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Abstract—This paper investigates the spatial bandwidth of
line-of-sight (LoS) channels in extra-large MIMO (XL-MIMO)
systems. For linear large-scale antenna arrays (LSAAs) with
transceivers randomly positioned in 3D space, a simple but
accurate closed-form expression is derived to characterize the
local spatial bandwidth. Based on this analysis, we examine
the properties of local spatial bandwidth and further derive
expressions for the effective spatial bandwidth and the achievable
degrees of freedom (i.e., the K number) for LSAAs. We also
conduct case studies for both coplanar and non-coplanar trans-
mitting and receiving arrays, providing more concise and intuitive
expressions for local spatial bandwidth and achievable spatial
degrees of freedom. Finally, the impact of array geometry on LoS
XL-MIMO channel capacity is explored. When the transmitting
and receiving arrays are coplanar and perpendicular to the
line connecting their centers, the effective degree of freedom
of the LoS channel is found to be approximately maximized.
This orientation also maximizes the channel capacity in near-
field high-SNR scenarios.

Index Terms—Extra-large MIMO, large-scale antenna arrays,
spatial bandwidth, degree of freedom, channel capacity.

I. INTRODUCTION

TO meet the anticipated demands of future 6G networks
in terms of data rates, connection density, latency, relia-

bility, and coverage, array-based communication technologies
have exhibited two significant trends: the adoption of large-
scale antenna arrays (LSAA) and the use of higher carrier
frequencies [1], [2]. The key characteristics of LSAA include
not only an increased number of antennas but also an expanded
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array aperture, enabling LSAA communication systems to
capture richer spatial domain information [3]. The high carrier
frequency offers abundant bandwidth resources; however, due
to higher penetration losses, multipath propagation is con-
siderably weakened, which makes line-of-sight (LoS) array
communication increasingly important [4]–[6].

The conventional view holds that LoS environments are
unfavorable for multiple-input multiple-output (MIMO) com-
munication, as MIMO channels in such scenarios cannot
provide spatial multiplexing gains [7]. However, in extra-
large MIMO (XL-MIMO) systems, the use of LSAA may
position users predominantly within the near-field radiation of
access points, which challenges the traditional assumption of
plane-wave propagation. Instead, a more general non-uniform
spherical wave propagation model is required to accurately
characterize phase and amplitude variations within the array
[8], [9]. Within the near-field region, spherical waves exhibit
nonlinear changes in phase and power levels across each link,
thereby increasing the rank of the channel matrix [10]. This
significantly enhances the spatial degrees of freedom (DoF) in
MIMO channels within near-field environments, even under
LoS conditions, making spatial multiplexing feasible for LoS
XL-MIMO systems.

The analysis of spatial DoF provides insights into the
number of independent signal dimensions available for trans-
mitting information over wireless channels [10]. The spatial
DoF is influenced by various factors, such as the geometric
configuration of the antenna arrays, the propagation environ-
ment, and the polarization of the antennas. It is important to
note that, while DoF quantifies the number of independent
parallel sub-channels, it does not account for the actual gain of
each sub-channel. In practice, only sub-channels that achieve
sufficient power levels are considered effective. The gains of
these effective sub-channels can be represented by the singular
values of the channel matrix, and the effective degrees of
freedom (EDoF) correspond to the DoF that are exploitable.

Significant progress has been made in understanding EDoF
by current researchers. In [11], the authors approximate EDoF
using the expression EDoF1 = (tr
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In [12], the EDoF of continuous-aperture (CAP) MIMO is
explored through an exact eigendecomposition of the Hermi-
tian kernel of the Green’s function. [13] and [14] employed
Landau’s eigenvalue theorem to evaluate EDoF. These studies
demonstrated that EDoF can be enhanced by reducing the
propagation distance or increasing the aperture size. In fact,
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for the LoS environments, the channel characteristics are
determined by the geometric properties of the transmitting and
receiving arrays, including their size, position, and orientation.
However, the impact of array geometry on EDoF has not been
highlighted in these studies.

In [15] and [16], the authors investigated the EDoF of
near-field CAP-MIMO using the Nyquist sampling theorem
and Fourier theory. Building on this, researchers proposed an
approximation method to calculate the EDoF between two
CAP arrays, treating the EDoF as the number of Nyquist
rate samples required to represent a 2D band-limited signal
[1]. In [17], closed-form approximations for each orthogonal
receiving direction were derived through an orthogonal de-
composition of the receiving directions, and the impact of
array position and rotation on achievable spatial DoF was
analyzed. Additionally, [18] employed a dual-slope asymptotic
expression to approximate the spatial bandwidth at the center
of the receiving array and used this expression to analyze the
channel’s DoF performance.

Although [18] provided approximate expressions for spatial
bandwidth, its derivation relies on complex piecewise function
fitting, which overlooks the intuitive geometric insights. In
[19], the impact of the array geometry on the number of
distinguishable spatial frequency bins and the spatial DoF has
been shown to be highly related. However, some interesting
properties of spatial bandwidth remain unexplored. Addition-
ally, the impact of adjusting array geometry to increase near-
field channel capacity has not been discussed. To address
these issues, this paper derives a simple yet accurate closed-
form expression for the local spatial bandwidth of LSAA. The
obtained result highlights the impacts of the aperture sizes of
the transceiver arrays, as well as their relative position and
orientation, on the local spatial bandwidth. These properties
can be effectively transferred to analyze the effective spatial
bandwidth of the array, the EDoF of the channel, and the
channel capacity.

The main contributions of this paper are summarized as
follows:

• For arbitrary placement of the transceiver arrays in 3D
space, we derive an interpretable closed-form expression
for the local spatial bandwidth at the center of the
receiving array. Then, we further analyze the maximum
and expectation of the local spatial bandwidth.

• Closed-form expressions for the effective spatial band-
width of the receiving array, along with numerical and
approximate closed-form expressions for the achievable
degrees of freedom (i.e., the K number), are also pro-
vided. We thoroughly investigate the relationship between
the effective spatial bandwidth, the K number, and the
local spatial bandwidth. Additionally, we validate the cor-
relation between the K number and the EDoF. Through
case studies of coplanar and non-coplanar transceiver
arrays, we present more concise and intuitive results for
the local spatial bandwidth and the K number.

• With the derived the K number, we further explore the
impact of array geometry on the capacity of LoS XL-
MIMO channels. Our results demonstrate that the geo-
metric configuration of the array has a negligible impact

on channel capacity even in the far-field communications.
However, in the near field, adjusting the array geometry
can manipulate the distribution of the channel’s singular
values, thereby achieving optimal channel capacity at
different receiving signal-to-noise (SNR).

The remainder of this paper is organized as follows: Section
II introduces the problem settings and assumptions, derives
the closed-form expression and the related properties for local
spatial bandwidth. In Section III, we examine the effective
spatial bandwidth, the K number, and demonstrate the correla-
tion between the K number and EDoF. Also, we conduct case
studies for both coplanar and non-coplanar arrays, offering
more concise results for local spatial bandwidth and the K
number. Section IV explores the impact of array geometry
on LoS XL-MIMO channel capacity, and finally, Section V
concludes the paper. Part of this paper was presented at
the IEEE WCSP 2024 [20]. The journal version provides a
more comprehensive analysis of spatial bandwidth and further
investigates the impact of array geometry on channel capacity.

Notations: lower-case, bold-case, and bold upper-case letters
represent scalars, vectors, and matrices, respectively; [·]∗,
[·]T, and [·]H denote the conjugate, transpose, and conjugate-
transpose operations, respectively; IN denotes an N × N
identity matrix; Re{·} denotes the real part of the argument;
CN (µ,Σ) denotes the complex multivariate Gaussian distri-
bution with mean µ and variance Σ.

II. LOCAL SPATIAL BANDWIDTH ANALYSIS

This section presents the foundation of local spatial band-
width and analyzes the impact of array position and orientation
on local spatial bandwidth. The analytical approach is provided
to clarify the impact of array geometry, including the array
position and the orientation, on the effective spatial bandwidth
and the EDoF of the channel.

