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Abstract—RAN slicing has been widely studied for providing
ultra-reliability low-latency communication (URLLC), enhanced
mobile broadband (eMBB), and massive machine type commu-
nication (mMTC) services in 5G. However, the existing RAN
slicing networks have not been explored to support the hybrid
services, such as massive URLLC (mULC) and ubiquitous eMBB
(uMBB) services. In this paper, we propose a novel rate splitting
multi-access (RSMA)-enabled RAN slicing system to facilitate
the runtime support of mULC and uMBB services. Firstly,
three typical slices, i.e., URLLC, eMBB, and mMTC slices are
constructed. Then, a multi-connection scheme is proposed by
using RSMA technology, i.e., the users can be connected with two
typical slices to obtain mULC and uMBB services. Specifically,
the transmitted data of each mULC/uMBB user will be split
into the common mMTC data and the private URLLC/eMBB
data, which will be encoded into the corresponding traffic flows
and served by corresponding slices. Next, a system-wide utility
optimization problem is proposed to optimize heterogeneous
requirements for mULC and uMBB services by joint user
grouping, bandwidth allocation, and power control. Finally, a two
independent agent DDPG (2IADDPG) algorithm is customized to
solve the formulated problem, wherein two independent agents
are responsible for independent decision-making. The reported
numerical results show that the RSMA scheme outperforms the
benchmarks, and in the meanwhile our proposed 2IADDPG
algorithm can achieve faster convergence rate compared with the
multi-agent DDPG algorithm and other comparison algorithms.

Index Terms—Rate splitting multi-access, hybrid services,
independent Q learning, deep deterministic policy gradient.

I. INTRODUCTION

Radio access network (RAN) slicing [1] may be inherited
as one of the key enabling technologies to support the various
demands. According to specific requirements, RAN slicing can
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simultaneously construct multiple virtual networks based upon
the same physical network infrastructure and resources, to
provide different types of customized services. With the rapid
development of the next generation wireless communications,
the hybrid services [2], [3], such as massive ultra-reliability
low-latency communication (mULC) and ubiquitous enhanced
mobile broadband (uMBB) services have emerged, which are
the type of critical mMTC [4]. For example, in-space cellular
backhaul remote connectivity systems request uMBB service,
which requests high broadband data rates along with massive
connectivity [5], while metaverse streaming [6] is considered
as a type of mULC service, which supports massive numbers
of mobile users demanding stringent quality of service require-
ments. In the current RAN slicing system, the mobile network
operators (MNOs) usually construct three typical slices to
correspondingly support the ultra reliable low latency com-
munication (URLLC), enhanced mobile broadband (eMBB),
and massive machine type communication (mMTC) services.
However, there are very limited works on RAN slicing systems
supporting hybrid services, which may have some technical
challenges that need to be further studied. Therefore, we
expect to provide hybrid services on the top of the existing
slicing system. To the best of our knowledge, this is the first
work that investigates slicing for supporting hybrid services.

The resource isolation is always assumed between slices,
which means that there is no inter-slice interference. However,
as the significant increase of the types of services and the
number of users, the orthogonal-based resource allocation
policy is not always efficient. Some works considered the inter-
slice interference, e.g., Zambianco et al. [7] studied a resource
allocation slicing policy to enforce inter-slice isolation across
mobile virtual network operators (MVNO) by minimizing
the inter-slice interference. However, the resource reuse in
these approaches is passive and disordered, which poses great
challenges to the interference coordination mechanism and
makes it difficult to achieve efficient resource management and
performance assurance in high-load network environments.
Thus, non-orthogonal multi-access policies are starting to
demonstrate that they can achieve good and suitable perfor-
mance results [8]. Among them, rate splitting multi-access
(RSMA) [9] has emerged as a highly-reliable and spectrum-
efficient multiple access scheme, which divides a user’s mes-
sage into a private part and a common part, where the common
parts are jointly encoded into a common flow for decoding
by multiple users, while the private parts are independently
encoded into private flows decoded by the corresponding
users. At the receiver, the common flow is decoded first and



next the private flow is decoded with successive interference
cancellation (SIC).

In RSMA, the common messages of different users in the
same RSMA group are encoded into a common flow by using
the same codebook, while the private messages can be encoded
into separate private flows with different codebooks. This
design inherently offers a certain level of privacy protection,
as user-specific data encoded in private messages remains
less exposed compared to encoding it in the common flow.
Specifically, with this encoding scheme, if any part of the
common flow is compromised, it implies that the eavesdropper
has obtained the common codebook, effectively exposing the
entire common flow to the open network. In contrast, even
if one private flow is compromised, the other private flows
remain secure due to the use of distinct codebooks. Further-
more, mMTC traffic is characterized by small traffic size, high
homogeneity, and high overlapping terminal interests, which is
inherently suitable for multicast transmission through unified
coding. Combined with the coding mechanism of RSMA, the
mMTC traffic of the hybrid services can be transmitted as the
common part of RSMA for broadcast transmission. Supported
by these, we use rate-splitting (RS) [10] to take advantage of
the correlations resulting from the common parts of two hybrid
services [11]. Specifically, the data of each user requesting
hybrid services may be split into two parts, i.e., the common
mMTC data and the private URLLC/eMBB data. Moreover,
we design a multi-connection RAN slicing scheme, that is, a
mULC or uMBB user will be connected to two slices to meet
the hybrid requirements.

