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Abstract

Multimodal Compositional Distributional Semantics

Saba Nazir

Representing meaning in language has long been a key challenge in natural language

processing, with diverse approaches seeking to capture its complexity. Distributional

semantics offers a methodology for training high quality statistical representations

for words; compositional distributional semantics extends these to longer phrases and

sentences by encoding the statistics of words with function types, such as adjectives

and verbs. Multimodal distributional semantics combines linguistic statistics with

visual and auditory perceptions to ground word representations. While successful

in word-level tasks, particularly in visual contexts, its application to compositional

semantics with auditory grounding remains largely unexplored. This thesis addresses

this limitation by introducing a multimodal compositional distributional semantics

framework that builds upon tensor-based compositional models and grounds them

auditorily. To the best of our knowledge, this is the first work of its kind. The

framework is evaluated using a newly developed sound-relevant adjective-noun

phrase similarity benchmark, measuring semantic and audio similarity. Results show

that (1) compositional models outperform non-compositional baselines, (2) matrix-

based compositions surpass vector addition and multiplication, and (3) multimodal

models enhance performance over unimodal ones. Further evaluations on a multi-

label sentiment classification task demonstrates improved accuracy over text-only

models. Additionally, this thesis provides a general baseline for the application of

multimodal distributional semantics in recommendation systems, while opening new

avenues for future research.



Impact Statement

This thesis presents a novel multimodal language composition approach, combining

audio and text to improve language representations. It has broad applications across

various fields:

• Within academia, to our best knowledge, this is the first work to integrate audio-

textual cues into language composition, advancing distributional compositional

semantics by using multimodal data with type-driven approaches. It sets a

strong foundation for future research in multimodal learning. Additionally, it

introduces a novel multimodal phrase similarity benchmark that captures both

semantic and audio similarities between phrases.

• Beyond academia, it can enhance systems in industries such as media, en-

tertainment, and e-commerce. For instance, in audio captioning systems, to

generate more accurate descriptions of audio content, improving accessibil-

ity and user experiences on media platforms. Similarly, in recommendation

systems, to allow for more personalised suggestions in services like music

streaming and video platforms.

• The societal impact of this research is equally significant. For instance, by im-

proving sentiment analysis, this work can benefit industries such as marketing,

and social media monitoring, enabling more effective understanding of public

sentiment expressed through multimedia.

In summary, this thesis makes both theoretical and practical contributions to the field

of NLP, with far-reaching implications for academia, industry, and society.
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Chapter 1

Introduction

Language is not just a body of vocabulary or a set of grammatical rules. Every

language is an old-growth forest of the mind.

— Wade Davis

Language is more than a mere sequence of words; it is a medium rich with context and

perception. On the contextual side, traditional distributional semantics (Harris [1],

and Firth [2]), argues that meanings of words can be deduced from the contexts

in which they frequently occur. This argument has led to the development of

methodologies for learning high-quality vector representations for words [3, 4].

Over time, these models evolved, from simple word co-occurrence matrices (e.g.,

LSA [5]), to advanced neural embeddings (such as Skip-gram [6], GloVe [7], and

BERT [8]). While these advancements have led to significant achievements in

word-level representation tasks, such as word similarity and relatedness [9–11], they

struggle to capture complex linguistic structures like phrases and sentences.

To overcome the limitations of distributional semantics, compositional dis-

tributional semantics extends its principles by incorporating the compositionality

principle [12]. This principle suggests that the meaning of complex expressions arises

from the meanings of their components and the rules governing their combination.

Early compositional distributional approaches employed straightforward operations

like vector addition and pointwise multiplication [13, 14], but these techniques were

limited due to their commutative nature. As the field advanced, more sophisticated

methods emerged, including neural network-based models for sentence representa-



tions [15–17] and tensor-based compositional models [18, 19], offering improved

flexibility and expressiveness in representing linguistic structures. A significant ad-

vancement is the categorical compositional framework by Coecke et al. [20], which

elegantly unified category theory with distributional semantics, laying a robust math-

ematical foundation for modelling compositional meaning. Other inspiring works

in this context include those by Baroni & Zamparelli [21], Maillard & Clark [22],

Grefenstette et al. [23], and Wijnholds et al. [24]. These methods have been evaluated

using both traditional co-occurrence representations and neural embeddings, often

outperforming simpler operators and non-compositional baselines [24, 25].

One of the main criticisms of distributional semantics is its lack of grounding in

real-world knowledge, such as perceptual data from auditory and visual experiences.

Purely textual models lack grounding in sensory modalities, and hence fall short

of human-like semantic understanding [26]. For example, they may struggle to

distinguish between loud explosion and bright explosion, lacking access to auditory or

visual cues. This has led to multimodal distributional semantics, which integrates

sensory data with text. Building on the work of Feng & Lapata [27], later studies [28–

30] showed that grounding text in visual features improves semantic representations.

Kiela & Clark [31] and Lopopolo & Miltenburg [32] extended this by integrating

audios instead, enriching semantic grounding for sound-related concepts like rain

and guitar. Later, Kiela & Clark [33] used deep learning to surpass bag-of-audio-

words (BoAW), achieving superior performance on the audio variant of MEN dataset

[11], inspiring other neural architectures, document-level tasks, and multimodal

applications [34–36].

Despite these advancements, extending grounded distributional semantics to

compositional models remains an underexplored area. Recent studies, including

Lewis et al. [37] and Wazni et al. [38], focused on incorporating images into composi-

tional frameworks, demonstrating the potential of grounded compositions to surpass

state-of-the-art models like CLIP [39]. However, no such efforts have been made

to integrate audio into compositional distributional semantics. Figure 1.1 shows the

transformation of distributional paradigms over time.

2



Figure 1.1: A hypothetical vector space illustration of the concepts from distributional
semantics to multimodal compositional distributional semantics.

To addresses this limitation, this thesis proposes a formalism called MultiCoDi,

a multimodal compositional distributional semantics model, with an aim to ground

the existing compositional frameworks, such as those by Coecke et al. [20] and

Maillard et al. [40], with auditory data. While Kiela et al. [33] laid the foundation

for bimodal audio-text learning at the word level, their approach has yet to be

extended to complex linguistic structures like phrases and sentences. The proposed

framework addresses it by integrating purely textual compositional frameworks with

multimodal information. For example, consider adjective-noun phrases, Maillard

and Clark [22] introduced a tensor-based compositional framework where nouns are

represented as vectors and adjectives as matrices. MultiCoDi extends it by grounding

these representations in both textual and auditory modalities. Specifically, nouns

are grounded vectors learnt jointly from the statistics of their occurrences in text

and the auditory information encoded in the sound files associated with them, but

more importantly, that adjectives are grounded matrices also jointly learnt from text

statistics and audio data. For example, for the following composition:

−−−−−−−→
loud music = loud×−−−→music

loud is the matrix representation of the adjective loud,
−−−→
music is the vector represen-

tation of the noun music, and × denotes matrix-vector multiplication, yielding a

phrase embedding that integrates textual and auditory data.

One of the main reasons that audio-textual learning remains an underserved
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area is the scarcity of resources. For example, existing word similarity benchmarks,

such as MEN [29], WordSim353 [10], and SimLex [9], are predominantly textual,

focusing on frequently occurring words in language which often lack sensory or

auditory relevance. Similarly, phrase datasets, such as Mitchell & Lapata [41]

and Vecchi [42], prioritise generic English adjectives, such as red, new and early,

offering limited coverage of sound-related concepts like melody and creaky. While

multimodal datasets like AudioCaps [43] and Clotho [44] link audio to sentence-level

captions, they lack the granularity needed for phrase-level analysis.

This thesis addresses the above gap by introducing a sound-relevant textual-

audio phrase similarity dataset. Since the concepts in this dataset are tied to auditory

relevance, two distinct measures of similarity are proposed: (1) semantic similarity

and (2) auditory similarity, and their proposed datasets are called SemPhrase and

AudPhrase respectively. For example, in the phrase pair creaky door and creaky

bridge, the phrases may have low semantic similarity but high auditory similarity.

The dataset ensures a clear distinction between these two dimensions to better un-

derstand their relationship. Using this dataset, a comparative study is conducted by

grounding the composition methods proposed by Mitchell & Lapata [41], Baroni

& Zamparelli [21], and Maillard & Clark [22]. The results show that (1) compo-

sitional frameworks outperform non-compositional approaches, (2) matrix-based

composition methods outperform vector-based approaches, and (3) most importantly,

multimodal models achieve better performance than unimodal models.

What is Sound Relevance? Sound-relevant words are those that evoke or are

inherently associated with specific sounds, such as creak, crunch, or roar. Within

this category, sound-relevant adjectives are words that, when combined with

nouns, describe or emphasise auditory characteristics, as in phrases like creaky

door or loud horn.

Beyond similarities, this thesis extends the proposed MultiCoDi framework to

sentiment analysis. Traditional models often focus on individual words, overlooking

how sentiment emerges from phrase and sentence composition. For instance, in not

happy, the word happy conveys positive sentiment, but not reverses it. Moilanen et
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al. [45] incorporated grammatical rules into sentiment analysis rather than relying

solely on word counts. Yessenalina et al. [46] introduced phrase-level sentiment

analysis using matrix-space models inspired by Baroni and Zamparelli [21], learning

matrices for all words. Asaadi et al. [47] further refined these models by optimizing

matrices using unigram and bigram patterns. While these advancements improved

textual sentiment analysis, recent research has shifted towards multimodal senti-

ment analysis, which integrates multiple modalities. Chen et al. [48] developed an

image sentiment classifier using adjective-noun pairs from image tags, while Li et

al. [49] translated images into textual descriptions for sentiment prediction. However,

the integration of audio in sentiment analysis remains largely unexplored. This thesis

addresses this gap by applying MultiCoDi to a multi-label sentiment classification

task, integrating audio and textual embeddings into a neural network for sentiment

prediction. Experimental results show that multimodal compositional approaches

yield stronger correlations with human judgments than unimodal models.

Finally, this thesis takes the first steps to apply the proposed framework to the

media recommendations. Modern recommender systems utilise vector semantics,

representing words and documents as high-dimensional vectors. However, many

still rely on single-modal data, fail to fully exploit the potential of multimodal

integration. For instance, Yang et al. [50] relied solely on tags and titles, while

Ekenel et al. [51] combined images with tags, offering limited integration of diverse

modalities. Bougiatiotis and Giannakopoulos [52] attempted to incorporate audio,

video, and subtitles, but their approach overlooked genre information, a critical factor

for context-aware recommendations. This thesis aims to address these shortcomings

by taking inspiration from the multimodal approach proposed by Kiela & Clark [33].

It extends it from word-level to document-level, further enriched with genre and

visual vectors for multimodal recommendations of TV programmes. Experiments

demonstrated that the inclusion of multimodal information consistently outperformed

single-modal approaches, achieving more precise and diverse recommendations.
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Thesis Structure

The rest of the thesis is structured as follows:

• Chapter 2 reviews key literature, covering distributional semantics, compositional-

ity, multimodal grounding, auditory feature extraction, and evaluation benchmarks

for unimodal and multimodal compositional semantics.

• Chapter 3 presents the core contribution of this thesis: the MultiCoDi framework,

a type-driven compositional model integrating auditory and textual data. It extends

existing models such as linear regression and tensor skip-gram to incorporate

auditory features. This chapter is partly published in Nazir & Sadrzadeh [53].

• Chapter 4 introduces a novel multimodal dataset for evaluating phrase-level se-

mantic and auditory similarities, addressing key gaps in existing benchmarks. It

details the methodology for dataset construction and human annotations. Infor-

mation about this dataset appeared in Nazir & Sadrzadeh [53] and [54].

• Chapter 5 assesses the quantitative and qualitative effectiveness of the proposed

compositional models in capturing both semantic and auditory relationships be-

tween phrases. The integration of auditory information with textual data is shown

to significantly enhance model performance compared to unimodal approaches.

These results are published in Nazir & Sadrzadeh [53].

• Chapter 6 extends the application of MultiCoDi in sentiment analysis by lever-

aging textual and auditory data to address critical limitations in traditional ap-

proaches. This chapter is partly published in Nazir & Sadrzadeh [54].

• Chapter 7 explores the integration of multimodal distributional semantics in

TV programme recommendations. This chapter is partly published in Nazir et

al. [55, 56] and Cagali et al. [57]

• Finally, Chapter 8 summarises the key contributions, highlighting advancements

in compositional distributional semantics and the broader impact of integrating

auditory cues with textual data. It also outlines promising directions for future

research.
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Chapter 2

Background

This chapter provides a comprehensive overview of the literature on multimodal

compositional distributional semantics. It begins with an exploration of distributional

semantics, followed by a survey on compositional distributional semantics. The

chapter further examines the state-of-the-art embedding techniques for audio learning,

reviews multimodal compositional distributional approaches, and highlights fusion

techniques as well as the evaluation datasets. Finally, it concludes with a discussion

of the DisCoCat and its extension to CCG.

2.1 Distributional Semantics
Distributional semantics is founded on the principle that the meaning of a word

can be inferred from the contexts in which it frequently occurs. This foundational

concept was introduced by Harris [1] and further popularised by Firth [2], who

stated that "a word is characterised by the company it keeps". More precisely, the

distributional hypothesis, posits that "words that occur in similar contexts tend

to have similar meanings". This principle has become the foundation for vector

space models, which mathematically capture word meanings by representing them

as multidimensional vectors based on their contexts. Over time, these models have

undergone significant advancements, as detailed below:

2.1.1 Classical Distributions

The foundation of distributional semantics lies in count-based models, which infer

word meaning from co-occurrence patterns within a fixed context window. For a



target word wi, surrounding words wi−n, . . . ,wi−1,wi+1, . . . ,wi+n are used to con-

struct a co-occurrence matrix, where each entry records how often a context word

appears near wi. Function words (e.g., “the”, “and”) are typically excluded to focus

on content-bearing terms. Formally, word meaning is represented as:

−−→
word = ∑

i
ci
−→ni ,

where ci is the co-occurrence strength and~ni is the one-hot (basis) vector for context

word ni. While this may seem circular, early models treat context vectors as fixed, and

meaning emerges from comparing co-occurrence distributions rather than assuming

predefined semantics. For example, dog may co-occur with bark, tail, and pet, and

be approximated as:
−→
dog = c1 ~bark+ c2 ~tail+ c3 ~pet.

Methods like Latent Semantic Analysis (LSA) [5] and Hyperspace Analogue to Lan-

guage (HAL) [58] apply matrix decomposition to extract latent structure. Weighting

schemes such as Pointwise Mutual Information (PMI) and PPMI further refine raw

counts by highlighting informative associations and reducing noise [59].

2.1.2 Neural Embeddings

Count-based models struggled with sparsity and generalization, leading to neural

embeddings that generate dense representations and capture complex relationships

through contextual adjustments. Key models are discussed below:

1. Skip-gram [6]: The Skip-gram method, commonly implemented as part of

word2vec1, is designed to maximise the likelihood of predicting context words

given a target word. For example, in a sentence like the bird sang in the tree,

if the target word is bird, the model learns to predict context words such as the,

sang, in, and the within a defined context window around the target word.

Skip-gram with Negative Sampling (SGNS) [60] is introduced to address the

computational inefficiency of training on all possible context words. Instead of

updating weights for all words in the vocabulary, SGNS randomly samples a
1github.com/tmikolov/word2vec
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small set of negative words (words that are not part of the actual context) and

updates the weights to distinguish between the actual context and the negative

samples. This significantly reduces the computational cost, making it much more

efficient with the following objective function:

∑
c∈C

logσ(n · c)+ ∑
c̄∈C̄

logσ(−n · c̄)

Where C is the set of context words associated with the target word n, while C̄ is

the set of negative samples drawn from a unigram distribution raised to a certain

power (typically 3/4). The function σ stands for the sigmoid function, which

estimates the probabilities that context words appear given the target word.

2. GloVe [7]: The primary idea behind GloVe (Global Vectors for Word Representa-

tion) is to utilise the co-occurrence matrix of words within a large corpus, which

counts how often words appear together in a given context. This model constructs

word embeddings by factorizing this matrix into lower-dimensional vectors that

capture semantic relationships between words. Unlike Word2Vec, which focuses

on local context, GloVe leverages both local and global co-occurrence statistics.

3. FastText [61]: FastText enhances word representations by incorporating subword

information. It employs a methodology similar to the Skip-gram model but

enriches its predictions by utilising character n-grams derived from the target

word. For instance, the word apple is decomposed into n-grams such as app, ap,

pl, and le. The word’s embedding is computed by averaging the vectors of these

n-grams along with a distinct vector for the word itself. This allows FastText to

generate embeddings for out-of-vocabulary words by leveraging the embeddings

of their constituent n-grams.

4. ELMo [62]: ELMo utilises a bidirectional Long Short-Term Memory (bi-LSTM)

network trained on a language modelling task to generate dynamic, context-

sensitive word embeddings. This model allows word representations to adapt

based on their contextual usage within sentences. Final embeddings are derived

from the hidden states of the bi-LSTM, effectively integrating information from
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both forward and backward contexts. Each word’s embedding is a weighted sum

of these hidden states, capturing a rich spectrum of contextual influences.

5. BERT [8]: Utilising the transformer architecture, BERT employs a bidirectional

training approach that simultaneously considers the left and right context of a

word within a sentence, allowing it to capture nuanced meanings and relationships

that unidirectional models cannot. It is pre-trained on vast corpora using two

main tasks: the Masked Language Model (MLM), where random words in a

sentence are masked for prediction, and Next Sentence Prediction (NSP), which

helps the model understand sentence relationships. The adaptability of BERT for

fine-tuning on specific downstream tasks has made it a foundational model in

NLP, influencing subsequent research and applications in understanding language

semantics and context.

2.2 Compositional Distributional Semantics
Traditional symbolic approaches in formal semantics, such as those introduced by

Montague [12] and further expanded by Dowty et al. [63], address the principle of

compositionality by pairing syntactic structures with semantic interpretation rules.

These methods rely on formal grammatical frameworks, such as categorial grammars,

to systematically compute the meaning of complex linguistic expressions. While

symbolic approaches excel at producing logical and interpretable representations of

meaning, they often struggle to account for the subtleties of meaning derived from

context and usage. For instance, the phrase barked at conveys a different action than

growled at, even though both phrases share similar syntactic structures.

In contrast, distributional semantics represents word meanings as vectors, po-

sitioning words with similar contexts closer together in a shared semantic space

to capture their contextual similarity. However, while distributional semantics is

effective for word-level representations, such as identifying the similarity between

dog and puppy, it lacks a robust mechanism for combining these representations

into meaningful representations of phrases or sentences. For example, while it can

model similarity between individual words, it fails to capture how the meaning of
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happy dog differs from just combining happy and dog, or how word order and syntax

contribute to the meaning of a sentence like The dog barked.

Compositional Distributional Semantics models (CDSMs) bridge the gap by

incorporating the principle of compositionality, which asserts that the meaning of a

complex expression is determined by the meanings of its parts and the rules governing

their combination [64]. This extends semantic modelling beyond individual words to

phrases and sentences, ensuring alignment between meaning and syntactic structure.

2.2.1 Algebraic Composition

Early compositional approaches used simple mathematical operations to combine

word vectors into multi-word representations. Mitchell and Lapata [13] introduced

two key approaches in this area: the additive and multiplicative compositions.

Additive: The additive model combines the meanings of two components by sum-

ming their vectors, for instance:

−−−−−→
fast food =

−−→
fast +

−−→
food

This approach is computationally efficient and captures general semantic relation-

ships in simple compositions. However, its commutative nature prevents it from

distinguishing between phrases like fast food and food fast, as the order of addition

does not affect the result. Additionally, additive models often blend the meanings of

components, leading to ambiguous representations in more complex phrases.

Multiplicative: The multiplicative model, on the other hand, combines word vectors

through element-wise multiplication to emphasize shared features, for example:

−−−−−→
fast food =

−−→
fast �−−→food

While this model captures intersections between components effectively, it shares the

commutative limitation of the additive model. Furthermore, its filtering effect, where

non-overlapping features are zeroed out—can result in overly sparse representations.
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2.2.2 Tensor Based Models

To address the limitations of previous models, such as commutativity and their

inability to encode syntactic and relational roles, tensor-based models were proposed.

Composition methods using tensor products were first introduced by Smolensky [18]

and later refined by Clark and Pulman [19]. In general, these methods address

commutativity by encoding grammatical structure through non-commutative ten-

sor products, which combine word meanings into higher-dimensional spaces. For

instance, the tensor product of two vectors ~w1 ∈ Rm and ~w2 ∈ Rn is defined as:

~w1⊗~w2 =


w11 ·w21 w11 ·w22 . . . w11 ·w2n

w12 ·w21 w12 ·w22 . . . w12 ·w2n
...

... . . . ...

w1m ·w21 w1m ·w22 . . . w1m ·w2n


This operation creates a composite representation in a higher-dimensional space

Rm·n. However, while tensor product models succeed in preserving word order and

encoding grammatical relationships, they suffer from exponential growth in dimen-

sionality as more words are combined, making them computationally inefficient

for larger phrases or sentences. Second, the resulting vectors from tensor-based

compositions for sentences of different lengths or structures could not be directly

compared because they lived in different vector space.

Several models were proposed to mitigate these issues. Plate’s Holographic Re-

duced Representations (1991) [65], attempted dimensionality reduction by encoding

high-dimensional tensors into smaller spaces using circular convolution. However,

this introduced noise and information loss, limiting the reliability of these models

for precise semantic representation. Other notable efforts included structured vector

space models by Erk & Padó [66] and dependency-based approaches by Clark &

Pulman [19]. These models integrated syntactic information into word embeddings

through dependency relations or other linguistic structures. While they added valu-

able syntactic sensitivity, they lacked a unified framework for composing meanings

across varied sentence structures.
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2.2.3 DisCoCat

Coeke et al. [20] made an interesting observation that syntactic structures, such

as those derived from pregroup grammars, and semantic vector spaces share a

common foundation within category theory. By modelling both as compact closed

categories, they established a unified approach where syntactic information directs

the compositional process of semantic meanings. In this framework, the meaning of

a sentence emerges from tensor contraction operations that integrate the meanings

of individual words while respecting their grammatical roles. This framework is

discussed in further detail in Section 2.6.

Adjective-Noun Composition: One of the earliest works that align closely with this

framework (although implemented independently) is by Baroni and Zamparelli [21].

They developed a model specifically focused on adjective-noun constructions, which

follows a similar principle of type-driven composition. In their approach, adjectives

are treated as linear transformations (matrices) that operate on noun vectors, func-

tioning as mappings that modify the meaning of a noun to produce the meaning of

the adjective-noun phrase, e.g., fbright : star 7→ bright_star. Mathematically:

−−−−−−→
bright star = bright×−−→star

where bright is the matrix representation of the adjective bright, −−→star is the vector

representation of the noun star, and × denotes matrix-vector multiplication. The

adjective matrix is trained using linear regression to approximate the semantic vector

of the resulting phrase based on observed data.