A. Problem Settings and Assumptions
As shown in Fig.1, we consider an XL-MIMO system where

both the transmitter and receiver are equipped with LSAA
arrays, denoted by Ls and Lp, with respective dimensions Ls
and Lp. The transmitting array Ls is centered at the origin
O and oriented along the z-axis. The point P represents
the center of the receiving array Lp, with coordinates p0 =
[xp, yp, zp]

T. The orientation of the Lp is given by the unit
vector v̂ = [vx, vy, vz]

T, where vz ≥ 0 and ∥v̂∥ = 1. Under
the assumption of an ideal isotropic point source, rotating Lp
around the z-axis does not affect its observed electric field.

Due to limited diffraction and high absorption, mmWave
signals exhibit weak multipath propagation, making the LoS
component dominant [21], [22]. Accordingly, we consider
the LoS wireless channel under 3D free-space propagation
conditions. Under the assumption of a time-harmonic current
distribution1 on Ls, the electric field perceived by position
p ∈ Lp can be expressed as [23]:

E (p) =

∫
Ls

G (p− s)J (s) ds, (1)

1We focus on a narrowband channel, as the same approach can be readily
extended to analyze each subcarrier in a wideband system.
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where J (s) represents the current density at point s ∈ Ls.
G(p − s) represents the Green’s function (e.g., the spatial
impulse response [23]). In this case, the Green’s function2

can be expressed as [18], [24]:

G (r) ≜
jωµ

4πr
exp (−jk0r)

(
I− r̂Tr̂

)
, (2)

where r ≜ p − s denotes the propagation vector, r = ∥r∥ is
the propagation distance, and r̂ = r/∥r∥ is the unit vector in
the direction of propagation. ω denotes the (angular) frequency
of the waves, and k0 = ω

√
ϵµ = 2π

λ denotes the wavenumber,
where ϵ and µ represent the permittivity and permeability of
free space, respectively.

Fig. 1: System model.

Definition 1. The spatial frequency3 of the wave component
G (r)J (s) ds generated by the source s ∈ Ls, measured at
p ∈ Lp, as it moves along v̂, is given by

fv̂ (p, s) = k0r̂
T (p, s) v̂, (3)

where vector r̂(p, s) = (p − s)/∥p − s∥ denotes the propa-
gation direction, as depicted in Fig. 2. From (3), it is evident
that the spatial frequency fv̂ (p, s) can be expressed as the
inner product of the propagation unit vector and receiving
array direction unit vector. With the wavenumber, we have
−k0 ≤ fv̂ (p, s) ≤ k0.

B. Closed-Form Expression for Local Spatial Bandwidth

For simplicity, we derive the expression for the local spatial
bandwidth at the center point of Lp. Note that the local spatial
bandwidth at any point in 3D space can be obtained using the
same method.

As shown in Fig. 1, without loss of generality, it is assumed
that the center point P of Lp lies in the first quadrant of the
yOz plane (including the boundary), i.e., xp = 0, yp ≥ 0, and
zp ≥ 0. R = |OP | denote the distance between Ls and Lp,
and let θ be the angle between the vector p0 and the positive
y-axis ŷ = [0, 1, 0]

T. Therefore, the position of P is given by
p0 = [0, R cos θ,R sin θ]

T.
It is clear that different locations s′ ∈ Ls generate distinct

spatial frequency components at p0. Accordingly, the local
spatial bandwidth is defined as follows:

2The analysis is restricted to the radiating near-field and far-field regions,
where the distance between Lp and Ls exceeds 10 times the electromagnetic
wavelength λ.

3More detailed discussions of spatial frequency can be found in [19].

Definition 2. The local spatial bandwidth4 at p0 is defined
as the difference between the maximum and minimum spatial
frequencies of all wave components radiated by Ls at p0, given
by

ωv̂ (p0,Ls) = k0

Å
max
s∈Ls

r̂T (p0, s) v̂ − min
s∈Ls

r̂T (p0, s) v̂

ã
.

(4)
From (4), it is clear that 0 ≤ ωv̂ (p0,Ls) ≤ 2k0. Note
that ωv̂ (p0,Ls) depends on the position of the observation
point p0 and the orientation v̂ of Lp. Unfortunately, there
is no precise closed-form expression for the local bandwidth
of transmitting and receiving arrays arbitrarily placed in 3D
space.

To derive the closed-form expression for ωv̂ (p0,Ls), the
key idea is to characterize the relationship between the range
of variation of the propagation direction vector r̂ and the
position p0. To simplify the derivations, we introduce γ to
represent the angle between r̂ (p0, s) and the positive y-axis.
Thus, the propagation direction vector r̂ can be expressed as

r̂ (p0, s) ≜ r̂ (γ) = [0, cos γ, sin γ]
T
, (5)

Since A, P , and B are situated in the yOz plane, the x-axis
component of r̂ is zero. Therefore, to describe the range of
variation of the propagation direction vector r̂, we only need
to determine the range of variation of γ as s moves along Ls.

As shown in Fig. 2, let α = ∠APB represent the angle
subtended by P with respect to A and B, satisfying 0 < α <
π. Construct the circumcircle of triangle APB, intersecting
the y-axis at points M and N , with O′ as its center. Connect
MP , noting that MP serves as the bisector of solid angle α.
S is the intersection of MP and the z-axis. Let β = ∠PMN ,
with 0 ≤ β ≤ π/2. Thus, the range of γ can be determined
by the angle tuple (α, β):

−α/2 + β ≤ γ ≤ α/2 + β. (6)

Fig. 2: The range of variation of the propagation direction
vector r̂.

Similarly, we express the orientation v̂ of Lp using a pair
of angles (ψ,φ):

v̂ (ψ,φ) = [cosψ, sinψ cosφ, sinψ sinφ]
T
, (7)

where ψ denotes the elevation angle of v̂ with respect to the
positive x-axis, satisfying 0 ≤ ψ ≤ π. v̂yz is the projection

4When the receive array is a two-dimensional surface, the local spatial
bandwidth is determined by the area of the region spanned by the projection
of r̂ [1].
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of v̂ onto the yOz plane. The angle φ represents the azimuth
angle, which is defined as the angle between v̂yz and the y-
axis, with 0 ≤ φ ≤ π.

Based on (5) and (7), the spatial frequency fv̂ (p0, s) can
be reformulated using angle tuple (ψ,φ, γ) as:

fv̂ (p0, s) ≜ f(ψ,φ, γ) = k0r̂
T(γ)v̂(ψ,φ)

= k0 sinψ cos(γ − φ).
(8)

From (8), each position s along Ls results in the reception
of wave components with different spatial frequencies at point
P . Let Fmax (ψ,φ;α, β) and Fmin (ψ,φ;α, β) denote the
maximum and minimum values of the spatial frequency re-
ceived at point P when Lp is oriented as v̂ (ψ,φ), respectively,
as follows:

Fmax (ψ,φ;α, β) ≜ max
−α/2+β≤γ≤α/2+β

f (ψ,φ, γ) , (9)

Fmin (ψ,φ;α, β) ≜ min
−α/2+β≤γ≤α/2+β

f (ψ,φ, γ) . (10)

According to (4), the local spatial bandwidth received at p0

can be expressed as

ωL (ψ,φ;α, β) = Fmax (ψ,φ;α, β)− Fmin (ψ,φ;α, β) .
(11)

It can be verified that for any (α, β), we have

ωL (ψ,φ;α, β) = ωL (ψ,φ+ π;α, β) . (12)

This implies that it is sufficient to examine the function
ωL(ψ,φ;α, β) over any interval of length π for φ. Without
loss of generality, we can consider the case where φ ∈ [β, β+
π]. As shown in Fig. 3, define φ′ ≜ φ− β, which represents
the angle of v̂yz relative to v̂MP , where v̂MP =

−−→
MP/

∣∣∣−−→MP
∣∣∣.

