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Abstract—This paper addresses the problem of pilot contam-
ination in single-cell networks, especially in dense-user areas
where intra-cell pilot reuse is inevitable. We invoke fluid antennas
(FAs) at the base station (BS) to improve the uplink (UL)
channel estimation accuracy in terms of normalized mean square
error (NMSE). Specifically, inspired by the fact that the users
with low spatial correlation experience less interference, we
propose to mitigate pilot contamination by optimizing the FA
positions with an innovative objective of minimizing the channel
spatial correlation among the pilot-sharing users. To simplify the
intractable fractional programming problem involved, we further
derive the upper and lower bounds for the objective function.
Subsequently, the reformulated problem is effectively solved by
a double-loop based algorithm where the outer loop conducts
alternating optimization (AO) with respect to the position of
each FA while the inner loop handles the subproblems based
on the successive convex approximation (SCA) method. Finally,
simulation results validate the effectiveness of the proposed
algorithm and demonstrate the remarkable NMSE performance
provided by FA.

Index Terms—Fluid antenna (FA), pilot reuse, pilot contamina-
tion, alternating optimization, successive convex approximation.

I. INTRODUCTION

HE explosive increase of mobile users and the rapid

development of internet-of-things (IoT) applications have
put forward demanding requirements for future communica-
tion systems to support the access of an unprecedentedly
large number of users [1]-[3]. To achieve efficient multiuser
communication, the multiple-input multiple-output (MIMO)
technology has been widely investigated and recognized as a
key component of the fifth-generation (5G) networks [4] due
to its enormous potential in enhancing system capacity [5],
improving energy efficiency [6], and suppressing interfer-
ence [7]. However, the performance of MIMO systems is
fundamentally affected by the estimation accuracy of channel
state information (CSI) at the base station (BS). In general,
to reduce the overhead of CSI acquisition, MIMO systems
can operate in time division duplexing (TDD) mode [8],
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where the BS receives uplink (UL) pilots sent from the
users, conducts channel estimation, and obtains both uplink
and downlink CSI by exploiting channel reciprocity [9]. As
an ideal situation for TDD UL training, orthogonal training
[10] assigns a unique orthogonal pilot sequence to each user,
therefore enabling simultaneous pilot transmissions without
interference. Unfortunately, for the hotspot areas with high
user density and insufficient pilot sequences, reusing pilots
among the users within a single cell becomes unavoidable,
leading to the problem of pilot contamination [11], which can
significantly degrade the accuracy of channel estimation and
the overall performance of MIMO systems [9].

To address the issue of pilot contamination, a variety of
methods have been developed in [12]-[16] by considering the
concept of channel spatial correlation [17]. The motivation
stems from that, when the BS employs large-scale uniform
linear array (ULA), users with strictly non-overlapping angle
of arrival (AoA) intervals have orthogonal channel covari-
ances, thus can completely get rid of pilot contamination [12].
Inspired by this fact, the authors of [13] proposed the statistic
greedy pilot scheduling (SGPS) algorithm to minimize the
mean square error (MSE) of channel estimation by assigning
orthogonal pilots to users with similar channel covariance
matrices. In [14]-[16], the authors utilized channel charting
to extract spatial information embedded in statistical CSI for
the purpose of maximizing the AoA distances between the
pilot-sharing users. Apart from only depending on statistical
CSI, other strategies to mitigate pilot contamination include
allocating pilots based on location information [18]-[20], AoA
information [21]-[23], and interference graph coloring [24]-
[27]. Nevertheless, even with appropriate pilot assignment,
users may still suffer severe pilot contamination in practice,
as the random behavior of real propagation environments can
destroy the channel orthogonality [28]. On the other hand,
the performance of conventional MIMO systems that equipped
with fixed-position antennas (FPAs) is intrinsically limited due
to the inflexibility of antenna positions and the inadequate
utilization of spatial degree of freedom (DoF) [29].

Meanwhile, as a technology to introduce additional DoFs
in the spatial domain, the recently proposed fluid antenna
(FA) [30] could further enhance system performance by dy-
namically adjusting the positions of antennas. For instance,
it was shown in [31] that deploying FAs at both transmitter
and receiver sides in a point-to-point MIMO system could
yield tremendous diversity gain over the traditional FPA-based
system. Apart from point-to-point communications, the FA-
aided multiuser MIMO systems have also attracted widespread
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Fig. 1. Illustration of the uplink training between K single-FPA users and the BS equipped with M FAs. Only two groups of pilot-sharing users are depicted
in this example, with user 1 and user k reusing the same pilot sequence and user 2 and user k£ + 1 sharing another.

research interest [32]-[37]. Specifically, the authors of [32]
explored the feasibility of FA-aided multiuser communications
and revealed the superiority of FAs in mitigating inter-user
interference. Considering the uplink transmission in cellular
networks, the authors of [33] minimized the total transmit
power of users subject to a minimum rate requirement by
expressing the receive signal-to-interference-plus-noise ratio
(SINR) as a function of the FA positions. With similar
methodology, the authors of [34] maximized the minimum
achievable rate among the users within a limited uplink power
budget. For the downlink scenario, the joint antenna position
and beamforming design was investigated in [35], and for the
similar problem, the authors of [36] further emphasized the
finite precision of electromechanical devices and established a
discrete optimization problem. Moreover, the sum-rate maxi-
mization problem for FA-aided MIMO downlink was studied
in [37].

In a nutshell, this contribution introduces the FA technology
into the realm of single-cell pilot reuse, aiming at mitigating
pilot contamination via exploiting the extra spatial DoFs
provided by FAs. Specifically, we adjust the positions of FAs
at the BS to minimize the channel spatial correlation between
the users reusing pilots, thereby enhancing channel estimation
quality. In general, the main contributions of this paper are
summarized as follows:

« Firstly, we formulate a channel spatial correlation mini-
mization problem as a novel FA optimization objective,
so as to mitigate pilot contamination among the pilot-
sharing users.