Another crucial and ongoing technical issue for RAN sys-
tem is radio resource control. Due to the limited resources
and time-varying nature of wireless channels in RAN domain,
the resource allocation and management issue will be a long-
term research topic. The traditional algorithms for resource
allocation problems were extensively studied in the literature.
For example, Zhou et al. [12] relied on the Lyapunov optimiza-
tion to carry out joint virtual resource optimization to maxi-
mize the defined utility function of the RAN slicing system.
However, the traditional methods usually have low-efficiency
and high-computational complexity, the deep reinforcement
learning (DRL)-based algorithms [13] have emerged as effi-
cient approaches for solving high-complexity and non-convex
problems. Among them, multi-agent DRL (MADRL), which
incorporates multi-agent learning, has received an increased
amount of attention recently. MADRL approaches can be clas-
sified into two major categories: independent action learners
(IAL) [14], [15] and joint action learners (JAL) [16]. With
the benefits of independent decision-making for each agent
in independent reinforcement learning (IQL) algorithms, we
design an IQL-based algorithm in this paper.

Thus, we propose an RSMA-enabled RAN slicing scheme
for the hybrid services. Firstly, the three typical slices are
constructed in the system: URLLC, eMBB, and mMTC slices.
Then, based on the existing RAN slicing system, we design
a multi-connection scheme for supporting the hybrid services
by introducing RSMA. In RSMA, the data of each mULC
or uMBB user is split into two parts: common mMTC part
and private URLLC/eMBB part. Each part will be served by

the corresponding slice, i.e., each user will be connected with
two slices. Furthermore, a utility maximization problem is
constructed by jointly optimizing user grouping and resource
allocation. Finally, a novel two independent agents deep de-
terministic policy gradient (2IADDPG) algorithm is proposed
to solve the problem. Importantly, though only two kinds of
hybrid services are considered in this paper, our proposed
solution can dynamically adapt to the changing scenarios. The
main contributions of this paper are as follows:

o RSMA-based Multi-connection RAN Slicing Scheme:
Firstly, three basic RAN slices are constructed upon
the same underlying physical network to collaboratively
provide the hybrid services, namely URLLC, eMBB,
and mMTC slices. Especially, we consider two kinds of
hybrid services in this paper, which are the mULC and
uMBB services. Then, we propose a multi-connection
RAN slicing scheme based on RSMA, i.e., each mULC
or uMBB user is connected with multiple basic slices to
meet the hybrid requirements. Based on RS, the data of
users can be split into two parts (common mMTC data
and private URLLC/eMBB data), and each of them is
connected with the corresponding slice to obtain services.
Naturally, the mULC and uMBB users are grouped into
pairs to facilitate the application of RSMA.

o Utility Maximization Problem Formulation: We aim at
maximizing the system-wide utility by jointly optimizing
user grouping, subchannel allocation, and power control,
which is a non-deterministic polynomial-time hard (NP-
hard) problem. Specifically, the utility function is calcu-
lated as the weighted sum of three performance metrics:
throughput, reliability delay, and coverage probability, to
meet the multiple requirements of the hybrid services.

e 2IADDPG algorithm: Considering the independent rela-
tionship between the user grouping, subchannel alloca-
tion, and power allocation issues, we propose a novel
2IADDPG algorithm to solve the utility maximization
problem. The algorithm obtains the solution of the user
grouping and subchannel allocation by the first agent.
Then, the user grouping results of the first agent will
be input as the partial states of the second agent, and the
second agent is responsible for the power control.

Numerical results show that our proposed RSMA scheme
outperforms the compared schemes in terms of the coverage
probability, throughput, and reliable delay. The proposed al-
gorithm achieves a faster convergence rate, while significantly
improve the performance.

The rest of the paper is organized as follows. In the next
section, we briefly introduce the related work. In Section III,
our RSMA-enabled RAN slicing system model is proposed,
and the different RAN slices are described to collaboratively
provide hybrid services. In Section IV, we formulate the opti-
mization problem of the RSMA-enabled RAN slicing system.
In particular, the targeted optimization problem is formulated
to meet the different quality of service (QoS) requirements
of the hybrid services. In Section V, we solve the proposed
problem by customizing an independent DRL model structure
and propose a 2IADDPG algorithm. Section VI is dedicated



to the extensive discussion of the reported simulation results,
while the conclusion remarks in Section VII end the paper.

II. RELATED WORK

In this section, we will illustrate the state-of-the-art in RAN
slicing and RSMA, as well as the introduction of the DRL-
based algorithms.