Then, for ωL (ψ,φ′;α, β) over ψ ∈ [0, π] and φ′ ∈ [0, π],
substituting (8) into (9), (10), we have

Fmax (ψ,φ′;α, β)

=

ß
k0 sinψ,φ

′ ∈ [0, α/2],
k0 sinψ cos (α/2− φ′) , φ′ ∈ (α/2, π],

(13)

and

Fmin (ψ,φ′;α, β)

=

ß
k0 sinψ cos (−α/2− φ′) , φ′ ∈ [0, π − α/2),
−k0 sinψ,φ′ ∈ [π − α/2, π].

(14)

According to (11), (13), and (14), we obtain the following
expression for the local spatial bandwidth at p0:

ωL (ψ,φ′;α, β)

=

 k0 sinψ [1− cos (−α/2− φ′)] , 0 ≤ φ′ ≤ α/2,
2k0 sinψ sin(α/2) sinφ′, α/2 < φ′ < π − α/2,
k0 sinψ [1 + cos (α/2− φ′)] , π − α/2 ≤ φ′ ≤ π.

(15)
Remark 1: It is noteworthy that, unlike the approximate

expressions derived in [17] and [18], we provide an accurate
formulation of the local spatial bandwidth in (15) without
the need for complex approximations and fitting techniques.
Based on the definition of local spatial bandwidth in (4),
it is evident that the local spatial bandwidth at point P
depends solely on the relative geometric configuration between

Fig. 3: The relative geometric relationship between the trans-
mitting and receiving arrays.

the receiving and transmitting arrays. As the receiving array
rotates around the z-axis, this relative geometric relationship
remains unchanged, thereby keeping the local spatial band-
width at point P unchanged. Consequently, for any point in
the 3D space, we can rotate it around the z-axis to align
it with the yOz-plane, and then use (15) to determine its
local spatial bandwidth. Moreover, (15) provided an intuitive
geometric interpretation of the factors influencing local spatial
bandwidth. Specifically, the expression is characterized by two
sets of angle parameters: the first set (ψ,φ′) relates to the
orientation v̂ of Lp, and the second set (α, β) relates to the
position p0 of Lp. Additionally, it is observed that in (15),
ψ and φ′ are decoupled, allowing us to independently study
the impacts of the elevation angle and the azimuth angle on
the received spatial bandwidth. This expression enables the
fast and accurate determination of spatial bandwidth at various
points in space, thereby accelerating system-level simulations.

(a) (R, θ) = (100λ, 0) (b) (R, θ) = (100λ, π/4)

Fig. 4: The normalized local spatial bandwidth observed at
different the receiving orientations (ψ,φ′).

Fig. 4 plots the normalized local spatial bandwidth ωL/k0
as a function of the orientation (ψ,φ′) of the receiving array,
based on (15). The dimension of the transmitting array is
Ls = 100λ, and the position of P is described by (R, θ).
The red triangle in the figure marks the receiving orientation
that maximizes the local spatial bandwidth.

From Fig. 4a, it is observed that the local spatial bandwidth
ωL at P initially increases and then decreases as ψ varies from
0 to π. For all φ′ ∈ [0, π], ωL reaches its maximum value when
ψ = π/2. Notably, at this point, the component of v̂ along
positive x-axis is zero, indicating that Lp and Ls are coplanar.
When ψ is either 0 or π, i.e., when Lp is perpendicular to Ls,
ωL attains its minimum value of zero. Similarly, as φ′ changes
from 0 to π, the local spatial bandwidth ωL at P also increases
initially and then decreases. For all ψ ∈ [0, π], ωL achieves its
maximum value when φ′ = π/2. The maximum value of ωL is
attained when (ψ,φ′) = (π/2, π/2). As shown in Fig. 4b, the
trend of ωL remains consistent with that observed in Fig. 4a,
which is due to the use of relative orientation angles (ψ,φ′)
to describe the orientation of the Lp. Moreover, the maximum
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value of ωL is smaller than that in the case of θ = 0, as the
corresponding value of α is reduced in this configuration.

Fig. 5 compares the normalized local bandwidth obtained by
different approaches. “PROP” represents the results obtained
using (15), “NUME” refers to the numerical calculation results
using the definition (4), and “DSAF” corresponds to the results
computed using the dual-slope asymptotic function proposed
in [18].

Comparing Fig. 5a and Fig. 5b, we observe that when the
transceiver distance R is large, all three methods yield nearly
identical results. However, when R is small, the proposed
approach of local spatial bandwidth perfectly matches the
numerical results, while the “DSAF” method exhibits larger
errors. Furthermore, when φ′ = 0, the local spatial bandwidth
obtained by the “DSAF” method is zero, which is contradicted
by the numerical calculation results.
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Fig. 5: The calculation results of the normalized local spatial
bandwidth under different schemes.

C. Maximum and Expectation of the Local Spatial Bandwidth

Using (15), we can further explore the relationship between
the local spatial bandwidth and the received position parame-
ters (α, β) of Lp. First, we investigate the maximum value of
the local spatial bandwidth at a given location, defined as

ωmax
L (α, β) = max

ψ,φ
ωL (ψ,φ;α, β) . (16)

Proposition 1: For any point P in 3D space, the local spatial
bandwidth ωL at P reaches its maximum value if and only if
the receiving direction v̂ satisfies v̂ = ±v̂NP , where v̂NP =−−→
NP/

∣∣∣−−→NP ∣∣∣. The maximum value ωmax
L (α, β) is given by

ωmax
L (α, β) = 2k0 sin (α/2) . (17)

Proof: Since (15) is a piecewise function, ωmax
L is de-

termined by the maximum value of each segment. According
to (12),

ωmax
L = max

ψ∈[0,π],φ′∈[0,π]
ω (ψ,φ′;α, β) . (18)

When 0 ≤ φ′ ≤ α/2, we have

ωL (ψ,φ′) ≤ k0 (1− cosα) , (19)

the equality is attained when (ψ,φ′) = (π/2, α/2). When
α/2 ≤ φ′ ≤ π − α/2, we have

ωL (ψ,φ′) ≤ 2k0 sin (α/2) , (20)

Fig. 6: Maximum normalized local spatial bandwidth at dif-
ferent observation locations.

the equality is attained when (ψ,φ′) = (π/2, π/2). When
π − α/2 ≤ φ′ ≤ π, we have

ωL (ψ,φ′) ≤ k0 (1− cosα) , (21)

the equality is attained when (ψ,φ′) = (π/2, π−α/2). Thus,

ωmax
L = k0 ·max {1− cosα, 2 sin (α/2)} = 2k0 sin (α/2) .

(22)
Note that at this point, v̂ = v̂NP .

Remark 2: According to Proposition 1, the maximum local
spatial bandwidth ωmax

L at P depends solely on the solid angle
α subtended by P and the two ends of Ls. With α ∈ (0, π),
the maximum local spatial bandwidth increases with α, which
increases with the transmitting array aperture. The orientation
v̂ that corresponds to this maximum value ωmax

L , however,
depends on the angle β. Furthermore, based on geometric
relationships, any point P ′ on the circular arc ĂPB has the
same maximum local spatial bandwidth ωmax

L .
Fig. 6 illustrates the maximum normalized local spatial

bandwidth for different locations in the yOz-plane when
Ls = 100λ. The y- and z-axes are normalized by the
wavelength λ. The red line along the z-axis indicates the
position of the transmit array Ls. The black lines represent
contour lines, along which the maximum value of local spatial
bandwidth is identical at each location. For a fixed observation
angle θ, ωmax

L decreases as R increases, and the decreasing rate
of ωmax

L slows down with increasing R. When R is fixed and
R > Ls/2, ωmax

L increases as θ approaches 0. Additionally, it
is observed that the contour lines of ωmax

L form circles with Ls
as their chord. Building on the concept of effective aperture,
the proposed method for analyzing the maximum local spatial
bandwidth can also be extended to other types of arrays, such
as planar arrays and circular arrays [25].

