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1 | INTRODUCTION

In this paper, we find a sufficient condition for a Furstenberg measure to be absolutely continuous.
Using this, we are able to give explicit examples of measures ¢ on PSL,(R) supported on finitely
many points — including examples supported on only two points — such that the Furstenberg
measure v on P!(R) generated by u is absolutely continuous. We are able to give much broader
classes of examples than are given in earlier works such as [8]. In particular, we do not require u
to be symmetric.

Given a measure u on PSL,(R), we say that a measure v on P!(R) is a Furstenberg measure
generated by u if v is stationary under action by u. In other words, we require

V=[x,

where * denotes convolution. It is a theorem of Furstenberg in [18] that if u is strongly irreducible
and the support of y is not contained in a compact subgroup of PSL,(R), then there is a unique
Furstenberg measure generated by u. Throughout this paper, we will only be concerned with the
case where u is supported on finitely many points.

Furstenberg measures have many similarities with self-similar measures. A probability mea-
sure A on R is self-similar if there are similarities S;, S,, ..., S,, : R — R and a probability vector

(p1> D35 -+ » Dyy) such that

n
A=) pioS.
i=1
Some important recent developments in the study of self-similar measures and their dimensions
can be found in, for example, [21, 35-37] or [27].

Two fundamental questions about Furstenberg measures are what are their dimensions? And
when are they absolutely continuous?

Itis a classical result by Guivarc’h [19] that if u is strongly irreducible and the support of u is not
contained in a compact subgroup of PSL,(R) and there is some ¢ > 0 such that / ||g||° du(g) < oo,
then there exist C,d > 0 such that if we let v be the Furstenberg measure generated by u, let
x € P/(R) and let r > 0, then

v(B(x,r)) < Cr,

where B(x, r) is the open ball in P! (R) centre x and radius r. This implies, in particular, that under
these conditions, v has positive dimension.

In [24], it was conjectured that if u is supported on finitely many points, then its Furstenberg
measure v is singular. This conjecture was disproved by Barany, Pollicott and Simon in [2] which
gave a probabilistic construction of measures p on PSL,(R) supported on finitely many points
with absolutely continuous Furstenberg measures. A variant of this conjecture that also requires
1 to be supported on a discrete subgroup of PSL,(R) remains open.

In [8], Bourgain gives examples of measures u on PSL,(R) supported on finitely many points
such that the Furstenberg measure generated by u is absolutely continuous.

In [22], building on the work of Hochman in [21], Hochman and Solomyak show that providing
u satisfies some exponential separation condition, then its Furstenberg measure v satisfies

h
dimv = min{ﬂ,l},
2x
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES | 3 0f 100

where hpy; is the random walk entropy and y is the Lypanov exponent. In particular, they show
that if u satisfies some exponential separation condition and

then v has dimension 1. In this paper, we will show that there is some C which depends on,
amongst other things, the rate of the exponential separation such that if

h
ﬂ;c’

X

then v is absolutely continuous. The result we end up with is similar to the result of Varju in
[37, Theorem 1] but applies to Furstenberg measures rather than Bernoulli convolutions. Our
techniques are somewhat inspired by those of Hochman [21], Hochman and Solomyak [22] and
Varju [37], but we introduce several crucial new ingredients including, amongst other things, the
concept of ‘detail’ from [27].

1.1 | Main results

We now state our result on the absolute continuity of Furstenberg measures. To do this, we first
need some definitions.

Definition 1.1. Let u be a probability measure on PSL,(R). We say that u is strongly irreducible
if there is no finite set S C P'(R) which is invariant when acted upon by the support of .

Definition 1.2. Given a measure u on PSL,(R), we define the Lyapunov exponent of u to be given
by the almost sure limit

‘= lim L
x = lim . log ||7172 - ¥aulls
where y,,7,, ... are i.i.d. samples from u.

It is a result of Furstenberg and Kesten [17] and Furstenberg [16] that if

/ log g1l du(g) < oo,

u is strongly irreducible and its support is not contained in a compact subgroup of PSL,(R), then
this limit exists almost surely and is positive.

Note that u being strongly irreducible and its support not being contained in a compact sub-
group is equivalent to the support of i generating a Zariski-dense semigroup. Therefore, using the
notation of [3], we will refer to such measures as Zariski-dense measures.

Throughout this paper, given some g € PSL,(R), we will write || ¢|| to mean the operator norm
of § where § € SL,(R) is some representative of g. Note that this does not depend on our choice
of §. We will also fix some left invariant Riemannian metric on PSL,(R) and let d be its distance
function. We then have the following definition.
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40f100 | KITTLE

Definition 1.3. Let u be a discrete measure on PSL,(R) supported on finitely many points. Let

n
S, := | supp(u).
i=1

Then, we define the splitting rate of u, which we will denote by M, by

M, = exp< lim sup —llogd(x,y))
x,y€Syxty N

Note that all left invariant Riemannian metrics are equivalent and therefore M, does not
depend on our choice of Riemannian metric. We also need to define the following.

Definition 1.4. We define the bijective function ¢ by

¢ : PI(R) > R/7nZ

[ <cos x> ]
) X
sin x
We now define the following quantitative non-degeneracy condition.

Definition 1.5. Given some probability measure u on PSL,(R) generating a Furstenberg measure
v on P!(R) and given some «, t > 0, we say that y is a,, t-non-degenerate if whenever a € R, we
have

(¢~ ([a,a +t] + 72)) < ap.

This just says that each arc of length ¢ has v measure at most ¢,. We now have everything
needed to state our new result on the absolute continuity of Furstenberg measures.

Theorem 1.6. ForallR > 1, , € (0, %) andt > 0, thereis some C > 0such that the following holds.
Suppose that u is a probability measure on PSL,(R) which is Zariski-dense, a, t- non-degenerate,
and is such that on the support of u, the operator norm is at most R. Suppose that M,, < oo and

h log M 2
ﬂ>C<max{1,log ° M}) . €))
X h

RW

Then, the Furstenberg measure v on P'(R) generated by u is absolutely continuous.
The constant C can be computed by following the proof.

Remark 1.7. The condition M, < o is closely related to the exponential separation condition in
[22]. Indeed, in [22], Hochman and Solomyak prove that if

lim sup _1 logd(x,y) < o
x,yesupp(u*h),x#y
and hew > 2, then the Furstenberg measure has dimension 1.
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES | 50f 100

‘We will now discuss how this result compares to previously existing results.

As we mentioned above, Bourgain [8] gave examples of absolutely continuous Furstenberg
measures generated by measures on PSL,(R) supported on finitely many points. Bourgain was
able to construct examples with density function in C" for every finite r > 0. His approach was
revisited by several authors including Benoist and Quint [4], Boutonnet, Ioana and Golsefidy [9],
Lequen [31] and Kogler [29]. We quote the following result from [29].

Theorem 1.8. For every c;,c, > 0 and m € Z,, there is some positive €, = £,(m, ¢,, c,) such that
the following holds. Suppose that € < €, and let u be a symmetric probability measure on PSL,(R)
such that

p " (Beern(H)) < €27 2

for all proper closed connected subgroups H < PSL,(R) and all sufficiently large n. Suppose further
that

supp 1 C B.(Id). 3)

Then, the Furstenberg measure generated by u is absolutely continuous with m-times continuously
differentiable density function.

Here, B, () denotes e-neighbourhood of a set with respect to our left invariant Riemannian met-
ric.

The conditions of this theorem are not directly comparable to ours but they are related. Condi-
tion (2) can be verified for H = {Id} if M . <€ and pu*'(1d) < e2" for all sufficiently large n. If
that is the case, then hgy, > ¢, log ¢~1. When condition (3) holds, we must have y < O(¢). Infor-
mally speaking the conditions (2) and (3) correspond to M u <€ hpy > ¢y log e land y < O(e).
In comparison condition (1) in Theorem 1.6 is satisfied if M,, < exp (exp (ce™Y/2)), hgy > ¢, and
x < € for some suitably small ¢ > 0.

It is important to note, however, that Theorem 1.8 gives higher regularity for the Furstenberg
measure than our result.

To demonstrate the applicability of our result, we give several examples of measures satisfy-
ing the conditions of Theorem 1.6. We will prove that these examples satisfy the conditions of
Theorem 1.6 in Section 9.

Definition 1.9 (Height). Let «; be an algebraic number of degree d with algebraic conju-
gates a,, &, ..., 4. Suppose that the minimal polynomial for ¢t; over Z[X] has positive leading
coefficient a,. Then, we define the height of a; by

" 1/d
H(ay) := (aO Hmax{l, |oci|}> .
i=1

Note that the height of a rational number is the maximum of the absolute values of its numera-
tor and denominator. Also note that the height of an algebraic number is the dth root of its Mahler
measure.

Corollary 1.10. For every A > 0, there is some C > 0 such that the following is true. Let r > 0 be
sufficiently small (depending on A) and let u be a finitely supported symmetric probability measure
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6 0of 100 | KITTLE

on PSL,(R). Suppose that all the entries of the matrices in the support of u are algebraic and that
the support of u is not contained in any compact subgroup of PSL,(R). Let M be the greatest of the
heights of these entries and let k be the degree of the number field generated by these entries.

Let U be a random variable taking values in p31,(R) such that ||U|| < r almost surely, exp(U) has
law u, and the smallest eigenvalue of the covariance matrix of U is at least Ar?.

Suppose that for any virtually solvable group H < PSL,(R), we have u(H) < 1/2.

Suppose further that

r < C(logk + loglog(M + 10))™>.
Then, the Furstenberg measure generated by u is absolutely continuous.

In the above corollary, we can replace the requirement that y is symmetric with the requirement
IE[U]|| < cr? for any ¢ > 0. We can also replace the requirement u(H) < 1/2 with u(H) <1 —¢
for any € > 0. If we do this, then we must allow C to also depend on c and ¢.

Unlike examples based on the methods of Bourgain, we do not require the support of u to be
close to the identity. We may prove the following.

Corollary 1.11. Forallr > 0, there exists some Zariski-dense finitely supported probability measure
1 on PSL,(R) such that all the elements in the support of 1 are conjugate to a diagonal matrix with
largest entry at least r under conjugation by a rotation and the Furstenberg measure generated by u
is absolutely continuous.

We also have the following family of examples supported on two elements.

Corollary 1.12. For all sufficiently large n € Z., the following is true.
Let A € PSL,(R) be defined by

n"-1 _ 2n
A= n2+1 n2+1
) 2n n2-1 |’
n2+1 n2+1
and let B € PSL,(R) be defined by
n3-;—1 0
B:=| "
= o -
n3+1

Let u= %5 4+ %53. Then u is Zariski-dense and the Furstenberg measure generated by u is
absolutely continuous.

1.2 | Outline of the proof

We will now give an overview of the proof of Theorem 1.6. We adapt the concept of detail from [27]
to work with measures on P'(R) or equivalently R/7Z instead of measures on R. The detail of a
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES | 7 0o 100

measure A around scale 7, denoted by s,(4), is a quantitative measure of how smooth a measure
is at scale r. We will define this in Definition 3.3. We then need the following result.

Lemma 1.13. Suppose that A is a probability measure on P'(R) and that there exists some constant
B > 1 such that for all sufficiently small r > 0, we have

s,(A) < (log r‘l)_ﬁ.
Then, A is absolutely continuous.

A similar result for measures on R is proven in [27, Lemma 1.18]. The same proof works for
measures on R/zZ.

In Definition 3.5, we introduce a new quantity for measuring how smooth a measure is at some
scale r > 0 which we will call order k detail around scale r and denote by sﬁk)(-). The definition is
chosen such that trivially, we have

SO, 5 2y 5 e 5 2) < 8,(10)5,(A) - 5,(Ay). )
We can also bound detail in terms of order k detail using the following lemma.

Lemma 1.14. Let k be an integer greater than 1 and suppose that A is a probability measure on
R/7Z. Suppose that a,b > 0 and o € (0, 1). Suppose that a < b and that forallr € [a, b], we have

sP) < a.
Then, we have

k—1
2e\ 2 21 -2
saﬁ(ﬂ)sak<;> + k! ka®b~2.

Remark 1.15. Combining Lemma 1.14 with (4), we get a result that can be stated informally as
follows. Let 4;,4,, ..., 4,, be measures on R/7Z. Assume that we have some bound on s,(4;) for
all integers i € [1,n] and all r in a suitably large range of scales around some scale r,. Then, we
can get a vastly improved bound for s, (4, # 4, s -+ % 4,,).

This is essentially the same as [27, Theorem 1.19]. However, [27, Theorem 1.19] is not suffi-
cient for the proof of our result on Furstenberg measures. In what follows, we decompose the
Furstenberg measure v as the convex combination of measures that can be approximated by
the convolutions of measures. This allows us to estimate sgk)(v) for arbitrary scales using (4)
amongst other things. Unlike the setting of, for example [27], we cannot estimate the detail of
the convolution factors at a sufficiently large range of scales and so cannot apply [27, Theorem
1.19].

In fact, the decomposition we use to estimate sﬁk)(v) depends on the exact value of r. For this
reason, the notion of order k detail is a key innovation of this paper that is necessary for the proof.

We now need tools for bounding the detail of a measure at a given scale. One of them is the
following.
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8 0of 100 | KITTLE

Lemma 1.16. For every a > 0, there exists some C > 0 such that the following is true. Let
X,,X,,...,X, be independent random variables taking values in R/nZ such that |X;| < s almost
surely for some s > 0. Let ¢ > 0 be defined by 0% = 2?21 VarX,. Letr € (s, 0). Suppose that

> C.

s

~1Q
v | N

Then,
55X+ X+ +X )<

Here and through out this paper when x € R/7Z, we use |x| to denote min,c, |y|. The idea
of the proof of Theorem 1.6 is to show that vog¢~! can be expressed as a convex combination of
measures each of which can be approximated by the law of the sum of many small independent
random variables with some control over the variances of these variables. One difficulty with this
is that the measures which vo¢~! is a convex combination of are only approximately the laws of
sums of small independent random variables of the required form. To deal with this, we will need
the following.

Lemma 1.17. There is some constant C > 0 such that the following is true. Let A, and A, be
probability measures on R/mZ and letr > 0. Letk € Z.,. Then,

s - sP)| < cr'wi(a,,1y).

Here, W, (-, -) denotes Wasserstein distance.

Now we need to explain how we express vog~! as a convex combination of measures each of
which are close to the law of a sum of small independent random variables. To do this, we will
need a chart for some neighbourhood of the identity in PSL,(R).

To do this, we use the logarithm from PSL,(R) to its Lie algebra p3[,(R) defined in some open
neighbourhood of the identity in PSL,(R). We also fix some basis of p3!,(R) and use this to identify
p3L,(R) with R3 and fix some Euclidean product and corresponding norm on p3[,(R).

Now we consider the expression

X =YY ¥rb,

where T is a stopping time, y;,7,,... are random variables taking values in PSL,(R) which are
i.i.d. samples from u and b is a sample from v independent of the y;. Clearly, x is a sample from
v. We then construct some o-algebra A such that we can write

X = gl exp(ul)QZ eXp(uZ) gn eXp(un)b9 (5)

where all of the g; are .4 -measurable random variables taking values in PSL,(R) and b is an A-
measurable random variable taking values in P'(R). Furthermore, the u; are random variables
taking values in p3[,(R) in a small ball around the origin such that conditional on .4 we can find
a lower bound on their variance. We then Taylor expand to show that ¢(x) can be approximated
in the required way after conditioning on .A. To do this construction, we construct stopping times
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES 9 0of 100

0=T,<T, <T, < -+ <T, =T and construct our random variables such that
g exp(u) = ¥r,_ 4171,
To explain this statement more precisely, we first need to define the Cartan decomposition.

Definition 1.18 (Cartan decomposition). We can write each element g of PSL,(R) with ||g|| > 1
in the form

R@l A/lR—sz

where

is the rotation by x and

A0
A= (0 /1—1>

in exactly one way with 1 > 1 and 6,,6, € R/wZ. We will let b*(g) = $~1(6,) and b~(g) =
3716, + 2).

Remark 1.19. Note that in this notation, we have that if || g|| is large then providing b € P'(R) is not
too close to b~(g), we have that gb is close to b*(g). We will make this more precise in Lemma 4.9.

We now let d denote the metric on P!(R) induced by ¢. In other words, if x,y € P1(R), then
d(x,y) 1= |¢p(x) — ¢(»)|. Whenever we write d(-, -), it will be clear whether we are applying it to
elements of PSL,(R) or elements of P'(R) and so clear if we are referring to the distance function
of our left invariant Riemannian metric on PSL,(R) or to our metric on P*(R).

By carrying out some calculations about the Cartan decomposition and applying Taylor’s
theorem, we can prove the following.

Proposition 1.20. For every t > 0, there exist C,5 > 0 such that the following is true. Letn € Z,
and let u™,u®, ..., u™ € p3L,(R). Let gy, ..., g, € PSLy(R) and let b € P'(R). Let r > 0. Suppose
that for each integer i € [1, n], we have
ol > €
and
@ 2
uv|l < ||9192 ---gi” r.

Suppose that for each integer i € [1,n — 1], we have

d(b*(g), b~ (gi11)) > t
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10 of 100 | KITTLE

and also that
d(b,b™(g,)) > t.
Suppose further that

9162 - 9| 'r < 8.

Let x be defined by
xX=gq expu)... 9n exp(u™)b. (6)
For each integer i € [1,n], let {; € p8L; be the derivative defined by

$i = Dy (¢(9195 - 9 €XP(U)Gi 419512 -+ GnDD =05 @)

and let S be defined by

n

S =¢(919; - 9ub) + 2 &i®).

i=1

Then, we have

d($(x),8) < C"| 9103 - 9u T

Informally, this proposition states that under some conditions, when x is of the form (6), then
$(x) is close to its first order Taylor expansion in the u(®.

In (7), D,, denotes the derivative of the map with respect to u.

We will later use this along with some results about the first derivatives of the exponential at 0,
Lemma 1.16, and (4) to get a bound on the order k detail of the expression x. We can then get an
upper bound on the order k detail of some sample x from v conditional on some o-algebra 4. Due
to the convexity of sﬁk) (+), we can then find an upper bound for sgk)(v) by taking the expectation
of this bound.

We will now outline some of the tools we will use to decompose x in the way described in (5).
To do this, we introduce the following stopping times.

Definition 1.21. Suppose that y = (y;,¥>, ... ) is a sequence of random variables taking values in
PSL,(R). Then given some P > 0 and some v € P!(R), we define the stopping time 7p(¥) by

> P|0lI},

tpu) i=infin ¢ |Gy y)0

where 0 € R?\{0} is a representative of v and T denotes transpose. Where y is obvious from
context, we will write 7p ,, to mean 7p ().

Note that this definition does not depend on our choice of J. We now let y,,7,,... be
ii.d. samples from u. We will show that we can find some o-algebra A, some .A-measurable
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES | 11 of 100

random variable a taking values in PSL,(R) and some random variable u taking values in a small
ball around the origin in p3I,(R) such that we may write y,7, ... Yep, =@ exp(u) and such that

conditional on .4 we know that u has at least some variance.

Firstly, we need to define some analogue of variance for random values taking values in
PSL,(R). For this, we will make use of log. Specifically given some fixed g, € PSL,(R) and some
random variable g taking values in PSL,(R) such that g 1g is always in the domain of log, we will
define Tr Var, [g] to be the trace of the covariance matrix of log(g, 1g). This clearly depends on
our choice of Euclidean structure on p3I,(R). The proof will work with any choice of structure
though the choice will affect the value of the constant C we find in Theorem 1.6.

We now define the quantity v(g;r) as follows.

Definition 1.22. Let g be a random variable taking values in PSL,(R) and let r > 0. We then
define v(g; r) to be the supremum of all v > 0 such that we can find some o-algebra .4 and some .A-
measurable random variable a taking values in PSL,(R) such that | log(a=!g)| < r almost surely
and

E[TrVar, [g|A]] > or?.

Proposition 1.23. There is some absolute constant ¢ > 0 such that the following is true. Let u be a
finitely supported Zariski-dense probability measure on PSL,(R) and let  be some probability mea-
sure on P1(R). Suppose that M, < oo and that hgy, [ x is sufficiently large. Let M > M,, be chosen
large enough that log M > hgy,. Suppose that P is sufficiently large (depending on u and M) and let
N logM

m= [ 10gO)( J

Letyy,7,,... beiid. samples from u and let 7p, be as in Definition 1.21. Then, there exist some
81,85, ..., 8,5 > 0 such that foreachi € [1,m]NZ

_logM _ hrw
sl-e(t Xt 10%)

and foreachi € [m — 1]
Siy1 2 Ps

and such that

S h 1 M -1
Z/ V(7172 Ve 5 8) P(dw) > c<ﬂ> <max {1,10g 0g }) ‘
i=1 PY(R) w X hRW

The measure ¥ for which we apply Proposition 1.23 comes from the following result in renewal
theory.

Theorem 1.24. Let u be a Zariski-dense compactly supported probability measure on PSL,(R).
Then there is some probability measure b on P1(R) such that the following is true. Let y,7, ... be
i.i.d. samples from p. Then for all v € P'(R), the law of (y,7, .. )/TPU)TU converges weakly to v as
P — oo. Furthermore, this convergence is uniform in v.
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12 of 100 | KITTLE

‘We will also need the following corollary.

Corollary 1.25. Let u be a Zariski-dense compactly supported probability measure on PSL,(R). Let
¥ be as in Theorem 1.24. Let y,Y;, ... be i.i.d. samples from u. Let a € PSL,(R), P > 0 and define

TP,a by

Tpq t=inf{n @ ||lay 7, v, = Pllall}.
Then b~ (ay,7; .- Y a)l converges weakly to D as P — oo. Furthermore, this convergence is uniform
in a. ’

In [26, Theorem 1], it is proven that Theorem 1.24 holds without the condition that it is uniform
in v in a much more general setting providing some conditions are satisfied. In [20, Section 4], it
is shown that the conditions of [26, Theorem 1] are satisfied in the setting of Theorem 1.24. In the
Appendix, we will prove Theorem 1.24 by deducing uniform convergence from (not necessarily
uniform) convergence and deduce Corollary 1.25 from it. A formula for ¥ is given in [26, Theorem
1] though this will not be needed for the purposes of this paper.