A. Customized services provided by RAN slicing

RAN slicing has been widely studied to provide customized
services, by sharing the same physical infrastructure. Setayesh
et al. [17] studied the eMBB and URLLC network slices by
sharing the same RAN infrastructure, wherein the punctured
scheduling method is adopted between the eMBB and URLLC
users. Alcaraz et al. [18] investigated a model-based reinforce-
ment learning approach to efficiently manage the resource
allocation among the eMBB and mMTC slices. In addition,
multiple vehicle-to-everything (V2X) slices were constructed
to provide customized services for UL/DL Decoupled Cellular
V2X networks in [19]. Although there are many works about
RAN slicing, nevertheless, they only studied a single type
of services and there is a paucity of literature on the hybrid
services [20], such as mULC and uMBB services. Zeng et al.
[21] considered the energy-efficient mULC scenario, which
integrates URLLC with massive access, over the cell-free
(CF) massive multiple-input—multiple-output (MIMO) system.
Zhang et al. [22] developed analytical models for CF massive
MIMO system to support the new 6G standard traffic services,
which is mULC communications. The above works focused
on the mULC services, they did not consider the coexistence
of mULC and uMBB services. To the best of our knowledge,
there are very limited works on RAN slicing to provide hybrid
services. Encouraged by these, we develop a cooperative
RAN slicing solution for supporting the mULC and uMBB
simultaneously.

B. RSMA scheme in wireless network

RSMA is proven to improve energy efficiency, reliability,
and delay at a lower computational complexity. Singh et al.
[23] considered a downlink wireless network consisting of
an unmanned aerial vehicle (UAV)-assisted base station (BS),
where RSMA is introduced to serve multiple ground users
(GUs) simultaneously. Xia et al. [24] explored the security-
reliability trade-off in RSMA-based beam-forming against
eavesdropper collusion, which aimed to maximize the mini-
mum secrecy rate (MSR) while considering user fairness. The
authors in [25] proposed two RSMA-based strategies, namely,
time partitioning-RSMA (TP-RSMA) and power partitioning-
RSMA (PP-RSMA), where PP-RSMA was approved as a
powerful physical-layer transmission approach for overloaded
cellular internet of things (IoT). Then, Cho et al. [26] proposed
a cooperative RSMA scheme to increase the coverage for the
downlink system in a THz scenario. The work in [27] applied
RSMA to an uplink two-user single-input single-output (SISO)
multiple access channel communication system to improve the
error probability performance, sum-throughput, and the rate

region. In addition, some works have studied RSMA-based
slicing schemes. Santos et al. [28] adopted an RSMA-based
radio resource slicing strategy for URLLC uplink transmission,
in which the URLLC message is split into two sub-messages.
Liu er al. [29] studied the RSMA-based slicing scheme,
and the results show that RSMA can outperform NOMA
counterpart in network slicing, and obtain significant gains
over OMA in some regions. With the above advantages, and
considering the common parts (mMTC part) of the two hybrid
services, RSMA can be beneficial for our model.

C. DRL-based algorithm

DRL [30] has shown great potential in addressing the com-
munication, computing, caching, and control (4Cs) problems.
Jiang et al. [31] proposed a Q-MIX and proximal policy opti-
mization (PPO) algorithm to solve the long-term optimization
problem in the multi-access edge computing (MEC) network
slicing system. Azimi et al. [32] applied the asynchronous
advantage actor-critic (A3C) algorithm to optimize the energy-
efficient power allocation problem. DDPG [33], [34] is widely
used to cope with continuous-valued control problems and
solve the non-convex objective function in a long-term average
form. However, the single-agent DRL algorithms may not
be able to cope with increasingly complex environments.
In this case, multi-agent DRL algorithms [35], [36] have
emerged and been applied to effectively solve complex and
high-dimension optimization problems. Boateng et al. [37]
proposed a novel stackelberg multi-agent deep deterministic
policy gradient (MADDPG) algorithm for slice creation and
autonomous resource allocation. Andreou et al. [38] proposed
a comprehensive strategy for network slicing design and ap-
plied the MADDPG algorithm to the configuration of network
slices, and to enhance network efficiency and performance.
Furthermore, IQL algorithms may perform on par or better
than multi-agent algorithms, even in more challenging en-
vironments [39]. Hu et al. [40] let the independent agents
compute common knowledge information for action selection
to mitigate the effects of environment non-stationarity, which
outperforms multi-agent common knowledge reinforcement
learning. In [41], the authors represent an independent DQN
agents-based scheme to support dynamic slice embedding
and reconfiguration. The IQL-based algorithms learn strategies
based on local observation, allowing each agent to indepen-
dently generate actions and update the strategies, leading to
faster convergence. This motivates our work on the IQL-based
optimization method.

III. SYSTEM MODEL

We consider an RSMA-enabled downlink RAN slicing
system as shown in Fig. 1, where the users randomly request
the hybrid mULC and uMBB services. The potential exam-
ple applications of the hybrid services are extensive. Taking
industrial automation as an example, in industrial automa-
tion scenarios, industrial robots require massive connectivity
(mMTC data) to support the cooperative operation of multiple
devices, and rely on millisecond-level ultra-low-latency control



signals (URLLC data) to ensure precise execution of opera-
tions simultaneously. In addition, the high-definition cameras
carried by robots require high-throughput video transmission
(eMBB data) for Al real-time visual inspection to determine
product quality and business qualification. In these complex
application scenarios, the existence of mULC and uMBB
services can efficiently meet the comprehensive requirements
of low latency, high reliability, large data throughput, and
connection density of the overall system, so we consider the
hybrid services in this paper.

