖ sin 𝑑(𝑏−1(𝑎𝑓), 𝑏+(𝑓))

⩾
1

4
‖‖‖𝑎𝑓‖‖‖ ⋅ ‖‖‖𝑓‖‖‖ cos 𝑑(𝑦, 𝑏+(𝑓))

=
1

4
‖‖‖𝑎𝑓‖‖‖ ⋅

‖‖‖‖𝑓𝑇
𝑦
‖‖‖‖

⩾
1

8
‖‖‖𝑎𝑓‖‖‖ ⋅ ‖‖‖g𝑇𝑦‖‖‖

⩾
1

8
(8
√
𝑠∕𝑟𝑃−1) ⋅ 𝑃

=
√
𝑠∕𝑟.

In particular, this means that ‖‖𝑈1
‖‖ ⩽ ‖‖𝑎𝑓1‖‖2 𝑟. This together with the definition of 𝐼 shows that

Condition A10 is satisfied. Condition A11 follows from our definition of 𝐴 and Condition A12
follows from our definition of 𝐼.
We now show that Condition A8 is satisfied. To do this, we bound 𝔼[ Var[𝑈|]‖𝑎𝑓1‖4

𝑟2
] from below.

ByLemma4.11,we know that providing𝑃 and𝐾 are sufficiently large and 𝜀 and 𝑟 are sufficiently
small whenever we have 1 ∈ 𝐼, we have‖‖‖𝑎𝑓𝑓‖‖‖ ⩽ 2

‖‖‖𝑎𝑓‖‖‖ ⋅ ‖‖‖𝑓‖‖‖ sin 𝑑(𝑏−(𝑓), 𝑏+(𝑓))
⩽ 4

‖‖‖𝑎𝑓‖‖‖ ⋅ ‖‖‖𝑓‖‖‖ sin 𝑑(𝑦, 𝑏+(𝑓))
= 4

‖‖‖𝑎𝑓‖‖‖ ⋅
‖‖‖‖𝑓𝑇

𝑦
‖‖‖‖

⩽ 8
‖‖‖𝑎𝑓‖‖‖ ⋅ ‖‖‖g𝑇𝑦‖‖‖

⩽ 8 ⋅ (𝑅8𝑃−1
√
𝑠∕𝑟) ⋅ (𝑅𝑃)

⩽ 64𝑅2
√
𝑠∕𝑟. (50)

Clearly, Var[𝑈|1] = Var[𝑉|1]𝕀𝐸2 − Var[𝑉|]𝕀𝐸2 𝕀𝐸𝐶
1
. We know that Var[𝑉|] is -

measurable and at most 𝑠2. It is also clear from (13) from Lemma 2.3 and the definition of
𝛼0, 𝑡-non-degeneracy that

ℙ[𝐸2|1] ⩾ (1 − 3𝛼0)

almost surely. We also know by (14) from Lemma 2.3 that

ℙ[𝐸𝐶
1 ] ⩽ 𝛿

for some 𝛿 = 𝛿(𝜀) such that 𝛿 → 0 as 𝜀 → 0. In particular, this means that

𝔼[Var[𝑈|1]] ⩾ (1 − 3𝛼0)𝔼[Var[𝑉|1]] − 𝛿𝑠2

⩾
1

2
(1 − 3𝛼0)𝑣𝑠

2 − 𝛿𝑠2.
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78 of 100 KITTLE

Combining this with our estimate (50), we see that there is some constant 𝑐1 > 0 depending only
on 𝑅 and 𝛼0 such that

𝔼

[
Var[𝑈|]‖𝑓‖4𝑟2

]
⩾ 𝑐1𝑣 − 𝛿.

We take𝑚1 = max{𝑐1𝑣 − 𝛿, 0}.
Finally, we construct our 𝑖 . Suppose that 𝜉 is the set of events in our underlying probability

space and define (𝑖)
∞
𝑖=1 by

𝑖 ∶= {𝐹 ∈ 𝜉 ∶ 𝐹 ∩ {𝑖 < 𝑆} ∈ 𝜎(𝛾1, 𝛾2, … , 𝛾𝑖),

𝐹 ∩ {𝑆 ⩽ 𝑖 < 𝑆} ∈ 𝜎(𝛾1, 𝛾2, … , 𝛾𝑖, 𝑦), 𝐹 ∩ {𝑖 ⩾ 𝑆} ∈ 𝜎(𝛾1, 𝛾2, … , 𝛾𝑖, 𝑦, ̂)}.

Applying Lemma 2.20 twice shows that this is a filtration for the 𝛾𝑖 and that 𝛾𝑖+1 is independent
from 𝑖 .
This means that

(𝑓, ℎ,𝑈,𝑚,1, 𝐼, 𝛾, , 𝑆, 𝑇, ℎ)

is a proper decomposition for (𝜇, 1, 𝑎, 𝑎, 𝑡, 𝐶, exp(−𝑐2𝐾)) at scale 𝑟. By the definition of 𝑉(⋅), this
means that

𝑉(𝜇, 1, 𝜒−𝐾𝑃−1
√
𝑠∕𝑟, 𝜒𝐾

√
𝑠∕𝑟, 𝑡, 𝐶, exp(−𝑐2𝐾); 𝑟) > 𝑐1𝑣 − 𝛿

as required. □

We can combine this result with Proposition 1.23 to prove Proposition 7.6.

Proof of Proposition 7.6. Let 𝑠1, 𝑠2, … , 𝑠𝑚̂ be as in Proposition 1.23 and let

𝑣𝑖 ∶= ∫ 𝑣(𝛾1𝛾2 … 𝛾𝜏𝑃,𝑦 ; 𝑠𝑖) 𝑑𝑦.

By Proposition 7.11, we know that there is some constant 𝑐1 > 0 depending only on 𝑅, 𝛼0 and 𝑡

and some constant 𝑐2 > 0 depending only on 𝜇 such that for every 𝛿 > 0, providing 𝑃 and 𝐾 are
sufficiently large in terms of 𝛿, 𝜇 and 𝐶, we have

𝑉(𝜇, 1, 𝜒−𝐾𝑃−1
√

𝑠𝑖∕𝑟, 𝜒
𝐾
√

𝑠𝑖∕𝑟, 𝑡, 𝐶, exp(−𝑐2𝐾); 𝑟) > 𝑐1𝑣𝑖 − 𝛿.

In particular, providing 𝑃 is sufficiently large depending on 𝜇, 𝛿 and 𝐶, we have

𝑚̂∑
𝑖=1

𝑉(𝜇, 1, exp(−2𝜒𝐾)𝑃−1
√

𝑠𝑖∕𝑟, exp(2𝜒𝐾)
√

𝑠𝑖∕𝑟, 𝑡, 𝐶, exp(−𝑐1𝐾); 𝑟)

> 𝑐3

(
ℎ𝑅𝑊
𝜒

)(
max

{
1, log

log𝑀

ℎ𝑅𝑊

})−1

− 𝑚̂𝛿

for some constant 𝑐3 depending only on𝑅, 𝛼0 and 𝑡.We nownote that for 𝑖 = 1, … , 𝑚̂ − 1, we have

exp(2𝜒𝐾)
√

𝑠𝑖∕𝑟 ⩽ exp(2𝜒𝐾)
√

𝑃−3𝑠𝑖+1∕𝑟
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 79 of 100

= 𝑃−3∕2 exp(2𝜒𝐾)
√

𝑠𝑖+1∕𝑟

⩽ 𝑃−1 exp(−2𝜒𝐾)
√

𝑠𝑖+1∕𝑟.

Letting 𝛿 =
𝑐3
2𝑚̂

and applying Proposition 7.4, we see that

𝑉(𝜇, 𝑚̂, 𝐾, 𝑃
−

log𝑀

2𝜒
−2
𝑟−1∕2, 𝑃

−
ℎ𝑅𝑊
20𝜒

+1
𝑟−1∕2, 𝑡, 𝐶, 𝑚̂ exp(−𝑐1𝐾); 𝑟)

⩾
𝑐3
2

(
ℎ𝑅𝑊
𝜒

)(
max

{
1, log

log𝑀𝜇

ℎ𝑅𝑊

})−1

. □

8 PROOF OFMAIN THEOREM

We now have all the tools required to prove Theorem 1.6. Firstly, we will prove the following.

Proposition 8.1. For all 𝛼0 ∈ (0, 1∕3) and every 𝑡, 𝑅 > 0, there exists some constant 𝐶 > 0 such
that the following is true. Suppose that 𝜇 is a finitely supported Zariski-dense probability measure.
Suppose that 𝜇 is 𝛼0, 𝑡-non-degenerate and that the operator norm is bounded above by 𝑅 on the
support of 𝜇. Let ℎ𝑅𝑊 be its random walk entropy, let 𝜒 be its Lyapunov exponent and let𝑀𝜇 be its
splitting rate. Suppose that

ℎ𝑅𝑊
𝜒

> 𝐶

(
max

{
1, log

log𝑀𝜇

ℎ𝑅𝑊

})2

.

Then, for all sufficiently small (in terms of 𝜇, 𝑅, 𝛼0 and 𝑡) 𝑟 > 0 and all 𝑘 ∈

[log log 𝑟−1, 2 log log 𝑟−1] ∩ ℤ, we have

𝑠(𝑘)𝑟 (𝜈) <
(
log 𝑟−1

)−10
.