In Section 7, we show how to construct the decomposition (5) of a sample x from v. The details
are very technical, so we only discuss in this outline how given a sufficiently small scale 7 one can
construct a stopping time 7, and a o-algebra .A such that

Y1V2 - ¥r = gexp(u)

for some .4-measurable random variable ¢ taking values in PSL,(R) and some random u taking
values in p3L,(R) such that [[u]| < || g||* 7 almost surely and after conditioning on .4, we have a

%
good lower bound for ” aﬁffz.
g 15

We fix a small s and some P that is much smaller that s—!. Let 5;, be one of the scales we get
when we apply Proposition 1.23 with the measure from Theorem 1.24 in the role of 7.
Fix an arbitrary b € P'(R). Let Q = (s /sio)l/ 2 /P and let the stopping time S be defined by

S =inf{n : ||(y; ..7,) bl = Q|Ib]I}.

By Theorem 1.24, there is a random variable w taking values in P1(R) such that w' has law ¥
and

A~ (172 7s)w)

is small with high probability.
Now let

T =inf{n : |(ys417s42 - 7n) Wl = Plwh |}

Note that by Proposition 1.23, there is some o-algebra A such that

Ys+1Vs+2 - Y1 = aexp(u),
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES | 13 0of 100

where a is an .A-measurable random element of PSL,(R) and u is a random element of ps[,(R)

with [[u]| <'s;, and a good lower bound on —Trvgr(”).
i
Now we define g =y, ..ysa. Using the definition of w, it is possible to show that [|g|| is

approximately Q - P = (s/ sio)l/ 2,

Note that the scale 5; depends on the measure 7, so the convergence in Theorem 1.24 is
important. On the other hand, it does not matter what this limit measure is.

The construction in Section 7 is significantly more elaborate. In particular, we will make use
of all the scales s, ..., s,; provided by Proposition 1.23. Moreover, we will need to apply it for a
carefully chosen sequence of parameters in the role of P. To aid with this in Section 7, we construct
a family of ways of writing a stopped random walk in PSL,(R) in such a way that we may apply
Proposition 1.20 which is closed under concatenation.

Finally, we discuss some ingredients of the proof of Proposition 1.23. We define the entropy of
an absolutely continuous random variable taking values in PSL,(R) to be the differential entropy
with respect to a certain normalisation of the Haar measure and denote this by H(-). We define
this more precisely in Section 5.2. We will then prove the following theorem.

Theorem 1.26. Let g,s; and s, be independent random variables taking values in PSL,(R) such
that s, and s, are absolutely continuous and have finite entropy. Define k by

k :=H(gs;) — H(s;) — H(gs,) + H(s,),

andletc := % log %71’6 TrVary[s;] — H(s;). Suppose that k > 0. Suppose further that s, and s, are
supported on the ball of radius ¢ centred at the identity for some sufficiently small € > 0. Suppose
also that Tr Vary[s,| > Ae? for some positive constant A. Then

2
E [TrVargs2 [9|952]] > E(k —c¢—Ce)TrVary(s; ],
where C is some positive constant depending only on A.

We apply this theorem when s; and s, are smoothing functions at appropriate scales with s,
corresponding to a larger scale than s;. The value k can be thought of as the new information
that can be gained by discretising at the scale corresponding to s; after discretising at the scale
corresponding to s,. When we apply this theorem, we bound k in the following way. We let g =
Y12 - ¥ Where the y; are i.i.d. samples from u and 7 is some stopping time. We let 5, 55, ..., 5,, be
a sequence of smoothing random variables corresponding to various scales with s; corresponding
to a larger scale than s; whenever i > j. Fori =1,...,n — 1, we let k; be defined by

k; = H(gs;) — H(s;) — H(gs; 1) + H(s;41),

and note that we have the following telescoping sum:

1 n—1
k; = ) H(gs;) —H(s;) — H(gs;q) + H(s;41)

i

n

Il
_
Il
—

= H(gsl) - H(Sl) - H(gsn) + H(Sn)-
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14 0f 100 | KITTLE

Since when we apply this theorem, s, will correspond to a scale much larger than s; we are able to
bound H(gs,) — H(s;) — H(gs,) + H(s,,) for our careful choice of smoothing functions in terms
of hpyy, Mu and y.

The value c in the above theorem measures how close s, is to being a spherical normal dis-
tribution. For random variables taking values in R¢, it is well known that the random variable
with the greatest differential entropy out of all random variables with a given covariance matrix
is a multivariate normal distribution. From this, it is easy to deduce that if X is a continuous ran-
dom variable taking values in R¢, then H(X) < %log 577.’8 TrVar X with equality if and only if
X is a spherical normal distribution. A similar thing is true for random variables taking values
in PSL,(R). In particular, c is small when s, is close to being the image of a spherical normal
distribution on p3l,(R) under exp.

For the conclusion of Theorem 1.26 to be useful in proving Proposition 1.23, we need g to almost

surely be contained in some ball of radius O <\/Tr Varld[sl]) centred on gs,. For this reason, we

require s, to be compactly supported. To make our telescoping sum useful, we need s; and s,
to be members of the same family of random variables. For this reason, we take s; and s, to be
compactly supported approximations of the image of the spherical normal distribution on p3L,(R)
under exp. To do this, we will find bounds on the differential entropy of various objects smoothed
with these compactly supported approximations to the normal distribution at different scales.

We then combine Theorems 1.26 and a bound for the entropy of the stopped random walk
along with some calculations about the entropy and variance of the smoothing functions to prove
Proposition 1.23.

1.3 | Notation

We will use Landau’s O(-) notation. Given some positive quantity X, we write O(X) to mean some
quantity whose absolute values is bounded above by CX some constant C. If C is allowed to depend
on some other parameters, then these will be denoted by subscripts. Similarly, we write o(X) to
mean some quantity whose absolute value is bounded above by cX, where c is some positive value
which tends to 0 as X — o0. Again, if c is allowed to depend on some other parameters, then these
will be denoted by subscripts. We also let ©(X) be some quantity which is bounded below by CX
where C is some positive absolute constant. If C is allowed to depend on some other parameters,
then these will be denoted by subscripts.

We write X <Y to mean that there is some constant C > 0 such that X < CY. Similarly, we
write X > Y to mean that there is some constant C > 0 such that X > CY and X = Y to mean
X S Yand X > Y. If these constants are allowed to depend on some other parameters, then these
are denoted in subscripts.

1.4 | Organisation of the paper

Here, we give some brief remarks on the organisation of the paper. In Section 2, we state some
results on random walks on PSL,(R), entropy and probability which will be used thoughout the
paper. In Section 3, we recall some results on detail from [27] and introduce order k detail. In Sec-
tion 4, we carry out some calculations on derivatives of various products in PSL,(R) and prove
Proposition 1.20. In Section 5, we prove some basic results about entropy, regular conditional
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES | 15 0of 100

probability and variance on PSL,(R) and use them to prove Theorem 1.26. In Section 6, we use The-
orem 1.26 and some calculations with entropy to prove Proposition 1.23. In Section 7, we develop
some tools for putting together the variance found in Proposition 1.23 at different scales. In Sec-
tion 8, we use these tools to prove Theorem 1.6. In Section 9, we give examples of Furstenberg mea-
sures satisfying the conditions of Theorem 1.6. Finally, in the Appendix, we prove Theorem 1.24.

2 | PREREQUISITES

In this subsection, we give some prerequisites for the paper.

2.1 | Random walks on PSL,(R)

Here, we give some well-known results about random walks on PSL,(R). These results may be
found in [7] or follow easily from results found therein.

Lemma 2.1. Suppose that u is a compactly supported Zariski-dense probability measure on PSL,(R)
and let y be its Lyaponuv exponent. Let ¥, Y5, ... be i.i.d. samples from u. Then for every ¢ > 0, there

is some & > 0 such that the following holds.
For all sufficiently large n, we have

P[|nx —log|[y175 - 7all| > en] < exp(—8n). )
Furthermore, for all v € R?\{0} for all sufficiently large n, we have
P“n}( + log ||v]| — log ||(y1y2 ---Vn)TU|H > zn] < exp(—dn). 9
Furthermore, if P > 0 is sufficiently large and we define
tp i=inf{n : |[y175 74| = P},
then
P[|tp —logP/x| > elogP| < exp(—&logP). (10)

Furthermore, for all v € P'(R) for all sufficiently large P > 0 if we take Tp as in Definition 1.21,
then

P[|tp, —logP/x| > €logP| < exp(—5logP). 1)
Proof. Equation (8) follows from [7, Theorem V.6.2]. Equation (9) is a special case of [7, Theorem

v.6.1].
We now deduce (10) from (8). If p > log P/ y + €log P, then we must have

”71)/2 ¥ |logP/x+¢logP| “ <P
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16 0f 100 | KITTLE

By (8), providing P is sufficiently large, this has probability at most exp(—& log P).

Choose R > 0 such that ||y;|| < R almost surely (this is possible as u is compactly supported). If
7 < logP/y — €log P, then there must be some integer k € [logP/logR,log P/ — €log P] such
that

log ||y1y2 ...yk|| > logP > k(y +¢ey).

The result now follows from (8) and summing a geometric series.
Finally, (11) follows from (9) by essentially the same argument. O

We will need the following positive dimensionality result.

Theorem 2.2. Suppose that u is a Zariski-dense probability measure on PSL,(R) and let v be its
Furstenberg measure. Suppose that there exists some € > 0 such that

/ 911 du(g) < oo.

Then, there exist C,5 > 0 such that for any x € PY(R) and any r > 0, we have
v(B(x,r)) < Cre.
Proof. Thisis [7, Corollary VI1.4.2]. O
‘We also need the following facts about the speed of convergence to the Furstenberg measure.
Lemma 2.3. Suppose that u is a compactly supported Zariski-dense probability measure on

PSL,(R) and let y;,7,, ... be i.i.d. samples from u. Then, b*(y,v, ... v,.) converges almost surely, and
furthermore, there exists some constant ¢ > 0 such that for all sufficiently large n,

PlA(b* (7175 - Vn)s nh_)nolo b*(y175 - ¥n)) > exp(—en)] < exp(—en). (12)
Furthermore, for all sufficiently large N, we have
P[In > N : db* (175 Vo) n%l_rgo bt (1172 - ¥m)) > exp(—en)] < exp(—eN), 13)
and for allv € P'(R), we have
P[Im > N : d(v,b*(y; ... 7)) < exp(—em)] < exp(—SN). (14)
Proof. The convergence of b*(y,¥, ... 7,,) and (12) follow from for example [7, Proposition V.2.3].
Equation (13) follows from (12) and summing a geometric series. Finally, (14) follows easily from

(13) and Theorem 2.2. Ol

We finish this subsection with the following corollary.
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES | 17 of 100

Corollary 2.4. Suppose that u is a compactly supported Zariski-dense probability measure on
PSL,(R). Let y;,¥, ... be i.i.d. samples from u and let € > 0. Then there exists delta > 0 such that
for all sufficiently large P and all v € P1(R), we have

[P’[’log ”)/1;/2 Y|l — logP| > elog P] < exp(—8log P).

Proof. By definition, we trivially have Hy1y2 wYep, H > P. Let R be chosen such that ||-|| < Ron the
support of u. Clearly, 7p , > log P/ logR and

PR 7272, 70

= |72y, || sind®* vy ve, D)

In particular, if log ”ylyz wVp, ” > (1+¢)logP, then

d(b* (7172 ¥z, ) U) < 10R exp(—e log P).

The result now follows by (14). O

2.2 | Entropy

In this subsection, we will describe some of the properties of entropy used in this paper. We will
describe entropy for both absolutely continuous and discrete measures on R¢ and PSL,(R).

Definition 2.5 (KL-divergence). Let 4, be a probability measure on a measurable space (E, &)
and let 1, be a measure on (E, &). Then, we define the KL-divergence of 4, given 1, by

da
KL, ,) = /E logd—/lld/ll.

Definition 2.6 (Entropy). Given a probability measure 1, on a measurable space (E, ) and a
measure 1, on the same space, we define the entropy of A; with respect to 4, by

D(A44[|14y) 1= —KL(A1, ;).

Definition 2.7. Given a discrete probability measure 1 on some measurable set (E, §), we define
the entropy of 4 to be the entropy with respect to the counting measure and we denote this by
H(A). In other words, if 4 = ¥, p;6,, then

H() := - p;logp;.
i

We define the entropy of a random variable to be the entropy of its law.
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18 0f 100 | KITTLE

Definition 2.8. Given an absolutely continuous probability measure 1 on R?, we define the
entropy of 1 to be the entropy of 1 with respect to the Lebesgue measure and denote this by H(1).
We define the entropy of a random variable to be the entropy of its law.

We use H to denote entropy in both cases. It will be clear from context whether H is being
applied to a discrete measure (or random variable) or an absolutely continuous measure (or
random variable), so this will not cause confusion.

We now wish to define entropy for an absolutely continuous probability measure on PSL,(R).
To do this, we introduce the following normalisation of the Haar measure.

Definition 2.9. Let 1 denote the Haar measure on PSL,(R) normalised such that

dm

——((Id) =1,
dmolog( )

where m denotes the Lebesgue measure on p3l,(R) under our identification of psl,(R) with R3.

Definition 2.10. Let A be an absolutely continuous measure on PSL,(R). We then define the
entropy of 4 to be its entropy with respect to riz and denote this by H(1).

Similarly, if g is a random variable taking values in PSL,(R), then we let H(g¢) denote the entropy
of its law.

We have the following simple result.

Lemma 2.11. Suppose that g, and g, are independent random variables taking values in some
group G with o-algebra €. Let A be a left invariant measure on (G, §). Then,

D(L(g,9,)114) = D(L(gx)[|A).

Here and throughout this paper given a random variable X, we will use £(X) to denote the law
of X

Proof. This is well known. A proof in the special case where G = (R, +) is given in [23, Lemma
1.15]. The same proof works in the more general setting described above. I

‘We also define entropy for non-probability measures.

Definition 2.12. Suppose that 4 is a finite measure discrete measure on some set S. Then, we
define

H() = Al H@A/ A1),

where H(A/ ||A||;) denotes either the Shannon entropy of A/[|1||;. Similarly if 1 is a finite
absolutely continuous measure on R¢ or PSL,(R), we define H(1) := ||A||; H(1/ ||A||;) where
H(A/ ||A]l,) denotes the differential entropy of 4/ ||1]|; with respect to the Lebesgue measure on
R? or 11, respectively.
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES | 19 of 100

We say that a finite discrete measure with masses p,, p,, ... has finite entropy if
[se]
ZPH log p;| < 0.
i=1

Similarly, we say that a finite absolutely continuous measure on R¢ or PSL,(R) with density func-
tion f with respect to the Lebesgue measure or our normalised version of the Haar measure has
finite entropy if

/fllogf|<oo-

‘We now have the following simple lemmas.

Lemma 2.13 (Entropy is concave). Let A,,1,,... be finite measures with finite entropy either all
on R? or all on PSL,(R) which are either all absolutely continuous or all discrete. Suppose that
Yo 14illy < oo andboth H (X2 4;) and Y22 H (4;) tend to 0 as N — 0. Then

LOWHEDW:(¢H]
i=1 i=1

Proof. This is proven for measures on R? in [27, Lemma 4.6]. The same proof also works in this
setting. [l

Lemma 2.14 (Entropy is almost convex). Let A,,1,,... be probability measures either all on R4
or all on PSL,(R) which are either all absolutely continuous or all discrete. Suppose that all of the
probability measures have finite entropy. Let p = (py, P, --- ) be a probability vector. Then,

H<Z pi&-) <Y pH(A) + H(p).
i=1 i=1
In particular, if p; = 0 for alli > k for some k € Z., then
k k
H(Z pi/li> < Q, piH(A) +logk.
i=1 i=1

Proof. This is proven in [27, Lemma 4.7] for measures on R¢. The same proof works in this
setting. [l

Lemma 2.15. Let d be the distance function of a left invariant metric and let r > 0. Suppose that g

is a discrete random variable taking values in PSL,(R) and that there are x;,X,, ..., x, € PSL,(R)
and a probability vector p = (py, p,, ..., P,) Such that

Plg = x;] = p;-
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20 0f 100 | KITTLE

Suppose further that for every i # j, we have d(x;, x;) > 2r. Let h be an absolutely continuous ran-
domvariable taking values in PSL,(R). Suppose that d(1d, h) < r almost surely. Suppose further that
h has finite entropy. Then,

H(gh) = H(g) + H(h).

Proof. This is proven for random variables taken values in R¢ in [27, Lemma 4.8]. The same proof
works in this context. O

We will also adopt the following convention for defining the entropy on a product space. Let
(E;, &) and (E,, £,) be measurable spaces endowed with reference measures m, and m, such that
if A is a measure on (E;, §;), then we define the entropy of 1 by H(1) := D(A||m;). Then we take
m, X m, to be the corresponding reference measure for E; X E,. That is given some measure 1 on
E, X E, we take the entropy of 1 to be defined by H(1) = D(4||m; X m,). With this, we can give
the following definition.

Definition 2.16 (Conditional entropy). Let X; and X, be two random variables with finite
entropy. Then, we define the entropy of X, given X, by

H(Xl |X2) = H(XI’XZ) - H(Xz)-

2.3 | Probability

In this subsection, we will list some standard results from probability which we will use in this
paper.

Definition 2.17 (Filtration). We say that a sequence of o-algebras F = (F, F,, ...) is a filtration
if 7, C F, C .... Furthermore, if we are also given a sequence of random variables y = (y1, 75 -..),
then we say that 7 is a filtration for y if in addition y; is F;-measurable.

Definition 2.18 (Stopping time). Given a filtration F = (F;, F,, ... ), we say that a random vari-
able T taking values in Z., is a stopping time for F if for every n € Z,,, theevent T = n is F,
measurable. Given a sequence of random variablesy = (yy,75, ... ), we say that T is a stopping time
for y if it is a stopping time for the filtration o(y,), o(¥1, ¥2), (1, ¥2:¥3)s - -

Stopping times and filtrations are important objects in probability. A fundamental property is
that if 7 is a filtration for a sequence of i.i.d. random variables y with y;,; independent of F;
for all i and T is a stopping time for F, then (¥, 1, Y742, Y743, ---) has the same law as (y, 75, ...)
and is independent of F. This is known as the strong Markov property. For a more thorough
introduction to stopping times and filtrations, see, for example, [28, Chapter 17].

Lemma 2.19. Let G be a group acting on some set B. Let u be a probability measure on G and

suppose that v is some probability measure on B which is invariant under u — that isv = y * v.
Let y1,¥,,... bei.id. random variables with law u and let F; be a filtration for the y; such that

Yi+1 is independent from F; . Let T be a stopping time for the filtration F;. Let b be an independent
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES 21 0f 100

sample from v. Then

V1Y Vb

has law v.

Proof. Firstly we will deal with the case where there is some N € Z,, such that 7 < N almost
surely. By the strong Markov property, we know that

Ye41Vr42 - ¥YND

has law v and is independent from y,, ¥, ..., ;. In particular, this means that y,y, ... y.b has the
same law as y,¥, ... yyb and so y,¥, ... y.b has law v. The general case follows by considering the
stopping time 7/ = min{r, N} and taking the limit as N — oo. O

Lemma 2.20. Let (P, Q, §) be a probability space. Suppose that y,, ¥, ... are i.i.d. random variables
on this probability space taking values in some measurable set X with filtration A; and suppose that
Yit1 is independent of A;. Let S be a stopping time for (A;)2, and let A C & be a o-algebra which is
conditionally independent of yg.1, V542, .- 8iVeNy1,¥,,...,¥s. Fori = 1,2, ..., define F; by

Fi={Fet :Fn{i<St€ A, Fn{i>S}e€o(A; A}
Then F; is a filtration for the y; and y; . is independent of F;.

Firstly note that this lemma is in some sense trivial. Essentially, it says that if we have a sequence
of independent random variables which we sequentially draw and after some stopping time we
gain some extra information which is conditionally independent of everything after that stopping
time given what we have seen so far, then at each step in this process, the value of the next ran-
dom variable will be independent of all the information we have so far. We now give a formal
proof.

Proof. 1tis trivial that ; is a filtration for the y;. This means that we only need to show thaty,; is
independent of 7;. Let D C X be measurable and let F € F;. Then we have F N {i < S} € A; and
so since y;,, is independent of A;, we have

PIFn{i <S}n{y;;; € D} =P[Fn{i <SHP[{y;+, € D}]. 15)

We also know that for each integer k < i, we have F N {S = k} € 0(A;, A;). This means that for
each k < i, we can write

FniS=k}=||A;nB;
j=1

withA; € A;, A; c{S=k}andB; € A. Here, | | denotes a disjoint union.
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Since A is conditionally independent of yg,;,¥g4s,.. given yq,73,..,¥s and Aj e
0(¥1,¥2» - »¥s), We have

PlA; nBjn{yiy1 € D =PlA;nB;jN{ys;iz1—k € D}
= P[B; N{¥siis1-k € DYA;IP[A)]
= P[B;|A;IP[{ys4i11-1 € D}HA;IPIA;]
=P[A; N B;[P[{ys4it1-k € D}l
= P[A; nB;IP[{y;;, € D}].
Summing this result over j gives
PIFN{S = k} N {1y, € DY = PIF N {S = KIP[{y, € DY.

Summing over k and adding (15) completes the proof. O

2.3.1 | Regular conditional probability

In order to understand our decomposition (5) after conditioning on A and in order to prove
Theorem 1.26, we need to introduce the concept of regular condition probability.

For a more comprehensive text on regular conditional distributions, see, for example, [28, Chap-
ter 8]. Some readers may be more familiar with the use of conditional measures as described in,
for example, [14, Chapter 5]. These two concepts are equivalent.

Definition 2.21 (Markov kernel). Let (Q;, .4,) and (Q,, A,) be measurable spaces. We say that a
function x : Q; X A, :— [0, 1] is a Markov Kernel on (©, A;) and (Q,, A,) if:

* For any A, € A,, the function w; ~ x(w;, A,) is A; — measurable
* For any w; € Q,, the function A, — x(w,;, A,) is a probability measure.

Definition 2.22. Let (Q,F,P) be a probability space, let (E, £) be a measurable space and let
Y : (Q,F) - (E, &) be arandom variable. Let A C F be a g-algebra. Then, we say that a Markov
kernel

Ky a4 Qx§—[0,1]
on (Q, A) and (E, £) is a regular conditional distribution for Y given A if

ky 4(w,B) = P[Y € B|A]

for all B € £ and almost all w € Q.
In other words, we require

P[AN{Y € B} =E[l xy 4(-,B)| forall A€ A,B € &.
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES | 23 0f 100

In the case where Y is as above and X is another random variable taking values in some measur-
able space (E’, £'), then we let the regular conditional distribution of Y given X refer to the regular
conditional distribution of Y given o(X). For this definition to be useful, we need the following
theorem.

Theorem 2.23. Let (Q,F,P) be a probability space, let (E, &) be a standard Borel space and let
Y : (Q,F) - (E, &) be a random variable. Then given any o-algebra A C F, there exists a regular
conditional distribution for Y given A.