When the orientation of Lp is unknown and arbitrary, the
expected value of the spatial bandwidth received at Lp’s center
point P depends on its position. As demonstrated later, the
expected value of the local spatial bandwidth on the receiving
array is related to the expected value of the EDoF of the
channel. Without loss of generality, Lp has the isotropic
distribution in 3D space of the direction v̂, i.e., the orientation
vector v̂ is equally likely to point to any direction, then the
joint probability density function (PDF) for (ψ,φ′) is given
by

p3Dψ,φ′ (ψ,φ′) = pψ (ψ) pφ′ (φ′) , (23)



6

where pψ (ψ) = 0.5sinψ for ψ ∈ [0, π] and pφ′ (φ′) = 1/(2π)
for φ′ ∈ [0, 2π] are the PDFs of ψ and φ′, respectively.
Consequently, the expectation of the local spatial bandwidth
at point P is given by

Ep3D
ψ,φ′

{ωL (ψ,φ′;α, β)}

=

∫ π

0

∫ 2π

0

ωL (ψ,φ′;α, β) p3Dψ,φ′ (ψ,φ′) dψdφ′

=
k0
4

(
α+ 2 sin

α

2

)
.

(24)

When Lp is constrained to be coplanar with that of Ls, we
have ψ = π/2. Consequently, the joint PDF for (ψ,φ′) is
given by

p2Dψ,φ′ (ψ,φ) = δ (ψ − π/2) pφ′ (φ′) , (25)

where δ(·) represents the Dirac delta function. The expectation
of the local spatial bandwidth at point P under these conditions
is then given by

Ep2D
ψ,φ′

{ωL (ψ,φ′;α, β)}

=

∫ π

0

∫ 2π

0

ωL (ψ,φ′;α, β) p2Dψ,φ′ (ψ,φ′) dψdφ′

=
k0
π

(
α+ 2 sin

α

2

)
.

(26)

Comparing (17), (24), and (26), we have
Ep3D

ψ,φ′
{ωL (ψ,φ′;α, β)} ≤ Ep2D

ψ,φ′
{ωL (ψ,φ′;α, β)} ≤

ωmax
L (α, β). This means that having the fixed receiving array

coplanar with the transmitting array helps to enhance the
local spatial bandwidth at the center of the receiving array.
Furthermore, the maximum or expectation of the local spatial
bandwidth at point P depends solely on the solid angle α
and increases with it.

III. EFFECTIVE SPATIAL BANDWIDTH, K NUMBER, AND
EDOF ANALYSIS

In this section, we leverage the concept of local spatial
bandwidth to examine the effective spatial bandwidth and
the K number of the transmitting and receiving arrays in an
XL-MIMO system. Specifically, we extend the definition of
effective spatial bandwidth to scenarios where the transmitting
and receiving arrays are positioned and oriented arbitrarily.
By employing the approach used for solving local spatial
bandwidth, we obtain a closed-form expression for the ef-
fective spatial bandwidth. Furthermore, based on the closed-
form expression for local spatial bandwidth, we derive an
approximate closed-form expression for the K number, which
represents the theoretical maximum spatial DoF achievable
by large arrays under ideal conditions [17]. This allows a
better understanding of the impact of array positioning and
orientation on the EDoF in a LoS channel in a similar manner
to how we understand the local spatial bandwidth at the center
of the receiving array.

A. Effective Spatial Bandwidth

Note that the local spatial bandwidth for a given position at
Lp is obtained in (15). However, the spatial bandwidth of the
entire receiving array should collect all the spatial frequencies

Fig. 7: Geometric relationship between the transmitting and
receiving arrays.

obtained by all the positions at Lp. Based on [24], we propose
a definition for the effective spatial bandwidth for transmitting
and receiving arrays with arbitrary positions and orientations.

Definition 3. The effective spatial bandwidth of Lp is
defined as the range of spatial frequencies that Lp can receive,
given by

ωE(Lp) = k0

Å
max

p∈Lp,s∈Ls
r̂T (p, s) v̂ − min

p∈Lp,s∈Ls
r̂T (p, s) v̂

ã
.

(27)
In contrast to local spatial bandwidth, effective spatial band-
width depends not only on the relative position and orientation
of the receiving array but also on its dimension. The local
spatial bandwidth at the center of the receiving array is
included within the effective spatial bandwidth, thus ωE > ωL.
The effective spatial bandwidth of the transmitting array can
be defined similarly, and thus omitted for brevity. Note that
the effective spatial bandwidth defined in [24] is a special case
when the transmitting and receiving arrays are in parallel.

Next, we provide the method for calculating the effective
spatial bandwidth. As shown in Fig. 7, let the endpoints of
Ls be A and B, and the endpoints of Lp be C and D.
The orientation of Lp is denoted by v̂. Q is an arbitrary
point on line segment AB, and point R is an arbitrary
point on line segment CD (both including endpoints). δ1, δ2,
δ3 are the angles between the propagation direction vectors
corresponding to the vectors

−−→
QC,

−−→
QR,

−−→
QD, and v̂. According

to geometric relationships, it follows that δ1 ≤ δ2 ≤ δ3.
Therefore, regardless of the location of Q within AB, the

point p on the receiving array that maximizes the received
spatial frequency is always at point C, while the point that
minimizes the received spatial frequency is always at point
D. Since Q and R are chosen arbitrarily, the maximum and
minimum spatial frequencies received by Lp are given by

max
p∈Lp,s∈Ls

r̂T (p, s) v̂ = max
s∈Ls

r̂T
Ä
p0 +

Lp
2 v̂, s

ä
v̂ ≜ Fmax

C ,

(28)
min

p∈Lp,s∈Ls
r̂T (p, s) v̂ = min

s∈Ls
r̂T
Ä
p0 − Lp

2 v̂, s
ä
v̂ ≜ Fmin

D ,

(29)
where Fmax

C and Fmin
D denote the maximum spatial frequency

at C and the minimum spatial bandwidth at D, respectively.
Therefore, the effective spatial bandwidth between Ls and Lp
can be expressed in closed form as

ωE = Fmax
C − Fmin

D . (30)

Note that the maximum and minimum spatial frequency for
a given location have been provided in (13) and (14), respec-
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tively. This method allows for rapid and accurate identification
of the effective spatial bandwidth, thereby accelerating system
simulations.

In particular, when the transmitting and receiving arrays are
parallel, it can be readily shown that the direction propagation
vectors corresponding to the maximum and minimum spatial
frequencies receivable by the arrays are achieved at the end-
points of the arrays. Consequently, the effective spatial band-
widths of the transmitting and receiving arrays are equal in this
configuration. However, this property does not necessarily hold
when the transmitting and receiving arrays are not parallel.

B. K Number

With local spatial bandwidth, the number of samples pro-
vided by non-redundant Nyquist sampling (i.e., denoted as K
number [16]) can be computed using numerical or approxi-
mate methods. Since the K number provides an approximate
estimate of the EDoF in MIMO channels, it offers a crucial
theoretical foundation for the design and optimization of
MIMO systems [17], [18]. Our objective is to derive a closed-
form expression for the K number and utilize this expression
to obtain a deeper understanding of how array geometry affects
the EDoF of the channel.

According to [17], [26], for a 1D receiving array, the K
number can be calculated as

K =
1

2π

∫ Lp/2

−Lp/2
ωv̂ (p0 + lpv̂,Ls) dlp, (31)

where ωv̂ (p0 + lpv̂,Ls) denotes the local spatial bandwidth
at the receiving array Lp located at p0 + lpv̂ when Lp is
oriented along v̂. It can be observed that a larger K number
corresponds to a richer set of plane wave components from
Ls received at Lp (i.e., a larger spatial bandwidth). Since we
have obtained a closed-form expression for the local spatial
bandwidth at any point in 3D space, the K number can be
efficiently approximated using a numerical method.