Proof. Let 𝐶1 be the 𝐶 from Proposition 7.5 with exp(−11) in the role of 𝛼 and 𝑡 in the role of 𝑡.
Note that by Proposition 7.5, it is sufficient to show that there is some constant 𝑐1 = 𝑐1(𝜇) > 0 and
some constant𝐴1 = 𝐴1(𝜇, 𝑅, 𝛼0, 𝑡) > 0 such that for all sufficiently small 𝑟 > 0, we can find some
𝑛 < 𝐴1 log log 𝑟

−1 such that if we let 𝐾 = exp(
√
log log 𝑟−1), then

𝑉(𝜇, 𝑛, 𝐾, 1, 𝑟−1∕2 exp(−𝑐1𝐾), 𝑡, 𝐶1, exp(−𝑐1𝐾); 𝑟) > 2𝐶1 log log 𝑟
−1. (51)

Indeed, when this occurs by Proposition 7.5 for all 𝑘 ∈ [log log 𝑟−1, 2 log log 𝑟−1] ∩ ℤ, we have

𝑠(𝑘)
𝑄𝑟

(𝜈) < exp(−11𝑘) + 𝐴1 log log 𝑟
−1 exp(−𝑐2𝐾)

+ 𝐶
𝐴1 log log 𝑟

−1

1
exp(−𝑐1𝐾) + exp(−𝑐1𝐾)

for some constant 𝑐2 > 0 depending only on 𝜇. Clearly, this is less than
(
log(𝑄𝑟)−1

)−10 whenever
𝑟 is sufficiently small.
Wewill prove (51) by repeatedly applying Propositions 7.6 and 7.4. Given 𝑟, wewish to construct

some 𝑚 ∈ ℤ>0 and some decreasing sequence (𝑃𝑖)
𝑚
𝑖=1 such that for each 𝑖 = 1, 2, … ,𝑚, we can
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80 of 100 KITTLE

apply Proposition 7.6with𝑃𝑖 in the role of𝑃 and then apply Proposition 7.4 to the resulting bounds
on the variance sums.

Firstly, we let 𝑃1 = 𝑟
−

𝜒
2 log𝑀 , and inductively, we take 𝑃𝑖+1 = 𝑃

ℎ𝑅𝑊
40 log𝑀

𝑖
. Note that this gives

𝑃𝑖 = exp

(
𝜒 log 𝑟−1

2 log𝑀

(
ℎ𝑅𝑊

40 log𝑀

)𝑖−1
)
.

We then choose𝑚 as large as possible so that wemay ensure that𝑃𝑚 ⩾ exp((max{1, 10𝜒})𝐾). Note
that this means

𝑚 =

⎢⎢⎢⎢⎣
log

𝜒 log 𝑟−1

2(max{1,10𝜒})𝐾 log𝑀

log
40 log𝑀

ℎ𝑅𝑊

⎥⎥⎥⎥⎦ + 1.

In particular, there is some absolute constant 𝑐3 > 0 such that for all sufficiently small (depending
on 𝜇) 𝑟 > 0, we have

𝑚 ⩾ 𝑐3

(
max

{
1, log

log𝑀𝜇

ℎ𝑅𝑊

})−1

log log 𝑟−1

and𝑚 ⩽ 𝑂𝜇(log log 𝑟
−1).

Note that our construction of the 𝑃𝑖 gives

𝑃
−

log𝑀

𝜒

𝑖+1
𝑟−1∕2 ⩾ 𝑃

−
ℎ𝑅𝑊
40𝜒

𝑖
𝑟−1∕2,

and so, applying Propositions 7.11 and 7.4 repeatedly, we get

𝑉(𝜇,𝑚𝑚̂, 𝐾, 𝑃
−

log𝑀

𝜒

1
𝑟−1∕2, 𝑃

−
ℎ𝑅𝑊
40𝜒

𝑚 𝑟−1∕2, 𝑡, 𝐶,𝑚 exp(−𝑐1𝐾); 𝑟)

> 𝑐4
ℎ𝑅𝑊
𝜒

(
max

{
1, log

log𝑀𝜇

ℎ𝑅𝑊

})−1

log log 𝑟−2.

By Proposition 7.5, this is enough to complete the proof. □

We will now prove Theorem 1.6.

Proof of Theorem 1.6. We will prove this by combining Proposition 8.1 with Lemma 1.14 to get an
upper bound on 𝑠𝑟(𝜈) for all sufficiently small 𝑟. We will then conclude using Lemma 1.13.
Given 𝑟 > 0 sufficiently small, let 𝑘 = 3

2
log log 𝑟−1, let 𝑎 = 𝑟∕

√
𝑘, let 𝑏 = 𝑟 exp(𝑘 log 𝑘) and let

𝛼 = (log 𝑟−1)−10. We wish to apply Lemma 1.14 with this choice of 𝑎, 𝑏 and 𝛼.
Suppose that 𝑠 ∈ [𝑎, 𝑏]. It follows by a simple computation that 𝑘 ∈ [log log 𝑠−1, 2 log log 𝑠−1],

and so, by Proposition 8.1, providing 𝑟 is sufficiently small, we have

𝑠(𝑘)𝑠 (𝜈) < 𝛼.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 81 of 100

By Lemma 1.14, this means that

𝑠𝑟(𝜈) ⩽
(
log 𝑟−1

)−10(2𝑒
𝜋

) 𝑘−1
2

+ 𝑘! ⋅ 𝑘𝑎2𝑏−2.

We then compute

(
log 𝑟−1

)−10(2𝑒
𝜋

) 𝑘−1
2

+ 𝑘! ⋅ 𝑘𝑎2𝑏−2 ⩽
(
log 𝑟−1

)−10
𝑒𝑘∕2 + 𝑘−𝑘.

Clearly, this is less than
(
log 𝑟−1

)−2 providing 𝑟 is sufficiently small. By Lemma 1.13, we have that
𝜈 is absolutely continuous. □

9 EXAMPLES

In this section, we will give examples of measures 𝜇 on PSL2(ℝ) which satisfy the conditions of
Theorem 1.6.

9.1 Heights and separation

In this subsection, we will review some techniques for bounding 𝑀𝜇 using heights. Firstly we
need the following definition.

Definition 9.1 (Height). Let 𝛼1 be algebraic with algebraic conjugates 𝛼2, 𝛼3, … , 𝛼𝑑. Suppose that
the minimal polynomial for 𝛼1 over ℤ[𝑋] has positive leading coefficient 𝑎0. Then, we define the
height of 𝛼1 by

(𝛼1) ∶=

(
𝑎0

𝑛∏
𝑖=1

max{1, |𝛼𝑖|})1∕𝑑

.

We wish to use this to bound the size of polynomials of algebraic numbers. To do this, we need
the following way of measuring the complexity of a polynomial.

Definition 9.2. Given some polynomial 𝑃 ∈ ℤ[𝑋1, 𝑋2, … , 𝑋𝑛], we define the length of 𝑃, which
we denote by (𝑃), to be the sum of the absolute values of the coefficients of 𝑃.

We also need the following basic fact about heights.

Lemma 9.3. Let 𝛼 ≠ 0 be an algebraic number. Then

(𝛼−1) = (𝛼).

Proof. This follows easily from the definition and is proven in [33, Section 14]. □
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82 of 100 KITTLE

Lemma 9.4. Given 𝑃 ∈ ℤ[𝑋1, 𝑋2, … , 𝑋𝑛] of degree at most 𝐿1 ⩾ 0 in 𝑋1, … , 𝐿𝑛 ⩾ 0 in 𝑋𝑛 and
algebraic numbers 𝜉1, 𝜉2, … , 𝜉𝑛, we have

(𝑃(𝜉1, 𝜉2, … , 𝜉𝑛)) ⩽ (𝑃)(𝜉1)
𝐿1 …(𝜉𝑛)

𝐿𝑛 .

Proof. This is [33, Proposition 14.7]. □

To make the above lemma useful for bounding the absolute value of expressions, we need the
following.

Lemma 9.5. Suppose that 𝛼 ∈ ℂ∖{0} is algebraic and that its minimal polynomial has degree 𝑑.
Then,

(𝛼)−𝑑 ⩽ |𝛼| ⩽ (𝛼)𝑑.

Proof. The fact that |𝛼| ⩽ (𝛼)𝑑 is immediate from the definition of height. The other side of the
inequality follows from Lemma 9.3. □

Proposition 9.6. Suppose that 𝜇 is a measure on PSL2(ℝ) supported on a finite set of points. For
each element in the support of 𝜇, choose a representative in SL2(ℝ). Let 𝑆 ⊂ SL2(ℝ) be the set of
these representatives.
Suppose that all the entries of the elements of 𝑆 are algebraic. Let (𝜉1, 𝜉2, … , 𝜉𝑘) be the set of these

entries. Let 𝐾 = ℚ[𝜉1, 𝜉2, … , 𝜉𝑘] be the number field generated by the 𝜉𝑖 and let

𝐶 = max{(𝜉𝑖) ∶ 𝑖 ∈ [𝑘]}.

Then,

𝑀𝜇 ⩽ 4[𝐾∶ℚ]𝐶8[𝐾∶ℚ].