Proof. This is [28, Theorem 8.37]. N

Definition 2.24. Given some random variable Y and some o- algebra .4 C F (or random variable
X), we will write (Y|.A) (or (Y|X)) to mean the regular conditional distribution of Y given A (or
given X).

We also let [Y].A] (or [Y|X]) denote random variables defined on a different probability space
to Y which have law (Y|.A) (or (Y|X)).

One can easily check that if the regular conditional distribution exists, then it is unique up to
equality almost everywhere.
Next, we will need the following simple facts about regular condition distributions.

Definition 2.25. Let (Q, F,P) be a probability space and let A C F be a o-algebra. We say that
two o- algebras G;, G, C F are conditionally independent given A if forany U € G, and V € G,,
we have

P[UNV|A] = P[U|A]P[V]|A]
almost surely. Similarly, we say that two random variables or a random variable and a o-algebra
are conditionally independent given A if the o-algebras generated by them are conditionally
independent given A.
Now we have these three lemmas.
Lemma 2.26. Let (Q, F,P) be a probability space and let A C F be a o-algebra. Let g and x be
random variables on (Q, F, P) with g taking values in PSL,(R) and with x taking values in X where
X is either PSL,(R) or P}(R). Suppose that g and x are conditionally independent given A. Then,
(9x].4) = (g]A) * (x|.A)

almost surely.

Proof. This follows by essentially the same proof as the proof that the law of gx is the convolution
of the laws of g and of x and is left to the reader. O

Lemma 2.27. Let (Q, F,P) be a probability space and let A C F be a g-algebra. Let g be a random
variable taking values in some measurable space (X, &). Let G be a o-algebra such that

ACGCF,
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and g is independent of G conditional on A. Then,
(919) = (glA).
Proof. This is immediate from the definitions of the objects involved. O

Lemma 2.28. Let (Q, F, P) be a probability space and let A C F be a o-algebra. Let g be a random
variable taking values in some measurable space (X, £). Suppose that g is A-measurable. Then

(9lA) =4,
almost surely.
Proof. This is immediate from the definitions of the objects involved. O
Lemma 2.29. Let (Q, F,P) be a probability space and let A C F be a o-algebra. Let g be a random
variable taking values in some measurable space (X, §). Let G be a o-algebra such that A C GC F
and g is G measurable. Let A € A and construct the o-algebra A by

A=0,{GeC:GcA).

Then, for almost all w € Q, we have

A _ 59 l‘fco < 4
(gl D) (w,-) = {(gI.A)(CU’ -) otherwise.

Proof. Let

. 5g ifoe A
Qlw,-) := {(gIA)(“’") otherwise.

We will show that Q satisfies the conditions of being a regular conditional distribution for g
given A. Clearly, Q is a Markov kernel. Now let D € A and let B € £. We simply need to show
that

PID n{g € B}] = E[1,Q(, B)]. (16)

First suppose that D C A. In this case, the right-hand side of (16) becomes E[Ipl 5] which is
trivially equal to the left-hand side.

Now suppose that D C A€. This means that D € A. In this case by the definition of (g]|.A)(w, -),
we know that (16) is satisfied.

The general case follows by summing. [l

‘We also need some results about the entropy of regular condition distributions.
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Definition 2.30. Given some random variable Y and a o-algebra A C F, we define H((Y|.A)) to
be the random variable

H((Y|A)) : @ = H((Y]A)w, ),

where (Y].A)(w, -) is the regular conditional distribution for Y given .A. Similarly, given some
random variable X, we let H((Y|X)) := H((Y|o(X))).

Lemma 2.31. Let X, and X, be two random variables with finite entropy and finite joint entropy.
Then

H(X,1X,) = E[H((X,]X,))].

Proof. This is just the chain rule for conditional distributions. It follows from a simple
computation and a proof may be found in [38, Proposition 3]. O

Lemma 2.32. Let g be a random variable taking values in PSL,(R), let A be a o-algebra and let a
be a A-measurable random variable taking values in PSL,(R). Then,

H((agl|A)) = H((g|.A))

almost surely. In particular, if h € PSL,(R) is fixed, then

H(hg) = H(g).

Proof. For the first part, note that [ag|.A] = a[g|.A] almost surely. Also note that by the left
invariance of the Haar measure

H(a[g|A]D = H([g]-AD.

The last part follows trivially by the first part. O

3 | ORDER k DETAIL

In this section, we discuss the basic properties of detail around a scale. We will recall basic
properties of detail from [27] and introduce order k detail and prove some properties of
it.

Detail is a quantitative measure of the smoothness of a measure at a given scale. The detail of a
measure at some scale r > 0 is close to 1 if, for example, the measure is supported on a number of
disjoint intervals of length much smaller than r, which are separated by a distance much greater
than r. The detail of a measure is small if, for example, the measure is uniform on an interval of
length significantly greater than r.

We now explain how we extend the concept of detail to measures taking values in P!(R) or
equivalently R /7 Z. For this, we need the following.
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Definition 3.1. Given some y > 0, let 7, be the density of the pushforward of the normal
distribution with mean 0 and variance y onto R/zZ. In other words, given x € R/7Z, let

7,00 1= ) 0, w).

uex

We will also use the following notation.

Definition 3.2. Given somey > 0, let ﬁ; be defined by

We now define the following.

Definition 3.3. Given a probability measure A on R/7Z and some r > 0, we define the detail of

A around scale r by
) mwe ~
5.(4) :=r \/—2 ”/1 * 7o,

Similarly, we define the detail of a probability measure on P'(R) to be the detail of the pushfor-
ward measure under ¢ and we define the detail of a random variable to be the detail of its law. The

factor r2‘ / ? exists to ensure that s,(4) € [0,1]. The smaller the value of detail around a scale,
the smoother the measure is at that scale.

Remark 3.4. We motivate our definition of detail as follows. Earlier work on stationary measures,
including [12, 21, 22] and [37] studied quantities like

H(,Ll * Frl) —H(,Ll * Fr2)7
where F, is a smoothing function associated to scale r (e.g. the law of the normal distribution with

standard deviation r or the law of a uniform random variable on [0, r]). Motivated by this and the
work of Shmerkin [35], it is natural to study quantities like

I Fy Nl — s % Fy -
However, it turns out to be more useful to study
”:u*Frl —/«‘*Fr2||p

at least when p = 1. Detail is an infinitesimal version of this quantity with Gaussian smoothing.

The Gaussian is chosen because the heat equation plays an important role in the proof of
Lemma 3.6 and [27, Lemma 2.5]. The property that the convolution of a Gaussian with a Gaussian
is another Gaussian also plays a key role.
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In Section 3.1, we introduce a new quantity which we refer to as order k detail. In Section 3.2,
we use this to bound detail. In Section 3.3, we prove Lemma 1.17. Finally, in Section 3.4, we prove
Lemma 1.16.

3.1 | Order k detail

We can now define the order k detail around a scale.

Definition 3.5 (Order k detail around a scale). Given a probability measure A on R/7Z and some
k € 7, we define the order k detail of 1 around scale r, which we will denote by sfk)(l), by

8@ 1=k

We also define the order k detail of a measure on P'(R) to be the order k detail of the pushfor-
ward measure under ¢ and define the order k detail of a random variable to be the order k detail
of its law. It is worth noting that sﬁl)(-) = 5,(-). We will now prove some basic properties of order
k detail.

Lemma 3.6. Let 14, 4,, ..., A, be probability measures on R/7Z. Then, we have
SO, 5 2y 5 e % 4) < 5,(10)5,(A) . 5,(Ay).
This is (4) from Section 1.2.

Proof. From the heat equation, we know that

ny( x) = ny(x)

262

Therefore, by standard properties of convolution, we have

ak . a2k
P = ~— k2
dyk J—ker? a 2k KT
_ (12 194° (128
=257 ) * (252" 252
k times
= ﬁiz * ﬁ;z Hoeee ok ﬁ,l,z’
k times
and therefore,
ak ~ ~/ ~/ ~/
/11*/12*---*/1,{*@% = Ay H Ny ok Ay Ay ke Ay kT,

QT 'SZ0Z ‘XprZ09vT

wouy

SUONIPUOD PUe SWLB | 3U) 88S *[S202/80/.2] U0 AigiauluQ /B[IMm ‘S301nes ARiqi JON uopuo 8|0 AiseAlun Aq Z200L SWid/ZTTT OT/I0pAu0d A M A

FETVS

35UB0 |17 SUOWIWOD dAIER.D 3 el idde 8y Aq peusenoh ae sapiLe O ‘8sn Jo s3ni Joj Ariqiauliuo A3|IAm uo



28 of 100 | KITTLE

This means
A %Ay %k oo x A *i" <Hl *"'/ Hl *”l . HA *"'/
1 ¥4 k Ayt Ny o SHA * Dz ||y |42 * 2|y (/oY | P
The result follows. O

The following corollary will be useful.
Corollary 3.7. Suppose that A is a probability measure on R/ Z. Then,
s < 1.

Proof. This is immediate by letting all but one of the measures in Lemma 3.6 be a delta
function. Ll

There is no reason to assume that the bound in Corollary 3.7 is optimal for any k > 2. Indeed, it
is fairly simple to show that it is not. However, the trivial upper bound of 1 will still prove useful.

We also need the following corollary of Lemma 1.16 (which will be proven in Section 3.4) and
Lemma 3.6.

Corollary 3.8. For every a > 0, there exists some C > 0 such that the following is true. Let
X,,X,,...,X, be independent random variables taking values in R/nZ such that |X;| < s almost
surely for some s > 0. Let o > 0 be defined by 0* = Y VarX;. Let r € (s,0). Let k € Z, and
suppose that

K > C
S
and
2
o
r_2 > Ck.
Then,

S}Ek)(Xl + X2 + .- +Xn) < C(k
Proof. Let C; be the C from Lemma 1.16 with this value of a. Suppose that
r
- > maX{Cla 1}
s
and

2
(o)
= > (C? + Dk.
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Partition [1,n] N Z into k sets J;,J,, ..., J; such that for eachi = 1,2, ..., k, we have

Z VarX; > Cir.
JEJ;

This is possible by a greedy algorithm. Note that by Lemma 1.16, this means

sr<ZXj> <a.
=

Kk
X +X, 4 +X, =) (ZXJ>

i=1 \jeJ;

Noting that

and applying Lemma 3.6 gives the required result. O

3.2 | Bounding detail using order k detail
The purpose of this subsection is to prove Lemma 1.14. For this, we first need the following result.

Lemma 3.9. Let k be an integer greater than 1 and suppose that A is a probability measure on R /7.
Suppose that a,b,c > 0 and a € (0, 1). Suppose that a < b and that for allr € [a, b], we have

sgk)(ﬂ.) <a+cr?k, 17)
/[ k [/ k
a m, b m:l , we have

sfk_l)(/l) < 1 ﬁ T / %a + (b7 + kbzc)rz(k‘l).

Then, forallr €

Proof. Recall that

®) me\s ok
_ 2k 2 o~
= (5 ) A g

This means by (17) that when y = kr?, we have
me\"s me\~
< ocr_2k<—) 2 4 c(—)
2 2

1
_k
= ay'kkk<—”2e> ‘te

k
l*—ﬁy

—
)
NE
SN——
[

[Tk
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for all y € [ka?, kb?]. This means that for y € [ka?, kb?], we have

ak—l
‘/1 * Sy 17]y
gk-1 kb? k
<A ——7 + A% 7, | du
ER] W /y H K|,
k—1 kb? _k _k
Sl [ et () ()
duk-1 u=kb2 1 y 2 2
—k+1 (ke —k+1 _k _k
kb? me\~k=D/2  y K(me\ "3 e\ "2
< e K(5F) 7 +Rve(TE) 7 18
(k—l) (2) T\ e s 8
where in (18), we bound | ;:T__llﬁu el using the fact that order k — 1 detail is at most one,
u=

_k _k _k
we bound fykb2 au KKk <”7e> * du by Jy7 au Kk (%e) ? du and bound fykbz c (%e) * du by

=

R _k
/Okb c(%) * du. Noting that

and
-1
=)
we get
gk—1 y (e -£ —2k+2 2.\ (e -5
Ak S <ock_1k (5) "+ wiie)(5) 7

Substituting in the definition of order k detail gives

k=1

T = ()

ak—l
*
ayk—l

Ty

y=(k-1)r?||;

_1 2\—k+1 _1
20k=1)( €Y 2 (k= Dr) k 4 2k=1)( T€\ 2 (3 —2k+2 2
<r (2) am Kt (2) (b=2*2 4 kbc),

and so, we have

W <y 2 (14 ) + (575 4 kb))
\/==,by/==|. Noting that (1 + - “ < % ¢ givesth ired result
ay/=5-by/ 7 |- Noting that 1+ = ) < ;= e gives the required result. O

forallr €
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‘We apply this inductively to prove Lemma 1.14.

Proof of Lemma 1.14. Using Lemma 3.9, we will prove by induction for j = k,k — 1, ..., 1 that for
allr € [a\/?b\/ﬂ,we have
k=j

sﬁj)(/l) < al—c_<%>7 + Eb_zjrzj.
A Jt

The case j =k follows by the conditions of the lemma. Suppose that for all r e

a,/i,b L , we have
Jj+1 Jj+1

-
sI) < a—— k (2) Ty My,
j+1\~x G+

Then, by Lemma 3.9 for all ¥ > 0 such thatr € [a \/? , b\/ﬂ , we have

k=
6 k(2e\7 —2j | 2 k! 2o 2j
Aga=(= + (b7 + jb*| ———=b~ J
W <a3(T) < 7 ((j+1>! ’
k(2e\ 7 k! k!
€\ 2 : —2j 4 2 : —2j-2 2j
<a—=|— + b= + jb b= J
(%) <(j+1>! ! <<j+1)! ))’
k(2e\' 7 g
e\ 2 . : —2i.2i
=a—|= +(+1)——=br¥
“j(n) U+ DGt
k(2\ 7 _ ki
=oc—.(—e> Py SpAp
j\m J!
as required. Lemma 1.14 follows easily from the j = 1 case. O

3.3 | Wasserstein distance bound

In this subsection, we will bound the difference in order k detail between two measures in terms
of the Wasserstein distance between those two measures. Specifically, we will prove Lemma 1.17.
Firstly we need to define Wasserstein distance.

Definition 3.10 (Coupling). Given two probability measures 4, and 1, on a set X, we say that
a coupling between 1, and 4, is a measure y on X X X such that y(- X X) = 4;(-) and y(X X -) =

A0)-

Definition 3.11 (Wasserstein distance). Given two probability measures A; and 1, on R/7Z, the
Wasserstein distance between 4, and 1,, which we will denote by W, (1, 1,), is given by

Wy(41,42) i= inf / 1% =y y(dx, dy),
velJ(r/nzy

where I is the set of couplings between 4, and 4,.
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We can now prove Lemma 1.17.

Proof of Lemma 1.17. Let X and Y be random variables with laws 4; and 4,, respectively. Then,
we have

ak o) ak
(r=)x 55m|  @)=E lakny G h kz(”_y)]'
y=kr y=kr y=kr
In particular,
1 —A)x Ly <& x)- s Y
(4, - 2)*@% kz(v)\[ankUy kl(v_ )—ﬁny kZ(v_ |-
y=kr y=kr y=kr
‘We note that
o w-x)- w-v)|< [ |2 (0 — )| ldul
—17] vV—X)— —7] v — < / —17 v —u)||dul,
ayk Y y=kr2 ayk Y y=kr2 X 5xayk ’ y=kr2

where

Yy
/ \dul
X

is understood to be the integral along the shortest path between x and y. This means that

ak Y gk+1
G-iys 2on <[ el [ 2] @) iaul| v
y y=kr||; R/7Z X Xoy y kr2
[ Y ak+1
=E / / (v —u)|dv|du|
| Jx Jwr/nz 6x6y" ykr2
_/Y ak+1 d |]
=F —7, u
| /X 5X5yk y=kr2||;
gk+1 | |
—7 EIX —-Y].
6x6yk Y y=kr?||;
We now bound axaykny' 1.To do this, note that
gk+1 N gk+1
axay " axayk
X y y:krz 1 X y y:krz 1

QT 'SZ0Z ‘XprZ09vT

wouy

UONIPUOD PUe SWe | aU) 89S *[5202/80/22] Uo ARidi8uluo A8 |1 ‘Se0IARS ARiqiT 10N uopuo afe|j0d AisieAlun Aq 22002 SWId/ZTTT'OT/I0p/0d" Aa 1M A

FETVS

35UB0 |17 SUOWIWOD dAIER.D 3 el idde 8y Aq peusenoh ae sapiLe O ‘8sn Jo s3ni Joj Ariqiauliuo A3|IAm uo



ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES | 33 0100

By using the relation n)’) = ;—;ny in the same way as in the proof of Lemma 3.6, we get
axayk Y y=kr? ox " y=r2 dy Y y=r2 dy Y y=r2 dy Y y=r2’
k times
and so,
ak+1 a , k
Parw/| < |37 N2l -
dxayk Y y=io ax "l 1Ml
Note that trivially, there is some constant C > 0 such that
9 -1
— =Cr .
Hax o 1
From the fact that detail is bounded above by 1, we have
0 o |2
—_ =r —_,
H ayny y=rt||1 e
meaning
gk+1 Te\~5
~—= < Cr_Zk_1<—> .
0x0y* |, k2 . 2
Therefore,
me\3|| o+
r2k<—) ) <cr
2 0x9y* | k2 )
Choosing a coupling for X and Y which minimises E|X — Y| gives the required result. O

3.4 | Small random variables bound

In this subsection, we prove Lemma 1.16. Recall that this gives a bound for the detail of the sum of
many independent random variables each of which are contained in a small interval containing
0 and have at least some variance. To prove this, we will need the following quantitative version
of the central limit theorem.

Theorem 3.12. Let X,X,,...,X, be independent random variables taking values in R with
mean 0 and for each i € [1,n], let E[X7] = w? and E[|X;]*] =y} < o0. Let w® = }I' | w? and let
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S=X;+ - +X,. Then

Y

Wi (S:1.2) S =——-
* X wiz

Proof. Applying [15, Theorem 1] with p = 1and 7}, = Tl/{ = oo for k = 1... n and using the classical
result that the Wasserstein distance between two real values random variables is equal to the L'

distance between their cumulative distribution functions, we get

Y7
03

W1<%,’71) S

The result follows. ]
‘We are now ready to prove Lemma 1.16.

Proof of Lemma 1.16. We will prove this in the case where the X; take values in R. The case where
they take values in R/7Z follows trivially from this case.

Fori=1,..,n,letX] = X; — E[X;]and letS’ = Z?:]X{.Note thats,(S) = 5,(S"). Let E[|X]|*] =
w? and E[|X]|*] = y. Note that Var X; = w? and so w?* = }\' | w?. Note that almost surely |X/| <
2s. This means that 71‘3 < 2scol.2. Therefore, by Theorem 3.12, we have

Wy (S, 0,2) < OC).

We also compute

’
r2+w?

7

7

Sr(na)z) = !

/
r2

1

r2

2 +w?
and so, noting that s,(-) = sﬁl)(~), we have by Lemma 1.17 that

5,(8) = 5,(S")

This gives the required result. O

4 | COMPUTATIONS FOR THE TAYLOR EXPANSION

In this section, we will prove Proposition 1.20. We also do some computations on the derivatives
¢; € psl; from Proposition 1.20 which will later enable us to give bounds on the order k detail
of random variables produced by allowing the u() in the proposition to be appropriately chosen
independent random variables. Firstly we will give more detail on our notation.
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Given normed vector spaces V and W, some vector v € V and a function f : V' — W which is
differentiable at v, we write D, f(v) for the linear map V' — W which is the derivative of f at v.
Similarly, if f is n times differentiable at v, we write D! f(v) for the n-multi-linear map V"* — W
which is the nth derivative of f at v.

Now given some normed vector space V, some vector v € V and a function f : V - R/7Z
which is n times differentiable at v, we can find some open set U C V containing v such that
there exists some function f : U — R which is n times differentiable at v and such that for all
u € U, we have

f@) = fw) +=z.
In this case, we take D] f(v) to be D]} f(v). Clearly, this does not depend on our choice of U or

f. Similarly, given a sufficiently regular function f : R/7Z — V, we take D, f(v) to be D, f(v)
where f : R — V is defined by

Feo) = f(x + 72).

As well as proving Proposition 1.20, we also derive some bounds on the size of various first
derivatives.

Definition 4.1. Given some b € P!(R), we let g, € psl; be defined by

Op = Du¢(eXP(u)b) | u=0-

Proposition 4.2. Forall t > 0, there is some & > 0 such that the following is true. Let v € p3L,(R)
be a unit vector. Then there exist some a,, a, € R such that if

b e PIR\$'((ay,a, + ) U (a3, a, + 1)),
then
lop (V)] > 6.
Furthermore, we may construct a, and a, in such a way that they are measurable functions of v.
Motivated by this, we have the following definition.

Definition 4.3. Let ¢, v, a; and a, be as in Proposition 4.2 and let € > 0. Then, we define U,(v)
and U, (v) by

U,(v) := P'(®)\¢ (a1, a; + 1) U (ay,a, +1))
and
U, (v) := PYR\¢ ((a; —c,a; +t+e)U(a, —&,a, + t +¢)).

We also have the following.
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Definition 4.4. Let X be a random variable taking values in some Euclidean vector space V. We

say that u € V is a first principal component of X if it is an eigenvector of its covariance matrix

with maximal eigenvalue.

Definition 4.5. Given a random variable X taking values in p3[,(R), t > 0 and € > 0, we let
U,(X) = U,pU,(v)

and

Ut,s(X) = Upep Ut,g(v)s

where P is the set of first principal components of X. Similarly, if u is a probability measure which
is the law of a random variable X, then we define U,(1) := U,(X) and U, (1) := U, (X).

From this, we may deduce the following.

Proposition 4.6. Forall t > 0, there is some § > 0 such that the following is true. Suppose that V
is a random variable taking values in p3l,(R) and that b € P'(R). Suppose that

be U, (V).
Then,
Varp,(V) = § VarV.

We will prove Propositions 4.2 and 4.6 in Section 4.3.

4.1 | Cartan decomposition
The purpose of this subsection is to prove the following proposition and a simple corollary of it.

Proposition 4.7. Given any t > 0 and € > 0, there exist some constants C,5 > 0 such that the
following is true. Suppose thatn € Z, g1, 93, ---» g € PSLy(R), fori =1, ..., n, we have

l4:ll =€
and fori =1,..,n—1,
d(b=(g),b*(gix1)) > t.
Suppose also that there are u;, u,, ..., u,_; € p8L,(R) such that fori =1,...,n — 1, we have
||| < 8.