Consider the case of relatively small Lp compared to R,
the local spatial bandwidth at different points across Lp is
approximately equal. Therefore, the local spatial bandwidth
at the center of Lp, denoted as ωv̂ (p0,Ls), can serve as an
approximation for the local spatial bandwidth at all points on
Lp. Then, the K number can be approximated as:

K̃ =
Lp
2π
ωv̂ (p0,Ls) . (32)

In this case, the K number is proportional to the local spatial
bandwidth ωv̂ (p0,Ls) at the center of the array and the length
Lp of the receiving array. Therefore, the properties of the local
spatial bandwidth at the center of the receiving array obtained
in Section II can be effectively leveraged for the analysis of
channel EDoF. For example, the orientation v̂ that maximizes
the K number of the receiving array Lp is approximately equal
to the orientation v̂ that maximizes the local spatial bandwidth
at the center of Lp. According to Proposition 1, the maximum
value of the K number can be approximated as

K̃max =
k0Lp
π

sin (α/2) . (33)

C. Typical Case Study

For a typical and practical scenario where the transmission
distance R is larger than the apertures of Ls and Lp, we
provide approximations and simplifications for the local spatial
bandwidth and the K number. Specifically, two cases are
presented respectively: Ls and Lp are coplanar and Ls and
Lp are non-coplanar.

1) Ls and Lp are coplanar: As shown in Fig. 8, let Ω be
the plane containing both Ls and Lp, with the centers of Ls
and Lp denoted as O and P , respectively. OM is the axis
of Ls. The line connecting O and P is denoted as l, and the
length of the segment OP is R. In the plane Ω, let l⊥ be the
perpendicular bisector of the line l. The angles between Ls and
l⊥ and between Lp and l⊥ are denoted as θ and ϑ, respectively,
where θ ∈ [0, π/2] and ϑ ∈ [0, π/2]. Denote the angle
subtended by P and the two ends of Ls as ∠APB = α. When
R ≫ Ls, we have PA ≈ PB. Since AO = BO, according
to the angle bisector theorem, we have ∠APO ≈ ∠BPO,
meaning that l can be approximated as the angle bisector of
α. Therefore, we have φ′ ≈ π/2− ϑ. Additionally, since α is
small when R ≫ Ls, based on geometric relations, we have
α ≈ Ls cos θ/R.

Fig. 8: Coplanar transmitting and receiving arrays.
Substituting φ′ ≈ π/2− ϑ, ψ = π/2, and α ≈ Ls cos θ/R

into (15), the local spatial bandwidth at point P can be
approximately expressed as

ω̃2D = 2k0 sin
(α
2

)
sin(

π

2
− ϑ)

≈ 2k0 ·
α

2
cosϑ ≈ k0

Ls cos θ cosϑ

R
.

(34)

Consequently, when Lp ≪ R, the K number can be approxi-
mately expressed as

K̃2D = ω̃2DLp = k0
Ls cos θ · Lp cosϑ

R
≜ k0

L′
sL

′
p

R
, (35)

where L′
s = Ls cos θ and L′

p = Lp cosϑ represent the
projection lengths of Ls and Lp on l⊥, respectively. From
(35), we see that when the distance between the transmitting
and receiving arrays is much larger than their respective sizes,
the K number is proportional to the projection length of the
transmitting and receiving arrays on l⊥.

As shown in Fig. 9, when point P lies on the axis OM of
Ls, i.e., when θ = 0. In Fig. 9a, when the transmitting and
receiving arrays are parallel (i.e., ϑ = π/2), the K number is
maximized, reaching K ≈ k0

LsLp
R . At this point, the EDoFs

of the channel are also maximized. Conversely, as depicted
in Fig. 9b, when the transmitting and receiving arrays are
perpendicular (i.e., ϑ = 0), the K number is minimized,
approaching zero.

However, as shown in Fig. 10, when point P is not on
the axis OM , it is surprising that the orientation of Lp that
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(a) Ls ∥ Lp

(b) Ls⊥Lp

Fig. 9: Orientations of Lp that maximize and minimize the K
number when the center P of Lp is on the axis OM of Ls.

maximizes the K number is not parallel to Ls, but rather
perpendicular to the line l connecting the centers of Lp and Ls
(Fig. 10a). In this orientation, Lp receives a richer set of plane
wave components, and the maximum K number is given by
K ≈ k0

L′
sLp
R . Similarly, the orientation of Lp that minimizes

the K number is not perpendicular to Ls, but aligned with the
line l connecting the centers of Lp and Ls (Fig. 10b). In this
case, the K number approaches its minimum value, close to
zero, and the channel’s EDoFs are also minimized. Therefore,
by merely controlling the orientation of the receiving array, we
can freely adjust the K number within the range [0, k0

LsLp
R ].

(a) Lp⊥l

(b) Lp ∥ l

Fig. 10: The orientations of Lp that maximize and minimize
the K number when the center P of Lp is not on the axis
OM of Ls.

2) Ls and Lp are non-coplanar: As shown in Fig. 11,
assume that the transmitting array Ls and the receiving array
Lp are not coplanar. Let the plane containing points A, B, and
P be denoted as Ω, with n̂t representing the normal vector
of plane Ω. Define the angle between n̂t and Lp as π/2− ϕ,
where ϕ ∈ [0, π/2]. Consequently, we have ψ = π/2− ϕ.

Fig. 11: Non-coplanar transmitting and receiving arrays.

Similar to (34), when R≫ Ls, the local spatial bandwidth
at point P can be approximately expressed based on the
geometric relationships and (15):

ω̃3D = k0
Ls cos θ sinϑ cosϕ

R
. (36)

When Lp ≪ R, the K number can be approximately expressed
as:

K̃3D = ω̃3DLp = k0
Ls cos θ · Lp sinϑ cosϕ

R
≜ k0

L′
sL

′′

p

R
,

(37)
where L

′′

p denotes the projection length of Lp onto l⊥ after
being projected onto Ω as L′

p. Note that (37) shares the same
form as the spatial DoFs presented in [22], [27]. Clearly, for
fixed array distance R and angle θ, K̃3D reaches its maximum
value when ϕ = 0 and ϑ = π/2 (i.e., when Ls and Lp
are coplanar and Lp⊥l). Conversely, when ϕ = π/2 (i.e.,
when Lp⊥Ω, as shown in Fig. 12), the approximate spatial
bandwidth ω̃3D is nearly zero, resulting in K̃3D ≈ 0. There-
fore, to enhance the EDoF of the channel, the transmitting
and receiving antennas should ideally be positioned within the
same plane.

Fig. 12: Non-coplanar perpendicular transmitting and receiv-
ing arrays.

D. Numerical Validations

We first provide the numerical validations of the relationship
between the effective spatial bandwidth of the array and
its position and orientation, and analyze the approximation
accuracy of the K number. Subsequently, using a discrete
aperture array as an example, we reveal the physical meaning
of effective spatial bandwidth from the perspective of plane
wave decomposition and demonstrate the relationship between
the K number and the EDoF of the channel.
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(b) (R, θ) = (500λ, π/4)

Fig. 13: The relationship between the normalized local spatial
bandwidth and the normalized effective spatial bandwidth.

Fig. 13 illustrates the relationship between the normalized
effective spatial bandwidth ωE/k0 and the normalized local
spatial bandwidth ωL/k0 at the center of Lp with respect to
the orientation (ψ,φ′) of Lp, given Ls = Lp = 100λ. It
can be observed that both the local spatial bandwidth and the
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effective spatial bandwidth first increase and then decrease as
φ′ increases, reaching their maximum values around φ = π/2.
Moreover, the variation trend of the effective spatial bandwidth
with φ′ is consistent with that of the central local spatial
bandwidth. When ψ = 0, the local spatial bandwidth at
the center of Lp is zero, but the effective spatial bandwidth
remains non-zero.