Proof. Let 𝑎 ∈ 𝑆𝑚 and 𝑏 ∈ 𝑆𝑛. We find an upper bound for 𝑑(𝑎, 𝑏)where 𝑑 is the distance function
of our left-invariant Riemannian metric introduced in the introduction. We have that

𝑑(𝑎, 𝑏) = 𝑑(Id, 𝑎−1𝑏) ⩾ Θ
(
min

{‖‖‖𝐼 − 𝑎−1𝑏
‖‖‖2, ‖‖‖𝐼 + 𝑎−1𝑏

‖‖‖2})
.

For 𝑖 ∈ [|𝑆|] and 𝑗, 𝑘 ∈ {1, 2}, let 𝜁𝑖,𝑗,𝑘 be the (𝑗, 𝑘)th entry of the 𝑖th element of 𝑆. Let 𝐿𝑖 be the
sum of the number of times the 𝑖th element of 𝑆 appears in our word for 𝑎 and the number of
times it appears in our word for 𝑏. Note that the components of 𝑎−1 are components of 𝑎 possibly
with a sign change. We know that each component of 𝐼 ± 𝑎−1𝑏 is of the form 𝑃(𝜁1,1,1, … , 𝜁|𝑆|,2,2)
where 𝑃 is some polynomial of degree at most 𝐿𝑖 in 𝜁𝑖,𝑗,𝑘. We also know that the 𝐿𝑖 sum to𝑚 + 𝑛.
It is easy to see by induction that(𝑃) ⩽ 2𝑚+𝑛 + 1. In particular,(𝑃) ⩽ 2𝑚+𝑛+1. By Lemma 9.4,

this means that if 𝛼 is a coefficient of 𝐼 ± 𝑎−1𝑏, then

(𝛼) ⩽ 2𝑚+𝑛+1𝐶4(𝑚+𝑛).

We know that 𝛼 ∈ 𝐾 and so in particular the degree of its minimal polynomial is at most [𝐾 ∶

ℚ]. This means that if 𝛼 ≠ 0, then

|𝛼| ⩾ 2−(𝑚+𝑛+1)[𝐾∶ℚ]𝐶−4(𝑚+𝑛)[𝐾∶ℚ].
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 83 of 100

In particular, this means that if 𝑎 ≠ 𝑏, then

𝑑(𝑎, 𝑏) ⩾ Θ
(
2−(𝑚+𝑛+1)[𝐾∶ℚ]𝐶−4(𝑚+𝑛)[𝐾∶ℚ]

)
,

and so,

𝑀𝜇 ⩽ 4[𝐾∶ℚ]𝐶8[𝐾∶ℚ]. □

9.2 Bounding the randomwalk entropy using the strong Tits
alternative

In this subsection, we will combine Breuillard’s strong Tits alternative [10] with the results of
Kesten [25] in order to obtain an estimate on the random walk entropy. The main result of this
section will be the following.

Proposition 9.7. There is some 𝑐 > 0 such that the following is true. Let 𝜇 be a finitely supported
probability measure on PSL2(ℝ) and let ℎ𝑅𝑊 be its random walk entropy. Let 𝐾 > 0 and suppose
that for every virtually solvable subgroup𝐻 < PSL2(ℝ), we have

𝜇(𝐻) < 1 − 𝐾.

Suppose further that 𝜇(Id) > 𝐾. Then,

ℎ𝑅𝑊 > 𝑐𝐾.

A similar result which further requires 𝜇 to be symmetric is discussed in [34, Chapter 7]. In
[34], much of the proof of their result is done by citing unpublished lecture notes, so we give a full
proof of Proposition 9.7 here.

PSL2(ℝ) acts on the closed complex half plane ℍ = {𝑧 ∈ ℂ ∶ Im𝑧 ⩾ 0} by Möbius transforma-
tions. It is well known that the virtually solvable subgroups of PSL2(ℝ) are precisely those which
either have a common fixed point in ℍ or for which there exists a pair of points in ℍ such that
each element in the subgroup either fixes both points or maps them both to each other.
To prove Proposition 9.7, we introduce the following. We let 𝐺 be a countable group and let

𝜇 be a finite measure on 𝐺. We let 𝑇𝜇,𝐺 ∶ 𝑙2(𝐺) → 𝑙2(𝐺) be the operator defined by 𝑇𝜇,𝐺(𝑓)(g) =∫𝐺 𝑓(gℎ)𝑑𝜇(ℎ). It is clear that 𝑇𝜇,𝐺 is a bounded linear operator and that when 𝜇 is symmetric
𝑇𝜇,𝐺 is self-adjoint. To prove Proposition 9.7, we need the following results.

Lemma 9.8. The operator 𝑇𝜇,𝐺 is linear in 𝜇. In other words,

𝑇𝜆1𝜇1+𝜆2𝜇2,𝐺
= 𝜆1𝑇𝜇1,𝐺

+ 𝜆2𝑇𝜇2,𝐺
.

This lemma is trivial and its proof is left to the reader.

Lemma 9.9. Let 𝜇 be a finitely supported probability measure on some group 𝐺. Let ℎ𝑅𝑊 be the
random walk entropy of 𝜇. Then

ℎ𝑅𝑊 ⩾ −2 log
‖‖‖𝑇𝜇,𝐺

‖‖‖.
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84 of 100 KITTLE

This lemma is proven by Avez in [1, Theorem IV.5].

Lemma 9.10. There is some 𝜀 > 0 such that the following is true. Suppose that 𝑎, 𝑏, 𝑐 ∈ PSL2(ℝ)

generate a non-virtually solvable subgroup. Let 𝐺 be the group generated by 𝑎, 𝑏 and 𝑐. Let

𝜇 =
1

4
𝛿𝑎 +

1

4
𝛿𝑏 +

1

4
𝛿𝑐 +

1

4
𝛿Id.

Then,

‖‖‖𝑇𝜇,𝐺
‖‖‖ < 1 − 𝜀.

Lemma 9.11. Let 𝜆 be a finite non-negative measure on PSL2(ℝ) with finite support. Let 𝑇 be the
total mass of 𝜆. Let 𝐾 ⩾ 0 and suppose that for every virtually solvable subgroup 𝐻 < PSL2(ℝ), we
have

𝜆(𝐻) < 𝑇 − 𝐾. (52)

Then there exists some 𝑛 ∈ ℤ⩾0 such that for each integer 𝑖 ∈ [1, 𝑛], there exists 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ∈ PSL2(ℝ)

and 𝑘𝑖 > 0 such that

𝜆 = 𝜆′ +

𝑛∑
𝑖=1

𝑘𝑖

(
1

3
𝛿𝑎𝑖 +

1

3
𝛿𝑏𝑖 +

1

3
𝛿𝑐𝑖

)
for some non-negative measure 𝜆′ and for each integer 𝑖 ∈ [1, 𝑛], the set {𝑎𝑖, 𝑏𝑖, 𝑐𝑖} generates a non-
virtually solvable group. Furthermore, the sum of the 𝑘𝑖 is at least 𝐾.

Proposition 9.7 follows immediately by combining these lemmas. The rest of this subsection
will be concerned with proving Lemmas 9.10 and 9.11.
Firstly we will prove Lemma 9.10. A proof of a similar result for symmetric measures may be

found in [11]. The key ingredient is the following result of Breuillard.

Theorem 9.12. There exists some 𝑁 ∈ ℤ>0 such that if 𝐹 is a finite symmetric subset of PSL2(ℝ)
containing Id, either 𝐹𝑁 contains two elements which freely generate a non-abelian free group, or the
group generated by 𝐹 is virtually solvable (i.e. contains a finite index solvable subgroup).

Proof. This is a special case of [10, Theorem 1.1]. □

We also need the following result of Kesten and a corollary of it.

Theorem 9.13. Let 𝐺 be a countable group. Suppose that 𝑎, 𝑏 ∈ 𝐺 freely generate a free group. Let
𝐴 < 𝐺 be the subgroup generated by 𝑎 and 𝑏. Let 𝜇 be the measure on 𝐴 given by

𝜇 =
1

4
(𝛿𝑎 + 𝛿𝑎−1 + 𝛿𝑏 + 𝛿𝑏−1).

Then, ‖‖‖𝑇𝜇,𝐴
‖‖‖ =

√
3

2
.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 85 of 100

Proof. This follows from [25, Theorem 3] and the fact that the spectral radius of a self-adjoint
operator is its norm. □

Corollary 9.14. Let 𝐺 be a countable group. Suppose that 𝑎, 𝑏 ∈ 𝐺 freely generate a free group. Let
𝐴 < 𝐺 be the subgroup generated by 𝑎 and 𝑏. Let 𝜇 be the measure on 𝐺 given by

𝜇 =
1

4
(𝛿𝑎 + 𝛿𝑎−1 + 𝛿𝑏 + 𝛿𝑏−1).

Then, ‖‖‖𝑇𝜇,𝐺
‖‖‖ =

√
3

2
.

Proof. Let 𝐻 ⊂ 𝐺 be chosen such that each left coset of 𝐴 in 𝐺 can be written uniquely as ℎ𝐴 for
some ℎ ∈ 𝐻. This means that

𝑙2(𝐺) ≅
⨁
ℎ∈𝐻

𝑙2(ℎ𝐴).