« Secondly, an upper bound along with a lower bound for
the objective function is derived to simplify the problem.

o Thirdly, we obtain at least a suboptimal solution for
the transformed problem by adopting the alternating
optimization (AO) framework as well as the SCA method
while proving the convergence of the proposed algorithm.

« Moreover, we investigate the pilot assignment algorithm
under the guidance of our proposed intra-group corre-

lation minimization criterion and show that the desired
algorithm is essentially synonymous with the Max-7-Cut
algorithm [38] and the SGPS algorithm [13].

« Finally, numerical results are presented to demonstrate the
interference mitigation gain of the proposed FA-enhanced
scheme over the conventional FPA scheme.

The remainder of the paper is organized as follows. In
Section II, we present the system model and formulate the
optimization problem of minimizing intra-group correlation
among pilot-sharing users. Additionally, we reveal the rela-
tionship between the SGPS algorithm and our optimization
objective. In Section III, we develop an algorithm based on
the AO and SCA techniques to solve the formulated problem.
Section IV provides simulation results and discussions. Finally,
the study is concluded in Section V.

Notation: Boldface uppercase (lowercase) letters are used
to denote matrices (column vectors). The gymbol I denotes
the identity matrix. The notations (-)*, ()%, ||| > and [|-[|p
denote the transpose operation, Hermitian transpose operation,
{,-norm, and Frobenius norm, respectively. The notations
Re{-}, E{-}, Tr{-}, and rank {-} represent the real part, the
expectation, the trace, and the rank operations, respectively.
diag {x} denotes the diagonal matrix with x along its main
diagonal. A > B (A =< B) indicates that the matrix A — B
is Hermitian positive (negative) semi-definite. Additionally,
CN (0, X) denotes the circularly symmetric complex Gaussian
(CSCQ) distribution with mean zero and covariance matrix 3.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a multiuser communication
scenario in a single cell, where K single-FPA users are served
by a base station equipped with M (> K) FAs. For the UL
training process that we are concerned about, a total number
of 7 available orthogonal pilots are allocated to the K users.
We consider the scenario in which the number of available
orthogonal pilots is insufficient, i.e., 7 < K, thus pilot reuse
is supposed to be conducted. More specifically, K users are
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Fig. 2. Tllustration of the local coordinate system and spatial angles for the
l-th path of user k, 1 <1< L}, 1 <k < K.

divided into 7 pilot groups, and the users within the same
group share the same pilot, leading to a pilot reuse factor of
n = K/, i.e., each orthogonal pilot is shared by 7 users on
average.

A. Channel Model

The receive FAs at the BS are connected to radio frequency
(RF) chains via flexible cables so that they are able to move
freely in the given two-dimensional (2D) region C,. We denote
the coordinate of the m-th (1 < m < M) FA by r,, =
[xm,ym]T € C,, and use v = [ry,r9,...,ry] € RPM (o
represent the collection of all receive FAs’ positions. Without
loss of generality, we set C, as a square region with a side
length of A, ie., C, =[-A4/2,A/2] x [-A/2,A/2].

Assuming that the size of the moving region C, is signif-
icantly smaller than the distance between the transmitter and
the receiver, it is reasonable to employ the far-field channel
model [39]. For each channel path component, the angle of
departure (AoD), the AoA, and the amplitude of the complex
path coefficient remain invariant regardless of the movement
of the FAs, while the phase of the complex path coefficient
varies as a function of FA positions.

Let L} and L} denote the total numbers of transmit and
receive channel paths from user £ (1 < k < K) to the BS,
respectively. As depicted in Fig. 2, for the I-th (1 <1 < L})
receive path from the k-th user, the elevation and azimuth
AoAs are denoted as 0 € [0, 7] and ¢, € [0, 7], respec-
tively. Additionally, the elevation AoAs of all paths of user &
are modeled as independent and identically distributed (i.i.d.)
random variables with uniform distribution U (g}, gi2ex),
where " = 6 — /30y and 0% = 0, + /304, with
0;, denoting the elevation incident angle of user k and oy
denoting the elevation angle standard deviation (ASD). The
azimuth AoAs are modeled in a similar way, i.e., ¢y ~
U ((bg‘i“,qﬁ‘,fax) ,Vl, where ¢in = b — \/§0¢ and ¢p'** =

¢§k + \/§a¢, with q@k denoting the azimuth incident angle of
user k and o, denoting the azimuth ASD.

At the BS, the signal propagation distance difference be-
tween the 7position of the m-th FA and the reference point
ro = [0,0]" can be obtained by

Pyt (Trm) = @8I0 O 1 COS Ppe g + Yrm cOS O 1. 9]

Correspondingly, the signal phase difference between the posi-
tions r,, and r¢ is 27 ; (r.,) /A, where A is the wavelength.
Then, for the signal sent form user k, the field-response vector
(FRV) of the m-th FA at the BS is written as

fi. (r) = [63‘27””"1(”’”), ejowp“(rm), N I K P, (r’")} )
2)
At the user side, by setting the position of the single FPA
at the reference point, the FRV of each user becomes an all-
ones vector, i.e., gy =1 € RLZXl,Vk‘. The resulting channel
vector between the BS and user k£ can be expressed as

hy, (r) = F{ (r) Sipgi € CV1, 3)

where Fy (r) = [f (r1),fx (r2),..., i (rar)] € CEeXM s
the field-response matrix (FRM) between the BS and user k,
and X, € CL XLk s the path-response matrix (PRM) between
the BS and user k, with its (g, p)-th element characterizing the
channel response between the p-th transmit path and the g-th
receive path.