In parallel, Guevara [67] proposed a regression-based approach for adjective-

noun composition using Partial Least Squares Regression (PLSR) to learn data-driven

transformations directly from corpus data. Unlike Baroni and Zamparelli’s [21]

fixed transformations, this model flexibly captures both adjective- and noun-specific

contributions but depends on high-quality training data for accurate mappings.

Another influential model for adjective-noun composition is proposed by Mail-

lard and Clark [22]. They present a tensor-based skip-gram model for learning
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adjective meanings, building on the compositional framework of Coecke et al. [20]

and Maillard et al. [40]. The authors extend the traditional skip-gram model [60] by

representing adjectives as matrices and nouns as vectors, training these embeddings

using a two-stage process. Noun vectors are first learned via negative sampling, fol-

lowed by the optimization of adjective matrices. The model demonstrates competitive

performance in adjective and adjective-noun similarity tasks.

Other Compositions: The empirical implementation of Coecke et al. [20] was

developed by Grefenstette et al. [68], who introduced methods to construct sentence

vector spaces using tensor products. This implementation was further validated in a

series of papers. Grefenstette and Sadrzadeh [69] demonstrated its effectiveness for

transitive and intransitive sentences. Later they improved semantic disambiguation

for transitive verbs by introducing an alternative method to compute verb tensor

representations, where the verb tensor is calculated as the the Kronecker product

of the verb’s vector representation with itself [70]. However, these composition

methods come with a limtation. i.e., inability to handle vectors with negative

values. To overcome these limitations, Grefenstette et al. [23] introduced a multi-

step regression approach for learning transitive verb tensors. This method first

learns matrices for verb phrases that approximate corpus-based sentence vectors

when multiplied with subject vectors, followed by learning third-order verb tensors

that, when multiplied with object vectors, reproduce verb phrase matrices. In

the following years, the focus shifted toward addressing more complex linguistic

phenomena. For instance, Wijnholds and Sadrzadeh [71] explored verb phrase

ellipsis with tensor-based and non-linear composition, achieving improvements in

tasks involving elliptical sentences. Building on this, Wijnholds et al. [24] introduced

multilinear skip-gram models that leverage grammatical types for representation

learning, demonstrating competitive performance against neural encoders like BERT.

2.2.4 Neural Network-Based Composition

Neural network-based approaches use deep learning architectures to construct phrase

and sentence embeddings by hierarchically combining word-level representations.

While some models incorporate syntactic structures explicitly, others mainly focus
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on semantic relationships, deriving high-level abstractions from raw data.

Recursive Neural Networks (RecNNs): A notable example of syntactically in-

formed composition is RecNNs, as demonstrated by Socher et al. [15]. These models

use recursive structures based on parse trees to combine word vectors hierarchi-

cally, creating compositional representations for phrases and sentences. At each

node of the tree, pairs of word or phrase embeddings are merged using a learned

transformation function, often followed by non-linear activations like tanh, to pro-

duce higher-level representations. RecNNs align with syntactic structures both the

compositional semantics and the hierarchical relationships, excelling in tasks like

paraphrase detection and sentiment analysis.

Sentence Encoders: These models aim to generate fixed-size embeddings to capture

semantic meaning of entire sentences rather than individual words, typically trained

on tasks where capturing sentence-level relationships is essential. They do not

explicitly encode syntactic structures but focus on learning robust semantic patterns

from data. Some prominent models include:

1. InferSent [16]: is specifically designed for natural language inference (NLI)

tasks, utilises a supervised learning approach to produce fixed-size embeddings

for sentences that effectively capture semantic information. Built on Long

Short-Term Memory (LSTM) networks, InferSent is trained on datasets like the

Stanford Natural Language Inference (SNLI) corpus, enabling it to learn rich

representations for understanding sentence relationships.

2. Universal Sentence Encoder (USE) [72]: pre-trained on diverse text data, gener-

ates fixed-size sentence embeddings using either a transformer architecture or a

Deep Averaging Network (DAN), enabling it to capture semantic meaning and

contextual relationships.

Contextualized Models: Sentence embeddings dynamically adapt to sentence-

specific contexts, offering greater flexibility than static embeddings, with Sentence-

BERT (SBERT) being a key advancement in sentence-level understanding.
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1. SBERT [17]: extends the BERT architecture by utilising a Siamese network

design, which allows it to process sentence pairs simultaneously and generate

fixed-size embeddings. To derive a single vector representation from the token

embeddings, SBERT employs pooling strategies like mean pooling, which av-

erages the embeddings, and max pooling, which selects the maximum values

across dimensions. This approach enables SBERT to produce high-quality sen-

tence embeddings that can be fine-tuned for specific applications, significantly

enhancing various Natural Language Processing (NLP) tasks such as sentence

similarity, semantic search, and clustering.

2. Other models: like RoBERTa [73], ALBERT [74], and T5 [75] have emerged after

BERT, each offering unique enhancements in pre-training strategies, efficiency,

and context handling. For example, RoBERTa improves BERT by using dynamic

masking and more training data, ALBERT reduces model size through parameter

sharing, and T5 reframes all NLP tasks as text-to-text problems. While these

models achieve strong performance on many benchmarks, they are not explicitly

designed to model syntactic or grammatical structure and often rely on large-scale

data rather than linguistic priors to capture such information.

Transformer architectures have also been adapted for audio and multimodal

processing. Models such as AST (Audio Spectrogram Transformer) [76] and

PaSST [77] apply Transformer encoders directly to spectrogram patches, en-

abling long-range temporal modelling in audio classification. CLAP [78] and

AudioCLIP [79] extend the CLIP framework to align text and audio embeddings,

while models like AudioLM [80] integrate speech, audio, and text for generative

tasks. These Transformer-based models inherently perform a form of composi-

tion through self-attention, which captures relationships between elements in a

sequence and fuses multimodal features. This provides some degree of composi-

tional capability, but it is learned implicitly and is not guided by explicit operators

for combining the meanings of smaller units into larger structures. As a result,

they may capture co-occurrence patterns and holistic associations without fully

modelling how the meaning of a phrase emerges from its parts. Compositional
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distributional models address this gap by introducing mathematically defined

composition functions, enabling more interpretable and systematic handling

of linguistic structure, which can be particularly important for tasks requiring

fine-grained semantic reasoning over multimodal inputs.

2.3 Multimodality in Language

Purely textual models may fall short of human-like semantic understanding, as

they are not grounded in perceptual modalities [26]. This has led to proposals

for multimodal approaches that incorporate sensory inputs to enrich semantic

representations and better connect language with real-world context. This relates

to the symbol grounding problem [81], where symbols acquire meaning through

their link to sensory and environmental experiences. For example, the word car

is understood not only through text but also via associated visual and auditory

cues, such as its shape or engine sound. Multimodal distributional semantics

(MDS) aim to address this by incorporating multiple modalities—such as text,

audio, and vision—to enable more grounded and context-aware representations.

2.3.1 Multimodal Distributional Semantics

Feng and Lapata [27] introduced the first multimodal distributional semantic

model, leveraging a generative probabilistic framework that integrates textual and

visual features from a mixed-media corpus. By representing words through distri-

butions over latent multimodal dimensions, they demonstrated that incorporating

visual information improves performance on semantic similarity tasks compared

to text-only models. Although their results showed gains in correlation with hu-

man judgments, the performance remained below the state-of-the-art benchmarks

at that time. Building on this foundation, Silberer and Lapata [28] introduced

grounded models of semantic representation, where visual information was used

to enrich textual meaning. They demonstrated that grounding textual concepts in

visual features could improve semantic similarity and relatedness, particularly

for words whose meanings are closely tied to real-world objects, such as cat or
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car. Similarly, Bruni et al. [29] proposed a framework where visual features

extracted from images were combined with textual embeddings. They explored

early fusion and late fusion techniques to improve semantic similarity across

modalities. Further work, such as Lazaridou et al. [30], proposed a grounded

multimodal Skip-gram model, which jointly learned word embeddings and visual

features, allowing for a more unified approach.

Building on the success of vision-based approaches, researchers began integrat-

ing auditory modalities into multimodal distributional models. Early work by

Kiela & Clark [31] and Lopopolo & Miltenburg [32] demonstrated that sound,

too, could significantly ground word meanings. The work of Kiela & Clark [33]

further extended the idea by incorporating audio alongside text, enabling mod-

els to evaluate semantic similarity based on both auditory and textual features.

They demonstrated that audio features, when combined with text, could provide

richer semantic grounding for sound-related concepts like rain and guitar, where

auditory cues are key to understanding. Inspired by vision-based models, they

introduced a neural audio embeddings (NAE) model, which outperformed tradi-

tional methods like bag-of-audio-words (BoAW). The learnt embeddings were

evaluated on an auditory variant of MEN dataset [11] called AMEN [33]. This

work inspired extensions to other neural architectures, document-level tasks, and

multimodal applications, demonstrating the potential of auditory grounding to

enrich semantic understanding [34–36].

2.3.2 Multimodal Compositional Distributional Semantics

The exploration of compositional multimodal distributional semantics has re-

cently gained momentum, with the focus shifting from words to more complex

linguistic structures like phrases and sentences. Building on the success of

multimodal image-based models for distributional semantics, researchers are

increasingly investigating composition models that integrate textual and visual

modalities. Recently, Lewis et al. [37] evaluated the compositional capabilities

of vision-language models, particularly CLIP [39], in combining linguistic and
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visual modalities. Their work benchmarked CLIP and compositional distribu-

tional semantic models on tasks requiring binding of concepts in single-object,

two-object, and relational contexts. CLIP performed well in single-object tasks,

but its ability to handle abstract compositionality and variable binding proved

inadequate, revealing critical limitations and emphasizing the need for more

sophisticated multimodal representations. Building on this, the work of Wazni

et al. [38] introduces VerbCLIP, a model specifically designed to improve the

representation of verbs in vision-language frameworks. By integrating CDSMs

into CLIP’s structure, this framework leverages tensor-based methods to capture

the roles of verbs alongside their associated subjects and objects. VerbCLIP

demonstrates its strengths in capturing syntactic and semantic structures, out-

performing CLIP in tasks such as verb disambiguation and scene understanding

across multiple datasets.

The literature on multimodal learning in language reveals several critical insights.

The vision-based models have made significant progress in integrating visual

and textual modalities, particularly in capturing compositional semantics for

phrases and relational structures. However, despite these advancements, the

integration of auditory information within a compositional framework remains

an under-explored area. This thesis seeks to address this gap by incorporating

auditory information to enhance semantic grounding for concepts inherently tied

to sound, such as thunder, rain, and guitar, which cannot be fully represented

through text or visual data alone.

2.3.3 Fusion Techniques

Integrating linguistic and perceptual cues involves multimodal fusion techniques

that combine information from different modalities into a cohesive representation.

These techniques can be categorised as early, middle, and late fusion [29, 33].

(a) Early fusion sometimes referred as joint learning, integrates multiple modal-

ities by optimizing a shared objective, ensuring aligned and semantically

enriched representations. This is inspired by human cognition, where sen-
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sory inputs are processed together to form coherent perceptions.

(b) Middle fusion involves independently learning representations for each

modality and combining them into a unified representation before com-

puting the final scores. The representations are typically combined using

methods like concatenation or weighted addition.

(c) Late fusion processes each modality independently through separate models

and combines their outputs at the decision-making stage. For example, to

compute similarity scores, each modality would generate its score indepen-

dently, and these scores would then be aggregated.

Lazaridou et al. [30] utilised early fusion in their multimodal skip-gram model,

seamlessly integrating visual features with linguistic contexts. By jointly pre-

dicting word contexts and aligning visual representations with word embeddings,

their approach effectively captured visual-linguistic relationships, significantly

enhancing semantic understanding. In contrast, middle and late fusion methods

provide flexibility by enabling each modality to be optimised independently with

tailored training objectives. For instance, Bruni et al. [29] employed early fusion

by concatenating text and visual embeddings to create multimodal representations

and implemented late fusion by combining similarity scores derived indepen-

dently from textual and visual embeddings to assess semantic relatedness. They

demonstrated the value of these techniques using concept pairs such as cat and

dog or car and road, highlighting how visual grounding complements text-based

distributional semantics. On the other hand, Kiela and Clark [33] incorporated

auditory information into multimodal fusion. They applied middle fusion by

combining textual and auditory embeddings through weighted concatenation and

late fusion by aggregating similarity scores using weighted averaging.

2.4 Audio Learning

Traditionally, audio processing aims to extract meaningful features from raw

signals using domain-specific knowledge. Classical methods relied on human

21



perception models to identify key features, such as:

(a) Mel-Frequency Cepstral Coefficients (MFCCs) [82]: capture spectral fea-

tures while approximating the human ear’s sensitivity to different frequen-

cies. Widely used in speech recognition, these features excel in controlled

environments but struggle with noisy or complex audio data.

(b) Chroma Features [83]: represent the harmonic content of music, became the

standard for music information retrieval (MIR) tasks. These features capture

the tonal qualities of music and were particularly useful in classifying

musical genres, analyzing mood, and identifying key elements of music.

While effective for their time, these handcrafted features lacked the flexibility

to handle diverse datasets and failed to capture high-level abstract relationships,

such as the complex interplay of harmonics in polyphonic music or the subtle

distinctions between overlapping environmental sounds.

The limitation led to the adoption of deep learning techniques, particularly using

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),

which enable automatic learning of hierarchical features directly from raw audio.

One of the earliest effort applied CNNs to music classification and tagging,

learning features directly from raw audio waveforms and spectrograms [84].

Following the trend, Piczak [85] used CNNs to classify environmental sounds

like sirens and animal noises by learning features from log-mel spectrograms,

and Graves et al. [86] applied LSTM networks, to speech recognition, capturing

long-range temporal dependencies and improving accuracy.

Inspired by the progress in image models (e.g., AlexNet [87], ResNet [88]),

researchers sought to develop audio representations that could generalise across

tasks, whether environmental, musical, or speech. Self-supervised and unsu-

pervised learning approaches emerged, allowing models to learn audio features

without the need for extensive labeled datasets. Aytar et al. [89] laid the founda-

tion and presented SoundNet, a weakly supervised deep convolutional network

that leveraged the audiovisual synchronization in videos to learn rich audio
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representations. Other popular models include, but are not limited to:

(a) VGGish [90]: The VGGish embeddings were first introduced by Her-

shey et al. [90], where a modified VGG CNN [91] was trained using mel-

spectrograms as input. Later, Google released a variant2 pre-trained in a

supervised manner on the weakly labeled YouTube-8M dataset [92], which

contained overlapping tags. This dataset was later replaced with the more

robust AudioSet [93] with 2 million audio clips labeled with 527 tags, for

improved label accuracy and better representation of audible events. These

128-dimensional embeddings provide powerful features for tasks such as

audio classification and retrieval.

(b) Kumar [94]: embeddings are generated using a supervised CNN based

on a VGG-like architecture [91] with mel spectrograms as input. These

embeddings are pre-trained in a supervised way on a subset of AudioSet [93]

that includes approximately 22,000 clips from YouTube videos across 527

sound categories. The resulting embeddings have a 1024-dimensional

feature representation, appropriate for general purpose audio tasks.

(c) OpenL3: OpenL3 [95] is a self-supervised method for generating audio

feature representations, extending the L3-Net architecture [96]. The model

is available in multiple configurations, with one pre-trained on a music

subset and the other on an environmental sound subset of AudioSet [93],

containing 296K and 195K YouTube videos, respectively. During training,

Figure 2.1: OpenL3 Architecture.

2VGGish: https://github.com/tensorflow/models/tree/master/research/audioset/
vggish
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the model learns to determine whether the audio corresponds to the visual

content in the video or not. After training, only the audio subnetwork

is required to extract embeddings directly from the audio data (Figure

2.1). The resulting embeddings are represented as 512-dimensional feature

vectors. This self-supervised learning approach enables the embeddings

to generalise well across a variety of audio-related tasks, including sound

event detection and audio classification3.

(d) Other models: popular pretrained audio models, such as Speech2Vec [98],

Wav2Vec [99], and Audio ALBERT [100], are primarily designed for

speech-related tasks like automatic speech recognition (ASR) and spoken

language understanding. While these models are effective for process-

ing spoken language, they are less suited for non-speech audio, such as

environmental or musical.

2.5 Evaluation Benchmarks

This section reviews widely used datasets for textual and multimodal evaluation

benchmarks, highlighting key gaps in the existing literature.

2.5.1 Textual Benchmarks

Table 2.1 summarises common textual benchmarks for evaluating semantic simi-

larity across various linguistic levels, including words, phrases, and sentences.

Table 2.1: Popular datasets for textual evaluation across word, phrase, and sentence levels.

Dataset Category Level Task Size Examples

WordSim353 [10] Nouns Word Semantic Similarity 353 pairs day–summer, movie–star
RG65 [4] Nouns, Adjectives Word Semantic Similarity 65 pairs food–fruit, coast–hill
MEN [29] Nouns, Adjectives, Verbs Word Semantic Similarity 3,000 pairs bed–sleep, fell–love
SimLex999 [9] Nouns, Adjectives, Verbs Word Semantic Similarity 999 pairs smart–dumb, fast–rapid

Mitchell & Lapata [41] Adjective-Nouns Phrase Semantic Similarity 108 pairs dark eye–left arm
Vecchi [42] Adjective-Nouns Phrase Plausibility 28K phrases rear liver–funny juice

Mitchell & Lapata [13] Subject-Verb Sentence Semantic Similarity 200 pairs The fire glowed–burned

For word-level tasks, datasets like WordSim353 [10] and RG65 [4] focus on

semantic similarity for nouns and adjectives, with examples such as day – summer
3Liu et. al. [97] present a comprehensive survey on the auditory self supervised learning methods.
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and food – fruit. Larger datasets like MEN [29] and SimLex999 [9] extend

these evaluations to include verbs, enabling models to capture a broader range

of semantic relationships. At the phrase-level, benchmarks such as Mitchell

& Lapata [41] test semantic similarity, as seen in examples like dark eye –

left arm. Additionally, Vecchi [42] introduces a larger dataset for plausibility,

distinguishing between realistic combinations (rear liver) and implausible ones

(funny juice). Finally, for sentence-level evaluations, Mitchell & Lapata [13]

provide 200 subject-verb pairs focused on semantic similarity, such as The fire

glowed – burned. These datasets offer a range of granularities, allowing for

comprehensive evaluation of compositional and contextual semantics across

linguistic levels.

2.5.2 Audio/Multimodal Benchmarks

Table 2.2 provides an overview of popular multimodal benchmarks used for word-

and sentence-level evaluations.

Table 2.2: Multimodal benchmarks for word and sentence level evaluations.
Dataset Modality Level Task Size Examples

UrbanSound8K [101] Audio Word Audio Classification 8,732 clips The word Footsteps with multiple sounds.
ESC-50 [102] Audio Word Audio Classification 2K clips The word Dog with 50 sounds.
SemSim/VisSim [28] Text, Images Word Semantic & Visual Similarity 7576 pairs ant – rat, axe – pin
AudioCaps [43] Text, Audio Sentence Audio Captioning 51K captions ID, Caption (1, Rain is falling continuously)
Clotho [44] Text, Audio Sentence Audio Captioning 5K audio files Audio samples with five captions each.
AudioSet [93] Text, Image, Audio Sentence Audio Classification 2M clips barking is annotated as Animal, Pets, and Dog.

These datasets span multiple modalities, including audio, text, and images, and

are designed for tasks such as audio classification, captioning, and semantic

similarity. At the word-level, benchmarks like UrbanSound8K [101] and ESC-

50 [102] focus on audio classification, testing models’ ability to distinguish

sounds associated with specific words. Examples include Footsteps and Dog,

each paired with multiple audio variations. Similarly, SemSim/VisSim [28]

evaluates semantic and visual similarity, leveraging text and image pairs such as

ant – rat and axe – pin. For sentence-level tasks, datasets like AudioCaps [43]

and Clotho [44], assess audio captioning models by linking audio inputs to textual

descriptions. For instance, captions like Rain is falling continuously provide
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context for audio samples. AudioSet [93] extends to text, image, and audio

modalities, focusing on audio classification with rich annotations such as barking

labeled as Animal, Pets, and Dog.

Scarcity of Audio Phrase Datasets:

Existing benchmarks are limited in scope. Word similarity datasets such as

MEN [29] and WordSim353 [10] lack sound-relevant adjective pairs; for example,

WordSim353 includes smart–stupid and Japanese–American, which are not

audio- or sensory-related. This gap extends to phrase similarity benchmarks like

Mitchell & Lapata [41], which focus on frequent English adjectives applied to

many nouns, with minimal auditory overlap. Existing multimodal datasets such

as AudioCaps [43] and Clotho [44] link full sentences to audio captions but lack

fine-grained evaluations for phrases such as adjective–noun combinations. This

thesis addresses these gaps by introducing a new multimodal adjective–noun

phrase similarity dataset in Chapter 4.

2.6 Categorical Models and Tensor-Based

Semantics

The Categorical Compositional Distributional Semantics framework (DisCoCat)

introduced by Coecke et al. [20] unifies syntactic structures and semantic repre-

sentations using category theory, mapping pregroup grammars and vector spaces

to a shared compact closed category. This enables a systematic composition of

meanings for linguistic units by combining tensors and linear maps with gram-

matical reductions. This section briefly discusses the DisCoCat model and its

extension to Combinatory Categorial Grammar (CCG) by Maillard et al. [40].

2.6.1 Categories

Category theory is a branch of mathematics that provides a highly abstract

framework for studying structures (called objects, such as words or phrases) and

the relationships between them (called morphisms, e.g., functions or mappings).
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It is governed by a set of fundamental principles that define the behavior of

objects and morphisms. These principles include:

• Composition of Morphisms (functions): follows the associative rule: if f : A→

B and g : B→C, then their composition g◦ f : A→C satisfies: ( f ◦g)◦h =

f ◦ (g◦h).

• Identity Morphisms: Each object A has an associated identity morphism,

denoted as IA : A→ A, which acts as a neutral element under composition.

For any morphism f : A→ B, the identities hold: IA◦ f = f and g◦ IA = g.

Monoidal Categories: extend these principles by introducing additional struc-

ture. Specifically, monoidal categories define a tensor product (⊗) and a unit

object (I) that generalise how objects and morphisms interact. This extension

allows for richer modelling of systems where multiple objects combine in parallel.

Key additional properties include:

• For any objects A,B,C, (A⊗B)⊗C ∼= A⊗ (B⊗C).

• For any object A, A⊗ I ∼= A∼= I⊗A.

For instance, in the category of sets, the tensor product can be represented by the

Cartesian product of sets, where the unit object is a singleton set. For two sets

A = {a,b} and B = {1,2}, the tensor product A⊗B is the set of ordered pairs:

A⊗B = {(a,1),(a,2),(b,1),(b,2)}.

In symmetric monoidal category, the tensor product is commutative, formalised

by isomorphism, meaning: A⊗B∼= B⊗A.

Compact Closed: A monoidal category is said to be compact closed if every

object A has a left adjoint Al and a right adjoint Ar. These adjoints are connected

to A through special morphisms:

η
l : I→ A⊗Al, η

r : I→ Ar⊗A
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ε
l : Al⊗A→ I, ε

r : A⊗Ar→ I

For a symmetric compact closed category, the left and right adjoints of each

object collapse into one, so that: A∗ = Al = Ar.