We also note that for any ℎ ∈ 𝐻, the map 𝑇𝜇,𝐺 maps 𝑙2(ℎ𝐴) to 𝑙2(ℎ𝐴) and its action on 𝑙2(ℎ𝐴) is
isomorphic to the action of 𝑇𝜇|𝐴,𝐴 on 𝑙2(𝐴). This means that ‖‖‖𝑇𝜇,𝐺

‖‖‖ =
‖‖‖𝑇𝜇|𝐴,𝐴‖‖‖. The result now

follows by Theorem 9.13. □

One difficulty we need to overcome is that Theorems 9.12 and 9.13 require symmetric sets and
measures but symmetry is not a requirement of Proposition 9.7. We will do this by bounding‖‖‖𝑇𝜇,𝐺𝑇

†
𝜇,𝐺

‖‖‖. Firstly we need the following two simple lemmas.
Lemma 9.15. Let 𝐺 be a countable group and let 𝜇1, 𝜇2 be measures on 𝐺. Then,

𝑇𝜇1,𝐺
𝑇𝜇2,𝐺

= 𝑇𝜇1∗𝜇2,𝐺
. (53)

Lemma 9.16. Let𝐺 be a group, let 𝑛 ∈ ℤ>0 and let (𝑝𝑖)
𝑛
𝑖=1 be a probability vector. Let g1, g2, … , g𝑛 ∈

𝐺 and let 𝜇 be defined by

𝜇 =

𝑛∑
𝑖=1

𝑝𝑖g𝑖 ,

and let 𝜇̂ be defined by

𝜇̂ =

𝑛∑
𝑖=1

𝑝𝑖g
−1
𝑖 .

Then,

𝑇†
𝜇,𝐺

= 𝑇𝜇̂,𝐺.

These lemmas are trivial and their proofs are left to the reader.
We are now ready to prove Lemma 9.10.
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86 of 100 KITTLE

Proof of Lemma 9.10. Wewill prove this by bounding ‖‖‖(𝑇𝜇,𝐺𝑇
†
𝜇,𝐺

)𝑁
‖‖‖where𝑁 is as in Theorem9.12.

Note that this is equal to ‖‖‖𝑇𝜇,𝐺
‖‖‖2𝑁 .

Let 𝜇̂ be as in Lemma 9.16. Note that we may write

𝜇 ∗ 𝜇̂ = 𝜂 +
1

16
(𝛿Id + 𝛿𝑎 + 𝛿𝑎−1 + 𝛿𝑏 + 𝛿𝑏−1 + 𝛿𝑐 + 𝛿𝑐−1),

where 𝜂 is some positive measure of total mass 9

16
.

By applying Theorem 9.12 with𝐹 = {Id, 𝑎, 𝑎−1, 𝑏, 𝑏−1, 𝑐, 𝑐−1}, we know that there is some 𝑓, g ∈

𝐹𝑁 which freely generate a free group. We write

(𝜇 ∗ 𝜇̂)∗𝑁 = 𝜂′ +
1

16𝑁
(𝛿𝑓 + 𝛿𝑓−1 + 𝛿g + 𝛿g−1),

where 𝜂′ is some positive measure with total mass 1 − 4

16𝑁
.

By Theorem 9.13 and Lemma 9.8, we know that

‖‖‖‖𝑇 1

16𝑁
(𝛿𝑐+𝛿𝑐−1+𝛿𝑑+𝛿𝑑−1 ),𝐺

‖‖‖‖ ⩽
2
√
3

16𝑁
.

Therefore,

‖‖‖𝑇(𝜇∗𝜇̂)∗𝑁,𝐺
‖‖‖ ⩽ 1 −

4

16𝑁

(
1 −

√
3

2

)
,

and therefore,

‖‖‖𝑇𝜇,𝐺
‖‖‖ ⩽

(
1 −

4

16𝑁

(
1 −

√
3

2

))1∕2𝑁

< 1.
□

Finally, we need to prove Lemma 9.11.

Proof of Lemma 9.11. We prove this by induction on the number of elements in the support of 𝜆.
If 𝜆 is the zero measure, then the statement is trivial so we have our base case. If 𝐾 = 0, then the
statement is trivial so assume𝐾 > 0. Let 𝑎 ∈ supp 𝜆 be chosen such that 𝜆(𝑎) is minimal amongst
all non-identity elements in the support of 𝜆.
Now choose some 𝑏 ∈ supp 𝜆 such that 𝑎 and 𝑏 do not share a common fixed point. This is

possible by (52) and the fact that 𝐾 > 0.
If 𝑎 and 𝑏 generate a non-virtually solvable group, then we may write

𝜆 = 𝜆′ + 𝜆(𝑎)
(
1

3
𝛿𝑎 +

1

3
𝛿𝑎 +

1

3
𝛿𝑏

)
+ 𝜆(𝑎)

(
1

3
𝛿𝑎 +

1

3
𝛿𝑏 +

1

3
𝛿𝑏

)
,

where 𝜆′ is a non-negative measure with smaller support that 𝜆. We then apply the inductive
hypothesis to 𝜆′ withmax{𝐾 − 2𝜆(𝑎), 0} in the role of 𝐾 and 𝑇 − 2𝜆(𝑎) in the role of 𝑇.
If 𝑎 and 𝑏 generate a virtually solvable group, then there must be two distinct points g1, g2 ∈

PSL2(ℝ) such that the set {g1, g2} is stationary under both 𝑎 and 𝑏. If this is the case, then choose
some 𝑐 ∈ supp 𝜆 such that {g1, g2} is not stationary under 𝑐. This is possible by (52). Note that 𝑎, 𝑏
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 87 of 100

and 𝑐 generate a non-virtually solvable group. Write

𝜆 = 𝜆′ + 3𝜆(𝑎)
(
1

3
𝛿𝑎 +

1

3
𝛿𝑏 +

1

3
𝛿𝑐

)
.

We then apply the inductive hypothesis to 𝜆′withmax{𝐾 − 3𝜆(𝑎), 0} in the role of𝐾 and𝑇 − 3𝜆(𝑎)

in the role of 𝑇. □

9.3 Symmetric and nearly symmetric examples

The purpose of this subsection is to prove Corollary 1.10.Wewill do this using Theorem 1.6. Firstly
we need the following proposition.

Proposition 9.17. For all 𝛼0, 𝑐, 𝐴 > 0, there exists 𝑡 > 0 such that for all sufficiently small
(depending on 𝛼0, 𝑐, and 𝐴) 𝑟 > 0, the following is true.
Suppose that 𝜇 is a compactly supported probability measure on PSL2(ℝ) and that𝑈 is a random

variable taking values in 𝔭𝔰𝔩2(ℝ) such that exp(𝑈) has law 𝜇. Suppose that ‖𝑈‖ ⩽ 𝑟 almost surely
and that ‖‖𝔼[𝑈]‖‖ ⩽ 𝑐𝑟2. Suppose that the smallest eigenvalue of the covariance matrix of𝑈 is at least
𝐴𝑟2. Then, 𝜇 is 𝛼0, 𝑡-non-degenerate.

This is enough to prove Corollary 1.10.

Proof of Corollary 1.10. Note that by Proposition 9.17, there is some 𝑡 > 0 such that providing 𝑟 is
sufficiently small 𝜇 is 1

4
, 𝑡-non-degenerate. Note that we can make 𝑟 arbitrarily small by choosing

our 𝐶 to be arbitrarily large.
Note that by Proposition 9.7,

ℎ𝑅𝑊 ⩾ Θ(𝑇).

Note that by Proposition 9.6,

𝑀𝜇 ⩽ 4𝑘𝑀8𝑘.

Note that trivially,

𝜒 ⩽ 𝑂(𝑟).

The result now follows from Theorem 1.6. □

In order to prove Proposition 9.17, we first need the following result and a corollary of it.

Theorem 9.18. For all 𝛾 ∈ (1,∞), there is some 𝐿 > 0 such that the following is true. Suppose that
𝑋1, 𝑋2, … , 𝑋𝑛 are random variables taking values in ℝ and suppose that for each integer 𝑖 ∈ [1, 𝑛],

𝔼[𝑋𝑖|𝑋1, 𝑋2, … , 𝑋𝑖−1] = 0,

𝔼[𝑋2
𝑖 |𝑋1, 𝑋2, … , 𝑋𝑖−1] = 1,
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88 of 100 KITTLE

and

|𝑋𝑖| ⩽ 𝛾

almost surely. Then,

sup
𝑡

||||||Φ(𝑡) − ℙ

[
𝑋1 + 𝑋2 +⋯ + 𝑋𝑛√

𝑛
< 𝑡

]|||||| ⩽ 𝐿𝑛−1∕2 log 𝑛,

where

Φ(𝑡) ∶=
1√
2𝜋 ∫

𝑡

−∞
exp(−𝑥2∕2)𝑑𝑥

is the c.d.f. of the standard normal distribution.

Proof. This is a special case of [6, Theorem 2]. □

Corollary 9.19. For all 𝜀, 𝛾 > 0, there exists 𝛿 > 0 and𝑁 ∈ ℤ>0 such that the following is true. Let
𝑛 ⩾ 𝑁 and let 𝑋1,… , 𝑋𝑛 be as in Theorem 9.18 with this value of 𝛾. Then, for all 𝑎 ∈ ℝ, we have

ℙ

[
𝑋1 + 𝑋2 +⋯ + 𝑋𝑛√

𝑛
∈ [𝑎, 𝑎 + 𝛿]

]
⩽ 𝜀.

Proof. This follows immediately from Theorem 9.18. □

We will now prove Proposition 9.17.