Then, ifwe let ¢’ = g, exp(uy)g, exp(u,) ... g,, we have
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o'l = =" llanll- Nloall - - llonll (19)
d(b*(g).b*(g) <& (20)

and
d(b™(9"),b™(g)) <. )

Corollary 4.8. Given any t > 0 and € > 0, there exist some constants C,5 > 0 such that the fol-
lowing is true. Suppose that n € Z., gy, ..., g, € PSL,(R) and uy, u,, ..., u, € p3l,(R) satisfy the
conditions of Proposition 4.7. Suppose further that b € P'(R) is such that

d(b™(ga), b) > t.
Then, ifwe let b’ = g, exp(uy)g, exp(u,) ... g, exp(u,, )b, we have

dib', bt (gy)) <&

We will prove Proposition 4.7 by induction and then deduce Corollary 4.8 from it. Firstly we
need the following lemmas.

Lemma 4.9. Let g € PSL,(R), and b € PX(R). Then,

d(b*(9), gb) S llgl~2d(b~(9), b) 7",
and for any representative b € R?\{0} of b, we have
b

98] 2 gl - ||B]|d®(9). b).

Proof. The first part follows from [5, Lemma A.6]. The second part follows from equation (A.11)
in [5, Lemma A.3]. [l

We also have the following simple corollary.

Corollary 4.10. For every € > 0, there exists some C > 0 such that the following is true. Let g €
PSL,(R) and b € P}(R). Suppose that

llgll = C
and
d(b™(g9),b) > €.
Then

d(b*(g), gb) <,
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and for any representative b € R?\{0} of b
o8] = <= nsn -]
This corollary is trivial and left as an exercise to the reader.
Lemma 4.11. Let g, g, € PSL,(R). Then
11l - llg2 sin d(®(91), " (9)) < [|91 82| < [l | - [l 92]|- (22)
Furthermore, for every A > 1 and t > 0, there exists some C > 0 with
C<o(A-1t™)
such that if || g, || , || 2|| = C and d(b~(g,),b*(g,)) > t, then
91921l < Allgr| - [|g2]| sin d(d™(g1), b (g,))- (23)

Proof. The right-hand side of (22) is a well-known result about the operator norm. For the left-
hand side without loss of generality, suppose that

4 = </11 0 >
1= -1
0 A
_fcosx —sinx\ (4, 0\ _ (Acosx —A;'sinx
2= \sinx  cosx 0 A1) \Apsinx A7'cosx /-
1\ [ A4,cosx
N92\o) = A4y sinx )

This means || g, g,|| = 4,4, cosx = ||g1|| - || 92| sin [¢(b~(g1)) — ¢(b* (g,))| which proves (22).
For (23), note that

and

Note that

_ [ MAycosx  —AyA; sinx
182 = AT ,sinx 4,45 cosx )

This means that
”glgz” < ||glg2||2 < (1 +3C~%(cos x)_l)/ll/lz COS X.
This gives the required result. O

Lemma 4.12. Given any ¢ > 0 and anyt > 0, there is some constant C > 0 such that the following
holds. Let g,, g, € PSLy(R) be such that || g, ||, ||9,]| = C and d(b=(g,),b*(g,)) > t. Then,

d(b*(91),b"(9192) <€ 24
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES 39 of 100

and

d(b™(9,),b™(g19)) <. (25)
Furthermore, we have C < O <(min{£, t})_1 >
Proof. This follows from [5, Lemma A.9]. O
Lemma 4.13. Given any € > 0, there exist C,5 > 0 such that the following is true. Suppose that

g € PSLy(R), b € P(R) and u € p31,(R). Suppose further that ||g|| > C and ||u|| < 8. Then, we
have

C Mgl < |lexpwg]| < Cligll, (26)
d(b,exp(u)b) < ¢, 27

and
d(b™(g),b™ (exp(u)g)) < e. (28)

Proof. First note that (26) and (27) both follow from the fact that exp(-) is smooth and P'(R) is
compact. Equation (28) follows from (26), (27) and applying Lemma 4.9 with some element of
P'(R) which is not close to b~(g) or b~(exp(u)g) in the role of b. O

This is enough to prove Proposition 4.7 and Corollary 4.8.

Proof of Proposition 4.7. Without loss of generality, assume thate < t. Let C; be asin Corollary 4.10
with %s in the role of . Let C, and §, be C and § from Lemma 4.13 with 11—05 in the role of .

-1
We now take C = max{C,C,, <sin %t) }and 6§ = &,.
Firstly, we will deal with (20). Choose b such that

d(b.b™(9)) > 75¢
and
d(b,b=(")) > —c.
10
Note that by Corollary 4.10, we know that

1
d(g,b,b*(g,)) < EE.

By Lemma 4.13, we know that
1
d(exp(u,_1)9,b, g,b) < 10°

and so

- 1
d(exp(un—l)gnb’ b (gn—l)) > 1_05-
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Repeating this process, we are able to show that

1
d(¢'b,b* —c.
(g () < o€
We also know that
1
d(¢'b, bt (¢’ —c.
(g ()< 0¢
Hence,
d(b*(¢),b*(g)) <.

To prove (21), simply take the transpose of everything.
Now to prove (19). Let b be chosen as before and let u € b be a unit vector. Note that by
Corollary 4.10,

lgntall > €1 lgn] - Ml
and by Lemma 4.13, we know that
l|lexp(u,,—1)g,u|| > C1_1C2_1”9n” el
Repeating this gives the required result. [l
We also prove Corollary 4.8.
Proof of Corollary 4.8. This follows from applying Proposition 4.7 to

g1 exp(uy)g; exp(uy) ... g, €xp(i,_1)g,

before applying Lemma 4.13 to exp(u,,)b and then applying Lemma 4.9. O

4.2 | Proof of Proposition 1.20

In this subsection, we will prove Proposition 1.20. To do this, we will need to find an upper bound
on the size of various second derivatives and apply Taylor’s theorem. We will use the following
version of Taylor’s theorem.

Theorem 4.14. Let f : R" - R/7Z be twice differentiable and let R|,R,,...,R, > 0. Let U =
o2 f
0x;0x;

andletx €

[=Ry, Ry ] X [-R;, Ry] X -+« X [-R,, R, ]. For integers i, j € [1,n], letK; ; = sgp‘

U. Then, we have

n

OENIOEDI:

i=1

af 1 <
ia—xi < E Z xiKl"ij.
i,j=1

x=0

In order to prove Proposition 1.20, we need the following proposition.
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Proposition 4.15. Lett > 0. Then there exist some constants C, 8 > 0 such that the following holds.
Suppose thatn € Z., gy, g5 ---» g, € PSL,(R), b € P1(R) and let

uM u@, . u™ e pslL(R)
be such that Hu(i) H < 6. Suppose that for each integer i € [1, n], we have
laill > €
and for integersi € [1,n — 1], we have
d(b™(g:),b*(gi11)) > ¢t
and
d(b™(g,),b) > t.

Let x be defined by

x = g exp(uM)g, exp(u®) ... g, exp(™)b.
Then, forany i, j € {1,2,3} and any integers k,¢ € [1,n] with k < ¢, we have

2
W‘P(x) <C"| 9192 9| g
i J

‘We will prove this later in this subsection.

Note that given some u € p3[,(R) and some i € {1, 2, 3} by u;, we mean the ith component of u
with respect to our choice of basis for p3I,(R) which we will fix throughout this paper. To prove
this, we need to understand the size of the second derivatives. For this, we will need the following
lemmas.

Lemma 4.16. Lett > 0, let x € R/nZ and let g € PSL,(R). Suppose that

d(b™(g), ¢~ (x)) > . (29)
Lety = ¢(g9¢~"(x)). Then,
0
gl < % <0,(llgl™?)
and
2
aTﬁ <0, (lgl™3).

Proof. Let g = RyA)R_g. Firstly note that

y =tan™" (1% tan(x — 6)) + ¢. (30)
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Recall that if v = tan~! u, then Z—Z =

1
u2+1°

5~ (Faemen) 7 (w0s)
2 = A2 —2
ox A~4tan?(x —0) + 1 cos2(x — 8)

1
2 cos?(x —8) + A=2sin?(x — 6).

This means that by the chain rule, we have

Differentiating this again gives

@ 2%+ 2 Y cos(x — 6) sin(x — 6)

ox? (22 cos2(x — 6) + A2 sin’(x — 6))2'

Noting that (29) forces cos(x — 0) > sint gives the required result. O
We also need to bound the second derivatives of various expressions involving exp.

Lemma 4.17. There exists some constant C > 0 such that the following is true. Let b € P}(R) and
define w by

w: p3L(R) - R/7Z
u — ¢(exp(u)b).
Then whenever ||u|| < 1, we have
D] <c

and

Proof. This follows immediately from the fact that ||D,w|| and ||D2w|| are continuous in b and u
and compactness. Ll

2
Duw

|<c.

We will also need the following bound. Unfortunately, this lemma does not follow easily from
a compactness argument and needs to be done explicitly.

Lemma 4.18. Foreveryt > 0, there exist some constants C,5 > 0 such that the following holds. Let
g € PSL,(R), let b € P}(R) and let w be defined by

w : p3L(R) X p3l,(R) —» R/nzZ
(x,y) = ¢(exp(x)g exp(y)b).
Suppose that

d(b™(9),b) > t,
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and that ||x||, ||y|l < 6. Then,

d*w(x,y)

<Cllgll~2.
5%,07; llgll

Proof. Let U = ¢(exp(y)b). Firstly note that by compactness, we have

ov

3y < 0.

J

Now let U : = ¢(g exp(y)b). By Lemmas 4.13 and 4.16, we have

00 -
E gOt(CHg” 2)-
Also note that by compactness,
9w
— [ <0().
000x; @)
Hence,
*w | | 8w | |dv]| |dv -
5vay |~ |3ax| 30| |5y <O (el ™).
J i J
We are now done by Lemma 4.13. O

This is enough to prove Proposition 4.15.
Proof of Proposition 4.15. Firstly we will deal with the case where # = k. Let
a, = g expu)g, exp®)... g, exp*V)g,
and
ay = Gk41 exp(u(k+1))gk+2 exp(u(k+2)) - Gn exp(u(”))b,
and let a; = ¢p(exp(u)a,). We have

O0x _ a_x 6a3
au®  daz g, k)’
L 1

and so

32x _ 82x day da;  gx 0%ay

6u§k)6u§k) 5a§ 6u§k) 6u§k) da, 6u§k)6u§k)'

By Proposition 4.7, we know that providing C is sufficiently large and ¢ is sufficiently small
that

db=(ay), ay) > %t.
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By Lemmas 4.16 and 4.17, this means that
3%x -2
— | <0, (lar]|?)-
(k) 5, (k) f( !
du, 6uj
In particular, by Proposition 4.7, there is some constant C depending only on ¢ such that

92%x

- * |« C”||g1g2 gk”_2
(o)A (k)| =
dui 6uj

as required.
Now we will deal with the case where £ > k. Let

a, =g exp(u(l))gz exp?)... k-1 exp(u*~V )9k
and
a2 = Jk+1 EXP(u(kH))ngrz exp(u’*?)... g,_; expu’~V)g,
and
as = go4y exp)g, ,, expt?) .. g, exp(u™)b.
Leta, = ¢(exp(u(k))a2 exp(u(f))a3), Again, we have

32x 92x da, day, ox O%a,

ouau® a3 ou oul® 994 guMou”

In a similar way to the case ¢ = k but using Lemma 4.18 instead of Lemma 4.17, we get

9%x -2
— <"
PRGN ||9192 9/”
i J
as required. O

From this, we can now prove Proposition 1.20.

Proof of Proposition 1.20. By Theorem 4.14 and Proposition 4.15, we know that

$(X) = $(91.0 - Gni1) = D, i)
i=1

< nC" max { ||g1gz...gi||2 jiE [1,n]}r2.

This is because each of the n? terms in the error term in the Taylor expansion can be bounded
above by an expression of the form C' || g, g, ... 9i||2 r2. The result follows by replacing C with a
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES 45 0f 100

slightly larger constant and noting that by Proposition 4.7

max { g9, all” : 1 € [Lnl} = |91 g0 0
4.3 | Bounds on first derivatives

The purpose of this subsection is to prove Propositions 4.2 and 4.6. This bounds the size of various
first derivatives. Firstly we need the following lemma.

Lemma 4.19. Letu € p3l,(R)\{0} and given b € P'(R) define ¢, as in Proposition 4.2. Then, there
are at most two points b € P'(R) such that

op(u) = 0.
Proof. Let ¢ be defined by
é : RM\{0} - R/7nZ
b (16D,

where [b] denotes the equivalent class of b in P1(R).
Given b € P!(R), let b € R?\{0} be some representative of b. Note that this means

¢(exp(v)b) = $(exp(v)b).

This means that ¢,(v) = 0 if and only if D(exp(1)b)|,o(v) is in the kernel of D;($(b)). Trivially,
the kernel of D (f(b)) is just the space spanned by b. It also follows by the definition of the matrix
exponential that for any v € p3L,(R), we have

D(exp(u)h)],,o(v) = vb.

Hence, ¢, (v) = 0 if and only if b is an eigenvector of v. Clearly, for each v € p3L,(R)\{0}, there
are at most two b € P1(R) with this property. The result follows. O

Proof of Proposition 4.2. Given a,, a, € R, let U(a,, a,) be defined by

U(ay,ay) = PHR\¢ (a1, a, + 1) U (ay, a, + 1))).

In other words, U(a,,a,) is all of P}(R) except for two arcs of length ¢ starting at a, and a,,
respectively. Given some v € p3L,(R), let f(v) be given by

V) .= max min v)|.
f( ) al,azeRbeU(al,a2)|9b( )

Both the min and the max are achieved due to a trivial compactness argument. By Lemma 4.19, we
know that f(v) > 0 whenever ||v|| = 1. Note that {Qb(') :be Pl([R)} is a bounded set of linear

maps and so is uniformly equicontinuous. This means that f is continuous. Since the set of all
v € p3l,(R) with ||v|| =1 is compact, this means that there is some & > 0 such that f(v) > 6.
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Finally, note that trivially, we can choose the a; and a, using this construction in such a way that
they are measurable as functions of v. [l

‘We will now prove Proposition 4.6.
Proof of Proposition 4.6. By elementary linear algebra, we can write X as
X =X 0 + X0, + X305,

where X, X, and X; are uncorrelated random variables taking values in R and v, v, and v; are

the eigenvectors of the covariance matrix of X with corresponding eigenvalues VarX,, VarX,

and Var X;. Furthermore, we may assume that VarX; > VarX, > VarX; and so, in particular,

VarX,; > % Tr Var X. Without loss of generality, we may assume that X, X,, X5 and X have mean

0. We also note that since v, is a principal component of X by Proposition 4.2, we have |p, (v;)| = 8.
We then compute

Var p,(X) = E[|0,(X)I]
= E[X210p 0D + X210, )1 + X2 |0 (v3)I]
> E[X21pp(v))I?]

> %52 TrVarX.

This gives the required result. O

5 | DISINTEGRATION ARGUMENT

The purpose of this section is to prove Theorem 1.26. We first discuss some basic properties of
entropy and variance for random variables taking values in PSL,(R). After these preparations,
which occupy most of the section, the proof of Theorem 1.26 will be short.

Before we begin, we outline the main steps of the proof of Theorem 1.26.

The first step is the following simple lemma.

Lemma 5.1. Let g, s, and s, be independent random variables taking values in PSL,(R). Suppose
that s, and s, are absolutely continuous with finite entropy and that gs, and gs, have finite entropy.
Define k by

k :=H(gs,) — H(s;) — H(gs,) + H(s,).
Then,

E[H((g51195:))] = k + H(sy).

Here, (gs,|gs,) denotes the regular conditional distribution which is defined in Section 2.3.1.
We prove this lemma in Section 5.2.
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‘We will apply this lemma when s; and s, are smoothing random variables, and s, corresponds to
a larger scale than s;. The quantity k can be thought of as the difference between the information
of ¢ discretised at the scales corresponding to s; and s,.

It is well known that amongst all random vectors whose covariance matrix has a given trace,
the spherical normal distribution has the largest (differential) entropy. This allows us to estimate
the variance of a random vector in terms of its entropy from below. Once the definitions are in
place, we can translate this to random elements of PSL,(R).

Lemma5.2. Lete > 0and suppose that g is an absolutely continuous random variable taking values
in PSL,(R) such that 9o Lg takes values in the ball of radius ¢ and centre 1d for some g, € PSL,(R).
Then, providing ¢ is sufficiently small, we have

3 2
H(g) < > log % TrVargO[g] + O(e).

‘We will prove this in Section 5.2. Combining the above two lemmas, we can get a lower bound
onTrVar, [gs;19s,]- Here, Var [-|-] denotes the conditional variance of a random variable taking
values in PSL,(R) which we will define in Definition 5.5. The last part of the proof of Theorem 1.26
is the following.

Lemma 5.3. Let ¢ > 0 be sufficiently small and let a and b be random variables taking values in
PSL,(R) and let A be a o-algebra. Suppose that b is independent from a and A. Let g, be an A-

measurable random variable taking values in PSL,(R). Suppose that g La and b are almost surely
contained in a ball of radius € around 1d. Then,

TrVar, [ab|A] = TrVar, [a|A] + Tr Vary[b] + O(e).

We prove this in Section 5.1.

5.1 | Variance on PSL,(R)
Recall from the introduction that given some random variable ¢ taking values in PSL,(R) and
some fixed g, € PSL,(R) such that g 14 is always in the domain of log we define Vargo[ g] to be
the covariance matrix of log[ g, Lg].

We need the following lemma.
Lemma 5.4. Let e > 0 be sufficiently small and let g and h be independent random variables taking

values in PSL,(R). Suppose that the image of g is contained in a ball of radius € around Id and the
image of h is contained in a ball of radius € around some h, € PSL,(R). Then

TrVarho[hg] = TrVarhO[h] + TrVary[g] + O(e?).

Proof. Let X = log(h; 'h) and let Y = log(g). Then, by Taylor’s theorem,

log(exp(X)exp(Y)) =X +Y + E,

QT 'SZ0Z ‘XprZ09vT

wouy

SUONIPUOD PUe SWLB | 3U) 88S *[S202/80/.2] U0 AigiauluQ /B[IMm ‘S301nes ARiqi JON uopuo 8|0 AiseAlun Aq Z200L SWid/ZTTT OT/I0pAu0d A M A

FETIIS

35UB0 |17 SUOWIWOD dAIER.D 3 el idde 8y Aq peusenoh ae sapiLe O ‘8sn Jo s3ni Joj Ariqiauliuo A3|IAm uo



48 0f 100 | KITTLE

where E is some random variable with |E| < O(e?) almost surely. Note that we also have |X|, |Y| <
O(¢). Therefore,

TrVary, [hg] = E[|X +Y + E|*] - [E[X + Y + E]|?
= E[|IX + Y|*] - |E[X + Y]|* + 2E[(X + Y) - E] + E[|E|?]
— 2E[X + Y] - E[E] — |E[E]|?
= Var[X + Y] + 0(e%)
as required. O
We also need to describe the variance of a regular conditional distribution.
Definition 5.5. Given some random variable ¢ taking values in PSL,(R), some c-algebra .A and

some .A-measurable random variable g, taking values in PSL,(R), we let Tr Vargo[ g|A] to be the
A-measurable random variable given by

TrVar, [g|Al(w) = Tr Vargo(w)[(glA)(co)].

Similarly given a random variable h and some o(h)-measurable random variable g, taking values
in PSL,(R), we let TrVar, [glh] = TrVar, [gla(h)].

Lemma 5.3 now follows easily from Lemma 5.4.

Proof of Lemma 5.3. This follows immediately from Lemma 5.4 and Lemma 2.26. O

5.2 | Entropy
Firstly we need the following well-known result.

Lemma 5.6. IfX is an absolutely continuous random variable taking values in R% and Tr Var X =
2
r<, then

HX) < %log <%r2)

with equality if and only if X is a spherical normal distribution.
Proof. This is well known and follows trivially from [13, Example 12.2.8]. O

We now wish to prove a similar result for random variables taking values in PSL,(R). Firstly
we need the following.
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Lemma 5.7. Let A; be a probability measure on some measurable space E and let 1, and A5 be
measures on E and let U C E. Suppose that the support of 1, is contained in U. Then,

[RLG,2) = KL, A0)] < sup

da,
log —2
°8 a1,
Proof. We have

di, di,
KL, 1,)— KL, )| = log — dA, — dA
| (A1, 42) A 3)| ‘/UOgd/lz / gd/l 1

< 1 dl, Io dl, i
S Jol %8 an, T % an, |
da,
/ log —= ar, di,
< sup log—2 .
xeU d/13 D

‘We can now prove Lemma 5.2.

Proof of Lemma 5.2. This follows easily from Lemma 5.6 and Lemma 5.7.

Let U be the ball in PSL,(R) of centre Id and radius €. Due to properties of the Haar measure,
we have H(g) = H(g, 1¢) and by definition, Tr Vargo[g] = TrVary[g, 1¢]. This means that it is
sufficient to show that

H(gy'g) < log T1rVa1rId[g0 g] + 0(e).

Recall that
have

1 ” is smooth and equal to 1 at Id. This means that providing € < 1 on U, we

dm

dmolog =1+ O(e).

In particular, providing ¢ is sufficiently small, we have

m ’ < 0(e).
log

sup

08

dm

Clearly,

KL(gy" g, molog) = KL(og(g; " 9), m).

We have by definition that H(g;'g) = KL(g;'g,Mm) and by Lemma 57, we have
KL(gytg, molog) — KL(g; " g,m)| < O(e). By Lemma 5.6, we know that

_ 3 2me _
KL(log(gy ' g),m) < 5 log == TrVarylgg g].
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Therefore,
-1 3 2me -1
H(gy 9) < 3 log = TrVar[g, g] + O(e)
as required. O
We now have all the tools required to prove Lemma 5.1.

Proof of Lemma 5.1. Firstly note that we have
H(gs,1g9s1) > H(gs,19,s1) = H(sy),
and so,
H(gs,, gs1) = H(gs,) + H(s;).
This means that
H(gs19s,) = H(gs,, 9s1) — H(gs,)
> H(gs,) — H(gs,) + H(s)
=k + H(sy).
Recalling that by Lemma 2.31 H(gs; |gs,) = E[H((gs;]95,))], we get
E[H((gs,195:)] > k + H(s,)

as required. O

5.3 | Proofof Theorem 1.26

We now have everything needed to prove Theorem 1.26.