One significant example of a compact closed category is FVect, the category of

finite-dimensional vector spaces and linear maps. In FVect, vector spaces repre-

sent semantic meanings of words, while linear maps capture compositional rules

that combine these meanings. This structure aligns seamlessly with pregroup

grammar, where syntactic reductions are represented as morphisms.

The interaction between FVect and pregroup grammar is formalised in the product

category FVect×P, where P corresponds to syntactic types and reductions. This

allows syntactic structure to guide the semantic composition of vectors. For

instance, an adjective type nl ·n is represented in FVect as a matrix that acts on

noun vectors to create a noun phrase.

2.6.2 Pregroup Grammar

Introduced by Lambek [103], pregroup grammar is a type-logical grammar that

provides a mathematical framework for modelling the syntactic structure of

natural language. It is based on the partially ordered monoid with a unit element

(denoted as 1), where each element has left and right adjoints (inverses). These

adjoints allow for the reduction of grammatical types, enabling syntactic parsing.

Formally, for any element A in the pregroup, the following properties hold:

A ·Al ≤ 1 and Ar ·A≤ 1

where Al and Ar are the left and right adjoints of A, and 1 is the identity element.

These adjoints allow for type cancellation, simplifying complex type sequences

into valid grammatical structures.

Each word in a sentence is assigned a grammatical type, derived from atomic

types (e.g., n for nouns, s for sentences). Complex types are constructed from
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the atomic types using the monoidal product (·) and the adjoints (Al , Ar), which

encode the syntactic dependencies between words. For instance:

• A noun is represented by the atomic type n.

• An adjective modifies a noun and is represented by the type nl ·n, indicating

it consumes a noun to the right and results in a noun phrase.

• A transitive verb expects a noun phrase on its left (subject) and another on

its right (object) to form a sentence. Its type is nr · s ·nl .

Words in a sentence combine according to reduction rules based on their gram-

matical types. These rules are applied sequentially to simplify the sentence into

its grammatical form. Reduction diagrams, often referred to as wire diagrams,

visually represent the type reduction process.

Example 1: A transitive sentence Anna likes chocolates is analyzed using pre-

group grammar by assigning types to each word: n for the noun Anna (subject)

and chocolate (object), and nr · s ·nl for the transitive verb likes.

Anna likes chocolates:
Anna likes chocolates

n nr s nl n

Type Sequence: n · (nr · s ·nl) ·n→ n ·nr · s ·nl ·n→ s ·nl ·n→ s.

The reductions n ·nr→ 1 and nl ·n→ 1 simplify the structure to the sentence

type s. First, the subject (n) and the right adjoint of the verb (nr) combine,

reducing n ·nr→ 1. This simplifies to s ·nl ·n, where s represents the sentence’s

core type. Next, the left adjoint of the verb (nl) and the object noun (n) combine,

reducing nl ·n→ 1. The remaining type s confirms the grammatical validity of

the sentence.

Example 2: For an adjective-noun phrase say loud music, the reduction is as

follows:
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Loud music:
loud music

nl n n

Type Sequence: (nl ·n) ·n→ 1 ·n→ n.

The reduction nl ·n→ 1 simplifies to the type n, representing a noun phrase. In

this example, the adjective "loud" is assigned the type nl ·n, indicating it modifies

a noun. The noun "music" is assigned the atomic type n. During the reduction,

the left adjoint nl of the adjective combines with the noun n to produce 1, leaving

n as the resulting type. This final type n confirms the grammaticality of the phrase

"loud music" as a well-formed noun phrase.

Coecke et al. [20] leverages the compact closed structure of both FVect and

pregroup grammar to systematically compute the meanings of phrases and sen-

tences. Syntactic structures derived from pregroup grammars guide tensor-based

operations in FVect, ensuring that grammatical dependencies are preserved in

semantic compositions. For example, in the DisCoCat framework, a transitive

verb is represented as a third-order tensor that operates on subject and object

noun vectors to produce a sentence vector:

−−−−−→sentence = T · (−−−−→subject⊗−−−→object)

where T is the tensor representation of the verb, and
−−−−→
subject,

−−−→
object are the

subject and object vectors. This mapping of grammatical structure to tensor-

based operations ensures that the meaning of complex linguistic units can be

derived compositionally from their constituents.

2.6.3 CCG and Tensor-based Semantics

Building on the DisCoCat framework, Maillard et al. (2014) proposed an exten-

sion of tensor-based semantics to Combinatory Categorial Grammar (CCG). CCG

provides a more flexible syntactic formalism compared to pregroup grammars, al-
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lowing for richer linguistic constructs such as type-raising and composition. This

extension highlights the compatibility of tensor-based distributional semantics

with CCG’s combinatory rules. In this section, first we will discuss briefly about

CCG and then about its extension to tensor based semantics.

Combinatory Categorial Grammar (CCG): developed by Mark Steedman

[104] is designed to represent both syntax and semantics in a unified framework.

Similar to the pregroup grammar, CCG categorises linguistic elements into basic

and complex categories. Basic categories, such as S for sentences and NP for

noun phrases, represent fundamental grammatical types. Complex categories,

constructed using these basic categories and slashes (/ and \), define functions

that describe how words combine with others. These slashes indicate the direction

of combination: / represents a function expecting an argument to its right, while \

expects an argument to its left. Complex categories, therefore, serve as functional

operators, taking arguments and producing resulting categories.

To combine categories, CCG relies on a set of combinatory rules that define

how syntactic categories interact. These rules enable the composition of more

complex grammatical structures from basic categories. This thesis discusses only

two rules, i.e, Forward application and Backward application.

(a)
loud music

NP/NP: λx.loud(x) NP: music
>

NP : loud(music)

(b)
Anna likes chocolates

NP: Anna (S \NP)/NP: λx.λy.likes(y,x) NP: chocolates
>

S \NP: λy.likes(y,chocolates)
<

S : likes(Anna,chocolates)

Figure 2.2: CCG derivations demonstrating (a) adjective-noun composition and (b) subject-
verb-object sentence composition, using forward and backward application
respectively, and incorporating semantic representations.

Forward application (>) applies when a function category with the form X/Y

(a function expecting an argument of type Y ) is followed by a category Y on its

right, to produce the result category X . For example, consider the phrase loud

music. The word loud is represented as NP/NP, meaning it modifies a noun

phrase, and music is NP, a noun phrase. Using Forward Application, NP/NP
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combines with NP to produce NP, resulting in the complete phrase loud music

(Figure 2.2 (a)).

Backward application (<) applies when a function category X\Y (expecting

an argument of type Y ) is preceded by a category Y on its left. The result of

this combination is X , the outcome of the function applied to its argument. For

example, in the sentence Anna likes chocolates, the word likes is represented as

(S\NP)/NP, a transitive verb that expects two arguments: an object (NP) on its

right and a subject (NP) on its left. First, it combines with chocolates (NP) using

Forward Application, resulting in S\NP. Then, this intermediate result combines

with Anna (NP) using Backward Application, yielding S, a complete sentence

(Figure 2.2 (b)).

Semantic Integration: CCG integrates both syntax and semantics by associating

each syntactic category with a corresponding semantic type, allowing combina-

tory rules to operate uniformly on both syntactic and semantic levels. Lambda

calculus is a widely used formalism for encoding these semantic representa-

tions [104].

Figure 2.2 (a) demonstrates the adjective-noun composition where the adjec-

tive loud is represented as a function λx.loud(x), modifying the noun music

to produce the semantic interpretation loud(music). Figure 2.2 (b) illustrates

a subject-verb-object sentence composition, where the transitive verb likes is

represented as a higher-order function λx.λy.likes(y,x). The subject Anna and

the object chocolates are sequentially applied to this function through forward

and backward application rules, yielding the complete semantic representation

likes(Anna,chocolates).

Tensor-Based Semantics: Tensor-based semantics for CCG, introduced by Mail-

lard et al. [40], interprets grammatical types as tensor spaces and implements

CCG’s combinatory rules through tensor contraction. In this framework, words

are represented as tensors of varying orders based on their grammatical and

functional roles. Unary functions, such as adjectives and intransitive verbs, are
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modeled as second-order tensors (matrices) that operate on first-order tensors

(vectors) like nouns to produce refined representations. For example, an adjective

like fast modifies a noun like food through matrix-vector multiplication, capturing

the adjective’s role as an operator that refines the noun’s semantic properties.

Binary functions, such as transitive verbs, require two arguments (subject and

object) and are modeled as third-order tensors, while ternary functions, such as

ditransitive verbs like gives, are represented as fourth-order tensors, enabling

the hierarchical representation of complex sentence structures. This framework

integrates syntactic and semantic compositionality by treating adjectives, verbs,

and other functional words as linear maps or tensors that transform vector rep-

resentations of their arguments. For instance, an adjective is represented as a

matrix Madj that operates on the vector of a noun (−−→noun) to produce the vector

representation of the resulting adjective-noun phrase:

−−−−→
phrase = Madj×−−→noun

Also, transitive verbs are modeled as third-order tensors Tverb, capable of com-

bining subject and object vectors into a sentence-level vector. The representation

is computed as:
−−−−−→sentence = Tverb · (

−−→
subj⊗−→obj)

Here, ⊗ denotes the Kronecker product, which combines the subject (
−−→
subj) and

object (
−→
obj) vectors into a higher-dimensional space.

2.7 Conclusion

The review of the literature on compositional distributional semantics reveals

that these methods have significantly advanced language representation over the

years. However, this is still a debate as to what extent these models ground the

perceptions as humans naturally do. This is because, one of the key limitations of

purely textual models is their inability to account for the fact that human language

is inherently grounded in sensory and perceptual experiences. If the ultimate
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goal of language systems is to achieve human-like comprehension, then why not

leverage the same capability for achieving human-like understanding?

The success of compositional distributional semantics, particularly when com-

bined with the categorical framework [20], has provided deep insights into how

the linguistic meaning can be systematically deduced. Prominent contributions

(e.g., Baroni et al. [21], Grefenstette et al. [23], Maillard & Clark [22], Wijnholds

et al. [24]) have demonstrated the potential of these models to handle phrase and

sentence-level compositions effectively. However, despite these advancements,

the extent to which these compositional models are truly grounded remains an

open question.

Building on the success of multimodal distributional semantics (Feng and Lap-

ata [27], Silberer and Lapata [28], Bruni et al. [29], Kiela & Clark [33]), only

recently have researchers (e.g., Lewis et al. [37], Wazni et al. [38]) demonstrated

that multimodal compositional distributional semantics has the potential to outper-

form state-of-the-art models. Moreover, the overwhelming focus of multimodal

distributional semantics—whether standalone or in compositional settings—has

been on vision, largely due to the abundance of resources in this domain. In

contrast, the integration of auditory perceptions into these models has received

limited attention, highlighting a significant gap in the literature.

This thesis aims to bridge this gap by extending the tensor-based CCG framework

of Maillard et al. [40] to integrate auditory data into compositional semantics. By

modelling audio signals and linguistic elements within a unified framework, it

aims to evaluate the compositional meaning of phrases (e.g., adjective-nouns) in

a multimodal context. Drawing inspiration from the multimodal distributional

work of Kiela and Clark [33] and the compositional skip-gram model of Maillard

& Clark [22], this research extends these methodologies to handle auditory

phrase compositions. In the next chapter, a detailed discussion of the proposed

framework is provided.
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Chapter 3

Statistical Methods for MultiCoDi

This chapter introduces a type-driven multimodal compositional distribu-

tional framework, MultiCoDi, inspired by DisCoCat [20]. The framework

aims to integrate multimodal information, specifically combining auditory

and textual data, to capture the distinctive properties of words and their

grammatical roles for phrase-level compositions.

In distributional semantics, words are often represented as vectors in high-

dimensional spaces, capturing their meanings based on patterns in large corpora.

Although such methods effectively model individual words, they often fall short

when addressing compositionality, as discussed in Chapter 2. Take adjectives, for

instance. Mitchell and Lapata [13] proposed vector addition as a simple approach

to compose adjectives and nouns in distributional semantics. Later, in a series

of papers [21, 22, 69], it was argued that vector addition is not appropriate for

composition as it is commutative. Such behavior is problematic for capturing

the hierarchical and directional nature of language. Additionally, adjectives

serve a modifying role, transforming the meaning of nouns. This transformation

cannot be accurately modeled by simple addition, which treats both compo-

nents symmetrically and ignores their syntactic roles. Instead, it necessitates

the use of functional representations, such as maps. In finite dimensions, maps

are approximated by matrices and adjective-noun phrase composition becomes

matrix-vector multiplication, a non-commutative operation. Different methods

were put forward for learning the adjective matrices; Baroni et al. [21] used linear



regression, while Maillard et al. [22] and Wijnholds & Sadrzadeh [71] developed

a tensorial extension of the Skipgram model [60].

Although these methods have been widely applied to text, their extension to

multimodal settings remains limited. Existing work in multimodal distributional

semantics has largely focused on integrating word-level representations of text

and images [29, 30] and audio [31]. While recent studies have explored matrix-

based phrase composition integrating text and images [37, 38], it has never been

extended to audios.

This chapter aims to fill this gap by introducing a framework called MultiCoDi

that extends compositional distributional semantics to integrate textual and audi-

tory data. The methodology follows compositional distributional semantics of

Baroni et al. [21], parsing linguistic phrases into Combinatory Categorial Gram-

mar (CCG) trees [105], which are then used to learn multimodal embeddings.

Adjectives, in both textual and multimodal contexts, are represented as matrices,

while nouns are represented as vectors. These representations are learned using

various machine learning algorithms. Matrix-vector multiplication is employed

to derive embeddings for adjective-noun phrases.

The chapter begins by exploring methods for obtaining auditory and textual vector

embeddings. Section 3.2 explains the proposed framework to learn matrices in

single and multimodal settings. Section 3.3 details the implementation of the skip-

gram model to integrate auditory and textual embeddings. The chapter concludes

with a discussion on how the integration of audio features with linguistic data

may enhance the representation of compositional phrase meanings.

3.1 Vector Representations: Text and Audio

This section provides a brief overview of the textual and auditory embeddings,

alongwith the specific pretrained embeddings utilised in this thesis. For a more

comprehensive discussion, please refer to Chapter 2.

Textual Embeddings: Textual embeddings provide compact vector represen-
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tations of words, essential for capturing semantic relationships. Early models

like Latent Semantic Analysis (LSA) [106] used statistical patterns and tech-

niques like Singular Value Decomposition (SVD) to create dense word vectors.

Enhancements such as Pointwise Mutual Information (PMI) and Positive PMI

(PPMI) [59] improved robustness, but these methods relied heavily on global

co-occurrence statistics. Word2Vec [107] addressed this limitation by introducing

CBOW and Skip-gram, providing context-sensitive embeddings. Subsequent

advancements like GloVe [7] combined co-occurrence statistics with local con-

text, while FastText [61] incorporated subword information to handle rare and

out-of-vocabulary words. However, these models produced static embeddings,

where a word’s representation remained fixed regardless of context. Addressing

this limitation, BERT (Bidirectional Encoder Representations from Transform-

ers) [8] introduced contextualised embeddings, allowing a word’s representation

to adapt based on its surrounding context. Unlike earlier models, BERT employs

a bidirectional transformer architecture, capturing both left and right contexts

simultaneously. Pre-trained on large corpora, BERT bridged the gap by provid-

ing dynamic, context-aware representations, setting new benchmarks across a

wide range of NLP tasks. Building on BERT, Sentence-BERT (SBERT) [17]

extended its capabilities to sentence-level tasks. By fine-tuning BERT with a

siamese network structure, SBERT generates fixed-size, semantically meaningful

embeddings for entire sentences or phrases. These embeddings excel in tasks

like semantic similarity and search due to their ability to represent sentence-level

meaning effectively.

This work utilises state-of-the-art transformer-based architectures, BERT and

SBERT, recognised for their exceptional performance across diverse NLP tasks.

Specifically, pre-trained BERT-base-Uncased generates 768-dimensional em-

beddings for individual words. For phrases, Sentence-BERT (SBERT), an

extension of BERT fine-tuned for sentence-level tasks, is employed to produce

768-dimensional embeddings. These embeddings are derived from the hidden

states of the final layer, effectively capturing rich semantic information learned
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during pre-training.

Auditory Embeddings: Pre-trained audio embeddings offer compact numerical

representations of audio data by capturing essential characteristics such as tone,

rhythm, speech content, and acoustic features. These embeddings are learned

from large-scale audio datasets and allow for efficient processing of complex

audio signals in tasks like classification and retrieval. Historically, audio data

was represented using handcrafted features such as MFCCs. While useful, these

features often lacked the semantic depth and generalization needed across do-

mains. Pre-trained models like VGGish [90], SoundNet [89], YAMNet1, and

OpenL3 [95] leverage deep learning architectures to extract more meaningful rep-

resentations. Among these, OpenL3, stands out for its versatility and robustness.

OpenL3 is a self-supervised model that generates 512- or 6144-dimensional audio

embeddings. Using a convolutional architecture, it processes Mel-spectrograms

with 256 frequency bands to extract features from raw audio.The model processes

the Mel-spectrogram using a stack of convolutional layers that progressively ex-

tract relevant features from the raw audio input. It has two variants: OpenL3

(Environmental) and OpenL3 (Musical), both trained on data from the AudioSet

dataset [93].

In this work, pretrained OpenL3 (Environmental) model was utilised to extract

audio features, aligning with the dataset’s characteristics, as over 80% of the

data comprises environmental sounds. Ambiguous items such as punch, clap,

and whistle, which could belong to either environmental or musical categories,

were addressed through this choice. Using OpenL3’s default setting of 10 frames

per second, embeddings were extracted for each audio file at regular intervals,

corresponding to a hop size of 0.1 seconds. A single, robust representation

for each audio sample was created by averaging all frame-level embeddings,

resulting in a consolidated 512-dimensional embedding per audio.

1https://github.com/tensorflow/models/tree/master/research/audioset/yamnet
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3.2 MultiCoDi

The methodology is based on the grammatical types of Combinatorial Categorial

Grammar (CCG, [105]), which has wide-coverage parsers [108, 109]. Syntactic

types of CCG are either atomic, e.g. noun phrases: NP, or functional and of the

form Y/X or Y\X; depending on where they take their argument. An example

is an adjective: NP/NP, which takes its argument on the right, producing an

adjective-noun phrase (AN). Types are composed with each other using a set of

rules, e.g. forward and backward application and composition. An example of

forward application is when an adjective composes with a noun phrase, producing

a noun phrase:
NP/NP NP

NP
>

We work along side the distributional semantics of CCG [40], where a word W

with a functional type of n arguments is assigned W(n), an (n+1)th-order tensor

Wi1...in+1 in the space V1⊗ ...⊗Vn⊗Vn+1 with Vi’s are vector spaces. Given a

functional word W of n arguments and semantics d1, ...,dn of its arguments, we

denote by W(n)d1...dn the application of the representation of W to its arguments’

representations.

When W is a noun, Wi1 is a 1st-order tensor or a vector. For W an adjective,

Wi1i2 is a 2-nd order tensor or a matrix. The objective function of a distributional

algorithm that learns a vector is that of the original skipgram, the one of a tensor

is described below, referred to as TSG for Tensor SkipGram:

∑
c∈C

logσ(W(1)d1 · c)+ ∑
c∈C

logσ(−W(1)d1 · c)

In the case of AN phrases TSG simplifies to the following, where A is the

adjective matrix, nnn the vector of the noun:

TSG : ∑
ccc′∈C

logσ
(
Annn · ccc′

)
+ ∑

ccc′∈C
logσ

(
−Annn · ccc′

)
(3.1)
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3.2.1 Combining the Audio with the Text

We used two different methods for combining audio with text. In the first method,

we concatenated their vectors (AT-Concat) and used the result as an input to

training. In the second method, we trained a joint audio-text matrix (AT-Joint),

where one representation was used as a signal to improve the other.

Linear Regression For linear regression, we trained adjective matrices AAA to

effectively model the relationships between observed adjective-noun vectors ppp

and noun vectors nnn. The underlying mathematical relationship is expressed as:

ppp = AAAnnn (3.2)

In this equation, ppp represents the target adjective-noun vector, AAA is the matrix

that captures the effect of the adjective on the noun, and nnn is the corresponding

noun vector. To optimise the training process, we employed a vanilla regression

technique utilizing a partial least squares (PLS) approximation.

AT-Concat Regression The AT-Concat Regression method extends the single-

modality regression approach (Equation 3.2) by incorporating both audio and

textual representations of nouns. This adaptation is expressed mathematically as:

〈pppa, pppt〉= A〈nnna,nnnt〉 (3.3)

In this equation, nnna represents the audio representation of a noun, while nnnt

denotes its textual counterpart. The notation 〈nnna,nnnt〉 indicates the concatenation

of these two representations into a single composite vector, which captures the

combined semantic information of the noun in both modalities. Similarly, pppa and

pppt represent the predicted adjective-noun vectors corresponding to the audio and

textual modalities, respectively, and their concatenation is represented as 〈pppa, pppt〉.
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AT-Joint Regression The AT-Joint Regression method introduces a variant of

the original regression formula in Equation 3.2, and is expressed as:

pppa = Annnt

In this formulation, pppa represents the audio adjective-noun phrase vector, while

nnnt is the textual representation of the corresponding noun. This approach is

distinct in that it utilises the textual noun representation as a guiding signal to

train the adjective matrix A.

AT-Concat Tensor Skipgram The AT-Concat Tensor Skipgram method is based

on the modified training objective of the single-modality Tensor Skipgram (TSG)

(Equation 3.1) and has the following objective function:

∑
(((ccc′′′a,,,ccc′′′t)))∈Ca×Ct

logσ
(
A〈nnnaaa,,,nnnttt〉 · 〈ccc′′′a,,,ccc′′′t〉

)
+ ∑

(((c′′′a,,,c′′′t)))∈Ca×Ct

logσ
(
−A〈nnnaaa,,,nnnttt〉 · 〈c′′′a,,,c′′′t〉

)
(3.4)

Here, 〈nnna,nnnt〉 represents the concatenation of the fixed pre-trained audio and textual

embeddings of a noun, and Ca and Ct are the sets of positive and negative contexts of the

adjective-noun phrase. For positive contexts, we utilise the fixed pretrained embeddings

of the actual audio and text representations of the adjective-noun phrases. Conversely, for

negative contexts, we fix the adjective and randomly choose a subset of nouns different

from n. For example, consider learning the matrix A for the adjective happy. In this case,

nnnt is the textual embedding of cat, and nnna is the average of all its audio vectors. The term

ccc′′′a indexes over all the audio embeddings we have for happy cat, while ccc′′′t is its textual

embedding. For the negative contexts, c′′′a indexes over all the audio embeddings we have

for happy noun, where noun is a randomly selected noun different from cat, such as baby

or car.

AT-Joint Tensor Skipgram This method changes the objective function to the fol-

lowing, for the same nnnt and Ca as above.