Given the FA position variable r, we now present the expres-
sion of the channel covariance matrix in the following. Sup-
pose that Lj, = L}, Vk and that %), = diag {Zx.1, ..., Sk.z: }
is a diagonal matrix with its diagonal elements being i.i.d.
CSCG random variables, ie., $x; ~ CN (O, or,%’,C 1<
I < L}). By noting that ;g is a random vector following
CN (0, or. kI), the channel covariance martrix Ry, € CM*M
can be expressed as

R (r) =E {h (r) hH (r)}
=F{ (r)E {Zwgegf =f } Fi (r)
= 1, F (r) Fy (v). )

It merits attention that we aim at mitigating pilot contamina-
tion for the UL training phase, at which time instantaneous CSI
is not available yet at the BS. For this reason, we are limited
to solving the problem depending solely on the knowledge of
relatively slow-varying statistical CSI, i.e., covariance matri-
ces, which are mainly determined by AoAs and FA positions.

B. Uplink Channel Estimation

We consider a block-fading channel that is time-invariant
within a coherence block consisting of 7. symbols. The
pilot length is assumed to be exactly equal to the number
of pilots, 7, to guarantee the orthogonality of the pilot se-
quences. The resulting pilot codebook is a scaled unitary
matrix ¥ = [Y1,¢,,...,¢,] € C™*7, satisfying that
WHW = 71, where o7, is the transmit power of the pilot
signal. Additionally, the pilot length 7 must satisfy 7 < T
so that enough symbols are reserved for data transmission.
Let K ={1,2,...,K} and T = {1,2,...,7} be the set of



users and the set of available pilot indices, respectively. The
pilot assignment patterns are represented as {wk}le, where
7 € T indicates that the 7;.-th pilot sequence 1, is allocated
to user k.

With a given pilot assignment pattern {Wk}szl, users trans-
mit their pilots simultaneously during the training phase made
up of 7 symbols, and the received signals Y € CM*™ at the
BS can be written as

Y=H(r)X+N
K
= hy(r)9r, +N, 5)
k=1

where H (r) = [hy (r),hy (r),..., hg (r)] € CM*K s the
channel matrix, X = [t %, ..., %, ] € CK*7 is the
pilot signal matrix, and N € C**7 is the Gaussian noise
matrix whose elements are i.i.d. random variables following
CN (O, ag). Note that although the channels (along with some
other correlation matrices) are determined by the FA positions
r, their dependence on r is suppressed for notational simplicity
when it does not cause ambiguity.

To estimate the channel of user k, the processed received
signal is obtained as

1
P *
Y = TY/II[)‘ITA,
oy k
=hy+ > h;+n}, (6)
JELk
where Zj, = {j|j € K,j # k,m; = m} denotes the set of
users sharing the same pilot sequence with user k, and n} =
Nap; /ai is the effective noise following CA <O7 %I), with
p = 07,/02 being the signal-to-noise ratio (SNR).
It can be observed from (6) that severe interference in chan-
nel estimation (the so-called pilot contamination) is induced
by pilot reuse. In order to mitigate this issue, the minimum

mean square error (MMSE) estimator is employed, and the
consequent channel estimation of user k is derived as

h;, = RiQ; vy, (7
where Ry, = E {h;h/' } is the channel covariance matrix, and
Q. =E {yg (yg)H} is the correlation matrix of y}, which
can be alternatively written as

1
Q.=Ri+ Y R;+-1 ®)
, p
JE€ELk

The channel estimation error of the above MMSE estimator
is denoted b§ h; £ h; — hy, and is distributed according to

CN (O,Rﬁk , where
R; =R —RiQ; 'Ry )

Correspondingly, the mean square error of channel estima-
tion (MSE-CE) of user k is defined as

& AE{HBk thz} =Tr {R;, }.

MSE-CE is a pivotal metric to quantify the accuracy of channel
estimation, and the channel estimation quality can inherently

(10)

affect the performance of data transmission. However, as
is shown in (6), pilot contamination causes inaccuracies in
channel estimation, leading to larger MSE-CE.

C. Problem Formulation

It was proved in [13] that the minimum of MSE-CE is
achieved under the condition that every group of pilot-sharing
users exhibits channel orthogonality, i.e., for Vi € I,

where 0 (R;,R;) € [0,1] is a correlation metric between
two channel covariance matrices R; and R;. Essentially,
d (R;,R;) is defined by the normalized inner product on
CM*M expressed as

Tr {RIR;}

J(Ry,R;) 2 — 0SS
Rl g IR

(12)
Note that 1 — ¢ (R;,R;) is known as the correlation matrix
distance (CMD) [40], while ¢ (R,;, R) itself is called “channel
spatial correlation” in this paper, as it can effectively measure
how similar the spatial properties of users are in spatially
correlated channels [17]. Obviously, § (R;, R;) = 0 indicates
that the users ¢ and 7 have covariance matrices with orthogonal
support, i.e., they are spatially orthogonal.

To further give a theoretical interpretation of the minimum
MSE-CE condition in (11), we resort to the user-averaged
normalized MSE of channel estimation (NMSE-CE), which
takes the form of

e (TR,
TR {2}

K & Tr{Ry}
_ i K B Tr {Rlelek} (13)
K &~ Tr {Ry}

In the context of ideal channel estimation, we have Qj =
Ry, VEk, resulting in zero NMSE-CE. However, recalling (8),
the terms R; and (1/p)I entering into Qj embody the
impact of interference from pilot-sharing users and the noise,
respectively. When the optimal condition in (11) is satisfied,
it can be proved that the NMSE-CE is minimized as

) | K Tr{Rk (Rk+;l)_1Rk}
6“11“:1_?; Tr {Ry}

By examining the difference between (13) and (14), it becomes
evident that the minimum MSE-CE condition described in (11)
corresponds to the situation where pilot contamination among
the users completely vanishes.