Proof of Proposition 9.17. To prove Proposition 9.17, we will show that there is some 𝑛 such that
for all 𝑏0 ∈ 𝑃1(ℝ), the measure 𝜇∗𝑛 ∗ 𝛿𝑏0 has mass at most 𝛼0 on any interval of length at most
𝑡. To do this, given an 𝑛-step random walk on 𝑃1(ℝ) generated by 𝜇, we will construct an 𝑛-step
random walk on ℝ. Specifically we have the following.
We let 𝑛 ∈ ℤ>0 be some value we will choose later. Let 𝑏0 ∈ 𝑃1(ℝ) and let 𝛾1, 𝛾2, … , 𝛾𝑛 be

i.i.d. samples from 𝜇. Let 𝑏𝑖 ∶= 𝛾𝑖𝛾𝑖−1 … 𝛾1𝑏0. Let 𝑈𝑖 ∶= log 𝛾𝑖 and define the real valued random
variables 𝑋1, 𝑋2, … , 𝑋𝑛 by

𝑋𝑖 ∶=
(
Var

[
𝜚𝑏𝑖−1(𝑈)

])−1∕2
𝜚𝑏𝑖−1(𝑈𝑖),

where 𝜚𝑏 ∈ 𝔭𝔰𝔩∗2 is defined to be 𝐷𝑢(exp(𝑢)𝑏)|𝑢=0 as in Definition 4.1. We let 𝑌1, 𝑌2, … , 𝑌𝑛 be
defined by

𝑌𝑖 = 𝑋𝑖 − 𝔼[𝑋𝑖|𝑋1, 𝑋2, … , 𝑋𝑖−1],

and let 𝑆 = 𝑌1 + 𝑌2 +⋯ + 𝑌𝑛.
Clearly, 𝔼[𝑌𝑖|𝑌1, 𝑌2, … , 𝑌𝑖−1] = 0 and 𝔼[𝑌2

𝑖
|𝑌1, 𝑌2, … , 𝑌𝑖−1] = 1. This enables us to apply The-

orem 9.18. We now need to show that understanding 𝑆 gives us some information about the
distribution of 𝑏𝑛.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 89 of 100

Now let 𝑐1, 𝑐2, … denote positive constants which depend only on 𝛼0, 𝑐 and 𝐴. We define 𝑓 ∶

ℝ → ℝ by

𝑓 ∶ 𝑥 ↦ ∫
𝑥

0

(
Var

[
𝜚𝜙−1(𝑢)(𝑈)

])−1∕2
𝑑𝑢.

This definition is chosen such that 𝑓(𝜙(𝑏𝑖)) − 𝑓(𝜙(𝑏𝑖−1)) is approximated 𝑋𝑖 . We will use this fact
along with Theorem 9.18 to show that there is some 𝑛 such that 𝑓(𝑏𝑛) can be approximated by a
normal distribution.
We have

𝐷𝑢𝑓(𝜙(exp(𝑢)𝑏𝑖−1))|𝑢=0 = (
Var

[
𝜚𝑏𝑖−1(𝑈)

])−1∕2
𝜚𝑏𝑖−1(𝑈𝑖),

and so, 𝑋𝑖 = 𝐷𝑢𝑓(𝜙(exp(𝑢)𝑏𝑖−1))|𝑢=0(𝑈𝑖). This means that to bound

|𝑓(𝜙(𝑏𝑖)) − 𝑓(𝜙(𝑏𝑖−1)) − 𝑋𝑖|,
it is sufficient to bound ‖‖𝐷2

𝑢𝑓(𝜙(exp(𝑢)𝑏𝑖−1))
‖‖ for ‖𝑢‖ ⩽ 1.

By compactness, the norms of the first and second derivatives of the exponential function are
bounded on the unit ball. Note that for all 𝑢 ∈ ℝ,

𝑐−11 𝑟2 ⩽ Var 𝜚𝜙−1(𝑢)(𝑈) ⩽ 𝑐1𝑟
2 (54)

for some absolute constant 𝑐1 > 0. Therefore,

𝑐−12 𝑟−1 ⩽ 𝑓′ ⩽ 𝑐2𝑟
−1 (55)

for some absolute constant 𝑐2 > 0. Also, note that Var 𝜚𝜙−1(𝑢)(𝑈) can be written as

Var 𝜚𝜙−1(𝑢)(𝑈) = 𝑣𝑇Σ𝑣,

where Σ is the covariancematrix of𝑈 and 𝑣 ∈ ℝ3 depends smoothly on 𝑢 and depends on nothing
else. In particular,

|||| 𝑑𝑑𝑢 Var 𝜚𝜙−1(𝑢)(𝑈)
|||| = |||𝑣′(𝑢)𝑇Σ𝑣(𝑢) + 𝑣(𝑢)𝑇Σ𝑣′(𝑢)

|||
⩽ 𝑂(𝑟2).

Note that

𝑓′′(𝑥) =
𝑑

𝑑𝑥

(
Var 𝜚𝜙−1(𝑥)(𝑈)

)−1∕2
=

(
Var 𝜌𝜙−1(𝑥)(𝑈)

)−3∕2( 𝑑

𝑑𝑢
Var 𝜌𝜙−1(𝑢)(𝑈)

)
,

and so, in particular,

|𝑓′′(𝑥)| ⩽ 𝑂𝐴(𝑟
−1). (56)
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90 of 100 KITTLE

In particular, this means that whenever ‖𝑢‖ ⩽ 1, we have‖‖‖𝐷2
𝑢𝑓(𝜙(exp(𝑢)𝑏𝑖−1))

‖‖‖ ⩽ 𝑂𝐴(𝑟
−1).

Also note that there is some𝑀 with𝑀 ≅𝐴 𝑟−1 such that for all 𝑥 ∈ ℝ,

𝑓(𝑥 + 𝜋) = 𝑓(𝑥) +𝑀.

Note that by (56) and Taylor’s theorem,

|𝑓(𝜙(𝑏𝑖)) − 𝑓(𝜙(𝑏𝑖−1)) − 𝑋𝑖| ⩽ 𝑂𝐴(𝑟).

Note that by (54) and the conditions of the proposition,

|𝑋𝑖 − 𝑌𝑖| = |𝔼[𝑋𝑖]| ⩽ 𝑂𝐴(𝑟).

Therefore,

|𝑓(𝜙(𝑏𝑖)) − 𝑓(𝜙(𝑏𝑖−1)) − 𝑌𝑖| ⩽ 𝑂𝐴(𝑟).

In particular,

|𝑓(𝜙(𝑏𝑛)) − 𝑓(𝜙(𝑏0)) − 𝑆| ⩽ 𝑂𝐴(𝑛𝑟). (57)

We now let 𝑛 =
⌊
𝐾𝑟−2

⌋
where 𝐾 is some positive constant depending on 𝛼0, 𝐴 and 𝑐 which we

will choose later. Choose𝑁 ∈ ℤ>0 and 𝑇 > 0 such that by applying Theorem 9.18, we may ensure
that whenever 𝑛 ⩾ 𝑁 and 𝑎 ∈ ℝ, we have

ℙ

[
𝑆√
𝑛
∈ [𝑎, 𝑎 + 𝑇]

]
⩽

𝛼0
2
.

Note that

𝔼[𝑆2] = 𝑛,

and so,

ℙ
[|𝑆| ⩾ 𝑀

2

]
⩽

4𝑛

𝑀2
⩽ 𝑂𝐴(𝐾).

Therefore, whenever 𝑛 ⩾ 𝑁 and 𝑎 ∈ ℝ

ℙ
[
𝑆 ∈ [𝑎, 𝑎 + 𝑇

√
𝑛] +𝑀ℤ

]
⩽

𝛼0
2

+ 𝑂𝐴(𝐾).

Substituting in our value for 𝑛 gives

ℙ
[
𝑆 ∈ [𝑎, 𝑎 + 𝑇

√
𝐾𝑟−1] + 𝑀ℤ

]
⩽

𝛼0
2

+ 𝑂𝐴(𝐾).

From (57), we may deduce that

ℙ
[
𝑓(𝜙(𝑏𝑛)) ∈ [𝑎, 𝑎 + (𝑐3

√
𝐾 − 𝑐4𝐾)𝑟

−1] + 𝑀ℤ
]
⩽

𝛼0
2

+ 𝑐5𝐾,
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 91 of 100

where 𝑐3, 𝑐4 and 𝑐5 are positive constants depending only on 𝐴, 𝛼0 and 𝑐. By taking 𝐾 =

min

{
𝛼0
2𝑐3

,
𝑐2
4

2𝑐25

}
, we get

ℙ
[
𝑓(𝜙(𝑏𝑛)) ∈ [𝑎, 𝑎 + 𝑐6𝑟

−1] + 𝑀ℤ
]
⩽ 𝛼0

for some positive constant 𝑐6 depending only on 𝐴, 𝛼0 and 𝑐. By (55), this means that

ℙ[𝜙(𝑏𝑛) ∈ [𝑎, 𝑎 + 𝑐7] + 𝜋ℤ] ⩽ 𝛼0

for some positive constant 𝑐6 depending only on𝐴, 𝛼0 and 𝑐 providing 𝑛 ⩾ 𝑁. Noting that 𝑛 → ∞

as 𝑟 → 0 completes the proof. □

9.4 Examples with rotational symmetry

One way in which we can ensure that the Furstenberg measure satisfies our 𝛼0, 𝑡-non-degeneracy
condition is to ensure that it has some kind of rotational symmetry. In particular, we can prove
the following corollary of Theorem 1.6.