In this model, three basic slices are supported in the system,
namely the URLLC, eMBB, and mMTC slices. They are
referred as slice s, s € {U, E,C}. Then, RSMA is intro-
duced in this model, where the data of users will be split
into common mMTC data, and private URLLC or eMBB
data'. From a security perspective, mMTC data (which is
mainly related to connectivity and coverage commands) is
encoded as the common message, while URLLC and eMBB
data (potentially containing user-specific or privacy-sensitive
information) are treated as private messages. By encoding
sensitive or privacy-critical information into private messages
rather than the common flow, can enhance data security and
mitigates the risk of exposure, ensuring a more robust and
secure transmission. Moreover, mMTC traffic, with small
packets and high homogeneity, is ideal for multicast via
unified coding in the common part of RSMA. Thus, the
mMTC data of all users in the same RSMA group is encoded
into a common flow, while the URLLC and eMBB data is
encoded into different private flows. Further, the flows are
served by the corresponding slices, i.e., the users are in multi-
connection mode. Thus, each user will be connected with two
slices to obtain the hybrid services. In addition, the users
are divided into disjoint groups to use RSMA, the set of
which is ¢ = {1,2,---,G}. Importantly, this method is
applicable to hybrid services with separable traffic and cannot
be generalized to hybrid services with non-separable traffic. In
industrial automation applications, due to isolated subsystems
within the robots, the different types of traffic are generated
by independent hardware modules, thereby enabling traffic
classification and splitting.

Without loss of generality, we assume N BSs and K users
are randomly distributed, in which Ky users would like to
request mULC service and K, users request uMBB service,
and we have K = Ky + Kjs. To simplify the analysis,
we assume Ky = Kj; and two heterogeneous users (one
uMBB user and one mULC user) are paired in a group to
facilitate the use of RSMA. Then we have G = K/2. Let
c(t) = {crq(t),Vk, g} denote the user grouping indicators,
where ¢ 4(t) = 1 means user k is in group g, otherwise
not. The maximum available power of each BS is assumed
to be Pp. We assume that there are totally 7' times slots,
where each time slot is defined as the time interval [¢,¢ + 1],
te{0,1,2,---, T —1}.

The two kinds of data of each hybrid service can be categorized based
on the traffic identification methods. Moreover, RSMA allows different traffic
types to be encoded in different ways [8], making it a viable method for traffic
differentiation. Then, the identification results can provide theoretical support
for data splitting.
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Fig. 1. RSMA-enabled RAN slicing system with hybrid
services.

The total bandwidth is set to B, divided into M orthog-
onal subchannels with the set of M = {1,2,---, M}. Let
the binary variables x(t) = {azb™(t),Vg, m,b} indicate the
subchannel allocation variables, where xb ™ (t) = 1 represents
group g is allocated with subchannel m of BS b at time slot
t, otherwise not.

Then, the received signal to interference plus noise ratio
(SINR) of user k on slice C' in group g decoding the common
mMTC flow with subchannel m at time slot ¢ is expressed as:

Py ()b (1)

Wt :(‘wz—v

k.g

(D

where Pg™(t) is the power allocated to the common flow of
group g on slice C' with subchannel m, while i} () represents
the channel gain of user k£ in group g with subchannel m at
time slot ¢ and Ny is the noise power. In addition, I;""(t)
is the interference of user k on slice C in group g with
subchannel m, which is defined as

L= > PRl@hi @)+
pef{u,e}
N 2
> Zl’ T () Py ()R ()],
g'€g\g i=1
where P, (t) :IG{Z ]}ng( ), and PP "(t) is the power
j€{c,u,e

allocation of private flow on slice p. Moreover, the former item
of Eq. (2) represents the interference from the same group, and
the latter item is the interference from the users occupying the
same subchannel in other groups.

Then, the data rate of user k in group g on slice C' decoding
the common mMTC flow can be derived as

B c,m
et = Y ahm (3 logs [ 5T (0]
meM

For the common mMTC data, the main objective is coverage
probability. We adopt the SINR-based coverage, which means
that if the user’s SINR is larger than £, we say it is covered
by the BS. Then, the coverage probability for users on slice



C' at time slot ¢ is calculated as
P (t) = P{vg 4(t) > &}

- P{ 3 b > 5}.
meM

After decoding the common flow, it will be removed from
the received signal using SIC. To simplify the analysis, it
is assumed that the SIC procedure is perfect, i.e., no error
propagation occurs in this paper. Then, each user can decode
its own private data. Here, two-user grouping is considered,
thus the received SINR of user & on slice p € {u, e} decoding
its private flow in group g with subchannel m at time slot ¢
can be expressed as:

“4)
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where I ,f:;"(t) represents the interference of user & on slice C
in group g with subchannel m, which is calculated by
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where the former item of Eq. (6) represents the interference
from the privacy data in the same group, and the latter item is
the interference from the users occupying the same subchannel
in other groups.