Unfortunately, the optimal condition given in (11), i.e.,
J(R;,R;) = 0, or equivalently R,R; = 0, for j € Z;,Vi €
IC, is unlikely to be satisfied in practice [5]. In fact, the channel
spatial orthogonality between the pilot-sharing users can be

(14)



destroyed by several commonly seen factors, including the
insufficient number of BS antennas, the excessive number of
users, and the propagation environments with spatial varia-
tions [28].

In this paper, we aim to optimize the NMSE-CE perfor-
mance and mitigate pilot contamination by exploiting the
spatial DoFs provided by FA. Instead of directly minimizing
the NMSE-CE, which involves intractable matrix inversion,
we resort to another interference suppression criterion, i.e.,
reducing the spatial correlation ¢ (R;, R;) among the pilot-
sharing users as much as possible [17]. Hence we introduce
an objective function referred to as “intra-group correlation”
throughout this paper and written as

=Y Y (R (). B, (1)
€K j>i
r)R; (r)}
=2, Z S
JETL;

As can be seen, the intra-group correlation is obtained by
summing up the channel spatial correlations among all pilot-
sharing users.

In the sequel, we focus on minimizing the intra-group
correlation in (15), which is consistent with the intuition that
users with low spatial correlation are almost non-interfering
with each other. The corresponding optimization problem is
formulated as

Tr{R¥ (r)R; (r)}
2 2 R IR, (o, (o
st. rp€el, m=12,... M (16b)
ltm —rnlly, > D, m,n=1,2,...,M,m#n,
(16¢)

where Z, = {j | j € Zx,j > i}, and D is a minimum required
distance between FAs to avoid the coupling effect. Problem
(P1) is an intractable fractional programming problem, thus
we propose an algorithm to handle this problem in Section
I1I.

D. Supplementary Notes for Pilot Assignment

Before proceeding further, it is important to clarify that our
proposed algorithm operates under a predefined pilot assign-
ment pattern {7, € T } szl which itself can substantially affect
the degree of pilot contamination. In this subsection, we focus
on developing an intelligent pilot assignment algorithm that
aligns with the aforementioned idea of minimizing intra-group
correlation. Coincidentally, the desired algorithm eventually
turns out to be essentially synonymous with the Max-7-Cut
algorithm [38] and the SGPS algorithm [13].

Under the intra-group correlation minimization criterion, we
first formulate the pilot assignment problem as

> D §(RiRy)

i€k j>i
JEL;

min

(17
{ﬂ'k}le

Minimizing (17) is about strategically allocating identical pilot
sequences to the spatially low-correlated users, thereby sup-
pressing the mutual interference. By constructing additional
constant summation terms, (17) is equivalently rewritten as

max Z Z(s(R“R])* Z(S(R”Rj) (18)
{Wk}szl ek j>i j>i
JEL;
Thus, problem (17) is equivalent to
max Y Y 6(Ri,Ry) (19)
{me iz, ieK j>i
JET:

This NP-hard problem is also known as the Max-7-Cut prob-
lem in graph theory [26], [27]. Fortunately, a heuristic algo-
rithm proposed in [38] is capable of obtaining a suboptimal
solution that achieves at least (1 — 1/7) of the optimal solution
for the Max-7-Cut problem. According to these previous
works, the resulting pilot assignment algorithm is given in
Algorithm 1 and referred to as the “Max-7-Cut algorithm.”

Algorithm 1 Pilot Assignment Algorithm for a Suboptimal
Solution to the Max-7-Cut Problem
1: Randomly assign 7 users to 7 pilot groups such that each
group has one user.
2: Assign the unscheduled user ¢ to group m;, where m; =
argmln Z]EIC J (R, R;).

3: Repeat step ]Z_untll each of the remaining (K —
is assigned to a pilot group.

T) users

The SGPS algorithm [13] can be obtained by modifying the
first step of Algorithm 1 into constructing a set of 7 users with
high spatial correlation and assigning them into 7 different
groups while keeping other steps unchanged. Considering
that the users who tend to experience severe interference are
assigned to distinct pilot groups in the initialization of the
SGPS algorithm, it is intuitively expected to be more effective
than the Max-7-Cut algorithm in terms of pilot contamination
suppression.

From the preceding discussion, both the Max-7-Cut algo-
rithm and the SGPS algorithm inherently share the same opti-
mization objective as problem (P1), while the SGPS algorithm
can be regarded as a refined version of the former, which is
subsequently validated by the simulation results in Section IV.

III. PROPOSED ALGORITHM

In this section, we present an algorithm to solve (P1)
for an arbitrary pilot assignment pattern {Wk}szl. We first
analytically derive an upper bound along with a lower bound
for (16a) so as to transfer problem (P1) into a more tractable
one. Then we utilize an alternating optimization approach
to obtain at least a locally optimal solution for the new
problem. Specifically, we alternately optimize the position
of one receive FA, with all the other FAs being fixed. For
each subproblem in the AO algorithm, we use the SCA
technique to convert the nonconvex subproblem into a series
of convex problems. Finally, we discuss the convergence and
computational complexity of the proposed algorithm.



A. The Upper and Lower Bounds of the Spatial Correlation

By rewriting the denominator of any summation term in
(16a) as

IRl 1R, = /Tr (RR) Tr (R,;R,). (20)
we have
T (R) T (Ry) 2 Rl (Rl
b . .
O TR)TR)

\/ rank (R

where () holds since [Tr (X)]* > Tr (X?),vX = 0, and (b)
holds due to Tr (X?) > [Tr(X )]? / rank (X) , VX = 0 [41].

Recalling (4), for the k-th user, Ry is expressed as
R, = U%’kaHFk., hence we have Tr (Ry) = 07 , ||Fk||§, =
o3  LiM and rank (R;) = rank (Fy) < min (L}, M).
Based on the results above, we arrive at

;) rank (R ;)

Uh iOh, erLrM2 > ||RZHF ||RJ||F

2J
\/mln

> Uh ,LO'hJLrLrM.