Fig. 14 illustrates the relationship between the K num-
ber and the orientation of the receiving array Lp, when
Ls = 100λ, Lp = 100λ, and λ = 0.01 m. The K number
is calculated using both numerical methods (“Num.”) and
the approximation method (“Approx.”) as given in (32). It
can be observed that the K number reaches its approximate
maximum when the local spatial bandwidth of the Lp center is
maximized, i.e., when φ′ = π/2. Additionally, the K number
computed via (32) is approximately equal to that obtained
using the numerical method, thereby validating the accuracy of
the approximation in equation (32). It is also noted that when
ψ = 0, the local spatial bandwidth of the receiving array is
zero. However, the K number is generally non-zero, but it
remains close to zero.
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Fig. 14: K number for different orientations of the receiving
array.
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Fig. 15: The maximum K number vs. receiving positions.

Fig. 15 illustrates the relationship between the position of
the receiving array Lp and its maximum K number when
Ls = 100λ, Lp = 100λ, and λ = 0.01 m. “Approx. K”
represents the maximum value of the K number calculated
using (33). “Exh. K” denotes the K number calculated using
numerical methods and then maximized by traversing all
possible receiving directions v̂. As shown in Fig. 15, the
maximum K number decreases monotonically with increasing
distance R between the transmitting and receiving arrays,
and the rate of decrease diminishes monotonically as well.
The maximum K number also decreases monotonically with
increasing θ. When θ = 0, the maximum K number reaches
its peak. Additionally, it is observed that the maximum K

number calculated via (33) closely matches the maximum K
number obtained numerically, particularly when R > 300λ.
This validates the accuracy of the approximate expression for
the K number provided by (32) and (33).
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(a) Approximation error of the K number under different orientations of
the receive array.
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Fig. 16: Normalized computation error of the K number.
The normalized computation error of the K number is

defined as ϵ =
∣∣∣K̃ −K

∣∣∣ /K, where K is obtained via numer-
ical integration. Fig. 16a illustrates the approximation error
of the K number when the receive array Lp adopts various
orientations (ψ,φ), under the configuration Ls = Lp = 100λ,
R = 200λ, and θ = 0. As observed from the figure, even
when the transmitter–receiver distance is on the same order of
magnitude as the array dimensions, the approximation error
remains below 5% for most receive array orientations. Fig.
16b illustrates the approximation error of the maximum K
number, where K̃max denotes the maximum value obtained
via (33). In this setup, Ls = Lp = 100λ, the transmit array
is fixed at the location marked by the red line segment, and
the receive array is placed at each position across the plane.
The results demonstrate that as the separation between the
transmit and receive arrays increases, the approximation error
of the maximum K number decreases. When the separation
exceeds 200λ, the approximation error remains below 5% in
most regions. These results validate the effectiveness of the
proposed approximation method.

Next, we illustrate the application of effective spatial band-
width and the K number using a discrete aperture array as
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Fig. 17: Illustration of |Ha|, local spatial bandwidth, and effective spatial bandwidth.

an example. Specifically, we consider the case where both
the transmitting and receiving arrays are uniform linear arrays
(ULAs). Let the antenna spacing of the transmitting array Ls
and the receiving array Lp be ∆s and ∆p, respectively. Con-
sequently, the numbers of transmitting antennas and receiving
antennas are Nt = Ls/∆s + 1 and Nr = Lp/∆p + 1, respec-
tively. Let the MIMO channel be represented by H ∈ CNr×Nt .
Considering the near-field spherical wavefront effect [24],
[28], the complex gain between the nr-th receiving antenna
and the nt-th transmitting antenna can be modeled as

hnr,nt = [H]nr,nt =
λ

4πrnr,nt
ejk0rnr,nt , (38)

where rnr,nt denotes the distance between the nr-th receiv-
ing antenna and the nt-th transmitting antenna, with nr =
1, . . . , Nr and nt = 1, . . . , Nt.

Applying Fourier plane wave decomposition to the near-
field spherical wave channel results in an angular-domain (or
wavenumber-domain) channel Ha with a sparse structure [24]:

Ha =
1√
NtNr

AH
RHAT , (39)

where AR ∈ CNr×Nr and AT ∈ CNt×Nt represent the receiv-
ing and transmitting array response matrices, respectively, both
of which are discrete DFT matrices. Specifically, each column
vector of AR and AT represents a wavenumber-domain
codeword corresponding to a specific spatial frequency.

Fig. 17 illustrates the normalized magnitude of the LoS XL-
MIMO angular-domain channel |Ha|, when ∆s = ∆t = λ

2
and Nt = Nr = 100. The position and orientation of the
receiving array are described by the quadruple (r, θ, ψ, φ).
It can be observed that the angular-domain channel exhibits
sparsity, with almost all the energy concentrated within a
continuous range of transmit/receive spatial frequencies. This
range is referred to as the effective spatial bandwidth of
the transmitter/receiver. The red line represents the effective
spatial bandwidth calculated using (30). The plane wave com-
ponents within the effective spatial bandwidth are sufficient to
characterize the LoS XL-MIMO channel, which implies low-
overhead channel estimation and low-complexity transmission
schemes.

Note that in Fig. 17a, the effective spatial bandwidths of the
transmitting and receiving arrays are equal. As shown in Fig.
17b, if the transmitting and receiving arrays remain parallel,
the effective spatial bandwidths are still equal but noticeably
reduced in size. Fig. 17c demonstrates that when the azimuth

angle of the receiving array is changed, the effective spatial
bandwidths of both arrays decrease, and since they are no
longer parallel, their effective spatial bandwidths are no longer
equal.

0 10 20 30 40 50

Index

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

S
in

g
u

la
r 

V
a

lu
e

(d
B

)

Fig. 18: Singular values of the LoS XL-MIMO channel and
the K number vs. different receiving positions.

Fig. 18 illustrates the distribution of normalized singular
values of the channel H when Ls = Lp = 100λ, R = 500λ,
∆s = ∆p = λ/2, and λ = 0.01 m. The meanings of “Approx.
K” and “Exh. K” are the same as in Fig. 15. “H SV” represents
the distribution of normalized singular values of the channel
matrix H under the receiving orientation corresponding to
“Exh. K”. Let the ordered singular values of H be denoted
as σ1 ≥ σ2 ≥ · · · ≥ σN . As seen in Fig. 18, regardless of
the position of the receiving array Lp, the rate of decrease
of σn can always be divided into two stages: in the first
stage, the singular values σn remain roughly constant until
reaching a critical threshold, after which σn rapidly decays.
Therefore, the main energy of the channel is concentrated on
the eigenmodes before the threshold. In fact, this “threshold”
is referred to as the EDoF, which is related to the spatial
multiplexing capability of MIMO communication [10]. Fig.
18 also shows that “‘Exh. K” can effectively delineate the
two stages of singular value decay, validating that the K
number is a good approximation of the EDoF. Additionally,
we observe that “Approx. K” and “‘Exh. K” almost overlap,
which validates the correctness of (32) and (33). Meanwhile,
we observe that for the same R, the larger the θ, the smaller
the K number and the EDoF of H. This conclusion aligns
with the properties of local spatial bandwidth shown in Fig. 6
and Fig. 15.
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(a) φ′ = π/2
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(b) ψ = π/2

Fig. 19: Singular values of the LoS XL-MIMO channel and
the K number vs. different receiving orientations.
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Fig. 20: EDoF1 versus the number of receiving antennas Nt.

Fig. 19 illustrates the relationship between the normalized
singular value distribution of the channel matrix H and the ori-
entation of the receiving array (ψ,φ′). The parameters are set
as Ls = Lp = 100λ, (R, θ) = (500λ, π/6), ∆s = ∆p = λ/2,
and λ = 0.01m. Fig. 19a examines the EDoF of the channel
matrix H when φ′ = π/2 and ψ varies in the range [0, π/2].
“H SV” denotes the singular value distribution of the channel
matrix H for the receiving array orientation (ψ,φ′). “Approx.
K” represents the approximate K number calculated using
(32). It can be observed that when ψ = π/2 (i.e., when Ls
and Lp are coplanar), both the K number and the EDoF of the
channel reach their maximum values. Conversely, when ψ = 0
(i.e., when Lp is perpendicular to Ls), the K number and
the EDoF are minimized. Similarly, Fig. 19b investigates the
EDoF of the channel matrix H when ψ = π/2 and φ′ varies
in the range [0, π/2]. It is found that when φ′ = π/2 (i.e.,
when Lp is perpendicular to the centerline of the transmitting
and receiving arrays), the K number and EDoF of the channel
reach their maximum values. When φ′ = 0 (i.e., when Lp is
collinear with the centerline of the transmitting and receiving
arrays), the K number and EDoF are minimized.