Proof of Theorem 1.26. Note that by Lemma 5.1, we have
E[H((gs1195:))] > k + H(sy),
and so, by Lemma 5.2, we have
E 3 1 2 Trv Oe)z2k+H 31
[5 og e Tr argsz[gsllgsz]] + O0(¢) = k + H(sy). (31)

Note that (gs,)"'g = sy ! which is contained in a ball of radius ¢ centred on the identity.
Therefore, by Lemma 5.3, we have

TrVar,, [g5,195,] < TrVar [g]gs,] + Tr Vary[s;] + O(e?).

Putting this into (31) gives

3 2
E| S log Sme(Tr Var,y,[glgs,] + Tr Vary[s, ] + 0(53))] +0@) > k +H(s,),
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which becomes

TrVar,, [g]9s,]

E|log (1 +
0g ( TrVary[s; ]

+0,e)| +0@) > %(k +H(s)) — % log %ﬂe TrVary[s, ])-

Noting that for x > 0 we have x > log(1 + x), we get
2
E[TrVar [g]gs,]] > g(k —¢—=0,4(e)) TrVargls, ]

as required. O

6 | ENTROPY GAP

The purpose of this section is to prove Proposition 1.23. This shows that for a stopped random
walk y,7, ... 77, there are many choices of s such that v(y,y, ... y,; s) is large.

Recall that v(g;s) is defined to be the supremum of all v > 0 such that we can find some
o-algebra A and some .4- measurable random variable a taking values in PSL,(R) such that
|log(a™'g)| < s and

E[Tr Var, [g]A]] = vs®.
We apply Theorem 1.26 with a careful choice of s; and s,. We will take these to be compactly
supported approximations to the image of spherical normal random variables on p3l,(R) under

exp. More precisely, we have the following.

Definition 6.1. Givenr > 0anda > 1, let Nra be the random variable on R3 with density function
f : R - R given by

llx]?

f(x) — Ce_ 2r2 if “x” S ar

0 otherwise,

where C is a normalising constant chosen to ensure that f integrates to 1.
‘We can then define the following family of smoothing functions.
Definition 6.2. Givenr > 0and a > 1, let 5, , be the random variable on PSL,(R) given by
Sr.a = eXp()y,q)-
In this definition, we use our identification of psl,(R) with R3.

After doing some computations on the entropy and variance of the 7, ,, we can prove the
following proposition by putting these estimates into Theorem 1.26.
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Proposition 6.3. There is some constant ¢ > 0 such that the following holds. Let g be a random
variable taking values in PSL,(R), let a > 1 and let r > 0. Define k by

k = H(gsr,a) - H(Sr,a) - H(gSZV,a) + H(SZV,a)'

Then,
aZ
v(g;2ar) > ca2(k—0(e ) — O,(1).

This will be proven in Section 6.1.
To make this useful, we will need a way to bound k from Proposition 6.3 from below for
appropriately chosen scales. We will do this by bounding

H(gs, o) —H(s, o) — H(gSpn, o) + H(Syny )

for some carefully chosen n and r and then noting the identity

H(gs,,) — H(s, ) — H(gsyn, o) + H(synp )

n
= Z H(gszi—lr,a) - H(Szi—lr’a) - H(gszir’a) + H(Szir’a).
i=1

We use this to find scales where we can apply Proposition 6.3. Specifically, we will prove the
following.

Proposition 6.4. Let u be a finitely supported Zariski-dense measure on PSL,(R). Suppose that
M, < oo and hgy, [ x is sufficiently large. Let yy,7,,... be iid. samples from u. Let P >0, let
w € PY(R) and let T = Tpy be as in Definition 1.21. Suppose that 0 < ry <r, < 1. Suppose that
ry < M~1°¢P/X Leta > 1. Then,

h
H®y 75 - yrsrl’a) > % logP + H(sa,,l) + oM,M’a,w(log p) (32)
and

H(YIVZ }ITSrZ,a) < 210gP + OM,,u,a,w(logP)- (33)

In particular,

H(Vlyz y‘rsrl,a) - H(srl,a) - H(J/IVZ yfsrz,a) + H(Srz,a)

h
> <% — 2> log P + 3logr;, + 0y 4, 4, (10g P). (34)

This is proven in Section 6.2. This proposition is unsurprising. To motivate (32), note that it is
well known that with high probability T =~ log P/ y. We also know by the definition of hgy;, that

H(J/172 '"y[logP/)(J) z hRW [logP/)(J .

Providing P is sufficiently large, s, , is contained in a ball with centre Id and radius
OM,M,a(M‘logP /X). In particular, providing P is sufficiently large, this radius is less than
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half the minimum distance between points in the image of y,y,..7|10gp/,) and so
H1Y2 7 1ogp/x|5r,a) = HW1Y2 -V 1ogp/y)) + H(s,, o). It turns out we can prove something
similar when |log P/ x| is replaced by .

The bound (33) follows easily from the fact that the Haar measure of most of the image of
Y12 - ¥2Sy, q 1 at most O, ,(P?).

Finally, (34) follows from combining (32) and (33) and noting that H (S,,Z’a) =3logr, + O(1).

We then combine Propositions 6.3 and 6.4 to get the following.

Proposition 6.5. There is some absolute constant ¢ > 0 such that the following is true. Suppose
that y finitely supported Zariski-dense probability measure. Suppose that M, < oo and that hgy, / x
is sufficiently large. Let M > M,,. Suppose that M is chosen large enough that hypy, <logM. Let
¥1,Y2, - be ii.d. samples from u and let b € P1(R). Then, for all sufficiently large (depending on
M, puand w) P, we have

hrw

p I0logy -1
1 hgyw log M
0 - suduzcl — 1,1 log P.
/Pllogg}\);[ uv(ylyz Yepy u)du c< p ><max{ og P og

We prove this in Section 6.3. Proposition 1.23 follows easily from this.

6.1 | Smoothing random variables
In this subsection, we give bounds on the variance and entropy of the s, , and use this to prove
Proposition 6.3.
Recall the definition of 7, , from Definition 6.1. Firstly we have the following.
Lemma 6.6. Letr > 0and a > 1. Then
O(r*) < TrVary, , < 3r2.

The proof of this lemma is trivial and is left to the reader.

Lemma 6.7. There is some constant c > 0 such that the following is true. Letr > 0 and a > 1. Then

a2
H(®,,) = glog 2mer? + O(e_7>.

The proof of Lemma 6.7 is a simple computation which we will do later. We deduce the
following about s, ;.

Lemma 6.8. Letr > 0and a > 1. Suppose that ar is sufficiently small. Then,
O(r*) < TrVarys, , < 3r’.

Proof. This follows immediately from substituting Lemma 6.6 into the definition of Varyy. [
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Lemma 6.9. Letr > 0and a > 1. Then
H(s, o) = % log 27rer? + O(e_%) + O, (7).
Proof. This follows immediately from Lemma 6.7 and Lemma 5.7. O
We also have the following fact.
Lemma 6.10. Letr > 0 and a > 1. Suppose that ar is sufficiently small. Then,
[|log(s, )| < ar
almost surely.
Proof. This is trivial from the definition of s, ;. O
‘We now have enough to prove Proposition 6.3.

Proof of Proposition 6.3. We apply Theorem 1.26 with s; = s, ; and s, = s,, ,. We also take ¢ = 3ar.
By Lemma 6.8, we know that

TrVary[s;] = o@r?) > @a(az),

and by Lemmas 6.9 and 6.8, we know that

a

c= %log %ne TrVar(s;] — H(s;) < O(e” ).
This means that
2 _2 )
E[TrVarg [glgs,1] > g(k —0(e” %) = 04(r)cr™)

for some absolute constant ¢ > 0.
We know that

Hlog ((gsz)_lg)H = ||logs,|| < 2ar,
and so, by the definition of v(-;-), we have
v(g;2ar) > (2ar)E[Tr Var [g]gs,]]
> da (k= 0(e ) - 0,(r)
for some absolute constant ¢’ > 0. [l

To finish the subsection, we just need to prove Lemma 6.7.
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Proof of Lemma 6.7. Recall that 7, . has density function f : R? — R given by

_lxl?

0 otherwise,

where C is a normalising constant chosen to ensure that f integrates to 1.
Firstly we will deal with the case where r = 1. Note that

_x _x2 3
e 2dx< e 2 dx = (2m)2
x€R3: ||x||<a R3

and
Xz 00 u2
/ e 2dx= / Arru’e” 7 du
X€ER3: ||x||>a u=a
o au
< O(/ Ara’e 3 du)
u=a
a2
<0 (e_T ) .
This means
x2 3 x2 3
/ e 2dx =(2n)? —/ e 2dx > (2m)2 —O<e_
XER3: ||x|I<a XER3: ||x||>a
Therefore,
a2
C=Qr) 3+ O<e_7>.
Note that
H(m o) = / —CeIXI°/210g (Ce'”x”z/z) dx
’ lIxll<a
2
:/ C<”x“ —10gC>e_”x”2/2 dx.
lIxll<a 2
We have

2
/ C< ||x2|| —logC>e_”"”2/2 dx
x€ER3

= (271')3/2C<% —log C)

a2 3 3 a2
= (1 +O<e_7>> <zloge+ 510g27r+0<e_7>>

=[5

= glogZﬂe + O<e_
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We also have

2
/ C<M _logc>e—nxn2/z dx
X€ER3: ||x||za 2

% 2
= / 47w2C<u7 —log C>e‘“2/2 du
u

=a
[Se]
< O</ ate~a/3 du)
u=a
< O<e‘a2/4>.
This gives

H(n, ) > = log2me + O(e= /%),

N | W

From this, we may immediately deduce that
H(®, ) > % log 27rer? + O(e_a2/4)

as required. The fact that H(7, ,) < %log 2mer? follows immediately from Lemmas 5.6 and

6.6. [

6.2 | Entropy gap

We now prove Proposition 6.4. This proposition bounds the difference in entropy of y,7, ... 7;
smoothed at two different scales. Before proving this, we need the following results about entropy.

Lemma 6.11. Let X and Y be discrete random variables defined on the same probability space each
having finitely many possible values. Suppose that K is an integer such that for each y in the image
of Y, there are at most K elements x in the image of X such that

PHEX = x}n{Y =y}] > 0.
Then,
HX|Y) < logK.
Proof. Note that (X|Y) is almost surely supported on at most K points. This means that
H((X]Y)) <logK
almost surely. The result now follows by Lemma 2.31. O
Lemma 6.12. Given u > 0, let K,, denote the set
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES 57 of 100

Then,
m(K,) < O(u?).
Here 1 is the Haar measure on PSL,(R) defined in 2.9.

The proof of Lemma 6.12 is a simple computation involving the Haar measure which we will
carry out later in this section.
‘We now have everything we need to prove Proposition 6.4.

Proof of Proposition 6.4. Firstly we will deal with (32). Fix some ¢ > 0 which is sufficiently small

depending on M and u. Let m = lk’%PJ and define 7 by

[A+em] ift>[A+¢e)m]|
T=410-9om| ift<|Q—-e)m]

T otherwise.

Given some random variable X, let £(X) denote its law. If we are also given some event A, we
will let £(X)| 4 denote the (not necessarily probability) measure given by the push forward of the
restriction of P to A under the random variable X. Note that ||£(X)| 4[|, = P[A].

Givenn € Z, let q, = y; ... ¥,. We have the following inequality.

H(Ges,, o) = H(L(q,) * £(s,, )

2 H(ﬁ(qr)lrzf * ‘C(Srl,a)) + H(E(qf)lf;/:f * ‘C(Srl,a)) (35)

> H(L(G) ooz * LGy, 0)) + PIT # TIH(L(s,, o). (36)

Here, (35) follows from Lemma 2.13 and (36) follows from Lemmas 2.32 and 2.13.
Firstly, we will bound H(L(q;)|;-z)- To do this, we let fori € Z,0weletq; :=y,y,...y; and we
introduce the random variable X which is defined by

X= (ql(l—s)mJ Ya—om]+1> Y [(1—e)m|+2> >V [(1+e)m] )
We know that g is completely determined by X so
H(X|q:) = H(X) — H(qy). (37)
Let K be the number of points in the support of u. Clearly, if

Ya-om]+1: Y |(1—)m|+2> = Y [A+e)m]>

and 7 are fixed then for any possible value of g;, there is at most one choice of q|_),,) Which
would lead to this value of g;. Therefore, for each y in the image of g, there are at most

(2em + 2)K @M+
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elements x in the image of X such that P[X = x n ¢; = y] > 0. By Lemma 6.11, this gives

- 2elogK
H(XI|g;) < log <(2€m + 2)K<2€m+2>) < =28 1ogP +0,(logP). (38)
We also know that
. hpyw
H(X) > H(g) > hyy - m > 2+ logP = 0,(10g ) (39)
Combining equations (37), (38) and (39) gives
hpy — 2elogK
H(gy) > =W ——= 222 ; %~ logt — o,(log¢).

We note by Lemma 2.14 that

H(L(gz)) < H(L(ge)|=z) + H(L(g)|r22) + H(l =7).

We wish to use this to bound H(£(g;)|,-:) from below. Firstly note that trivially H(l,_;) < log2 <
o(log P). Note that by (11) from Lemma 2.1, we have that providing P is sufficiently large depending
oneand u

Pt #%]<a™

for some a € (0, 1) which depends only on € and u. We also know that conditional on 7 # 7, there
are at most K [(1+e)m1 4 gl(-am] possible values for g;. This means that

H(E@)leze) < @™ log (KW 4 K10-9m1) < o, (log P).

Therefore,

hpy —2elogK
H(L(g)l,—z) > wa logP — o, (log P).

Recall that d is the distance function of some left invariant Riemannian metric and that by the
definition of M, given any N € Z, and any two distinct x, y € PSL,(R) such that for each of
them, there is some n < N such that they are in the support of *"*, we have

d(x,y) > M;N_H)#(N)-

In particular, this means that if x and y are both in the image of g:, then

d(x, y) > M/:m(1+a)+0#(N).

Note also that trivially for all sufficiently small r, we have d(exp(u), Id) < O(r) whenever u €
psl,(R) satisfies ||u|| < r.In particular, since r; < M~"™, this means that providing P is sufficiently
large depending on M and a, we have

d(s, ,,1d) <O(aM™™)

r1,a°
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almost surely. Therefore, providing ¢ is small enough that M/(}J’E) < M and ¢ is sufficiently large
depending on u, a, € and M, we have

1 .
d(sy, ¢, 1d) < = on dx. ).
(rl,a ) 2 x,yesupp L(gz).x#y o)

In particular, by Lemma 2.15 and Definition 2.12, we have
H(E(qr)lf:f * E(Srl,a)) = H(E(qf)lr:f) + P[T = f]H(E(Srl,a))'
Putting this into the estimate (36) for H(g.s, ), we get

hrw — 2elogK

H(q:Sr,0) > log P+ H(s;, o) = 0y 1,108 P).

Since ¢ can be made arbitrarily small, this becomes
h
H(q‘[srl,a) 2 % IOgP + H(Srl ,a) - Oy,M,a(logP)

as required.
Now to prove (33). Fix some € > 0 and let A be the event that

llgc || < P

Firstly note that by (8) and (11) from Lemma 2.1, there is some & depending on u and ¢ such that
for all sufficiently large (depending on u, € and b) t, we have

P[AC] < t79.

Note that when A occurs

9eSryaf S P*tar,. Therefore, by Lemma 6.12, when A occurs 9:5,.a
is contained in a set of #i-measure at most O M,a(P“zs ) where m is our normalised Haar measure.

Trivially, by Jensen’s inequality, this gives
H(L£(q:5;,,0)l4) < 2+ 26)1ogP + 0, 5 o(log P). (40)

Now we need to bound H(L(g,s,, 4)|4c)- We will do this by bounding the Shannon entropy

H(L(g,)| oc)- It is easy to see that the contribution to this from the case where 7 < ZlngP is at most

P_5zlngP logK. By (11) from Lemma 2.1, the contribution from the case where 7 = n for some

n> 2logP

can be bounded above by a”'nlog K where a € (0, 1) is some constant depending only
on u. From summing over n, it is easy to see that

H(L(g)|ac) < 0,(logP).

This gives H(L(q.5,, o)l ac) < 0,5 ,(log P). Combining this with (40) and noting that ¢ can be
arbitrarily small gives (33).
Subtracting (33) from (32) gives

h
Hges, )= G500 > (P25 =2 ) logP 4 H(5,0) = 0yl P).
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Noting that |H (Sr2,1) —3logr,| < 04(1) < 0y, 4(log P) gives (34) as required. O

‘We will now prove Lemma 6.12. To do this, we will use the following explicit formula for the
Haar measure on PSL,(R).

Definition 6.13 (Iwasawa decomposition). Each element of PSL,(R) can be written uniquely in

the form
1
1 x\[yz O cos@ —sin®
0 1 0 y_% sin6  cos6
withx € R,y € R,y and 8 € R/7Z. This is called the Iwasawa decomposition.

Lemma 6.14. There is a Haar measure for PSL,(R) which is given in the Iwasawa decomposition
by

L dxdydo.
y

Proof. This is proven in, for example, [30, Chapter III]. O

Proof of Lemma 6.12. Firstly, let

M (1 x y% 0 cos® —sinf
o= \o 1 0 y—é sin cos@ )’

cos 6@ 3
=7’

Myya <—sin 6> < 0 )
ino -1
sin@\ _ [xy 2

My <cos9> - <y_% )’

Note that we have

and

meaning that

O

By Lemma 6.14 and the fact that any two Haar measures differ only by a positive multiplicative
constant, we have
1
P2 ,Py2 27 1
rfz(Kp)<O/ / 1/ — d6dxdy
P2 J-py2Jo Y

P
=0 P/ y 2dy
P2
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES 61 of 100

cofr [1rta)
P—2
= O(P?)

as required. O

6.3 | Variance of a disintegration of a stopped random walk
In this subsection, we will prove Proposition 6.5 and then use this to prove Proposition 1.23.
Proof of Proposition 6.5. Let T = 7p), and let a > 1 be a number we will choose later. Let r; =

_logp
a'M "« and let
h
N (1w log M log P 1
10logM xlog2

Note that

1 loeM  hrw N 1 leM hrw
ZPX/PIOX <2 sEPl/Pw%.

Given u € [1,2) and an integer i € [1, N], let
ki(u) 1= H(qrmzi—lurl,a) - H(mzi—lurl,a) - H(qrmziurl,a) + H(mziurl,a)'

Note that by Proposition 6.3, there is some absolute constant ¢ > 0 such that we have

ﬂ2 .
v(qy; a2'ury) > ca”*(k(w) — 0(e™ 7) — 0g(2'r)). (41)
This means that
N N 2
Z v(q,; a2'ury) > ca™? Z ki(u) — O(Ne™ +a2)—0,(N2Vr)).
i=1 i=1

Note that for u € [1, 2), we have

N _hrw
a2ur; <t 1

and

_logM
alury >t x .

This means that
hrw

¢ T0logy 1 2 1 N 2
/ logM av(qr; u)du > ca™? / - Z ki(w)du —O(Ne  7a=2) —0,(N2r)).  (42)
P 1 i=1

"~ Togx
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Clearly, for any fixed u € [1, 2), we have

N

Z ki(u) = H(qrmurl ,a) - H(murl,a) - H(qrmZNurl ,a) + H(mZNurl ,a)’
i=1

This means that by Proposition 6.4, we have

N

h
Z ki(w) > <% - 12> log P + 3log2Nur, + O u,a,w (108 P)
i=1

> <hRW _,_ 3w

p 10y > log P + oM’M,a,w(logP). (43)

a2
Let C be chosen such that the error term O(Ne~ 4 a~?) in (42) can be bounded above by

a2
CNe~ # a2, Note that this is at most O ( log M
x log2

a =24/lo 100C logM
B g clog2 hgy /-

Note that a depends only on x and M. This means

a2
e va? logP>. Let ¢ be as in (41). We take our

value of a to be

a2

_a h
CNe 7a?<a? RW

100y

clogP.

Note also that N2Vr; < o#,M(log P). Therefore, putting (43) into (42), we get

hrw
p 10y
1 o hrw 3hpw  hgw
/P_loiM ;v(qf;u) du > ca 2( —-2- Tox ~ 1007 10g P + 0y ., (10g P).

In particular providing hRTW > 10, we have
hrw

p 10x 1 h
/_M —v(q;;u)du 2 a'2<ﬂ) log P + 0y, ,(log P).
px u X "

log M
hrw

Noting that a? < O(max {1, log
M, and w) P, we have

}), we have that for all sufficiently large (depending on g,

hrw

p 10logy h los M -1
/LlogM lv(qf;u) du 2 <ﬂ> (max {1,10g o8 }) log P
p Togx u X hRW

as required. O

We wish to prove Proposition 1.23. Firstly we need the following corollary of Proposition 6.5.
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Corollary 6.15. Suppose that  is a probability measure on P'(R). Suppose that y is a finitely sup-
ported Zariski-dense probability measure. Suppose further that M, < oo and let M > M,,. Suppose
that M is chosen large enough that hgy, < log M. Then, for all suﬁlaently large ( dependlng onu, v
and M) P, we have

P 1010g)(
/ / log M v(qTP W3 ;u)duv(db) >
PY(R) JP Togx

h logM |\~
<ﬂ> <max {1,log o8 }) log P.
X X

S(P) :={b € P(R) : Pis large enough to satisfy Proposition 6.5 for this b, x and M}.