LiL; M 2
) min (L;, M )
(22)

> oj 0%

By applying the inequality in (22) to each summation term in
(16a) and further conducting inequality relaxation, the upper
bound and the lower bound of the objective function are given
by

e ————— > T {F/F.F]F,;}

(Lfnax) 1€ ]EI/
<y z ik R
~ L 2 Rl Ryl
- Z > T {FIFFIF;},  (23)
(Lmln) 1€}CJ€I/
where L} .. and L] . denote the maximum and the minimum

of {L},},_,. respectively. It should be emphasized that the
upper bound is merely a constant scaling of the lower bound,
with the scaling factor no larger than M if L} . = L} ...

The upper and lower bounds in (23) constitute the the-
oretical basis for reformulating the fractional programming

problem (P1) as

mln Z Z Tr {FH

€K jET]

(P2) T (0)Fy(r)}
(24)
s.t. (16b), (16c).

Although the original objective function is replaced by its
numerator, the optimization problem is still very challenging
since it has a non-convex objective function (24) with non-
convex constraints (16c).

B. Alternating Optimization for Problem (P2)

The AO method is utilized to solve (P2) in an alternate
manner. Specifically, in each iteration, we optimize the ob-
jective function with respect to the position of a certain FA
while keeping the remaining variables fixed. All variables are
iterated until the convergence condition is satisfied. The AO
algorithm can at least guarantee a locally optimal solution for
problem (P2).

Given {r,,n # m}*,, r,, becomes the only opti-
mization variable. To stress the variation of the objective
function in (24) with r,,, we devide Fy, (r) into Fy,, =
[fk (I'l) y fk (1'2) yee ey fk (rm—l) 5 fk (I’m+1) gee ey fk (I‘M)] and
£y (r,,). Subsequently, a certain summation term in (24) can
be rewritten as

Tr{FH (r)F; (r )

= Tr {[fi (v

( r)F;(r)}
7 (rm) + FimFr
[fj (I‘m) va (I‘m) + FLmFiI—,Im] }
=2Re {f (r,,) Cijf; (rm)}

hij(rm)
+ Tr {Fy B By F L+ LILY, (25)
constant
where C;; € CY*Li is a constant matrix expressed as
M
Cij=FimFl, = > fixn)f] (rm). (26)

n=1,n#m
According to (25), when {r,,n # m}} | are fixed, the
objective function in (24) turns out to be determined by
hij (I‘m) = 2Re {fZH (I‘m) Cijfj (I‘m)} . (27)

An important observation is that h;; (r,,) closely resembles a
quadratic form which could provide convenience for analysis.
Inspired by this, we rewrite h;; (r,,) as

hij (tm) =2Re {f" (r,,) Cifj (tm) }
=sz (tm) Cijfj (rm) + £ (rm) (Cij) ™ £ (rn)

=] (tm) Aijfij (rm) (28)
where fi; (rp,) = [f (vp) £ (I‘m)}T e C(Li+L5)x1 4ng
_ [0 Gyl s x(LieLr)

Aig = [(Cij)H 0 } €C J ” 29

To conclude, given {r,,n # m}> ,, the subproblem with
respect to r,, can be equivalently reformulated as

(P3) mln Z Z fH (rm) Ayjfij (rm) (30a)
i€k jeT)

st. T € G, (30b)

ltm —rnllo > D, n=1,2,...,.M, n#m.

(30¢)

Although expressed as a quadratic form, h;; (r,) =
fg (rm) Ay fi; (ry,) is still neither convex with respect to r,,
nor convex with respect to f;; (r,,,). A tremendous obstacle is
that A;; is bound to be an indefinite matrix. One can confirm



this fact by proving that the non-zero eigenvalues of A;; must
emerge in positive-negative pairs. To be specific, if \ is a
non-zero eigenvalue of A;; and v;; = [V;T vj]T is the
corresponding eigenvector, where v; € CFix1, vj € chixt,
then —A\ is also a eigenvalue of A;;, considering that

A m - [(CC;SXJ'W] .\ m ,
—v; Cijvy Vi
Aij [Vj ] = {_ (Cij)HVz} =-A { Vi } .

C. Successive Convex Approximation for Problem (P3)

€29

The indefiniteness of A,; considerably increases the in-
tractability of problem (P3). As a countermeasure, we adopt an
SCA approach to solve (P3). The key idea is to optimize the
objective function in an iterative manner. In each iteration, a
surrogate function is constructed at the current feasible point,
satisfying the upper-bound property and convex property, and
then the next feasible point is obtained through minimizing
the surrogate function. The value of objective function is non-
increasing during the iterations, and convergence is guaran-
teed.

In order to derive an upper bound for (30a) and construct
the surrogate function, we start by defining a negative semi-
definite matrix B;; as

Bi; 2 Aj; — ALT=0, (32)

where )\?J? is the largest eigenvalue of A;;. Since B;; < 0,
the function p;; (r.,) £ fg (rm) Bjfi; (ry,) is concave with
respect to f;; (r,,), thus p;; (r,,) can be globally upper-
bounded by its first-order Taylor expansion at the point rf,
as

pij (tm) = £} (vm) Bijfi (rm)
< fH (x) )Bljfw (rh.)
+ 2Re{ o (rh,) Baj [£i5 (vm) — £i5 (x1,)] )

(33)

where r!, € R? is a constant vector denoting the local point in
the ¢-th iteration of SCA. It should be noted that the inequality
in (33) holds for any r,,. By rearranging the terms in (33),
we obtain an upper bound on h;; (r,,) as

hij () =£7 (tm) Ajfij (tm)
§2 Re {fél (I‘fn) Bijfij (I‘m)}

gij (rm)

+AZI (LZ—FL;)_fH( m)B f (m)

(34)

constant

where r!  represents the value of r,, in the ¢-th iteration.
Exploiting the upper bound on h;; (r,,) given in (34),

minimizing problem (P3) can be converted to minimizing its
upper bound. To this end, in the ¢-th iteration of SCA, the
optimization problem (P3) is relaxed as

nlr}in Z Z Re {fZIj{ (rfn) Bj;f;; (rm)}

™ ek jeT!
s.t.  (30b), (30c).