For the private URLLC data, the primary target is to reduce
the service delay and improve reliability. We assume that the
process of random data arrivals of private URLLC data u of
user k at slot ¢ is denoted as Ay, (¢), which is assumed as
independent and identically distributed (i.i.d.) over the slots
and followed a Poisson arrival process with an arrival rate of
Ay . Firstly, we can calculate the downlink data rate of user k
on slice U decoding the private URLLC? flow at time slot ¢
as
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Then, the total average delay Dy (¢) of all mULC users on
slice U decoding private URLLC flows can be calculated as

1 &% Ay (1)
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Additionally, the communication reliability is defined as the
success connection probability [42], which means the proba-
bility of the achievable rate exceeds a pre-defined threshold.
Then, the communication reliability P, (t) of slice U decoding
URLLC flows can be expressed as:

P (t) = P[Ri(t) = Au]
G M

=L { {ZZ Crg(t Mbgz {1 + Z;n( )] Z)\U}}
g=1m

(€))

2To simplify the analysis, we do not consider finite blocklength. Therefore,
we use the asymptotic rate of URLLC.

nd delay, we defined the variable D{f(t) as the reliable
delay to combine the two metrics, which can be formulated
as,

Dy = 2y

Finally, the throughput is regarded as the optimization
objective for uMBB users on slice F decoding the private
eMBB flows. Then, the total throughput can be expressed as

(10)
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IV. PROBLEM FORMULATION AND SOLUTION

In this section, the utility maximization problem of the sys-
tem will be defined, which is a MINLP. To deal with MINLP,
traditional optimization algorithms require a procedure of
convex hull relaxations or linear approximation, such as [43],
[44]. Fundamentally, these methods obtain an approximation
of the MINLP rather than solve the original problem, which
may not a feasible solution. DRL-based algorithms are pro-
posed for directly solving MINLPs. In which, the independent
DDPG algorithms can achieve higher convergence due to
the decentralized learning. Thus, we propose a 2IADDPG
algorithm to solve the above problem.

A. Utility Maximization Problem Formulation

As each hybrid service has one more QoS requirement, we
define a weighted-sum utility function as:

U(t) = (¢ — Dif (1)) + B2 Prf"(t) + B3 Re(t),

where (1, (2, and (3 are the weight of the reliable delay,
coverage probability, and throughput, respectively. In addition,
1 is the initial maximum benefit of reliable delay to ensure
the non-negativity of the utility [45], [46].

Then, we aim to maximize the utility function for the
RSMA-enabled RAN system with the constrained resource,
which can be formulated as follows:

P1: max Bi(¢ — Dif) + B2 Pyi’ + B3R

¢, X,
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.where Pz{ s (1), P ()|, g, e, m,t}. C1 represents the

value range of binary variables %™ (t) and cy, 4(t), while C2
means that we could assign at most one subchannel to a group
in the same slot, and C'3 represents the grouped users can
not be selected again. C'4 is the maximum power allocated



to the users in a group, while C5 is to promise successful
implementation of the SIC procedure at the receiver [47] and
f is a non-negative value in dBm [48].

B. MDP Modelling

Considering the dynamic characteristics in the proposed
transmission scenario, the optimization problem P1 can be
described as a Markov decision process (MDP). A MDP can
be denoted by a four-tuple of <O7 AR, O'>, where O and O’
are the observed state at the current time slot and next time
slot, A is the set of actions, and R represents the reward of
the agent which can be customized according to the different
system. The four-tuples will be stored in a buffer, from which a
mini-batch of samples is randomly selected to train the neural
network. In our model, two agents are adopted to take action.
Let A; and A, denote the two agents, where A; performs user
grouping and subchannel allocation, and A, optimizes power
control for users based on the selected actions a%. Then, we
can get the four-tuples for the first agent as below.

The state and next state of A;: In the RAN system,
the states mainly include the channel states in the physical
network. Then, the state 0,} € O at time slot ¢t of A is

O% = {h%(t)v 7hZL(t)7"' vh%(t)}

Obviously, the next state o;,; € O at time slot ¢ + 1 can
be denoted as:

oppr = Mt +1), - Jh(E+ 1), R+ 1)} (15)

(14)

Action of A;: Based on the current state of the system and
the observed environment, A; selects actions from the action
space Aj. The most suitable action space should contain all
possible user grouping results and subchannel assignments,
hence the set of actions at the time slot ¢ is:

atl = {ck,g(t),mg’m(t),Vk,g,m,b}. (16)

As ¢k g(t) and 2™ (t) are discrete actions, which are relaxed
to continuous variables with a value range of [0,1], which
conforms to the continuous action space of the proposed
DDPG-based algorithm.

Reward of A;: The agent will measure the performance
by a scalar reward 7} to assist making better decisions for
higher reward. According to (12), the reward space of A; can
be expressed as follows:

ri = U(t). (17)

Similarly, we introduce the four-tuples for A,. Referring
to the actions performed by the A;, the A, optimizes power
allocation only for the users assigned subchannels.

The state and next state of A,: Similarly, the state ot2 €0,
at time slot ¢ and the next state o? 11 € 0) at time slot ¢ + 1
of A, can be defined as:

{ 0? = {Ck,g(t%h%(t)v T 7h%(t)}v
0fs1 = {erg(t +1), At + 1), byl (L + 1)}

Action of A;: Correspondingly, A, selects actions from the
action space A,. The actions of A, should be including all the

(18)

possible power allocation decisions, then the set of actions at
the time slot ¢ is:

af = {P;*m(t),Pg;j(t),vzg,g,m,p c {u,e}}

where k represents the user k¥ who has been allocated with
subchannels in step 1.
Reward of A,: The reward of A, is defined as

r? =U(t).