Proof. Given p and M, let

By Proposition 6.5, we know that S(P) /' P!(R). Therefore, ?(S(P)) /' 1. In particular, providing
P is sufficiently large (depending on x and M), we have P(S(P)) > % This, along with the fact that
v(-; -) is always non-negative, is enough to prove Corollary 6.15. O

This is enough to prove Proposition 1.23.

logM
100

Proof of Proposition 1.23. Recall that i1 = l J Let

logM hrw

A = P2y 20my

Define a;, a,, ..., ay;41 by

_ logM

a ;=P x» AL

_ logM _hrw
Note that this means a; =P r and a,;,; =P 19r. Furthermore, providing hgy /x is

sufficiently large, we have
P3 < A< PO

In particular, a;,; > P3q;.
Let U,V be defined by

"
= U[azi—l’ ay)
i=1

and
m
V= U[azi’ Qyiy1)-

_logM  _hgw
Note that U and V partition [P x P 10x )
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Let ¢ > 0 be the absolute constant in Corollary 6.15. By Corollary 6.15, providing P is sufficiently
large depending on u and M, we have

1 R hrw log M -1
=v(g,. ;u)v(db)du > c(—) <max {1, log log P.
/UuV /Pl(IR) u b X hrw

In particular, either

1 R 1 [ hgw logM -
=v(q,. ;u)v(db)du > —c<—> (max {1, lo log P. (44)
/U/PI(R) u b 2\ x s hgw &

h logM Y\
/ / lv(qr ’u) ﬁ(db) du > lc<ﬂ> <maX {1, lOg 98 }) IOgP
vipgu PP 2 X hrw

Without loss of generality, assume that (44) holds. For i = 1,2, ...,m, let 5; € (ay_;,0a,;) be
chosen such that

or

1
:85;)9(db) > = ;u)9(db).
/PI(R) U(qrp,b s;) 9(db) > sup )/Pl(R) U(qrp,b u) P(db)

u€(ay;_1,ay;

In particular, this means that

1 = 1
;8,)9(db) > = ;u) 9(db) du.
Ly HGeis09@ > 5 [ [ duta, o stab) da

@1

Summing over i gives

"
1 1

>51) 9(db) > = su) (db)d

;/p(R) U(qu,b 5;) 9(db) ZlogA /U/Pl(R) uv(qu’b u) 9(db) du

h logM 1\
> L e 22 ) (max {1, log o8 log P.
4log A X hrw

Noting that log A < O(log t) we get that providing P is sufficiently large depending on u and M
that

" -1
hrw log M
v(g,. ;8)9(db) > <—> (max {1,10g })
Z{ /PI(R) b7 X hrw

for some absolute constant ¢/ > 0. Finally, note that A > P*> means that s;,; > Ps;. 1

7 | VARIANCE SUM

Recall from the introduction that the strategy of the proof is as follows. We let (y;);2, be i.i.d.

1
samples from u and let b be an independent sample from v and for each sufficiently small scale

r > 0, we construct some o-algebra .4 and some stopping time . We also construct some n € Z,
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some .A-measurable random variables g;, ¢,, ..., g,, taking values in PSL,(R) and some random
variables U, U, ..., U, taking values in p3I,(R) such that

Y1Y2 - ¥<b = g, exp(U;)g, exp(U,) ... g, exp(U,,)b. (45)

We also require the U, to be small and have at least some variance after conditioning on .A4. We
then condition on A and Taylor expand in the U; so that after disintegrating, we may express the
Furstenberg measure as the law of the sum of many small random variables each of which have
at least some variance.

In order to carry out this Taylor expansion, we will use Proposition 1.20. This requires the g;
to satisfy a number of conditions. We wish to construct a class of ways of expressing random
variables of the form y; ...y, in the form g, exp(U;) ... g, exp(U,,) such that the g; and U, satisfy
(amongst other things) the conditions of Proposition 1.20 and so that this class is closed under
concatenation. To this end, we define the following.

Definition 7.1. Let u be a probability measure on PSL,(R), let n,K € Zy, let a and a be ran-
dom variables taking values in PSL,(R) and let C, t,e,r > 0. Let f = ( fl-)lf’:1 and h = (hl-)?:1 be
sequences of random variables taking values in PSL,(R). Let U = (U;)", be a sequence of ran-
dom variables taking values in p3[,(R), let A = (A;);_, be a sequence of o-algebras, let A be an
A,-measurable event, let I be a random subset of [1,n] N Z and let m = (m;);"_, be a sequence of
non-negative real numbers. Let y = (y;);>, be i.i.d. samples from u and let 7' = (F;);2, be a filtra-
tion for y and suppose that for all i, we have that y;,, is independent of 7;. Let S = (S;);_; and
T = (T;);_, be sequences of stopping times for the filtration 7. Let # be a random variable taking
values in PSL,(R). Then, we say that

(faha Uam’A5AsIay’F’S’T’Lﬂ)

is a proper decomposition for (/x, n,K,a,a,t,C, s) atscalerif P[A] > 1 — € and on A the following
conditions are satisfied.

Al. Wehave S, <T; <S5, €T, < <S,<T,,.

A2. We have f, exp(U,) =y, .75, and fori = 2,...,n, we have f; exp(U;) = yr,_ 41 Vs,

A3. Wehave h; = yg 1 ..77,-

A4. The A,; are nested —thatis 4, C A, C - C A,,.

A5. Foreachi =1,2,...,n, we have that U, is conditionally independent of A, given A,;.

A6. The U, are conditionally independent given A,,.

A7. We have that a and a are A, measurable and for each i = 1,...,n, the f; and h; are A;-
measurable.

A8. Foreachi=1,2,...,n, we have

Var[U;|A;]

E
|afihfrh, . fi—lhi—lfi”4r2

'Ai—l > mi.

A9. Foreachi € [1,n] nZ\I, we have U; = 0.
Al0. Foreachi € I, we have

Ul < llafihyfahy o fiabioi fill'r

almost surely and b*(h;) € U, 4, /5(U;|A,,).
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66 of 100 | KITTLE

All. When [ is not empty if we enumerate I as {jy,..., j,} with j; < - < j, and define g, :=
afihyfoh,y ... fj and fori=2,..,p define g, :=h;_ f; 1hj 41 fj-1hj-1f;- Then,
foreachi =1,..., p, we have

lg:]l > €.

Al12. With g; defined as above when I is not empty fori = 1, ..., ¢, we have

d(b™(g;), b+(hjl_)) >t/4.

Al3. Fori=1,..,n,wehaveT; > S; + K.
Al4. WehaveZ =h; f; .1h; y..[,h,

We refer to ¢ as the tail of the decomposition.
This definition is chosen such that given a proper decomposition, we can write

ayy - vr, = agy exp(U1)g, exp(Uy) ... Gy €XP(U ) g1

and then Taylor expand in the U; after conditioning on .A,,. The o- algebra A, will play a similar
role to the o-algebra A in (45).

We will now briefly discuss the purpose of each of these conditions. Conditions A1-A3 are
needed to describe the shape of the decomposition. We require Conditions A4 and A5 in order
to ensure that Var[U;| A, ] = Var[U;|.4,] and in particular is an .4; measurable random variable.
This enables us to apply a quantitative version Cramer’s theorem (see Lemma 7.8) to show that
after conditioning on A,,, the sum of the variances of the random variables produced by Taylor
expanding (45) in the U; will, with very high probability, not be too small. Condition A6 is needed
for the small random variables given by this to be independent. Condition A7 is also important in
this step and is needed to ensure that the g; are .4, -measurable.

We need to introduce the set I because if b~(f;) is too close to b*(h;), then we will not have
good control on the derivatives with respect to U;. This will prevent us from being able to use our
Taylor expansion. We cannot get around by, for example, replacing f; by

foi= fi ifiel
e fiexp(Uph;f;,, otherwise

and replacing U, by

~ U, ifiel
U, = .
U;,; otherwise

1

in this case because we will not know if we want i € I or not until after we define h;. This means
that S; will not be a stopping time.

Condition A8 is needed to ensure that the small random variables we acquire after Taylor
expanding in the U; have at least some variance.

Conditions A.9-A.11 are needed to ensure that the conditions of Proposition 1.20 are satisfied.
Condition A13 is needed to ensure that b*(h jl_) is a good approximation of b* (g;,,).
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES | 67 of 100

We introduce the filtration (7;);2; instead of just taking 7; = o(y;,75,...,¥;) because in our
construction of a proper decomposition in Proposition 7.11, we need the f; to be Fs, — measurable.
The f; are not in general products of ; and so are not in general o(y1,¥,, ..., ¥s,) — measurable.

Note that when n = 0, a proper decomposition will always exist. We will call this the trivial

proper decomposition.

Definition 7.2. Given some probability measure u on PSL,(R), some P > 1 some fixed a,a €
PSL,(R) such that ||a]| < P,somen,K € Z and some t, C, ¢ > 0, we define the variance sum for
u,n,K,t,C,efrom a, ato P at scale r to be the maximum for k = 0, 1, ..., n of the supremum of all
possible values of

m;,

k
=

1

where
(f’ h" U5 my AaAsI,Ys F7S9T9 f)

is a proper decomposition for (,u, k,K,a,a,t,C, E) atscaler with ||afih; ... fihy| < P ontheevent
A. We denote this by W(u,n,K,a,a,P,t,C,¢;r).

To avoid trivial obstructions, we also take this supremum over all possible underlying
probability spaces. In particular, we allow the probability space to be a regular space.

Note that since a proper decomposition always exists when k=0, we have
W(u,n,K,a,P,t,C,e;r) > 0. We now introduce the following.

Definition 7.3. Given a probability measure u on PSL,(R),n € Z,,, P,P, € Rwith1 < P; <P,
and some t,C, e, > 0, we define

V(luyn7K,P1’P2’t,C,E;r) = lnf W(luanyK’aaa’PZ’t’C’E;r)'
a,aePSL,(R),||lall<P;

Trivially, V(u, n, P1, P,,t,C,¢;r) > 0 due to the existence of the trivial decomposition. It is also
important role in the proof as is shown by the following propositions.

Proposition 7.4. Suppose that u is a probability measure on PSLy(R), ny,n, € Z,, P1,P,,P; €R
withl < Py < P, < Pyandt,C,r,1,€, > 0. Then, we have

V(u,ny +ny, P, Ps,t,C,e; +€557)
= V(u,ny, Py, Py, t,Coe51) + V(1,ny, Py, Py, t,C6557).

‘We also wish to show that when the variance sum is large, the order k detail is small.

Proposition 7.5. Forevery o, t > 0, there are some constants C, Q > 0such that the following is true.
Suppose that u is a finitely supported Zariski-dense probability measure on PSL,(R). Then, there is
some ¢ = c(u) > 0 such that whenever P > 1 and k,K,n € Z., with K and n sufficiently large (in
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68 0f 100 | KITTLE

terms of t, a« and u), r > 0 is sufficiently small (in terms of t, « and 1) and
V(u,n,K,1,P,t,C,¢e;r) > Ck,
we have

(k)(v) < af + nexp(—cK) + P?rC" +¢. (46)

When we apply this proposition, the most important term in (46) will be a. Finally, we need
the following.

Proposition 7.6. Forany a, € (0,1/3) and any t,R > 0, there exists some ¢ = c(a,t,R) > 0 such
that the following is true. Suppose that u is a finitely supported Zariski-dense probability measure.
Suppose further that u is a,, t-non-degenerate and that the operator norm is at most R on the sup-
port of u. Suppose that M, < co and that hgy, / x is sufficiently large. Then, there is some constant
¢, = ¢5(u) > 0such that the following holds. Let M > M, be chosen large enough thatlog M > hyy,.

logM
100y |

Suppose that P is sufficiently large (depending on u, M, C, a,, t and R) and let m = l

logM

Suppose thatr € (0, P~ x ) andthatK isa positive integer with K < log L

and K is sufficiently
large (depending on u, M, C, a,, t and R). Then,

_logM _hrw
V(u,m,K,P~ x r~'/2 p~ a0y r_l/z,t,C,exp(—czK);r)

h M
X hRW
The rest of this section will be devoted to proving these three propositions. Later, we will prove

Theorem 1.6 by using these three propositions to bound the order k detail of the Furstenberg
measure and then applying Lemmas 1.14 and 1.13.

7.1 | Proof of Proposition 7.4
The proof of Proposition 7.4 follows easily from the following lemma.

Lemma 7.7. Let y be a probability measure on PSL,(R), let ny,n,,K € Z, let a,a be a random
variables taking values in PSL,(R) and let t,C,r,e,,&, > 0. Suppose that

( FO RO yO g, 4D A 1,y D, D, 5O 7O, ,gl>
is a proper decomposition for (,u, n,,K,a,a,t,C, el) at scale r and denote it by D,. Suppose that

( @ U@ m@, A, A, 1,,yD, FO, 5@ 172, fz)

is a proper decomposition for (,u, n,, K, af(l)h(l) f(l)h(l) £1,t,C, 52) at scale r and denote it by
D,. Suppose that D, is conditionally independent of (a, D,) given afgl)hgl) f(l)h(l) and ¢,. For
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES 69 0of 100

i=1,..,n; + n,, define fl.(3) by

3) fi(l) ifi<m
7=

() ;
f ion otherwise,
and define hl@, ml@, Si(3) and Ti(S) similarly. Define .Al@ by

{Al@ ifi<n

A® =
G(A(l),A@ ) otherwise.
ny i—ny

1
Define

LetT := T,(ill) and fori =1,2,... define yl@ by

G) _ {}’l-(l) ifi<T

7 yfi)T otherwise.
Define Pi(3) by
Fi(s) ={Aef An{T>i}e Fi(l) and for all j < i we have
AN{T = jy e o(F, F2)L,
where & is the set of events in our underlying probability space. Let £ = ¢,. Then,
< O RO, UD m®, A, A, 0 Ay, 1, 7D, P, 5O, 7O, ,g1>

is a proper decomposition for (1, n; + n,,K,a,P,,t,C,g; +¢,) at scaler.

Proof. 1t is easy to check that the y?) are independent by standard properties of stopping times.
It is clear from checking the definition that 7 is a filtration for y® and that the T, and S; are
stopping times for this filtration. All of the conditions in Definition 7.1 follow immediately from
construction. O

This is enough to prove Proposition 7.4.

Proof of Proposition 7.4. This follows immediately from Lemma 7.7. O

7.2 | Proof of Proposition 7.5

In this subsection, we will prove Proposition 7.5. Before proving the proposition, we need the
following lemma.
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70 of 100 | KITTLE

Lemma 7.8. Leta,b,c > O0withc<aandletn € Z. Let X4, ..., X, be random variables taking
values in R and let my, ... ,m,, > 0 be such that we have almost surely

E[X; Xy, ., X 1] 2 m;.

Suppose that Zle m; = an. Suppose also that we have almost surely X; € [0, b] for all integersi €
[1,n]. Then, we have

¢ 1-£\"
[P’[X1+...+Xn<nc]<((%)b<2:?> b).

The proof of this lemma is very similar to the standard proof of Cramer’s theorem. We will prove
it after proving Proposition 7.5. We also need the following corollary.

Corollary 7.9. There is some constant ¢ > 0 such that the following is true for all a € [0,1). Let
n e Z., let Xy, ...,X, be random variables taking values in R with and let m, ..., m,, > 0 be such
that we have almost surely

[E[Xl |X1, vee ’Xi—l] > ml'.
Suppose that Z?zl m; = an. Suppose also that we have almost surely X; € [0, 1] for all integers i €
[1,n]. Then,

logP[Xl +--+ X, < %na < —cna.
We are now ready to prove Proposition 7.5.

Proof of Proposition 7.5. The strategy of the proof is to apply Proposition 1.20 to write our sample
from the Furstenberg measure after conditioning on A as a sum of small independent random
variables with at least some variance. We then use Lemmas 1.16 and 3.6 to bound the order k
detail of this in terms of the sum of the variances of the small independent random variables.
We then use Lemma 7.8 to show that the sum of the variances is large with high probability and
conclude by using the concavity of order k detail.

Firstly let

(f’h’ U’m7A’A’I’y’F’S7T7f)

be a proper decomposition for (u, n, K, 1d,1d, t, C, €) at scale r such that

- 1
Z m; > =Ck.
~ 2

Let b be an independent sample from v, let b = ¢bandlet A = o(A,,b).
Let p = |I]| (note that this is an .A,, measurable random variable) and let gy, ..., 9p and j;, ..., J b
be as in Definition 7.1. Fori = 1, ..., m, letu® = U j,+ Let x be defined by

x 1= g, expu®)... 9p exp(uP)b.
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES 71 of 100

By Lemma 2.19, x is a sample from v.
Let E, be the event that foreachi =1, ..., p — 1, we have

d(b*(h;),b"(g;41)) < /100

d(b+(hjl-)1 9i+19i+2 - gpb) < /100
and

d(b*(h jp), b) < t/100.

Clearly, E; is an .A-measurable event and by (13) from Lemma 2.3, there is some ¢ > 0 depending
only on u such that providing X is sufficiently large (in terms of ), we have

P[E,] = 1 — nexp(—cK).
Let C; be the C from Proposition 1.20 with %t in the role of ¢. It is easy to check that, providing
we choose C to be sufficiently large, when A N E; occurs, all of the conditions of Proposition 1.20

are satisfied with %t in the role of ¢t and C in the role of C. This means thatiffori =1, ..., p, we
define

{l. = Du(¢(g1 e GiUGi4q - gpb))|u=0’

and we define S € R/7Z by

P
S :=¢(91929p) + Z ¢i(®),
i=1

then
d(¢(x),S) < CIPr?.

In particular, by Lemma 1.17, there is some absolute constant C, > 0 such that on AN E,;, we
have

k N k 2
sx1A) < SBASIA) + C,CoP2r.

‘We now wish to bound sgcr) (S].A) using Corollary 3.8. To do this, we need to estimate the variance
of the ¢;(uV) after conditioning on A.
As in Definition 4.1 given y € P'(R), define p, € ps[ by

py = D,(¢(exp(w)y))ly=o-

By the chain rule, we know that

$i(w) = %fﬁ(m 9 -+ Gi¥) ’ pg,-+1~-~gmp(u)'

y=9i+1-~~gpb
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72 of 100 | KITTLE

By Proposition 4.7, we know that providing C is sufficiently large in terms of ¢ on the event E,
we have

d(b_(glgz vee gl)’ gl+1 e gpb) > t/lO.

In particular, by Lemma 4.16, there is some c; depending only on ¢ such that on the event E;, we
have

_ 0 _
‘31”9192 ---!Ji” ’ < (919 - 9Y) < ||9192 ---gi” 2
ay y=9i+1---gpb

Combining this with the first part of Condition A10 and the fact that for all y we have ”pyH
we see that on A N E;, we have

6@ <.
‘We also have that
Varl§; DAL > ¢ l919, - gil| " Varlpg,, . s @A

By Proposition 4.6, there is some constant ¢, > 0 depending only on ¢ such that on the event A4,
we have

Varlpg, ., »WM|A] > ¢, Var[u®|A].

Now let C; be the C from Corollary 3.8 with the same value for a. Let Q = C;. Let E, be the
event that

p (1)
Z V ar u |A :3 22(31_2(32_1]{-

i=1 || 9192 - 91|| r?
Note that on A N E; N E, by Corollary 3.8, we have
sy (S1A) < o
and soon, A N E; N E,, we have
sor(x]A) < ak + C,CIP?r.

To conclude, we simply need to show that E, occurs with high probability.
Note that

o Varu®|4] < Var[U;| A]

i=1 ||91!Jz gz” r2 i3 ||f1h1f2h2"'fi”472.

Fori=1,..,n,let
B Var[U;|.A]
||f1h1f2h2 ---fi||4”2
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Note that by Condition A10, we have X; < 1 and by Condition A8 and the fact that each X; is
A;-measurable, we have

E[X; X1, X5, s Xi_1] = m;.
Let c; be the c in Corollary 7.9. Note that by Corollary 7.9 if we choose C sufficiently large, then
P[E;] 2 1 — exp(—c;Ck).
In particular, if we take C to be sufficiently large in terms of «, then
P[E,] > 1 - aF.
We now conclude by noting that
Sy (0) < Els, (x]A)]

< a* + C,C"P*r + P[AC] + P[ES] + PIES]

<20 + Cchpzr + € + exp(—cK).
The result follows by replacing a with a slightly smaller value. O

‘We now prove Lemma 7.8.

Proof of Lemma 7.8. Firstly note that by Jensen’s inequality for any A > 0, we have

m: m;
E[le ™ |X,, ..., X;_,] < (1 - 71) + e, (47)

Therefore, we have

e < [T ((1- ) + e ™)

i

<((=5)+5) @)

with (48) following from the AM-GM inequality. Applying Markov’s inequality for any 4 > 0, we
have

I
—

P(X; + - + X, < nc) < eMCE[e AKX

< (e“((l - %) + %e"“’))n. (49)

We wish to substitute in the value of 1 which minimises the right-hand side of (49). It is easy to
check by differentiation that this is A = —— log C(b a) . It is easy to see that this value of 1 is at

—c/b
least 0 because ¢ < a. Note that with this value of 1, we get e™*0 = 2((’2—__‘3 and e¢ = <fl((l;—__‘3> :

Hence,

(=§) 5= 0-5)+ 50
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_(b—a)(b—c)+c(b—a)
~ b(b-o) b(b —c)
b—a
b—c’

The result follows. O
From this, we deduce Corollary 7.9.

Proof of Corollary 7.9. Let

2

1-a/2
1-—
f(a) :=log 2a/2<1_‘;1> .

Note that by Lemma 7.8, we have

10g[P’[X1 + -+ X, < a] < nf(a).

N | =

We note that
fla) = %log2+ (1 - %)10g(1 —a)-— (1— %>log<1 - %),

and compute

_g+%log(1—%>+

"(a) = L _1 —a)— 1
f(a)_210g2 2log(l a) 5

1—a

= %(—ﬁ +log(2 — a) — log(1 — a))
and
e 1/ 1 1 1
f(a)_2< (1 —a)? 2—a+1—a>'

In particular, f'(0) = —%(1 —log2) < 0and f"(a) < 0forall a € [0,1). This proves the result for

c= %(1—10g2). O
Remark 7.10. We could deduce a result similar to Lemma 7.8 from the Azuma-Hoeffding inequal-
ity. In our application of this result, a will be very small compared to b. In this regime, the
Azuma-Hoeffding inequality is inefficient for several reasons the most important of which is the
inefficiency of Hoeffding’s lemma in this regime. Indeed, using Hoeffding’s lemma to bound the
left-hand side of (47) would lead to a bound of

212
exp <_/1ml- + /lgb >

When we apply the lemma, we end up with m; being very small, b = 1, and 1 = log2. Clearly,
this bound is weak when this occurs. It turns out that the bound from Azuma-Hoeffding is not
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES | 75 of 100

strong enough to prove Theorem 1.6 in its current form but we could prove a similar result with

(1) replaced by
h logM log M 3
ﬂ>c<max{1, g M})(max{l,log g ”}) .
X hgrw hrw

7.3 | Proof of Proposition 7.6

In this subsection, we prove Proposition 7.6. Firstly we need the following proposition.

Proposition 7.11. For any «, € (0,1/3) and any t,R > 0, there exists some c; = ¢;(,t,R) > 0
such that the following is true. Let u be a finitely supported Zariski-dense probability measure and
suppose that u is o, t- non-degenerate and that the operator norm is bounded above by R on the
support of . Then, there is a constant ¢, = c,(1) > 0 depending on u such that the following holds.
Let y be the Lyaponuv exponent of u and let C,8 > 0. Let P, s > 0 with P sufficiently large (in terms
of u, C and 8) and s > 0 sufficiently small (in terms of u, C and 8). LetK € Z.,, and suppose that K
is sufficiently large (in terms of u, C and &).

Let ¥ be asin Theorem1.24, lety,,y,, ... bei.i.d. samples from prand letTp ,, be asin Definition 1.21.
Let

0= [ V072 1ey 159
y

Then, for any r € (0, P~2 exp(—4K x)s), we have
V(u,1,K,exp(=2K y )P~ /s /r,exp(2K y)\/s/r,t,C,exp(—c,K); 1) > c;v — 8.