Although g;; (r,,) £ Re{ t)Bijfij (t)} is a linear
function over f;; (ry,), it is stlll not convex over r,,. For-
tunately, the problem-solving methodology in [42] can be
leveraged to construct a convex surrogate function that locally
approximates g;; (I'y,).

Any summation term in (35) can be rewritten as g;; (r,,) =
Re {bfif;; (rm)} by defining a constant variable b;; €
C(EHLF) XL 4 b;; = By;f;; (rl,). Then the gradient vector
and Hessian matrix of g;; (r,,) over ry,, i.e., Vgi; (r,,) € R?
and V2g;; (r,) € R?>*2 can be expressed in a closed
form [42]. Specifically, recalling that r,, = [a:m,ym]T, the

gradient vector Vg;; () = %(r’”), %(rm) is pro-

vided in (36) at the bottom of this page. In (36), we drop the
subscript of b;; and denote its I-th entry as b; = |b;| e/4%, with
|b;| and Zb; being the amplitude and the phase, respectively.

By constructing a positive real number 5fj =
872 byl /A%, it is guaranteed that V2g;; (rn,,) =< 01
for any r,, [42]. Thus g;; (r,,) is a function with Lipschitz
continuous gradient [43], which can be globally upper-
bounded by a quadratic function as

9ij (tm) < gij (

rt) + Vgi; (¢h,)" (tn —1t,)
t

2 (e r) T (e )

t

0;
= e + (Vi (1)) -

(35)

ot rt )Trm

Gij(rm)

5t
+aiy (15) + (St = Vo (11))
constant

Therefore, minimizing (35) can be converted to minimiz-

st
ing > ik Z]ez’ Gij (rm) where §;; (ry,) £ 5 rlr, +
(Vgij (xh,) — o4 m) . As a result, in the ¢-th iteration
of SCA, problem (P4) is converted to
.07 ¢
min vt + (V9 (17,)
st (30b), (30c),

T
rl . (37)

(P5) — st ) e, (38)

9gij (tm)
Oxm

0gij (rm)
OYm

2
— Z |bi] cos 0;,; sin ( \ pig (tm) — ébl) - — Z |be+l| cos 6;; sin (%pj’l (rm) — 4bL§+l> .

Lt Lj
2T — . . (27 27 < . . (27
=— E |bi] sin 0; 1 cos ¢; 1 sin <7pi,l (rm) — Zbl> Y E ’bLﬁ-l’ sin 6;,; cos ¢;,; sin (ijyl (rm) — 45L§+l> ,

Lt

(36)



where ¢¢ and Vg (r!,) are respectively obtained by

2
=2 D 0= %Z oIyl 39
€K jET] i€k jeI!
and
=33 Vi (). (40)

i€k jET!
Problem (P5) is a constrained quadratic programming problem
with convex objective function. If the constraints are ignored,
the closed-form global optimum can be obtained as

Fhnt+1 = T — 5th( m) - (41)

If rfn,t 41 satisfies constraints (30b) and (30c), it is the global
optimum for (P5). Otherwise, to obtain a feasible solution to
(P5), we convert the non-convex constraint (30c) to a convex
constraint in the following.

Since ||r,, —rp,||, is a convex function over r,,, its first-
order Taylor expansion at r!, provides a lower bound on
[rm —rall, as

T
(rﬁn — rn)

_ t
et =, )

(rf, — rn)T (rm —

= Tully 2 [|rh = 7ull, +

_ 1
7 = 7l

With (42), if r;m 41 in (41) is not a feasible solution to (P5),
we can alternatively transform problem (P5) into

[rm

). (42)

61‘,
(P6) min  Srlrn + (Vg (xh,) —o'r) w430
1 T
st. ——m— rin —Tn (rm - Tn) > D,
e~ tm )
n=1,2,...,M, n#m, (43b)
(30b).

Problem (P6) involves convex quadratic programming (QP)
and can be efficiently solved by using either CVX [44] or
quadprog [45].

The proposed algorithm for solving problem (P5) is sum-
marized in Algorithm 2. Therein, the relative decrease of
the objective function in the ¢-th iteration is defined as
(fi=t = f9) /f=1, where fi=! and f? denote the function
value in the (7 — 1)-th iteration and the i-th iteration, respec-
tively. The initial values of r can be obtained by generating
random points that satisfy the constraints (30b) and (30c). To
achieve a more refined solution, it is beneficial to set multiple
random initial points and then select the most favorable
solution from the corresponding pool of solutions. In our
simulation experiments, setting ten initial points can yield
satisfactory results.

D. Convergence and Complexity Analysis

Overall, the convergence of Algorithm 2 depends on the
convergence of the SCA-based algorithm in the inner loop
and the AO-based algorithm in the outer loop.

For the inner loop introduced in Section III-C, we denote
the two constant terms in (34) and (37) by F}j (rt) =

Algorithm 2 Alternating Optimization for Problem (P2)
Input: M, K, A\, v, {mc}, {L}.}, {0k} {Gk.1}, Crs D, €1, €.
Output: r.
1: while Relative decrease of the objective function value in
(P2) is above ¢; do
22 form=1— M do

Keep {r,,n # m} | fixed, initialize ¢+ = 0 and
r) =1,

4: Compute B;; for each pair of pilot-sharing users via
(32).