19)

(20)

C. Deep Deterministic Policy Gradient

In our proposed 2IADDPG framework, the two independent
DDPG agents rely on the same actor-critic (AC) architecture,
where each agent contains an actor network for action gener-
ation and a critic network for action evaluation, as illustrated
in Fig. 2. Moreover, the policy network p(o|6*) and the
action-value function Q(os 1, 1t(044+1)|0%) are referred to an
actor network and a critic network, to train the parameters
6" and A%, respectively. Moreover, both the critic network
and the actor network are also created with a copy: the target
actor network and the target critic network, which are created
to slowly update the learned actor and critic network by
significantly increasing training stability.

Actor Critic
Optimizer Optimizer
h A
Strategy Strategy
DD Gradient ¢ . Update 6° Gradient ¢
A Gradient a A
Online Strategy Network Online Q network
Parameter: & Parameter: 62
a= (o) 7y
Soft Update Zi Soft Update
A \4
Target Strategt Network u'(o0r1) Target Q network
Parameter: 6" Parameter: 62
t ot A
) 0,,a 1,0,
Sample |
Replay tot
Store /|  Buffer | D,i ¥ (00,0 57,041
Mini-batch

Fig. 2. The framework of the DDPG model.

Specifically, the four components are described as:

1) Online Critic Network: Parameterized by 6€ to evaluate
the action by a state-action value function Q(o;, a;|0%), which
can be calculated with the Bellman equation as

Q(or,ar|69) =E[r (01, ar) +7Q(0r+1, 1(01+1)[69)],

where v € (0,1) is the discount factor, and (o, a;) is the
reward function defined in section IV-B. The parameter 6 is
updated by minimizing the loss function, which is defined as
the mean-squared Bellman error as

L(09) = E[(Q(ot, at|09) — y2)*)],

where y; = 7(0f,az) + 7YQ (0441, u(t + 1)[09) is the target
state-action value. And the gradient of L(09) is defined as

Voo L =E [2(y; — Vo (01, at)Q(0r, a¢[69))) . (23)

2

(22)



In addition, a mini-batch with size D,,;,; will be sampled
from the replay buffer for updating the parameter A% by the
stochastic gradient descent method, which can be given by
«
6 :9Q*D7Q Z Ry —Vgalor, ar)Q(or, ar|09))], (24)
T

ming

where g denotes the learning rate of the critic network.

2) Online Actor Network: Parameterized by 6" to take
action a;y; based on the state information o;4; by sampling
a mini-batch uniformly from the replay buffer. The action
generation policy u(o:|6*) is updated by using the gradient
descent method as

Vo JRE [VaQ(or, i(0a]0)[09) - Voup(or0")] . @5)
Moreover, the parameter 6% is updated by
or = g+ — Yy
> [VaQ(or, p(0r]0)169) - Vo p(or]6%)] ,
T

where o, denotes the learning rate of the actor network.

3) Target Critic Network: Updating weight 69" of the value
network and then giving the current @) value.

4) Target Actor Network: Calculating the current value (',
as well as obtaining the target value.

The target critic network and actor network are parameter-
ized by 09" and 0/, respectively. 09" and 6* are updated by
the soft update method with the constant 7 as follows

09 769 4+ (1 —7)09,
0" 10" + (1 — 7)o",

where the default value 7 can range from 0.0001 to O.1.

27)

D. The proposed 2IADDPG algorithm

In this section, we customize a 2IADDPG model and
propose a 2IADDPG algorithm to solve the above problem.
The global framework of the algorithm is illustrated in Fig. 3,
which is composed of two independent agents to realize
independent decision-making. Considering the independent
relationship between the user grouping, subchannel allocation,
and power allocation optimization, we can divide the total
action space into two sub-spaces, which are optimized by
two agents. To elaborate, the first agent (referring Agent A;)
optimizes the user grouping and subchannel allocation, then
the second agent (referring Agent A;) is responsible for power
control based on the results of Agent A;. In addition, the
selected actions will be judged to meet the constraints of
C2-C5, if the constraints are not satisfied, the action will be
re-selected. In addition, we have added the random process
N} for action exploration to avoid infinite loops of action re-
selections. Finally, the utility maximization problem can be
solved by the two-step iteration process. The specific process
is summarized in Algorithm 1.

Moreover, each agent in the proposed 2IADDPG algorithm
uses a fully connected deep neural network (DNN) structure.
For the actor 1, we built a DNN with K x M inputs and
K x M outputs, and the critic 1 is set up by a DNN with
2K x M inputs and 1 output. Similarly, for the actor 2, we

’—4 Environment
t
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| a | a

I
I
:—» Critic 1 a,
I
)

Actor 2

I
I
:—» Critic 2
I
)

:

Q value

Train I 1Store

Replay Buffer 2

—

Store

Train I
Replay Buffer 1

Fig. 3. The structure of the proposed 2IADDPG algorithm.

Algorithm 1 The proposed 2IADDPG algorithm

1: Randomly initialize critic network (); and actor network
11; with weights 09 and 0/, i € {1,2}.

2: Initialize target S:ritic network Q;/ and actor network ]

with weights 6" «— % and 6" «— 6", i € {1,2}.

Initialize replay buffer D; and Ds.

fort=0,1,2,..., 7 —1 do
Initialize a random process N} for action exploration;
Obtain the observation state o;.