Corollary 9.20. For every 𝑎, 𝑏 ∈ ℤ>0 with 𝑎 ⩾ 4 and 𝐾 > 0, there exist some 𝐶, 𝜀 > 0 such that the
following is true.
Suppose that 𝑥 > 𝐶. Suppose that𝐴1,𝐴2, … ,𝐴𝑏 ∈ PSL2(ℝ) have operator norms at most 1 + 1∕𝑥

andhave entries whoseMahlermeasures are atmost exp(exp(𝜀
√
𝑥)). Suppose further that the degree

of the number field generated by the entries of the 𝐴𝑖 is at most exp(𝜀
√
𝑥).

Let 𝑅 ∈ PSL2(ℝ) be a rotation by 𝜋∕𝑎 and let 𝜇 be defined by

𝜇 ∶=
1

𝑎𝑏

𝑎−1∑
𝑖=0

𝑏∑
𝑗=1

𝛿𝑅𝑖𝐴𝑗𝑅
−𝑖 .

Suppose further that for every virtually solvable𝐻 < PSL2(ℝ), we have 𝜇(𝐻) ⩽ 1 − 𝐾.
Then, the Furstenberg measure generated by 𝜇 is absolutely continuous.

Proof. We wish to apply Theorem 1.6 to 1

2
𝜇 + 1

2
𝛿Id.

Note that this measure is clearly 1

𝑎
, 𝜋

𝑎
- non-degenerate. Also note that we may assume that

𝐶 ⩾ 1 and so take 𝑅 = 2 in Theorem 1.6. Clearly, 𝜒 < 1

𝑥
.

Note that by Proposition 9.7, we have ℎ𝑅𝑊 ⩾ Θ(𝐾).
Note that by Proposition 9.6, we know that 𝑀𝜇 ⩽ exp(𝐴 exp(𝜀𝑥)) where 𝐴 is some constant

depending only on 𝑎 and 𝑏. The result now follows by Theorem 1.6. □

9.5 Examples supported on large elements

The purpose of this subsection is to prove Corollary 1.11. Firstly wewill need the following lemma.
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92 of 100 KITTLE

Lemma 9.21 (The Ping-Pong Lemma). Suppose that 𝐺 is a group which acts on a set 𝑋. Let 𝑛 ∈ ℤ

and suppose that we can find g1, g2, … , g𝑛 ∈ 𝐺 and pairwise disjoint non-empty sets

𝐴+
1
, 𝐴+

2
, … ,𝐴+

𝑛 , 𝐴
−
1 , 𝐴

−
2 … ,𝐴−

𝑛 ⊂ 𝑋

such that for all integers 𝑖 ∈ [1, 𝑛] and all 𝑥 ∈ 𝑋∖𝐴−
𝑖
, we have g𝑖𝑥 ∈ 𝐴+

𝑖
. Then, g1, g2, … , g𝑛 freely

generate a free semi-group.

This lemma is well known and we will not prove it. From this, we may deduce the following.

Lemma 9.22. For every 𝜀 > 0, there is some 𝐶 ⩽ 𝑂(𝜀−1) such that the following is true. Let 𝑛 ∈ ℤ>0.
Suppose that 𝜃1, 𝜃2, … , 𝜃𝑛 ∈ ℝ∕𝜋ℤ and that for every 𝑖 ≠ 𝑗, we have |𝜃𝑖 − 𝜃𝑗| ⩾ 𝜀 and |𝜃𝑖 − 𝜃𝑗 +

𝜋∕2| ⩾ 𝜀. Let 𝜆1, 𝜆2, … 𝜆𝑛 be real numbers which are at least 𝐶. Then, the set{
𝑅𝜃𝑖

(
𝜆𝑖 0

0 𝜆−1
𝑖

)
𝑅−𝜃𝑖

∶ 𝑖 ∈ [1, 𝑛] ∩ ℤ

}
⊂ PSL2(ℝ)

freely generates a free semi-group.

Proof. This follows immediately by applying Lemma 9.21 with 𝐺 = PSL2(ℝ), 𝑋 = 𝑃1(ℝ), 𝐴+
𝑖
=

𝜙−1((𝜃𝑖 − 𝜀∕2, 𝜃𝑖 + 𝜀∕2)) and 𝐴−
𝑖
= 𝜙−1((𝜃𝑖 − 𝜀∕2, 𝜃𝑖 + 𝜀∕2))⟂ along with Lemma 4.9. □

Lemma 9.23. For all 𝑛 ∈ ℤ, there exists some 𝜃𝑛 ∈
(

1

2𝑛
, 2
𝑛

)
such that sin 𝜃𝑛 and cos 𝜃𝑛 are rational

and have height at most 4𝑛2 + 1.

Proof. Choose 𝜃𝑛 such that

sin 𝜃𝑛 =
4𝑛

4𝑛2 + 1

and

cos 𝜃𝑛 =
4𝑛2 − 1

4𝑛2 + 1
. □

We are now ready to prove Corollary 1.11.

Proof of Corollary 1.11. Given some 𝑟 > 0 and some 𝑛 ∈ ℤ, define 𝛽0, … , 𝛽𝑛−1 > 0 by letting 𝛽𝑘 =

𝜃8𝑛+1−𝑘 where 𝜃⋅ is as in Lemma 9.23. We then define 𝛼0, 𝛼1, … , 𝛼2𝑛−1 ⩾ 0 by letting

𝛼𝑘 =

𝑛−1∑
𝑖=0

𝜉(𝑘)
𝑖

𝛽𝑖,

where the 𝜉(𝑘)
𝑖

are the binary expansion of 𝑘. In other words, 𝑘 =
∑𝑛−1

𝑖=0 𝜉(𝑘)
𝑖

2𝑖 with 𝜉(𝑘)
𝑖

∈ {0, 1}.
Clearly,

0 = 𝛼0 < 𝛼1 < ⋯ < 𝛼2𝑛−1.
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 93 of 100

Furthermore, 𝛼𝑖+1 > 𝛼𝑖 + 𝜀 where 𝜀 = 1

2⋅8𝑛+1
. We also have that

𝛼2𝑛−1 <
2

82
+

2

83
+

2

84
+ …

=
1

32
⋅
8

7

<
𝜋

10
− 𝜀.

Wenow let𝐶 be the𝐶 from Lemma 9.22 with this value of 𝜀 andwe choose some prime number
𝑝 such that 𝑝 ⩾ 𝐶2, 𝑝 ⩽ 𝑂(82𝑛), and 𝑋2 − 𝑝 is irreducible in the field ℚ[sin 𝜋

5
, cos 𝜋

5
].

Now for 𝑖 = 0, 1, … , 2𝑛 − 1 and 𝑗 = 0, 1, … , 4, we let g𝑖,𝑗 be defined by

g𝑖,𝑗 ∶= 𝑅𝑗𝜋

5
+𝛼𝑖

(⌈
𝑟 +

√
𝑝
⌉
+

√
𝑝 0

0 (
⌈
𝑟 +

√
𝑝
⌉
+

√
𝑝)−1

)
𝑅
−

𝑗𝜋

5
−𝛼𝑖

.

By Lemma 9.22, we know that the g𝑖,𝑗 freely generate a free semi-group. Now for 𝑖 = 0, 1, … , 2𝑛 − 1

and 𝑗 = 0, 1, … , 4, we let ĝ𝑖,𝑗 be defined by

ĝ𝑖,𝑗 ∶= 𝑅𝑗𝜋

5
+𝛼𝑖

(⌈
𝑟 +

√
𝑝
⌉
−

√
𝑝 0

0 (
⌈
𝑟 +

√
𝑝
⌉
−

√
𝑝)−1

)
𝑅
−

𝑗𝜋

5
−𝛼𝑖

.

Clearly the ĝ𝑖,𝑗 are Galois conjugates of the g𝑖,𝑗 and so also freely generate a free semi-group. We
now let 𝜇 be defined by

𝜇 =

2𝑛−1∑
𝑖=0

4∑
𝑗=0

1

5 ⋅ 2𝑛
𝛿ĝ𝑖,𝑗 .

We wish to use Theorem 1.6 to show that the Furstenberg measure generated by 𝜇 is absolutely
continuous providing 𝑛 is sufficiently large in terms of 𝑟.
Let 𝜈 be the Furstenberg measure generated by 𝜇. By the construction of 𝜇, we know that 𝜈

is invariant under rotation by 𝜋∕5. In particular, this means that it is 1

5
, 𝜋

5
-non-degenerate. We

also know that for each 𝑖, 𝑗, we have ‖‖‖ĝ𝑖,𝑗‖‖‖ =
⌈
𝑟 +

√
𝑝
⌉
−

√
𝑝 ⩽ 𝑟 + 1. This means that 𝜒 ⩽ 𝑟 and

that we may take 𝑅 = 𝑟 + 1. Since the ĝ𝑖,𝑗 freely generate a free semi-group, we know that ℎ𝑅𝑊 =

log (5 ⋅ 2𝑛) ⩾ Θ(𝑛). Finally, we need to bound𝑀𝜇.
To bound the 𝑀𝜇, we will apply Proposition 9.6. We know by Lemma 9.23 that the heights of

the entries in the 𝛽𝑖 are at most𝑂(82𝑛). We also know that the height of
⌈
𝑟 +

√
𝑝
⌉
−

√
𝑝 is at most

𝑂𝑟(
√
𝑝)which is atmost𝑂𝑟(8

𝑛). By Lemma 9.4, thismeans that the height of entries in the ĝ𝑖,𝑗 is at

most 𝑂𝑟(2
2𝑛 ⋅ 84𝑛

2+𝑛) which is at most 𝑂𝑟(8
5𝑛2). It is easy to show that

[
ℚ[sin 𝜋

5
, cos 𝜋

5
] ∶ ℚ

]
= 4.