5: while Relative decrease of the objective function

value in (P3) is above ¢5 do
: Update &t via (39).
7: Update Vg, (r,) according to (36), compute
Vg (rl,) via (40).
Obtain r}, , ., via (41).
if r7, ., statisfies (30b) and (30c) then

: 41 _
10: ritl = o
11: else
12: Obtain rt ! by solving (P6).
13: end if
14: end while
15: Update r,,, + rift.

16: end for
17: end while

AP (Ly+ 1Y) — £ (e )BUf”T(

8t
iy () + (52t = Vay () !
Taylor expansions in (34) and (37) are tight at rm,

hig (v) =2 Gy () + 17 (17,)) + T (v7)

Then, for the ¢-th iteration of SCA, the objective function in
(30a), denoted as h (r,,), is non-decreasing due to

=X D hiy(r

) and T7 (rh) =

> respectively. Since the
we obtain

(44)

i€k jeT!

(a)

> >0 (205 @) + T3 (xh,)) + T (7))
1€EK jETL!

® t+1 1ty 9 t+1

Z Z Z (QgZJ (I‘m ) +F7] (rm)) 2 h (rm )a
i€k jeT!

(45)

where (a) holds because we have minimized the value of
Y ick Z]eI’ g” (r,) in (P3). (b) and (c) hold because
Gij (tm)+T3; (rh,)) and 2g,; (r,,)+T; (rl,) are upper bounds
on g;j () and hij () at vt respectively.

For the outer loop, the objective function value in (24) is
also non-decreasing during the process of alternating optimiza-
tion. Besides, since Tr {RFR;} > 0 for any two positive
semi-definite matrices R; and R, the objective function value
is lower-bounded by zero. Thus, the proposed algorithm is
guaranteed to converge.

The computational complexity of Algorithm 2 is analyzed
as follows. We assume L}, = L%, Vk for simplicity. The
number of user pairs that share identical pilot is estimated as



P=n(n-1)/2=K (K/T —1) /2, assuming that users are
evenly distributed among the pilot groups. In Step 4, we update
{Ci;}. {Ai;}, and {B,;} sequentially, the resulting compu-
tational complexity is O ((M + v,) L2P), where v, is the
number of iterations to obtain A through power iteration [46].
From Steps 5 to Step 14, the corresponding complexity to
update 1,, through SCA is O (L2Pv; + M'*In(1/8)vqp).
where ~; represents the maximum numbers of inner iterations
concerning Steps 5 to 14, 74, is the maximum number of iter-
ations required to solve the quadratic programming problem,
and S is the accuracy of the inner-point method [42]. Finally,
supposing that the maximum number of outer iterations cov-
ering Steps 1-17 is 7,, the total computational complexity is
O ((M +7p +7) LEP + M In (1/8) qp) M70).

IV. SIMULATION RESULTS

In the simulation, we consider a single-cell scenario where
K = 10 single-FPA users are served by the BS. The carrier
frequency is set as f. = 7.5 GHz so that the wavelength is
A = 0.04 m. The numbers of transmit and receive paths are
set as L} = L} = 10. We assume that all the users are of
equal distance from the BS so that cr,%’k = 1/L;,,Vk. Users
are uniformly distributed in a 120° sector, i.e., 0, and qgk are
both uniformly distributed in the angle interval [7/6,57/6].
Considering that larger ASDs lead to a higher probability
of AoA intervals’ overlapping and indicate higher spatial
correlation among users, we set the elevation and azimuth
ASDs as 09 = 04 = 20° to depict a scenario with severe
pilot contamination.

Unless otherwise specified, the remaining simulation param-
eters are set as follows. The length of the coherence block is
T. = 20, and a total of 7 = 5 orthogonal pilots are assigned to
K = 10 users based on the SGPS algorithm proposed in [13].
For the FA scheme, the BS is equipped with M FAs, and
the minimum distance between FAs is set as D = A/2. The
convergence thresholds for the relative decrease in Algorithm 2
are set as €; = e = 1073,

Fig. 3 presents the convergence behavior of Algorithm 2.
The curve shown in the figure is obtained by averaging results
from 100 randomly initiated starting points. It is observed
that the objective function value of (P2) monotonically de-
creases, and the relative decrease goes below 1072 after 20
iterations, which demonstrates fast convergence. Moreover,
we plot the intra-group correlation expressed by (15), which
exhibits a similar decreasing trend to the objective function
value, affirming the effectiveness of the bounds derived in
(23). Specifically, the intra-group correlation is reduced by
approximately 42.91% compared with the initial value.

In the subsequent part, the channel estimation and data
transmission performances of the proposed FA schemes are
compared with those of the conventional FPA schemes. All
the following results are obtained from 50 independent cell
realizations and averaged.

Fig. 4 demonstrates the influence of pilot assignment algo-
rithms on the NMSE-CE performance. The compared schemes
are summarized as follows:

o Proposed M -FA: the BS is equipped with M FAs, and

Algorithm 2 is executed to minimize the intra-group
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Fig. 3. Convergence behavior of Algorithm 2.
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Fig. 4. NMSE-CE of different pilot assignment algorithms.

correlation. The side length of the moving region is set
as A = 3\ for M = 16, and A = 6\ for M = 32,
respectively.

o N-FPA: the BS is equipped with a ULA composed of N
FPAs spaced by A/2.

o Random: the pilot assignment strategy that randomly
assigns pilots to the users.

e Max-7-Cut: the pilot assignment algorithm given in
Algorithm 1.

o SGPS: the pilot assignment algorithm proposed in [13].

According to Fig. 4, we can conclude that for both FPA
and FA schemes, an intelligent pilot allocation algorithm can
yield considerable interference mitigation gain. It is worth
noting that the FA scheme, even with random pilot assign-
ment, can still provide better NMSE-CE performance than all
FPA schemes at SNR levels above 10 dB, highlighting the
impressive capability of fluid antennas in suppressing pilot
interference. Furthermore, the SGPS algorithm always exhibits
slightly superior performance to Algorithm 1, supporting the
conclusion in Section II-D that the SGPS algorithm is an
upgraded version of Algorithm 1.