To further investigate the impact of antenna spacing on
the EDoF, Fig. 20 illustrates the relationship between EDoF1

and the number of receive antennas Nr, under the config-
uration where the transmit and receive array apertures are
fixed as Ls = Lp = 100λ, with transmit antenna spacing
∆s = λ/2, and angular parameters θ = 0, ψ = π/2, and
φ′ = π/2. The value of EDoF1 is computed as EDoF1 =

(tr
Ä
HHH

ä
/∥HHH∥F )2, which serves as an approximation

of the EDoF [10]. R denotes the distance between the transmit
and receive arrays. The gray dashed line marks the number
of receive antennas when the spacing across the aperture Lp
reaches half a wavelength. As shown in the Fig. 20, EDoF1

increases with Nr (i.e., as the antenna spacing ∆p decreases),
and gradually approaches a stable value. This value can be
well approximated by the K number, which is determined
by the array geometry. When R increases, the convergence
becomes faster. These results indicate that the maximum
achievable EDoF is limited by the array geometry, such as
the aperture size and antenna arrangement. The K number,
which depends only on the array configuration, can be used
to estimate this limit. When the antenna spacing is reduced
to half a wavelength or less, the EDoF becomes close to
its theoretical maximum, and further increasing the number
of antennas brings little improvement. In some cases, even
when the antenna spacing is larger than half a wavelength, the
EDoF can still reach its theoretical limit, as long as the spatial
sampling condition is satisfied.

IV. IMPACT OF ARRAY GEOMETRY ON CHANNEL
CAPACITY

In this section, building upon the relationships between
array geometry, spatial bandwidth, K number, and EDoF
discussed in the previous sections, we analyze the impact of
array geometry on LoS XL-MIMO channel capacity. Unlike
the method in [28], which approximates the channel’s active
DoF using Taylor expansion and inductive reasoning to derive
an upper bound on capacity, this paper introduces a framework
for analyzing channel capacity from the perspective of spatial
bandwidth and K number.

A. Theoretical Analysis

As illustrated in Fig. 21, we consider both the transmitting
and receiving antenna arrays to be ULA, each comprising Nt
and Nr antennas, respectively, operating over a LoS channel
represented by H ∈ CNr×Nt . Considering spherical wave
effects, the complex gain hm,n between the m-th receiving
antenna and the n-th transmitting antenna is given by

hm,n = [H]m,n =

√
GtGrλ

4πrm,n
e−jk0rm,n , (40)

where Gt and Gr denote the antenna gains of the trans-
mitting and receiving antennas, respectively. rm,n represents
the distance between the m-th receiving antenna and the n-
th transmitting antenna. Considering the dimensions of the
transmitting and receiving arrays are relatively small compared
to their distance, we can approximate rm,n ≈ R, where R
is the distance between the centers of the transmitting and
receiving antenna arrays. Therefore, the magnitude of the
complex gain hm,n can be considered constant, focusing only
on the phase variation across different antenna pairs 5.

5The approximation of the inter-element distance in the transmitting and
receiving arrays is used only for simplifying the derivation, while the channel
model in (40) is still used in the numerical simulations.
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Fig. 21: Rotatable ULA for LoS XL-MIMO Transmission.

This LoS XL-MIMO system can be represented as

y = Hx+w (41)

where x ∈ CNt and y ∈ CNr denote the transmit signal vector
and receive signal vector, respectively. w ∼ CN (0, N0INr )
represents additive white Gaussian noise (AWGN) at the
receiver. The total power constraint on the transmitted signals
is Pt = ∥x∥2.

For simplicity, the positions and orientations of the trans-
mitting array are fixed, while the orientation of the receiving
array can be adjusted. We only consider the impact of the re-
ceiving orientation v̂ on the channel capacity. The adjustment
of array orientation can be achieved using next-generation
reconfigurable antenna (NGRA) technologies, such as [29],
[30]. The LoS channel is entirely determined by v̂, denoted
as H ≜ H(ψ,φ), where (ψ,φ) describe the elevation and
azimuth angles of the receiving array orientation, consistent
with the definitions in Section II.

The information-theoretic capacity of H is

C(H,SNR) = max∑Nmin
i=1 pi=Pt, pi≥0

Nmin∑
i=1

log2

Å
1 +

piσ
2
i

N0

ã
=

Nmin∑
i=1

log2

Å
1 +

p∗i σ
2
i

N0

ã
,

(42)
where Nmin = min{Nt, Nr}. σ1 ≥ σ2 ≥ · · · ≥ σNmin

are the
ordered singular values of the channel matrix H, with each σi
corresponding to an eigenmode of the sub-channel, satisfying:

Nmin∑
i=1

σ2
i = Tr

Ä
HHH

ä
= ∥H∥2F . (43)

And pi represents the power allocated to sub-channel i ob-
tained via the water-filling algorithm:

p∗i =

ï
µ− N0

σ2
i

ò+
. (44)

When adjusting the orientation (ψ,φ) of the receiving array,
the distribution of the singular values of the channel H
changes, thereby affecting the optimal power allocation p∗i and
ultimately influencing the channel capacity. Furthermore, from
(44), it is observed that the receiving SNR ratio also impacts
the optimal power allocation p∗i .

We consider the following problem: adjusting the orienta-
tion (ψ,φ) of the receiving antenna to maximize the channel
capacity C under different SNR:

C (SNR) = max
0≤ψ≤π,0≤φ≤π

C (H (ψ,φ) ,SNR) . (45)

Problem (45) can be solved by exhaustively searching all
possible orientations of the receiving antenna, but this ap-
proach has high computational complexity. By leveraging
our previous analysis of spatial bandwidth, K number, and
EDoF in the bilateral near-field scenario, we can simplify the
analysis and derive some interesting conclusions. Specifically,
we consider this issue in two cases: the far-field and the near-
field, as each leads to different conclusions.

1) Far-Field LoS XL-MIMO Channel: Under the far-field
assumption, the distance R between the transmitting and
receiving antennas is much greater than the product of their
apertures. According to (37), the K number is approximately
zero, resulting in H having only one EDoF. The main energy
of the far-field channel is concentrated in the eigenmode
corresponding to the largest singular value σ1, i.e., σ2

1 ≈
∥H∥2F . According to (44), all power should be allocated to
the eigenmode corresponding to the largest singular value σ1.
Thus, the far-field channel capacity CFF can be approximated
as

CFF ≈ log2

Ç
1 +

Pt ∥H∥2F
N0

å
. (46)

Since ∥H∥2F ≈ GtGrλ
2

(4πR)2
NtNr, it is determined by the distance

R between the transmitting and receiving arrays, as well as
the number of transmitting and receiving antennas Nt and
Nr, while it is independent of the orientation (ψ,φ) of the
receiving antenna array. Therefore, adjusting the receiving
antenna array orientation minimally benefits channel capacity,
as far-field LoS XL-MIMO channels offer power gain but
lack spatial multiplexing capability, rendering the LoS channel
considered to be unfavorable for MIMO communication [7].

2) Near-Field LoS XL-MIMO Channel: Near-field LoS XL-
MIMO can alter this rule. Based on the previous analysis of
the singular value distribution of the near-field channel, it can
be observed that the singular values of the near-field channel
are primarily concentrated in the eigenmodes corresponding
to σ1, σ2, · · · , σk, where k represents the EDoF, such that∑k
i=1 σ

2
i ≈ ∥H∥2F . In this case, the near-field channel capacity

can be expressed as

CNF ≈ max∑K
i=1 pi=Pt

k∑
i=1

log2

Å
1 +

piσ
2
i

N0

ã
. (47)

At this point, the orientation of the receiving array profoundly
affects the power allocation among sub-channels by altering
the distribution of the singular values of the channel matrix.
Since the SNR impacts sub-channel power allocation, we will
discuss the influence of the receiving array orientation on the
near-field LoS XL-MIMO channel capacity under both high
and low SNR conditions.