This means that by Proposition 9.6, we have

𝑀𝜇 ⩽ 𝑂𝑟

(
88⋅4⋅5𝑛

2
)
⩽ exp(𝑂𝑟(𝑛

2)).

Therefore,

ℎ𝑅𝑊
𝜒

(
max

{
1, log log

𝑀𝜇

ℎ𝑅𝑊

})−2

≳
𝑛

𝑟 + 1

(
log log exp(𝑂𝑟(𝑛

2))
)−2
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94 of 100 KITTLE

⩾
𝑛

𝑂𝑟((log 𝑛)
2)

→ ∞.

This means that by Theorem 1.6, the Furstenberg measure is absolutely continuous, providing 𝑛
is sufficiently large in terms of 𝑟. □

9.6 Examples with two generators

In this subsection, we will prove Corollary 1.12.

Proof of Corollary 1.12. Firstly we will show that 𝜇 is Zariski-dense. The compact subgroups of
PSL2(ℝ) are exactly those subgroups which are conjugate to the group of rotations. Since the rota-
tions form a subgroup, 𝐴 is only conjugate to a rotation under conjugation by another rotation
and 𝐵 is not conjugate to a rotation under conjugation by a rotation. Therefore, support of 𝜇 is not
contained in any compact subgroup of PSL2(ℝ). Since 𝐴 is an irrational rotation, the orbit of any
𝑏 ∈ 𝑃1(ℝ) under 𝐴 is infinite. Therefore, 𝜇 is strongly irreducible.
Next, we will show that there is some 𝛼0 ∈

(
0, 1

3

)
and 𝑡 > 0 such that 𝜇 is 𝛼0, 𝑡-non-degenerate

for all sufficiently large 𝑛.
Firstly note that 𝐴 is a rotation by 𝜃𝑛 where 𝜃𝑛 = 1

𝑛
+ 𝑂( 1

𝑛2
). Also note that for all 𝑥 ∈ 𝑃1(ℝ),

we have 𝑑(𝑥, 𝐵𝑥) ⩽ 𝑂(𝑛−3).
We now let 𝐴̃ ∶ ℝ → ℝ, 𝑥 ↦ 𝑥 + 𝜃𝑛 and choose 𝐵̃ ∶ ℝ → ℝ such that 𝐵̃(𝑥) ∈ 𝜙(𝐵𝜙−1(𝑥)) and

for all 𝑥 ∈ ℝ, we have |𝑥 − 𝐵̃(𝑥)| ⩽ 𝑂(𝑛−3). We then let 𝜇̃ = 1

2
𝛿𝐴̃ + 1

2
𝛿𝐵̃.

By Theorem 3.12 (a simple bound on the Wasserstein distance between a sum of independent
random variables and a normal distribution), we know that for any 𝑥 ∈ ℝ, we have

1

(
𝜇̃∗𝑛2 ∗ 𝛿𝑥,𝑁

(
𝑥 +

1

2
𝑛2𝜃𝑛, 𝑛

2𝜃2𝑛

))
< 𝑂(𝑛−1).

Noting that 𝑛2𝜃2𝑛 → 1, we can see that there is some 𝛼0 ∈
(
0, 1

3

)
and 𝑡 > 0 such that 𝜇 is 𝛼0,

𝑡-non-degenerate for all sufficiently large 𝑛.
Wewill apply Theorem 1.6 to 1

2
𝜇 + 1

2
𝛿Id. Note that this generates the sameFurstenbergmeasure

as 𝜇, and so, in particular, it is 𝛼0, 𝑡-non-degenerate.
Note that by Proposition 9.7, there is some 𝜀 > 0 such that for all 𝑛, we have ℎ𝑅𝑊 ⩾ 𝜀.
Note that by Proposition 9.6, we have𝑀𝜇̃ ⩽ 4(𝑛3 + 1)8. Clearly, we may take 𝑅 = 2. Also note

that 𝜒 ⩽ 𝑛−3.
This means that to prove the corollary, it is sufficient to prove that

𝜀𝑛3
(
log log

4(𝑛3 + 1)8

𝜀

)−2

tends to∞ as 𝑛 → ∞. This is trivially true. □
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APPENDIX
A.1 Proof of Theorem 1.24
We extend the result of Kesten [26, Theorem 1] to show that the convergence is uniform in the
vector 𝑣.
Theorem A.1. Suppose that 𝜇 is a compactly supported Zariski-dense probability measure. Then
there exists some probability measure 𝜈̂ on 𝑃1(ℝ) such that the following is true. Let 𝛾1, 𝛾2, … be i.i.d.
samples from 𝜇. Then given any 𝜀 > 0 and 𝑣 ∈ 𝑃1(ℝ), there exists some 𝑇 > 0 such that given any
𝑃 > 𝑇, we can find some random variable 𝑥 with law 𝜈̂ such that

ℙ[𝑑((𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣 )
𝑇𝑣, 𝑥) > 𝜀] < 𝜀.

Here, 𝜏𝑃,𝑣 is as in Definition 1.21.

Proof. In [26, Theorem 1], it is proven that this holds in a much more general setting, providing
some conditions are satisfied. In [20, Section 4], it is shown that the conditions of [26, Theorem
1] are satisfied in this setting. □

We deduce uniform convergence from this fact. To do this, we show that if 𝑣, 𝑤 ∈ 𝑃1(ℝ) are
close, then with high probability, 𝜏𝑃,𝑣 = 𝜏𝑃,𝑤 and (𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣 )

𝑇𝑣 is close to (𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣 )
𝑇𝑤.

Lemma A.2. Suppose that 𝜇 is a compactly supported Zariski-dense probability measure. Then
given any 𝑐1, 𝑐2 > 0, there exists 𝑇 such that for any 𝑃 > 𝑇 and any unit vector 𝑏 ∈ ℝ2

ℙ[∃𝑛 ∶ log 𝑃 ⩽ log
‖‖‖(𝛾1𝛾2 … 𝛾𝑛)

𝑇𝑏
‖‖‖ ⩽ log 𝑃 + 𝑐1] ≲ 𝑐1∕𝜒 + 𝑐2.

Proof. This follows immediately from [32, Proposition 4.8]. □

Lemma A.3. Let 𝜇 be a finitely supported Zarisk-dense probability measure. Given 𝑣 ∈ 𝑃1(ℝ) and
𝑃 > 0, let 𝜏𝑃,𝑣 be as in Definition 1.21. Then there exists some 𝛿 > 0 depending on 𝜇 such that given
any 𝑟 > 0 for all sufficiently large (depending on 𝑟 and𝜇)𝑃, the following is true. Suppose that 𝑣, 𝑤 ∈

𝑃1(ℝ) and 𝑑(𝑣, 𝑤) < 𝑟. Then,

ℙ[𝜏𝑃,𝑣 = 𝜏𝑃,𝑤] ⩾ 1 − 𝑂𝜇(𝑟
𝛿).

Proof. Let 𝐴 be the event that

𝑑(𝑣, 𝑏−((𝛾1𝛾2 … 𝛾𝑛)
𝑇)) >

√
𝑟

and

𝑑(𝑤, 𝑏−((𝛾1𝛾2 … 𝛾𝑛)
𝑇)) >

√
𝑟

for all 𝑛 ⩾ log 𝑃∕ log 𝑅. By (14) from Lemma 2.3, we know that providing 𝑃 is sufficiently large in
terms of 𝜇 and 𝑟, there is some 𝛿 > 0 such that

ℙ[𝐴] ⩾ 1 − 𝑂𝜇(𝑟
𝛿).
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96 of 100 KITTLE

Let 𝑣, 𝑤̂ ∈ ℝ2 be unit vectors which are representatives of 𝑣 and𝑤, respectively. By Lemma 4.11,
we know that there is some constant 𝐶 > 0 such that on the event 𝐴

| log ‖(𝛾1𝛾2 … 𝛾𝑛)
𝑇𝑣‖ − log ‖(𝛾1𝛾2 … 𝛾𝑛)

𝑇𝑤̂‖| < 𝐶𝑟1∕2

for all 𝑛 ⩾ log 𝑃∕ log 𝑅. Now let 𝐵 be the event that there exists 𝑛 such that

| log ‖(𝛾1𝛾2 … 𝛾𝑛)
𝑇𝑣‖ − 𝑃| < 10𝐶𝑟1∕2.

By LemmaA.2, we know that providing 𝑃 is sufficiently large in terms of 𝜇 and 𝑟,ℙ[𝐵] ⩽ 𝑂𝜇(𝑟
1∕2).