Fig. 5 illustrates the NMSE-CE performances of different
schemes for different SNR values, with the pilot assignment
algorithm being SGPS. The intra-group correlation of each
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scheme is also evaluated via (15) and noted next to the
corresponding curve. The newly added legends are explained
as follows:

o Average: the user-averaged NMSE-CE calculated
through (13), and the results are further averaged over
50 independent cell realizations.

o Lower bound: the minimum NMSE-CE given in (14),
which can be achieved when pilot contamination is com-
pletely nonexistent. The closer the NMSE curve is to the
minimum NMSE curve, the weaker the effect of pilot
contamination is.

From Fig. 5(a), we have the following observations: 1) in
the high-SNR regime, the NMSE-CE of both 16-FPA and 16-
FA schemes no longer decreases as SNR increases. This is
because the predominant limiting factor for channel estimation
performance at high SNR values is pilot contamination rather
than the noise; 2) in contrast, the performance of the 128-
FPA scheme nearly matches its lower bound over a wide
SNR region. This confirms the correctness of the theory in [5]
that the covariances of pilot-sharing users are asymptotically
linearly independent as M — oo, despite the pilot reuse
among the users; 3) the 16-FA scheme outperforms the 16-
FPA scheme for all SNR values. Specifically, when SNR =
20 dB, the FA scheme obtains 61.7% NMSE-CE performance

—¥%—16-FPA

—F— Proposed 16-FA
107 | —+—32-FPA A
—Q— Proposed 32-FA ¥
¥— 64-FPA Corr=0.21 1
Corr = 0.06 N)

—O—128-FPA

-10 -5 0 5 10 15 20 25 30
SNR (dB)

Fig. 6. MSE-SD of different schemes versus SNR.

gain over the 16-FPA scheme with the same pilot assignment
strategy; 4) reducing pilot contamination brings negligible
improvement to NMSE-CE at low SNR levels. The reason lies
in that the noise serves as the main factor affecting NMSE-CE
in this regime; 5) the intra-group correlation metric is highly
correlated with NMSE-CE performance, i.e., a lower intra-
group correlation often suggests a smaller NMSE-CE, thereby
making minimizing the intra-group correlation a reasonable
strategy for mitigating pilot contamination.

Additionally, Fig. 5(b) presents the comparison of NMSE-
CE performances between the 32-FA and 32-FPA schemes.
The 32-FA scheme performs remarkably well over a wide
SNR range, approaching the pilot contamination-free case.
Compared to the 16-FA scheme, the 32-FA scheme’s notable
superiority over its FPA counterpart emphasizes the benefits
of increasing FA numbers for interference suppression.

In Fig. 6, by exploiting the MMSE receiver [13] during
the UL data transmission stage, we evaluate the performances
of different schemes in terms of MSE for symbol detection
(MSE-SD). The intra-group correlation of each scheme is also
noted next to the corresponding curve. Herein, the MSE-SD is
defined as 5P =E 4 ||5 — s||§i
simultaneously sent from K users and § denotes the detected
symbols at the BS. At SNR = 20 dB, the proposed 16-FA and
32-FA schemes outperform their FPA counterparts by 2.81 dB
and 2.39 dB, respectively. In general, the FA schemes always
perform better than the FPA ones with the same antenna
numbers, implying that mitigating pilot contamination can
improve not only the accuracy of channel estimation but also
the performance of data transmission.

Fig. 7 shows how the NMSE-CE of different schemes
changes with 7, i.e., the pilot length (which is also the number
of orthogonal pilot sequences). The SNR is fixed at 30 dB to
exclude the influence of noise on NMSE-CE performance. The
conclusions are drawn as follows: 1) a trade-off exists between
NMSE-CE performance and pilot overhead. Under specified
antenna configuration and SNR value, a lower level of NMSE-
CE is achieved at the cost of increased pilot overhead, i.e., a
greater pilot length; 2) when the pilot reuse factor n = K/7 is
large, the performance gap between different schemes becomes

, where s is the data symbols
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30 dB.

small. The reason is that the system’s capability to suppress
interference is exhausted when the same pilot is reused by
quite a few users, such that even the FA scheme or the large-
scale FPA scheme fails to prevent severe pilot contamination;
3) on the other hand, for small pilot reuse factors, the proposed
16-FA scheme loses to the 16-FPA scheme. Nonetheless, the
pilot contamination is negligible in such a case, because the
minimum MSE-CE condition in (11) is readily satisfied when
only a few pilots are reused among users; 4) the proposed FA
scheme provides remarkable interference mitigation gain for
moderate pilot reuse factors around two. Specifically, with the
reuse factor set to n = 2, the 16-FA and 32-FA schemes both
obtain the highest NMSE-CE performance gains over their
FPA baselines, with respective gains of 71.23% and 96.58%.
It is noteworthy that at this point, the 32-FA scheme’s NMSE-
CE performance even surpasses that of the 64-FPA one. This
suggests that the proposed FA scheme is particularly effective
for addressing pilot contamination when there is a moderate
level of pilot reuse with K/7 = 2.

V. CONCLUSION

In this paper, we mitigated pilot decontamination for single-
cell pilot reuse by establishing an FA position optimization
problem that minimizes the novel objective function called
intra-group correlation. We first derived analytical upper and
lower bounds for the objective function to simplify the prob-
lem. Then a double-loop based algorithm was proposed to
find a locally optimal solution. Specifically, the positions of
M receive FAs at the BS were alternately optimized in the
outer loop and each subproblem was solved in the inner loop
utilizing the successive convex approximation technique. Nu-
merical results showed the remarkable interference mitigation
gains of the proposed FA schemes over the conventional FPA-
based schemes.
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