∑
ccc′′′a∈Ca

logσ
(
Annnt · ccc′′′a

)
+ ∑

ccc′a∈C
logσ

(
−Annnt · ccc′a

)
(3.5)
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Here, the audio adjective is learnt from an audio-only context, but in such a way that

when multiplied with the textual vector of a noun, it is forced to be closer to the audio

context.

Audio-Only Models We additionally explored regression and skip-gram audio-only

composition models. In the case of regression, we employ pre-trained auditory rep-

resentations of adjective-nouns and nouns from OpenL3. Here, nouns are treated as

independent variables, while adjective-noun-vectors function as dependent entities. On

the other hand, the audio skip-gram model for phrase composition is defined by the

following equation:

∑
ccc′a∈Ca

logσ
(
Annna · ccc′a

)
+ ∑

ccca
′∈Ca

logσ
(
−Annna · ccca

′) (3.6)

Where nnna is the pretrained aggregated audio noun embeddings, while Ca and Ca are the

set of positive and negative contexts from pretrained audio representations.

Addition For two given vectors, one representing an adjective AAA and the other repre-

senting a noun nnn, the additive composition of the adjective-noun pair (denoted as ppp) is

expressed as:
ppp = AAA+nnn (3.7)

We utilised Equation 3.7 to derive the auditory representations of adjective embeddings

by estimating the adjective vector through the subtraction of the noun vector from the

adjective-noun composition.
AAAest = ppp−nnn (3.8)

pppest = AAAest +nnn (3.9)

Subsequently, the estimated adjective-noun vector pppest is reconstructed by adding the

noun vector to the estimated adjective vector. The subtracted nouns correspond to the

averaged noun embeddings for each noun, while the added nouns are their non-averaged

embeddings. The rest of the models can be found in Table 3.12. In this table, the

ADD-Audio follows a similar approach in which aaaan corresponds to the averaged audio

2In earlier stages of model selection, we also explored some other alternatives, for instance, 1)
multiplicative composition and 2) averaging all adjective-noun vectors to represent adjectives both
in additive and multiplicative compositions. However, these methods did not demonstrate superior
performance compared to the addition-subtraction approach. Moreoever, we implemented 3) a pilot
study on text-only composition model, the details of which are provided in Appendix A.
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embedding of the adjective-noun phrase, nnna refers to the averaged audio embedding of

the noun across all its occurrences, and nnn′a means the individual noun embedding used

to reconstruct the phrase representation. More details in the next section.

Table 3.1: Phrase learning models and their formulations.

Model Abbreviation Formula

Non-Compositional Text Non-Comp Text aaannnt

Non-Compositional Audio Non-Comp Audio aaannna

Additive Text ADD-Text aaat +nnnt

Additive Audio ADD-Audio (aaannna−nnna)+nnn′a

Additive Concatenation ADD-AT ((aaannna−nnna),aaat)+(nnna,nnnt)

Audio-Only Linear Regression Audio-Only LR AAA×nnna

Joint Linear Regression AT-Joint LR AAA×nnnt

Concatenated Linear Regression AT-Concat LR AAA× (nnna,nnnt)
Audio-Only Skipgram Audio-Only SG (AAA×nnna) · ccc′′′a
Joint Skipgram AT-Joint SG (AAA×nnnt) · ccc′′′a
Concatenated Skipgram AT-Concat SG (AAA× (nnna,nnnt)) · (ccc′′′a,ccc′′′t)

3.3 Implementation

An overview of the methodology is presented in Figure 3.1, where (1) illustrates the

audio-textual concatenation process, while (2) and (3) depict the single-modal and joint-

learning approaches, respectively. In (2), the embeddings are utilised independently,

whereas in (3), they are jointly optimised using matrix-based compositional models.

Figure 3.1: Overview of the methodology for combining the audio with the text

This section primarily details the implementation of the audio-text tensor skipgram

model, inspired from the image-text composition model proposed by Lewis et al. [37].

The model’s architecture and training procedure are explained below.
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Dataset: The Core dataset constructed in Chapter 4 was used for training, and the Sample

dataset was used for evaluation. The datasets consist of audio recordings associated with

adjective-noun phrases and nouns. For each phrase and its corresponding noun, multiple

audio samples were collected. For example, loud cat is represented by 82 audio files,

while cat is represented by 100. For more details, refer to Chapter 4.

Vocabulary: For each adjective-specific model, all available audio embeddings are

utilised across different adjective-noun phrases and nouns. Each model constructs an

expanded vocabulary specific to the adjective, capturing the distinct auditory character-

istics associated with each phrase. The size of the vocabulary varies for each adjective

based on the number of nouns it modifies and the number of audio files available for

each adjective-noun phrase. For example, adjective fast modifies 194 different nouns,

and each adjective-noun pair is represented by 10 to 100 audio files. This leads to a

comprehensive vocabulary of 6,657 distinct entries for adjective fast, where each entry

corresponds to an audio embedding of a specific adjective-noun phrase modified by

the adjective fast. For all adjectives, the vocabulary size varies from 2,429 to 8,478.

This vocabulary is then used to construct positive and negative samples for training the

skip-gram model3.

Context: The positive context consists of multiple audio files representing the target

adjective-noun phrase. For instance, loud melody is represented by 100 audio files, while

loud cat is represented by 82 files. These audio files are treated as the positive context

for each phrase, as they all correspond to the same target phrase. Using all available

examples for a given phrase as positive context helps the model recognise it across

diverse auditory conditions, such as variations in background noise, speaker intonation,

or context.

In contrast, negative samples are drawn from unrelated noun phrases that share the same

adjective but differ in meaning (e.g., loud car or loud bell). This approach increases

the difficulty of distinguishing between correct and incorrect contexts, compelling the

model to learn the subtle distinctions in how different nouns are modified by the same

3Although the vocabulary size for some adjectives is relatively small, the rich averaged noun
vectors associated with each adjective ensure adequate representation for computing compositions.
These embeddings are robust, as they are derived from averaging a substantial number of sound files
for each noun corresponding to the adjective. Notably, the number of audio representations for nouns
per adjective may go from 2,778 to 20,894 sound files.

44



adjective. To prevent negative samples from being too similar to the positive context (e.g.,

loud music and loud melody), the selection of negative samples is kept dynamic. For

this, we treated the selection of negative nouns as a hyper-parameter, refining the choice

through tuning on the validation set. Specifically, we randomly generate 10 different

sets of negative samples, run 50 epochs for each set, and select the best-performing set.

This process ensures that negative samples progressively become harder as the model

improves, enhancing its overall learning.

Example: For each positive example (target word and positive context), one correspond-

ing negative example is randomly sampled. The format is:

((pos_phrase, target),neg_phrase)

For a given target phrase, for instance fast_car, the training samples might look like:

((fast_car1, fast_car), fast_music1),((fast_car2, fast_car), fast_steps20), . . . ,((fast_car100, fast_car), fast_bus50)

Each tuple represents a training example for the skip-gram model with negative sampling.

Finally, the dataset is split into train (80%), validation (10%), and test (10%) sets. Care

is taken to ensure that no overlapping positive classes exist between these splits, ensuring

that the model does not encounter the same positive context during both training and

testing.

Training: For skipgram models, the learning rate was 10−6 with a batch size of 512, and

a training duration of 200 epochs. The models were trained on NVIDIA T4 and V100

on Google Colab. The training was done in batches over a period of 3 months, totalling

~100 hrs. We used Binary Cross-Entropy loss and the Adam optimiser in the training

process to refine the performance. Principal Component Analysis (PCA) was used to

equalise the dimensions of auditory and textual representations to 50.

Algorithm 1 details the training procedure for the AT-Concat tensor Skipgram model,

processing adjective-noun pairs from the dataset S. For each pair, audio and text em-

beddings are concatenated into a multimodal representation, with negative distractors

randomly sampled from the noun set, excluding the target noun. The training involves

calculating positive and negative scores based on the concatenated embeddings and esti-

mating the probability of the target phrase using a softmax function, with loss computed

via cross-entropy and weight decay for regularization. After each epoch, validation
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Algorithm 1 Algorithm to train adjective-noun compositions via AT-Concat
1: Input: Training dataset S, audio encoder Ea, text encoder Et , composition encoder C,

learnable parameters θ , adjectives A, nouns N , weight decay λ , number of epochs M,
validation accuracy thresholds T , validation check interval k.

2: Output: Learned model parameters θ .
3: for i← 1 to M do
4: for all (x,y) = (a,n) ∈ S do
5: xaudio,xtext←Ea(x),Et(x) . Get embeddings for the positive context
6: x← [xaudio;xtext] . Concatenate audio and text embeddings
7: Sample negative distractor yneg from N \{y}
8: lpos← x · C(x,y)
9: lneg← x · C(x,yneg)

10: pθ (y = (a,n)|x)← exp(lpos)
exp(lpos)+exp(lneg)

11: L←− log pθ (y|x)+λ‖θ‖2 . Cross-entropy loss with weight decay
12: Update θ

13: Compute the validation accuracy Aval
14: if i equals k then
15: if Aval ≥ τ then . Check the accuracy threshold
16: Continue training for (M− k)
17: else
18: Select new yneg and repeat from step 2
19: end if
20: end if
21: end for
22: if no set of negative distractors reaches Aval ≥ τ after all trials then
23: Repeat from step 7.
24: end if
25: end for
26: return θ

accuracy Aval is evaluated based on human judgments of phrase similarity, with checks

performed every k epochs—a value ranging from 20 to 30 depending on the dataset size

and computational resources. If Aval meets or exceeds the highest threshold τ (values

from 0.7, 0.6, 0.5), training continues with the current distractors. If not, the threshold is

systematically reduced to the next value, and this process is repeated until reaching the

lowest threshold. If the lowest threshold is reached without satisfactory performance, a

new trial is initiated, and a new set of distractors is selected, with a maximum of three

trials allowed. Should all trials be exhausted without meeting the threshold, the model

retains the last selected distractors to ensure training progresses.

Linear Regression: In this method, corpus-based nouns act as independent variables,

and adjective-noun vectors serve as dependent variables. Adjective-noun embeddings
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are scaled for uniformity, and the dataset is split with 80% for training and 20% for

testing. Adjectives are modeled as linear functions using Partial Least Squares Regression

(PLSR) [110], with a coefficient matrix computed from averaged noun and adjective-

noun embeddings (Figure 3.1). The number of latent components for each model was

optimised to enhance performance. The resultant matrix is then multiplied by corpus-

based non-averaged noun vectors to generate multiple phrase representations, which are

averaged into a single representation per phrase.

Addition: The process begins by reading all corpus-based adjective-noun embeddings.

For each phrase, which may possess multiple embeddings, the mean embedding is calcu-

lated to derive a representative vector. Following this, all corpus-based noun embeddings

are retrieved, and the mean embedding for each noun is computed accordingly. The

adjective vector is then derived by subtracting the averaged noun embedding from the

averaged phrase embedding (Figure 3.1). This process generates multiple vectors for

each adjective, based upon the number of nouns it modifies. For instance, the adjective

fast modifies 194 distinct nouns, resulting in 194 unique vectors associated with this

adjective. These vectors are subsequently averaged to yield a singular, comprehensive

adjective representation.

3.4 Conclusion

This chapter introduces a novel multimodal compositional distributional semantics

framework, integrating audio features with linguistic data. It presents a formalism

and methods for grounding and composing adjective-noun phrases, while effectively

capturing their semantic and auditory interactions. Adjectives are represented as matrices

and nouns as vectors, extending the compositional distributional semantics framework to

the audio-text domain. The next chapter introduces a dataset designed to evaluate the

effectiveness of the proposed framework in capturing phrase similarities.
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Chapter 4

A Novel Multimodal Phrase Dataset

This chapter addresses the limitations of existing phrase similarity benchmarks by

introducing a novel multimodal dataset that captures both semantic and auditory

similarities between adjective-noun phrases.

Over the last decade, there has been significant emphasis on how the language can

be grounded in vision, with numerous studies integrating images to enhance semantic

understanding [27–30, 37, 38]. However, the auditory modality has remained relatively

underexplored, with only a few researchers (e.g., Lopopolo & Miltenburg [32] and Kiela

& Clark [33]), exploring the integration of audio into semantic models. This limited

focus is primarily due to the scarcity of comprehensive training and evaluation datasets.

Existing similarity benchmarks primarily focus on textual analysis [4, 10, 29] and often

lack adjective pairs relevant to auditory contexts. Word similarity datasets like MEN [11]

and WS353 [10] are limited to abstract or cultural concepts, while AMEN [33] addresses

sound relevance only at the word level. Phrase similarity benchmarks, particularly for

adjective-nouns, such as the one proposed by Mitchell and Lapata [41], face similar

limitations. Chapter 2 discusses these datasets and their limitations in detail.

To address this gap, this chapter presents a dataset that captures semantic relationships

between adjective-noun phrases in text and their meaningful auditory associations. The

proposed dataset is divided into two subsets: SemPhrase for semantic similarities and

AudPhrase for audio similarities. The chapter offers a comprehensive overview of the

dataset construction, starting with the methods employed to identify and select sound-

relevant adjectives and nouns. It then explores the annotation process, detailing the



criteria and guidelines provided to human annotators and concludes by discussing the

inter-annotator agreement results.

4.1 Building the Dataset

This section explains the detailed method used to create a textual-auditory dataset, made

especially for adjective-noun phrase composition. The process includes selecting sound-

relevant adjectives, filtering and pairing nouns, and finally building and validating the

dataset. Figure 4.1, shows a visual summary of the systematic approach we followed,

highlighting the main stages of data collection and refinement. Each of these stages is

explained in detail in the following sections.

Figure 4.1: Multimodal phrase data construction

4.1.1 Selecting Adjectives

The first step in building the dataset was to carefully choose adjectives that are commonly

used in the English language and are also relevant in an auditory context1. This included:

1. Textual Relevance: The UKWaC [111] is used to extract 1,000 most frequently

used adjectives in English. UKWaC is a large-scale, web-derived collection of English

text, containing over 2 billion words. It was created by crawling the .uk domain to

gather a wide range of text types, from academic articles to blogs, and is enriched with

linguistic annotations like part-of-speech tagging and lemmatization. This makes it a

highly valuable resource for English linguistic research.

1As previously discussed, in this thesis, auditory relevance is defined as: An adjective, when
combined with a noun, evokes or is associated with a specific sound, as seen in phrases like creaky
door or loud horn.
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2. Acoustic Relevance: Once the frequent English adjectives were identified, the next

step was to assess their relevance in an acoustic context. This was achieved by cross-

referencing each adjective with the Freesound library2, an extensive online repository of

sound samples. The aim was to see if these adjectives were commonly paired with nouns

in settings that explicitly involve sound. An adjective was deemed acoustically relevant

if it appeared with a noun in more than 800 instances within the Freesound database,

based on the names or tags of the audio files.

3. Multimodal Adjectives: Building on the previous steps, a final set of 100 adjectives

was carefully selected to ensure both linguistic and acoustic significance. This set was

further narrowed down to 30 adjectives (given in Appendix B.1) that exhibited strong

acoustic associations. The refinement process prioritised adjectives that were paired

with at least 25 unique nouns, each represented by a minimum of 100 sound files in the

Freesound database.

4.1.2 Selecting Sounds

After selecting the adjectives, the next step was to gather all the sounds associated with

each adjective. The following criteria was applied to collect and filter sounds:

(a) Name or Tag: For each adjective (e.g., Fast), only files from Freesound where the

adjective appeared in either the Name or Tag were selected.

(b) Filename Length: Filenames containing 2 to 15 tokens were considered, excluding

overly simplistic filenames like fast.ogg.

(c) Duration: The audio files needed to be between 1 and 30 seconds long to ensure

relevance without being too brief or extended.

(d) Repetitions: Repeated filenames were excluded to maintain a diverse set of exam-

ples.

(e) Names: Only English filenames were included to ensure consistency in language.

(f) Adjective-Noun Pairing: Filenames include at least one adjective and noun, such

as fast shutter or fast walk, ensuring contextually relevance in phrases.

2https://freesound.org
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4.1.3 Selecting Nouns

After identifying the adjectives and gathering associated sound files, the next step is to

filter nouns to pair with these adjectives. This involves:

1. Identifying Nouns: After preparing the list of audio filenames, Spacy POS tagging

was employed to identify nouns within each filename. As filenames often contain

multiple nouns, the first identified noun is selected as the one modified by the adjective.

This is because the automated methods like dependency parsing were deemed unsuitable

due to the frequent occurrence of poor grammar, nonsensical terms, and phrases lacking

adjectives in filenames (e.g., instances where the adjective is present only in the tags).

Table 4.1 illustrates examples.

Table 4.1: Filenames from FreeSound where the selected nouns were not always meaningful

Adjective Filename Nouns Selected Noun

loud CS 80 PWM FAST - 78 (F#5) - vel 127 [’pwm’, ’f’, ’vel’] pwm
distant auto distant heard from construction site [’auto’, ’construction’, ’site’] auto
fast 64x fast-forward speech effect (spooling) [’64x’, ’speech’, ’effect’] 64x

2. Filtering Meaningful Nouns: To ensure the selected nouns were meaningful, a

filtering process was applied to the filenames. First, only filenames containing English

nouns were considered. Next, plural nouns were converted to their singular form to

eliminate redundancies. Finally, meaningless nouns were removed using Python-based

spellchecker. Table 4.2 illustrates examples, where for path_next_to_rail, the adjective

fast was found in its tags.

Table 4.2: Filtered nouns and resulting adjective-noun (AN) phrases.

Adjective Filename Nouns AN Phrase

quick Shutter Camera, quick, A [’shutter’, ’camera’ ] quick shutter
fast path_next_to_rail [’rail’] fast rail
loud Loud Traffic on the Highway [’traffic’, ’highway’] loud traffic

3. Manual Review: Even after filtering, some phrases lacked meaningful context. For

example, while fast file contains a relevant sound, the word file is ambiguous in its

meaning. To ensure the quality of these pairs, a manual review was conducted, following

Kiela & Clark [33]. Each adjective-noun pair was carefully evaluated by authors to retain
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only those with clear meanings. Nouns that were ambiguous or unclear, either in text or

audio, were removed from the final selection. Table 4.3 presents a snippet of this review

process. Some other discarded nouns include bat, bank, jam, hip, tape, rail etc.

Table 4.3: Manual review of adjective-noun phrases.

Adjective Selected Noun Relevance

quick shutter Y
fast file -
fast rail Y
loud traffic Y

4. Additional Data: After finalizing the list of meaningful pairs of noun phrases,

additional data was collected from Freesound for each pair. For the selected nouns, 100

audio files were gathered for each; and 10-100 for each adjective-noun combination due

to varying usage frequencies, all in the standard open-source OGG format.

4.1.4 The Dataset

The final dataset was divided into two main parts: The Core and The Sample. The Core

dataset serves as a comprehensive resource for large-scale training, offering a broad

range of data, while the Subset dataset provides a more focused collection specifically

designed for gathering human judgments for final evaluations.

4.1.4.1 The Core

This dataset consists of 30 adjectives, 1,944 nouns, and 92,157 pairs of noun phrases. In

the dataset, the number of nouns modified by each adjective varies; e.g. low modified 46

nouns, while quick modified 114, with an average of 65 nouns per adjective. For audios,

we selected 100 audio files per noun and on average 50 files per adjective-noun. The

number of audio files per adjective-noun varied, e.g., 97 for human cough and 45 for

angry girl. In total, the dataset contained 271,766 audio files, equivalent to approximately

760 hours of audio data.

Example phrases from the dataset: big drum, dark music, angry grunt, loud thunder,

distant blast, digital beep, big laughter, melodious voice, sad dog, heavy punch,

happy child, fast typing, female robot, angry monster, and sad music.
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4.1.4.2 The Sample

For human judgements, we used a subset of the Core dataset for which we excluded

adjective-noun combinations with fewer than 50 associated audio files. This resulted

in a reduced number of combinations per adjective, ranging from 15 to 20 nouns per

adjective. This decision was made to strike a balance in the dataset, ensuring that all

adjectives had a roughly equal number of nouns and sounds, thereby facilitating a fair

and unbiased evaluation. As a result, the sample dataset consists of 30 adjectives, 524

nouns, and a total of 2,950 pair of noun phrases. For audios, each noun is represented

by 100 sound files, while each adjective-noun has a range of 30 to 100 sound files, and

96,794 sound files in total.

4.2 Human Annotations

To assess the quality of the learned adjective-noun representations, human judgments

were collected for the sample dataset with two primary objectives in mind: The first

objective was to evaluate the semantic similarity between pairs of noun phrases. An-

notators were asked to consider the degree of similarity in semantic meaning between

different noun phrase pairs. For example, they might assess how semantically similar

the phrases loud piano and loud music are. The second objective was to evaluate the

sound similarity of pairs of noun phrases. This task required annotators to imagine and

interpret the auditory qualities associated with each phrase and then judge how similar

these auditory characteristics might be. For instance, they might evaluate how similar

the phrases loud horn and soft horn are in terms of the sound they evoke.

4.2.1 Categorization

Pilot Study: To explore how people perceive and evaluate both semantic and auditory

similarities, a pilot study was conducted. In this study, 10 annotators were tasked with

evaluating 100 random phrase pairs drawn from 6 different adjectives in the dataset,

across both semantic and auditory similarity dimensions. It yielded an inter-annotator

agreement of 0.45 while highlighting several challenges, particularly related to the clarity

of noun meanings, which can vary significantly depending on context. For instance,

the word slap might be understood differently in an environmental context (e.g., the
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sound of a hand slapping) compared to a musical context (e.g., a sharp musical hit).

These contextual ambiguities posed challenges for the annotators, leading to potential

confusion in evaluations.

Classification: To address this challenge, a strategy was implemented to categorise

phrases based on the nouns associated with each adjective into either environmental

or musical contexts. For example, the phrase fast car was classified as environmental,

while fast drum was categorised as musical. During the annotation process, this clas-

sification ensured that phrases were only compared with others from the same context,

environmental phrases were paired exclusively with other environmental phrases, and

musical phrases with other musical phrases. This strategy helped maintain consistency

and relevance in the similarity judgments provided by the annotators, allowing for more

accurate within-category comparisons.

In the sample dataset, there were 2,392 pairs categorised as environmental and 558

pairs as musical. To facilitate the annotation process and enhance the annotators’

understanding of the meaning or sound of each phrase, environmental and musical

phrases were presented separately for each task. For further details, see Appendix B.1.

Some examples of environmental pairs are: (angry grunt, angry girl), (distant

car, distant blast), (big laughter, big guitar) and musical pairs are: (melodic drum,

melodic beat), (musical flute, musical guitar), (sad music, sad guitar).

4.2.2 Elicitation Procedure

The elicitation procedure for annotations involved conducting online studies via Amazon

Mechanical Turk3. Each adjective-noun pair was rated by 15 subjects, either for semantic

or sound similarity, using a scale ranging from 1 to 5, with 1 indicating the lowest level

of similarity (For example, see Figure 4.2). Only individuals from English-speaking

countries with a HIT approval rate above 95% and more than 1,000 approved HITs

were allowed to participate. The pairs of noun phrases were divided into batches,

and each batch included two trick questions designed as quality checks. These trick

questions involved pairs with identical phrases, aiming to identify potential automated

or inattentive responses. Additionally, the time taken by each annotator to complete

3https://www.mturk.com
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the task was recorded; annotations completed significantly faster than the expected

time were excluded from the dataset to prevent low-quality contributions. Through

this procedure, 44,250 annotations were collected for each task (semantic and auditory

similarity), resulting in a total of 88,500 annotations.