We also know that {𝜏𝑃,𝑣 = 𝜏𝑃,𝑤} ⊃ 𝐴∖𝐵. Therefore,

ℙ[𝜏𝑃,𝑣 = 𝜏𝑃,𝑤] ⩾ 1 − 𝑂𝜇(𝑟
𝛿)

as required. □

Proof of Theorem 1.24. Given 𝜀 > 0, we wish to show that we can find some 𝑇 (depending on 𝜇

and 𝜀) such that whenever 𝑃 > 𝑇 and 𝑣 ∈ 𝑃1(ℝ), we can find some random variable 𝑥 with law 𝜈̂

such that

ℙ[𝑑(𝑥, (𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣 )
𝑇𝑣) > 𝜀] < 𝜀.

Firstly let 𝜀 > 0. Choose 𝑘 ∈ ℤ>0 and let 𝑣1, 𝑣2, … , 𝑣𝑘 ∈ 𝑃1(ℝ) be equally spaced. Let 𝑇1 be the
greatest of the 𝑇 from Theorem A.1 with 1

10
𝜀 in the role of 𝜀 and 𝑣1, 𝑣2, … , 𝑣𝑘 in the role of 𝑣 and

let 𝑥1, 𝑥2, … , 𝑥𝑘 be the 𝑥. Let 𝑇2 be the 𝑇 from Lemma A.3 with 𝑟 = 𝜋

𝑘
. Let 𝑇 = max{𝑇1, 𝑇2}. Thus,

whenever 𝑡 > 𝑇 and 𝑖 ∈ [𝑘]

ℙ
[
𝑑(𝑥𝑖, (𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣𝑖

)𝑇𝑣𝑖) >
𝜀

10

]
<

𝜀

10
.

Now let 𝑃 > 𝑇 and let 𝑣 ∈ 𝑃1(ℝ). Suppose without loss of generality that 𝑣1 is the closest of the
𝑣𝑖 to 𝑣. In particular, 𝑑(𝑣1, 𝑤) < 𝜋

𝑘
. By Lemma A.3, this means that

ℙ[𝜏𝑃,𝑣1 = 𝜏𝑃,𝑣] ⩾ 1 − 𝑂(𝑘−𝛿) (A.1)

for some 𝛿 > 0 depending only on 𝜇.
We know by, for example, Lemma 4.16 that providing

𝑑(𝑏−1((𝛾1𝛾2 … 𝛾𝑛)
𝑇), 𝑣1) > 100𝑘−1,

we have

𝑑((𝛾1𝛾2 … 𝛾𝑛)
𝑇𝑣1, (𝛾1𝛾2 … 𝛾𝑛)

𝑇𝑣) < 𝑂𝑘(
‖‖‖(𝛾1𝛾2 … 𝛾𝑛)

𝑇‖‖‖−2).
In particular, by (14) from Lemma 2.3, we know that

ℙ
[
𝑑((𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣1

)𝑇𝑣1, (𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣1
)𝑇𝑣) < 𝑂𝑘(𝑃

−2)
]
⩾ 1 − 𝑂(𝑘−𝛿).
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ABSOLUTELY CONTINUOUS FURSTENBERGMEASURES 97 of 100

Combining this with (A.1), we know that providing 𝑃 is sufficiently large depending on 𝑘 and
𝜇

ℙ
[
𝑑((𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣1

)𝑇𝑣1, (𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣 )
𝑇𝑣) > 𝑂𝑘(𝑃

−2)
]
< 𝑂(𝑘−𝛿).

In particular, this means that providing 𝑃 is sufficiently large depending on 𝑘 and 𝜇

ℙ
[
𝑑(𝑥1, (𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣 )

𝑇𝑣) >
1

10
𝜀 + 𝑂𝑘(𝑃

−2)
]
<

1

10
𝜀 + 𝑂(𝑘−𝛿),

and so, if we choose 𝑘 large enough (depending on 𝜇 and 𝜀) and then choose 𝑃 large enough
(depending on 𝜇, 𝑘, and 𝜀), then

ℙ
[
𝑑((𝑥1, 𝛾1𝛾2 … 𝛾𝜏𝑃,𝑣 )

𝑇𝑣) > 𝜀
]
< 𝜀

as required. □

We now wish to deduce Corollary 1.25. Firstly we need the following lemma.

Lemma A.4. Let 𝜇 be a finitely supported Zariski-dense probability measure. Given 𝑣 ∈ 𝑃1(ℝ), let
𝜏𝑃,𝑣 be as in Definition 1.21 and given 𝑎 ∈ PSL2(ℝ), let 𝜏𝑃,𝑎 be defined by

𝜏𝑃,𝑎 ∶= inf {𝑛 ∶ ‖‖𝑎𝛾1𝛾2 … 𝛾𝑛
‖‖ ⩾ 𝑃‖𝑎‖}.

Then there exists some 𝛿 > 0 depending on 𝜇 such that given any 𝑟 > 0 for all sufficiently large
(depending on 𝑟 and 𝜇) 𝑃, the following is true. Suppose that 𝑣 ∈ 𝑃1(ℝ), 𝑎 ∈ PSL2(ℝ) and
𝑑(𝑣, 𝑏−(𝑎)⟂) < 𝑟. Suppose that 𝑎 is sufficiently large (depending on 𝑟 and 𝜇). Then,

ℙ[𝜏𝑃,𝑣 = 𝜏𝑃,𝑎] ⩾ 1 − 𝑂𝜇(𝑟
𝛿).

Proof. This follows by a very similar proof to Lemma A.3. Let 𝐴 be the event that

𝑑(𝑣, 𝑏−((𝛾1𝛾2 … 𝛾𝑛)
𝑇)) >

√
𝑟

and

𝑑(𝑏−(𝑎), 𝑏+(𝛾1𝛾2 … 𝛾𝑛)) >
√
𝑟

for all 𝑛 ⩾ log 𝑃∕ log 𝑅. By (14) from Lemma 2.3, we know that providing 𝑃 is sufficiently large in
terms of 𝜇 and 𝑟, there is some 𝛿 > 0 such that

ℙ[𝐴] ⩾ 1 − 𝑂𝜇(𝑟
𝛿).

Let 𝑣 ∈ ℝ2 be a unit vector which is a representative of 𝑣. By Lemma 4.11, we know that there
is some constant 𝐶 > 0 such that on the event 𝐴,

| log ‖‖‖(𝛾1𝛾2 … 𝛾𝑛)
𝑇𝑣

‖‖‖ − log ‖‖𝑎𝛾1𝛾2 … 𝛾𝑛
‖‖ + log ‖𝑎‖| < 𝐶𝑟1∕2

for all 𝑛 ⩾ log 𝑃∕ log 𝑅. The result now follows by the same argument as Lemma A.3. □

We now prove Corollary 1.25.
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98 of 100 KITTLE

Proof of Corollary 1.25. Let 𝑆 be defined by

𝑆 = inf {𝑛 ∶ ‖‖𝑎𝛾1𝛾2 … 𝛾𝑛
‖‖ ⩾

√
𝑃},

let 𝑎 = 𝑎𝛾1𝛾2 … 𝛾𝑆 and let 𝑣 = 𝑏−(𝑎)⟂. Let 𝑆 be defined by

𝑆 ∶= inf {𝑛 ⩾ 𝑆 ∶
‖‖‖(𝛾𝑆+1𝛾𝑆+2 … 𝛾𝑛)

𝑇𝑣
‖‖‖ ⩾

𝑃‖‖𝑎𝛾1𝛾2 … 𝛾𝑛
‖‖‖𝑣‖},

where 𝑣 ∈ ℝ2∖{0} is a representative of 𝑣. Let 𝑟 > 0 be arbitrarily small. By Lemma A.4, providing
𝑃 is sufficiently large (in terms of 𝜇 and 𝑟), we have

ℙ[𝑆 = 𝜏𝑎,𝑃] ⩾ 1 − 𝑂𝜇(𝑟
𝛿1)

for some 𝛿1 > 0 depending only on 𝜇. Let 𝐴 be the event that for all 𝑛 ⩾
log 𝑃

2 log 𝑅
− 1, we have

𝑑(𝑏+(𝛾𝑆+1𝛾𝑆+2 … 𝛾𝑛), 𝑏
−(𝑎)) > 𝑟.

By (14) from Lemma 2.3, we know that ℙ[𝐴] ⩾ 1 − 𝑂𝜇(𝑟
𝛿2) for some 𝛿2 > 0 depending only on 𝜇.

By Lemmas 4.12 and 4.9, we know that on the event 𝐴 providing 𝑃 is sufficiently large (in terms
of 𝑟), we have

𝑑((𝛾𝑆+1𝛾𝑆+2 … 𝛾
𝑆
)𝑇𝑣, 𝑏−(𝛾𝑆+1𝛾𝑆+2 … 𝛾

𝑆
)⟂) < 𝑟

and

𝑑(𝑏−(𝑎𝛾1𝛾2 … 𝛾𝜏𝑃,𝑎 ), 𝑏
−(𝛾𝑆+1𝛾𝑆+2 … 𝛾𝜏𝑃,𝑎 )) < 𝑟.

In this means that on the event 𝐴 ∩ {𝜏𝑃,𝑎 = 𝑆}, we have

𝑑(𝑏−(𝑎𝛾1𝛾2 … 𝛾𝜏𝑃,𝑎 )
⟂, (𝛾𝑆+1𝛾𝑆+2 … 𝛾

𝑆
)𝑇𝑣) < 2𝑟.

We are now done by Theorem 1.24. □
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