When the transmit power Pt is high and the SNR is high,
the water-filling level µ in the channel’s water-filling algorithm
is also high. According to (44), an equal power allocation
strategy for all non-zero eigenmodes becomes asymptotically
optimal, and the channel capacity can be approximately ex-
pressed as

CNF
1 ≈

k∑
i=1

log2

Å
1 +

Ptσ
2
i

kN0

ã
≈ k log2 SNR + const, (48)
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Fig. 22: Channel capacity under different receiving array configurations.

where SNR = Pt/N0 is defined as the transmit SNR. The
channel capacity scales logarithmically with SNR, propor-
tional to the number of multiplexable streams k, which can
be approximated by the K number. Note that the optimal
receiving orientation (ψ1, φ

′
1) for ULA arrays to maximize K

(or EDoF) is provided in Section III. Applying this orientation
in near-field high SNR scenarios maximizes channel capacity.

When the transmit power Pt is low and the SNR is low, the
water-filling level µ in the channel’s water-filling algorithm
is also low. According to (44), allocating all power to the
sub-channel corresponding to the strongest eigenmode σ1 is
optimal, i.e., CNF

2 ≈ log2

(
1 +

Ptσ
2
1

N0

)
. Unlike the high SNR

scenario, where increasing the EDoF supports multiplexing, in
the low SNR scenario, maximizing channel capacity requires
concentrating the entire channel energy in the strongest eigen-
mode, such that σ2

1 ≈ ∥H∥2F , which necessitates minimizing
the EDoF. In this case, the optimal receiving orientation
is the one that minimizes the K number (or EDoF) for
ULA arrays, as shown in Section III, denoted as (ψ2, φ

′
2).

Using this receiving orientation in the near-field low SNR
scenario can maximize channel capacity. This conclusion is
somewhat surprising, as the optimal array orientation that
maximizes channel capacity varies with different SNRs. The
optimal receiving array orientation for high SNR is exactly
perpendicular to the optimal orientation for low SNR.

As the transmission distance r increases, the maximum
EDoF decreases (see (37)), diminishing the effect of receiving
orientation on singular value distribution. Thus, the impact
of array orientation on channel capacity gradually weakens
from near-field to far-field. Near-field properties enable EDoF
control, with array orientation serving as an effective approach.

B. Simulation Results

In this subsection, numerical simulations are presented. The
working frequency is set to f = 30GHz, Nr = 128 and
Nt = 256, respectively. The transmitter is at the origin, with
receiving antennas positioned at (R, θ). We consider three
receiving array configurations:

• LSP: Orientation minimizes K/EDoF, with the receiving
array perpendicular to the transmitting array and on a
different plane.

• HSP: Orientation maximizes K/EDoF, with the receiving
array coplanar and perpendicular to the line connecting
array centers.

• BP: Orientation maximizes spectral efficiency, selected
via exhaustive search.

Performance is also compared using ratios “LSP/BP” and
“HSP/BP”, representing spectral efficiency ratios of “LSP” and
“HSP” to “BP”, respectively.

Fig. 22a illustrates the impact of array orientation on spec-
tral efficiency at different receiving SNRs when R = 1000λ,
θ = 0, and d = λ/2. From Fig. 22a, it can be observed that the
spectral efficiency increases with receiving SNR. Additionally,
in the “LSP” scheme, spectral efficiency increases linearly
with SNR, while in the “HSP” scheme, the growth rate
accelerates as SNR increases. This occurs because higher SNR
activates more DoF in the “HSP” channel, enabling spatial
multiplexing, with the number of activated DoF proportional
to the spectral efficiency slope. In contrast, the “LSP” channel,
with limited EDoF, lacks spatial multiplexing gain, resulting
in a linear, constant-slope increase in spectral efficiency with
SNR.

In the low-SNR regime, the ratio “LSP/BP” ≈ 1, verifying
that the proposed orientation minimizing K can approximately
maximize spectral efficiency. In the high-SNR regime, the ratio
“HSP/BP” ≈ 1, indicating that the orientation maximizing K
achieves near-optimal spectral efficiency. However, “LSP/BP”
drops below 20% in this regime, highlighting the importance
of array orientation adjustment to enhance spatial multiplexing
and improve capacity.

Fig. 22b presents the simulation results when the number
of antennas in the transmitting and receiving arrays remains
unchanged, but the antenna spacing is adjusted to d = λ
(doubling the array aperture). It can be observed that in the
high-SNR regime, the spectral efficiency of the “LSP” scheme
remains nearly unchanged compared to Fig. 22a, whereas that
of the “HSP” scheme more than doubles. This is because the
“HSP” scheme can effectively utilize spatial DoF to enhance
channel capacity, whereas the “LSP” scheme cannot. It further
emphasizes that increasing the array aperture is an effective
way to enhance spatial DoF.

Fig. 22c illustrates the spectral efficiency under different
schemes as the distance between the transmitting and receiving
arrays increases. Comparing Figs. 22a and 22c, it is observed
that the spectral efficiency decreases. Furthermore, “LSP/BP”
and “HSP/BP” are almost equal to 1, meaning that the spectral
efficiencies corresponding to different receiving array orienta-
tions are nearly the same. For far-field channels, the maximum
K number is close to 0, so adjusting the orientation of the
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(a) SNR = 0.81 dB. (b) SNR = 17.19 dB.

(c) SNR = 23.19 dB. (d) SNR = 35.19 dB.

Fig. 23: Channel Capacity vs. receive array orientation at different SNRs.

receiving array has a minimal impact on the channel’s EDoF.
In other words, when considering the channel capacity of a far-
field LoS XL-MIMO system, the impact of array orientation
can be considered negligible.

We further investigate the spectral efficiency under various
receive array orientations and different receiving SNR levels,
assuming R = 500λ, θ = 0, and d = λ/2, as illustrated in Fig.
23. The orientation of the receive array Lp is parameterized
by (ψ,φ). Notably, in this configuration, the K number (or
EDoF) reaches its maximum when (ψ,φ) = (π/2, π/2).
Interestingly, as shown in Fig. 23a, in the low-SNR regime,
the orientation that maximizes the K number results in the
lowest spectral efficiency. This phenomenon arises because
the channel energy is spread across multiple eigenmodes,
but only the strongest mode can be effectively utilized in
the low-SNR regime. As the SNR increases, the orientation
that achieves the highest spectral efficiency gradually shifts
toward (π/2, π/2) (see Fig. 23b and Fig. 23c). At high-
SNR regime (see Fig. 23d), the orientation that maximizes
the K number also yields the highest spectral efficiency, as
more independent sub-channels can be effectively exploited for
parallel data transmission. These results are consistent with the
theoretical analysis presented in Section IV-A and highlight
the importance of optimizing array orientation in near-field
communication systems.

V. CONCLUSION

In this paper, we provided a closed-form expression for
the local spatial bandwidth of the LoS channel with LSAAs

in 3D space. Furthermore, we obtained representations of
effective spatial bandwidth and EDoF for the LoS XL-MIMO
channel. Additionally, we have elaborated on how to adjust
the spatial positions of the receiving array to improve the
EDoF of the channel. Based on these derivations, the following
interesting conclusions can be obtained: The maximum local
spatial bandwidth at the center of the receiving array is related
to the solid angle formed by the center of the receiving array
and the ends of the transmitting array. When the transmitting
and receiving arrays are coplanar, and both arrays are perpen-
dicular to the line connecting the centers of the arrays, the
channel’s EDoF is maximized, which also maximizes the XL-
MIMO channel capacity in high-SNR conditions. Conversely,
when the transmitting and receiving arrays are perpendicular,
the channel’s EDoF is minimized, which maximizes the XL-
MIMO channel capacity in low-SNR conditions.
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