Figure 4.2: An example question for annotation.

4.2.3 Results: Inter-Annotator Agreements

After collecting annotations, we measured inter-annotator agreement for each adjec-

tive–noun pair.

Evaluation Method: Inter-annotator agreement was measured using a standard method

proposed by Hill et al. [9], which compares each annotator’s ratings with the average

ratings of all other annotators on the same items (leave-one-out). This approach treats the

mean of other raters as the reference standard, allowing for consistent evaluation even

when annotators rate different subsets of data. It is robust to missing annotations and

avoids distortions caused by computing correlations over disjoint sets. Spearman’s rho

was used to calculate the correlation for each annotator, and the final agreement score is

reported as the average across all annotators. The results are shown in Table 4.4.

Table 4.4: Inter-annotator agreement scores for semantic and audio similarity tasks

Average correlations Semantic Similarity Audio Similarity

Env. Mus. Env. Mus.

Per batch
Min 0.69 0.66 0.66 0.62
Max 0.72 0.7 0.7 0.71

All batches 0.7 0.69 0.69 0.65

Overall 0.69 0.67
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In the semantic similarity task, the average correlation per batch ranged from 0.69 to 0.72

for environmental pairs and from 0.66 to 0.70 for musical pairs, with overall averages of

0.70 and 0.69, respectively. In the audio similarity task, the average correlation per batch

ranged from 0.66 to 0.70 for environmental pairs and from 0.62 to 0.71 for musical pairs,

with overall averages of 0.69 and 0.65, respectively. Combining both environmental and

musical pairs, the overall average correlation was 0.69 for semantic similarity and 0.65

for audio similarity.

What causes disagreements? Disagreements arise in the cases where annotators differ in

their understanding or perception of phrases. For example, for semantic similarity of the pair

(fast runner, fast internet), a significant disparity stems from interpreting fast in the context

of physical versus abstract entities. Similarly, for the audio similarity between (heavy rain,

heavy noise), variations in perception may stem from differences in how annotators relate

heavy to the auditory characteristics of natural versus artificial sounds.

The results indicate a high level of agreement and consistency among the human anno-

tations across both the semantic similarity and audio similarity tasks, underscoring the

reliability of the data collected. For simplicity, we will refer to the annotated semantic

similarity dataset as SemPhrase and the audio similarity dataset as AudPhrase for the

rest of this document. These annotations are made publicly available on Github4.

Figure 4.3: Scatter plots comparing one annotator’s ratings with the mean of the remaining
annotators. Left: Semantic similarity (ρ ≈ 0.59). Right: Auditory similarity
(ρ ≈ 0.56).

To illustrate inter-rater consistency, Figure 4.3 shows scatter plots for an annotator whose

Spearman’s ρ is closest to the overall average. Each point represents a phrase pair,

4https://github.com/audio-comp
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plotted by its score from the selected annotator (x-axis) and the mean score from all other

annotators (y-axis). The vertical alignment of points reflects the use of discrete integer

ratings from 1 to 5 by the selected annotator, while the y-axis shows the average of other

annotators. The dashed red diagonal indicates perfect agreement. The plots include

both environmental and musical phrase pairs, providing a combined view across both

subcategories. While many points fall near the diagonal, there is noticeable variation in

the group means for each rating level, especially in the auditory task. This spread reflects

the subjective nature of the task and suggests that, although there is general agreement,

annotators often differ in the exact similarity scores they assign. The overall pattern

still indicates a positive trend and supports the consistency and quality of the collected

annotations. For further details, see Appendix B.1.

4.3 Conclusion

This chapter addresses the limitations of existing datasets in evaluating multimodal

adjective-noun phrase similarities by introducing a novel textual-auditory dataset. Sound-

relevant adjectives and nouns were systematically selected to ensure their relevance

to both linguistic and auditory contexts. A rigorous filtering and validation process,

including human annotations, refined the dataset and ensured its quality. The devel-

opment of a two-part dataset structure is outlined: a comprehensive core dataset for

large-scale training and a refined sample dataset for human evaluations. The collected

annotations and their analysis validate the dataset’s reliability and highlight its potential

for multimodal phrase similarity tasks. The next chapter leverages this dataset to evaluate

semantic and audio phrase similarity tasks, demonstrating its effectiveness in capturing

the relationship between text and sound.
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Chapter 5

Evaluation of the Framework

This chapter aims to investigate the effectiveness of multimodal compositional

models (MultiCoDi) in capturing both semantic and auditory similarities between

adjectives and adjective-noun phrase pairs.

This chapter provides a comprehensive analysis of how the integration of textual and

auditory data enhances phrase-level understanding, while addressing several key ques-

tions. First, it asks: Can combining text and audio data in a multimodal setting (such as

through concatenation and joint learning) outperform models relying solely on audio?

To investigate this, audio-only variants of regression and tensor skip-gram models were

trained, learning adjective matrices from audio vectors tied to their corresponding nouns

and contexts. The chapter also examines whether non-commutative models, such as re-

gression and tensor skip-gram, outperform simpler commutative models. To test this, an

additive model was implemented, combining the representations of adjectives and nouns.

Lastly, the performance of compositional models is compared to non-compositional

approaches by evaluating them against holistic OpenL3 audio vectors of adjective-noun

phrases, assessing both semantic and auditory relationships.

The chapter is structured as follows: First, the evaluation methods are outlined, including

the use of cosine similarities, Spearman correlations, and matrix similarities. Next, the

results of the analysis on adjective similarities are presented, comparing different models

across various techniques. Phrase similarities are then explored, evaluating the models’

performance on both semantic and audio similarity tasks. Next, the analysis section

investigates the learned adjective-noun embeddings through K-means clustering. Finally,

the chapter concludes with a summary of key findings.



5.1 Evaluation Methods
Various techniques were employed to evaluate the performance of the models. This

section details the evaluation methods applied across all tasks.

5.1.1 Cosine Similarities

Cosine similarity measures the cosine of the angle between two non-zero vectors in an

inner product space, providing a similarity score between -1 and 1 and is given by the

following equation:
cosine similarity =

A ·B
‖A‖‖B‖

(5.1)

Where:

A and B are the vectors being compared.

A ·B is the dot product of the two vectors.

‖A‖ and ‖B‖ are the magnitudes (or lengths) of the vectors.

A cosine similarity of 1 indicates perfect similarity, meaning the vectors point in the

same direction. A value of 0 indicates no similarity between the vectors, as they are

orthogonal and share no common direction or relationship in the vector space. In contrast,

a value of -1 represents perfect dissimilarity, where the vectors point in completely

opposite directions, indicating maximum divergence in meaning or context. This negative

correlation typically occurs when the concepts being compared are highly contradictory

or unrelated within the given embedding space.

Cosine similarity is a widely utilised metric for comparing vectors that represent words,

sentences, or documents in a high-dimensional space. These similarity scores are often

evaluated against human similarity judgments by calculating their correlation. A high

correlation between model-generated scores and human judgments suggests that the

embeddings effectively capture semantic relationships, aligning closely with human

understanding of linguistic meaning.

5.1.2 Spearman Correlations

Spearman’s rank correlation coefficient (ρ) is a non-parametric statistical measure used

to evaluate the strength and direction of the monotonic relationship between two ranked

variables. It is calculated using the following formula:
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ρ = 1− 6∑d2
i

n(n2−1)
(5.2)

Where:

ρ is Spearman’s rank correlation coefficient.

di is the difference between the ranks of corresponding values of the two variables

(e.g., model scores and human judgments).

n is the number of observations.

It starts by assigning ranks to the values in each dataset, with the smallest value receiving

rank 1. Next, compute the differences (di) between the ranks of corresponding observa-

tions. Square these rank differences to obtain d2
i , and sum all the squared differences

to compute ∑d2
i . Finally, use these values in the Spearman formula to calculate ρ . The

value of ρ ranges from -1 to 1, indicating the strength and direction of the association

between the ranked variables. A ρ of 1 signifies a perfect positive correlation, where

higher ranks in one variable correspond exactly to higher ranks in the other. Conversely,

a ρ of -1 indicates a perfect negative correlation, where higher ranks in one variable

correspond exactly to lower ranks in the other. A ρ of 0 indicates no correlation between

the variables.

To evaluate how well the model’s similarity measures align with human judgments,

Spearman’s coefficient (ρ) is used in this thesis. This method ensures that the relationship

between the model’s predictions and human judgments is effectively measured, even

when the relationship is not strictly linear. It provides a reliable assessment of how well

the models capture human intuition in both semantic and auditory similarity tasks.

5.1.3 Matrix Similarities

For adjective matrix calculations, we adopted the method proposed by Maillard and

Clark [22], who demonstrated that cosine similarity is inadequate for comparing adjective

matrices due to its poor correlation with human judgment standards. Instead, they suggest

measuring adjective matrix similarity by examining how similarly they transform nouns1.

1Maillard & Clark [22] argued that cosine similarity, though commonly used to compare vec-
tors, does not adequately capture the functional role of matrices as linear transformations. They
recommended evaluating adjective matrix similarity based on the extent to which matrices produce
comparable transformations of noun vectors, aligning more closely with human judgments. This
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This is done by computing the cosine distance between noun images under two adjectives,

using k-means cluster centroids. For two adjectives, A and B, the similarity is calculated

using the following formula:

matsim(A,B) = median
nnn∈N

(vecsim(Annn,Bnnn)) (5.3)

Where nnn represents a vector centroid from a set of noun clusters N , and the median is

taken over all centroids. This approach allows for a more accurate comparison of how

two adjectives, represented by matrices, modify nouns in semantic space.

For this thesis, to compute matrix similarities, our approach begins by calculating

the cluster centroids for all holistic auditory phrases within the dataset using k-means

clustering. We then apply the model-based matrices to the median of these centroids.

Afterward, cosine similarities between phrase pairs are computed, and then compared to

human judgments.

5.2 Adjective Similarities

5.2.1 Dataset

Semantic similarities between model-based adjective pairs are evaluated against the

gold-standard Simlex-999 [9], a widely used benchmark for measuring word similarity.

Simlex contains human-annotated similarity scores for each word pair, ranging from 0

(no similarity) to 10 (maximum similarity). Overlaps between adjectives in the audio

dataset and Simlex were identified, with 11 of the 30 adjectives from the core dataset

found in Simlex. This subset, referred to as Aud-SIMLEX, was used to compute pairwise

similarities for all adjective pairs.

Of the 30 adjectives in the core dataset, 11 were found to be audio-relevant in

Simlex. These adjectives are: cheerful, rapid, happy, fast, large, huge, quick, angry,

big, heavy, and young.

approach emphasises the functional behavior of matrices over their geometric properties.
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5.2.2 Evaluation Technique

For non-compositional adjectives methods, like ADD method, which yields adjective

vectors, cosine similarities were computed between the vectors corresponding to pairs of

adjective. Spearman correlations were then calculated by comparing these cosine simi-

larities with the similarity scores provided by Simlex annotators for the respective pairs.

For compositional methods, the matrix similarity computation discussed in Section 5.1.3

was applied.

5.2.3 Results

Table 5.1 reports the semantic similarity scores for adjective pairs, comparing three

models (Audio-Only, AT-Joint, and AT-Concat) across three composition methods:

Addition, Linear Regression, and Tensor Skip-Gram (TSG).

Table 5.1: Semantic similarities between adjectives.

Model
Simlex-Audio

Linear Regression Tensor Skipgram

AT-Concat 0.73 0.76
AT-Joint 0.64 0.79
Audio-Only 0.68 0.74

ADD-Audio 0.46
ADD-AT 0.50

Non-Comp Text 0.65

Across methods, adjective matrices generally achieve higher correlations than adjective

vectors, consistent with their ability to represent more complex interactions between

adjectives and their associated nouns. Among the composition methods, TSG consistently

produces the highest values, with the strongest performance observed for AT-Joint (0.79)

and AT-Concat (0.76).

When comparing multimodal models to unimodal baselines, the inclusion of both text

and audio often results in stronger alignment with human semantic similarity judgements.

For example, under Linear Regression, AT-Concat scores 0.73 compared to 0.68 for

Audio-Only and 0.65 for Non-Comp Text. With TSG, AT-Joint reaches 0.79 and AT-

Concat 0.76, both outperforming the Audio-Only (0.74) and Non-Comp Text (0.65)
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baselines. These patterns suggest that combining modalities can capture complementary

information that improves representation quality.

Overall, multimodal models paired with TSG tend to produce the strongest correla-

tions, with consistent gains over both unimodal and additive approaches. A small-

scale adjective-adjective evaluation of these results via bootstrapping is provided in

Appendix C.

5.3 Phrase Similarities

5.3.1 Dataset

We evaluated the learned phrase embeddings using the SemPhrase and AudPhrase

datasets, introduced in Chapter 4, section 4.2, to assess semantic and audio similarities

between phrase pairs.

5.3.2 Evaluation Technique

To evaluate the models’ ability to capture semantic and audio similarities, cosine simi-

larities are first computed between the model-generated embeddings of adjective-noun

pairs. These pairwise similarities are then compared to human annotations by calculating

the Spearman correlation (ρs). The evaluation results for this experiment have been

summarised in Table 5.2.

5.3.3 Results

The phrase similarity task results are summarised in Table 5.2. For semantic similarity

(Table 5.2a), the non-compositional text baseline (TSG) achieves 0.71, while both AT-

Joint and AT-Concat score higher with 0.88 and 0.86, respectively. For audio similarity

(Table 5.2b), the non-compositional audio baseline records 0.58, with AT-Joint and AT-

Concat reaching 0.89 and 0.88. These results show that compositional models outperform

their respective unimodal baselines in both tasks.

When comparing non-commutative composition methods (Linear Regression and TSG)

to commutative additive models, additive baselines generally achieve lower values. In

the semantic task, additive baselines with TSG record 0.69 (ADD-Audio) and 0.65
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Table 5.2: Models’ performance in semantic and audio similarity tasks.

(a) Semantic Similarity

Model
Semantic Similarity

Linear Regression Tensor Skipgram

AT-Concat 0.76 0.86
AT-Joint 0.67 0.88
Audio-Only 0.72 0.78

ADD-Audio 0.69
ADD-AT 0.65

Non-Comp Text 0.71

(b) Audio Similarity

Model
Audio Similarity

Linear Regression Tensor Skipgram

AT-Concat 0.78 0.88
AT-Joint 0.58 0.89
Audio-Only 0.75 0.83

ADD-Audio 0.74
ADD-AT 0.67

Non-Comp Audio 0.58

(ADD-AT), compared to 0.88 for AT-Joint. In the audio task, additive baselines reach

0.74 (ADD-Audio) and 0.67 (ADD-AT), again below the 0.89 achieved by AT-Joint.

Multimodal models also tend to outperform unimodal alternatives. For semantic similar-

ity, the highest score is 0.88 (AT-Joint, TSG), followed by 0.86 (AT-Concat, TSG) and

0.78 (Audio-Only, TSG). Under Linear Regression, AT-Concat achieves 0.76, AT-Joint

0.67, and Audio-Only 0.72. For audio similarity, the highest score is 0.89 (AT-Joint,

TSG), with AT-Concat at 0.88 and Audio-Only at 0.83. Under Linear Regression,

AT-Concat scores 0.78, AT-Joint 0.58, and Audio-Only 0.75.

Across both semantic and audio similarity tasks, TSG models consistently outperform

all other approaches, whether commutative, non-commutative or non-compositional,

with multimodal variants often achieving the highest correlations. Given this consistent

advantage, we focus our bootstrapping analysis on TSG models to examine the stability

of their performance in more detail.
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5.3.4 Analysis

This section investigates how stable the top-performing TSG models are when faced with

variability in the evaluation data.

Figure 5.1 shows the bootstrap distributions of Spearman’s rank correlations between

model-predicted similarities and human similarity ratings for the semantic (top row)

and audio (bottom row) phrase similarity tasks. The left column shows results for the

best-performing multimodal model (AT-Joint TSG), and the right column shows a weaker

unimodal baseline (Non-Comp). These models were selected as representative cases,

offering a focused illustration of correlation variability under resampling. The resulting

distributions provide an indicative rather than exhaustive view of potential shifts in

model-level correlations under resampling.

Figure 5.1: Bootstrap distributions of Spearman’s rank correlations between model-
predicted similarities and human ratings for the semantic (top row) and audio
(bottom row) phrase similarity tasks. Left: best-performing multimodal model
(AT-Joint TSG). Right: unimodal baseline (Non-Comp).

A two-way bootstrap was applied, resampling both adjectives and human ratings. For

each model, 5,000 bootstrap iterations were performed. In each iteration, adjectives

(and their phrase pairs) from the test set were resampled with replacement. For each

selected adjective, the 15 individual human ratings for every phrase pair were also

resampled with replacement before computing the mean rating per pair. Spearman’s

(ρ) was then calculated between these means and the corresponding model-predicted

65



cosine similarities. This was repeated independently for all adjectives in that iteration,

and the resulting per-adjective correlations were averaged (unweighted) to yield a model-

level score. The histograms in Figure 5.1 use 30 bins with fixed edges across plots

for comparability. The shaded regions in each plot indicate the 95% percentile-based

confidence interval, the dashed red line marks the bootstrap mean, and the dashed black

line shows the raw correlation from the original ratings.

The close match between the bootstrap means and raw values indicates that resampling

does not introduce bias, but instead captures the plausible range of results given variability

in the human data. Consistent with the main results table, AT-Joint TSG achieves higher

correlations than the unimodal baseline in both tasks, with its distributions shifted toward

higher values supporting the major claims. The narrower spread for the multimodal model

reflects more stable performance, while the broader spread for the baseline suggests

greater sensitivity to sampling variation. For the remaining TSG models, we computed

adjective-level bootstrap distributions. The results are provided in the Appendix C for

reference.

5.3.5 Textual-Auditory Relationships

Some interesting observations can be made regarding textual-audio relationships as

shown in the in Figure 5.2. The plot shows scores across various models for phrase

learning.

It can be observed that both audio and textual similarity tasks exhibit a similar trend,

with models performing well on both simultaneously. Text and audio modalities rein-

force each other during learning. A model trained on both modalities can learn that

adjectives like loud and crunchy modify nouns by embedding auditory properties into

their representations. This alignment improves both audio and semantic predictions,

leading to a more comprehensive understanding of sound-relevant language. Moreover,

the annotations for audio similarity were collected based on how a human perceives the

sound of a phrase rather than how they relate in meaning. The fact that models trained

using multimodal embeddings can reproduce these human-like judgments demonstrates

that the audio grounding enhances machine understanding of how humans perceive

and categorise sounds. For example, while the actual sounds of a creaky door and a

creaky bridge may differ due to environmental factors (e.g., echo or material differences),
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Figure 5.2: Scores across models with semantic similarities and audio similarities.

humans perceive both as creaky because of their shared auditory characteristics, leading

to high perceived similarity in the annotations.

5.3.6 Multimodal Compositional Knowledge

The following sections further analyze the adjective-noun embeddings learned by both

compositional and non-compositional models, assessing their ability to capture the

compositional knowledge of phrases and exploring the impact of combining auditory

information with textual data. The best-performing multimodal compositional model

(AT-Joint) is compared with non-compositional models that rely solely on text or audio.

This analysis follows a systematic approach, detailed below.

Data Preparation: For each model, all learned embeddings are first extracted. Embed-

dings from the training, validation, and test sets are then combined to form a unified

dataset. This comprehensive integration is crucial for several reasons. Firstly, combining

embeddings from all data splits prevents the evaluation from being biased by the limited

size of the evaluation set alone. Secondly, this integration offers a clearer understanding

of the model’s overall performance and generalization across different contexts and

examples.
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5.3.6.1 K-Means Clustering

The next step involves creating clusters of adjective-noun phrases using k-means cluster-

ing. k-means is an unsupervised learning algorithm that partitions a set of data points

into k clusters, where k is a predefined number. The algorithm works by minimizing the

variance within each cluster, ensuring that data points within the same cluster are as simi-

lar as possible, while those in different clusters are distinct. Each cluster is represented

by its centroid, which serves as the centre of the cluster and provides a reference point

for grouping similar data.

Determining the Optimal k: The number of clusters (k) is a hyperparameter that needs

to be determined. To select the optimal value of k, Silhouette method is used [112]. The

Silhouette score measures the cohesion and separation of clusters, helping to identify the

number of clusters that best represents the inherent structure of the data. This involves

plotting silhouette scores for different values of k to find the point where the score is

maximised. The score quantifies how similar a point is to its own cluster compared

to other clusters. The value of k that yields the highest silhouette score is considered

optimal.

Once the optimal k is determined, the phrase embeddings are clustered into k groups.

Each cluster is then analyzed to identify common themes and characteristics, offering

insights into the model’s performance and the relationships it captures. The clusters

are examined for both semantic and auditory groupings, providing an understanding

of how the model integrates and differentiates these two types of information. For

non-compositional text and audio models, we set k = 4, while for AT-Joint, we set k = 3.

Feature Scaling: Before clustering, phrase embeddings are normalised using a standard

scaler . This process standardises the embeddings by removing the mean and scaling

them to unit variance, bringing all features to the same scale. This prevents features with

larger numerical ranges from dominating the analysis.

Similarity Computation: In this step, cosine similarity is used to evaluate the similarity

between the query vector and all vectors within the same cluster. The similarity scores

are calculated between the query phrase and each vector, then sorted to identify the top

10 most similar phrases. By prioritizing these, we concentrate on phrases that exhibit the
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strongest semantic or auditory connections with the query phrase within the cluster.

5.3.6.2 Examples

Some examples from the analysis are presented in Figure 5.3. Grey rows indicate non-

compositional audio and text-based similarities, while orange and blue highlight similar

phrases for compositional audio and semantic similarities, using AT-Joint.

Figure 5.3: Query and its top 4 closely related phrases. Grey rows indicate non-comp audio
and text-based similarities, while orange and blue signify similar phrases for
compositional audio and semantic similarities, using AT-Joint.

Some examples from the analysis are presented in Figure 5.3. Grey rows indicate non-

compositional audio and text-based similarities, while orange and blue highlight similar

phrases for compositional audio and semantic similarities, using AT-Joint.

The examples suggest that text-only and audio-only models often produce predictions

aligned more strongly with either semantic or auditory relevance, without always reflect-

ing both aspects together. This can result in outputs that focus on literal sound matches

or that diverge semantically from the intended concept. In contrast, the multimodal

composition model appears to generate predictions that reflect elements of both meaning

and sound.
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For Angry Scream, the multimodal composition model outputs phrases such as distant

firework, distant gun, and high frequency, which share some semantic and acoustic

associations with the query. By comparison, the text-only model returns terms like happy

scream, which may be semantically related but differ in sentiment, indicating a different

emphasis in the type of similarity captured.