For the Agent A;, choose action aj = p1 (o} |04) + N}
with the deterministic policy;

Obtain observation state of;

For the Agent A, select action a? = puz(07|04?) + N7
based on the current state and policy;

10:  Evaluate whether the chosen action satisfies the con-
straint conditions. If not, the agents will re-choose the
action;

11:  Obtain the reward r; (0}, a;) and the next state o}, for
i€{1,2};

12:  if the replay buffer is not full then

A A

o *®

13: Store <of;, at, r§,0i+1> in replay buffer D;;
14:  else
15: Sample a random mini-batch of D,,;,; transitions

ok, ak,rk, o

%, as, 15,05, ) from the replay buffer D;;

16: Calculate y! = i + v Qf (0%, i (0h,,10}") GJQ)
for i {1,2};

17: Update the critic network by minimizing the loss
function in (22);

18: Update the actor network by sampled stochastic policy
gradient ascent with (25);

19: Update the parameters of the target actor network

and the target critic network according to (27);
20:  end if
21:  t+t+1.
22: end for




set up a DNN with K x M inputs and %M outputs, and the
critic network is set up by a DNN with gK x M inputs and
1 output. Moreover, there is no known rule for determining
the number of hidden layers and neurons. It is appropriate to
select the parameters through a trial-and-error approach [49],
[50]. The specific configuration of the DNNs is summarized
in Table I.

TABLE I: DNNs configuration for the 2IADDPG algorithm

Number of Number of neurous Activiation function
hidden layers
Actor i 3 256 + 256 + 8 Relu + Relu + Tanh
Critic i 2 256 + 8 Relu + Relu

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present the extensive set of simulation
results to evaluate the theoretical analysis and compare the ob-
tained performance with the benchmark schemes. We suppose
the fixed size of the experience memory D; as 5000 four-
tuples for each agent, and the mini-batch size is defined as
D in;=32 for training at each time step. According to [34],
[49], the other parameters of the simulation are summarized
in Table II.

TABLE II: Parameter Settings

Parameter  Description Value

N Number of BSs 2

B Total system bandwidth 10 MHz
M Number of subchannels 10

No Noise power -90 dBm/Hz
AU Random data arrival rate of URLLC data 50 kbits/slot
13 SINR threshold of the coverage probability 0.15
Pp Maximum transmission power of each BS 40W
Py Maximum power allocated to one group SW

P Initial maximum benefit of the reliable delay 0.2

B1 Weight of the reliable delay 50

B2 Weight of the coverage probability 10

B3 Weight of the throughput 0.00000005
oy Learning rate of actor network 0.0001
ag Learning rate of critic network 0.0002

o Discount factor 0.9

In order to show the advantages of our proposed schemes,

we include the five benchmark schemes for comparison.

« Benchmark 1 is the orthogonal frequency-division mul-
tiple access (OFDMA) scheme as the comparison of the
proposed RSMA scheme: the users requesting different
services will be allocated with orthogonal subchannels.

o Benchmark 2 is the non-orthogonal multiple access
(NOMA) method. In the NOMA scheme, the mixed
traffic of each user is not split and the data of users in the
same NOMA pair is encoded into a single data stream.
Accordingly, two slices are constructed in NOMA, i.e.,

mULC and uMBB slices, to accommodate the mixed
traffic. The users are paired into multiple groups, and
we consider the case of two-user grouping, i.e., a mULC
user and a uMBB user are included in a group and
are transmitted non-orthogonally. Among them, the user
grouping is optimal, and after the pairing is completed,
the power allocation is determined according to the
user’s channel conditions. Specifically, the user with good
channel condition (strong user) will be allocated lower
power, and the user with weak channel condition (weak
user) will be assigned higher power.

o Then, in Benchmark 3, we compare the proposed 2IAD-
DPG algorithm with the “MADDPG [51]” algorithm, and
the number of the agents is set to 2.

« Next, the conventional single-agent “DDPG [34]” algo-
rithm is Benchmark 4, as the comparison of the proposed
2IADDPG algorithm.

o Further, we consider the “A3C [32]” algorithm to be
Benchmark 5 of the proposed 2IADDPG algorithm.

« Finally, Benchmark 6 is the “PPO [31]” algorithm.
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Fig. 4. Convergence of the 2IADDPG algorithm versus the
benchmarks.

Fig. 4 and Fig. 5 show the convergence performance of
the proposed algorithm versus the benchmarks and different
numbers of users, respectively. As shown in Fig. 4, our
proposed algorithm shows a faster convergence than the shown
competitors, the reward converges to a relatively stable state
after about 12200 training iterations. While the MADDPG
algorithm and DDPG algorithm converge after about 28000
and 15500 training iterations. Moreover, the PPO algorithm
and A3C algorithm converge after about 37000 and 426400
iterations, respectively. In the MADDPG algorithm, due to the
sharing memory and the possible policy interaction, there will
be a problem of policy interference, that is, the update of one
agent may negatively affect the performance of other agents.
In the proposed 2IADDPG algorithm, the agents can ex-
plore their own strategies more efficiently because each agent
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Fig. 6. System-wide utility versus the number of users.

independently generates actions and updates its strategies.
Thus, our proposed 2IADDPG algorithm can explore better
strategies faster and achieve faster convergence. Additionally,
the number of users K of the system also affects the reward
values as in Fig. 5. As the number of users increases, the
system-wide utility increases, which corresponds to the growth
of reward.