Proof. Suppose that a,a € PSL,(R) with ||a|| < exp(—2K y)P~'4/s/r. We wish to construct a
proper decomposition for (¢,1,K, a,a,t,C,exp(—c,K)) at scale s. Let y1,7,,... be i.i.d. samples
from . Let S be defined by

S :=inf{n : ||ay,y, ..v,| = 8P 'V/s/r}

We take € > 0 to be some small constant which depends on y, &, ¢, R and § which we will choose
later. Let ¥ be as in Theorem 1.24 and let y be a sample from ¥ such that

Pld(y,b™(ay,7> - VQ)L) >e]<e
and y is independent from yg,;, 75,42, ... . This is possible by Corollary 1.25. Let S; be defined by

Sy i=inffn> S ¢ |girses 7"y > P

Define
fi=rrs

and define

9 =Vs+1Vs42 Vs,
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76 of 100 | KITTLE

By the definition of v(-; -), we can construct some o-algebra ff_which is conditionally independent
ofy1, 72, ., ¥s given y, some A-measurable random variable f taking values in PSL,(R) and some
random variable V taking values in p3[,(R) such that

g = fexpU),
Vi <r
and
E[Var [V|A,y]] > %vrz.
We define T, by T; :=S; + K and define h,; by

hy = Vs +1Vs; 42 VT,
We take I to be {1} if and only if the following conditions hold:

d(y.b=(af)) <.
d(y, b*(f)) > 100¢,

b*(h) € Uy, ss(V),

d(b=(f), b*(hy)) > t/4.

Otherwise we take I = fJ. Let E; be the event that d(y, b~ (ay ¥, ... ¥,,)) < €and d(y, b+(7)) > 100¢

and let E, be the event thatb*(h) € U, /a3 and d(b‘(f), b*(h)) > t/4.Clearly, {1 € I} = E; N E,.
We now define U, by

{V if1 = {1}
Ul =
0 ifI=0¢

and define f, by

_[fF itr={1
Ji= fg ifI=0.

We define A, := o(f,,h,,a,a) and take A, := o(a,a). Take A to be the event that ||afh| <
exp(2K x)/s/r, |af]|| > C. This is clearly A, measurable and it is easy to see by applying (8) from
Lemma 2.1 and (14) from Lemma 2.3 that providing P and K are sufficiently large (depending on
W) P[A] > 1 — exp(—c,K) for some constant ¢, > 0 depending only on u.

We wish to show that we can choose m; > O, , z(v) — & and construct some filtration ¥ =
(F);2, such that if we take f = (fi)ilzl, define h, U, m, S and T similarly and take A := (.Ai)ilzo,
then

(f’ h‘a Ua m5 A’I’Y7 P,S, T; hl)

is a proper decomposition for (1, 1, a, a, t, C,exp(—c,K)) at scale s.
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES 77 of 100

Conditions Al, A2, A3, A4, A5, A6, A7, A13 and Al4 follow immediately from our construction.
Providing ¢ is sufficiently small on E;, we have

Jorr] > fes] - [Fsmac a0
> Yos] 7] osat

= Zles]- |7y

WV

glazll - o]
> 2(8V/s/rP ) - P
_\sTr.

In particular, this means that ||U, || < ||laf; ||2 r. This together with the definition of I shows that
Condition A10 is satisfied. Condition All follows from our definition of A and Condition A12
follows from our definition of I.

We now show that Condition A8 is satisfied. To do this, we bound [E[M

.l 11 from below.
llafillI"r

By Lemma 4.11, we know that providing P and K are sufficiently large and € and r are sufficiently
small whenever we have 1 € I, we have

Jas7] < 2fas]]- 7] sinae=c.6* G
<#af]]- 7] sindc.6* G
= fes] 7]
<8far]- a"y]
<8-(R8P~'\/5/r)- (RP)

< 64R*4/s/r. (50)
Clearly, Var[U|A,]= Var[V|A,]lg, — Var[V|A]lg,lzc. We know that Var[V]|A] is A-
1
measurable and at most s2. It is also clear from (13) from Lemma 2.3 and the definition of
a,, t-non-degeneracy that

PIE;[A] > (1 = 3ay)

almost surely. We also know by (14) from Lemma 2.3 that

for some & = §(¢) such that § — 0 as ¢ — 0. In particular, this means that
E[Var[U|A,]] = (1 — 3ay)E[Var[V|A;]] — &s

> %(1 — 30c0)us2 — 85°.
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78 0f 100 | KITTLE

Combining this with our estimate (50), we see that there is some constant ¢; > 0 depending only
on R and « such that

E [Var[UlA]

>cv—0.
I1f11%r2 ]

We take m; = max{c;v — 3, 0}.
Finally, we construct our F;. Suppose that § is the set of events in our underlying probability
space and define (F;);2, by

F,:={Fe& :Fn{i<S}ealy;, vz Y
FN{S<i<Steo(,Va VY Fn{izSy€o(yy, Vs Vi ¥ A}

Applying Lemma 2.20 twice shows that this is a filtration for the y; and that y;, is independent
from F;.
This means that

(fa h" Ua m’A1’15y’ F,S, Ta h)

is a proper decomposition for (u, 1,a,a, t, C, exp(—c,K)) at scale r. By the definition of V(-), this
means that

V(u, 1, x KP"\s/r, x¥\/s/r,t,C,exp(—c,K);r) > c;v — 8
as required. O
We can combine this result with Proposition 1.23 to prove Proposition 7.6.
Proof of Proposition 7.6. Let sy, s,, ..., S; be as in Proposition 1.23 and let
v o= / v(y172 - Vrpvy§si) dy.
By Proposition 7.11, we know that there is some constant ¢; > 0 depending only on R, ¢, and ¢

and some constant ¢, > 0 depending only on u such that for every § > 0, providing P and K are
sufficiently large in terms of §, u and C, we have

V(u, 1, x KPP /si/r, x5 \/[si/r. 1, C,exp(—c,K); 1) > ¢yv; — 6.

In particular, providing P is sufficiently large depending on y, § and C, we have

m
DV, 1,exp(=2xK)P~"/s;/r,exp(2xK)\/5:/r, 1, C, exp(—c,K); 1)

i=1
h logM )\ !
>c3<—RW><max{l,log o2 }) —mé
X hgrw

for some constant c; depending only on R, , and t. We now note thatfori = 1, ..., — 1, we have

exp(2xK)\/s;/r < exp(2xK)4/ P38, /7
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES 79 of 100

= P32 exp(2xK)\/Si11 /7
< P lexp(—=2xK)\/ S /1

Letting 6 = ;—fn and applying Proposition 7.4, we see that

logM

_logm _hrw
V(u, i, K, P~ 2 r Y2 pT 20 Y2 1 0 mexp(—e,K);r)
es(h logM, \\ !
>_3<_RW><max{1,log M}) . N
2\ x hrw

8 | PROOF OF MAIN THEOREM

We now have all the tools required to prove Theorem 1.6. Firstly, we will prove the following.

Proposition 8.1. For all o, € (0,1/3) and every t,R > 0, there exists some constant C > 0 such
that the following is true. Suppose that u is a finitely supported Zariski-dense probability measure.
Suppose that u is «, t-non-degenerate and that the operator norm is bounded above by R on the
support of u. Let hgy, be its random walk entropy, let x be its Lyapunov exponent and let M, be its
splitting rate. Suppose that

h logM 2
ﬂ>C<max{1,log g M}) )
X hgrw

Then, for all sufficiently small (in terms of u,R,ay, and t) r>0 and all ke
[loglogr~1,2loglogr—'] n Z, we have

sﬁk)(v) < (log r_l)_lo.

Proof. Let C; be the C from Proposition 7.5 with exp(—11) in the role of o and t in the role of ¢.
Note that by Proposition 7.5, it is sufficient to show that there is some constant ¢; = ¢;(u) > 0 and
some constant A; = A;(u, R, ay,t) > 0 such that for all sufficiently small r > 0, we can find some
n < A, loglogr=! such that if we let K = exp(4/loglogr-1), then

V(u,n,K,1,r /2 exp(—c,K), t,C;, exp(—c;K); r) > 2C, loglogr'. (51)
Indeed, when this occurs by Proposition 7.5 for all k € [loglogr~!,2loglogr~'] n Z, we have
s(ri)(v) < exp(—11k) + A, loglogr~! exp(—c,K)

A loglogr™1

+C

exp(—c; K) + exp(—c; K)
for some constant ¢, > 0 depending only on u. Clearly, this is less than (log(Qr)‘l)_10 whenever
r is sufficiently small.

We will prove (51) by repeatedly applying Propositions 7.6 and 7.4. Given r, we wish to construct
some m € Z., and some decreasing sequence (Pi);’; , such that for each i = 1,2, ..., m, we can
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80 of 100 | KITTLE

apply Proposition 7.6 with P; in the role of P and then apply Proposition 7.4 to the resulting bounds
on the variance sums.

hrw
40logM

i

logr='( h =
P, = exp xlogr RW .
2logM \ 40logM
We then choose m as large as possible so that we may ensure that P,,, > exp((max{1, 10y})K). Note
that this means

X
Firstly, we let P; = r 2l°¢M  and inductively, we take P, ; = P . Note that this gives

xlogr!
IOg 2(max{1,10x})K log M
m= + 1.
1 40log M
0g —/———

hRW

In particular, there is some absolute constant c; > 0 such that for all sufficiently small (depending
on u) r > 0, we have

logM -1
m>cs (max {l,log e }) loglogr™!
gy

and m < O, (loglogr™").
Note that our construction of the P; gives

_ logMm _hrw
X —1/2 oy —1/2
Pt 2P s

and so, applying Propositions 7.11 and 7.4 repeatedly, we get

logM hrw

V(u, mm, K,P;Tr‘l/z,P;lW r~1/2,t,C, mexp(—c,K);r)

h log M -1
> C4ﬂ<max {1,log alars }) loglogr—2.
X hgrw

By Proposition 7.5, this is enough to complete the proof. O
We will now prove Theorem 1.6.

Proof of Theorem 1.6. We will prove this by combining Proposition 8.1 with Lemma 1.14 to get an
upper bound on s,(v) for all sufficiently small . We will then conclude using Lemma 1.13.

Given r > O sufficiently small, let k = % loglogr=!,leta =r/ \/E, let b = rexp(k log k) and let
a = (logr~1)~1°. We wish to apply Lemma 1.14 with this choice of a, b and «.

Suppose that s € [a, b]. It follows by a simple computation that k € [loglogs~,2loglogs™'],
and so, by Proposition 8.1, providing r is sufficiently small, we have

sgk)(v) <a.
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES 81 of 100

By Lemma 1.14, this means that

k-1

s,(v) < (log r_l)_w(%)T + k! ka*b™2.

We then compute

(log r‘l)_w(%)

Clearly, this is less than (log r1 ) - providing r is sufficiently small. By Lemma 1.13, we have that
v is absolutely continuous. [

k-1
2

+k!-ka*b~2 < (logr~) %ek/2 4 kK,

9 | EXAMPLES

In this section, we will give examples of measures u on PSL,(R) which satisfy the conditions of
Theorem 1.6.

9.1 | Heights and separation

In this subsection, we will review some techniques for bounding M, using heights. Firstly we
need the following definition.

Definition 9.1 (Height). Let «; be algebraic with algebraic conjugates a,, a, ..., &t;. Suppose that

the minimal polynomial for «; over Z[X] has positive leading coefficient a,. Then, we define the
height of «; by

" 1/d
H(y) := (a0 Hmax{l, |cxl~|}> .
i=1

‘We wish to use this to bound the size of polynomials of algebraic numbers. To do this, we need
the following way of measuring the complexity of a polynomial.

Definition 9.2. Given some polynomial P € Z[X,,X,, ..., X,,], we define the length of P, which
we denote by L(P), to be the sum of the absolute values of the coefficients of P.

We also need the following basic fact about heights.
Lemma 9.3. Let a # 0 be an algebraic number. Then
Ha™") = H(a).

Proof. This follows easily from the definition and is proven in [33, Section 14]. [l
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82 0f 100 | KITTLE

Lemma 9.4. Given P € Z[X,,X,,...,X,] of degree at most L; > 0 in X, ..., L, > 0 in X, and
algebraic numbers &,,&,, ..., §,, we have

HPEL s E0)) < LPYH(EDN . H(E) .
Proof. This is [33, Proposition 14.7]. O

To make the above lemma useful for bounding the absolute value of expressions, we need the
following.

Lemma 9.5. Suppose that o € C\{0} is algebraic and that its minimal polynomial has degree d.
Then,

H(a) ™ < |af < H(a)",

Proof. The fact that |a| < H(e)? is immediate from the definition of height. The other side of the
inequality follows from Lemma 9.3. O

Proposition 9.6. Suppose that u is a measure on PSL,(R) supported on a finite set of points. For
each element in the support of u, choose a representative in SL,(R). Let S C SL,(R) be the set of
these representatives.

Suppose that all the entries of the elements of S are algebraic. Let (§,&,, ..., &) be the set of these
entries. Let K = Q[£1,&,, ..., & ] be the number field generated by the §; and let

C =max{H(¢) : i € [k]}.
Then,
MM < 4[KZ@]C8[KIQ]'

Proof. Leta € S™ and b € S". We find an upper bound for d(a, b) where d is the distance function
of our left-invariant Riemannian metric introduced in the introduction. We have that

d(a,b) = d(id,a”'b) > ©(min { |1 '], [r+a7p] }).

Fori € [|S|]and j,k € {1, 2}, let g’i’j,k be the (j, k)th entry of the ith element of S. Let L; be the
sum of the number of times the ith element of S appears in our word for a and the number of
times it appears in our word for b. Note that the components of a~! are components of a possibly
with a sign change. We know that each component of I + a~'b is of the form P({; ; 1, ..., ¢|5,22)
where P is some polynomial of degree at most L; in {; ; .. We also know that the L; sum to m + n.

It is easy to see by induction that £(P) < 2"*" + 1. In particular, £L(P) < pmtntl By Lemma 9.4,
this means that if « is a coefficient of I + a~'b, then

H(O() < 2m+n+1c4(m+n)‘

We know that o € K and so in particular the degree of its minimal polynomial is at most [K :
Q]. This means that if o # 0, then

|OC| > 2—(m+n+1)[K:@]C—4(m+n)[K:Q].
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ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES 83 0of 100

In particular, this means that if a # b, then
d(a, b) > @(2—(m+n+1)[K:@]C—4(m+n)[K:Q])’
and so,

M/,t < 4[K:@]C8[Ki@]‘ I

9.2 | Bounding the random walk entropy using the strong Tits
alternative

In this subsection, we will combine Breuillard’s strong Tits alternative [10] with the results of
Kesten [25] in order to obtain an estimate on the random walk entropy. The main result of this
section will be the following.

Proposition 9.7. There is some ¢ > 0 such that the following is true. Let u be a finitely supported
probability measure on PSL,(R) and let hgy, be its random walk entropy. Let K > 0 and suppose
that for every virtually solvable subgroup H < PSL,(R), we have

u(H)<1-K.
Suppose further that u(1d) > K. Then,

hpyw > cK.

A similar result which further requires u to be symmetric is discussed in [34, Chapter 7]. In
[34], much of the proof of their result is done by citing unpublished lecture notes, so we give a full
proof of Proposition 9.7 here.

PSL,(R) acts on the closed complex half plane H = {z € C : Im z > 0} by Mobius transforma-
tions. It is well known that the virtually solvable subgroups of PSL,(R) are precisely those which
either have a common fixed point in H or for which there exists a pair of points in H such that
each element in the subgroup either fixes both points or maps them both to each other.

To prove Proposition 9.7, we introduce the following. We let G be a countable group and let
w be a finite measure on G. We let T, ; : I2(G) — I?(G) be the operator defined by T,c(f)g) =
J f(gh)du(h). 1t is clear that T, is a bounded linear operator and that when u is symmetric
T, is self-adjoint. To prove Proposition 9.7, we need the following results.

Lemma 9.8. The operator T, g is linear in j1. In other words,
T/11/11+/12/42)G = /11TM1’G + AZTﬂz’G'
This lemma is trivial and its proof is left to the reader.

Lemma 9.9. Let u be a finitely supported probability measure on some group G. Let hgy, be the
random walk entropy of u. Then

hryw = —2log “T%G”.
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84 0f 100 | KITTLE

This lemma is proven by Avez in [1, Theorem IV.5].

Lemma 9.10. There is some € > 0 such that the following is true. Suppose that a,b,c € PSL,(R)
generate a non-virtually solvable subgroup. Let G be the group generated by a, b and c. Let

1 1 1 1
M= Zéa + Zab + Zac + Zéld.
Then,
7o <1-
Lemma 9.11. Let A be a finite non-negative measure on PSL,(R) with finite support. Let T be the
total mass of A. Let K > 0 and suppose that for every virtually solvable subgroup H < PSL,(R), we
have

AH) < T —K. (52)

Then there exists some n € Z, such that for each integer i € [1,n], there exists a;, b;, ¢; € PSLy(R)
and k; > 0 such that

n
1=2+Yk(Ls +1s +1s
l;‘<3“l 3 b 3Ct>

for some non-negative measure 1’ and for each integer i € [1, n], the set {a;, b;, ¢;} generates a non-
virtually solvable group. Furthermore, the sum of the k; is at least K.

Proposition 9.7 follows immediately by combining these lemmas. The rest of this subsection
will be concerned with proving Lemmas 9.10 and 9.11.

Firstly we will prove Lemma 9.10. A proof of a similar result for symmetric measures may be
found in [11]. The key ingredient is the following result of Breuillard.

Theorem 9.12. There exists some N € Z, such that if F is a finite symmetric subset of PSL,(R)
containing Id, either FN contains two elements which freely generate a non-abelian free group, or the
group generated by F is virtually solvable (i.e. contains a finite index solvable subgroup).

Proof. This is a special case of [10, Theorem 1.1]. O

We also need the following result of Kesten and a corollary of it.

Theorem 9.13. Let G be a countable group. Suppose that a,b € G freely generate a free group. Let
A < G be the subgroup generated by a and b. Let u be the measure on A given by

= };(5‘1 + 8,1+, + 6y 0).

V3

Then, ’T#,A” ==
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Proof. This follows from [25, Theorem 3] and the fact that the spectral radius of a self-adjoint
operator is its norm. O

Corollary 9.14. Let G be a countable group. Suppose that a,b € G freely generate a free group. Let
A < G be the subgroup generated by a and b. Let u be the measure on G given by

u= %(5(1 + 84-1 + 8 + Gp-1).
[rucl] = 3

Proof. Let H C G be chosen such that each left coset of A in G can be written uniquely as hA for
some h € H. This means that

Then,

12(G) = @ 2(hA).

heH

We also note that for any h € H, the map T, c maps [*(hA) to [*(hA) and its action on [>(hA) is

isomorphic to the action of T, 4 on [2(A). This means that ”T#’G” = ”TMA’ A”. The result now
follows by Theorem 9.13.

One difficulty we need to overcome is that Theorems 9.12 and 9.13 require symmetric sets and
measures but symmetry is not a requirement of Proposition 9.7. We will do this by bounding
“TM,G TIL G H Firstly we need the following two simple lemmas.

Lemma 9.15. Let G be a countable group and let u,, 4, be measures on G. Then,
T#I’GT#ZsG = Tlv‘l*#z’c' (53)

Lemma 9.16. Let G bea group, letn € Z. and let (p;);_, be a probability vector. Let g,, g, ..., g, €
G and let u be defined by

n
K=Y Pigi
i=1

and let [i be defined by

n
/2 = 2 pigi_l-
i=1

Then,

¥

T,u,G = Tﬂ,G :

These lemmas are trivial and their proofs are left to the reader.
‘We are now ready to prove Lemma 9.10.
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Proof of Lemma 9.10. We will prove this by bounding ” (Tyc T;’G)N H where N is asin Theorem 9.12.

2N
Note that this is equal to ||Ty,G “
Let ft be as in Lemma 9.16. Note that we may write

where 7) is some positive measure of total mass %.
By applying Theorem 9.12 with F = {Id, a,a~', b, b1, c,c'}, we know that there is some f, g €
FN which freely generate a free group. We write

(s gy™N =9 + MLN(af + 840, +8,),

where 7/ is some positive measure with total mass 1 — miN.
By Theorem 9.13 and Lemma 9.8, we know that

23

HT 1 < oV

](J_N(60+5L‘_1 +5d +5d_1 ),G

Therefore,

T, <1 4 1 \/g
[7oewrmol <1 -G 1= )

1/2N
el < (- (- %)) <> -

Finally, we need to prove Lemma 9.11.

and therefore,

Proof of Lemma 9.11. We prove this by induction on the number of elements in the support of 1.
If A is the zero measure, then the statement is trivial so we have our base case. If K = 0, then the
statement is trivial so assume K > 0. Let a € supp 4 be chosen such that A(a) is minimal amongst
all non-identity elements in the support of 1.

Now choose some b € supp 4 such that a and b do not share a common fixed point. This is
possible by (52) and the fact that K > 0.

If a and b generate a non-virtually solvable group, then we may write

_ 1o . 1s 1 1o 1s 1
A=1 +/1(a)<35a + 300+ 35b) +/1(a)<35a +30+ 35b),

where 1’ is a non-negative measure with smaller support that . We then apply the inductive
hypothesis to A’ with max{K — 2A(a), 0} in the role of K and T — 24(a) in the role of T

If a and b generate a virtually solvable group, then there must be two distinct points ¢;, g, €
PSL,(R) such that the set {g,, ¢,} is stationary under both a and b. If this is the case, then choose
some ¢ € supp 4 such that {g;, g,} is not stationary under c. This is possible by (52). Note that a, b
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and c generate a non-virtually solvable group. Write
1 1 1
A=+ 3/1(a)(§5a +30+ gcsc).

We then apply the inductive hypothesis to A’ with max{K — 31(a), 0}in therole of K and T — 31(a)
in the role of T O

9.3 | Symmetric and nearly symmetric examples

The purpose of this subsection is to prove Corollary 1.10. We will do this using Theorem 1.6. Firstly
we need the following proposition.

Proposition 9.17. For all ay,c, A > 0, there exists t > 0 such that for all sufficiently small
(depending on a, ¢, and A) r > 0, the following is true.

Suppose that u is a compactly supported probability measure on PSL,(R) and that U is a random
variable taking values in p3L,(R) such that exp(U) has law u. Suppose that ||U|| < r almost surely
and that ||E[U]|| < cr®. Suppose that the smallest eigenvalue of the covariance matrix of U is at least
Ar?. Then, W is a,, t-non-degenerate.