For Big Monster, the audio-only model produces results such as resonant piano and big

ball, which, while sharing certain acoustic or lexical features, are less clearly connected

to the sense of a large, imposing creature. The multimodal composition model includes

outputs like loud squeak and heavy thump, which introduce elements potentially linked

to both scale and sound.

For Industrial Resonance, the multimodal composition model suggests terms such as

percussive banging and loud telephone, which relate to mechanical and resonant qualities.

The audio-only model includes Big Monster among its predictions, while the text-only

model suggests industrial blast. These examples show how different models can prioritise

different aspects of similarity.

Overall, these observations point to differences in how models represent the relationship

between semantic meaning and auditory information, with multimodal composition

tending to include elements from both.

5.4 Conclusion

This chapter examines how different compositional models represent the relationship

between text and audio. Across the semantic and audio similarity tasks, multimodal

models using tensor skip-gram (TSG) often record higher Spearman correlation scores

than audio-only and additive models. Approaches such as AT-Joint and AT-Concat,

which combine text and audio, tend to produce embeddings that align more closely

with phrase-level similarities. K-means clustering of adjective–noun embeddings shows

patterns in which multimodal models group phrases in ways that reflect both meaning and

sound, whereas single-modality models may emphasise one aspect more strongly than

the other. These findings suggest that incorporating both text and audio with advanced

composition methods can provide benefits for modelling phrase relationships.
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Chapter 6

Multimodal Sentiment Analysis

This chapter explores the application of MultiCoDi in sentiment analysis by inte-

grating textual and auditory data in SST-5 dataset. It aims to capture emotional

cues, such as tonal and auditory signals, that are often overlooked by text-only

models.

Sentiment analysis has long been a cornerstone of understanding opinions and emotions

expressed in text, yet traditional approaches often fall short in capturing the full richness

of human communication. Two critical gaps underlie this limitation: first, sentiment

analysis techniques are often non-compositional, meaning that the phrase not bad would

always be considered as a negative sentiment unless the two words are combined. Second,

these approaches rely heavily on textual data while ignoring the multimodal nature

of human expression, which incorporates diverse modes such as speech, audio, and

visual cues to convey emotions more comprehensively. This chapter addresses these

shortcomings by introducing MultiCoDi into sentiment analysis, combining textual

data with auditory to capture subtle emotional cues often overlooked in purely textual

approaches.

The chapter is organised as follows: First it begins with a review of relevant literature

on sentiment analysis, covering levels of granularity, datasets, techniques, and the role

of language compositionality. Next, it outlines the experimental setup, including data

selection, preprocessing, and preparation, followed by the proposed methodology for

integrating multimodal compositional embeddings into sentiment analysis. The chapter

then presents the results and analysis, comparing the performance of multimodal and

unimodal models and discussing key insights. It concludes with a summary of the



findings and their implications for enhancing sentiment analysis through multimodal

approaches.

6.1 Literature

This section reviews sentiment granularity levels, datasets, traditional and compositional

methods in sentiment analysis, highlighting recent advancements in the field.

6.1.1 Levels of Sentiment Analysis

Sentiment analysis aims to detect and understand the opinions or emotions expressed by

individuals about particular topics, people, or entities. It can broadly be divided into four

levels of granularity: document-level, sentence-level, phrase-level and aspect-level [113].

Document-level sentiment analysis evaluates the overall sentiment of an entire document,

treating it as a unified entity that typically focuses on a single topic. The sentiment is

categorised as positive or negative, making it particularly useful for understanding broad

opinions expressed in reviews, articles, or reports. Studies, such as those by Pang et

al. [114], Das and Chen [115], and Nongmeikapam et al. [116], have laid the groundwork

for this approach by exploring methodologies to classify sentiment at the document level.

Sentence-level sentiment analysis identifies the sentiment within individual sentences,

enabling more precise insights for applications like social media monitoring and review

analysis. Early methods, such as [117], introduced a lexical-based approach to summarise

product reviews, laid a foundation. Later, Socher et al. [118] advanced the field with

recursive neural networks applied to the Stanford Sentiment Treebank, achieving fine-

grained sentiment classification by capturing compositionality in sentence structures.

Phrase-level sentiment analysis focuses on identifying sentiment within specific phrases,

capturing finer-grained emotional nuances that sentence-level analysis might overlook.

For example, in the sentence This laptop has a sleek design but poor performance,

phrase-level analysis can classify sleek design as positive and poor performance as

negative. This approach is particularly valuable for handling mixed sentiments within a

single sentence or document. Notable examples include the works of [119] and [46].

Aspect-level sentiment analysis identifies sentiments toward specific aspects on individ-
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ual components within a text. For example, in the review, The battery life of this phone is

amazing, but the camera quality is disappointing, aspect-level sentiment analysis detects

positive sentiment for battery life and negative sentiment for camera quality. Significant

studies in this field include works by [120] and [121].

6.1.2 Sentiment Analysis Techniques

Traditional sentiment analysis has evolved significantly over time, beginning with

lexicon-based methods, that rely on predefined lists of words with associated senti-

ment scores to infer overall sentiment by aggregating these scores [122–124]. While

these methods are interpretable and straightforward, they often fail to account for con-

text, negations (e.g., not good), sarcasm, and evolving language patterns, limiting their

applicability in complex real-world scenarios.

Machine learning methods such as Support Vector Machines (SVM) [125, 126] and

Naive Bayes [127, 128], introduced a shift toward data-driven sentiment analysis by

leveraging labeled data to detect sentiment patterns. These methods, while an improve-

ment over lexicon-based approaches, rely heavily on manual feature engineering (e.g.,

n-grams, POS tags, syntactic dependencies), making them resource-intensive and less

adaptable to new domains.

The introduction of deep learning methods marked a major breakthrough, allowing

models to learn hierarchical representations of text directly from data without the need for

manual feature extraction. Convolutional Neural Networks (CNNs) have been effective at

capturing local features, while Recurrent Neural Networks (RNNs) and Long Short-Term

Memory Networks (LSTMs) excel at modelling sequential dependencies, making them

suitable for complex sentiment analysis [129, 130]. Furthermore, transformer-based

models like BERT have redefined the state of the art by capturing bidirectional context,

enabling in-depth understanding of sentiment, including sarcasm, mixed sentiments, and

complex structures ( [8]).

Building on the success of these models, multimodal sentiment analysis emerged to

address scenarios where sentiment is conveyed through multiple modalities, such as

text, images, and audio. These approaches integrate diverse cues to create richer and

more comprehensive sentiment representations, particularly in multimedia contexts like

social media, reviews, and video content ( [131, 132]). For example, multimodal models
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can analyze how textual sentiment aligns with visual expressions or auditory tones to

better understand user emotions. Chen et al. [48] pioneered by developing an image

sentiment classifier that leverages object-based semantic concepts, achieving improved

performance in multimedia contexts1.

6.1.3 Compositional Sentiment Analysis

Traditional models that focus on individual words often miss the subtle ways in which

sentiment is shaped by the composition of phrases and sentences. In their work, Moilanen

et al. [45] introduced a model for sentiment analysis that mimics how meaning is derived

in natural language by considering the structure and combination of words. Instead of

merely counting positive and negative words, their approach accounts for how these words

interact within a sentence to influence the overall sentiment. For instance, in the phrase

not happy, the word happy alone would typically indicate a positive sentiment, but the

addition of not reverses this sentiment, making it negative. Their model systematically

combines these sentiments based on grammatical rules, leading to a more accurate

sentiment analysis.

In another work, Yessenalina et al. [46] in 2011 proposed a research for phrase-level

sentiment analysis that uses a compositional matrix-space model to capture complex

semantic relationships. Building on earlier work by Baroni and Zamparelli [21], who

represented adjectives as matrices and nouns as vectors, their method modeled all words

as matrices and combines them through matrix multiplication. This approach, inspired

by Rudolph and Giesbrecht [135], leverages the theoretical advantages of matrix-space

models in accounting for word order and semantic nuances incorporating Ordered

Logistic Regression to predict ordinal sentiment scores and introduces a unique training

algorithm for this matrix-space model. Experimental results demonstrate significant

performance improvements over traditional bag-of-words models on a standard sentiment

corpus.

Later on in 2016, Kiritchenko and Mohammad [136] shifted focus to sentiment com-

position in phrases by creating a dataset of unigrams, bigrams, and trigrams containing

both positive and negative words. They evaluated various learning algorithms and word

1For an in-depth exploration of advancements in sentiment analysis, refer to the comprehensive
reviews by [133] and [134].
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embeddings on this dataset to assess their performance across different linguistic patterns.

In their study, they compiled a sentiment composition lexicon for phrases that include

negators, modals, and adverbs, examining how these modifiers influence the overall

sentiment of phrases [137] .

In 2017, another research based on compositional matrix-space model was proposed

by Asaadi et al. [47] by introducing a two-step learning process aimed at improving

the quality and computational efficiency of matrix-space models. Initially, the matrices

are informed by unigram scores, which serves as the basis for a subsequent learning

step that optimises relevant matrix entries using bigrams. This gradual learning method

addresses the non-convex optimization challenges, ensuring better initialization and

enhanced performance in sentiment composition. The model is then tested on fine-

grained sentiment analysis tasks, demonstrating statistically significant improvements

over traditional methods.

Adjective-noun pairs have been particularly influential in understanding sentiment. Chen

et al. [48] developed an image sentiment classifier using adjective-noun pairs derived

from image tags to detect objects and their attributes. Similarly, in 2021, Li et al. [49]

created a visual sentiment prediction framework that translates images into textual

descriptions, incorporating adjective-noun pairs for sentiment analysis. This framework

uses a deep residual network and LSTM to generate initial descriptions, processes the

text to retain key vocabulary, and embeds word vectors for training a sentiment prediction

model. Borth et al. [138] introduced SentiBank, a large-scale visual sentiment ontology,

using adjective-noun pairs like beautiful flowers or sad eyes extracted from YouTube

videos and Flickr images to serve as mid-level descriptors for sentiment analysis.

Although the literature provides some evidences that compositional models and adjective-

noun phrases are effective for sentiment analysis, their combined use remains limited.

Additionally, the integration of this combination with multimodal information, partic-

ularly audio data, is rarely explored. This gap highlights the need for further research

into the combined application of compositional models and adjective-noun phrases, espe-

cially within multimodal frameworks that incorporate audio cues for improved sentiment

analysis.
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6.1.4 Datasets

Several commonly used benchmarks in sentiment analysis are designed to evaluate and

compare the performance of various models. Table 6.1 highlights some of the most

widely recognised datasets:

Table 6.1: Common benchmarks for sentiment evaluation

Dataset Reference Primary Level Domain Polarity Scores

Amazon [139] Sentence & Aspect Product Review Binary
IMDB [140] Document Movie Review Binary
SST [118] Sentence & Phrase Movie Review Binary & Fine-grained
SemEval 2007 [141] Aspect Various Binary & Fine-grained
CMU-MOSI [142] Utterance Multimodal Continuous

Amazon Product Review [139] contains reviews from various product categories on

Amazon, offering a rich source of consumer opinions. It includes millions of reviews

with detailed metadata such as product category, review text, and star ratings. The

sentiment labels are typically binary (positive or negative), though some versions may

provide finer-grained ratings from 1 to 5 stars. For binary classification, the dataset

includes 3,600,000 samples for training and 400,000 samples for testing. In the 5-class

classification version of the dataset, there are 3,000,000 training samples and 650,000

testing samples.

SemEval 2007 [141] consists of news headlines sourced from major outlets such as

BBC, and Google News. This dataset is annotated with sentiment and emotion labels,

capturing a broad range of emotional tones. It includes six primary emotions: anger,

fear, disgust, sadness, surprise, and joy. Each headline is annotated not only with binary

sentiment labels but also with fine-grained emotion ratings on a scale from 0 to 100,

providing a nuanced view of emotional intensity.

IMDB 50k Movie Review [140] is a widely used collection of movie reviews sourced

from the Internet Movie Database. It contains 50,000 reviews, evenly split between

positive and negative sentiments. Each review is labeled with a binary sentiment score,

reflecting overall positive or negative sentiment.

CMU-MOSI (Multimodal Opinion Sentiment and Emotion Intensity) [142] is a
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large-scale resource for sentiment and emotion analysis, featuring over 23,500 video

utterances from 1,000 YouTube speakers. The dataset includes balanced gender repre-

sentation and covers diverse monologue topics. Each video is accurately transcribed and

provides multimodal data (video, audio, and text). Sentiment is labeled on a continuous

scale from -3 (highly negative) to +3 (highly positive).

SST (Stanford Sentiment Treebank) [118], derived from movie reviews, is designed

for fine-grained sentiment analysis. The dataset parses sentences into individual phrases,

each labeled with sentiment, enabling detailed analysis of sentiment at both the phrase

and sentence levels. This hierarchical approach captures nuanced emotional variations

that binary labels might miss. The SST dataset includes different versions: SST-2, which

provides binary sentiment labels (positive and negative) for sentences, and SST-5, which

offers a more detailed classification with five sentiment labels for a finer analysis. SST-2

includes around 12,000 movie reviews from Rotten Tomatoes, split into three distinct

subsets: approximately 8,544 reviews for training, 1,101 reviews for development,

and 1,658 reviews for testing. This dataset is annotated with binary sentiment labels,

categorizing reviews as either positive or negative. The SST-5 dataset, an extension of

SST-2, contains 11,855 sentences, with 215,154 unique phrases annotated for sentiment.

SST-5 provides a more nuanced classification with five sentiment labels: very positive,

positive, neutral, negative, and very negative. The dataset was created by parsing movie

reviews into tree structures, where each node (phrase) in the tree is labeled with one

of the five sentiment categories. This fine-grained approach enables detailed sentiment

analysis, capturing a wider range of sentiment intensities within reviews.

6.2 Experimentation

This section outlines the experimental setup and procedures followed to evaluate the

performance of the proposed multimodal sentiment analysis model. The experimentation

is divided into data selection, data preprocessing and methodology.

6.2.1 Data Selection

The Stanford Sentiment Treebank (SST-5) dataset was selected for two key reasons. First,

it provides fine-grained sentiment labels across five categories: very negative, negative,
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neutral, positive, and very positive. This detailed classification facilitates a nuanced

analysis of sentiments, capturing subtle emotional variations that binary labels might fail

to discern. Second, SST-5 includes hierarchical annotations, offering sentiment labels

not only for entire sentences but also for individual phrases within them. This supports

precise sentiment analysis at multiple levels of granularity.

6.2.2 Data Preprocessing

SpaCy’s POS Tagger was utilised to extract all adjective-noun phrases from the SST-5

dataset, which consists of 215,154 phrase entries. This process identified 82,664 phrases

containing adjective-noun combinations, of which 504 phrases overlapped with audio

data in the core dataset. The data was divided into training, testing, and validation splits,

with 70% allocated for training and the remaining 30% evenly distributed between testing

and validation. This resulted in 353 phrases for training, 76 for validation, and 75 for

testing. A few examples are shown in Table 6.2.

Table 6.2: Filtered sentiments with selected phrases from SST-5 dataset.

Text Label Phrase

ranges from laugh-out-loud hilarious to wonder-what - time-it-is tedious. neutral loud laugh
between bursts of automatic gunfire, the story offers a trenchant critique of capitalism. positive automatic gunfire
rarely have i seen a film so willing to champion the fallibility of the human heart. very positive human heart
lucy ’s a sad girl, that ’s all. negative sad girl

Phrases from 27 multimodal adjectives were utilised, with 20 previously learned as

part of the core dataset and 7 newly learned adjectives, including young, automatic,

busy, calm, crazy, long, and soft. Human annotations for audio and semantic phrase

similarities involving these adjectives were conducted by the authors. A total of 343

phrase pairs for the new adjectives were annotated, adhering to the guidelines outlined in

Chapter 4.

6.2.3 Data Preparation

For this model, MultiCoDi phrase embeddings, developed for both semantic and audio

similarity tasks as detailed in Chapter 3, were utilised. The data preparation process

incorporated both audio and text data, ensuring compatibility and suitability for input into

the neural network. For the multimodal/audio data, pretrained compositional audio

features are standardised using z-score normalisation. This ensures that the features
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have a mean of zero and a standard deviation of one, which helps in speeding up the

convergence of the neural network. For the text data, the BERT tokeniser is used to

tokenise the text. Each text string is prefixed with a special classification token [CLS],

and a separator token [SEP] is added at the end. To maintain uniformity, text sequences

are padded to a fixed length.

6.2.4 Implementation

A hybrid neural network model is integrated, leveraging both textual and auditory

information for sentiment analysis. The model’s architecture is designed to efficiently

process and integrate textual and audio data for sentiment analysis. An overview of this

architecture is shown in Figure 6.1.

Figure 6.1: Multimodal sentiment analysis with compositional phrase embeddings.

Text Processing Component: The textual component centres around the BERT model,

specifically the bert-large-uncased variant, which is known for its effectiveness in natural

language processing tasks. It processes input text through multiple layers of transformer

encoders that provide rich contextual embeddings. For this study, the outputs from the

BERT model’s pooling layer, which aggregates context-rich token embeddings into a

single fixed-size embedding, are utilised.

Audio/Multimodal Processing Component: Parallel to the text processing, a mul-

timodal/audio processing component is implemented using a simple neural network

architecture. This component consists of a linear transformation layer, which maps the

high-dimensional audio embeddings down to a lower-dimensional space of 256 units.

This dimension reduction is crucial for aligning the audio data dimensionality with that

of the textual data, facilitating their effective fusion. For instances where audio data is
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not available or is deemed irrelevant, this component is not used, ensuring the model

remains versatile and effective across varying data availability.

Feature Fusion and Classification: The fusion of text and multimodal/audio features

is central to the model’s design. The outputs from the BERT model and the multi-

modal/audio processing layer are concatenated to form a combined feature vector. This

concatenated vector then passes through a dropout layer (nn.Dropout with a rate of 0.3),

which helps prevent overfitting. Following the dropout layer, the combined features are

fed into a final classifier, a linear layer that maps the combined features to the number of

sentiment classes (five in this case).

Training Procedure: The training process for the hybrid neural network model was

designed to optimise performance through a series of systematic steps. Data was loaded

and batched using PyTorch’s DataLoader, configured with a batch size of 32 to balance

memory usage and computational efficiency, and included data shuffling to prevent the

learning of unintended patterns. The training was conducted over 50 epochs, with an

early stopping mechanism to halt training if validation performance ceased to improve,

preventing overfitting. Loss was calculated using the Cross-Entropy Loss function, and

model weights were updated through backpropagation using an Adam optimiser with

an initial learning rate of 1e-5. A learning rate scheduler, ReduceLROnPlateau, was

employed to adjust the learning rate based on validation loss. Performance metrics (loss

and accuracy) were closely monitored and logged after each epoch to track progress and

adjust parameters as needed.

6.3 Evaluation

6.3.1 Metrics

The models are evaluated based on the following evaluation metrics:

Accuracy: Accuracy measures how often the model makes correct predictions and is

defined as the ratio of correctly predicted instances to the total number of instances,

expressed by the following equation:

Accuracy =
T P+T N

T P+T N +FP+FN
(6.1)
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Where:

T P = True Positives T N = True Negatives

FP = False Positives FN = False Negatives

For this experiment, accuracy was chosen as the primary metric to evaluate the perfor-

mance of the classification models. It was computed at the end of each epoch for training,

validation, and test sets to monitor the model’s performance over time.

Loss: Loss is monitored during training to quantify the difference between the predicted

and actual values, where lower loss values indicate better model performance. For this

classification task, the cross-entropy loss function is used, defined as:

Cross-Entropy Loss =−
N

∑
i=1

yi log(ŷi) (6.2)

Where:

N = Number of classes

yi = Actual label (1 for the correct class, 0 for others)

ŷi = Predicted probability of class i

The cross-entropy loss is calculated at each epoch by comparing the model’s predicted

probabilities with the actual class labels. It is computed for the training, validation, and

test sets, offering a continuous measure of how well the model’s predictions align with

the ground truth. The loss increases as the predicted probability diverges from the actual

label, thus providing a clear picture of model performance at each step of learning.

6.3.2 Results

Tables 6.3 and 6.4 report classification accuracies for the audio-relevant SST-5 phrase

dataset, comparing multimodal and unimodal models for sentiment analysis. The

majority-class baseline, added here for context, achieves 53.33%, reflecting the dataset’s

skew towards the “Neutral” class (53.33%), followed by “Negative” (29.33%), “Positive”

(16.00%), and “Very Negative” (1.33%).

In the audio-derived setting (Table 6.3), AT-Concat with Tensor Skip-Gram (65.33%)

achieves the highest accuracy, outperforming AT-Joint, Audio-Only, and non-

compositional baselines. The difference relative to Non-Comp Text (62.70%) is
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Table 6.3: Classification Accuracies for audio-relevant SST-5 phrase dataset using embed-
dings learnt via audio similarities

Model Linear Regression Tensor Skip-Gram

AT-Concat 62.67 65.33
AT-Joint 57.33 61.33
Audio-Only 54.67 58.67

ADD-Audio 55.33
ADD-AT 54.50

Non-Comp Audio 56.00
Non-Comp Text 62.70

Majority-Class Baseline 53.33

Table 6.4: Classification Accuracies for audio-relevant SST-5 phrase dataset using embed-
dings learnt via semantic similarities

Model Linear Regression Tensor Skip-Gram

AT-Concat 53.33 64.00
AT-Joint 45.33 60.00
Audio-Only 56.00 58.67

ADD-Audio 54.00
ADD-AT 52.70

Non-Comp Audio 56.00
Non-Comp Text 62.70

Majority-Class Baseline 53.33

modest but consistent. Both models use the same pre-trained BERT-based embed-

dings; the improvement for AT-Concat arises from combining these embeddings with

compositional multimodal knowledge.

In the semantic-derived setting (Table 6.4), AT-Concat again achieves the highest TSG

score (64.00 %), followed by AT-Joint (60.00 %) and Audio-Only (58.67 %). As with

the audio-derived setting, Non-Comp Text (62.70 %) remains competitive, showing that

purely textual models already carry strong sentiment cues.

Across both tasks, Tensor Skip-Gram generally outperforms Linear Regression, sug-

gesting that TSG’s ability to model more complex interactions between adjective–noun

components benefits classification. Still, the advantage of multimodal over unimodal

approaches is not uniform: the clearest and most consistent gains are for AT-Concat
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(TSG) over unimodal baselines, but these gains are small relative to Non-Comp Text.

6.3.3 Analysis

To assess robustness for key comparisons, non-parametric bootstrap resampling was

applied to the test set predictions of four selected models: AT-Concat (TSG) and their

closest unimodal baselines (Non-Comp Text for semantic embeddings, Non-Comp

Audio for audio embeddings). For each model, accuracies were recalculated over

5,000 resamples, and 95 % confidence intervals (CIs) were estimated from the resulting

distributions (Figure 6.2).

Figure 6.2: Bootstrap accuracy distributions (5,000 resamples) for selected multimodal and
unimodal models on the audio-relevant SST-5 test set. Top row: AT-Concat
(TSG) — Semantic vs. Non-Comp Text. Bottom row: AT-Concat (TSG) —
Audio vs. Non-Comp Audio. Shaded areas indicate 95% confidence intervals
(CIs); dashed red lines mark bootstrap means; dotted black lines show reported
raw accuracies.