Fig. 6 characterizes several utility curves versus the num-
ber of users for the proposed scheme and other compar-
ison schemes. We can see that the utility of the “2IAD-
DPG+RSMA” scheme is increasing when the number of users
increases, while the utilities of the other comparison schemes
are decreasing when the number of users increases. As the
number of users increases, the available subchannels of the
OFDMA scheme will decrease, then there will be more users
who may not be allocated with subchannels. As a result, the
performance of users will be degraded, and thus the utility
will be reduced. In addition, the RSMA and NOMA schemes

are superior to the OFDMA scheme due to the SIC receivers.
More importantly, the RSMA scheme surpasses NOMA and
OFDMA schemes by adjusting the splitting power of two flows
for each user and enabling partial decoding of interference
as well as treating part of the remaining interference as
noise, so as to control the decoding interference. As expected,
our proposed 2IADDPG algorithm can achieve higher utility
than the MADDPG, DDPG, and other comparison algorithms.
It indicates that MNO can achieve higher utility at higher
traffic loads by our proposed 2IADDPG algorithm and RSMA
scheme, which means the users can get higher performance
with our schemes.
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Fig. 7. Coverage probability versus the number of users K
on mMTC slice.
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Fig. 7 exhibits the coverage probability versus the number
of users K on slice C for the proposed and other comparison
algorithms. We can see that the coverage probability of all
schemes decreases with the increase of the number of users.
This is because as the number of users increases, resource
competition becomes fierce, and interference increases, which
will lead to degradation in coverage performance. Compared
with the MADDPG, DDPG, PPO, and A3C algorithms, our
proposed 2IADDPG algorithm can achieve higher coverage.

Then, the trends of throughput and reliable delay of the
corresponding slices for the proposed and other comparison al-
gorithms are shown in Fig. 8 and Fig. 9, respectively. Similarly,
the 2IADDPG algorithm always shows better performances
than the mentioned benchmark algorithms. Though, the MAD-
DPG achieves a slightly lower reliable delay than the proposed
algorithm as shown in Fig. 9, the throughput performance is
much lower than the proposed 2IADDPG algorithm in Fig. 8.
Moreover, the throughput of all the schemes in Fig. 8 increases
with the increase of the number of users. We also note that
the reliable delay in Fig. 9 increases with the increase of the
number of users, this is because the increase of the number of
users leads to greater resource competition and lower resource
allocation to users, which results in the increase of reliable
delay.

Fig. 10 depicts the coverage probability and throughput of
uMBB service versus the number of users K. Meanwhile,
Fig. 11 portrays the coverage probability and reliable delay of
mULC service versus the number of users. Upon increasing
K, the coverage probabilities of uMBB and mULC services
decrease, while the throughput of the uMBB service and
the reliable delay of mMTC service increases. Compared
with the orthogonal scheme, the non-orthogonal schemes can
significantly improve the coverage probability, as the non-
orthogonal schemes allow subchannels sharing within multiple
users, thus providing a higher access possibility. Importantly,
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the RSMA scheme can always achieve higher performances
than the NOMA and OFDMA schemes.

VI. CONCLUSION

In this paper, we propose an original RSMA-enabled hybrid
RAN slicing scheme. Firstly, the basic URLLC, eMBB, and
mMTC slices are constructed to cooperatively provide hybrid
services. Then, the uMBB and mULC users are assumed to
share the same subchannels by using RSMA, in which the
data of each user will be divided into the common mMTC
data and the private eMBB/URLLC data. In this way, the
users can connect with two basic slices to obtain services.
In addition, a two-user grouping solution is adopted in this



paper, i.e., users are divided into several disjoint RSMA groups
and each group includes one uMBB user and one mULC user.
Furthermore, the utility maximization problem is formulated to
jointly optimize the heterogeneous performance metrics, which
is defined as the sum-weight of reliable delay, throughput, and
coverage probability. Finally, an original 2IADDPG frame-
work is customized, and a 2IDDPG algorithm is proposed to
solve the target problem, wherein the first agent is employed
to obtain user grouping and subchannel allocation, while the
second agent is applied for power control based on the results
of the first agent.

The encouraging results achieved so far are pushing us to
plan for additional related research work in the future. In
particular, we are working on the integration with other key
deployment scenarios. Given the characteristics of RSMA, our
future work will focus on balancing security and reliability. We
aim to harness the decoding reliability offered by priority en-
coding strategies while addressing the potential security risks
associated with shared codebook theft. By comprehensively
optimizing the transmission scheme, we will ensure both the
security and reliability of data transmission, thereby providing
a more robust solution for future communication systems. As
fairness is another critical factor in resource allocation, our
future work will focus on integrating fairness considerations
and exploring advanced resource allocation strategies to ensure
a more balanced distribution among users while maintaining
overall network efficiency. Specifically, we will investigate
fairness-aware utility function design, such as integrating pro-
portional fairness and introducing adaptive weight adjustment
mechanisms, to balance the resource allocation and cope with
diverse QoS demands.
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