This is enough to prove Corollary 1.10.

Proof of Corollary 1.10. Note that by Proposition 9.17, there is some ¢ > 0 such that providing r is
sufficiently small y is }—l, t-non-degenerate. Note that we can make r arbitrarily small by choosing
our C to be arbitrarily large.

Note that by Proposition 9.7,

hpyw = O(T)
Note that by Proposition 9.6,
M, < 4"M*
Note that trivially,
x <O).
The result now follows from Theorem 1.6. 1

In order to prove Proposition 9.17, we first need the following result and a corollary of it.

Theorem 9.18. Forally € (1, ), there is some L > 0 such that the following is true. Suppose that
X1,X,, ..., X, are random variables taking values in R and suppose that for each integeri € [1,n],

IE[Xl |X1,X2, ’Xi—l] = 0,

E[X71X1, X5, 0 X ] =1,
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and
IX;l <7y
almost surely. Then,

Xl +X2+ b +Xl’l

\/ﬁ

sup [®(t) — P l < t] <Ln"'?logn,
t

where

t
d(t) := 1 exp(—x?/2)dx
27 J -0

is the c.d.f. of the standard normal distribution.
Proof. This is a special case of [6, Theorem 2]. O

Corollary 9.19. Foralle,y > 0, there exists § > 0 and N € Z, such that the following is true. Let
n > N and let X, ...,X, beas in Theorem 9.18 with this value of y. Then, for all a € R, we have

Xl +X2+ b +Xn
N

Proof. This follows immediately from Theorem 9.18. O

€la,a+d]| <e.

We will now prove Proposition 9.17.

Proof of Proposition 9.17. To prove Proposition 9.17, we will show that there is some n such that
for all b, € P}(R), the measure u*" = 8, has mass at most o, on any interval of length at most
t. To do this, given an n-step random walk on P!(R) generated by u, we will construct an n-step
random walk on R. Specifically we have the following.

We let n € Z., be some value we will choose later. Let b, € P!(R) and let y1,7,,...,7, be
iid.samples from u. Let b; :=y;¥;_; ... V1 by Let U; := logy; and define the real valued random
variables X, X, ..., X, by

Xi = (Var [Ebi,l (U)] )_1/29bi71(Uz‘),

where ¢, € psL] is defined to be D, (exp(u)b)|,—, as in Definition 4.1. We let Y},Y,,...,Y,, be
defined by

Yi = Xl - [E[Xl |X1,X2, oee ’Xi—l]’

andletS=Y, +Y,+--+Y,.

Clearly, E[Y;|Y1,Y5,...,Y;_;] = 0and E[Y?|Y},Y,,...,Y;_;] = 1. This enables us to apply The-
orem 9.18. We now need to show that understanding S gives us some information about the
distribution of b,,.
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Now let ¢y, c,, ... denote positive constants which depend only on «, c and A. We define f :
R — R by

fixe /0 (Var [og100@)]) ™ *du.

This definition is chosen such that f(¢(b;)) — f(¢(b;_,)) is approximated X;. We will use this fact
along with Theorem 9.18 to show that there is some n such that f(b,) can be approximated by a
normal distribution.

We have

-1/2
D, f($(exp@b; sy = (Var o, W] ) ey, , .
and so, X; = D,, f(¢(exp(u)b;_1))|,=0(U;). This means that to bound
|f (b)) — f(p(b;_1)) — Xl
it is sufficient to bound ||D2 f (¢(exp(u)b;_,))|| for |lull < 1.
By compactness, the norms of the first and second derivatives of the exponential function are
bounded on the unit ball. Note that for all u € R,
—-1.2 2
¢, r°<Var g¢_1(u)(U) <eor (54)
for some absolute constant ¢; > 0. Therefore,
rt < <er! (55)
for some absolute constant ¢, > 0. Also, note that Var g,-1(,,)(U) can be written as
Vargg1(,)(U) = vz,

where ¥ is the covariance matrix of U and v € R? depends smoothly on u and depends on nothing
else. In particular,

% Var 9¢71(u)(U)’ = |v'(u)TZv(u) + v(w)"ZV (u)
<o@r).
Note that

1 d -
J"@) = = (Vargs @)

-3/2( d
= (Var pg11,,(0)) / (a Var p¢1(u)(U)> ,
and so, in particular,

If" (G0l < 0. (56)
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In particular, this means that whenever ||u|| < 1, we have

Also note that there is some M with M =, r~1 such that for all x € R,

D; f@(exp@b;1))]| < 04¢7H.

fx+m)=fx)+M.
Note that by (56) and Taylor’s theorem,
|f(@(By) — f(p(b;_1)) — Xi| < OA().
Note that by (54) and the conditions of the proposition,
1X; = Yil = [E[X;]] < O4(r).
Therefore,
|f (@) — f(p(b;_1)) — Yil < O,().

In particular,

|f(¢(b,)) = f($(by)) — S| < O4(mr). (57)

We now letn = [K r‘ZJ where K is some positive constant depending on «,,, A and ¢ which we
will choose later. Choose N € Z., and T > 0 such that by applying Theorem 9.18, we may ensure
that whenever n > N and a € R, we have

Pl%e[a,a+ﬂ] < %.

Note that
E[S?] = n,
and so,
plis> 2] < 3% < 0,50
Therefore, whenever n > N and a € R
[P’[S € [a,a+ T+/n] +MZ] < % +0,(K).
Substituting in our value for n gives
[P’[S €la,a+TVKr]+ MZ] < % + 0,(K).
From (57), we may deduce that

Plf@b) € la,a+ (e VK —eKr '+ M2| < 2+ esK,

QT 'SZ0Z ‘XprZ09vT

wouy

SUONIPUOD PUe SWLB | 3U) 88S *[S202/80/.2] U0 AigiauluQ /B[IMm ‘S301nes ARiqi JON uopuo 8|0 AiseAlun Aq Z200L SWid/ZTTT OT/I0pAu0d A M A

FETVS

35UB0 |17 SUOWIWOD dAIER.D 3 el idde 8y Aq peusenoh ae sapiLe O ‘8sn Jo s3ni Joj Ariqiauliuo A3|IAm uo



ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES | 91 of 100

where c;,c, and c¢; are positive constants depending only on A,«, and c. By taking K =

min { 25 ch , we get

P[f(¢®b,) € [a,a+cgr |+ MZ] <«
for some positive constant ¢, depending only on A, &, and c. By (55), this means that
Pl¢(b,) € [a,a +c;] + 1Z] < o,

for some positive constant ¢, depending only on A, «,, and c providing n > N. Noting thatn — o
asr — 0 completes the proof. [

9.4 | Examples with rotational symmetry

One way in which we can ensure that the Furstenberg measure satisfies our o, t-non-degeneracy
condition is to ensure that it has some kind of rotational symmetry. In particular, we can prove
the following corollary of Theorem 1.6.

Corollary 9.20. Forevery a,b € Z ,witha > 4 and K > 0, there exist some C,& > 0 such that the
following is true.

Suppose that x > C. Suppose that A,, A,, ..., Ay € PSL,(R) have operator norms at most1 + 1/x
and have entries whose Mahler measures are at most exp(exp(e \/})). Suppose further that the degree
of the number field generated by the entries of the A; is at most exp(e \/;).

Let R € PSL,(R) be a rotation by 7 /a and let i be defined by

a-1 b

1
:= _b ZO géRiAjR—[.

Suppose further that for every virtually solvable H < PSL,(R), we have u(H) < 1 — K.
Then, the Furstenberg measure generated by u is absolutely continuous.

Proof. We wish to apply Theorem 1.6 to % u+ %51(1.
Note that this measure is clearly %, %— non-degenerate. Also note that we may assume that

C > 1 and so take R = 2 in Theorem 1.6. Clearly, y < 1

Note that by Proposition 9.7, we have hgy, > @(K)

Note that by Proposition 9.6, we know that M, < exp(A exp(ex)) where A is some constant
depending only on a and b. The result now follows by Theorem 1.6. O

9.5 | Examples supported on large elements

The purpose of this subsection is to prove Corollary 1.11. Firstly we will need the following lemma.
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Lemma 9.21 (The Ping-Pong Lemma). Suppose that G is a group which actson a set X. Letn € Z
and suppose that we can find g,, g5, ..., g, € G and pairwise disjoint non-empty sets

+ A+ + A= A- -
AT A, LAY ATAS LA CX

such that for all integers i € [1,n] and all x € X\ A", we have g;x € Al.+. Then, gy, g5, --- » gy, freely
generate a free semi-group.

This lemma is well known and we will not prove it. From this, we may deduce the following.
Lemma 9.22. Forevery ¢ > 0, there is some C < O(¢~1) such that the following is true. Letn € Z,.

Suppose that 6,,0,,...,0, € R/nZ and that for every i # j, we have |6; —6;| > ¢ and |6; —6; +
/2| > €. Let 1, A, ... A,, be real numbers which are at least C. Then, the set

A4 0
{R@i <()l /1._1> R ti€[Ln]n Z} C PSL,(R)
L
freely generates a free semi-group.

Proof. This follows immediately by applying Lemma 9.21 with G = PSL,(R), X = P}(R), Ai+ =
¢7H((6; —€/2,6; +€/2)) and A] = $7'((6; —€/2,6; + £/2))* along with Lemma 4.9. O

Lemma 9.23. Foralln € Z, there exists some6,, € <$ % ) such that sin 6, and cos 6,, are rational

and have height at most 4n” + 1.

Proof. Choose 8,, such that

sin 6 an
" 4n2+1
and
cosf an’ — 1
" 4n2+1 O

‘We are now ready to prove Corollary 1.11.

Proof of Corollary 1.11. Given some r > 0 and some n € Z, define 3, ..., 8,_; > 0 by letting 3, =
Ogn+1-x Where 0. is as in Lemma 9.23. We then define o, a5, ..., @yn_; > 0 by letting

n—1
k
a =Y 98,

i=0

where the §l.(k) are the binary expansion of k. In other words, k = E:’:_Ol §l.(k)2i with §l.(k) € {0,1}.
Clearly,

O=ay<a; <--<am_j.

QT 'SZ0Z ‘XprZ09vT

wouy

SUONIPUOD PUe SWLB | 3U) 88S *[S202/80/.2] U0 AigiauluQ /B[IMm ‘S301nes ARiqi JON uopuo 8|0 AiseAlun Aq Z200L SWid/ZTTT OT/I0pAu0d A M A

FETIIS

35UB0 |17 SUOWIWOD dAIER.D 3 el idde 8y Aq peusenoh ae sapiLe O ‘8sn Jo s3ni Joj Ariqiauliuo A3|IAm uo



ABSOLUTELY CONTINUOUS FURSTENBERG MEASURES 93 of 100

Furthermore, a;,, > a; + & where e = - sn ——1- We also have that
<2242
S T T
- 1.8
32 7
U1
<——=¢
10

‘We now let C be the C from Lemma 9.22 with this value of € and we choose some prime number
psuch that p > C?, p < O(8"), and X — p is irreducible in the field Q[sin , cos T].
Now fori =0,1,...,2" —1and j =0,1,...,4, we let 9ij be defined by

b Rea U To T (vl v
By Lemma 9.22, we know that the g; ; freely generate a free semi-group. Now fori = 0,1, ..., 2" — 1
and j =0,1,...,4, we let §; ; be defined by

(V=7

Rjn

0
([r+ Pl - \/5)‘1> Eal

Clearly the §; ; are Galois conjugates of the g; ; and so also freely generate a free semi-group. We
now let u be defined by

91,] = RJ” +a;

Vl

-1 4
Z'OZ'S 2n "l/

We wish to use Theorem 1.6 to show that the Furstenberg measure generated by u is absolutely
continuous providing # is sufficiently large in terms of r.

Let v be the Furstenberg measure generated by u. By the construction of u, we know that v
is invariant under rotation by 7z /5. In particular, this means that it is % %-non-degenerate. We
also know that for each i, j, we have ”f}LJH =[r+ \/ﬂ - \/E < r + 1. This means that y < r and
that we may take R = r + 1. Since the j; ; freely generate a free semi-group, we know that hgy, =
log (5 - 2") > ©(n). Finally, we need to bound M -

To bound the M, we will apply Proposition 9.6. We know by Lemma 9.23 that the heights of
the entries in the §; are at most O(82"). We also know that the height of [r + \/ﬂ - \/ﬁ is at most
0 (\/— )which is at most O,(8"). By Lemma 9.4, this means that the height of entries in the g jisat

most 0,(2%" - gin’ *1) which is at most O (85” ). It is easy to show that [@[sm = cos Q] =4.
This means that by Proposition 9.6, we have

M, < 0,(8+°" ) < exp(0,(n?).

Therefore,

hgrw M - n 2\y) 2
—_— 1,loglog —— > log1 (0]
P’ <max{ oglog - ™ }> 2 1( oglogexp(0,(n*)))
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> n
0,((logn)?)

— 0.

This means that by Theorem 1.6, the Furstenberg measure is absolutely continuous, providing n
is sufficiently large in terms of r. [l

9.6 | Examples with two generators
In this subsection, we will prove Corollary 1.12.

Proof of Corollary 1.12. Firstly we will show that u is Zariski-dense. The compact subgroups of
PSL,(R) are exactly those subgroups which are conjugate to the group of rotations. Since the rota-
tions form a subgroup, A is only conjugate to a rotation under conjugation by another rotation
and B is not conjugate to a rotation under conjugation by a rotation. Therefore, support of u is not
contained in any compact subgroup of PSL,(R). Since A is an irrational rotation, the orbit of any
b € PY(R) under A is infinite. Therefore, u is strongly irreducible.

Next, we will show that there is some «, € (0, %) and ¢ > Osuch that u is o, t-non-degenerate
for all sufficiently large n.

Firstly note that A is a rotation by 6,, where 6, = % + O(%). Also note that for all x € P1(R),
we have d(x, Bx) < O(n~3).

We now let A : R — R,x — x + 6, and choose B : R — R such that B(x) € $(B¢~'(x)) and
for all x € R, we have |x — B(x)| < O(n~%). We then let t = 38 ; + 585.

By Theorem 3.12 (a simple bound on the Wasserstein distance between a sum of independent
random variables and a normal distribution), we know that for any x € R, we have

w, (,a*”z *8,N (x + %nzen, nze,i)) <0om™).

Noting that n29,21 — 1, we can see that there is some o, € (0, %) and t > 0 such that u is ay,

t-non-degenerate for all sufficiently large n.

We will apply Theorem 1.6 to % u+ %ém. Note that this generates the same Furstenberg measure
as i, and so, in particular, it is «, t-non-degenerate.

Note that by Proposition 9.7, there is some ¢ > 0 such that for all n, we have hgy, > €.

Note that by Proposition 9.6, we have M < 4(n?® + 1)3. Clearly, we may take R = 2. Also note
that y < n=3.

This means that to prove the corollary, it is sufficient to prove that

3 8\ ~2
en’ <10g log @)

tends to co as n — oo. This is trivially true. O
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APPENDIX

A.1 | Proof of Theorem 1.24

We extend the result of Kesten [26, Theorem 1] to show that the convergence is uniform in the
vector v.

Theorem A.1. Suppose that u is a compactly supported Zariski-dense probability measure. Then
there exists some probability measure ¥ on P*(R) such that the following is true. Let y,, ¥, ... bei.i.d.
samples from u. Then given any € > 0 and v € P1(R), there exists some T > 0 such that given any
P > T, we can find some random variable x with law ¥ such that

Pld((y17- ---VTP,U)TU’X) >e] <e.
Here, 75, is as in Definition 1.21.
Proof. In [26, Theorem 1], it is proven that this holds in a much more general setting, providing
some conditions are satisfied. In [20, Section 4], it is shown that the conditions of [26, Theorem

1] are satisfied in this setting. O

We deduce uniform convergence from this fact. To do this, we show that if v,w € P'(R) are
close, then with high probability, 7p , = 7p , and (y17 ... 77, ) v is close to (y1 75 . ¥z, ) w.

Lemma A.2. Suppose that u is a compactly supported Zariski-dense probability measure. Then
given any ¢y, ¢, > 0, there exists T such that for any P > T and any unit vector b € R?

P[3n : logP < log ”()/1)/2 ...yn)TbH <logP+c¢1Se/x+c,.
Proof. This follows immediately from [32, Proposition 4.8]. O
Lemma A.3. Let u be a finitely supported Zarisk-dense probability measure. Given v € P}(R) and
P >0, let Tp, be as in Definition 1.21. Then there exists some § > 0 depending on u such that given
anyr > 0 for all sufficiently large (depending on r and ) P, the following is true. Suppose that v, w €
PY(R) and d(v, w) < r. Then,
P[TP,U = TP,w] z 1- Ou(ra)-
Proof. Let A be the event that

d@, b~ (7172 7)) > Vr

and

dW, b~ (175 7)) > Vr

for all n > log P/ log R. By (14) from Lemma 2.3, we know that providing P is sufficiently large in
terms of u and r, there is some § > 0 such that

P[A] > 1-0,(°).

QT 'SZ0Z ‘XprZ09vT

wouy

SUONIPUOD PUe SWLB | 3U) 88S *[S202/80/.2] U0 AigiauluQ /B[IMm ‘S301nes ARiqi JON uopuo 8|0 AiseAlun Aq Z200L SWid/ZTTT OT/I0pAu0d A M A

FETIIS

35UB0 |17 SUOWIWOD dAIER.D 3 el idde 8y Aq peusenoh ae sapiLe O ‘8sn Jo s3ni Joj Ariqiauliuo A3|IAm uo



96 0f 100 | KITTLE

Let 0, w € R? be unit vectors which are representatives of v and w, respectively. By Lemma 4.11,
we know that there is some constant C > 0 such that on the event A

110g |(71 75 - ¥ Ol = log l(y1 75 - y,) @Il < Cri/?

for all n > log P/ log R. Now let B be the event that there exists n such that
|log | (y172 - v,)"0ll = P| < 10Cr'/2.

By Lemma A.2, we know that providing P is sufficiently large in terms of p and r, P[B] < O,, (r/2).
We also know that {rp , = 7p ,,} D A\B. Therefore,

Pltpy =Tpul 21— OM(},S)
as required. O

Proof of Theorem 1.24. Given ¢ > 0, we wish to show that we can find some T (depending on u
and ¢) such that whenever P > T and v € P!(R), we can find some random variable x with law ¥
such that

Pld(x, (717, “'YTP‘U)TU) >e]<e.

Firstly let ¢ > 0. Choose k € Z., and let vy, v,, ..., v, € P1(R) be equally spaced. Let T, be the
greatest of the T from Theorem A.1 with %s in the role of € and vy, v,, ..., Uy in the role of v and
let x1, X,, ..., X be the x. Let T, be the T from Lemma A.3 withr = % Let T = max{T,, T,}. Thus,
whenever t > T and i € [k]

T € g
P[d(xi’(Y1J/2“‘yTP,Ui) v;) > ol <10

Now let P > T and let v € P}(R). Suppose without loss of generality that v, is the closest of the
v; to v. In particular, d(v,, w) < % By Lemma A.3, this means that

Pltpy, = Tpyl 21~ 0(K™) (A1)

for some § > 0 depending only on .
We know by, for example, Lemma 4.16 that providing

db (175 - 7,)"),vy) > 100k,
we have
-2
d((r172 Y 01 (172 1) 0) < Ol a2 )| -

In particular, by (14) from Lemma 2.3, we know that

P[d((7172 Yepy ) 0L N2y, )T 0) < Ok(P_Z)] >1-0(k™).
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Combining this with (A.1), we know that providing P is sufficiently large depending on k and
J

Pld(@17s ¥y, )01 (17272, )T0) > 0P| < OG).
In particular, this means that providing P is sufficiently large depending on k and u
T 1 -2 1 -5
P[d(xl,(ylyz...yrp,v) v) > EE + Oy (P )] < EE + O(k™°),

and so, if we choose k large enough (depending on u and ¢) and then choose P large enough
(depending on u, k, and €), then

I]J’[d((xl,yl)/2 ---VrP,U)TU) > e] <eg

as required. O
We now wish to deduce Corollary 1.25. Firstly we need the following lemma.

Lemma A.4. Let u be a finitely supported Zariski-dense probability measure. Given v € P(R), let
Tp,, be as in Definition 1.21 and given a € PSL,(R), let Tp , be defined by

Tpq = inf{n : ||layyy, .7, = Pllall}.

Then there exists some & > 0 depending on u such that given any r > 0 for all sufficiently large
(depending on r and w) P, the following is true. Suppose that v € P}(R), a € PSL,(R) and
d(v,b~(a)t) < r. Suppose that a is sufficiently large (depending on r and w). Then,

Pltp, =Tpal > 1—0,0°).

Proof. This follows by a very similar proof to Lemma A.3. Let A be the event that

d@, b= (7172 7)) > Vr

and

d(b=(@), b (1172 7)) > VT

for all n > log P/ log R. By (14) from Lemma 2.3, we know that providing P is sufficiently large in
terms of u and r, there is some § > 0 such that

P[A] >1-0,(°).

Let ¥ € R? be a unit vector which is a representative of v. By Lemma 4.11, we know that there
is some constant C > 0 such that on the event A,

1/2

|10g [ (172 70" 6]| = log |layyy; . 7u]| + log lalll < Cr

for all n > log P/ log R. The result now follows by the same argument as Lemma A.3. O

‘We now prove Corollary 1.25.
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Proof of Corollary 1.25. Let S be defined by

S =inf{n : |lay,y; . 7,|| > VP,

let @ = ay,y, ..ys and let v = b~(@)*. Let S be defined by

= . R P A
S:i=infin > S |sn¥sir -y 6| > =10,
||ay1y2 ---Vn”

where U € R?\{0} is a representative of v. Let r > 0 be arbitrarily small. By Lemma A.4, providing
P is sufficiently large (in terms of u and r), we have

P[S =7,p] >1-0,0")

log P
2logR

for some &; > 0 depending only on u. Let A be the event that for all n > — 1, we have

d(b* (V5417542 - Vn)r b (@) > 1.

By (14) from Lemma 2.3, we know that P[A] > 1 — Oﬂ(raz) for some 8, > 0 depending only on u.
By Lemmas 4.12 and 4.9, we know that on the event A providing P is sufficiently large (in terms
of r), we have

d((Vs41Vs42 V§)TU, b™(Ys41Vs42 Vg)l) <r

and
d(b~(ay,v; -- yTP,a), b™(Ysi1Vs542 - pr,a)) <r.
In this means that on the event AN {rp , = S}, we have

d(b~(ay,7; - Vip, " (Ys417s42 - 7§)TU) <2r.

We are now done by Theorem 1.24. O
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