In the audio-derived setting, AT-Concat (TSG) shows a clear separation from the Non-

Comp Audio baseline, with minimal CI overlap, indicating a statistically reliable advan-

tage. In the semantic setting, the CI for AT-Concat (TSG) partially overlaps with that of

Non-Comp Text, suggesting that the difference is not statistically significant at the 95 %
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level. This limited separation is likely due to the small and class-imbalanced nature of

the audio-relevant test set, which constrains statistical power.

Despite this, the distributions for AT-Concat are consistently shifted to the right relative

to their unimodal counterparts across thousands of resamples. This pattern supports a

genuine performance trend, which may become statistically significant with a larger and

more balanced evaluation set.

6.3.4 Examples

Table 6.5 compares multimodal compositional and non-compositional models. Sentiment

labels are denoted as Negative (-), Very Negative (–), Neutral (=), Positive (+), and Very

Positive (++). The True column shows the gold sentiment labels, the Text column reflects

human-expressed sentiments, and sound-relevant phrases are listed in the Phrase column.

The Perf. column provides qualitative ratings: Strong, Weak, or Neutral.

Table 6.5: Performance comparison of NC(Non-Comp) Text, AT-Concat (ATC) models
using semantic (Sem) and auditory (Aud) embeddings.

True Text Phrase NC Text ATC (Sem) ATC (Aud) Perf.

+ the movie has lots of dancing and melo-
dious music

melodious
music

+ + ++ Strong

= 84 minutes of rolling musical beat and
supercharged cartoon warfare.

musical beat - = = Strong

- the entire movie is about a boring, sad
man being boring and sad.

sad man - - = Neutral

- writer-director randall wallace has bitten
off more than he or anyone else could
chew, and his movie veers like a drunken
driver through heavy traffic.

heavy traffic - - - - = Weak

The table shows a few examples comparing Non-Comp Text with AT-Concat using

semantic (Sem) and auditory (Aud) embeddings. AT-Concat (Aud) tends to perform

well when phrases have clear audio associations (e.g., melodious music), suggesting

some benefit from including audio-based information. For phrases with less distinct

sound cues (e.g., sad man), the advantage is smaller. More complex phrases (e.g., heavy

traffic) remain challenging, likely due to the difficulty of modelling multiple interacting

components. These examples illustrate how multimodal compositional models can offer

advantages in certain contexts, while also highlighting their current limitations.
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6.4 Conclusion

This chapter examined the role of compositional knowledge and multimodal information

in sentiment analysis. In these experiments, models combining audio and textual data,

particularly those using TSG, sometimes achieved higher accuracies than single-modality

baselines, though gains were not consistent across all settings. These findings indicate that

multimodal integration can offer benefits in certain cases, but the extent of improvement

depends on the task and data characteristics. The next chapter examines the application

of multimodal distributional semantics to recommendation systems.

85



Chapter 7

Multimodal Recommendations

This chapter explores the application of multimodal distributional semantics in

recommender systems by integrating textual, auditory, and visual modalities, using

a weekly BBC TV programs dataset as a case study.

Over the past few decades, classical recommender systems have focused on developing

techniques to help users navigate the overwhelming volume of video content available

online. These methods fall into three primary categories: collaborative filtering (CF)

[143], content-based filtering (CBF) [144], and hybrid approaches [145]. Collaborative

filtering relies on users’ historical behavior to generate recommendations but often

struggles with the cold start problem, where insufficient data on new items or users

limits its effectiveness. In contrast, content-based filtering utilises the semantic similarity

of item content, typically text. Hybrid approaches aim to address these limitations by

combining the strengths of CF and CBF.

Building on these foundations, modern recommendation systems have increasingly

adopted vector semantics, where the content of words and documents is represented

as high-dimensional vectors [146, 147]. Advances in natural language processing have

further refined these representations through neural network models such as Word2Vec

and Doc2Vec [6]. These vector-based approaches have paved the way for richer content

understanding by incorporating additional layers of information, including audiovisual

and cognitive features, as seen in [11, 33].

Recently, multimodal recommender systems have emerged as a significant advancement

over classical systems by integrating diverse data modalities such as text, audio, and



video alongside user ratings to deliver more personalised and accurate recommendations.

For instance, Zhu et.al. [148] and Barkan et.al. [149] have explored this integration,

though many existing systems remain limited. Some, like Yang et.al. [50], only consider

tags and titles as textual data, while others, such as Ekenel et.al. [51], combine images

with tags. Bougiatiotis & Giannakopoulos [52] took it a step further by integrating audio

and video with subtitles but still falls short by ignoring genres, ultimately failing to

outperform metadata-only systems.

This chapter aims to address these shortcomings by building on the multimodal approach

proposed by Kiela & Clark [33] (discussed in Chapter 2) and extending it from word-level

representations to documents, further enriched with genre and visual vectors. The aim is

to enhance both the precision and diversity of recommendations, offering users sugges-

tions that are not only highly relevant but also varied and engaging. Unlike the existing

BBC recommender system, which relies heavily on genre-based recommendations and

tends to lack diversity by repeatedly suggesting programmes from the same categories,

this approach integrates auditory and visual relevance to deliver a richer and more varied

viewing experience.

This chapter is structured as follows: Section 7.1 provides an overview of the BBC

dataset used in the study. Section 7.2 details the methodology, discussing each modality

and the fusion process. Section 7.3 presents the evaluation techniques and results. Finally,

Section 7.4 present the final conclusions and outline future directions. For additional

information, see Appendix D.

7.1 BBC TV Programmes Dataset
The dataset used for training the multimodal content recommendations consists of 145

unique BBC TV programmes, organised in a hierarchical structure to allow for a thorough

evaluation. This hierarchy categorises the programmes into episodes, series, and brands.

At the top of this structure is the Top-Level Editorial Object (TLEO), representing the

highest level of classification, ensuring that each entry is distinct. Programmes in the

dataset may belong to a series, a brand, or exist as standalone episodes. For example,

EastEnders is classified as a brand without a series designation. Each TLEO corresponds

to one unique episode, resulting in 145 distinct episodes in the dataset. Alongside the

programme content, the dataset includes comprehensive metadata such as genre, format,
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service, titles, descriptions, subtitles, audios, and videos, which provide a rich set of

information for developing and evaluating the recommendation system1.

7.2 Recommendation Framework
The proposed recommendation framework integrates textual, audio, and visual con-

tent to improve recommendation quality. As depicted in Figure 7.1, each modality is

independently processed to construct its respective similarity matrix.

Figure 7.1: Methodology of the multimodal content recommendation framework.

Text is analyzed using Latent Semantic Indexing (LSI) or Doc2Vec embeddings, audio

features are extracted via the Bag of Audio Words (BoAW) model, and video content

is processed using the Bag of Visual Words (BoVW) model, with scene shots analyzed

to create the video similarity matrix. The modality-specific similarity matrices are

subsequently combined to form a comprehensive multimodal similarity matrix. By

leveraging the strengths of each content type—text, audio, and video—this unified matrix

delivers more holistic and accurate recommendations, capturing the diverse elements of

the programmes. This integration significantly enhances the precision and relevance of

the recommendation system.
1The BBC dataset was chosen as it includes all major modes of information—text, audio, video,

and genres—alongside user viewing data, unlike publicly available datasets such as MM-IMDb [150],
which lacks subtitles, and YouTube 8M [92], which is limited to visual features.
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7.2.1 Textual Recommendations

Textual recommendations encompass the textual content associated with programmes,

which typically includes subtitles and metadata entities such as genres and formats.

Genres provide significant information about the category of a program; for instance,

the genre Documentary represents all programs falling under the documentary type.

Traditionally, genres are used in recommendations based on the assumption that if a

person likes a certain type of program, like news, they will likely be interested in other

similar programs. However, human preferences are not always consistent, and people

often seek variety out of curiosity, desiring different but still relevant recommendations.

For this experiment, the focus is on subtitles, as they contain substantial semantic

information about a program’s content and theme.

7.2.1.1 Subtitle Vectorization

Latent Semantic Indexing (LSI) [151], a topic modelling technique, is applied to extract

data from subtitles. LSI is a two-step procedure. Firstly, a document- term matrix is

generated via a low-rank approximation obtained from the term vector space projections

of the Bag of Words vectors. Secondly, Singular Value Decomposition (SVD) is applied

to the document-term matrix, where the newly created eigenvectors represent the concepts

within the latent space. We worked with 50 dimensional spaces. LSI improves on the

term-document matrices, but does not take word order into account. To deal with this, we

worked with neural semantics embeddings Doc2vec [152]. Doc2vec is an extension of

the neural semantic word embeddings Word2vec [6]. We worked with Paragraph Vector

Distributed Memory (PV- DM), which concatenates the unique document ID with the

context words with respect to the specified context window over the text and preserves

the order of words.

7.2.1.2 Attributes (Genres)

These representations are based on editorially-assigned attributes of programmes. Each

programme has a genre which is hierarchical with up to three levels (e.g. factual,

factual/sci&nature, factual/sci&nature/nature&env) and a match can occur at any level.

The hierarchical structure is broken down into a set of attributes by traversing the tree.

This set is represented by vectors, where each column represents a genre subtree obtained
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from a partial tree of the genre hierarchy and each column entry is a binary value denoting

the relation between the program and the genre, i.e. whether the programme had that

partial tree as part of its genre hierarchy. Using the vectors thus obtained, we computed a

metadata similarity matrix, where a complete match receives a score of 1 but the score is

halved for each level above.

7.2.2 Audio Recommendations

Audio Preprocessing: To prepare programme audios in the dataset for feature extraction,

unwanted data is carefully removed, including silences, episode introductions, news

segments (e.g., 90-second updates), advertisements, trailers, and previews for upcoming

episodes. This step ensures that only the most pertinent audio content is retained for

subsequent analysis, enhancing the quality and relevance of the extracted features. The

overall method is shown in Figure 7.2.

Figure 7.2: Proposed method for generating auditory recommendations

Vectorization: Since the audio data comprises a mix of voice and music, five types

of low-level acoustic features are applied, which are widely recognised in both speech

recognition and music information retrieval tasks.

(a) Mel-Frequency Cepstral Coefficients (MFCC) estimate the short-term power spec-

trum of a sound and are widely used in sound analysis due to their alignment with

human auditory perception.

(b) Spectral Centroid is the balance point or the midpoint of the spectral energy distri-

bution/spectrum of a sound. It gives an indication of the “brightness" of a sound

which in turn is an approximation of high-frequency content in a signal.

(c) Zero Crossing Rate (ZCR) is the rate at which the signal crosses the zero point and

changes itself from positive to negative or negative to positive.

(d) Spectral Flatness (SF) quantifies how noise-like or tone-like a signal is by assessing

the number of peaks or resonant structure in a spectrum. Values near 1.0 indicate a
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flat spectrum with similar amount of power in all spectral bands, as seen in white

noise.

(e) Root Mean Square (RMS) calculates the root-mean-square of a signal. For a digitised

signal, it can be calculated by squaring each value, finding mean and taking the

square root of the result. In terms of audio signals it represents the average power

of a signal.

To extract these features, the LibROSA library [153], a robust Python package for music

and audio analysis, is utilised. The chosen acoustic features are extracted, concatenated,

and combined into comprehensive audio feature vectors.

7.2.2.1 BoAW

The bag-of-Audio-Words (BoAW) approach is inspired by bag-of-words (BoW) in text

mining. The difference is that in text mining there are textual words to create a word

dictionary while in audio signal processing, these textual words are replaced by an

audio word which corresponds to a combination of acoustic features. BoAW involves

extracting low-level audio features such as MFCCs from audio signals. These features

are clustered into a fixed number of groups, known as a codebook, using techniques

like k-means clustering, where each cluster centre represents an audio word. The audio

signal is then represented as a histogram of these audio words, counting the occurrences

of each cluster across the signal. This approach converts variable-length audio signals

into fixed-length vectors. BoAW has successfully applied to many audio information

retrieval and recognition tasks like multimedia event detection [154–156] and acoustic

event detection [157–159].

For this project, the dictionary derived from the BoAW is used to generate histograms

representing audio word distributions for all audio files. BoAW is implemented using k-

means classifier with k = 50, resulting in 50 audio words per file. To analyze relationships

between audio files, a similarity matrix is constructed by computing cosine similarities

between these histograms.

7.2.3 Visual Recommendations

The visual recommendations follow the same set of step outlined in Figure 7.2, tailored

specifically for visual data.

91



Video Preprocessing: The video content for each programme is represented by a se-

quence of still images extracted from the middle of each scene. This extraction is crucial

for capturing the most representative visual features while minimizing motion blur. The

SceneDetect application from the PySceneDetect library was used for this task, em-

ploying the ContentDetector algorithm. The algorithm was configured with a detection

threshold of 30 and a minimum scene length of 15 frames to accurately identify distinct

scenes based on changes in visual content. By selecting images from the middle of each

scene, the process ensures that these frames are the most indicative of the scene’s content.

For each programme, a carefully selected subset of 600 images was chosen to balance

comprehensive scene representation with computational efficiency.

Vectorization: After extracting the still images, the next step involves feature vectoriza-

tion to quantify the visual content of each scene. The Scale-Invariant Feature Transform

(SIFT) descriptors were selected for this purpose. SIFT is a powerful tool in image

processing, known for its robustness in image matching, as well as its effectiveness

in object detection and recognition. Each keypoint in an image is characterised by

a 128-dimensional feature vector generated by SIFT. These vectors capture essential

details about the visual content, making them highly suitable for the subsequent classi-

fication tasks. The decision to use SIFT was guided by its proven performance in the

literature [160–162].

7.2.3.1 BoVW

The Bag of Visual Words (BoVW) model quantises the SIFT descriptors by clustering

them into visual words, thereby creating a vocabulary that represents the visual content

of each programme. Similar to BoAW, this quantization process was executed using

K-means clustering, with the number of clusters k = 300. Each cluster represents a visual

word, and together, these words form a vocabulary that encapsulates the essential visual

features of the programme. The resulting visual word vocabulary allows for efficient

scene classification and contributes significantly to the overall accuracy and effectiveness

of the multimodal recommendations.
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7.2.4 Fusion

Following the multimodal fusion techniques discussed in Chapter 2, late fusion was

employed in this project as the primary approach due to its compatibility with the nature

of the data. Visual, audio, and textual modalities were processed independently, and their

contributions were combined through weighted addition of similarity matrices derived

from genres, LSiI, Doc2Vec, audio, and video data. This approach preserved the unique

characteristics of each modality while enabling a seamless combination at the decision

level, ultimately enhancing the accuracy and robustness of the recommendations2.

7.3 Evaluation and Results

Evaluation Method: A personalised recommender evaluation system based on the

MyMediaLite library [163] was utilised to assess the performance of the representations.

This system processes binary user-item preference data for training and testing, obtained

from BBC iPlayer media server logs. A user’s positive preference is recorded when their

viewing time exceeds 5 minutes, a threshold determined by observing the lapse rate (the

rate at which users stop watching a programme). The first week of recorded data serves as

the training set, while a subset from the following week is used for testing. The training

data comprises 1,390,540 viewings from 33,958 users across 145 TV programmes, while

the testing data includes 47,707 viewings from 10,000 users and 141 programmes, with

the test users being a subset of those in the training data.

To generate recommendations, the Weighted Item-based K Nearest Neighbours (KNN) al-

gorithm provided by MyMediaLite [163] was applied. In this setup, programme similarity

is based on overlapping viewing histories: two programmes are considered similar if they

have been watched by many of the same users. The resulting programme–programme

similarity matrix, built directly from viewing patterns, provides what we refer to as a

user-based model. This model reflects actual audience behaviour and serves as a refer-

ence for evaluating the content-based recommendations. In practice, the KNN approach

ranks each programme’s nearest neighbours according to their similarity scores, and the

2Early fusion was initially explored, combining feature vectors from audio, text, and genres using
operations like addition, multiplication, and averaging. However, this approach proved less effective,
primarily due to the sparse and uneven distribution of genre feature vectors, which negatively impacted
the system’s performance when integrated at the feature level.
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top-N most similar items are then recommended to a user based on the programmes they

have already watched. This allows the system to recommend items that are most closely

related, according to historical audience behaviour, to those the user has previously

engaged with.

Accuracy was measured using Mean Average Precision (MAP), which evaluates the

number of correctly predicted viewings found in the top-N recommendations (hits).

Additionally, Intra-list Diversity (ILD) was computed to measure the genre diversity

within the recommendations for each individual user. The representations were evaluated

using both individual and fused models.

Results: The results of the evaluations across different modalities and their combinations

are detailed in Tables 7.1 through 7.5. Each table provides insights into the performance

of textual (LSI, DM), audio (A), video (V), and genre (G) models, both individually and

in various fused combinations. The weights associated with each modality in the fused

models indicate the extent of their contribution to the overall performance.

Table 7.1 presents the performance metrics for individual modalities. The textual

models, Doc2Vec (DM) and Latent Semantic Indexing (LSI), outperform the genre model

(G) in both Mean Average Precision (MAP) and Intra-List Diversity (ILD). Specifically,

Doc2Vec achieves a MAP@10 of 11.76% with an ILD@20 of 80.37%, while LSI scores

11.30% in MAP@10 and 76.69% in ILD@20. Despite having lower MAP scores, audio

and video modalities contribute significantly to diversifying the recommendations, with

the video modality achieving the highest ILD@20 of 82.05%, though its MAP@10 is the

lowest at 3.88%. This indicates that while audio and video may not excel in precision,

they are valuable for enhancing the diversity of recommendations.

Table 7.2 introduces the text-only fusion model, combining genre information with both

Doc2Vec and LSI embeddings. This configuration achieves a MAP@20 of 15.20% and

an ILD@20 of 71.90%, surpassing the performance of any individual modality. The

results indicate that combining neural and one topic-based representations, along with

structured genre metadata, contributes meaningfully to both accuracy and diversity. While

this model does not rely on audio or visual inputs, it still provides strong performance,

demonstrating the strength of semantic features extracted from subtitles alone.

Table 7.3 shows the performance of fused models that combine textual, audio, and
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Table 7.1: Singular model evaluations

Model MAP@10 ILD@10 MAP@20 ILD@20

Genre (G) 10.78 35.52 12.77 52.72
Doc2vec (DM) 11.76 77.20 13.88 80.37

LSI 11.30 69.89 13.40 76.69
Audios (A) 6.67 77.96 8.11 81.38
Videos (V) 3.88 81.43 4.97 82.05
User-Based 15.60 79.73 18.51 80.90

Table 7.2: Fused textual-only evaluations

Model MAP@10 ILD@10 MAP@20 ILD@20

G + DM+ LSI 13.40 64.80 15.20 71.90
1.2 0.8 0.6

Table 7.3: Fused textual, audio and genre evaluations

Model MAP@10 ILD@10 MAP@20 ILD@20

LSI+ A+ G 12.87 63.10 15.21 71.65
0.5 0.3 0.2

DM+ A+ G 13.78 59.03 16.17 67.87
0.7 0.2 0.1

LSI+ DM+ A+ G 14.98 61.29 17.45 70.00
0.7 1.5 0.2 0.65

Table 7.4: Fused textual, video and genre evaluations

Model MAP@10 ILD@10 MAP@20 ILD@20

LSI+ V+ G 13.48 53.00 15.74 64.20
1.00 0.13 1.00

DM+ V+ G 14.23 54.75 16.62 64.68
1.8 0.1 1.00

LSI+ DM+ V+ G 14.99 60.62 17.45 69.58
0.7 1.5 0.12 0.65

Table 7.5: Fused textual, audio, video, and genre evaluations

Model MAP@10 ILD@10 MAP@20 ILD@20

LSI+ DM+ A + V+ G 15.07 61.17 17.55 69.88
0.7 1.5 0.12 0.1 0.65

User-Based 15.60 79.73 18.51 80.90
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genre modalities. The top-performing model in this group combines LSI, DM, audio,

and genre (with respective weights of 0.7, 1.5, 0.2, 0.65), achieving a MAP@10 of

14.98% and an ILD@20 of 70.00%. This fusion improves MAP over individual models

while preserving diversity, showing that combining modalities boosts both.

Table 7.4 highlights the performance of models that fuse textual, video, and genre

modalities. The best result in this category comes from combining LSI, DM, video, and

genre (with weights 0.7, 1.5, 0.12, 0.65), resulting in a MAP@10 of 14.99% and an

ILD@20 of 69.58%. This combination provides a balanced approach, improving both

MAP and ILD, although it does not quite reach the performance of the user-based model.

Table 7.5 presents a fully fused model integrating all modalities: LSI, DM, audio, video,

and genre. This comprehensive fusion achieves the highest MAP@10 of 15.07% and an

ILD@20 of 69.88%. These results are closely aligned with the user-based model, which

has a MAP@10 of 15.60% and an ILD@20 of 80.90%, demonstrating the effectiveness

of combining multiple modalities to closely estimate user preferences and behaviors.

Results demonstrate that splitting an episode’s content into textual, auditory, and visual

levels significantly enhances the quality of recommendations. Learning subtitle features

separately benefits the system by capturing textual semantic information, where episodes

using similar English words are more closely related. Auditory semantics further refine

the recommendations by distinguishing whether an audio is more noise-like or tone-

like, allowing the system to avoid recommending a programme with intense music

and screeching voices to a user who prefers hushed tones. Adding the visual aspect

provides another layer of understanding by analyzing the visual content of the episodes.

This allows the system to compare episodes based on visual similarities, such as colour

schemes, scene compositions, or even the presence of specific visual motifs. For instance,

an episode with dark, suspenseful imagery might be less recommended to user who

prefers bright, light-hearted visuals.

7.4 Conclusion

In this chapter, a multimodal content recommendation system for BBC TV programmes

was developed. The developed system demonstrates a significant advancement over

traditional genre-based methods, showcasing the potential of multimodal integration
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in enhancing the relevance and diversity of TV programme recommendations. Results

demonstrate that splitting an episode’s content into textual, auditory, and visual levels

significantly enhances the quality of recommendations. In the future, the weekly dataset

could be expanded to include a wider range of programs collected over several weeks

or months, enabling more comprehensive training and evaluation of the system. Ad-

ditionally, future iterations could integrate MultiCoDi to enhance the interpretation of

emotional tones across diverse content.

97



Chapter 8

Conclusion and Future

8.0.1 Summary

Language is a rich and dynamic medium that encompasses both context and perception.

This thesis embraced that complexity by exploring multimodality in language composi-

tions, bridging the gap between purely textual representations and real-world sensory

grounding. Its core contribution is the development of MultiCoDi, a framework that

grounds compositional models in auditory data. Inspired by tensor-based compositional

frameworks and type-driven approaches, MultiCoDi integrates noun vectors and adjective

matrices learned from both textual and auditory modalities. Unlike previous work that

mainly focused on unimodal settings or visual grounding, this research demonstrated

that grounding linguistic representations in sound provides a richer understanding of

language.

Another key contribution is the creation of a sound-relevant phrase similarity dataset,

bridging a gap in benchmarks by evaluating phrases across semantic and auditory di-

mensions. The dataset played a central role in evaluating compositional models on tasks

where sound is critical, showing that multimodal models consistently outperform uni-

modal baselines. Matrix-based compositions, in particular, proved to be more effective

than vector-based approaches, highlighting the importance of capturing the relationships

between linguistic components.

This thesis also demonstrated the practical applications of MultiCoDi in compositional

sentiment analysis. By combining textual and auditory features in a compositional

manner, MultiCoDi effectively captured subtle shifts in sentiment that traditional models



often miss. Additionally, a separate multimodal distributional framework was developed

as a baseline for future experiments in a content recommendation system for TV pro-

grammes. By integrating auditory, textual, and visual features, this system achieved more

precise and diverse recommendations.

The findings highlight the benefits of integrating sensory modalities with textual rep-

resentations to improve linguistic meaning. Grounding phrases in both text and sound

provides a more comprehensive and accurate understanding of language. The success of

matrix-based compositions further underscores the importance of capturing the relation-

ships between different components of language, making the resulting representations

contextually rich and precise. Despite these advancements, this thesis acknowledges

several limitations. The lack of extensive multimodal datasets covering various linguistic

structures and auditory contexts constrained further experimentations. Additionally,

the performance of multimodal models may vary across domains due to differences in

auditory-textual feature interactions in different contexts.

8.0.2 Future Directions

Looking ahead, there are several promising directions for future research.

Extension to Other Modalities: The proposed framework can further be expanded by

incorporating visual data, such as images or videos (a snippet of which has been shown

in recommendations). Prominent supporting works on images include works by Bruni et

al. [11], Kiela & Clark [33] for words, and Lewis et al. [37] and Wazni et al. [38] for

compositional models. The proposed MultiCoDi framework can be extended to images

as shown in Figure 8.1. More precisely, for example for the proposed concatenated tensor

Figure 8.1: Example MultiCoDi extension to vision.
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Skipgram, the objective function would become:

∑
(((ccc′′′a,,,ccc′′′t ,,,ccc′′′v)))∈Ca×Ct×Cv

logσ
(
A〈nnnaaa,,,nnnttt ,,,nnnvvv〉 · 〈ccc′′′a,,,ccc′′′t ,,,ccc′′′v〉

)

Here, 〈nnna,nnnt ,nnnv〉 represents the concatenation of the fixed pre-trained audio, textual, and

visual embeddings of a noun, and Ca, Ct , and Cv are the sets of positive and negative

contexts of the adjective-noun phrase. Positive contexts can be learned through multiple

auditory or visual representations of the same entity or by leveraging large textual corpora

(such as UKWaC). Moreover, the proposed dataset can also be utilised for this audio-

visual analysis. Notably, several phrases within the dataset exhibit an auditory-visual

overlap, providing an opportunity for cross-modal exploration. Examples of such phrases

include fast car, angry girl, fast food, angry monster, sad man, happy person, distant

blast, big drone, and big door.

Extension to Other Language Structures: Future work could extend the proposed

framework to more complex syntactic structures, such as subject-verb-object (SVO)

triplets or verb-phrase combinations. Several promising studies support this direction

including Wijnholds & Sadrzadeh [24] have explored learning representations for tran-

sitive verbs and other functional types using multilinear maps, applying Combinatory

Categorial Grammar (CCG) for type-driven composition and Wazni et al. [38] extended

it by grounding verb matrices with visual data through linear regression. Future work

could involve extending MultiCoDi to SVO triplets. Tensor-based operations, such as

Copy-Subject or Copy-Object, could be used to compute the SVO embedding. For

instance, the Copy-Subject operation can be formalised as:

−−−−−−−−→
subj verb obj =

−−→
subj�

(
verb×−→obj

)
Here, the subject and object will be represented as grounded vectors, while the verb

as a grounded matrix. For example, for the sentence, The dog barks at the cat, the

subject (dog) and object (cat) could be represented using audio embeddings, while

the verb (barks) would be learned to reflect the dynamic nature of the action through

context-aware representations.

Audio Captioning and Multimodal Applications: The proposed framework can be
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applied to various textual-audio understanding tasks, including automated audio cap-

tioning. The work of Eren et al. [164] supports this, demonstrating that incorporating

partial captions alongside audio inputs can enhance the performance of audio captioning

models.

Figure 8.2: Example application of MultiCoDi in automated audio captioning.

Figure 8.2 illustrates a practical example of how the proposed framework can be inte-

grated into audio captioning systems. In this task, where the objective is to generate

descriptive text based on auditory inputs, the use of multimodal language compositions

can enhance the contextual understanding of audio events, leading to more accurate and

contextually relevant captions.
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Appendix A

Modelling Multimodal Phrases

A.1 Textual Composition

We implemented a text-only approach to learning adjective-noun phrase representations,

building on the compositional framework by [22]. Their model uses a tensor-based

skipgram with negative sampling, where adjectives are transformation matrices that

modify noun embeddings to capture their compositional influence in phrases. Nouns are

represented as vectors, and adjectives as linear transformation matrices within the noun

vector space. The model maximizes the likelihood of observing a noun in the context of

a given adjective by optimizing the similarity between the adjective-transformed noun

and its surrounding context words. This objective is given by the following equation:

∑
ccc′t∈Ct

logσ
(
Annnt · ccc′t

)
+ ∑

ccct
′∈Ct

logσ
(
−Annnt · ccct

′) (A.1)

where A is the transformation matrix representing the adjective, and nnnt is the noun em-

bedding. Ct and Ct denote the sets of positive and negative contexts, respectively, derived

from textual representations. The noun embeddings are learned using the following

objective function:

∑
ccc′t∈Ct

logσ
(
nnnt · ccc′t

)
+ ∑

ccct
′∈Ct

logσ
(
−nnnt · ccct

′) (A.2)

where nnnt represents the noun embedding being learned, Ct is the set of positive contexts,

and Ct denotes the negative context samples. This function maximizes the likelihood

of observing positive context words near the noun while minimizing the likelihood of



negative context words, effectively capturing the contextual relationships within the

noun’s embedding space.

Dataset: For initial experimentation, we chose the Text8 dataset, a compact yet represen-

tative subset of English Wikipedia consisting of 17 million words. Text8 is popular for

language modeling tasks and is particularly suitable for exploring phrase-level semantic

relationships due to its manageable size and quality.

Implementation Details: We first preprocess the dataset by converting text to lowercase,

tokenizing punctuation, and filtering out low-frequency words. A vocabulary is then

created, and frequent words are subsampled to reduce noise. Using a skip-gram approach

with a context window size of 5, positive context pairs are generated, with 10 negative

samples drawn from a noise distribution. The model is trained with a learning rate of

0.003, optimizing noun embeddings over 10 epochs with a batch size of 512. Adjective

matrices, initialized as identity, are learned by transforming noun embeddings to capture

the meanings of adjective-noun phrases. For each adjective, noun pairs are extracted, and

transformation matrices are trained using Cross-Entropy loss with a batch size of 32 over

10 epochs.

Results and Discussion: The evaluation process involves computing cosine similarity

scores between learnt adjective-noun phrase embeddings and comparing these scores

against human-annotated similarity ratings. For each adjective-noun pair, the model-

generated similarity scores are matched with corresponding human judgments, and

Spearman’s rank correlation assesses the alignment between model-based and human

perceptions.

Table A.1: Semantic and audio similarities between phrases.

Audio Similarity Semantic Similarity

TSG-Text 0.19 0.26

Results in able A.1 reveal that the text-only model, represented by TSG-Text, achieves

a moderate correlation of 0.26 for semantic similarity and a lower correlation of 0.19

for audio similarity. This indicates that the model captures some level of semantic

similarity between adjective-noun phrases but is less effective at capturing audio-based

relationships, as expected given the absence of auditory context.
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The higher performance on semantic similarity suggests that the text-only approach

is better suited to tasks where phrases share conceptual or linguistic attributes rather

than sensory characteristics. The relatively low audio similarity score highlights the

limitations of a purely textual model in contexts involving perceptual qualities, such as

sound. Additionally, we understand that the dataset size may not be sufficient to fully

capture nuanced relationships. In future work, we plan to train the model on a larger

dataset, such as the full Wikipedia corpus, to enhance its capacity for capturing detailed

semantic associations.
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Appendix B

A Novel Multimodal Phrase Dataset

The adjectives in the dataset are: vocal, sad, resonant, quick, percussive, musical,

melodious, melodic, mechanical, low, male, loud, instrumental, industrial, human, large,

high-pitched, high, female, happy, heavy, electrical, fast, electronic, distant, digital, deep,

dark, big, angry.

B.1 Annotation Guidelines

To ensure consistency across annotations in both audio and semantic similarity tasks,

annotators used a 1–5 scale. A score of 1 indicated no similarity in sound or meaning,

3 represented moderate similarity with some shared qualities but notable differences,

and 5 indicated high similarity, with items almost identical in sound or meaning. They

were shown example pairs with sample scores to illustrate the scale but were encouraged

to apply their own judgment, as interpretations could vary. The data was divided into

environmental and musical categories with tailored questionnaires: environmental items

focused on natural elements (e.g., heavy rain vs. heavy wind), while musical items

addressed instrumental or musical qualities (e.g., soft melody vs. soft harmony).

B.1.1 Semantic Similarity

In the semantic similarity task, annotators assessed similarity based solely on meaning,

ignoring any auditory components. For each pair, annotators were asked to focus on the

implied qualities or conceptual overlap between phrases. Higher ratings were assigned

when phrases conveyed similar ideas or emotions (e.g., bright morning and bright sun).



Examples for environmental and musical questionnaires are shown in Figures B.1 and

B.2.

Figure B.1 exemplifies the semantic similarity annotation guidelines designed specifically

for environmental phrases. It illustrates the structured approach annotators followed

when rating phrase pairs, such as quick train and quick car, may have high similarity due

to shared key attributes like speed and transportation context. Similarly Figure B.2 shows

an example of semantic similarity annotation guidelines for musical phrases. Annotators

were guided to assess pairs like melodic tune and melodic harmony as highly similar. For

both environmental and musical categories, the guidelines differ only in the examples

and their descriptions.

Figure B.1: Example of semantic similarity annotation guidelines for environmental phrases.
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Figure B.2: Example of semantic similarity annotation guidelines for musical phrases.

B.1.2 Audio Similarity

In the audio similarity task, annotators assessed pairs of phrases based on their perception

of how the sounds described by each phrase might compare to one another. They were

asked to imagine the sound of each phrase and rate its similarity to the other. For

instance, they might consider the sound of heavy rain and how similar it could be to

heavy thunderstorm.
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Annotators used the same 1-5 rating scale as in the semantic similarity task, where they

rated the sound similarity between two phrases. Example pairs were provided to help

clarify the concept; however, these examples were meant as guidelines and not definitive,

as individual perceptions of sounds may vary. Figures B.3 and B.4 illustrate examples

of the audio similarity annotation guidelines for environmental and musical sounds,

respectively.

Figure B.3: Example of audio similarity annotation guidelines for environmental sounds.

In Figure B.3, an example of audio similarity guidelines for environmental sounds is

presented. This figure shows how annotators were instructed to rate audio pairs like
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fast car and fast vehicle as highly similar, with additional guidance on distinguishing

medium and low similarity pairs, such as loud lady vs. loud alarm. Similarly, Figure B.4

provides an example of audio similarity guidelines for musical sounds, illustrating how

pairs like soft music and soft melody are rated as highly similar and explaining how to

approach medium similarity cases, such as sad flute vs. sad saxophone.

Figure B.4: Example of audio similarity annotation guidelines for musical sounds.
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B.2 Data Insights
We collected human similarity ratings for 3144 adjective-noun phrase pairs across two

modalities: semantic and auditory. Each pair was rated on a scale from 1 (low similarity)

to 5 (high similarity) by multiple annotators. The final similarity score for each pair in

both modalities is computed as the mean of all individual annotations.

Figure B.5: Histogram of mean similarity ratings across all phrase pairs. Left: semantic
similarity. Right: auditory similarity. Each bin represents a range of mean
ratings (e.g., 2.0–2.25), computed by averaging multiple annotator scores per
pair.

Figure B.6: Scatter plot comparing human-annotated semantic and auditory similarity scores
for phrase pairs. Each point represents one phrase pair. A red diagonal line
indicates the x = y reference, where semantic and auditory judgments align
perfectly.

Figure B.5 shows the distributions of the mean similarity ratings across phrase pairs. The
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x-axis represents the average similarity score of a phrase pair, while the y-axis shows

how many pairs received a score within each bin. Most ratings fall between 1.5 and 3.5,

with peaks near the lower end of the scale in both modalities. This suggests that most

phrase pairs were judged to be only moderately similar in either meaning or sound, while

highly similar or dissimilar pairs were less frequent. The similarity in shape between

the two distributions supports a strong correspondence between human perceptions of

semantic and auditory similarity.

Figure B.6 shows the relationship between the mean semantic and auditory similarity

ratings, both ranging from 1 (low similarity) to 5 (high similarity). Each point in the

plot represents a phrase pair, with its x-coordinate corresponding to the mean semantic

similarity score and its y-coordinate representing the mean auditory similarity score.

The strong upward trend indicates that phrases rated as semantically similar were also

likely to be judged as auditorily similar. This relationship is quantified by a Spearman

correlation of 0.90, demonstrating a strong and consistent agreement between semantic

and auditory similarity judgments.
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Appendix C

Evaluation of the Framework

C.1 Adjective Similarities

In addition to phrase similarity experiments, we conducted a small-scale evaluation of

adjective–adjective semantic similarities using the SimLex-999 dataset [9].

Figure C.1: Bootstrap distributions of Spearman correlations between model-predicted and
human-rated adjective–adjective similarities for the best-performing model
(AT-Joint TSG; left) and a unimodal baseline (Non-Comp Text; right). Distribu-
tions are based on 5,000 resamples of the evaluation pairs, with shaded 95%
confidence intervals and dashed red lines showing bootstrap means.

From the audio dataset, 11 adjectives overlapped with SimLex, forming 8 evaluation

pairs. For each model, we computed cosine similarities for these pairs and measured

Spearman’s rank correlation (ρ) with the corresponding SimLex human scores..

Given the very limited number of evaluation pairs, the results should be interpreted as

indicative rather than definitive. To quantify the uncertainty associated with such a small

sample, we applied a pair-level bootstrap to only the best-performing model (AT-Joint



TSG) and one unimodal baseline (Non-Comp Text) for comparison (Figure C.1). In each

of 5,000 iterations, we resampled the adjective pairs with replacement, recomputed (ρ),

and built a distribution of bootstrapped correlations. This approach does not alter the

model or human scores but estimates how much the correlation might vary if a different

set of adjective pairs were drawn from the same population.

As expected, the resulting confidence intervals are relatively wide, reflecting the small

sample size and limited coverage. Nevertheless, this experiment is valuable because it

links our models’ performance to an established external benchmark, showing that the

trends observed in the phrase similarity experiments, such as the advantage of multimodal

models over unimodal ones, are also apparent, though less pronounced, at the single-word

(adjective) level.

C.2 Phrase Similarities

Figure C.2: Adjective-level bootstrap distributions (10,000 iterations) for four models. Left:
semantic models; right: auditory models. Shaded areas show 95% CIs, red
dashed lines mark bootstrap means, and a fixed y-axis scale enables direct visual
comparison.

Figure C.2 presents the adjective-level bootstrap distributions of mean Spearman correla-

tions between model predictions and human similarity judgements for four systems: AT
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Concat (Semantic), AT Concat (Audio), Audio-only (Semantic), and Audio-only (Audio).

Semantic models are shown in the left column and auditory models in the right column

for direct comparison. Each distribution was generated using 10,000 bootstrap iterations,

resampling the 30 per-adjective correlation values with replacement and computing the

mean for each resample. The AT Concat (Audio) model achieved a raw mean of 0.8746

with a 95% confidence interval (CI) of [0.8070, 0.9342], while AT Concat (Semantic)

reached 0.8548 (CI: [0.8003, 0.9046]). The Audio-only (Semantic) model produced

a mean of 0.7832 (CI: [0.7142, 0.8486]), and Audio-only (Audio) scored 0.8248 (CI:

[0.7490, 0.8911]). The bootstrap means closely match the raw means, as expected for the

mean statistic, while the CI widths quantify variability due to the finite set of adjectives.

Overall, the multimodal AT Concat models outperform their unimodal counterparts, with

smaller CI ranges indicating more consistent performance across adjectives.

114



Appendix D

Application: Multimodal

Recommendations

D.1 Examples

This section presents examples from the 145-program BBC dataset obtained from the

suggested recommender. To interpret the final recommendations and understand the

impact of individual recommenders, examples from genre, audio, and tag-based recom-

menders are also discussed. Table D.1 highlights two high-ranking and two low-ranking

recommendations for the program EastEnders, illustrating the strengths and limitations

of each recommender.

Table D.1: Recommendation examples for EastEnders

Example

(Good/Bad)

User-Based

Recommendations

Text-Based

Recommendations
Audio-Based

Recommendations

Late Fusion

Genres Tags Audio +Tags + Genre

Good Waterloo Road Waterloo Road Sexy Beasts Waterloo Road Doctors

Good Outnumbered Death in Paradise Live at the Electric The Notorious Bettie Page Waterloo Road

Bad Meet the Author Dissected Salamander Mastermind The Football League Show

Bad Italy Unpacked Top of the Pops The Football League Show Who Dares Wins University Challenge

Table D.2 presents metadata for each episode, offering insight into the behavior of each

recommender. For audios, first 10 audio words with highest counts based on audio

histograms are used for testing. Since audio words cannot be directly interpreted like

text, authors’ performed a manual classification of the audio data. Each audio sample



was categorized according to whether its music and voiceover fit a soft, moderate, or

loud audio profile.

Table D.2: Metadata of examples, including ID, Title, Genre, Tags, and Audio for each
program. Only the top 10 highest-weighted starfruit tags are displayed.

ID Title Genre Mention Tags (10/episode) Audio Words (10/episode)

b03vznpt EastEnders drama/soaps
dogs, family, Cardiff, cheating, community,

Brighton, love, daughter, children, protest

Music: soft, Voiceover: soft

Audio words: 19, 44, 0, 7,

46, 31, 33, 3, 21, 4,

b03w0d8z Waterloo Road drama
Campaigning, love, eating, community,

cheating, office, future, exams, daughter, crime

Music: soft , Voiceover: soft

Audio words: 19, 46,3 1, 21,

44, 0, 7, 34, 1, 17,

b03w7snk Outnumbered comedy/sitcoms
animals, university, eating, students, nature,

drama, bullfighting, cake, rapping, romance

Music: soft, Voiceover: moderate

Audio words: 19, 44, 21, 46, 0,

7, 16, 4, 5, 25,

b03w790q Death in Paradise drama/crime
birds, Vietnam, hobby, eating, theft, war,

friendship, English, murder, law

Voice: moderate, Music: low

Audio words: 31, 0, 46, 44, 7,

2, 21, 19, 10, 32

b03wcmdc Sexy Beasts factual/familiesandrelationships
London, dating, romance, eating, relationships,

love, public, relations, future, future, cheating

Music: moderate, Voice: loud

Audio words: 46, 0, 4, 31, 19,

41, 5, 25, 45, 24

b03v3n0d Live at the Electric comedy/standup, entertainment
Australia, comedy, family, eating, France,

future, England, love, philosophy, gender

Music: moderate ,Voice: loud

Audio words: 37, 23, 31, 44, 4,

18, 1, 0, 26, 6

b00nx10r The Notorious Bettie Page drama/biographical
music, entertainment, film, children, dance,

love, Tennessee, literature, shame, Hollywood

Music: soft , Voice: soft

Audio words: 19, 44, 21, 0, 46,

10, 31, 17, 7, 34,

b03vs7g1 Doctors drama/medical, drama/soaps
abortion, daughter, Zara, adoption, father,

strokes, sex, homophobia, children, love

Music: soft, Voiceover: soft

Audio words: 19, 21, 44, 10,

31, 46, 33, 0, 35, 27,

b03w7s0n Meet the Author
factual/artscultureandthemedia,

factual/artscultureandthemedia/arts

curling, David, Ukraine, winter, love,

history, Stranraer, libraries, hacking, phone

Music: low, Voiceover: Moderate

Audio words: 4, 41, 10, 3, 44,

24, 46, 21, 25, 19

b03qg00y Italy Unpacked factual/artscultureandthemedia/arts
food, Italy, Rome, Europe, cookery,

sculpture, Egypt, garden, art, music

Music: Moderate,

Voiceover: Moderate

Audio words: 2, 0, 46, 44, 21,

42, 10, 19, 30, 32

p01mv2md Dissected factual
biology, animals, Charles, human,

ethics, scientist, engineering, language

Music: low. Voiceover: low

Audio words: 19, 21, 0, 44, 46,

10, 45, 3, 22, 26

b03mpphw Top of the Pops
factual/artscultureandthemedia/arts,

music/classicpopandrock

music, Nile, Rodgers, northern, Ireland,

Coventry, pop, disco, British, army

Music: Loud, Voiceover: Moderate

Audio words: 17, 34, 46, 31, 0,

21, 37, 44, 19, 45

b01pyjxw Salamander drama/crime idles

Music: low, Voiceover:Moderate

Audio words: 7, 1, 21, 31, 0,

44, 29, 19, 34, 18

b03wc7gf The Football League Show sport/football

football, championship, city Birmingham,

town, Huddersfield, Vale, port, Brentford,

Millwall

Music: low, Voiceover: high

Audio words: 4, 21, 0, 49, 13,

17, 36, 31, 45, 42

b03wby67 Mastermind entertainment
London, Nottingham, history, criticism,

Caerphilly, war, tiring, tennis, Belize, arts

Music: low, Voiceover: high

Audio words: 44, 23, 2, 26, 36,

5, 43, 48, 12, 47

b03w4c7c Who Dares Wins entertainment
television, Cuba, Abba, Jamaica, Kidderminster,

national, Mayall, Rik, hull, DC

Music: Moderate, Voiceover: high

Audio words: 37, 19, 3, 0, 1, 42,

13, 36, 45, 5

b03w7vbz University Challenge entertainment
Cardiff, science, Faso, Burkina, Benin, history,

criticism, linguistics, Huntingdon, physics

Music: low, Voiceover: Moderate

Audio words: 44, 2, 23, 47, 13,

43, 26, 28, 49, 36
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From the final late fusion model for EastEnders, a good example is Waterloo Road,

which aligns well due to its shared genre of drama and themes around community and

social challenges. This thematic similarity is enhanced by soft audio elements and

matching tags like love and family, reflecting the relational aspects that connect well with

EastEnders fans. In contrast, a poor recommendation example is The Football League

Show. Although it may share a broad audience base with EastEnders, its focus on sports

events, paired with louder audio profiles and tags unrelated to EastEnders’ community-

oriented themes, makes it less compatible. This illustrates how genre, thematic alignment,

and audio profile differences can affect recommendation quality.

Overall, this approach enhances the recommender system’s ability to align suggestions

with user preferences by integrating both content and audio characteristics, creating a

more personalized user experience.
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